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Abstract. Verifiable secret sharing (VSS) is a fundamental tool of cryptography
and distributed computing in Internet of things (IoTs). Since network bandwidth
is a scarce resource, minimizing the number of verification data will improve
the performance of VSS. Existing VSS schemes, however, face limitations in
meeting the number of verification data and energy consumptions for low-end
devices, which make their adoption challenging in resource-limited IoTs. To ad-
dress above limitations, we propose a VSS scheme according to Nyberg’s one-
way accumulator for one-way hash functions (NAHFs). The proposed scheme has
two distinguished features: first, the security of the scheme is based on NAHFs
whose computational requirements are the basic criteria for known IoT devices
and, second, upon receiving only one verification data, participants can verify the
correctness of both their shares and the secret without any communication. Exper-
imental results demonstrate that, compared to the Feldman scheme and Rajabi-
Eslami scheme, the energy consumption of a participant in the proposed scheme
is respectively reduced by at least 24% and 83% for a secret.

1 Introduction

Internet of Things (IoT) has received significant attention recently in the context of lo-
gistics and inventory, battlefields, and medical monitoring, which consist of hundreds
or even thousands of low-cost, battery-powered IoT devices (i.e., sensors, RFID) that
communicate wirelessly. These IoT devices have limited computing ability and the lim-
itation of communication bandwidth. An IoT system can be described as a collection
of IoT devices that interact on a collaborative basis to achieve a common goal. Secure
and reliable group communication has become critical in the IoT system. The central
challenge is secure and efficient group key management [1, 19]. In this paper, we focus
on the design of lightweight verifiable secret sharing (VSS) schemes in order to achieve
the secret reconstruction among a set of IoT devices, where the reconstructed secret
may be the group key of them.

1.1 Related work

The secret sharing (SS) scheme is used as a tool in IoT applications including contin-
uous authentication [1] and key management in sensor networks [8]. Such a scheme
allows one to share a secret s among a set P of participants. The participants are as-
signed different values called shares and only certain authorized subsets of them can



recover the secret using these shares. A (t, n) threshold SS scheme was introduced by
Shamir [20] and Blakley [4] independently in 1979. In such a scheme, the authorized
subsets consist of all subsets of P including at least t participants. The scheme is un-
conditionally secure which means that less than t participants can find no information
about the secret even with unlimited time and computing power. Then, many versions
of SS are proposed to add some new features in the literatures [17].

A verifiable secret sharing (VSS) scheme is a generalization of a SS scheme [13],
whose novelty is that everyone can verify whether the received share is a valid piece of
the secret or not. The concept of VSS was first introduced by Chor et al [7] in 1985.
Subsequently, based on “k-consistent” shares and interactive proof in [2], a VSS scheme
was proposed to check the honesty of participants at the secret reconstruction phase.
However, at the share generation phase, participants were unable to verify whether the
shares they received from the dealer were valid. In 1987, a practical non-interactive
VSS was proposed by Feldman [5, 10] through a homomorphic one-way function v for
verifying consistency of each share. Indeed, let v be a (+, ·)-homomorphic one-way
function (that is, v(a+ b)=v(a) · v(b)); then, if v is evaluated over a polynomial f(x) =∑t−1

i=0 aix
i, the equation v(f(x)) =

∏t−1
i=0 v(aix

i) holds. The dealer chooses as public
values primes p, q such that q divides p − 1 and a generator g of a subgroup of order
q of Z∗

p(q is the lowest possible integer such that gq ≡ 1 mod p). Then, it generates
a share sj=f(xj) mod q for each participant Pj and publishes the public verification
coefficients Ai = gai mod p. Hence, the consistency of a share sj can be verified by

checking the equality gsj =
∏t−1

i=0 A
xi
j

i (mod p). Here, we use the homomorphic property
of exponentiation function v(a)=ga mod p. In the case of Feldman’s scheme, the secu-
rity is based on the hardness of the discrete logarithm problem (DLP). Recently, Rajabi
and Eslami [18] propose a generic threshold VSS construction and then present a non-
interactive VSS with security based on hardness of the approximate shortest polynomial
problem (ASPP) in cyclic lattices.

A new non-trapdoor accumulator for cumulative hashing is introduced by Nyberg
[16]. In practice, it can be effectively implemented using the generic symmetry-based
hash function and simple bit-wise operations. Oftentimes, this results in less memory
requirements than digital signature-based solutions for verification problems. In 2017,
Huang et al. [14] propose a lightweight authentication scheme with dynamic group
members in IoT environments. Here, based on a public secure NAHF, the proxy com-
putes two accumulated hash values, W and R, which are used to verify whether the
node is available and unrevoked. Recently, Fan et al. [9] present a secure region-based
handover scheme with user anonymity and fast revocation, where the region secret keys
of the revoked users are accumulated by NAHFs. In our work, the dealer generates the
verification data with a NHAF such that the shares of participants can be publicly and
efficiently verified. This enables us to add verification capability for participants using
only one verification data.

1.2 Motivation for lightweight VSS

To date, there are two main families of approaches that have been investigated to pro-
vide VSS to participants. The first approach provides verification data based on public



key cryptography such as ASPP [18] in cyclic lattices, DLP [10]. The second approach
to add verification capabilities to a scheme, is to use one-way functions to obtain finger-
prints/ signatures of the involved data [5]. However, the existing schemes suffer from
some major problems. Firstly, existing schemes face challenge in very large-scale de-
ployment of IoT devices. Since verification data grows linearly with either the number
of participants [5] or the threshold value [18], their performance drops sharply as the
number of IoT devices grows. Note that network bandwidth is a scarce resource. Mini-
mizing the number of public verification data will improve performance of VSS. In this
paper, we address this challenge and propose a VSS Scheme with only one verification
data used to verify a secret and all of its shares.

In addition, for these low-cost, battery-powered IoT devices,the lightweight imple-
mentation of VSS schemes has emerged as a critical issue. Because public key cryp-
tography uses some big integers to generate the verification data, it is much slower than
symmetric key cryptography, requires more processing power, and generally increases
energy consumptions of participants [21]. When the batteries are low, it may cause the
IoT devices to function abnormally. Existing solutions require the public-key compu-
tation (e.g., Modular exponentiation) that is an expensive operation for IoT devices in
real systems. In the VSS setting, it is a challenge to design a lightweight VSS scheme
minimize energy consumption of a participant. To our knowledge, our paper represents
the first effort in this direction.

1.3 Our contribution

In this paper, we propose a lightweight VSS scheme in IoT environments, that upon
receiving only one verification data, participants can verify the correctness of both their
shares and the secret without any communication. The security of the proposed scheme
is based on NAHFs which are implemented through the generic symmetry-based hash
function and simple bit-wise operations. The scheme achieves the tradeoff between
verification capabilities and energy consumptions for IoT devices. Compared to the
Feldman scheme [10] and Rajabi-Eslami scheme [18], the energy consumption of a
participant in the proposed scheme is respectively reduced by at least 24% and 83% for
a secret. To the best of our knowledge, our approach is the first such technique that the
number of verification data is only one in the VSS scheme.

The paper is organized as follows: Section 2 provides a brief review of NAHF,
Shamir’s (t, n) secret sharing and VSS. Section 3 is dedicated to the proposed VSS
scheme including the security model, construction and security aspects. The perfor-
mance analysis and simulation experiments for the proposed scheme are respectively
discussed in Section ?? and Section ??. Section 4 concludes the paper.

2 Preliminaries

In this section, we introduce some basic concepts of hash function, Nyberg’s One-Way
Accumulator for one-way hash function, secret sharing and VSS needed later



2.1 Notations

We shall use the following notations throughout the paper. A set with integers 1, 2, · · · , n,
is written either {1, 2, · · · , n} or simply [n]. We denote by |x| the length of the binary
string corresponding to x, and ⌈x⌉ the least integer that is greater than or equal to
the given number x. Let P = {P1, P2, · · · , Pn} be a set of n participants and D be
the dealer. The threshold is denoted by t. Let Zp, Zq be two finite fields and Z∗

q =
Zq \ {0}, where p is a prime modulus, q is a prime divisor of p − 1, and q ≥ n + 1.
We let H : {0, 1}r × {0, 1}∗ → {0, 1}r denote a Nyberg accumulated hash function,
h : {0, 1}∗ → {0, 1, · · · , q − 1} and ĥ : {0, 1}∗ → {0, 1}rd be two one-way hash
functions, where h is used to construct the required H , and r=|q|.

2.2 Nyberg’s one-way accumulator for one-way hash function

In this paper, we review the concept of Nyberg’s one-way accumulator for one-way
hash function (NAHF).

Definition 1 (One-way hash function [16]) A family of one-way hash functions is an
infinite set of functions hl : Kl × Sl → Vl having the following properties:

(1) There exists a polynomial P ′ such that for each integer l, hl(k, s) is computable in
time P ′(l, |k|, |s|) for all k ∈ Kl and all s ∈ Sl.

(2) There is no polynomial P ′ such that there exists a probabilistic polynomial time
algorithm which, for all sufficiently large l, when given l, a pair (k, s) ∈ Kl × Sl,
and a s′ ∈ Sl, find an k′ ∈ Kl such that hl(k, s) = hl(k

′, s′) with probability
greater than 1/P ′(l), where (k, s) is chosen uniformly among all elements of Kl ×
Sl and s′ is chosen uniformly form Sl.

Definition 2 (Quasi-commutativity [16]) A function h : K × S → X is said to
be quasi-commutative if for all k ∈ K and for all s1, s2 ∈ S, h(h(k, s1), s2) =
h(h(k, s2), s1).

Definition 3 (Nyberg’s one-way accumulator [16]) A family of one-way accumula-
tors is a family of one-way hash functions with quasi-commutativity. The one-way accu-
mulator by Nyberg [16] is constructed based on the generic symmetry-based hash func-
tion (e.g., SHA) and simple bit-wise operations. Compared to Benaloh’s scheme [3],
Nyberg’s scheme is more efficient without employing asymmetric cryptographic opera-
tions.

Assume that N = 2d is an upper bound to the number of items to be accumulated
and r is an integer. Let s1, s2, · · · , sn be the accumulated items with different string
sizes, and n ≤ N . Let H(·, ·) denote NAHF from {0, 1}r × {0, 1}∗ to {0, 1}r, and
⊙ be the bitwise operation AND. The NAHF is based on the one-way hash function
h : {0, 1}∗ → {0, 1}rd. All that is required to specify an NAHF is hashing process
and AND operation. The heart of NAHF is the hashing process. The hashing process
applies a hash function h to the input to produce a r-bit output. The hashing process is
composed of the following operations.



– Hashing operation: Hash accumulated item si of the input and output a rd bits
binary string vi=h(si).

– Transfer α: NAHF does a transfer operation on the binary string vi which is divided
into r blocks, (vi,1, · · · , vi,r), of length d. The transfer of a block from a d-bit
input to a bit output is performed as follows: If vi,j is a string of zero bits, it is
replaced by 0; otherwise, vi,j is replaced by 1. That is, α(vi) =(bi,1, · · · , bi,r),
where bi,j ∈ {0, 1}, j=1, · · · , r.

In this way, we can transfer an accumulated item si to a bit string, bi=α(h(si)) ∈
{0, 1}r, which can be considered as a value of r independent binary random variable if
h is an ideal hash function.

The NAHF on an accumulated item si ∈ S with an accumulated key k ∈ {0, 1}r
can be implemented using the AND operation described as H(k, si) = k ⊙ α(vi) =
k ⊙ α(h(si)). And it also can be represented as Z = H(k, si) = k ⊙ α(vi) = k ⊙
α(h(si)) (i ∈ [n]) if S is a set of accumulated items S = {s1, s2, · · · , sn}. H(·, ·) has
the following properties:

– Quasi-commutativity: H(H(k, s1), s2) = H(H (k, s2), s1).
– Absorbency: H(H(k, si), si) = k ⊙ α(h(si)) = H (k, si).
– An item si within the accumulated value Z can be verified by H(Z, si) = Z ⊙
α(h(si)) = Z.

2.3 Shamir’s threshold secret sharing

There are n participants, P = {P1, P2, · · · , Pn} and a dealer D. In Shamir’s secret
sharing scheme [20], it consists of two phases: the share distribution phase and the
secret reconstruction phase. During share distribution, the secret is s = f(0), where
f(x) is a polynomial of degree t− 1 with random coefficients (except for the constant
term), computed over a finite field. The participant Pj in the group holding shares knows
sj = f(xj), where xj is Pj’s unique nonzero identifier, j ∈ [n]. In secret reconstruction,
any t out of n participants, Pj1 , · · · , Pjt , can recover the secret s by using the Lagrange
interpolation formula (1) or solving the following linear equations (2), where

s = f(0) =

t∑
i=1

sji(

t∏
r=1,r ̸=i

−xjr

xji − xjr

), (1)

and

sj1 = s+ a1 × xj1 + · · ·+ at−1 × xt−1
j1

,

sj2 = s+ a1 × xj2 + · · ·+ at−1 × xt−1
j2

, (2)

...
sjt = s+ a1 × xjt + · · ·+ at−1 × xt−1

jt
.

Note that the above coefficient matrix is a square Vandermonde matrix, which is invert-
ible, since the xjs are distinct.



2.4 VSS

In a SS scheme, participants must trust that shares they receive are correct. In a VSS
scheme, additional verification data are given that allow each participant to check whether
its share is correct. Each message that must be checked contains additional verification
data. The verification data are sent in the clear, and can be used by the recipient to deter-
mine whether the share in the message is correct. That is, recipients use them to check
that a point, (xj , sj), sent to it is on the polynomial f(x) and that the polynomial, f(x),
used as the basis for the sent shares equals the secret at x =0. The VSS is able to resist
the following two kinds of active attacks: (1)some shares are tampered before being sent
to the participants in the secret distribution phase; (2)participants submit error shares to
others in the secret reconstruction phase.

3 A lightweight (t, n) VSS scheme

In the section, a lightweight (t, n) VSS scheme is proposed. We discuss techniques
involving the security model, construction and the security aspects of the scheme.

3.1 The security model of proposed scheme

In this section, we give the definition of a noninteractive (t, n) VSS scheme. There are
n participants, P = {P1, P2, · · · , Pn}, and a dealer D. In our definition, there are four
algorithms: share generation(SG), share verification(SHV), secret reconstruction(SR)
and secret verification (SEV). The scheme consists of share distribution phase and secret
reconstruction phase. We define a noninteractive (t, n) VSS scheme as follows:

A noninteractive (t, n) VSS scheme is a pair (share generation, secret reconstruc-
tion) of phases as follows.

– Share distribution: In this phase, on input a secret s and Pj’s identity xj , D first
runs SG algorithm to output the shares for each participant and some verification
data, where the shares is sent to the corresponding participants through a secure
channel. Then, on input verification data and his share, each participant runs SHV
algorithm to output accept or reject the share.

– Secret reconstruction: The input of this phase are the shares corresponding to a
subset of participants. At first, the validity of each share is verified by other cooper-
ating participants running SHV algorithm. Then, if the number of participants with
valid shares is at least t, the secret can be computed by applying SR algorithm on
the provided shares, and the recovered secret is verified by running SEV algorithm.

A non-interactive (t, n) VSS Scheme is called secure if it satisfies the following
properties:

– Threshold. Every secret can only be recovered by any t or more participants who
have received the shares, and any subset of participants with less than t participants
cannot obtain any information about the secrets.



– Verifiability/reconstructability: Every participant can verify its share in the share
generation phase. During the secret reconstruction phase, the participants can vali-
date the received shares and check if a reconstructed secret is correct.

– Security. The VSS scheme must be able to resist up to t − 1 colluded inside ad-
versaries. In addition, any outside adversary cannot impersonate to be a member
by forging a valid value after knowing at most t − 1 values from other members.
The VSS scheme is secure, if the adversary cannot obtain the shares in polynomial
time.

In addition, the following properties for a VSS are very much tailored to IoT devices
as participants:

– Efficiency. The proposed scheme should have low calculation requirements and low
communication costs at the participants to reduce their energy consumptions. This
makes VSS for implementation on battery-powered IoT devices that have limited
computing power.

– Scalability. Even if the number of participants in large-scale deployments is big,
the communication cost of the scheme should be kept small to reduce the cost of
the supporting network infrastructure.

3.2 The proposed (t, n) VSS scheme

Share generation
Step 1: Dealer D chooses a (t − 1) degree polynomial f(x) = ao + a1x + · · ·
+at−1x

t−1, where a0 = s is the secret in Z∗
q , and for i = 1, 2, · · · , t − 1, ai

are picked uniformly from Z∗
q . The dealer distributes the share sj = f(xj) to the

corresponding participant Pj secretly, where xj is Pj’s unique nonzero identifier,
j ∈ [n]. Then, based on an NAHF H , the dealer selects k as its long term se-
cret key to compute the verification data V , and publishes H and V , where V =
H(· · ·H(H(k, s), s1), · · · , sn).
Step 2: After receiving sj , each participant Pj checks if H(V, j) = V holds,
j ∈ [n]. If true, Pj confirms that the received share sj is correct; otherwise, it
repeats the step 1.

Secret reconstruction
Step 3: The participant Pj releases its share sj , and the combiner confirms the
correctness of sj via H(V, sj) = V .
Step 4: Assume that the combiner receives t correct shares sj1 , sj2 , · · · , sjt . The
secret s is recovered by the formula (1) or solving equation (2). Then, the com-
biner validates the recovered secret s as H(V, s) = V .

Fig. 1. The proposed (t, n) VSS scheme

Figure 1 shows the proposed (t, n) VSS scheme, where the combiner may be each
participant in P . In the proposed scheme, the algorithms SG, SHV, SR and SEV are



the mathematical processes in the Step 1, 2, 3 and 4, respectively. The security of the
scheme is based on an NAHF, which is quasi-commutative and has the absorbency
property.

The correctness of the proposed (t, n) VSS scheme is guaranteed by the following
theorem 1 and 2.

Theorem 1 In the share generation, the correctness of each share sj can be validated
by the receiver through H(V, sj) = V , j ∈ [n].

Proof 1 If the dealer D follows the scheme accurately, we have that V = H(· · ·H(H(k, s), s1), · · · , sn).
Based on the absorbency property of H , it is known that the share sn satisfies H(V, sn)
=V . In fact, H(V, sn) = H(H(· · ·H(H(k, s), s1), · · · , sn), sn) = H(· · ·H(H(k, s), s1), · · · , sn)
= V , where the second equality holds for the absorbency property of H .

Generally, in accordance with the quasi-commutativity of H , we have

V = H(· · ·H(H(· · ·H(H(k, s), s1), · · ·, sj), sj+1), · · ·, sn)
= H(· · ·H(H(· · ·H(H(k, s), s1), · · ·, sj+1), sj), · · ·, sn)

... (3)
= H(H(· · ·H(· · ·H(H(k, s), s1), · · ·, sj+1), · · ·, sn), sj).

where j = 1, 2, · · · , n− 1. Combining the absorbency property of H and equation (3),
we obtain that H(V, sj) = H(H(H(· · ·H(· · ·H(H(k, s), s1), · · · , sj+1), · · · , sn), sj), sj)
= H(H(· · ·H(· · ·H(H(k, s), s1), · · · , sj+1), · · · , sn), sj) = V , where the second equal-
ity holds for the absorbency property of H , and the third equality holds due to equation
(3). This completes the proof.

Theorem 2 In the secret reconstruction, the received shares sjθ and the recovered se-
cret s can be publicly and efficiently verified via H(V, sjθ ) = V and H(V, s) = V ,
respectively, θ ∈ [t].

Proof 2 In the secret reconstruction, the share sjθ can be publicly and efficiently ver-
ified via H(V, sjθ ) =V , for θ ∈ [t]. This proof is the same as that of Theorem 1. In
addition, similar to the derivation of equation (3), the secret s satisfies the following
equation:

V = H(· · ·H(H(k, s), s1), · · · , sn)
= H(· · ·H(H(k, s1), s), · · · , sn)

...

= H(H(· · ·H(H(k, s1), s2), · · · , sn), s). (4)

By using the absorbency property of H and equation (4), for the secret s we see that
H(V, s) = V . This is because H(V, s) = H(H(H(· · ·H(H(k, s1), s2), · · · , sn), s), s)
= H(H(· · ·H(H(k, s1), s2), · · · , sn), s) = V , where the second equality holds due
to the absorbency property of H , and the third equality holds by equation (4). This
completes the proof.



Remark 1. The correctness of algorithms H(V, sj) =V and H(V, s) =V depends on
the assumption that the output length, rd, of h satisfies (n+ 1) ≤ 2d, where an NAHF
H : {0, 1}r × {0, 1}∗ → {0, 1}r is constructed through h : {0, 1}∗ → {0, 1}rd. When
(n + 1) > 2d, it is feasible to replace V with (V0, V1, · · · , Vu−1), where u =⌈n+1

2d
⌉.

For ς = 0, 1. · · · , u− 1, V (ς) is generated as follows: (1) different hash functions, h(ς) :
{0, 1}∗ → {0, 1}rd, are chosen. (2) the NAHF H(ς) : {0, 1}r × {0, 1}∗ → {0, 1}r
is generated by the hash function h(ς). (3) Let sn+1 = s, the ς-th value is computed as
V (ς) = H(ς)(· · ·H(ς)(k, sς+1), · · · , sς+2d). To verify the correctness of sς+j , we can
check if H(ς)(V (ς), sς+j) = V (ς), where ς = 0, 1. · · · , u− 1, and j ∈ [2d].

The following theorems ensure the security of the proposed (t, n) VSS scheme.

Theorem 3 Assume that q is a large prime number. The share sj obtained by the poly-
nomial f(x), has a uniform distribution on Zq , j ∈ [n].

Proof 3 Let A and X be two independent random variables defined on Zq . A basic
result from the theory of random variables is that if A has a uniform distribution on
Zq and X has an arbitrary distribution on Zq , then B1 = A +X (mod q) and B2 =
A · X (mod q) have a uniform distribution on Zq , where X is chosen from Z∗

q in the
latter case. If b1 is chosen uniformly from all possible values of B1, the probability of
B1 = b1 is given as:

Pr[B1 = b1] = Pr[A+X = b1]

=
∑

xj∈Zq

Pr[A = b1 − xj ]Pr[X = xj ]

= 1/q ·
∑

xj∈Zq

Pr[X = xj ] = 1/q.

Similarly, when b2 is chosen uniformly from all possible values of B2, we have

Pr[B2 = b2] = Pr[A ·X = b2]

=
∑

xj∈Z∗
q

Pr[A = b2 · (xj)
−1]Pr[X = xj ]

= 1/q ·
∑

xj∈Z∗
q

Pr[X = xj ] = 1/q.

It can be easily shown that the above argument can be extended to the random polyno-
mial function f(x). Since a0, a1, · · · , at−1 are uniformly distributed on Zq and xj is
Pj’s unique nonzero identifier, hence a0, a1xj , · · · , at−1x

t−1
j are uniformly distributed

on Zq . Then, f(xj) = a0+a1xj+ · · ·+at−1x
t−1
j is uniformly distributed on Zq . There-

fore, sj = f(xj) is uniformly distributed on Zq , that is, sj has a uniform distribution on
Zq .

Theorem 4 Under the assumption that H is a secure NAHF, the secret s and some
shares sj cannot be obtained by an attacker from V , j ∈ [n].



Proof 4 Recall from Definition 3 that an NAHF H is a one-way hash function, and the
output of the H is r bits. Suppose the accumulated item sj is computed in the j-th itera-
tion of V , thus, V = H(· · ·H(H(· · ·H(H(k, s), s1), · · ·, sj), sj+1), · · ·, sn). Note that
V = H(H(· · ·H(· · ·H(H(k, s), s1), · · ·, sj+1), · · ·, sn), sj) = H(Q, sj), where the first
equality holds due to equation (3), and Q = H(· · ·H(· · ·H(H(k, s), s1), · · ·, sj+1), · · ·, sn).
We now need to prove that it is hard for the attacker presented with V to find (Q′, s′j)
such that H(Q′, s′j) = V (Furthermore, the attacker can check whether the fake share
s′j is valid through H(V, s′j)=V .). At this point, one-way property of H in Definition 1
ensures that, given a output V ∈ {0, 1}r, the time complexity of finding (Q′, s′j) such
that H(Q′, s′j) = V is O(2r) via brute-force search. This property implies that over the
verification data V , if the attacker has the computational power of querying 2ϕ possible
fake shares then the probability of a successful fake share is 2r−ϕ. Again, choosing r
sufficiently high, such as r = 128 when ϕ = 60, makes the success probability prac-
tically negligible. Similarly,it is computationally infeasible to derive the share s from
V .

Theorem 5 In the proposed VSS scheme, any subset of participants of size less than t
cannot obtain any information about the secret s.

Proof 5 Here, we consider the worst case, where t− 1 participants take part in recov-
ering the secret s. Any t− 1 participants with different identities xj1 , · · · , xjt−1

cannot
compute the secret s since they cannot solve the linear system of (t− 1) equations and
t unknowns: sjl = s+ a1 × xjl + · · ·+ at−1 × xt−1

jl
, l ∈ [t− 1], which has a degree of

freedom, where a0 = s. We can consider the coefficient, at−1, of the last term in f(x)
as a free variable from Zq . In this case, the secret s has a unique representation as a
linear combination of at−1 and the shares {sj1 , · · · , sjt−1

}, where at−1 is uniformly
distributed over Zq . From the proof of Theorem 3, it follows that s has a uniform dis-
tribution over Zq . Hence, no information about the secret s can be extracted from these
t− 1 shares.

Combining Theorem 3, 4 and 5, we have the following theorem:

Theorem 6 The proposed (t, n) VSS scheme is secure under the assumption that H is
a secure NAHF.

Table 1. The communication costs of D and Pj in the VSS schemes.

share |f(xj)| verification data D Pj

Rajabi-Eslami [18] mn0|p0| t |F (a[i])| = tn0|p0| (t+nm)n0|p0| (m(t+1)+t)n0|p0|
Feldman [10] |q| t |Ai|=t|p| n|q|+t|p| t|p|+ (t+1)|q|
Our |q| |V |=r n|q|+r (t+1)|q| +r



Table 2. The computation costs of D and Pj in the VSS schemes, where
To is the computation time for the operation o ∈ {F,H,M(multiplication),
e(exponentiation), E(Exponentiation on Rp0 ), f (computing f(xj)on Rp0)}, pm(polynomial
multiplication on Rp0 ).

Rajabi-Eslami [18] Feldman Our schmem Pj

share |f(xj)| Tf(xj)=Tf (t-1)TM (t-1)TM

verification data t TF (a[i])=tTF t TAi = tTe TV = (n+1)TH

verify f(xj) (t-1)TE+TF tTe TH

get s mtTM tTM tTM

D nTf + tTF n(t-1)TM + tTe n(t-1)TM+(n+1)TH

Pj t(t-1)TE + mt(Tpm +TM ) t2Te + tTM (t+1)TH +tTM

4 Performance of proposed VSS scheme

In this section we present and discuss the efficiency and scalability for our scheme in
Section 3.2. We mainly consider the costs introduced by the extensions we made to the
SS schemes to achieve verifiability. By decreasing the number of verification data, we
improves on the previous VSS scheme [10, 18]. We provide estimates on the efficiency
by showing the number of basic cryptographic operations required by the extensions
and also point out communication costs. To evaluate scalability, we examine the costs
for the VSS schemes as the size of the IOT network, i.e. the number of participants,
increases.

From Table 1, we see that in our scheme, the communication costs of the D and
Pj are significantly lower than Feldman scheme and Rajabi-Eslami scheme since |q| is
much less than |p| and mn0|p0| (see Scetion ??). In our scheme, the communication
costs at the dealer D and each participant Pj are as follows: At the share generation
phase, the D broadcasts V to participants in P and transmits sj=f(xj) to each partici-
pant Pj , j ∈ [n], where |V |+

∑n
j=1 |sj | = r+n|q| bits. Upon receiving V and sj from

D at the share generation phase, each Pj obtains at least (t − 1) different shares sjθ
from the others in P while sending sj to them at the secret reconstruction phase. Here,
|V |+ |sj |+

∑t−1
θ=1 |sjθ |+ |sj | = r+ (t+ 1)|q| bits. In the Feldman scheme [10], there

are t verification data Ai (see Scetion 1.1) whose size is |p| bits, and the size of each
share is the same as our scheme. Therefore, the communication costs at D and Pj are
n|q| + t|p| and t|p| + (t + 1)|q| bits, respectively. In the Rajabi-Eslami scheme [18],
consider the polynomial ring Rp0

= Zp0
[α]/(αn0 −1), and Dp0

is an appropriate subset
of “small” elements of Rp0

3, where the dimension m > 1, the integer module p0 ≥ 2
and an error distribution δ. Note that each share f(xj) and the secret s are respectively
composed of m polynomials in Rp0 and Dp0 , and F (a[i]) is a polynomial in Rp0 . Thus,

3 Zp0 is the set of integers from 0 to p0 − 1, Zp0 [α] denote the set of polynomials with co-
efficients in Zp0 . Rp0 contains all polynomials of degree less than n0 with coefficients in
Zp0 , as well as two ring operations, which are polynomial addition and multiplication modulo
αn0 − 1. Each polynomial in Rp0 has n0 coefficients in Zp0 , so there is a bijection between
Rp0 and Zn0

p0 . The compact knapsack problem over Rp0 is defined in [15] as follows: given
m = O(log2n0) elements b1, · · · , bm ∈ Rp0 and a target value c ∈ Rp0 , find coefficients
X1, · · · , Xm ∈ Dp0 such that

∑m1
i=1 Xibi=c.



the communication costs at D and Pj are (t + nm)n0|p0| and (m(t + 1) + t)n0|p0|
bits, respectively.

Another advantage of our approach is that the computation costs are low for partic-
ipants by using the NAHF H whose computational requirements are the basic criteria
for known IoT devices. At each participant Pj , its computation cost is (t+1)TH+tTM ,
where H(V, sj) , H(V, sjθ ) and H(V, s) are respectively computed for verifying sj , sjθ
(θ ∈ [t−1]) and the recovered s, and t multiplication operation in the Lagrange interpo-
lation formula (1) are performed to recover s. Note that in Rajabi-Eslami scheme [18],
Tf = m(t−1)Tm, and TF = mTpm. This is because m ploynomials with degree (t−1)
need to be computed for each f(xj) in Rp0

and F (X) =
∑m

i=1 Xibi. From the experi-
mental results in Section ??, we know that TM < Tpe < TH < Te < TE . Table 2 shows
that the computation cost of Pj is the lowest in our scheme. In contrast, the computation
cost of D, where the time to compute V increases with n, increases due to the use of
NAHF H . To compute sj = f(xj) for each participant Pj and verification data V , D
needs to execute t− 1 multiplication operations for f(xj) and n+ 1 NAHF operations
for V , j ∈ [n]. It means that the computation cost of D is n(t − 1)TM + (n + 1)TH .
Furthermore, our scheme provides the good scalability since the computation and com-
munication costs of Pj remain unchange when the number of participants increases.

5 Simulation experiments

We further evaluate the performance of our scheme using simulation experiments. The
experiments are conducted on an Intel(R) Core(TM) i7-6700 CPU@3.40 GHz machine
with 8.00 GB memory and Windows7 using JDK1.8. We choose to focus on SHA-512
for hashing h in NAHF H with a 128 bit output, where N = 24 is an upper bound to the
number of accumulated items. When N > 24, we do this by selecting u = ⌈N/(24)⌉
different SHA-512 as Remark 1. For Feldman scheme, the parameters p, q are chosen
as suggested in [11][page 21], i.e.,|p|=1024bits, and |q|=160bits. As for Rajabi-Eslami
scheme, according to the LWE parameters for hardware tests [12][Table 4], the corre-
sponding parameters (n0, |p0|) = (128, 12). In addition, let m = 2. To give a detailed
quantitative analysis, we assume that participants are MICA2 motes, which work at 8
MHz with a 8-bit processor ATmega128L, and which adopt IEEE 802.15.4 standard.
As described in Cao et al. [6], the power level of a MICA2 mote is U = 3.0 V, the cur-
rent draw in active mode is I = 8.0 mA, the receiving current draw is Ir = 10 mA, the
transmitting current draw is It=27 mA, and the data rate is rd = 12.4 kbps. The cost of
receiving (or transmitting) one byte is Er = UIr(8/rd) = 19.35µJ (or Et = UIt(8/rd)
= 52.26µJ). The parameters are fixed in all experiments.

Experiment 1 examines the average time required to run an operation in Table 2.
With these parameter settings, we consider the average value of over 160 trials for an
operation. The results are as follows: TM= 0.0022milliseconds (ms), TH=0.0858(ms),
Te=1.3445(ms), Tpm=0.0169(ms), TE = 1.6071(ms). Especially, the average time per-
forming the addition operation is 0.0007ms, which is negligible compared with the
others.

Experiment 2 examines the energy consumption of a participant. To compute the
electrical energy consumed by a participant during tp seconds, we apply Joule’s law
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Fig. 2. The energy consumption of Pj and the percentage of reduced energy of Pj

as E = UItp. From Table 2 and Table 1, we have that tp = (t + 1)TH + tTM = (t +
1) × 0.0858 + t × 0.0022 (ms), and (t + 1)|q| + r is equal to 4 + 40 bytes, where
transmitting bytes are 20 and receiving bytes are t + 20. For Pj , the energy cost of
communication is 20×Et +(t+20)×Er =19.36t+1432.2(µJ), and the energy cost
of computation is 3 × 8 × tp = 2.112t + 2.0592(µJ). Thus, the energy consumption
of Pj is 21.472t + 1434.2592(µJ) ≈ 0.0215t + 1.4343(J). We find that the energy
cost of computation is cheap compared to data communication. Again, we compare the
energy consumption of Pj in our scheme with that of Feldman scheme and Rajabi-
Eslami scheme. From Figure ?? (a), it is evident that the energy consumption of Pj

increases with the threshold value, but it is relatively stable in our scheme. In particular,
our scheme makes Pj have the smallest energy consumption. Furthermore, Figure ??
(b) shows that, compared to the Feldman scheme and Rajabi-Eslami scheme, the energy
consumption of Pj in our scheme is respectively reduced by at least 24% and 83% for
a secret.

6 Conclusion

In this paper, we employ an NAHF to propose a lightweight (t, n) VSS scheme with
only one verification data. The new VSS scheme provides the computational security
based on NAHFs. Furthermore, the scheme is significantly efficient in the participant’
side. Therefore, the proposed scheme has the potential to become a better alternative
for the IoT applications where the participants have limited processing capabilities.
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