
FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 1

Fuzz, Penetration, and AI Testing for SoC
Security Verification: Challenges and Solutions

Kimia Zamiri Azar, Muhammad Monir Hossain, Arash Vafaei, Hasan Al Shaikh, Nurun N. Mondol,
Fahim Rahman, Mark Tehranipoor, and Farimah Farahmandi

Abstract—The ever-increasing usage and application of system-on-chips (SoCs) has resulted in the tremendous modernization of
these architectures. For a modern SoC design, with the inclusion of numerous complex and heterogeneous intellectual properties (IPs),
and its privacy-preserving declaration, there exists a wide variety of highly sensitive assets. These assets must be protected from any
unauthorized access and against a diverse set of attacks. Attacks for obtaining such assets could be accomplished through different
sources, including malicious IPs, malicious or vulnerable firmware/software, unreliable and insecure interconnection and communication
protocol, and side-channel vulnerabilities through power/performance profiles. Any unauthorized access to such highly sensitive assets
may result in either a breach of company secrets for original equipment manufactures (OEM) or identity theft for the end-user. Unlike
the enormous advances in functional testing and verification of the SoC architecture, security verification is still on the rise, and little
endeavor has been carried out by academia and industry. Unfortunately, there exists a huge gap between the modernization of the
SoC architectures and their security verification approaches. With the lack of automated SoC security verification in modern electronic
design automation (EDA) tools, we provide a comprehensive overview of the requirements that must be realized as the fundamentals
of the SoC security verification process in this paper. By reviewing these requirements, including the creation of a unified language for
SoC security verification, the definition of security policies, formulation of the security verification, etc., we put forward a realization of
the utilization of self-refinement techniques, such as fuzz, penetration, and AI testing, for security verification purposes. We evaluate all
the challenges and resolution possibilities, and we provide the potential approaches for the realization of SoC security verification via
these self-refinement techniques.

Index Terms—SoC Security Verification, Fuzzing, Penetration Testing, AI-based Testing.

✦

1 INTRODUCTION

W ITH the ever-increasing adoption and utilization of
the integrated circuit (IC) supply chain horizontal

model through the last decade, a wide range of parties and
entities have to be involved to contribute and accomplish
part(s) of the various stages of design, fabrication, testing,
packaging, and integration, which results in forming ex-
pansive globalization and distribution of the semiconductor
supply chain. Globalization by outsourcing significantly re-
duces the logistic/manufacturing cost and time-to-market,
and allows companies access to advanced nodes, specialized
resources, and cutting-edge technologies [1]. However, the
main impact of globalization is the loss of control/trust that
raises a wide range of threats in the supply chain, including
IP piracy, IC overproduction, malicious functionality inser-
tion, etc., that can induce catastrophic consequences with
huge financial/reputation loss [2].

Over the past decade, as demonstrated in Fig. 1, the
same trend has been witnessed for (i) the involvement
of numerous entities, (ii) complexity and heterogeneity of
modern SoCs, (iii) re-usage of existing third-party IPs, (iv)
the security threats variety, and (v) spending growth against
the threats. As demonstrated, this trend faces a significantly
higher rate in recent years showing why urgent action is re-
quired for automation of the SoC security verification in the

• K. Z. Azar, M. M. Hossain, A. Vafaei, H. Al Shaikh, N. N. Mondol, F.
Rahman, M. Tehranipoor, and F. Farahmandi are with the Department of
ECE, University of Florida, Gainesville, FL, USA, 32611.
E-mail Addresses: {k.zamiriazar, hossainm, arash.vafaei, hasanalshaikh,
nmondol}@ufl.edu, {fahimrahman, tehranipoor, farimah}@ece.ufl.edu

current time frame. While the SoC designs and architectures
are getting larger, more complex, and more heterogeneous,
with a variety of IPs that have several highly sensitive assets
such as encryption keys, device configurations, application
firmware (FW), e-fuses, one-time programmable memories,
and on-device protected data, guaranteeing the security of
these assets against any unauthorized access or any attack
is paramount. As demonstrated in Fig. 2, a typical SoC
architecture comes with numerous security IPs, such as
cryptographic cores (encryption/decryption), True Random
Number Generator (TRNG) modules, Physical Unclonable
Function ((PUF) units, one-time memory blocks, etc. With ei-
ther generation, propagation, or usage of the assets by these
IPs, the distribution of these security assets may happen
across the SoC architecture, and since some of these IPs are
from third-party vendors, any unauthorized or malicious
access to these assets can result in company trade secrets for
device manufacturers or content providers being leaked.

The involvement of third-party vendors, which com-
promises the trustworthiness of the entire SoC, is not the
only source of vulnerability in the SoC architecture. Se-
curity vulnerabilities can also emerge as the consequence
of design/implementation/integration drawbacks through
different stages of the SoC design flow, which makes the
designing of a secure SoC more challenging. These vul-
nerabilities can also emerge in different forms, such as
information leakage, access control violation, side-channel
or covert channel leakage, presence or insertion of malicious
functions, exploiting test and debug structure, and fault-
injection-based attacks [3], [4], [5]. Some of these security

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 2

0

10

20

30

40

50

60

70

80

90

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

2
0

2
2

2
0

2
3

2
0

2
4

N
u

m
b

er
 o

f C
W

E
 H

W
 V

u
ln

er
a

b
ili

ti
es

Identified/Investigated Vulnerabilities

Projected to-be-identified

0

10

20

30

40

50

60

70

80

90

P
er

ce
n

ta
ge

 o
f D

es
ig

n
s

w
/

 R
e-

u
se

d
 IP

s

100

0

20

40

60

80

100

120

140

160

180

200

Spending in CyberSec in US

Projected Spending

Designs with existing Ips

Projected Contribution

C
yb

er
se

cu
ri

ty
 S

p
en

d
in

g
in

 U
S

 (b
ill

io
n

s
$

)

Fig. 1: IP Re-use vs. Threats vs. Security-related Spending.

vulnerabilities may be introduced unintentionally by a de-
signer during the transformation of a design from speci-
fication to implementation. This is because the designers
at the design house spend most of their design, imple-
mentation, and integration efforts to meet area, power, and
performance criteria. For verification, they mostly focus
on functional correctness [6]. Additionally, the flaws in
the computer-aided design (CAD) tools can unintentionally
result in the emergence of additional vulnerabilities in SoCs.
Moreover, rogue insiders in the design houses can intention-
ally perform malicious design modifications that create a
backdoor to the design. An attacker can utilize the backdoor
to leak critical information, alter functionalities, and control
the system.

It should be noted that many of the existing security
countermeasures introduced in the literature or widely used
in the industry, such as hardware obfuscation, watermark-
ing, metering, camouflaging, etc. [7], [8], [9], [10], [11], [12],
have nothing to do with such SoC-level vulnerabilities, as
many of these security vulnerabilities originate precisely
from unexpected interactions between layers and compo-
nents, and traditional techniques fail at catching these cross-
layer problems or do not scale to real-world designs. There-
fore, apart from the existing hardware security countermea-
sures that might be applied to the design, the security verifi-
cation is required to be evaluated meticulously, particularly
for the SoC-level vulnerabilities.

Considering that the different IP components of a SoC
have their own highly sensitive security assets that should
be accessed/exploited by some other components, most
system design specifications include a (limited) number of
security policies that define access constraints and permis-
sions to these assets at different phases during the system
execution. As SoC complexity continues to grow and time-
to-market shrinks, verification of these security policies has

CPU MMU FPU I$ D$

PLICCLINT GPIO UART SPI

Peripherial Bus

In
te

rc
o

n
n

ec
t

B
u

s
(A

XI
/

A
P

B
/

Ti
le

lin
k)

Interconnect Bus (AXI/APB/Tilelink)

Crypto TRNG DSP DMA DRAM

Fu
ll-

d
u

p
le

x
ch

a
n

n
el

DAC/ADC

Per IP/component sensitive asset

Many third-party IPs

Built in a globally distributed supply chain

Heterogenous architecture

Fig. 2: An SoC Design with the Integration of a wide variety of IPs.

become even more difficult to ensure that the design under
investigation does not violate these policies, whose violation
can lead to the emergence of vulnerabilities or backdoors
for attackers. It might not be beyond the possibility that the
definition of a set of well-established security properties can
help verification engineers alleviate the problem. However,
some of these policies are related to different phases of the
design flow, from specification to implementation, and they
might involve the design house, different IP vendors, and
the integration team. Additionally, the realization of these
policies may require a multi-layer implementation through
a combination of hardware, firmware, and software in the
SoC. Moreover, the definition of these policies might face
significant changes or refinements across the design flow,
which makes many of them invalidated.

The definition of the security policies and their expan-
sion is also entirely dependent on the pre-defined and pre-
assessed scenarios and test cases that consist of prohibited
and illegal actions. For SoCs becoming larger and more
complex with larger sets of IPs and components integrated
into it, the process of detection, gathering, and building
all these test-cases that lead to the definition of security
policies are becoming worse. Hence, unknown security vul-
nerabilities will still appear in SoC transactions, leading to
breaches of confidentiality, integrity, or authenticity, despite
verification being properly performed based on the known
security policies. Additionally, due to the lack of reciprocal
trust between different entities involved in SoC design and
implementation, or based on the time of security verification
(i.e., pre- or post-verification), the access of the security
verification engine/tool will vary to the system, from full
access with knowledge about all internal operations, wires,
registers, etc., to NO access to the internal knowledge of the
system. The access differs case by case; however, in all cases,
it will affect the outcome of security verification, in terms of
security policies conformance, performance, the complexity
of security verification flow, etc.

A literature review on the software testing domain re-
veals that the procedure of software testing has been suffer-

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 3

ing for almost two decades from the same challenges and
difficulties. Software testing is the main way of verifying
software, from specification to release, against the defined
requirements and accounts for about half of the cost and
time of development [13], [14]. For instance, considering the
main objective of software testing and verification, which
is systematically evaluating the software, in carefully con-
trolled circumstances, the scope of software testing is heav-
ily dependent on the knowledge and internal access, which
categorizes the software testing into three main breeds,
namely (i) white box with full knowledge of code, (ii) black
box with no knowledge relevant to the internal structure
of the code, and (iii) gray box with limited knowledge
of the internal structure. In this case, the automation of
verification depends on the breadth of testing. Recently,
in software testing, with the emergence of automated and
semi-automated techniques, like the usage of self-guidance
and self-refinement concepts (e.g., artificial intelligence, ma-
chine learning, the mutation-based approaches like fuzzing
[15], the testing procedure has been evolved tremendously
in this domain. These techniques are highly successful in
detecting software vulnerabilities since they are automated,
scalable to large codebases, do not require the knowledge of
the underlying system, and are highly efficient in detecting
many security vulnerabilities.

The utilization of existing techniques for security ver-
ification of modern SoCs is mainly limited to the expert
review, and they do not provide acceptable scalability [16].
The top view of such techniques has been demonstrated in
Fig. 3. In such solutions, the conventional formal verification
techniques, in spite of significant recent advances in au-
tomated formal technologies (functional verification) such
as satisfiability (SAT) checking and satisfiability modulo
theories (SMT), that is also widely used for the evalution of
IP protection techniques (hardware obfuscation) [17], [18],
[19], cannot promise the desired scalability for the security
verification of modern SoCs, and the gap between the scale
and complexity of modern SoC designs and those which can
be handled by formal verification techniques has continued
to grow. Similarly, symbolic execution and model checking
[20] are suffering from scalability for verification at the SoC
level. As an instance, the work in [3], [21] proposed a tech-
nique to analyze the vulnerabilities of FSM, called AVFSM.
However, apart from the FSM, a SoC contains other modules
(exception handlers, test and debug infrastructures, random
number generators, etc.) which must be inspected during
security verification. Authors in [22] provided a method to
write the security-critical properties of the processor. They
found that the quality of security properties is as good as
the developer’s knowledge and experience. Moreover, there
is a lack of comprehensive threat model definition, which
must be considered while developing security properties.
There are some other approaches which have developed
security properties and metrics by considering only a small
subset of vulnerabilities (e.g., the vulnerability in hardware
crypto-systems [23], side-channel vulnerabilities [24], [25]
and abstraction level limitations like the behavioral model
[26]).

Also, since many of the security vulnerabilities in the
SoC originate precisely from unexpected interaction be-
tween layers and components, identifying novel methodolo-

Design

Spec

(Non)-Security

Property

Declaration

Design and

Integration

Creation of
Assertion

Statements

(HW Implementation)

Formal

Checking

Passed

DONE!

Failed

Building

Countermeasures

(Fixing Design)

Identifying Source

of Vulnerability

Fig. 3: Property-Driven Functional Verification.

gies is hard because researchers often do not have enough
access to all parts of the system, which is particularly true
for proprietary hardware micro-architectures. Authors in
[27] demonstrate how commercially available tools can fail
to detect security-relevant RTL bugs including some that
originate from cross-modular and cross-layer interactions.
The work in [28], presented a methodology to infer security-
critical properties from known processor errata. However,
manufacturers only release errata documents enumerating
known bugs. Unknown security vulnerabilities can exist in a
SoC design that are not listed in available errata documents.
Another approach for finding security bugs is information
flow tracking (IFT) techniques. The authors in [29], [30], [31],
[32], [33] utilize IFT and statistical models to map hardware
security properties. However, this technique requires design
instrumentation and tainting all the input variables, which
require more computational time and memory resources.
Hence, IFT and statistical modeling, which requires expert
knowledge of the design, become more complex with in-
creasing design complexity. There is an increasing need for
methodologies and frameworks for security verification of
modern SoCs that are scalable to large and complex de-
signs, highly automatic, effective, and efficient in detecting
security-critical vulnerabilities.

Based on the trend of software verification testing tech-
niques and their efficacy for the evaluation of software
specifications and requirements, it is evident that the same
but futuristic trend will Potentially happen in the area of
SoC security verification. However, there definitely exist nu-
merous limitations and challenges, in terms of the concept
migration, implementation, assumptions, metrics, and the
outcome. Hence, with such a gap, and due to notable lack
of detailed and comprehensive evaluation on SoC security
verification, in this paper, we will examine and re-evaluate
the principles and fundamentals of SoC security verifica-
tion through automated and semi-automated architectures.
Moving forward, with the ever-increasing complexity and
size of SoCs and with the contribution of more and more
IPs and less and less trustworthiness between components,
SoC security verification through a more closed environ-
ment, like the gray and black box model, will get more
attention. Hence, in this paper, with more focus on such
models, and by trying to get the benefit of semi-automated
or automated approaches, like AI or ML, fuzz testing, and
penetration testing, we provide a comprehensive overview
of SoC security verification as follows:

1) We first identify the source of vulnerabilities indi-

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 4

cating the necessity of an automated verification
framework for the SoC security verification.

2) We then define the assumptions for SoC security
verification based on different factors like the de-
signer’s desire, followed by the requirements of the
framework, such as scalability, high coverage, etc.

3) We examine the possibility of engaging software
approaches, with more specific concentration on
self-guided or self-refinement approaches, such as
fuzz, penetration, and AI testing for SoC security
verification.

4) We discuss about the future research directions and
challenges for implementing an automated verifica-
tion framework to identify security vulnerabilities
based on the self-refinement approaches.

The rest of the paper is organized as follows. Section
2 provides the source of SoC security vulnerabilities at
different stages of an SoC lifecycle. Section 3 will review
the terminologies that are directly and indirectly related
to the SoC security verification. Then, by reviewing the
challenges for SoC security verification in Section 4, we
will define the main assumptions required to be considered
through SoC verification in Section 5, which is followed by
the description of SoC security verification flow in Section 6.
Then, the models for the usage of fuzz testing, penetration
testing, and AI testing will be covered in Sections 7-9. We
elaborate upon the future possible research directions and
the existing challenges for these self-refinement approaches
in Section 10, and we conclude the paper in Section 11.

2 SOC SECURITY: SOURCE OF VULNERABILITIES

Fig. 4 firstly shows the main steps of a modern IC supply
chain which is plunged in globalization with the involve-
ment of multiple IPs. As also demonstrated in Fig. 4, an
SoC design can encounter security vulnerabilities during
different stages of its design and life cycle, each is excited
from a unique source. Beginning from the very early stages
of the IC design to its fabrication, the following are the main
sources of such security vulnerabilities in the SoC design
and implementation:
(SV1) Inadvertent designer mistakes: The development of
multiple IPs/components may be distributed between dif-
ferent design teams as well as third-party IPs. This can
result in a non-clear definition over the interaction between
these IPs, non-sophisticated exception handling for inter-
component communications, limited knowledge about the
behavior of neighboring components, (communication) pro-
tocol malfunctioning, and lack of understanding of security
problems due to the high complexity of the designs and
variety of assets. Hence, it may result in different forms of
vulnerabilities, such as secret information leakage or losing
the reliability of the SoC.
(SV2) Rogue employee (insider threat): Unlike (SV1), deliber-
ate malfunction can be invoked by the rogue employee(s)
that pose significant security threats to the security of the
whole SoC.
(SV3) Untrusted third-party IP vendors: Similar to (SV2), with
violation of rules/protocols of communication between

their IPs and other components, or unauthorized interac-
tions with no monitoring, third-party IPs can pose the same
security issues.
(SV4) EDA optimizations: Almost all efforts in the develop-
ment and improvement of CAD tools have been directed
to optimize and increase the efficiency of synthesis, floor-
planning, placement, and routing in terms of area, power,
throughput, delay, and performance. These CAD tools are
not well-equipped with the understanding of the security
vulnerabilities [21] of integrated circuits (ICs) and can, there-
fore, introduce additional vulnerabilities in the design. As
an instance, the CAD tools can potentially but unintention-
ally merge trusted blocks with the untrusted ones, or move a
security asset to an untrusted observable point, which opens
the possibility of different attacks like eavesdropping on the
side-channel analysis.
(SV5) Security compromising stages of IC supply chain: For
modern SoCs, design-for-test (DFT) and design-for-debug
(DFD) are designed to increase the observability and
controllability for post-silicon verification and debug
efforts. However, increasing the observability and
preserving security are two conflicting factors. Test
and debug infrastructures may create confidentiality and
integrity violations. For example, in [26], scan chains have
been exploited to leak security-critical information, and
numerous studies through the last decade have evaluated
the utilization of DFT/DFD infrastructure for attacking the
design [10]. Similar to (SV4), many of these vulnerabilities
are emerged unintentionally due to the accomplishment of
different stages of the IC design flow.
(SV6) Impact of hardware Trojan insertion: This case is a
derivation of (SV2) and (SV3), in which SoC designs are
also prone to many maliciously introduced threats, such as
hardware Trojans. These hardware Trojans can be inserted
by untrusted entities involved in a number of design and
supply-chain stages including third-party IP (3PIP) vendors
and rogue in-house employees causing sensitive informa-
tion leakage, denial-of-service, reduction in reliability, etc.
in the SoC. Also, insider threats are particularly dangerous
since they have full observability and access to the whole
design and source files. When a chip is deployed into the
final design, and Trojan was inserted during stages, an at-
tacker can monitor physical characteristics of a design (such
as delays, power consumption, transient current leakage) to
recover secret information.
(SV7) Lack of trustworthiness in EDA Tools: Although it is
mostly assumed that the CAD tools are trusted nodes within
the IC design flow, modernizing SoC design infrastructure
with compatibility for cloud-based design development,
and leveraging fully distributed processes with remote EDA
tools violates this assumption. In such cases, software tools
cannot be considered trusted anymore (the current assump-
tion is that even for cloud-based systems, it is just assumed
that the cloud infrastructure is secure, which is not always
correct.), and the SoC designs are accordingly prone again
to numerous malicious threats.
(SV8) Untrusted fabrication site: The consequence of this case
is similar to (SV7). In this case, the fab site as an untrusted
entity, with having full knowledge about the layout of the
design, can apply manipulation before the fabrication for
further usage after the fabrication.

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 5

Design

3rd party IP
owners/designers

Design House

Original
Design

Physical
Synthesis Layout

Fabrication

Spec

System
RTL

Logic Synthesis IC

Integration

Wafer

IC

Design Team
End-user

Testing

Packaging

Design Team Mistakes/Optimizations

- Limited Knowledge about neighboring components
- Handshaking malfunctioning
- Vague Definitions for Inter-component Security
- Improper Realization of Design Spec into the HW Implementation
...

Rogue Employee (Insider Threats)

- Intentional Manipulation at Different Stages of the Design House

Untrusted 3rd-Party Vendors

- Violation of Rules/Protocols in Handshaking
- Malfunctioning in Inter-communication
- Illegal Access to Shared Sources
…

EDA Optimization

- Almost on Power, Performance, Area
- No Consideration based on Security Implication
- At logical synthesis, floorplanning, PnR, RC extraction
...

DFT/DFD Insertion

- Design-for-test and design-for-debug
 insertion w/ improper rule checking
 insecure observability/contrability

Hardware Trojan Insertion

- Insertion of Malicious function (Through 3PIPs, at Gate-level on synthesized netlist, etc.)

Untrusted Fab Site

- Manipulation of the design for
 insertion of malicious functions

Post-Fab Attacks

- Physical and Side-channel Attacks
- Hammering the Design by the end-user

Fig. 4: Potential Threats within SoC Design Flow.

(SV9) Efforts on SoC design optimization: Most of the design-
ers are always concentrating on minimizing the overhead
in terms of area, power, performance. However, in many of
these optimization cases done by the designer, the outcome
can possibly incur forms of security issues, such as sharing
memory banks between non-trusting processes in multi-
tenanted systems that were the main consequence of spectre
and meltdown attacks [34], [35].
(SV10) Hammering by the end-user: This group of threats can
be related to either logical or physical attributes and speci-
fication of the components integrated into the SoC, such as
memory. Similar to rowhammer attack on DRAMs, logic-
level hammering and repeating of different sequences of
action(s) around the targeted component might lead to
the reveal of some information, and then by repeating the
scenario (sequence of actions), some form(s) of information
breach can happen in the SoC.

Table 1 provides a top view of these sources of vulnera-
bilities and their characteristics. It clearly shows that there is
a critical need to verify the security of the SoC at each of the
stages and verify the trustworthiness of an SoC. However, if
the vulnerabilities reach the post-silicon stage, there would
be limited flexibility (almost none) in changing or fixing
them. Moreover, the cost of fixing the design is significantly
higher as we advance through the later stages of the design.
Furthermore, vulnerabilities that reach the manufacturing
stage will cause revenue loss. Therefore, it is essential to
develop efficient security verification approaches to ensure
the security and trustworthiness of SoC designs with more
concentration at the pre-silicon stage.

3 SOC SECURITY VERIFICATION: TERMINOLOGY

The main aim of this section is to provide the basics and
principles around the concept of SoC security verification.
For this purpose, we comprehensively review the main
terminologies that are directly related to this trend.

3.1 Security Assets in SoC

For any IP component, firmware, software, etc., involved
and integrated into the SoC, there exists a set of infor-
mation or data, whose leakage can lead to catastrophic
consequences with huge financial/reputation loss. This sen-
sitive information or data are known as security-critical
values, a.k.a. security assets, that must be protected against
any potential form of threat. Any successful retrieval of
such information or data in an illegal way might result
in trade secret(s) loss for device manufacturers or content
providers, identity theft, and even destruction of human
life. These assets are usually known to the designers, and
they are defined based on the specifications of the design.
As an instance, encryption/decryption or private key in
cryptographic primitives are assets, and the location and
usage of them are known for the designers through the
SoC design and implementation [36]. The following gives
us some insight about the main primitives in an SoC that
must be considered as the security assets:
(SA1) On-device key: (Secret/Private key(s) of an encryption
algorithm) These assets are stored on a chip mostly in some
form of non-volatile memory. If these are breached, then the
confidentiality requirement of the device will be compro-
mised.
(SA2) Manufacture firmware: (Low level program instruc-
tions, proprietary firmware, protected states of the controller(s))
These assets may have intellectual property and system-
level configuration values and compromising these assets
would allow an attacker to counterfeit the device.
(SA3) On-device protected data: (Sensitive user data + meter
reading) Leakage of these assets is more related to identity
theft, and an attacker can invade someone’s privacy by steal-
ing these assets or can benefit himself/herself by tampering
these assets.
(SA4) Device configuration: (Service/Resource access configu-
ration) These assets determine which particular services or
resources are available to a particular user and an attacker
may want to tamper these assets to gain illegal access to the
resources.

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 6

TABLE 1: Overview of Source of SoC Security Vulnerabilities.

Category Source of Vulnerability Design Flow Stage Examples of Vulnerabilities Threat Model

(SV1) Inadvertent designer mistakes software, firmware, boot
loader, register file, cache,
register-transfer (RT) level,
high-level (HLL)

(1) Insecure implementation of controller circuit (FSM) or boot
loader, (2) Incorrect synchronization or protocol handshaking
between IPs (master/slave), (3) Incorrect mutual exclusion of
write/execute operation leading to illegal access.

Insecure boot mode, Inter-
IP illegal accesses, Informa-
tion breach, malfunction-
ing of security operations

(SV2) Rogue employee at design
house (insider threat)

software, firmware, boot
loader, register file, cache,
RTL, HLL

(1) manipulating hardware, firmware, software, that facili-
tates obtaining the security assets after fabrication, including
logic analyzer module insertion, disabling security permis-
sions/policies, etc.

Insecure boot mode, Inter-
IP illegal accesses, Informa-
tion breach, malfunction-
ing of security operations

(SV3) Untrusted third-party IP ven-
dors

HLL, RTL, Gate-level (1) Continuous watching/monitoring the bus for obtaining
information by the IP, (2) Incorrect protocol handshaking that
leading to illegal actions (illegal memory write/read).

Inter-IP Illegal actions, By-
passing IP-based checks
(security checks)

(SV4) EDA optimizations logical or physical synthesis
flow

(1) Insecure optimization of the design, such as sharing (merg-
ing between trusted and untrusted region), insecure control
flow, insecure data flow.

Information breach, Inter-
IP illegal accesses, Flaws
in security policies imple-
mentation

(SV5) Security compromising stages
of IC supply chain

Gate-level, design service
provider (DFT/DFD)

(1) Opening backdoor for attacks through test/debug infras-
tructures, (2) Reading internal values of the design

Information breach

(SV6) Impact of hardware Trojan in-
sertion

Gate-level (1) manipulating hardware that facilitates obtaining the secu-
rity assets after fabrication, (2) Insertion of Trojan for malfunc-
tioning

Information breach, Inter-
IP privacy violation, Mal-
functioning

(SV7) Lack of trustworthiness in
EDA Tools

logical and physical synthe-
sis flow

(SV2) + (SV6) (SV2) + (SV6)

(SV8) Untrusted fabrication site GDSII at fabrication site (SV6) (SV6)

(SV9) Efforts on SoC design opti-
mization

RTL, HLL (1) Incorrect optimization with open corner cases that leads to
security vulnerabilities

Information breach, inter-
IP illegal accesses, insecure
protocol implementation

(SV10) Hammering by the end-user Post-silicon over the fabri-
cated chip

(1) applying continuous and repeating tests on specific target
based on physical or logical reflects

Information breach

(SA5) Entropy: (Random numbers generated for cryptographic
primitives), These assets are directly related to the strength
of cryptographic algorithms embedded into the SoC, e.g.,
initializing vector or cryptographic key generation. Success-
ful attacks on these assets would weaken the cryptographic
strength of a device.

Choice of security assets varies design by design and
abstraction layer by an abstraction layer. Mainly, the dec-
laration of security assets is heavily dependent on the se-
curity policies that is defined by the designers of different
component integrated into the SoC. Hence, apart from these
general security assets listed here, which are known to the
hardware designers, the security assets begin to expand
within the SoC due to the interaction of different IPs. Con-
sequently, with the increase of the list of security assets, SoC
security verification through traditional methodologies, e.g.,
formal-based and satisfiability-based approaches, becomes
almost impractical.

3.2 Security Policies/Properties in SoC

Based on the source of vulnerabilities, the threat model
per each source, and security assets defined for the design
under investigation, a set of requirements will be defined,
whose realization will assist the design team to guaran-
tee the protection of the security assets against the given
threat models. Different threat model categorization can be
evaluated for SoC verification, such as (i) overwriting or
manipulating confidential data by the unauthorized entity
(integrity violation), (ii) unauthorized disclosure of confi-
dential information/data (confidentiality violation), and (iii)
malfunctioning or disruption of function/connectivity of a
module (availability violation) [37].

For SoC security verification, (security policies/properties
define a mapping between the requirements and some
design constraints. Then, to fulfill the desired protection
level, these constraints must be met by building some
infrastructures, and these infrastructures are built by the
IP design team(s) or SoC integration team. The definition
of security policies/properties is dependent on different
actions/behaviors located at multiple stages or abstraction
layers, and they might also be updated or refined through
various stages [38], [39]. As an instance, the requirement
defined as: switching the chip from functional to test mode
should not leak any information related to the security assets, in a
typical SoC can be mapped to constraint (policy/property)
defined as An asynchronous reset signal assertion for scan chain
is required for secret/private key registers while the chip’s mode is
switching from the functional to the test mode.

Per each requirement, for mapping to a secu-
rity policy/property, details and underlying conditions
must be considered meticulously, and then these condi-
tions/constraints must be met to guarantee the protection
of the asset(s). It is evident that the definition of security
policies/properties may vary depending on multiple fac-
tors, like architecture and components of the SoC, inter-
connections and bus interface, state of the execution (e.g.,
boot time, normal execution, test time), and the state in
the development life-cycle (e.g., manufacturing, production,
test/debug), etc. Below we provide a categorization for gen-
eral policies that are required to be considered for security
purposes in SoCs. This categorization covers both system-
level and lower-level security policies/properties.

(SP1) Definition of access restriction policies: This set of poli-
cies/properties is one of the main requirements that define

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 7

the constraints regarding how different components, either
hardware, framework, or software, can access security as-
sets. The definition of access restricting policies/properties
directly/indirectly affects other policies/properties as well.
For instance, given specific restricted access will change
the data flow or control flow in the SoC. So, other poli-
cies/properties can be met/violated based on a newly de-
fined access restriction policy/property.
(SP2) Definition of data/control flow restricting policies: In
many cases, particularly security assets related to
cryptographic primitives, By observing the responses
of the components under investigation to a sequence of
actions, the security assets can be retrieved with no direct
access. In such cases, even though (SP1) has been defined
and established properly, since there exists an insecure
form of data/control flow, the confidentiality would be
violated. Unlike (SP1), the realization of this group of
policies/properties requires highly sophisticated protection
techniques with advanced formulation/model. So, to keep
the complexity of security policies at a reasonable degree,
this policy/property is more efficient to be employed for
high-critical assets with high confidentiality requirements.
(SP3) Definition of HALT/OTS/DOS restricting policies: This
policy/property indicates the liveness of components
throughout the execution of different operations. This
mostly can be done by checking the status signals per each
request for the component, to make sure that there is no halt,
out-of-service (OTS), or denial-of-service (DOS) that violates
the system availability requirements. Policies/properties
related to the malfunctioning can also be part of availability
violation (as the component does not provide the correct
functionality or correct timing behavior).
(SP4) Definition of insecure sequence execution restricting policies:
An authorization always is required once a component
needs to get access to a security asset in the SoC. However,
the flow between the authorization and getting access must
be flawless with no possibility of changes that invalidates
the access control. One of the examples for this group
of policies is time-of-check to time-of-use (TOCTOU),
which shows in the middle of authorization and usage, the
changes of the state of the security asset can lead to some
invalid/illegal actions which are happening only when the
resource is in an unexpected state.
(SP5) Definition of insecure boot restricting policies: The pro-
cess of the boot may involve multiple critical security
assets, including the definition of access restriction poli-
cies, cryptographic and on-device keys, firmware, etc., and
any security leakage can lead to multiple vulnerabilities
at different layers. Policies for protecting the boot can be
defined individually related to (SP1-4) or unified on a set of
actions/requirements.
(SP6) Definition of inter-component integrity policies: This
policy is more likely low-level, i.e., IP-level inter-
communication, showing that any (secure) communication
between two components must be kept intact and with no
changes done by a third component.
(SP7) Definition of inter-component confidentiality policies:
Similar to (SP6), at low-level, any inter-communication
between two components must be kept fully secure and
confidential between these two components, and there
should be no possibility for any third component to receive

any part of inter-component communicated data.
(SP8) Definition of inter-component authenticity policies:
Another low-level policy that verify the authenticity
of the component requesting a security asset.

The definition of security assets, security policies, and
building a clear relationship between them are indispens-
able preliminary steps of SoC security verification. In the
context of security verification, a security policy/property
must be a complete statement that can check assump-
tions, conditions, and expected behaviors of a design [40],
which is more likely a formal description of the de-
sign behavior/specification. The coverage of security poli-
cies/properties can be considered as a metric for the secu-
rity assessment of an SoC, and the violation of the poli-
cies/properties implies that the design should be fixed.

3.3 Security Policy/Property Languages in SoC
To build the automated SoC security verification, a straight-
forward constraint definition is required to verify that based
on the specification of the security policies/properties, the
design adheres to those properties. To meet such require-
ments, there should be a unified language for the decla-
ration of the security properties, and the security verifica-
tion framework must be able to convert this language to
hardware implementation and testing. Due to the dynamic
nature of the threat model, the language must be rich
and amenable to be expanded as needed and to specify
characterizations like sensitivity levels, affectability, and
observability. As an instance, security policies/properties
determine the secure vs. insecure region(s), and accordingly,
the security language must be able to check policies like
confidentiality, as the sensitive data from the secure region
should not leak to any insecure region.

These days, designers mostly use one of the powerful
assertion languages such as property specification language
(PSL) [41] and SystemVerilog Assertions (SVA) [42] to describe
interesting behavioral events of a design. These languages
use temporal logic representations such as Linear Temporal
Logic (LTL) [43] and Computational Tree Logic (CTL) [44].
Languages based on LTL and CTL usually describe design
behaviors and properties in four layers: Boolean expression,
sequence, property specification, and assertion directive
layers. These layers can be used on top of different HDL
languages including Verilog and VHDL.

3.4 Pre-silicon vs. Post-silicon Verification in SoC
SoC security verification can be done either before or af-
ter the fabrication stage, called pre-silicon and post-silicon
verification, respectively. Generally, in the pre-silicon veri-
fication, the verification target is typically a model of the
design (a representation of the design at a specific design
stage, like post-synthesis netlist, or the generated layout)
than an actual silicon artifact. The pre-silicon verification
activities consist of code and design reviews, simulation and
testing, as well as formal analysis. These tests are running
at different corner cases with constrained inputs. One of the
biggest advantages of pre-silicon verification is its high ob-
servability as the design representation is available and any
internal signal/wire/register can be observed and verified.
However, since it is mostly simulation-basis at MHz speed

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 8

limited by the simulator performance, it takes a lot of time
for verification of all policies/properties.

On the other side, post-silicon verification can be consid-
ered as one of the most crucial yet expensive and complex
forms of the SoC verification, in which a fabricated, but pre-
production silicon of the targeted SoC (initial prototypes of
the chips that are fabricated and are used as test objects) will
be picked as the verification vehicle, and then a comprehen-
sive set of tests will be executed on it. The goal of post-
silicon verification is to ensure that the silicon design works
properly under actual operating conditions while executing
real software, and identify (and fix) errors that may have
been missed during pre-silicon verification. In post-silicon
verification, since the silicon is used as the verification
vehicle, tests can run at target clock speed enabling the
execution of long use cases at a much smaller time slot.
However, it is considerably more complex to control or
observe the execution of silicon than that of a pre-silicon
verification, as the access and observability of many internal
nodes will be lost.

3.5 Adversarial Model in SoC
To ensure that an asset is protected, the design team needs,
in addition to the security policies/properties, to define and
determine comprehension of the power of the adversary.
The notion of the adversary can vary depending on the asset
being considered. For instance, regarding the cryptographic
and on-device keys as the security asset, the end-user would
be an adversary, and the keys must be protected against the
end-user. As another example, the content provider (and
even the system manufacturer) may be included among ad-
versaries in the context of protecting the private information
of the end-user. So, based on the definition of security assets,
source of vulnerabilities, and security policies/properties,
the adversary model also needs to be clearly defined helping
to have a stronger SoC security verification mechanism.
Hence, rather than focusing on a specific class of users
as adversaries, it is more convenient to model adversaries
corresponding to each policy and define protection and
mitigation strategies with respect to that model.

3.6 Verification Model in SoC
The SoC security verification can be done at different
stages each focusing on different sets of security poli-
cies/properties. Targeting the design at different stages will
affect the model defined for the verification. In addition, the
model can be also related to the adversarial model as the
source of threats. For instance, for the untrusted foundry
with having access to all masking layer information, to
malicious end-user that has access to the fabricated chip
mostly as a black-box, the security verification can be mod-
eled differently. Hence, based on the access provided for the
SoC verification framework, it can be generally divided into
three main categories: white, gray, and black. The definition
of these verification models in SoC is very close to their
definition at the software level. In the white verification
model, all internal wires, signals, nodes, registers, etc., are
fully observable allowing the security properties/policies
to be implemented in detail and very specifically based
on the requirement. The black verification model treats the

SoC as almost a black box, and only the general ports and
potentially scan pins are available for testing. The gray
model is any verification model that stands between white
and black models, and the level of access to internal parts
may be different per each case.

3.7 Scope of Security Verification in SoC

With the involvement of multiple abstraction layers in a
complex and heterogeneous SoC, based on the security
policies/properties associated with each abstraction layer,
the SoC security verification can be categorized into three
main domains:
(SC1) Low-Level (Hardware-level): Once the security vulner-
abilities arise from the underlying hardware, such as RTL
and gate-level netlist, the scope of verification needs to be
concentrated at logic-level (low-level), such as hardware
Trojan insertion, counterfeiting, fault injection, etc.
(SC2) Platform-Level (System-level): In this category, the vul-
nerabilities associated with the inter-IP communication and
system-level bugs that exploited mostly by untrusted third-
party components during run-time. As an example, any con-
fidentiality and integrity violation for any inter-component
communication that can lead to information leakage or un-
expected actions can be considered as system-level vulnera-
bilities that require system-level security policies/properties
definition.
(SC3) Software-Level (Framework-level): This group refers to
vulnerabilities arising from the intercommunication be-
tween hardware parts and the software or the framework.
Additionally, network-based vulnerabilities, like communi-
cation of an embedded computing unit with off-chip mod-
ules or cloud can be categorized as a member of this group.
In this group, the definition of security policies/properties
would be more at the higher level of abstraction combined
with checking flags/status at hardware levels.

4 SOC SECURITY VERIFICATION: CHALLENGES

Based on what we learned so far, for the automation of
SoC security verification, we need to accomplish some steps:
(i) identification of the source of vulnerabilities (SVs), that
helps to define the threat models (adversarial model); (ii)
indicating the security assets per component (SAs); (iii)
definition of security policies/properties (SPs) based on
the threat model and the chosen security assets; (iv) for-
malizing the security policies/properties using the unified
language with consideration of the security domain (SCs);
and (v) implementation and testing. To accomplish these
steps, there exist challenges showing why new approaches
like the self-refinement technique, i.e., fuzz, penetration,
AI testing, are needed for the SoC security verification.
Following section covers some of the biggest challenges that
cannot be solved using the existing approaches, like formal
satisfiability-based techniques, model checking, information
flow tracking, etc.:
(i) Preciseness: For almost all aforementioned steps, the
course of action(s) decided and accomplished by the de-
signer(s) requires the highest precision to make the whole
SoC security verification procedure a successful practice.
Precisely evaluation of SVs, and understanding the threat

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 9

models, precisely choosing SAs, precisely defining SPs,
and formalizing using the selected language directly and
significantly affects the outcome o the framework. For SoCs
getting more complex and more heterogeneous, precisely in-
dicating exacts SVs, SAs, and SPs becomes more and more
challenging. The designer(s) needs to know all underlying
information about all components, modules, frameworks,
their intercorrelation, handshaking, their corresponding se-
curity levels, etc., which is almost impractical in modern
SoCs.
(ii) Multi-stage/layer verification: Definition of SVs, SAs, and
SPs are fully dependent on the stage of the design flow, and
the abstraction layer of the design. There is no guarantee
that when the security verification is passed in one stage
of the design, then the same SPs will be passed in another
abstraction layer. Changes and refinements per each stage,
and moving from one abstraction layer to another one,
might arise new vulnerabilities. A simple example for this
case is the transitions done by synthesis tools, like high-level
synthesis (HLS) and other computer-aided design (CAD)
tools, which may add new data/control flow that can be
exploited leading to a new vulnerabilities [21], [45]. This is
why the invocation of SoC security verification is required
at different stages and different layers of abstraction.
(iii) Verification vs. Dynamicity: Based on how the SVs, SAs,
and SPs are defined, dynamicity might happen during run-
time, meaning that there is potentially new SAs introduced
when a specific set of operations are executed on the orig-
inal SAs. This will propagate the original ones and based
on the dependency/relation to other variables, some other
variables may preserve critical information that must be
considered as new SAs. Additionally, the threat models will
be updated over time, resulting in new SVs, which lead
to the introduction of new SPs. Also, protecting the design
against one SV may make it vulnerable to the other one. For
example, protecting a design against information leakage
may create side-channel leakage that can be exploited by an
attacker to retrieve sensitive information.
(iv) Unknownness: As we mentioned previously, the uti-
lization of conventional techniques and tools, i.e., formal
satisfiability-based techniques, model checking, information
flow tracking, etc. for SoC security verification is mainly
limited to the expert review, and they do not provide accept-
able scalability. This is getting worse when the side-effect of
dynamicity comes to the action, which is the introduction
of unknown vulnerabilities. With unknown vulnerabilities,
there is no precise definition for SV, SA, and SP, and they
might be caught by accident/chance through either the tests
by the designer(s) or by the attacks (like hammering) by
the adversary. This is when the self-refinement techniques’
contribution plays an important role, by using smart ham-
mering and testing, to detect such vulnerabilities before
releasing the SoC into the field/market.

5 SOC SECURITY VERIFICATION: ASSUMPTIONS

To have a successful SoC security verification solution,
there exist some fundamental assumptions that must be
considered meticulously as the most basic requirements of
the proposed solution:

(i) Time of Verification: Since moving towards the final stages
of SoC design, implementation, and testing makes the eval-
uation and investigation much harder, it is paramount to
accomplish the verification, particularly for primary SAs
and SPs at the earliest possible stage. Assuming that the
vulnerabilities reach the post-silicon stage, the verification
model will change from a low-level white model to a
chip-level black model, which makes the verification much
harder. Moreover, the cost of fixing the design is signifi-
cantly higher as we advance through the later stages of the
design. Furthermore, vulnerabilities that reach the manu-
facturing stage will cause revenue loss. According to the
rule-of-ten for product design [46], modifying a design at
the later stages of the SoC design flow is ten times costlier
than doing in the previous steps.
(ii) Evolutionary Mechanism: Almost all existing security veri-
fication frameworks that are relying on conventional formal-
based, satisfiability-based, or model-checking-based tools,
tend to provide a binary response to the SP(s) associated
with a set of SAs. So, the analysis behind the verification is
very limited to a specific set of events, and the verification
solutions just indicate that no flow occurs or that there is at
least one that violates the defined SP(s). However, they do
not provide any indication in between, e.g., predicting that
we are approaching a vulnerability or not (majority part
of SP(s) will be satisfied/passed). Providing evolutionary
response (like providing feedback) can help the framework
by itself to mutate the test-cases based on the collected data
and in a smart way and narrow the search space for reaching
to potential vulnerabilities. For building such structure, a
definition of some security metrics or coverage metrics is
needed as well to guide the test-cases to approach the
vulnerability and eventually get the global minimal.
(iii) Hammering-based Verification: As mentioned in Section 4,
due to the dynamic nature of threat model as well as the
propagation of SAs that results in the introduction of newer
SAs, unknown security vulnerabilities will appear in SoC
transactions, leading to breaches of confidentiality, integrity,
or authenticity, even while the verification has been done
appropriately based on the known security policies. Hence,
it is crucial for a security verification framework to be capa-
ble of finding both known and unknown vulnerabilities in
the SoC, even though there exists no clear/precise definition
for the actual vulnerabilities in the targeted SoC. This is
when evolutionary-based verification comes into action and
may help to detect such unknown vulnerabilities by a smart
hammering, and helping to avoid such scenarios before
moving to the next design stage.
(iv) Hardware-software Co-Verification: Some hardware vul-
nerabilities in SoC designs are not explicitly vulnerable
unless triggered by the software [27]. In some cases, it might
be possible to formalize such vulnerabilities via a complex
sequence checking at the hardware level, but if the veri-
fication mechanism allows doing either hardware-software
co-analysis or software-level verification, the definition of
SP(s) can become more straightforward. So, the SoC security
verification framework should handle such interactions as
well to ensure the security of the SoC.
(iv) Verification at Different Level of Access: As the contribution
of proprietary third-party IPs in modern SoCs is getting
more and more, it decreases the visibility of the verification

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 10

engineer from the internal specifications of the SoC. There-
fore, the security verification framework should be able to
verify the security of the SoC considering gray box or black
box model.

6 SOC SECURITY VERIFICATION: FLOW

Considering the aforementioned challenges and assump-
tions, to get the benefit of self-refinement techniques for
SoC security verification, the followings are the major steps
that must be considered as fundamentals of the SoC security
verification for both known and unknown vulnerabilities:
(step1) Risk Assessment: The main purpose of this step is
to identify the SA(s). The SA(s) will be determined based
on the ownership, domain, usage, propagation, static or
dynamic nature, etc., and the outcome of this step would
be a semantic definition as the requirements of verification
activities.
(step2) Definition of Adversarial Entry Region: Per each de-
fined SA, this step defines the most intuitive adversarial ac-
tions (SVs) around the SA that might lead to governing the
assets, such as different entry point candidates, data/control
relevancy between assets, and untrusted region(s), etc.
(step3) Definition of Security Policies/Properties (Known):
Based on SA(s) and SV(s), each vulnerability is converted
to a set of rules and then those rules will be converted to a
set of properties (SPs). For widely arisen vulnerabilities that
can be categorized as known vulnerabilities, the formalism
can be done by definition of assertions that monitor illegal
events/sequences. The richability of the unified language
plays an important role in this step (e.g., LTL [43] and CTL
[44]) that pave the way for converting the SPs to hardware
implementation.
(step4) Definition of Security Policies/Properties (Unknown):
Unlike known vulnerabilities, in case of unknown
vulnerabilities (e.g., any possible scenario that leads to
security asset leakage), the policy/property can be defined
in the form of a cost function, which represents the
evolutionary behavior of the vulnerability and tries to
approach a certain state/location of the design in a different
way to trigger unknown vulnerabilities. Cost functions
can be considered as a relaxed or higher-level version of
assertion-based SPs, and by using self-refinement tools,
as discussed hereinafter, self-mutation can help to move
towards testing data that excite the conditions leading to
the specific class of vulnerability under investigation.
(step5) Hardware Implementation of Security Verification Model:
For both known and unknown cases, by using the unified
languages, all SPs must be converted to hardware
implementation. For known cases, it is more likely
assertion-based scenarios that check the sequence of events
for a specific incident. For unknown cases, it is based on
instrumentation and mutation, which helps to build the
evolutionary mechanism.
(step6) Security Verification and Testing: This step involves
running verification, testing, and refinement-based tools
based on the definition of SPs and their hardware imple-
mentation that lead to verifying the security of the SoC. This
step can be done at different stages of the IC design, from
high level to GDSII as pre-silicon, and after fabrication on
initial prototypes as post-silicon.

In the following Sections, we will discuss how self-
refinement techniques and tools, like fuzz, penetration, and
AI testing can be engaged along with the consideration
of cost function definition for finding both known and
unknown vulnerabilities of the SoC.

7 SOC SECURITY VERIFICATION: FUZZING

The words fuzz testing or fuzzing represent randomized
testing of programs to find out the anomalies and vulner-
abilities. Fuzzing is usually an automatic or semi-automatic
approach that is intended to cover numerous pre-defined
(instrumented) corner cases of invalid inputs to trigger
the existing vulnerabilities in a program. Fuzzing was first
applied by Miller et al. [47] to generate random inputs,
which were provided to Unix to find the specific inputs
that cause crashes.

Generating random inputs without any feedback from
the design under investigation is referred to as blind fuzz
(close to random) testing which suffers from low coverage,
especially when more complex input models are introduced.
This has led to additional stages being introduced to the
fuzzing platforms. Generally, three main steps are involved
in a fuzzing that will be invoked iteratively on the program:
(i) Test scheduling, which relates to the problem of ordering
the initial seeds of each fuzz iteration in a way that leads to
full coverage as fast as possible.
(ii) Mutation steps, which incorporate a variety of methods
ranging from a simple crossing of seeds to optimized genetic
algorithms in order to produce new seeds for further exploit
generation.
(iii) Selection, where the useful seeds are pruned out of all
generated seeds. this process requires metric evaluation as
the prominent way of deciding which seeds result in better
coverage of the whole design under test [48].

Amongst the existing and widely used fuzzer tools,
american fuzzy lop (AFL) [15] is one of the most popu-
lar software fuzzers that uses an approximation of branch
coverage as its metric, while another famous fuzzer named
Hongfuzz [49] accounts for the unique basic blocks of code
visited. Based on the benchmarks used by different fuzzers,
the baseline of fuzzing, crash type, coverage mode, and
seed formulation, past fuzzing mechanisms divided into
numerous groups, whose details and comparison can be
found in [50]. The following first shows how the verification
model can change the way fuzzer acts on the targeted
program, and then we will investigate how the fuzzer can
be engaged for SoC security verification. As discussed previ-
ously, the purpose of using such self-refinement approaches
is to overcome the scalability issues of formal verification
methods [51].

7.1 Formal Definition of Fuzz Testing

Based on the verification model, fuzzing-based techniques
can be classified into three categories: white box, gray box,
and black box, which are defined based on the availability
of information during verification or run-time phases. This
information may include the source code of the hardware or
software designs, detail information about the security spec-
ification and functionalities, code coverage, control and data

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 11

flow graphs, execution (simulation or emulation) related
information such as CPU utilization, memory usage, etc.
The following describes these three categories of fuzzing.

7.1.1 Black-box Fuzzing
Black-box testing does not take any information from the
program under test. This approach also does not obtain the
input format of the program, rather it generates random
inputs which are mutated from a given seed data provided
as arguments or a file. This approach can use some pre-
defined rules, such as bit flipping, varying input length
(bits), sign reverse, etc. to generate mutated inputs. Some
recent black-box fuzzing-based approaches use grammar or
input specific information to obtain partially valid inputs
[52]. Black-box fuzzing is very convenient to use when the
design specification is unknown and little information is
available about the internal parts of the design under test.
On the contrary, it is very challenging to generate test cases
for a program with a very large number of execution paths
due to the lack of diversity of mutated inputs, which may
usher the failure of reaching the corner cases. Again, due to
the inherent blindness, black-box fuzzing-based approaches
struggle with the code coverage in practical use cases of
finding vulnerabilities.

7.1.2 White-box Fuzzing
Unlike black-box fuzzing, in white-box fuzzing, all of the
information of the target design is transparent and available
for the verification engineers to use. This approach was
first introduced by Godefroid et al. [53]. White-box fuzzing
utilizes as much information as needed to guide the seed
generation effectively. This approach analyzes symbolic
constraints for all conditional statements in the program
in order to develop the path constraints for all possible
executions. Integrating a coverage-maximizing metric to
white-box fuzzing can accelerate the approach to find the
inputs triggering the vulnerabilities in the program [53].
Although theoretically it seems that white-box fuzzing can
generate inputs to cover all of the possible execution paths,
practically it’s very challenging to achieve due to too many
execution paths and time restrictions of running a program.

7.1.3 Gray-box Fuzzing
Gray-box fuzzing is a hybrid approach that mixes black-
box and white-box fuzzing. Gray-box fuzzing obtains partial
information of the design under verification. For example,
while in white-box fuzzing we could instrument the whole
design for attaining code coverage, here we might be only
able to instrument the final binary and not the code itself,
or in case of a SoC design, we might have access to the
bus interface without being able to probe anything else. A
directed information feedback can largely assist in guiding
the mutation engine so that it can cover more control paths
and hence find the vulnerabilities in a short time. The
common method of mutation strategies for this type of
fuzzing is genetic algorithm [54], taint analysis [55], etc.
Taint analysis assists to focus on mutating the inputs which
have a larger impact on the targeted vulnerabilities. As this
fuzzing approach possesses some information about the de-
sign, it can implement a targeted feedback system to trigger

the vulnerabilities and explore new paths in the program,
which significantly improves the detection capability and
coverage of the fuzzing approach.

7.2 Fuzzing Hardware like Software

The complexity of hardware/software security co-
verification is caused by complications that arise from in-
terfacing numerous sub-modules from both sides of the
table. The approaches presented to this day have failed
to propose a scalable method with sufficient coverage that
captures the hardware and software vulnerabilities in a
unified platform simultaneously. Fuzzing has proved to be
a powerful tool for detecting vulnerabilities in real-world
software programs that encompass huge code bases. This
has opened the door for many researchers to investigate
the possibility of applying the same mechanisms to a full
system that includes hardware, firmware as well as software
components.

7.2.1 Hardware to Software Abstraction
In order to have a coherent model of the system so the
previous fuzzing efforts can be re-used, one method is to
translate the hardware to the software world. Utilizing state-
of-art fuzzing tools for hardware verification is a promising
concept which does not enforce the development of a new
platform for RTL verification. In order to do that, RTL
designs are translated to equivalent software models by a
hardware translator, such as Verilator [56], which generates
C++ programs of the given RTL designs. The generated
C++ classes are instantiated by a wrapper which acts as the
main function and stimulates the program under test for
simulation. The wrapper, which is a test-bench in hardware
terms, is designed in a way that holds functionalities and
security properties that act as a cost function which provides
feedback information for future iterations. The generated
C++ programs can also be instrumented to increase the
visibility of the internal simulations. Instrumentation can
also help to achieve code coverage, line coverage, branch
coverage, etc. to evaluate the overall coverage during simu-
lation.

A metric which we call the cost function is introduced
to measure the extent to which the security of a SoC design
has been compromised and how close are the test scenarios
to activating a targeted vulnerability. In that sense, the Cost
function is helping to build the evolutionary mechanism for
a vulnerability that guides fuzzing towards detecting the
vulnerability in a significantly shorter time period compared
to blind fuzzing. The Cost function may also include general
metrics such as code coverage, line coverage, branch cover-
age, etc., which can be obtained through instrumentation
of RTL designs or translated software models. The cost
function works in tandem with the mutation engine of the
fuzzer to assist in generating better mutated test cases that
can trigger various corner cases.

Figure 5 shows how the transformation of RTL code
to an executable binary that encompasses instrumentation
takes place. Also this figure represents how the cost function
interacts with the fuzzer outputs as well as the mutation
engine. The special characteristic that is worth mentioning
here is the fact that the cost function is selected based on

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 12

RTL Description
of SoC

HW Simulation

C/C++ Model

C/C++
Wrapper

toHLL
conversion

Instrumentation Compilation

Executable
Binary

input

feedback

Seeds

Mutation Cost Function

Fuzzer

Timeout/Finished?

Exit/Done
Crash?

Corpus

Fe
ed

b
a

ck DB of
Vulnerabilities

Security
Policies or
Properties

Fig. 5: A Fuzzing Framework on Software Level of RTL.

the vulnerability instance that is currently being targeted.
This means that instead of a general feedback from the
fuzzer outputs, one can make more suitable decisions for
further analysis because now the feedback is tailored for the
targeted bug in the running verification session.

7.2.2 Prior Art HW-to-SW Fuzzing
This section reviews the studies that incorporate hardware-
to-software abstraction conversion for realizing software
fuzzing for hardware verification and the prominent de-
ficiencies of each method are mentioned. The authors in
[57] proposed a mutational coverage-guided fuzzing-based
framework in order to resolve modern SoC verification chal-
lenges, such as co-verification of hardware and firmware,
as well as scalability. The framework includes adversarial
behavior and coverage metrics to evaluate the security prop-
erties written in their proposed logic HyperPLTL (Hyper
Past-time Linear Temporal Logic). However, the primary
disadvantage of this technique is that it requires a huge
amount of technical expertise, particularly for building SPs,
and hence incurs higher chances of erroneous and low
coverage results which could eventually limit the scope
of bugs detection. Tripple et al. [51] developed software
models of hardware and then applied fuzzing on the soft-
ware leveraging Google’s OSS-fuzz. The main problem with
this approach is due to its dependence on general metrics
such as code coverage rather than a dedicated cost function
targeted at hardware model properties.

Moghimi et al. [58] utilized fuzzing by mutating the
seeds of existing Meltdown variants in order to discover
various Meltdown-type attack variants. The authors pro-
vided randomly mutated inputs to the associated faulty
loads and used the cache as proof of covert channel for side-
channel leakage. Oleksenko et al. in [59] developed a dy-
namic testing methodology, SpecFuzz for identifying spec-
ulation execution vulnerabilities (e.g., Spectre). SpecFuzz
instruments the program and runs the simulation for spec-
ulative execution in software-level traversing all possible
reachable code paths that may be triggered due to branch
mispredictions. During simulated execution of the program,
speculative memory accesses are visible to integrity check-
ers which is combined with traditional fuzzing techniques.
SpecFuzz can detect potential spectre like vulnerabilities but
it is only useful for this certain type of attacks that exploit
speculation in CPU pipeline.

DifFuzz proposed in [60] is a fuzzing-based approach in
order to detect side-channel vulnerabilities related to time
and space. This technique analyzes two copies of the same
program which have different secret data while providing
the same inputs to them both. The authors developed a
cost metric which estimates the resource consumption, such
as the number of executed instructions and memory foot-
print, between secret-dependent paths for both programs.
However, this technique is primarily dependent on the
details of microarchitectural implementation information.
The more visibility into the microarchitectural state, the
more coverage is achieved. Unfortunately, obtaining good
visibility is not always available for many hardware designs
which binds these techniques to low accuracy. Yuan Xiao
et al. in [61] developed a software framework leveraging
fuzzing concepts to identify Meltdown-type vulnerabilities
in the existing processors. The authors build up the code
using some templates, which are executed to find out the
vulnerabilities. The authors leveraged cache-based covert
channel and differential tests to gain visibility into the
microarchitectural state changes, which eventually helps to
analyze the attack scenarios.

Ghaniyoun et al. [62] proposed a pre-silicon framework
for detecting transient execution vulnerabilities called Intro-
Spectre. IntroSpectre is developed on top of Verilator. The
authors resolved the challenges of lacking visibility into the
microarchitectural state by integrating it into the RTL design
flow which makes it identify unreachable potential side-
channel leakages. The authors utilize the fuzzing approach
to generate different attack scenarios consisting of code
gadgets and analyze the logs obtained from simulation to
identify the potential transient execution vulnerabilities.

7.2.3 Limitations and Challenges
There are many rudimentary differences between fuzzing
a software program and a RTL hardware model, the first
one of which is due to the difference in input arguments.
A digital circuit has the notion of input ports that take
different values in each cycle, unlike software that reads
its inputs from a variety of sources including arguments,
files, or through OS system-calls. Fuzzing requires a solid
definition of the format of the input so it can do meaningful
mutations and generate new passable tests. So the actual
input to be fuzzed should be thoroughly explained to the
fuzzer when working with a translated hardware design.

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 13

The format of the input has a great impact on how well the
mutation engine performs.

The second issue to address is due to the difference in
software versus hardware coverage metrics. Many fuzzers
depend on instrumentation to obtain coverage metrics and
direct the seed generation towards uncovered sections of
the design. While some metrics such as branch and line
coverage can approximately be mapped to each other in
both hardware and software models, other metrics such as
FSM coverage or toggle rate are not translatable [51]. The
traditional hardware verification uses these metrics to target
specific classes of vulnerabilities and any effort in software
domain should comply with these previous platforms as
well.

The third dominant issue with fuzzing on the translated
hardware is with regard to the cost function. Software
fuzzers look for crashes, exceptions and memory checks
as the vulnerabilities that could exist in a software model.
These scenarios are not convertible to hardware designs,
particularly low-level or platform-level vulnerabilities, be-
cause these forms of errors like exceptions do not exist in the
hardware realm. Hardware is inherently different when it
comes to targeting vulnerabilities because software crashes
can still happen even when the hardware is fully functional
and secure. Fuzzing the translated model without introduc-
ing our own notion of hardware vulnerabilities through a
cost function will result in the fuzzer expending its resources
on detecting bugs induced by the translator rather than the
hardware model itself [63]. Another problem related to this
issue is due to the changes in variables and functions when
performing the translation. This makes the translation of
properties from hardware RTL model to software a crucial
task that has not been investigated.

7.3 Direct Fuzzing on Hardware RTL
The verification faces additional challenges with enlarging
and growth of the design’s size and scope, e.g., the ver-
ification for a full-scale complex and heterogeneous SoC.
The primary challenge relevant to the SoC security verifi-
cation is the lack of end-to-end verification methods which
can resemble the behavior of every hardware component
and the run-time implications of software components or
framework(s) executing on it, i.e., hardware/software co-
verification with maximum coverage. Again, scalability is
the biggest challenge in modern SoC verification due to
the complexity and massive size of the designs. In order
to tackle scalability, an automated and systematic verifi-
cation platform is required. However, automation in SoC
verification is very difficult for several reasons. Firstly, the
verification engineer faces extreme challenges to precisely
assess the security policies/properties of an SoC design due
to the enormous number of components that interact with
each other. Identifying the security policies/properties in a
comprehensive fashion largely influences the quality of SoC
verification. Secondly, the verification engineer faces chal-
lenges in modeling the attack scenarios that may happen in
the SoC. These attacks may include side-channel based, di-
rect hardware or software exploitable attacks that could run
on the SoC. It’s very challenging to prepare different attack
models from the specifications for different untrusted third-
party IPs [64], untrusted OEM firmware [65] and untrusted

software [20]. Again, the verification engineer may not get
a complete manual for third-party IPs. Hence, SoC verifi-
cation still is a burdensome task that demands significant
research to develop a robust and scalable solution.

In such an environment the emulation-based fuzzing
methods, with more concentration on gray-box fuzzing
mode, can greatly improve the performance of the
simulation-based approaches by running the design on an
FPGA and interfacing the fuzzer to the prototype design
under test in a more realistic manner. Figure 6 represents
a general platform for interfacing FPGA with a test gener-
ator fuzzer. The difference of this method with what was
discussed in Figure 5 is mostly in the bitstream generation
as opposed to a binary under test and the fact that the
test cases are introduced to the actual design through a
direct memory access channel. The instrumentation in this
approach is outputted through the probe analyzers available
at FPGA monitoring implementation and it helps the cost
function to better guide the mutation engine.

Direct fuzzing on FPGA-accelerated simulation incurs
some major challenges such as resetting the FPGA, which
is required to take the program to a particular known state
to decrease the verification time or defining the branch
coverage, which is needed to track the verification coverage.
In order to solve the first challenge, memory snap-shooting
techniques can be used to reset the program and set the
desired state as a preparation for each test intended to be
performed with new fuzzing inputs. In order to estimate
the branch coverage, branches are mapped to multiplexers
which output one of two input values in each cycle.

Kevin Laeufer et al. in [66] proposed a coverage-directed
fuzzing approach for RTL testing on FPGAs leveraging
ideas from the software testing community (RFuzz). The
authors proposed a new approach for coverage metrics,
which uses multiplexer as branch coverage. RFuzz employs
FPGA accelerated fuzzing in order to speed up the fuzzing
procedure, which may increase specialized hardware costs
and also is limited to language support. However, it is
still lack of the definition of the cost function for security
verification of the design under investigation. Also, this
mechanism supports a very limited set of design types, as
they cannot accomplish the testing while the processor is in
place, and the verification is required to be intercorrelated
between hardware, software, and firmware.

In general, fuzzing can be a promising solution for devel-
oping an end-to-end mechanism for full system verification
and it requires a minimum amount of adjustment since it
is already well-developed in other areas of research, stan-
dalone simulation-based fuzzing or FPGA-based interfacing
still cannot cover a wide variety of threat models and source
of vulnerabilities showing further investigation is inevitable
in this domain.

8 SOC SECURITY VERIFICATION: PENETRATION

Penetration testing (PT) is a methodology to assess the
vulnerabilities in an application or a network and exploit
those weaknesses to gain access to the resources. Since
accessing security-critical resources of a computing system
necessitates the exploration of exploitable vulnerabilities,
vulnerability assessment (VA) is an indispensable precursor

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 14

Instrumentation

Security
Policies or
Properties

Synthesis /
PnR / bitGen Bitstream input

respone

Output
Monitoring

RTL
Description
of SoC

fe
ed

b
a

ck

SoC on FPGA

HLL Code
 on SoC

Compilation Executable
Binary

Fuzzer
Mutation Cost Function

DB of
Vulnerabilities

input

feedback

Seeds

Fig. 6: A Framework for Direct Fuzzing of RTL.

to PT. In literature, therefore, VA and PT are often consid-
ered a single framework to assess the security of a network
or application [67].

8.1 Higher Abstraction Penetration Testing: Types,
Practices and Objectives
Motivated by the ever-growing attack surface of software,
the secure software development lifecycle has been adopted
by leading software companies over the last two or three
decades. Security issues are considered, analyzed, and at-
tempted to be discovered at even early stages of devel-
opment [68]. Consequently, in the software development
lifecycle, VAPT has become a well-defined methodology to
weed out bugs and vulnerabilities. In fact, there are govern-
mental and private organizations that accredit individuals
and groups based on their ability [67], [69]. Open Web
Application Security Project (OWASP) is a non-profit orga-
nization, for example, that has published and sanctioned a
detailed step-by-step process of performing penetration test-
ing of web applications and firmware [70]. Open Source Se-
curity Testing Methodology Manual (OSSTMM) also offers
detailed guidelines on how to conduct VAPT on different
systems [71]. CREST, Tigerscheme, and the Cyberscheme are
some other professional bodies that provide industrial cer-
tifications and qualifications. CREST in particular provides
the intelligence-driven red team penetration testing frame-
work to assess the robustness of an operational team against
cyberthreats [72]. Mitre sponsors the maintenance of two de-
tailed databases of known software vulnerabilities- the CVE
(Common Vulnerabilities and Exposure List) and the CWE
(Common Weakness enumeration). These two databases
contain extensive information on most common software
vulnerabilities, example implementations, and even discuss
potential mitigation solutions. Therefore, VAPT is a well-
delineated methodology in software and network security
that has been implemented in practice successfully over the
course of the last two or three decades.

The main objective of a penetration test pertaining to an
application or network is to find out exploitable vulnerabil-
ities. Colloquially, VAPT has also been described as ethical
hacking [73]. This terminology is inspired by the fact that
often, the best approach to finding unanticipated vulnera-
bilities in a computer system is to hack into the system from
the outside looking in. This is essentially a simulated attack,

in which the penetration test engineer tries to anticipate the
course of action that malicious actors might adopt while
trying to compromise the security of the system. An analogy
is often used in penetration testing colloquialism, where it
is compared to hiring a thief to break into one’s own house
to find the loopholes in the implemented security system.
The term penetration in this context, therefore, stands for
acquiring legitimate access to resources illegitimately. We
present the typical steps in a typical VAPT approach in the
following:

(i) Reconnaissance: In this step, the tester gathers extensive
knowledge on the application, network, or computing sys-
tem to be pen tested. The principal goal of this step is to
get familiarized with the particular technology, protocols,
software versions, IP addresses, the configuration being
used by the system. Websites, job postings, and even social
engineering can be used to gather information [74]. Httrack,
Harvester, and Whois are some tools that can help in this step.

(ii) Scanning: In the scanning step, the system or network is
at first probed to find points of entry. An example is Nmap
program to find open ports in a network. Subsequently,
a commercially available tool like Nessus is used to find
known vulnerabilities in the system.

(iii) Exploitation: From the list of known vulnerabilities, the
tester comes up with an attack or exploitation plan. The goal
of this step is to identify the sequence of actions that can be
taken to gain access to unprivileged resources in the system.
Metasploit is an open-source tool that is frequently used in
academic and professional settings to realize this step. Effec-
tive exploit management (search, upgrade, documentation)
or a large number of payloads (tasks that are done after
successful exploitation of the target system) are available in
Metasploit. In general, payloads can be either simple and
focused on a single activity (for example, user creation) or
complex and comprehensive and provide more advanced
functionality.

(iv) Post Exploitation: The post exploitation step documents
the steps taken to gain access to non-permitted resources
(if successful). It might also involve the tester attempting
to escalate privileges already gained in the system. The
documentation of the steps taken gives valuable insight into
the weakness of the system.

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 15

8.2 Formal Definition of Penetration Testing
Similar to other testing approaches, based on the depth and
level of access as well as verification model, there are three
types of penetration testing:

8.2.1 Black-box Pen Testing
The testers do not have any prior access to any resources
on the test target when performing black box penetration
testing. They are expected to figure out all of the minutiae
of the system, as well as any flaws, depending on their
previous experience and individual expertise. The tester’s
primary goal is to audit the external security boundary of
the test target; as a result, the tester replicates the activities
and procedures of an actual attacker who may be located
at a location other than the test target’s boundary and who
does not know anything about the target. OSSTMM makes
a distinction within what would be typically referred to as
black-box PT between blind and double blind testing. In
double blind testing, the target is not notified ahead of time
of the audit whereas in blind testing it is informed ahead of
time.

8.2.2 White-box Pen Testing
Contrary to black box PT, the testers are provided with all
of the internal information about the system. This is meant
to simulate an attack from an internal threat like a malicious
employee. White box PT offers higher granularity of testing
while at the same time offering the benefit of not relying
heavily on trial and error as is common in black box PT.

8.2.3 Gray-box Pen Testing
Gray box PT is somewhere in between black box and white
box methodologies in terms of the information available to
the testers.

8.3 Penetration Testing on Hardware: Definition
Compared to the software domain, hardware penetration
testing is in its infancy. The term has been used as a stand in
for merely vulnerability assessment or for post-silicon test-
ing and debugging in hardware security literature. Authors
in [75], for example, equate penetration testing of hardware
to post-silicon debugging and testing. The examples they
provide amount to testing the software layer being run on
the hardware and not the hardware itself.

In keeping with the stated goals of software PT, we
believe that the principal objective of hardware PT should
be to discover vulnerabilities in the hardware that can
be exploited. However, certain differences must be noted.
Firstly, vulnerabilities in hardware can be purely hardware-
oriented such as malicious modification of the hardware
description to compromise the integrity and confidential-
ity of the device [4], side-channel leakage [76], and fault
injection [77]. Alternatively, they can be the source of cross-
layer vulnerabilities which can be exploited through the
software layer of the computing stack. Spectre and Melt-
down vulnerabilities, which leverage the weakness in hard-
ware implementation of speculative execution are exam-
ples of these types of vulnerabilities [34], [35]. Secondly,
the after-deployment simulated attack scenario to probe for
vulnerabilities provides limited benefits when translated to

hardware. In contrast to software that can be updated with
a patch once a vulnerability has been discovered, hardware
can not be easily patched (especially ASICs). A pre-silicon
testing methodology would be much more beneficial to the
designers and verification engineers.

In light of the challenges and foregoing differences with
the software domain, we define pre-silicon hardware pen-
etration testing as a testing methodology that propagates
the effects of vulnerability to an observable point in the
design in spite of cross-modular and cross-layer effects
present in the design. In contrast to randomized testing
which develops test patterns without the knowledge of the
vulnerability it is seeking to detect, hardware penetration
testing assumes a gray or black box knowledge of the
specification of the design and a gray box knowledge of the
bug or vulnerability it is targeting. The gray box knowledge
of the bug implies that the tester has knowledge of the
type of bug or vulnerability it is, and how it might impact
the system but not the precise location of its origin or the
precise point in the design where it might manifest in a
complex SoC. Penetration in this context, therefore, refers
to the propagation of a vulnerability from an unobservable
point in the design to an observable point.

8.4 Penetration Testing on Hardware: Framework
In this section, we demonstrate how a binary particle swarm
optimization (BPSO) based penetration testing framework
can be used as a promising solution for the SoC security
verification domain.

8.4.1 Binary Particle Swarm Optimization (BPSO)
The particle swarm optimization (PSO) is an evolutionary
computation technique motivated by the behavior of or-
ganisms. PSO has been widely employed in a range of
optimization situations due to its simplicity and ease of
implementation. The PSO method is initialized by randomly
placing a population of individuals, called particles, in the
search space and then searching for the optimal solution by
updating individual generations. At each iteration, for the
jth index in the ith particle of the swarm, the position and
velocity of the particle are updated through the following
equations:

vi,j(t+ 1) = wvi,j(t) + c1R1(pbesti,j − xi,j(t))

+ c2R2(gbesti,j − xi,j(t))
(1)

xi,j(t+ 1) = xi,j(t) + vi,j(t+ 1) (2)

R1 and R2 are uniformly distributed random numbers
between 0 and 1, c1 and c2 are acceleration coefficients and
w is called positive inertia constant.

Kennedy and Eberhart modified the continuous variable
PSO algorithm for binary spaces in [78], which came to be
known as the Binary PSO (BPSO) algorithm. The adaptation
for binary spaces is done through a set of constraints. The
constraints are imposed on equation 2 in the following form:

xi,j(t+ 1) =

{
0, if rand() ≥ S(vi,j(t+ 1))

1, otherwise
(3)

where S(.) is the sigmoid function used for transforming
the velocity.

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 16

start
Initial / Update

the Swarm

Generate
Mutated

Inputs

Evaluate
Fitness

input

respone

Output
Monitoring

DUT

(at desired abstraction level)
(e.g., HLL Model, netlist, FPGA-emulation, ...)

DB of
Vulnerabilities

Cost Function
Generator

Security Policies
or Properties
+
Past outputs

detected

Not detected

Fig. 7: A BPSO based Hardware Penetration Testing Framework for Detecting RTL Vulnerabilities.

8.4.2 BPSO-based Hardware Penetration Testing

Based on our earlier discussions on hardware penetration
testing, the framework shown in Figure7 can be a BPSO-
based pen testing approach on hardware that can be appli-
cable for SoC security verification. At the core of the vulner-
ability detection process is the cost function generator. This
generator (ideally automatically) generates a mathematical
function that describes the vulnerability that the tester is
attempting to detect. The input to the design is described in
terms of a binary vector which is mutated upon based on
the evaluation of cost function for a generation of input test
vectors. For each generation of the swarm, the algorithm
tries to minimize (or maximize) the cost function (that
helps to build the evolutionary mechanism). The observed
output can be any observable point in the SoC including
hardware signals during functional simulation, memory
address contents available from simulation or emulation,
observable points or signals created by RTL instrumentation
or scan chain insertion, and even the output of a user
space program. The cost function generator generates the
mathematical description of the vulnerability based on the
observable output point, a description of security policy,
and an append-only database of observed past outputs for a
particular sequence of inputs applied or actions performed.
The cost function generator must rely on keeping a record
of outputs attained for a sequence of inputs since only a
sequence of inputs can trigger certain hard-to-detect vulner-
abilities. For example, the AES-T1100 Trojan described in the
Trust-Hub database [79] gets activated upon the application
of a predefined sequence of plaintext.

In order to apply such BPSO-based pen testing frame-
work, there are three prerequisites that must be met:
(i) The tester should possess a preliminary knowledge of
vulnerability in addition to the impact it might have on
observable output and how it can lead to the violation of
predefined security policies of the device. We argue that
this is a reasonable supposition since a significant portion
of RTL hardware vulnerabilities have well studied effects.
For example, hardware Trojans can cause integrity, confi-
dentiality, and availability violations in a circuit [6], [80].
Security unaware design practices can lead to a design
having unanticipated leakage of information and assets to
an observable point or to an unauthorized 3PIP in the design
[81], [82], [83], [84]. Furthermore, there are open source
databases (e.g. Common Weakness Enumeration) that cat-
alogue commonly found vulnerabilities in hardware along

with the impact they might have. The framework’s primary
application would be to test vulnerabilities for which the
tester has a high level working knowledge of how they can
result in a security policy violation.
(ii) The tester should have access or visibility to certain
points in the design anticipated to be affected by the trig-
gering of the vulnerability. The encryption key used in
the crypto core of an SoC is an asset. To test whether a
vulnerability exists in the design which can lead implicit
or explicit flow of this asset to a PO, the observable point in
the design would be the PO. On the other hand, if we are
testing to check if the vulnerability enables flow of the asset
to an unauthorized 3PIP, the observable point should be the
SoC bus through which this type of transaction might take
place.
(iii) The tester should have reasonable (but not necessarily
exact) knowledge of how to trigger the vulnerability. This
in turn would dictate the input to mutate on. For example,
let us consider the debug unit vulnerability described in
[85] where the password check of the JTAG interface could
potentially be bypassed by resetting the unit. In this case,
the hardware debug signals exposed to the outside world
would be the relevant inputs. For the key asset scenario
described earlier, the input to mutate would be physical
signals of the crypto core exposed to the outside world or a
user space program that can access AES resources. Similarly,
for triggering software exploitable vulnerabilities the input
to mutate would be the data and control flow of a user space
program.

This stands in contrast to random and blind fuzz testing,
which find vulnerabilities by applying random inputs to the
design which in turn can unexpectedly lead the design to
a non-functional or vulnerable state. The BPSO algorithm
is suited for vulnerability detection at the pre-silicon level
since any input to a digital design can be considered in
terms of binary vectors. Discernibly hardware signals are
binary quantities. The user space programs run on modern
SoCs can also be described in terms of binary vectors by
translating the associated program into corresponding as-
sembly instructions. Additionally, to incorporate sequential
inputs, each particle in the swarm can be considered as
input vectors applied at different clock cycles.

8.4.3 Validity of Gray-Box Assumptions
Since the BPSO-based penetration test framework assumes
knowledge on the part of the tester and the availability of

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 17

RTL code, the readers might assume that this violates the
gray-box testing goals of the framework. We now discuss
why the prerequisite knowledge assumed earlier does not
necessarily violate gray-box assumptions especially in the
context of SoC verification. Modern SoCs can contain tens
of different third-party IPs, many of which are too complex
with their implementation details abstracted away by inte-
grating CAD tools. Even during functional verification, the
verification engineer would only have a high level knowl-
edge of the vulnerability and functionality of the integrated
3PIP and not the minutiae of RTL implementation. In such
cases, it can become extremely challenging for the verifi-
cation engineer to trigger the vulnerability with existing
verification tools due to complex transactions occurring in-
side the SoC, implicit timing flows, or unanticipated security
unaware design flaws. We also note that formal verification
tools such as Cadence JasperGold R⃝, even with definitive
knowledge of the impact a vulnerability might have, can
throw false positives or suffer from state explosion problems
[86].

9 SOC SECURITY VERIFICATION: AI TESTING

Pre-silicon verification is an essential but time-consuming,
and tedious part that consumes about 70% of the total time
allocated for hardware design flow [87]. Similar to fuzz and
pen testing, machine learning (ML) can be used for the
SoC security verification to make the process automatic and
evolutionary-based. ML can be used in different aspects of
the verification process, such as generating new test cases
that cover more functional states, producing new stimuli
and input patterns for increasing coverage, analyzing the
test results, etc. The biggest challenge of using ML will
be selecting appropriate data, models, and ML techniques
through trial and error to get the desired automation and
coverage that the state-of-the-art techniques are unable to
provide.

9.1 Higher Level Machine Learning
In general, three commonly used words - machine learning
(ML), deep learning (DL), and neural network (NN) - are
sub-fields of AI. While intelligent devices use AI to replicate
human thought processes, ML is the mechanism to develop
its intelligence. ML uses statistical models and extracts pat-
terns from data to train a system without direct instructions.
ML facilitates an intelligent approach to continue learning
and improving through feedback. Even though it is common
to use machine learning and deep learning interchangeably,
they are not the same. DL is a sub-field of ML, whereas
NN is a sub-field of DL. Fig. 8 shows the simplified version
of the machine learning workflow. While applying machine

learning, the first step is to formulate the problem statement.
After that, collecting appropriate data is an essential stage
to train the model to solve the problem like a human. The
overall performance of the ML model depends on how
representative the training data is. ML model learns from
some extracted features of the relevant data. The higher the
amount of data, the better the training would be. Hence,
ML data must be the adequate amount (the more the data,
the better), must have appropriate depth and feature (if
inherently 2d data is represented by 3d data, the training
method will not be effective). Data also have to be repre-
sentative unbiased and should include every corner case
possible. Once the developers have enough data, they can
move forward to train different ML models to see which
model works best for their problem statement and collected
data.

Fig. 9 shows different tasks a machine learning model
can perform (classification, anomaly detection, etc). De-
pending on the task, developers have to choose a method of
training, for example, supervised or unsupervised learning.
Once the developers have selected the task, training method
and the model itself; they can then fine-tune the best model
for their application and deploy it for usage.

Unsupervised

Learning

Classification

Regression

Transcription

Anomaly Detection

Object

Detection

Supervised

Learninig

Semi-supervised

Learning

Reinforcement

LearningM
a

ch
in

e
Le

a
rn

in
g

Ta
sk

s

M
a

ch
in

e
Le

a
rn

in
g

M
et

h
o

d
s

Fig. 9: Machine Learning Task and Methods.

Using ML to alleviate some manual interventions by
verification engineers has become a recent research trend.
In these research works, authors have used ML to automate
different aspects of hardware verification. For example,
Hughes et al. [88] used a combination of supervised and
reinforcement learning to generate constrain-random stim-

Selecting
the best
model

Define
Problem
Statement

Collect,
Analyze, &
Pre-process
Data

Train,
evaluate, &
test different
models w/
collected data

Deploy
trained
model

Fig. 8: Machine Learning Workflow.

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 18

ulus, which will ensure to hit the hard-to-hit combination
in highly complex functional design space. Hutter et al.
[89] used AI to automatically tune the decision-making
procedure of bounded model checking SAT solvers, which
in result would boost the verification procedure. Sometimes
verification engineers need to recreate a failure to trace back
the input that causes system failure. However, stimulat-
ing the origin of a system failure is time-consuming and
computationally draining. Gaur et al. [90] proposed an ML
model for this debugging purpose. The ML model will be
trained to calculate the switching probability of the design
output, which can be used to simulate system failures with
negligible overhead.

9.2 AI for Hardware Verification

When trying to use ML for hardware verification, the ML
workflow shown in figure 8 has to be followed. Figure 10
illustrates the workflow on how ML can be used to enhance
hardware verification process. In the following subsections,
different requirements and possible challenges of using this
workflow for hardware verification are discussed in detail.

9.2.1 Requirements/Workflow for using ML in Verification
Hardware verification is done in every abstraction level of
the hardware design flow. For example, after materializing a
design’s concept and architectural specification, behavioral
verification is done on the RTL level. Next, functional ver-
ification is done at a gate level, transistor level, or during
DFT insertion. Finally, the synthesized layout goes through
a physical verification process. Therefore, while implement-
ing ML for automating verification, the first requirement is
to select the level of abstraction, meaning which method
(behavior, function, or physical verification) to use and
which level (RTL, gate, transistor, or layout) to use. This
is the first step of using ML in pre-silicon verification as
shown in figure 10.

Next, verification engineers must choose what part of
the verification to automate through ML. For example, ML
can generate stimuli, generate new test cases to increase
code or branch coverage, produce new guided, constrained-
random, or entirely random inputs to hit more functional
or behavior nodes. Therefore, it is required to select the
abstraction level and the role of ML in automation as a
problem statement as the first part of ML workflow. As
shown in figure 10, verification engineers have to divide the
verification steps into two parts. The first part can be auto-
mated through ML, and the second part is the state-of-the-
art verification steps that do not need further optimization.
Verification engineers have to build problem statements and
cost functions corresponding to the first part and leave the
second part.

One factor that goes into consideration while estab-
lishing a problem statement is if the verification engineer
has full access to the design (white-box setting) or has
only access to primary input and primary output of the
design (black-box setting). Traditionally design engineer
and verification engineer are two different entities, and
verification engineer does not require any knowledge of
the design itself. Also, if the IP came from a 3PIP vendor,
white box knowledge of the IP is inaccessible, as often 3PIPs

are encrypted. However, the level of access to the design
information (white-box/ gray-box / black-box setting) is
crucial for collecting training data for the machine learning
model.As shown in figure 10, to get the appropriate training
data, the verification engineer may need to instrument the
IP. This training data have to fulfill the requirement of being
comprehensively representative of the complete problem
statement, unbiased, and should cover all corner cases. After
collecting required training data and analyzing the data
structure, it is mandatory to extract features that represent
the problem statement the best. These data features will be
used to statistically model the problem statement and give
human-like predictions using ML models.

Depending on the data available on the IP (as the model
can have one of the black, gray, or white-box approaches),
the verification engineer must select the best ML method
(shown in figure 9) suited for the predefined problem state-
ment and collect data features. Selecting an appropriate
model will be a trial and error process because the model
will work differently for different problem statements and
data features.For example, in figure 10, different ML models
(model 1, model 2,.... , model N) are trained using the same
training data and the performance of all these different
ML models are compared on the basis of the same cost
function, and the best performing model will be selected
for automation. While selecting the appropriate method, the
verification engineer must also consider the computational
power, platform, and resource available for training.

After analyzing, optimizing, and evaluating the trained
Model, the automated part of the verification process will
be integrated with the verification steps that do not require
further optimization. This integrated part will produce an
accelerated ML-based hardware verification method.

One of the critical requirements of using ML in verifica-
tion is forming an evaluation matrix and objective function
to measure the performance of the ML model. This objective
function and evaluation matrix must be dynamic, compre-
hensive, and analog so that reinforcement feedback can be
provided for increasing model accuracy.

9.2.2 Challenges of ML-based Verification
The accuracy and performance of the ML model depend
hugely on the quality and quantity of collected data, and
collecting an adequate number of relevant, unbiased, com-
prehensive data is always a challenge. It takes numerous
man-hours, computational resources, and manual interven-
tions to collect these data. However, most of the collected
data are noisy, biased, and not comprehensive in real-life
cases. For this reason, pre-processing and data sorting im-
poses a challenge for hardware verification. Extracting ap-
propriate features from collected data is another demanding
task. While building a model, verification engineers need
to spend most of their time analyzing the data to get the
appropriate specification and feature depth of their model
that represents the problem statement the best. Selecting the
wrong data feature will result in poor model performance.
This is why careful selection of data features is an essential
task.

Efficient model selection has one of the highest impacts.
The model structure and depth must be coherent and com-
plementary with the data structure and must train itself

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 19

HLL Model

netlist

FPGA-based
emulation…

Select

Verification

Identify
Steps
w/ high
Automation
Probability

Identify
Steps
w/ low
Automation
Probability

Cost Function
Generator

Security Policies
or Properties

Instrumentation Collect,
Analyze, &
Pre-process
Data

Abstraction Level

Feature
Extraction

Train
Model

1

Train
Model

2…
Train

Model
N

Steps

Deploy
trained
model

Select
the highest
performing
model

DB of
Vulnerabilities

Fig. 10: Workflow of Hardware Verification using ML.

from the given data features. As there are many ML meth-
ods and models to choose from; training different models
and comparing different methods can give the best-suited
model for a particular hardware verification problem. How
and where to instrument the code, what platform to use, and
what properties to check are also very challenging questions
from the verification perspective. Testing, developing, and
implementing appropriate objective functions are challeng-
ing in real life. For example, one objective function may be
appropriate for a certain scenario and irrelevant for another.
Developing a generalized, scalable, and appropriate object-
ing function poses a challenge from this perspective.

10 SOC SECURITY VERIFICATION: FUTURE RE-
SEARCH DIRECTIONS/CHALLENGES

In this section, we provide possible directions for further re-
search on SoC security verification using fuzz, penetration,
and AI testing. Considering the scalability issue that is ever-
increasing by facing with larger and more complex SoCs,
introduction of reliable and efficient verification techniques
using these self-refinement mechanisms is inevitable. In
spite of extensive research efforts in developing scalable
and automated security verification techniques over the
years, there are still many challenges remain to design
secure and trustworthy SoCs. While formal verification
tools like JasperGold can be used for known vulnerabilities,
here we demonstrated how by appropriately definition of
security policies/properties and evolutionary-based cost-
functions, smarter approaches such as fuzz, penetration, and
AI testing that are capable of generating smart test-cases
can extend the scope for both known and unknown SoC
security vulnerabilities, and could be a promising direction
in SoC security verification. Although recent years show
some preliminary usage of these techniques, as discussed
previously, many of these techniques still needs significant
improvement, in terms of performance as well as coverage.
In addition, depending on the security vulnerability, source
of vulnerability, and security policy/property, in many cases
there will be a need for developing hybrid approaches
combining the inherent advantages of different security
verification methods to detect a wide variety of security

vulnerabilities in emerging SoCs. In addition, while design-
time security verification techniques can detect certain types
of vulnerabilities, it is infeasible to remove all possible
vulnerabilities during pre-silicon security verification. Due
to observability constraints in fabricated SoCs, post-silicon
security verification (on initial prototypes or FPGA-based
emulation) approaches should be considered as well. So,
the future research needs to employ both post-silicon and
pre-silicon security verification. Finally, security verifica-
tion tools need to check for various security vulnerabilities
across different phases in the design cycle. Specifically per
each technique, the following draws some of the possible
future research directions:

10.1 Fuzz Testing

While utilizing fuzz testing for SoC verification is a new
concept, still the majority of studies explore the best-fitted
conventional methods adopted from the software realm.
The threat model of software designs is truly different from
the hardware. Future work in this field should address this
issue by introducing equivalent cost functions and threat
surfaces that can be measured and evaluated. Information
flow analysis, static code analysis, and dynamic heuristics
developed based on simulation flows have proved to be
good candidates for the development of metrics, especially
in a white-box scenario.

The second problem yet not addressed properly is due
to the fact that most recent studies focus on constructing a
general approach that works for all possible vulnerabilities
in the design. The metrics mentioned above can be more
efficient in detecting hardware vulnerabilities if they con-
sider the scope of the vulnerability targeted at each session
of testing. For example, a full exploration of the system
while generating many test cases for full system security
assurance is not necessary when the memory interface is the
only untrusted entity in the system. This can help with the
scalability of the fuzzing approach while a general method
might be more suitable for detecting new vulnerabilities.

The automation required for developing an end-to-end
fuzzing approach is another issue that needs further investi-
gation. There still exists a gap for easy-to-use, plug-and-play

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 20

software based on fuzz testing that can be incorporated as
is into other verification tools.

10.2 Pen Testing
The efficacy of the pre-silicon hardware Pen Testing frame-
work, such as the previously-mentioned BPSO-based archi-
tecture, is dictated by how effectively the associated cost
functions can encapsulate the vulnerability being targeted.
The effectiveness of the cost function, in turn, is contingent
upon the tester’s ability to identify corresponding inputs
and effects of the vulnerability. As we mentioned previously,
there is an ever growing database of vulnerabilities that the
community understands how to trigger (at a high level)
and what impacts they might have. However, due to the
modular design practices prevalent in the industry today,
the visibility and accessibility within the design is getting
reduced. This means gaining access to the signals or points
of interest may be a challenge especially taking time con-
straints into consideration. For example, the designer may
anticipate that the impact of a vulnerability may be visible
through the common bus used in the SoC. However, in a
pre-silicon setting, the time taken to simulate the design to
appropriate number of clock cycles such that the vulnera-
bility is triggered, may become unacceptably high. In such
cases, FPGA emulation of the design can be considered as a
promising approach to speed up the process.

We note that the previously-mentioned BPSO based
framework assumes no particulars on how the observable
point is observed. It can be through simulation, emulation
or any other approach preferred by the tester based on time
and cost considerations. So long as the tester can provide the
algorithm with observed outputs, the algorithm would be
able to mutate the input based upon the feedback provided
by evaluation of the cost function. Manual formulation of
cost functions can become non-scalable if the designers
want to test a large variety of vulnerabilities across different
platforms and architectures. The best approach to tackle this
challenge is to devise an automatic cost function generation
methodology based on a general description of the type
and scope of the vulnerability as well as microarchitectural
implementation details.

10.3 AI Testing
State-of-the-art verification processes require hours and
hours of manual intervention but fail to achieve desired
coverage goals. Moreover, so many different IPs (hard, soft,
firm IPs) are integrated from so many different vendors in
a practical system that developing scalable and reusable
test cases becomes a daunting task. ML has the potential
to overcome both of these issues faced by the traditional
verification process. However, ML has its own challenges
because the usage of ML for hardware verification is still
in its early stages. Once verification engineers pass the
initial hurdle of trial and error and start exploring ML
for each verification stage, specification of the collected
data, extracted best features, appropriate model structure
- everything required to build an automated structure will
be established. From these established structures and using
transfer learning of ML, different IPs with different specifi-
cations can be automated to increase verification coverage.

Of course, there will always be unique cases where man-
ual interventions will be needed. However, with the help
of reinforcement learning, the rate of human intervention
requirement will reduce exponentially. One of the possible
future direction would be building of this kind of unbiased,
scalable, reusable ML model which will increase verification
coverage and drastically decrease manual efforts required
by the existing process. The best way to implement all of
these is to tackle one abstraction level at a time, starting from
the RTL level. Verification engineers have to generate an
automated method to check the scope of using ML in each
step of the verification process and start utilizing ML for the
promising steps. Also, generating an evolving cost function
with dynamic behaviors is another task. After collecting
data and training the model, verification engineers have
to check the performance of the whole verification step,
with and without ML. If the ML model outperforms the
traditional approach with lower overhead, then the ML
approach should be established as the standard procedure.

11 CONCLUSION

In this paper, we re-evaluated the fundamentals and prin-
ciples of SoC security verification. By reviewing the defi-
nitions, requirements, and existing challenges through the
SoC security verification, we investigated the possibility of
utilization of self-refinement techniques for building a more
efficient and scalable methodology for security verification
of the design, specifically for complex and heterogeneous
SoCs. We discussed the need for further investigation on
these techniques, and by assessing the challenges and the
possible directions, we hope this article will serve as a
navigator for building the next steps in this domain.

REFERENCES

[1] A. Yeh, “Trends in the Global IC Design Service Market,” DIG-
ITIMES, 2012.

[2] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1283–1295, 2014.

[3] A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehranipoor,
“Avfsm: A framework for identifying and mitigating vulnerabil-
ities in fsms,” in 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2016, pp. 1–6.

[4] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE design & test of computers, vol. 27,
no. 1, pp. 10–25, 2010.

[5] G. K. Contreras, A. Nahiyan, S. Bhunia, D. Forte, and M. Tehra-
nipoor, “Security vulnerability analysis of design-for-test exploits
for asset protection in socs,” in 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2017, pp. 617–
622.

[6] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware trojans: Lessons learned after one decade of research,”
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 22, no. 1, pp. 1–23, 2016.

[7] Y. Alkabani and F. Koushanfar, “Active Hardware Metering for
Intellectual Property Protection and Security,” in USENIX Security
Symposium, 2007, pp. 291–306.

[8] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analy-
sis of Integrated Circuit Camouflaging,” in Proceedings of the ACM
SIGSAC conference on Computer & communications security, 2013, pp.
709–720.

[9] D. Forte, S. Bhunia, and M. M. Tehranipoor, Hardware protection
through obfuscation. Springer, 2017.

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 21

[10] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “From
cryptography to logic locking: A survey on the architecture evolu-
tion of secure scan chains,” IEEE Access, vol. 9, pp. 73 133–73 151,
2021.

[11] N. N. Anandakumar, M. S. Rahman, M. M. M. Rahman, R. Kibria,
U. Das, F. Farahmandi, F. Rahman, and M. M. Tehranipoor, “Re-
thinking watermark: Providing proof of ip ownership in modern
socs,” Cryptology ePrint Archive, 2022.

[12] H. M. Kamali, K. Z. Azar, F. Farahmandi, and M. Tehranipoor,
“Advances in logic locking: Past, present, and prospects,” Cryptol-
ogy ePrint Archive, 2022.

[13] D. Beyer and T. Lemberger, “Software verification: Testing vs.
model checking,” in Haifa Verification Conference. Springer, 2017,
pp. 99–114.

[14] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer,
M. Luca, P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Ro-
driguez, “Moving fast with software verification,” in NASA Formal
Methods Symposium. Springer, 2015, pp. 3–11.

[15] (2018) American fuzzy lop (afl) fuzzer. [Online]. Available:
http://lcamtuf.coredump.cx/afl/

[16] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang, “Chal-
lenges and trends in modern soc design verification,” IEEE Design
& Test, vol. 34, no. 5, pp. 7–22, 2017.

[17] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Smt
attack: Next generation attack on obfuscated circuits with capabil-
ities and performance beyond the sat attacks,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, pp. 97–122, 2019.

[18] K. Z. Azar, H. M. Kamali, , H. Homayoun, and A. Sasan, “Nngsat:
Neural network guided sat attack on logic locked complex struc-
tures,” in 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE, 2020, pp. 1–9.

[19] K. Z. Azar, H. M. Kamali, F. Farahmandi, M. Tehranipoor,
“Warm Up before Circuit De-obfuscation? An Exploration through
Bounded-Model-Checkers,” in International Symposium on Hard-
ware Oriented Security and Trust (HOST), 2022, pp. 1–4.

[20] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Ver-
ifying information flow properties of firmware using symbolic
execution,” in 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2016, pp. 337–342.

[21] A. Nahiyan, F. Farahmandi, P. Mishra, D. Forte, and M. Tehra-
nipoor, “Security-aware fsm design flow for identifying and
mitigating vulnerabilities to fault attacks,” IEEE Transactions on
Computer-aided design of integrated circuits and systems, vol. 38, no. 6,
pp. 1003–1016, 2018.

[22] B. Kumar, A. K. Jaiswal, V. Vineesh, and R. Shinde, “Analyzing
hardware security properties of processors through model check-
ing,” in 2020 33rd International Conference on VLSI Design and 2020
19th International Conference on Embedded Systems (VLSID). IEEE,
2020, pp. 107–112.

[23] B. Yuce, N. F. Ghalaty, and P. Schaumont, “Tvvf: Estimating the
vulnerability of hardware cryptosystems against timing violation
attacks,” in 2015 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST). IEEE, 2015, pp. 72–77.

[24] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-
channel vulnerability factor: A metric for measuring information
leakage,” in 2012 39th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2012, pp. 106–117.

[25] A. Nahiyan, J. Park, M. He, Y. Iskander, F. Farahmandi, D. Forte,
and M. Tehranipoor, “Script: A cad framework for power side-
channel vulnerability assessment using information flow tracking
and pattern generation,” ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 25, no. 3, pp. 1–27, 2020.

[26] H. Salmani and M. Tehranipoor, “Analyzing circuit vulnerability
to hardware trojan insertion at the behavioral level,” in 2013 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFTS). IEEE, 2013, pp. 190–195.

[27] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi,
H. Khattri, J. M. Fung, A.-R. Sadeghi, and J. Rajendran,
“{HardFails}: Insights into {Software-Exploitable} hardware
bugs,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 213–230.

[28] R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton, “Iden-
tifying security critical properties for the dynamic verification of
a processor,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 541–554, 2017.

[29] W. Hu, A. Althoff, A. Ardeshiricham, and R. Kastner, “Towards
property driven hardware security,” in 2016 17th International

Workshop on Microprocessor and SOC Test and Verification (MTV).
IEEE, 2016, pp. 51–56.

[30] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf,
R. Kastner, F. T. Chong, and T. Sherwood, “Crafting a usable
microkernel, processor, and i/o system with strict and provable
information flow security,” in 2011 38th Annual International Sym-
posium on Computer Architecture (ISCA). IEEE, 2011, pp. 189–199.

[31] R. Kastner, J. Oberg, W. Huy, and A. Irturk, “Enforcing information
flow guarantees in reconfigurable systems with mix-trusted ip,” in
Proceedings of the International Conference on Engineering of Reconfig-
urable Systems and Algorithms (ERSA). The Steering Committee
of The World Congress in Computer Science, Computer . . . , 2011,
p. 1.

[32] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and
R. Kastner, “On the complexity of generating gate level informa-
tion flow tracking logic,” IEEE Transactions on Information Forensics
and Security, vol. 7, no. 3, pp. 1067–1080, 2012.

[33] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kast-
ner, “Information flow isolation in i2c and usb,” in 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2011, pp. 254–259.

[34] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre at-
tacks: Exploiting speculative execution,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 1–19.

[35] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin et al., “Meltdown:
Reading kernel memory from user space,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 973–990.

[36] E. Peeters, “Soc security architecture: Current practices and emerg-
ing needs,” in 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2015, pp. 1–6.

[37] S. J. Greenwald, “Discussion topic: what is the old security
paradigm?” in Proceedings of the 1998 workshop on New security
paradigms, 1998, pp. 107–118.

[38] N. Farzana, F. Rahman, M. Tehranipoor, and F. Farahmandi, “Soc
security verification using property checking,” in 2019 IEEE Inter-
national Test Conference (ITC). IEEE, 2019, pp. 1–10.

[39] N. Farzana, F. Farahmandi, and M. Tehranipoor, “Soc security
properties and rules,” Cryptology ePrint Archive, 2021.

[40] P. Mishra, M. Tehranipoor, and S. Bhunia, “Security and trust
vulnerabilities in third-party ips,” in Hardware IP Security and
Trust. Springer, 2017, pp. 3–14.

[41] M. Gruninger and C. Menzel, “The process specification language
(psl) theory and applications,” AI magazine, vol. 24, no. 3, pp. 63–
63, 2003.

[42] S. Vijayaraghavan and M. Ramanathan, A practical guide for Sys-
temVerilog assertions. Springer Science & Business Media, 2005.

[43] A. Pnueli, “The temporal logic of programs,” in 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977). IEEE,
1977, pp. 46–57.

[44] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv:
a new symbolic model checker,” International Journal on Software
Tools for Technology Transfer, vol. 2, no. 4, pp. 410–425, 2000.

[45] C. Dunbar and G. Qu, “Designing trusted embedded systems from
finite state machines,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 13, no. 5s, pp. 1–20, 2014.

[46] D. M. Anderson, Design for manufacturability: How to use concurrent
engineering to rapidly develop low-cost, high-quality products for lean
production. CRC press, 2020.

[47] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Communications of the ACM, vol. 33,
no. 12, pp. 32–44, 1990.

[48] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, “Be sensitive and
collaborative: Analyzing impact of coverage metrics in greybox
fuzzing,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019). Chaoyang District, Beijing:
USENIX Association, Sep. 2019, pp. 1–15. [Online]. Available:
https://www.usenix.org/conference/raid2019/presentation/wang

[49] (2018) honggfuzz. [Online]. Available: http://honggfuzz.com/
[50] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating

fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 2123–2138.

[51] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo,
and M. Hicks, “Fuzzing hardware like software,” arXiv preprint
arXiv:2102.02308, 2021.

FUTURE MICROELECTRONICS SECURITY RESEARCH SERIES 22

[52] J. De Ruiter and E. Poll, “Protocol state fuzzing of {TLS} imple-
mentations,” in 24th {USENIX} Security Symposium ({USENIX}
Security 15), 2015, pp. 193–206.

[53] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated white-
box fuzz testing.” in NDSS, vol. 8, 2008, pp. 151–166.

[54] R. L. Seagle Jr, “A framework for file format fuzzing with genetic
algorithms,” 2012.

[55] M. M. Hossain, F. Farahmandi, M. Tehranipoor, and F. Rahman,
“Boft: Exploitable buffer overflow detection by information flow
tracking,” in 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2021, pp. 1126–1129.

[56] [Online]. Available: https://www.veripool.org/verilator/
[57] S. K. Muduli, G. Takhar, and P. Subramanyan, “Hyperfuzzing

for soc security validation,” in Proceedings of the 39th International
Conference on Computer-Aided Design, 2020, pp. 1–9.

[58] D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz, “Medusa: Mi-
croarchitectural data leakage via automated attack synthesis,” in
29th {USENIX} Security Symposium ({USENIX} Security 20), 2020,
pp. 1427–1444.

[59] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “Spec-
fuzz: Bringing spectre-type vulnerabilities to the surface,” in 29th
{USENIX} Security Symposium ({USENIX} Security 20), 2020, pp.
1481–1498.

[60] S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “Diffuzz: differential
fuzzing for side-channel analysis,” in 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE). IEEE, 2019, pp.
176–187.

[61] Y. Xiao, Y. Zhang, and R. Teodorescu, “Speechminer: A framework
for investigating and measuring speculative execution vulnerabil-
ities,” arXiv preprint arXiv:1912.00329, 2019.

[62] M. Ghaniyoun, K. Barber, Y. Zhang, and R. Teodorescu, “In-
trospectre: a pre-silicon framework for discovery and analysis
of transient execution vulnerabilities,” in 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 874–887.

[63] A. Tyagi, A. Crump, A.-R. Sadeghi, G. Persyn, J. Rajendran,
P. Jauernig, and R. Kande, “Thehuzz: Instruction fuzzing of
processors using golden-reference models for finding software-
exploitable vulnerabilities,” 01 2022.

[64] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance
for system-on-chip designs with untrusted ips,” IEEE Transactions
on Information Forensics and Security, vol. 12, no. 7, pp. 1515–1528,
2017.

[65] P. Subramanyan and D. Arora, “Formal verification of taint-
propagation security properties in a commercial soc design,” in
2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2014, pp. 1–2.

[66] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “Rfuzz:
Coverage-directed fuzz testing of rtl on fpgas,” in 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE,
2018, pp. 1–8.

[67] S. Shah and B. M. Mehtre, “An overview of vulnerability as-
sessment and penetration testing techniques,” Journal of Computer
Virology and Hacking Techniques, vol. 11, no. 1, pp. 27–49, 2015.

[68] H. H. Thompson, “Application penetration testing,” IEEE Security
& Privacy, vol. 3, no. 1, pp. 66–69, 2005.

[69] W. Knowles, A. Baron, and T. McGarr, “The simulated security
assessment ecosystem: Does penetration testing need standardis-
ation?” Computers & Security, vol. 62, pp. 296–316, 2016.

[70] [Online]. Available: https://owasp.org/www-
project-web-security-testing-guide/latest/3-

[75] H. Khattri, N. K. V. Mangipudi, and S. Mandujano, “Hsdl: A
security development lifecycle for hardware technologies,” in 2012
IEEE International Symposium on Hardware-Oriented Security and
Trust. IEEE, 2012, pp. 116–121.

The OWASP Testing Framework/1-
Penetration Testing Methodologies

[71] [Online]. Available: https://www.isecom.org/OSSTMM.3.pdf
[72] [Online]. Available: https://www.crest-approved.org/what-is-

star-fs/index.html
[73] R. Baloch, Ethical hacking and penetration testing guide. Auerbach

Publications, 2017.
[74] T. Dimkov, A. Van Cleeff, W. Pieters, and P. Hartel, “Two method-

ologies for physical penetration testing using social engineering,”
in Proceedings of the 26th annual computer security applications confer-
ence, 2010, pp. 399–408.

[76] M. He, J. Park, A. Nahiyan, A. Vassilev, Y. Jin, and M. Tehranipoor,
“Rtl-psc: Automated power side-channel leakage assessment at
register-transfer level,” in 2019 IEEE 37th VLSI Test Symposium
(VTS). IEEE, 2019, pp. 1–6.

[77] H. Wang, H. Li, F. Rahman, M. M. Tehranipoor, and F. Farahmandi,
“Sofi: Security property-driven vulnerability assessments of ics
against fault-injection attacks,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2021.

[78] J. Kennedy and R. C. Eberhart, “A discrete binary version of the
particle swarm algorithm,” in 1997 IEEE International conference on
systems, man, and cybernetics. Computational cybernetics and simula-
tion, vol. 5. IEEE, 1997, pp. 4104–4108.

[79] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnera-
bility analysis and trust benchmarks development,” in 2013 IEEE
31st international conference on computer design (ICCD). IEEE, 2013,
pp. 471–474.

[80] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehra-
nipoor, “Benchmarking of hardware trojans and maliciously af-
fected circuits,” Journal of Hardware and Systems Security, vol. 1,
no. 1, pp. 85–102, 2017.

[81] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware
trojans in third-party digital ip cores,” in 2011 IEEE International
Symposium on Hardware-Oriented Security and Trust. IEEE, 2011,
pp. 67–70.

[82] X. Zhang and H. Salmani, “Integrated circuit authentication: hard-
ware trojans and counterfeit detection.” 2014.

[83] A. Nahiyan, M. Sadi, R. Vittal, G. Contreras, D. Forte, and
M. Tehranipoor, “Hardware trojan detection through information
flow security verification,” in 2017 IEEE International Test Confer-
ence (ITC). IEEE, 2017, pp. 1–10.

[84] S. Bhunia and M. Tehranipoor, “The hardware trojan war,” Cham,,
Switzerland: Springer, 2018.

[85] S. Gogri, P. Joshi, P. Vurikiti, N. Fern, M. Quinn, and J. Valamehr,
“Texas a&m hackin’aggies’ security verification strategies for the
2019 hack@ dac competition,” IEEE Design & Test, vol. 38, no. 1,
pp. 30–38, 2020.

[86] F. Farahmandi, Y. Huang, and P. Mishra, System-on-Chip Security.
Springer, 2020.

[87] H. Kaeslin, Digital integrated circuit design: from VLSI architectures
to CMOS fabrication. Cambridge University Press, 2008.

[88] W. Hughes, S. Srinivasan, R. Suvarna, and M. Kulkarni, “Optimiz-
ing design verification using machine learning: Doing better than
random,” arXiv preprint arXiv:1909.13168, 2019.

[89] F. Hutter, D. Babic, H. H. Hoos, and A. J. Hu, “Boosting verification
by automatic tuning of decision procedures,” in Formal Methods in
Computer Aided Design (FMCAD’07). IEEE, 2007, pp. 27–34.

[90] P. Gaur, S. S. Rout, and S. Deb, “Efficient hardware verification
using machine learning approach,” in 2019 IEEE International
Symposium on Smart Electronic Systems (iSES)(Formerly iNiS). IEEE,
2019, pp. 168–171.

