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Abstract
The goal of this paper is to improve the efficiency and applicability of

straightline extraction techniques in the random oracle model. Straightline
extraction in the random oracle model refers to the existence of an extractor,
which given the random oracle queries made by a prover P ∗(x) on some theo-
rem x, is able to produce a witness w for x with roughly the same probability
that P ∗ produces a verifying proof. This notion applies to both zero-knowledge
protocols and verifiable computation where the goal is compressing a proof.

Pass (CRYPTO ’03) first showed how to achieve this property for NP using
a cut-and-choose technique which incurred a λ2-bit overhead in communication
where λ is a security parameter. Fischlin (CRYPTO ’05) presented a more
efficient technique based on “proofs of work” that sheds this λ2 cost, but only
applies to a limited class of Sigma Protocols with a “quasi-unique response”
property, which for example, does not necessarily include the standard OR
composition for Sigma protocols.

With Schnorr/EdDSA signature aggregation as a motivating application,
we develop new techniques to improve the computation cost of straight-line
extractable proofs. Our improvements to the state of the art range from 70×–
200× for the best compression parameters. This is due to a uniquely suited
polynomial evaluation algorithm, and the insight that a proof-of-work that re-
lies on multicollisions and the birthday paradox is faster to solve than inverting
a fixed target.

Our collision based proof-of-work more generally improves the Prover’s
random oracle query complexity when applied in the NIZK setting as well. In
addition to reducing the query complexity of Fischlin’s Prover, for a special
class of Sigma protocols we can for the first time closely match a new lower
bound we present.

Finally we extend Fischlin’s technique so that it applies to a more gen-
eral class of strongly-sound Sigma protocols, which includes the OR composi-
tion. We achieve this by carefully randomizing Fischlin’s technique—we show
that its current deterministic nature prevents its application to certain multi-
witness languages.
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1 Introduction
A Sigma protocol is a three move public coin proof for a language L that al-
lows for efficient sampling of transcripts without a witness (honest-verifier zero-
knowledge), and has the property that any pair of accepting conversations that
share the same first message will yield a witness for the statement (two-special
soundness). Sigma protocols are a useful abstraction in multiple regards, as
many algebraic languages admit highly efficient sigma protocols [Sch91], com-
pilers for more complex languages have been constructed [CDS94], and analysis
of whether a protocol does indeed meet the definition of a Sigma protocol is
usually straightforward.

In the many settings where a non-interactive zero-knowledge proof (NIZK)
suits the network constraints, a Sigma protocol can be efficiently compiled to a
NIZK in the Random Oracle model [FS87, Pas03, Fis05]. The Fiat-Shamir com-
piler [FS87] is the most efficient with essentially no overhead in computation or
communication, however the extractor induced for the proof-of-knowledge prop-
erty requires rewinding a malicious prover in order to extract a witness. This
extraction technique known as “forking” the adversary is due to Pointcheval and
Stern [PS96] and incurs a substantial penalty in the tightness of the security
reduction.

Moreover while a rewinding extractor is conducive to proving sequential
composition, when arbitrary concurrent composition is desired, an online or
straight-line extractor vastly simplifies matters. Straightline extraction refers
to the notion of soundness by which the witness for a theorem can be extracted
from a prover without rewinding. Early work in this area [SG02, CF01] estab-
lished its benefits for composition and tight security, and that protocols which
support straightline extraction require some setup such as a common random
string or a random oracle. The later choice is particularly useful in more prac-
tical protocols.

Signature Aggregation. A recent application of straight-line extraction tech-
niques is in the aggregation of Schnorr/EdDSA signatures [CGKN21]. Signature
schemes based on the discrete logarithm problem alone have not traditionally
been known to support aggregation methods, unlike say pairing based construc-
tions [BLS01]. Chalkias et al. [CGKN21] construct a Sigma protocol by which
one can prove knowledge of a collection of Schnorr signatures rather than trans-
mit them naively. The Sigma protocol is compressing, as its transcript is only
half the size of a naive concatenation of the signatures. Compiling this Sigma
protocol to a non-interactive proof (i.e. an aggregate signature) via the Fiat-
Shamir transformation is efficient but problematic as it incurs a quadratic secu-
rity loss due to the forking lemma—doubling the size of the underlying elliptic
curve (to retain the same security level as the original signature) entirely erases
the compression due to aggregation. Using a straight-line extractable compiler
to produce a non-interactive proof yields a tight reduction, and therefore has
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the scope to retain the compression of the Sigma protocol while maintaining
the same security level as the signature itself.

1.1 Existing Approaches to Straight Line Extraction
Pass [Pas03] showed that the random oracle model could be used to achieve
efficient and easily implementable protocols that were straightline extractable,
deniable, and concurrently secure. The main idea in Pass is to apply a cut and
choose technique to a Sigma protocol wherein a Prover commits to the tran-
scripts of 2` invocations of the protocol with the same first message but different
challenges. These commitments are implemented using a Merkle tree consisting
of random oracle evaluations. The Merkle tree root is itself used as a random
oracle query, and the result determines the index of the transcript that is to
be decommitted to the verifier. Intuitively a prover that succeeds in this proto-
col must have committed to at least two accepting transcripts with probability
greater than 2−`; these two transcripts can then be used by the extractor (with-
out rewinding) to extract a witness due to the two-special soundness property of
the original Sigma protocol. This basic unit is repeated r = λ/` times to amplify
the soundness to a λ-bit security level. This technique applies to any two-special
sound Sigma protocol, and thus shows the universal straightline extractability
for any language in NP via Blum’s Hamiltonicity protocol. Unruh [Unr15] shows
how to adapt this technique to construct a non-interactive zero-knowledge proof
of knowledge that is secure against polynomial-time quantum adversaries1.

The drawbacks of this approach are two-fold: first, the Prover must compute
r · 2` protocol transcripts and hash them, and second, there is large overhead
in opening the leaves of the Merkle tree in each repetition of the basic unit.
Concretely revealing a single leaf costs `λ bits, and r leaves have to be revealed,
bringing the total overhead to r`λ = λ2 bits for the openings alone.

To partially address this inefficiency, Fischlin [Fis05] suggested a different
method for achieving straightline extraction that relies on the Prover using a
proof of work to find a suitable protocol transcript. Intuitively, the Prover must
compute a protocol transcript that, for example, hashes to zero for a suitably
chosen hash function. This is equivalent to ‘inverting’ the hash function at a
fixed target, i.e. finding a pre-image x so that H(x) = 0. The proof of work intu-
itively forces the Prover compute several valid protocol transcripts (all starting
with the same first message), and thus allows an extractor to find a witness sim-
ply by reading the different queries to the random oracle. This method avoids
the overhead of having to commit to many protocol instances and opening only
one. The main advantage of this approach is an asymptotically smaller tran-
script because it entirely sheds the λ2 bits required for the Merkle tree openings,

1The Unruh transformation removes the Merkle tree alltogether and thus incurs a large
overhead penalty; however the aim in that work is security against quantum adversaries
(which, e.g., cannot be rewound).
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which in many situations could be the dominant asymptotic term2.

Inadequacies in the state of the art. While the method of Fischlin achieves
a lower communication complexity, it also has two drawbacks.

• Prover Computation Overhead. The prover must hash roughly the same
number of transcripts in expectation as Pass in order to find a proof. Fis-
chlin provides some justification as to why the Prover of any NIZKPoK with
a straight-line extractor that does not program the random oracle must in-
cur a cost of ω(log λ) queries made to the random oracle [Fis05, Proposition
2] however the gap between optimal performance and the performance of
Fischlin’s scheme (if there is one) remains unexplored. This aspect is partic-
ularly evident in the signature aggregation application, as the construction
that Chalkias et al. obtained upon applying Fischlin’s transformation suffered
from a high computation cost for the prover/aggregator.

• Limited Applicability Due To Quasi-unique Responses. For technical
reasons in their proof, Fischlin’s method only applies to a subset of three-
move protocols which satisfy a “quasi unique responses” property. Roughly
this means that no efficient prover can output a theorem x and a, e, z, z′

such that (a, e, z) and (a, e, z′) are both accepting transcripts for x. This
excludes Sigma protocols such as logical compositions and proof of knowledge
of Pedersen commitment openings. While it is folklore that this property is
not necessary for the extractor to succeed, to our knowledge it is unknown at
present if this property is strictly necessary for zero-knowledge.

1.2 This Work
We advance the study of straight-line extraction in the random oracle model on
the fronts of computation cost, as well as the applicability of Fischlin’s transform.
We make orthogonal but compatible improvements in both dimensions.

Computation Cost of Straight-Line Extraction. Our motivating appli-
cation in which to improve computation cost is signature aggregation, and so
we first develop our new techniques in this context and subsequently examine
implications that are of more general interest. Roughly, the prover/aggregator
in Chalkias et al’s construction evaluates a polynomial f that encodes the sig-
natures, in order to find points xi, f(xi) such that H(xi, f(xi)) = 0. The com-
putation cost can be broken into two components: the cost Cqry per evaluation
of f , and the prover query complexity, i.e. number TAgg of evaluations of f that
must be hashed before a solution is found—we improve both components in
this work.

2If a single Sigma protocol transcript is of size S, then a proof by Pas03 is of size S · λ
logλ +

λ2. Assuming S ∈ O(λ), the λ2 Merkle opening cost dominates asymptotically
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• Better Cqry via Improved Polynomial Evaluation. We make use of an
O(n1.5) polynomial evaluation algorithm that performs over an order of mag-
nitude better than the O(n2) naive method for practically relevant parame-
ters. After diligently searching the literature for this simple technique, we are
unaware of any previous application of this observation—perhaps because
it was already folklore. Nonetheless, we are the first to discover its unique
suitability to straight-line extraction especially for the parameters and el-
liptic curve groups relevant to signature aggregation. Polynomial evaluation
algorithms with significantly better asymptotic costs are known [vzGG13,
BCKL21], however they are either concretely inferior in the relevant parame-
ter ranges, or outright incompatible with commonly used signing curve groups.

• Collision Predicates Improve Prover Query Complexity. We replace
the inversion based proof-of-work predicate with a collision based one. In
particular the prover must now find xi, f(xi) values such that H(x1, f(x1)) =
· · · = H(xr, f(xr)), which is significantly faster (up to 2×) than finding in-
versions at the same security level. We find that the principle of collision
finding having superior combinatorics as compared to inversions more gener-
ally improves prover query complexity—Fischlin’s NIZKPoK construction is
sped up by 10− 15% by directly applying this insight. For a special class of
Sigma protocols, the prover query complexity improvement due to the colli-
sion predicate idea is up to 2×.

• Lower Bound on Query Complexity. We tighten Fischlin’s asymptotic
lower bound on prover query complexity to obtain a concrete one under cer-
tain conditions. This bound is not met by any existing constructions for non-
trivial parameters. However the special class of Sigma protocols mentioned
above with the collision predicate idea achieves the optimal query complexity
for a range of non-trivial parameters—this also serves to inspire confidence
in the tightness of the bound.

We tighten the parameters and benchmark our improved aggregation construc-
tion, the result of which report in Table 2. We obtain up to a 200× improvement
in prover computation over Chalkias et al. [CGKN21] for practically relevant pa-
rameters, at the same compression rate. This makes provably secure parameters
for signature aggregation far more accessible in many real-world settings.

Applicability of Fischlin’s Transform. We revisit (and eliminate) the role
of quasi-unique responses in Fischlin’s transform. To our knowledge, it is folk-
lore that the extractor does not strictly need this property, and it is unclear as to
whether it is really necessary for zero-knowledge. In fact, Fischlin even suggested
informally [Fis05, pg. 13] that their construction works for Sigma protocols for
languages with multiple witnesses (such as logical combinations [CDS94]) where
achieving quasi-unique responses appears to be simply a matter of adjusting
syntax. We find this intuition to be false; in particular we show by means
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of an attack that witness indistinguishability is not preserved upon applying
Fischlin’s transformation to a natural Sigma protocol (i.e. logical OR compo-
sition [CDS94]) in a context that appears to be conducive to quasi-unique re-
sponses. Intuitively this stems from the deterministic nature of Fischlin’s Prover
which leads to a subtle trace of the witness in compiled proofs.

Through a new proof, we show how a simple randomization of Fischlin’s
method allows it to be safely applied to any strong special sound Sigma pro-
tocol, where strong special soundness—which we introduce—is a simpler prop-
erty of a Sigma protocol and does not require context-specific reasoning (i.e.
dependence on setup parameters) like quasi-unique responses. Requiring strong
special soundness rather than quasi-unique responses strictly increases the ap-
plicability of Fischlin’s transform.

Our attack on WI appears to uncover an interesting aspect of the role of
randomness in straight-line extractable zero-knowledge proofs. Pass’ transfor-
mation is randomized (due to its use of a commitment scheme), and naively
derandomizing it would result in a similar attack. An interesting and natu-
ral question for future work would be to identify the class of languages for
which “well-behaved” transforms that make black-box use of an underlying zero-
knowledge protocol and compile them into a straightline extractable one in the
random oracle model must be randomized.

We therefore demonstrate conclusively that one can do better than generic
cut-and-choose (i.e. Pass [Pas03]) for straight-line extractable NIZKs for many
algebraic languages in the random oracle model. Such languages include logical
combinations [CDS94], openings to Pedersen commitments, among many others
that are used in non-trivial cryptographic systems such as the anonymous survey
protocol [HMPs14].

2 Our Techniques
We first recall Fischlin’s transformation in order to build intuition for our tech-
niques. The base unit of the transformation is the following: for the instance x,
the Prover computes a first message a of the Sigma protocol, and finds second
and third messages e, z such that Vx(a, e, z) = 1 and H(a, e, z) = 03 for some
`-bit hash function H, where ` ∈ O(log λ). This is done by starting with e = 0
(and the corresponding response z) and computing H(a, e, z), iteratively step-
ping through e, z candidates which verify until the first e, z pair is found such
that H(a, e, z) evaluates to the all-zero string 0. An adversarial prover is able
to produce (a, e, z) such that H(a, e, z) = 0 without querying more than one
transcript to H only if it gets lucky with its first query, which happens with
probability 2−`. This base unit is therefore repeated r = λ/` times to achieve
λ bits of soundness; specifically, to bind these instances together and prevent

3The instance x is also included in the hash, but omitted for clarity.
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independent grinding, all of the a messages for the repeated instances are in-
corporated into the input to the hash function. For example, for 2 repetitions,
the Prover must produce a1, a2, e1, e2, z2, z2 such that H(a1, a2, e1, z1) = 0 and
H(a1, a2, e2, z2) = 0 and of course Vx(a1, e1, z1) = 1 and Vx(a2, e2, z2) = 1.
Prover Query Complexity. We refer to the (expected) number of queries
that the prover makes to the random oracle as the prover query complexity. For
instance, the Prover query complexity of Fischlin’s construction as described
above is r · 2` = r · 2λr , which implies a tradeoff between r (which governs proof
size and verification cost) and the query complexity. We develop the study of
prover query complexity in this work, as part of our study on the computation
cost of straight-line extraction.
A note on exact vs. ‘near’ inversions. The version of the transformation
described above is referred to as the ‘basic’ one by Fischlin. They proceed to
tweak the Verifier to accept ‘near’ inversions, where it is sufficient for the Prover
to output transcripts τ1, · · · , τr such that H(τi) is interpreted as a positive
integer and

∑
iH(τi) < S for some parameter S ≈ r. The purpose of this change

is to reduce the completeness error for the Prover (by increasing the soundness
error). Our discussion on quasi-unique responses is unaffected by this change as
the Prover is still deterministic and the same vulnerability persists. Regarding
Prover query complexity, it is already pointed out in [Fis05] that relaxing this
requirement for an accepting proof increases the soundness error, and adjusting
the hash function parameter ` to retain the same r, λ values results in an increase
in the expected Prover query complexity. Consequently we do not discuss the
near-inversion variant further in this paper, and every reference to Fischlin’s
construction will pertain to the basic exact inversion predicate.

2.1 Schnorr/EdDSA Signature Aggregation and Compu-
tation Cost

Our motivating practical application is that of aggregating Schnorr/EdDSA
signatures with tight security. Chalkias et al. construct a compressing Sigma
protocol to prove knowledge of n Schnorr signatures, to which they apply Fis-
chlin’s transformation to obtain a non-interactive proof. As mentioned ear-
lier, their scheme is roughly to have the prover encode the n signatures as the
coefficients of a degree n − 1 polynomial f , and output a proof consisting of
(x1, f(x1)), · · · , (xr, f(xr)) such that each H(xi, f(xi)) = 0. They find produc-
ing such a proof to be computationally intensive, for instance over a minute
to aggregate even hundreds of signatures at a 53% compression ratio4 which
induces a prohibitively high latency for many applications.

Faster Polynomial Evaluation with Curve25519. If we denote the
prover query complexity as TAgg, the prover must evaluate f at TAgg points.

4The r parameter governs a tradeoff between query complexity and compression ratio—a
lower ratio is better compression, and 50% is the lowest possible [CGKN21]

7



The first aspect of the prover’s computation cost that we improve is the cost of
producing TAgg evaluations of f . The naive method to evaluate a degree n poly-
nomial costs n multiplications in Zq, meaning that the prover performs nTAgg
multiplications. The Fast Fourier Transform (FFT) is a well-known method to
speed up polynomial evaluation to O(TAgg logn), and is used in straight-line
extractable proofs for general statements [AHIV17, BCR+19]. Unfortunately
the most common variant of Schnorr in practice—EdDSA—uses Curve25519,
whose corresponding base field does not have a sufficiently large multiplicative
subgroup to support the FFT.

We instead make use of a method (Theorem 4.1) by which we can derive a
randomly chosen polynomial h of degree k < n, such that it agrees with f on k
points. Deriving h costs n multiplications, and evaluating h at each point costs
k multiplications, which means that we can obtain k evaluations of f at roughly
n+k2 cost rather than the naive nk—a substantial improvement when k ≈

√
n.

A prerequisite to use this method is that Zq must have a multiplicative subgroup
of size k, however unlike the FFT this method is randomized and can be invoked
multiple times using the same subgroup, with negligible probability of producing
redundant evaluations (Corollary 4.3). Curve25519 has multiplicative subgroups
of size up to 132, which provides nearly optimal values of k ≈

√
n for the

parameters relevant to signature aggregation (n up to 212 or so).
The intuition for the method is as follows: we decompose f into k different

degree n/k polynomials fi such that f(x) =
∑
i∈[k]

xi · fi(xk). We then sample

α ← Zq, and derive h(x) =
∑
i∈[k] x

i · fi(αk). Observe that for any primitive
kth root of unity ω ∈ Zq and for any j ∈ [k], it holds that fi((αωj)k) = fi(αk)
for every fi. Consequently, h agrees with f on the points {α · ωj}j∈[k].

Better Prover Query Complexity via Collisions. We change the under-
lying proof of work predicate to that of finding collisions rather than inversions
of the hash function. In particular, the prover outputs a proof consisting of
(x1, f(x1)), · · · , (xr, f(xr)) such that H(x1, f(x1)) = · · · = H(xr, f(xr)). For
the same r and soundness level (note that ` has to be adjusted), analytical
estimates on multicollision running times [vM39, Pre93] place the query com-
plexity TAgg induced by this collision predicate at up to 2× better than that of
inversions.

Combining these improvements (along with a tighter analysis that makes the
proof of work easier by 2–8×) yields an improvement of a factor of 70×–200×
for the most aggressive compression settings reported in prior work (see Table 2).

Collisions Improve Fischlin’s NIZK.We generalize this principle and apply
it to Fischlin’s transform for NIZKPoKs as well, by using a collision pair base
unit as a drop-in replacement for inversion base units. In particular, a collision
pair base unit instructs the prover to find pairs of accepting Sigma protocol
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transcripts (a, e, z) and (a′, e′, z′) such that H((a, a′), e, z) = H((a, a′), e′, z′).
A forgery requires a collision within the first two queries to the random oracle,
which happens with probability 2−` for an `-bit hash function. This serves as a
drop-in replacement for a pair of inversion base units that achieve a combined `
bits of soundness. Analyzing the query complexity is difficult as this is a chosen
prefix collision [SLdW07], and so we test the new proof-of-work problem empiri-
cally and observe an 11%−15% improvement for common practical parameters.

A Query Complexity Lower Bound.We tighten Fischlin’s asymptotic lower
bound on hash queries for a NIZK with a non-programming extractor [Fis05,
Proposition 2] to derive Lemma 5.1 and subsequently Corollary 5.2, which char-
acterizes the optimal prover query complexity POPT[V ] for a given verifier query
complexity V . Intuitively if the prover makes P queries of which V are checked
by the verifier,

(
P
V

)
must be at least 2λ to achieve a 2−λ soundness error.

We note that this bound applies to schemes with perfect completeness, and
while Lemma 5.1 is sufficiently general to derive a strict bound for probabilistic
schemes, POPT serves as a useful reference point, and will be the quantity that
we refer to as ‘optimal’ prover query complexity.

We show via Claim 5.3 that the expected query complexity of Fischlin’s
construction is never better than

√
2POPT in any non-trivial parameter regime.

We note that Pass’ transform (and equivalently Unruh’s transform5 [Unr15])
has a (strict) query complexity that is twice that of the expected prover com-
plexity of Fischlin in any non-trivial parameter regime, and so we do not consider
Pass/Unruh going forward.

Achieving POPT. For a special class of r-simulatable Sigma protocols (i.e. r
transcripts are simulatable at once) we show that a NIZKPoK with prover
query complexity POPT can be achieved for a range of non-trivial parameters.
We construct this NIZK by applying a multicollision predicate akin to our
signature aggregation construction, where the prover must produce transcripts
(a, e1, z1), · · · , (a, er, zr) such that H(a, e1, z1) = · · · = H(a, er, zr). We make
use of classic results on multicollision complexities [vM39, Pre93] to analyze
the expected prover query complexities. Note that this transform is limited in
applicability—we show how Schnorr’s proof of knowledge of discrete logarithm
can be made r-simulatable, but leave it as an interesting problem for future
work to expand the scope of this transform.

2.2 Extending the Applicability of Fischlin’s Transform
A technicality in Fischlin’s transformation arises when it is possible for the
Prover to iterate through verifying transcripts without having to change the

5For the purpose of prover query complexity, Unruh’s transform can be seen as Pass’
transform without the Merkle trees to reduce the number of repetitions of the base Sigma
protocol.
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challenge message e. Consider a Sigma protocol that permits an adversary with-
out a witness to sample (a, e), z1, z2, · · · zn such that each (a, e, zi) is a valid
transcript. Applying Fischlin’s transformation will not produce a sound NIZK
because an adversary can simply step through H(a, e, z1), · · · , H(a, e, zn) to
find a pre-image of 0 whereas an extractor may not be able to extract a witness
from this sequence of queries because they do not satisfy the requirements for
2-special soundness.

Although it is folklore that many Sigma protocols allow for extraction even
given accepting transcripts (a, e, z1), (a, e, z2) (examples include the famous log-
ical OR composition [CDS94], opening of a Pedersen commitment, etc. for which
this is simply a matter of adjusting syntax), Fischlin’s transform only applies
to protocols that support a quasi-unique response property, given below.

Definition 2.1. [Fis05, Definition 1] A Sigma protocol has quasi-unique re-
sponses if for every PPT algorithm A, for system parameter k and (x, a, e, z1, z2)←
A(k), we have as a function of k that the following probability is negligible:

Pr [Vx(a, e, z1) = Vx(a, e, z2) = 1 ∧ z1 6= z2]

Here the system parameter k can be an arbitrarily structured object sampled
according to some distribution, for eg. an RSA modulus or h ∈ G such that
DLogg(h) is unknown, as required in Okamoto’s identification protocols [Oka93].

Interestingly, Fischlin’s proof also uses this property to argue zero-knowledge.
It is less obvious as to why quasi-unique responses is relevant for this purpose. In
the absence of an explicit attack on the zero-knowledge property when quasi-
unique responses does not hold, one may even conclude that it is simply an
artefact leveraged to prove the simulation secure.

We show this intuition to be false. In particular, we construct an explicit
attack on Witness Indistinguishability when Fischlin’s transformation is applied
to a common Sigma protocol for a language with two witnesses. This attack is
the result of combining two facts:

• Fischlin’s Transformation is Deterministic. Once the Sigma protocol
first messages have been sampled, the prover’s algorithm is deterministic.

• Some Sigma Protocols Reveal the Prover’s Randomness. In particu-
lar Schnorr’s proof of knowledge of discrete logarithm reveals a linear combi-
nation of the witness and the prover’s randomness—knowledge of the witness
therefore allows an attacker to reconstruct the prover’s randomness.

It is therefore possible for an attacker to retrieve the prover’s random tape
when given a Fischlin-compiled Schnorr proof, and replay the prover’s steps
and reconstruct the proof string. To demonstrate why this is problematic, we
examine the effect of this retrieve-and-replay strategy given a Fischlin-compiled
proof of knowledge of one-out-of-two discrete logarithms [CDS94]. In particular
if a prover uses one of x0, x1 to prove knowledge of x0 ·G∨x1 ·G, an attacker with
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knowledge of say x0 can execute the retrieve-and-replay strategy to test if x0
was indeed used in producing the proof string. We show that if the attacker uses
x0 to execute this strategy on a proof that was actually produced using x1, there
is a non-negligible chance that the proof string that the attacker reconstructs
will be different from the given one (as opposed to a proof string produced
using x0, which always matches the reconstruction). Intuitively, this is because
the proof string serves as a record of how many Sigma protocol transcripts had
to be hashed before a solution to the proof of work was found—recomputing
the proof using a different witness might result in finding a solution by hashing
fewer transcripts.

We note that our attack runs entirely in the random oracle model and does
not exploit concrete instantiations of the hash function, unlike previous work
that studies the concrete instantiability of Fischlin’s transform [ABGR13].

Randomization Fixes the Problem. We formalize a notion of strong special
soundness to capture the folklore notion that accepting transcripts of the form
(a, e, z1),(a, e, z2) yield a witness. This is a subtle change in the definition of
special soundness; luckily many natural Sigma protocols (including those with
multiple witnesses for which Fischlin’s transformation is shown not to work
as above) satisfy this property, including every regular special sound Sigma
protocol that supports quasi-unique responses.

We then show how to randomize Fischlin’s transformation to erase all traces
of the witness from the compiled proof strings, and prove that zero-knowledge is
guaranteed unconditionally for any strong special sound Sigma protocol. Intu-
itively this is achieved by having the prover step randomly through the challenge
space to find a solution to the proof of work, and this form of randomization is
directly compatible with a collision-based proof of work.

3 Preliminaries
A Sigma protocol is a three move public coin protocol between a prover PΣ(x,w)
and a verifier VΣ(x). We further use (state, a) ← PΣ,a(x,w) to denote the in-
ternal state and first message output by PΣ respectively. Subsequently z ←
PΣ,z(state, e) denotes the response of PΣ upon being given the previously pro-
duced internal state, and the verifier’s challenge respectively. The standard
definition of a Sigma protocol is given below.

Definition 3.1. [Dam02] A Sigma protocol for relation R is a three move
public coin protocol between a prover PΣ and verifier VΣ that has the following
properties:

• Completeness: If PΣ (with private input w) and VΣ with public input x
such that (x,w) ∈ R execute the protocol honestly, then the protocol always
terminates with V accepting.
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• Two-special soundness: There exists an efficient extractor Ext which given
as input the accepting conversations T = (a, e, z) and T ′ = (a, e′, z′) for
statement x such that e 6= e′, outputs w such that (x,w) ∈ R.

• Honest verifier zero-knowledge: There exists an efficient simulator Sim
which upon input a statement x and challenge e outputs a, z such that (a, e, z)
is an accepting conversation. Moreover when e is uniformly chosen, (a, e, z)
is distributed identically to an execution of the honest protocol.

A strong-special sound Sigma protocol—which is a notion that we introduce
in this paper—additionally has the following property:

Definition 3.2. A strongly two-special sound Sigma protocol for relation R is
a three move protocol between a prover P and verifier V that is complete and
honest verifier zero-knowledge as per Definition 3.1, and additionally has the
following property:

• Strong two-special soundness: There exists an extractor Ext which given
as input the accepting conversations T = (a, e, z) and T ′ = (a, e′, z′) for
statement x such that T 6= T ′, outputs w such that (x,w) ∈ R.

Next we present the definition of straightline extraction as given by Pass.

Definition 3.3 ([Pas03]). We say that an interactive proof with negligible sound-
ness (P, V ) for the language L ∈ NP, with the witness relation RL, is straight-
line witness extractable in the RO model if for every PPT machine P ∗ there ex-
ists a PPT witness extractor machine E such that for all x ∈ L, all y, r ∈ {0, 1}∗,
if P ∗x,y,r convinces the honest verifier with non-negligible probability, on common
input x, then E(viewV [(P ∗x, y, r, V (x))], `) ∈ RL(x) with overwhelming prob-
ability, where P ∗x,y,r denotes the machine P ∗ with common input fixed to x,
auxiliary input fixed to y and random tape fixed to r, viewV [(P ∗x,y,r, V (x))] is
V ’s view including its random tape, when interacting with P ∗x,y,r, and ` is a list
of all oracle queries and answers posed by P ∗x,y,r and V .

We recall Fischlin’s transformation in Figure 1.

4 Signature Aggregation With a Tight Reduc-
tion

We first explore aggregating EdDSA signatures as a motivating practical ap-
plication. In particular, we are focused on obtaining a tight reduction for the
unforgeability of the aggregate signature to that of the underlying signatures,
which at its core is a problem of straight-line extraction. We briefly recap
the work of Chalkias et al. [CGKN21] who recently constructed an aggrega-
tion scheme for Schnorr (of which EdDSA is a widely used instantiation) that
achieves factor 2 compression in the random oracle model.

12



Protocol πFis05
NIZK

The prover P and verifier V are both given the statement x while the prover also
has a witness w for the statement x ∈ L. The security parameter λ defines the
integers r, `, t. These integers are related as r · ` = 2λ, and t = dlog λe · `. Both
parties have access to a Random Oracle H : {0, 1}∗ 7→ {0, 1}`. The underlying
sigma protocol is given by Σ = ((PaΣ,PzΣ),VΣ).

PH(x,w):
1. For each i ∈ [r], compute (ai, statei)← PaΣ(x,w)
2. Set a = (ai)i∈[r], and initialize ei = −1 for each i ∈ [r]
3. For each i ∈ [r], do the following:

(a) If ei > t, abort. Otherwise increment ei and compute zi = PzΣ(statei, ei)
(b) If H(a, i, ei, zi) 6= 0`, repeat Step 3a

4. Output π = (ai, ei, zi)i∈[r]

VH(x, π):
1. Parse (ai, ei, zi)i∈[r] = π, and set a = (ai)i∈[r]

2. For each i ∈ [r], verify that H(a, i, ei, z1) = 0` and VΣ (x, (ai, ei, zi)) = 1,
aborting with output 0 if not

3. Accept by outputting 1
Figure 1: Fischlin’s Transformation [Fis05]

Sigma Protocol and Non-Interactive Compilation. Their first step is
to construct an n-special sound Sigma protocol to prove knowledge of n Schnorr
signatures. For signatures instantiated over a field of order q, the transcript of
the Sigma protocol is of size (n+ 1)|q| bits, as opposed to naive transmission of
n signatures which would require 2n|q| bits.

They subsequently apply Fischlin’s transformation to their Sigma proto-
col in order to construct a non-interactive proof of knowledge that enjoys a
tight reduction (yielding provably secure parameters, unlike Fiat-Shamir) while
achieving a compression rate that can be arbitrarily close to 2. However the
proximity to factor 2 compression comes at the expense of prover computation.

Concretely as per [CGKN21, Figure 2] aggregating EdDSA6 signatures with
Fischlin’s transformation incurs an amortized cost of 4.2ms per signature when
compressing by a factor of 1.33, and 39.7ms for factor 1.81 compression. This is
multiple orders of magnitude slower than the Fiat-Shamir compiled proof (which
incurs a fraction of a microsecond per signature on the same hardware) and
processing even hundreds of signatures at once becomes prohibitively expensive.

6We use EdDSA to refer to Ed25519 [BDL+12] in particular, which is believed to instan-
tiate a 128-bit security level.
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Related Work. Recently, Chen and Zhao [CZ22] showed that the Fiat-
Shamir compiled construction of Chalkias et al. can be proven secure with a
tight reduction in the Random Oracle and Algebraic Group Model [FKL18].
While such a proof can build confidence in the Fiat-Shamir construction in
that it rules out attacks by algebraic adversaries, the aim of this paper is to be
more conservative with assumptions, i.e. we consider security against any attack
in the random oracle model. Interestingly, Chen and Zhao also showed that in
the related (but incomparable) model of sequential aggregation [LMRS04] it
is possible to prove a Fiat-Shamir compiled construction secure with a tight
reduction in the random oracle model alone.

Faster Straight-Line Extraction. In this section we will develop the
tools to substantially speed up the aggregation of EdDSA signatures with straight-
line extraction in the random oracle model. Our improved aggregation algorithm
is up to 200× faster for practically relevant parameters, and potentially within
the performance envelope of real-world applications.

4.1 Recap of [CGKN21] Construction
Schnorr Compression Sigma Protocol [CGKN21]. Recall that a Schnorr
signature on a message m ∈ {0, 1}∗ under a public key pk ∈ G consists of a
nonce R ∈ G and a scalar s ∈ Zq such that z · G = HSch(pk, R,m) · pk + R.
Informally the Sigma protocol is the combination of two ideas:

1. Once m, pk, R are determined there is a unique s ∈ Zq that ‘completes’
the signature, and this is the discrete logarithm of the publicly computable
group element S = HSch(pk, R,m) ·pk+R. Proving knowledge of the discrete
logarithm of S is therefore equivalent to proving knowledge of the missing
component of the signature.

2. There is an n-special sound Sigma protocol to simultaneously prove knowl-
edge of the discrete logarithms of n public group elements at the same band-
width cost of a single PoK of DLog [GLSY04].

Upon fixing n messages mi and signatures (Ri, si)i∈[n] under respective public
keys pki, the prover is given a challenge e ∈ Zq, to which it computes the re-
sponse z =

∑
i∈[n] si · ei. The verifier is given the statement (pki, Ri,mi)i∈[n],

challenge e, and the putative Prover’s response z, and validates them by veri-
fying that z ·G =

∑
i∈[n] e

i · (HSch(pki, Ri,mi) · pk +Ri).

Applying Fischlin’s Transformation. Chalkias et al. directly apply Fis-
chlin’s transformation to the above Sigma protocol to obtain a non-interactive
proof. In particular, a ‘base unit’ of the proof is a challenge-response pair (ej , zj)
such that H(prefix, ej , zj) = 0 where H is an `-bit random oracle, and this unit
is repeated r times in order to achieve a λ-bit soundness level. These parameters
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Algorithm PolyEval

This algorithm is parameterized by a finite field Zq where q is prime, a primitive
kth root of unity ω ∈ Zq, and a degree n polynomial f ∈ Zq[X]. For simplicity
we assume that k divides n. The output of this algorithm is a list of points
{(xi, f(xi))}i∈[k].

PolyEval(q, k, f, n):
1. Parse the coefficients of f , with ci as the coefficient of xi

2. For each i ∈ [0..k − 1], define polynomial fi(x) =
∑

j∈[0..n/k]
xj · cjk+i

3. Sample α← Z∗q and for each i ∈ [0..k − 1] compute ~αi = fi(αk)
4. Define the degree k − 1 polynomial h(x) =

∑
i∈[0..k−1]

~αix
i

5. Let points denote the (initially empty) list of output points
6. For each i ∈ [0..k − 1], append

(
α · ωi, h(α · ωi)

)
to points

7. Output points
Figure 2: Improved Polynomial Evaluation

are set so that a successful prover must query the random oracle with at least
n accepting transcripts except with probability 2−λ.

Breaking down the cost. We can express the prover’s computation cost in
producing a proof as TAgg ·Cqry, where TAgg is the prover query complexity, i.e.
the number of (e, z) values the prover queries to the random oracle, and Cqry
is the cost of generating each (e, z) value. We discuss below how to improve on
both of these dimensions.

4.2 Reducing Cqry via Improved Polynomial Evaluation
The efficiency of polynomial evaluation algorithms is usually tied to the degree
of the polynomial being evaluated. In our case, the degree of the polynomial
corresponds to the number of signatures being aggregated. As the signature
batch size can be small in practice (eg. number of transactions in a block, which
is around 2000 for Bitcoin [Blo]) asymptotically efficient polynomial evaluation
algorithms [vzGG13, BCKL21] may not be relevant to our setting.

Theorem 4.1. Given a prime q, degree n polynomial f ∈ Zq[X], and primitive
kth root of unity ω ∈ Zq, Algorithm PolyEval outputs a list of k distinct points
that lie on f at a cost of k2+n+2 log k multiplications and k(k−1)+n additions
in Zq.

Proof. We begin by showing correctness. It suffices to show that for any α ∈ Z∗q ,
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the corresponding polynomial h agrees with f on the points {α · ωj}j∈[0..k−1].
First we establish that f(x) =

∑
i∈[0..k−1] x

ifi(xk) for every x ∈ Zq—this follows
from the definition of fi. Next we use the fact that ω is a kth root of unity to
simplify the expansion of f(α · ωj) as follows:

f(α · ωj) =
∑

i∈[0..k−1]

(α · ωj)ifi((α · ωj)k) =
∑

i∈[0..k−1]

(α · ωj)ifi(αk)

=
∑

i∈[0..k−1]

(α · ωj)i~αi = h(α · ωj)

Now we count the number of multiplications in Zq used by PolyEval. Step 3
requires computing αk (2 log k multiplications by repeated squaring) and eval-
uating k degree n/k polynomials. Assuming we naively make use of Horner’s
rule (n/k multiplications and as many additions per polynomial), it costs n
multiplications and n additions in Zq to evaluate these polynomials, for a total
of n+ 2 log k Zq multiplications and n additions induced by Step 3. Finally, in
Step 6 we require k multiplications to generate each α ·ωi, and we can evaluate
the degree k− 1 polynomial h at k points using Horner’s rule, bringing the cost
for this step to k2 multiplications and k(k−1) additions in Zq. Across all steps,
the total number of operations required are k2 +n+2 log k multiplications, and
k(k − 1) + n additions in Zq. This proves the theorem.

While this is a significant improvement over the naive polynomial evaluation
algorithm (which requires nk Zq multiplications), in our application we need to
evaluate f over a large set of points, and PolyEval only produces a batch of k
evaluations. A simple extension to produce a batch of say m ·k evaluations is to
invoke PolyEval m times independently. However it is possible that there may
be some redundancy across the multiple evaluations, i.e. independent instances
may evaluate f at the same point. We show via Lemma 4.2 and Corollary 4.3
that for the parameters relevant to our setting, the probability of there being
any redundancy is negligible.

Lemma 4.2. The probability that m independent invocations of PolyEval with
the same polynomial f ∈ Zq[X] and parameter k will output fewer than m · k
distinct points (i.e. repeat at least one point) is at most m2k/2q

Proof. In the event of a repetition, two independent invocations sample α and
α′ that induce at least one common point, i.e. α ·ωi = α′ ·ωj for some i, j ∈ [k].
Rearranging the terms, we see that it must be the case that the ratio α/α′ is
an integer power of ω. Note that there are exactly k integer powers of ω in Zq,
i.e. the multiplicative subgroup that it generates. For any fixed x ∈ Z∗q , the
probability that a uniformly chosen y ∈ Zq is such that the ratio y/x lands in
this subgroup is k/q.

If we denote αi as the α value sampled by the ith invocation of PolyEval and
correspondingly ~Ai = {αi · ωj}j∈[0..k−1], we can therefore bound the event of a

16



repetition as follows:

Pr[∃i, j ∈ [m] : i 6= j, ~Ai ∩ ~Aj 6= ∅] = Pr

 ∨
i,j∈[m]

~Ai ∩ ~Aj 6= ∅


≤

∑
i∈[m−1]

∑
j∈[i+1..m]

Pr[ ~Ai ∩ ~Aj 6= ∅]

≤
∑

i∈[m−1]

∑
j∈[i+1..m]

k

q
≤ m2k

2q

This proves the lemma.

Corollary 4.3. Given a parameter λ, if q ∈ Ω(2λ) and m, k ∈ poly(λ), the
probability that m independent invocations of PolyEval with the same polynomial
will result in a redundant evaluation is negligible in λ.

Efficiency. As per Theorem 4.1, PolyEval achieves the best improvement
when k ≈

√
n. In this case, evaluating a degree n polynomial at

√
n points

costs roughly 2n multiplications, which is a factor
√
n/2 improvement over the

naive method. This improvement is subject to the availability of appropriate k
in the field in question. The setting that we consider in this paper involves the
EdDSA signature scheme, which uses Curve25519 [Ber06], which in turn is of
order q such that q− 1 is divisible by 4, 3, and 11. Given that we are interested
in n < 212 or so, we are able to find a nearly optimal k for for any value of n in
our range. We plot the improvement achieved by PolyEval in Figure 3.

Comparison with ECFFT. The very recent work of Ben-Sasson et al. [BCKL21]
introduces a method to enable an FFT-like recursive evaluation of a polyno-
mial in any arbitrary Zq, by using isogenies of elliptic curves. Their algorithm
achieves impressive asymptotic as well as concrete performance in the prepro-
cessing model, and can be applied to our setting. However for our parameter
range, we find our PolyEval algorithm to perform better, as we show in Figure 4.

4.2.1 Further Applications

The algorithm PolyEval is generally useful in settings where one has to evaluate a
degree n polynomial in Zq, where n ranges from say 25 to 214, and q−1 is ‘slightly
smooth’, i.e. there are enough k ≈

√
n values that divide q − 1. Such settings

include the base fields of common elliptic curves such as Curve25519 (discussed
in this paper in the context of EdDSA), and secp256k1 (used by Bitcoin and
others for ECDSA). We describe some of these settings where PolyEval can be
relevant in this section.
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Figure 3: This graph plots the computation cost of evaluating a polynomial of
degree n up to 212 at n points in Zq, where q is the order of the elliptic curve
Curve25519 used for EdDSA. The cost is derived analytically.

Threshold Cryptography. A common method to protect signing/encryption
keys is to distribute them across a number m of devices, so that reconstructing
or operating with the key requires a threshold t of the devices to cooperate. This
is typically done by using Shamir’s secret sharing in the base field of the elliptic
curve, i.e. defining a degree t− 1 polynomial f such that f(0) = sk encodes the
secret key, and each party Pi receives f(i). When t is in the range of 25 to 214,
PolyEval can speed up the generation of these shares for threshold versions of
EdDSA and ECDSA keys.

Verifiable Secret Sharing and Beyond. There are numerous constructions
to upgrade the security of secret sharing schemes to tolerate a malicious dealer
and participants, i.e. verifiable secret sharing (VSS). Simple VSS schemes such
as Feldman’s [Fel87] for groups where the discrete logarithm assumption is as-
sumed to hold form the basis for distributed key generation protocols [Ped91] for
ECDSA/EdDSA. VSS can also form the basis for verifiable encryption [CD00],
where a ciphertext can be verified to encrypt the discrete logarithm of a public
point (say encrypt the secret component of an EdDSA/ECDSA public key),
when it is combined with MPC-in-the-head techniques [TZ21]. In this case, the
degree of the polynomial corresponds to the number of ‘transcripts’ that must
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Figure 4: This graph plots the factor improvement over the naive method, in
evaluating a polynomial of degree n up to 214 at n points in Zq, where q is the
order of the BN-254 elliptic curve. The improvement factor for ECFFT is taken
from a public implementation [wbo]. We did not re-implement PolyEval for this
curve, and so we derived the improvement factor for PolyEval analytically.

be checked, which for a 128 or 256 bit security level falls within the previously
mentioned range for which PolyEval provides significant savings.

4.3 Improving Prover Query Complexity TAgg

First we note that tightening the parameters of [CGKN21] via a better analysis
yields an improvement of 2 to 8× in the hardness setting for the proof-of-work
problem. Intuitively this is because of Chalkias et al.’s direct application of
Fischlin’s transform by repeating a base unit sufficiently many times for the
desired soundness level, whereas one can prove better parameters by directly
analyzing the final construction, i.e. the event that a malicious prover finds r
inversions within n queries.

Our idea. We change the underlying ‘proof of work problem’ solved by the
prover from finding r inversions to finding an r-collision. In particular the prover
now searches for (ej , zj)j∈[r] such that H(prefix, e1, z1) = · · · = H(prefix, er, zr),
where H is a random oracle with output bit length ` ≥ (λ + r log2(n) −
log(r!))/(r − 1). This yields a ≈ 1.5 to 2× improvement in TAgg corresponding
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to the ratio of the costs of finding an r-collision to that of finding r inversions
at the same security level (even with the improved analysis).

We give the full protocol and justify its parameterization below. We give the
concrete query complexity improvements in Table 1, although we defer a more
precise analytical justification of why finding an r-collision is faster than finding
an equivalent number of inversions at the same security level to Section 5.3.

n r Collision (This work) Inversion Improvement

1024 8 9.33× 107 2.68× 108 2.8
512 8 5.11× 107 1.34× 108 2.6
512 16 2.95× 105 5.24× 105 1.7
1024 32 3.55× 104 6.55× 104 1.8
256 16 1.57× 105 2.62× 105 1.6
512 32 1.86× 104 3.28× 104 1.7
128 16 8.36× 104 1.31× 105 1.5
256 32 9.80× 103 1.64× 104 1.6
32 8 2.53× 106 8.39× 106 3.3
64 16 2.38× 104 6.55× 104 2.7
128 32 5.19× 103 8.19× 103 1.5

Table 1: Prover/aggregator query complexity TAgg when using a collision based
predicate to aggregate n signatures, as opposed to inversions (with a tighter pa-
rameterization than [CGKN21]), for a range of r parameters. Expected running
times are derived analytically [vM39, Pre93]

Caveat: Memory Complexity. We note that keeping track of collisions
consumes more memory—O(TAgg)—than the inversion construction which only
needs O(λ). In practice, however, this is quite a small amount (roughly 220 field
elements, i.e. 33MB for some of our more aggressive parameterizations).

Further Applications. The superior combinatorial characteristics of the
collision problem over the inversion problem has interesting implications for the
computation complexity of straight-line extraction even in the zero-knowledge
setting. In Sections 5.1 and 5.3, we show how to improve the prover’s query
complexity when compiling any standard Sigma protocol to a NIZKPoK by
10 − 15%, and for some special Sigma protocols by up to a factor of 2. The
latter is particularly significant as it matches a new lower bound that we prove.
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4.4 Putting It Together – Improved EdDSA Aggregation
We combine our improvements to TAgg and Cqry to obtain an EdDSA signature
aggregation algorithm πAggr with substantially improved prover computation
complexity, which we give below in Figure 5. We further justify its performance
improvements with our benchmarks in Table 2.

Define the relation RAgg as:

RAgg = {(x,w) | x = (pk1,m1, . . . , pkn,mn), w = (s1, . . . , sn),
Verify(mi, pki, si) = true for ∀i ∈ [n]}

i.e. each si ∈ Zq is a signature on message mi ∈ {0, 1}∗ under Schnorr public
key pki ∈ G, as per the Schnorr Verify algorithm.

Theorem 4.4. Protocol πAggr is a proof of knowledge for the relation RAgg with
straight-line extraction in the random oracle model.

Proof. (Sketch) We know from [CGKN21, Theorem 1] that the underlying
Sigma protocol is n-special sound, which implies that once a malicious prover
has queried n accepting transcripts to the random oracle, the entire witness
can be extracted. It therefore suffices to analyze the smallest ` that guarantees
that a cheating prover is unable find an r-collision within ≤ n queries except
with probability 2−λ. The number of events (i.e. assignments of random ora-
cle outputs) in which the first n queries to an `-bit random oracle contain an
r-collision is at most: (

n

r

)
· 2` · (2`)(n−r)

Here
(
n
r

)
counts the number of combinations of indices to ‘plant’ an r-collision,

there are 2` values that the collision can take, and there are (2`)(n−r) assign-
ments of the remaining n−r indices. This term is not tight since we double-count
r + 1 collisions, triple count r + 2 collisions, etc. but their impact is minimal.
Since there are a total of 2n` equally likely possible output assignments to n
random oracle queries, we have that:

Pr[r-collision within the first n steps] ≤
(
n
r

)
· 2` · (2`)(n−r)

2n`

It remains to examine the constraint on ` that will induce the above probability
to be upper bounded by 2−λ:
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Protocol πAggr

The prover P and verifier V are both given the public instance (pki,mi, Ri)i∈[n] ∈
(G×{0, 1}∗×G)n while the prover also has witness (si)i∈[n] ∈ Znq for the statement
si · G = HSch(pki, Ri,mi) · pki + Ri ∀i ∈ [n]. Both parties have access to an `-bit
Random Oracle H : {0, 1}∗ 7→ {0, 1}` where ` ≥ (λ+ r log2(n)− log2(r!))/(r− 1).

PH((pki,mi, Ri, si)i∈[n]):
1. Find k closest to

√
n such that k | q − 1

2. Set a = (pki,mi, Ri)i∈[n], and define polynomial f(x) =
∑

i∈[n] x
i · si

3. Initialize Z = ∅ and do the following until an output is produced:

(a) Obtain points← PolyEval(q, k, f, n) and append each (e, z) ∈ points to Z
(b) If ∃(e1, z1), (e2, z2), · · · , (er, zr) ∈ Z such that

H(a, e1, z1) = H(a, e2, z2) = · · · = H(a, er, zr)

then set e = (ei)i∈[r] and (zi)i∈[r] and output π = (a, e,z)

VH((pki,mi, Ri)i∈[n], π):
1. Parse (a, e,z) = π, and (ei)i∈[r] = e, and (zi)i∈[r] = z.
2. Check that H(a, e1, z1) = H(a, e2, z2) = · · · = H(a, er, zr)
3. For each i ∈ [n], compute Si = HSch(pk, R,m) · pk +R

4. For each i ∈ [r], check that zi ·G =
∑

i∈[n] e
i ·Si, aborting with output 0 if not

5. Accept by outputting 1
Figure 5: Collision Based Aggregation of n Signatures

(
n
r

)
· 2` · (2`)(n−r)

2n` ≤ 2−λ(
n

r

)
2`(1+n−r−n) ≤ 2−λ

nr

r! 2`(1−r) ≤ 2−λ

2`(1−r) ≤ r! · 2−(λ+r log2(n))

≤ 2−(λ+r log2(n)−log2(r!))

2`(r−1) ≥ 2λ+r log2(n)−log2(r!)

` ≥ (λ+ r log2(n)− log2(r!))/(r − 1)

which is precisely the constraint adhered to by ` in πAggr.
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n r Chalkias et al. Our work Improvement

AggVer(ms) AggSign AggVer(ms) AggSign

512 16 137 167 ± 13.0 s 134 2.2 ± 0.07 s 76x
1024 32 485 85.5 ± 4.8 s 452 ± 6 350 ± 10 ms 244x

256 16 78 40.6 ± 2.8 s 72 901 ± 36 ms 45x
512 32 258 20.1 ± 1.4 s 255 136 ± 3 ms 147x

128 16 43 9.9 ± 0.74 s 42 363 ± 8 ms 27x
256 32 147 5.5 ± 0.31 s 143 54 ± 1 ms 101x

32 8 5.7 84.2 ± 11.6 s 5.6 7.8 ± 0.5s 11x
64 16 21 2.9 ± 0.25 s 23 78 ± 1 ms 37x
128 32 80 1.4 ± 0.08 s 84.5 20 ms 70x

Table 2: Comparing the computation cost for aggregation and aggregate-
verification of n Ed25519 signatures with SHA-256 hash function used for H1
on the same parameters from [CGKN21]. The benchmarks were run using the
publically available code for [CGKN21], and a new Rust implementation of our
method and the Criterion rust framework; times show a 95% confidence interval
over at least 30 runs on one Intel i7-10710U core running at 3.9Ghz with 32 Gb
of memory. Intervals are omitted when less than 1ms. While the aggregation
methods can easily be parallelized, each of these benchmarks only use 1-core to
properly compare against the implementation from [CGKN21]. The best com-
pression ratios are achieved on the first row at roughly 53%; the last row in the
table achieves the worst ratio around 75%.

5 Applying the Collision Predicate to NIZKPoK
We apply the principle of replacing hash inversions in Fischlin’s transformation
with hash collisions to the original NIZKPoK transform, and observe improved
prover query complexity in this setting as well. We begin by considering the
hash collision predicate as a drop-in replacement to any Sigma protocol for which
Fischlin’s transformation can be applied, and observe an 11−15% improvement
in the prover’s query complexity.

To our knowledge this is the best query complexity achieved for NIZKs so
far, however a natural question is to ask to what extent such techniques can be
extended. To this end, we show a lower bound on the query complexity of any
NIZK that has a straight-line non-programming extractor in Section 5.2. We
find that Fischlin’s construction (which is the most query efficient straight-line
extractable scheme) never meets this lower bound for any non-trivial parame-
ters.

We show in Section 5.3 that it is indeed feasible to meet this lower bound for
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some non-trivial parameters, by means of a new transformation based on our
collision predicate. Unfortunately this transformation only applies to a special
class of Sigma protocols that have an r-simulatability property. We show in
Appendix B how to construct such a Sigma protocol by extending Schnorr’s
proof of knowledge of discrete logarithm.

5.1 Unconditionally Improving Fischlin’s Query Complex-
ity

Recall that the prover in Fischlin’s transformation is required to invert a fixed
target of the random oracle. In particular, a proof consists of a base unit where
the prover is required to find a Sigma protocol transcript (a, e, z) such that
H(prefix, a, e, z) = 0`, and this unit is repeated r times to achieve λ = r · `
bits of security. We can replace this inversion based unit by a collision based
one as follows: the prover is required to find a pair of independent transcripts
(a1, e1, z1) and (a2, e2, z2) such that H(prefix, a1, e1, z1) = H(prefix, a2, e2, z2).
Note that just as in the case of Fischlin, prefix includes a1, a2 to prevent trivial
attacks. Additionally, the output length of the hash function is 2`, i.e. doubled
as compared to the inversion predicate.

Security. Upon fixing prefix, a prover is successful in finding an accepting pair
(a1, e1, z1) and (a2, e2, z2) in their first attempt with probability no more than
2−2`. Repeating this base unit r/2 times achieves security 2` · r/2 = λ bits.

Efficiency. A base unit of the collision based construction is equivalent to
two base units of the inversion construction; in both cases two Sigma protocol
transcripts are transmitted, and they achieve 2` bits of security. With regards to
computation cost, both constructions have the same cost per query made to the
random oracle (i.e. computing a fresh Sigma protocol response), and therefore
the difference comes down to the number of queries made per proof, i.e. the
prover query complexity.

What query complexity does this induce? ConsiderZ1,Z2 to be domains from
which (e1, z1) and (e2, z2) are drawn respectively, and observe thatZ1,Z2 are en-
tirely disjoint when a1 6= a2. If we consider (prefix, a1, e1, z1) and (prefix, a2, e2, z2)
to be the ‘left’ and ‘right’ halves of the collision respectively, this means that
any given (prefix, ai, ei, zi) can be a candidate pre-image for either the left or
right half, but not both. This is because any given ei, zi can be a verifying tran-
script with at most one of a1 or a2. This task therefore becomes that of finding a
chosen prefix collision [SLdW07]. The combinatorics of chosen prefix collisions
are considerably more complex to analyze than regular collisions, making the
derivation of the exact query complexity of the above construction difficult. We
instead measure the query complexity induced by this predicate empirically,
and report on the results in Table 3.
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As our experiments show, this chosen prefix collision predicate works for the
exact same Sigma protocols as Fischlin’s transformation, and improves on its
query complexity. A natural question for future work is if we can obtain further
improvements by considering multicollisions rather than pairs of collisions.

Fischlin Pairwise collisions
r ` Expected queries ` Exp queries Improvement

8 216 64,877 232 58,190 1.11
10 213 8,233 226 7,293 1.13
12 211 2,038 222 1,824 1.12
14 29 509 218 448 1.13
16 28 267 216 232 1.15

Table 3: Comparing the computation cost of Fischlin’s approach to our chosen
prefix, pairwise collision approach. The reported value is the expected number
of queries for finding either one preimage, or 2 collisions taken over 500-2000
experiments. Parameters for r and ` are set for the same 128 bit security.

5.2 Lower Bound on Prover Query Complexity
Fischlin [Fis05] proved via a meta reduction that any NIZKPoK scheme (with
a non-programming extractor) for a language with a hard instance generator,
must have a super-logarithmic number of queries V in λ made by the verifier
to the random oracle. Fischlin’s proof demonstrated asymptotic bounds due
to its reliance on the hardness of the underlying language; in this work we
are concerned with tight parameters for concrete security as guaranteed in the
random oracle model, independently of the hardness of the underlying language.
We therefore initiate a study of concrete query complexity, in particular we
express this as the optimal prover query complexity P upon fixing V .

Caveat.We make a simplifying assumption, namely that the language L has
a hard instance generator I such that the probability that any PPT algorithm
is able to find a witness w for theorem x← I(λ) is bounded by ελ � 2−λ.

This assumption frequently does not hold as in practice one can instantiate
the NIZKPoK with a concrete soundness level comparable to the hardness of
instances generated by I, however making this simplification allows us to focus
on the random oracle query complexity of the NIZKPoK (which is given by
parameters independent of the language) without having to account for concrete
hardness of the language (which is very specific to each language and seldom
leveraged by the extractor of a NIZKPoK scheme).

We begin with the following lemma, which is a tightening of [Fis05, Propo-
sition 2]:
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Lemma 5.1. If (P,V) is a straight-line extractable NIZKPoK scheme for lan-
guage L in the random oracle model with the following characteristics for secu-
rity parameter λ:

• Perfect zero-knowledge simulator Sim

• `-bit output random oracle H

• P queries made by P to H in generating a proof

• Probability pC > 0 of producing an accepting proof

• V queries made by deterministic V to H in verifying a proof, is a strict subset
of the queries made by P

• Non-programming extractor Ext with error ≤ 2−λ for an adversary that makes
≤ V queries to the random oracle

Then it must hold that: (
P

V

)
≥ pC

2−λ + ελ

Proof. The idea is to show that if
(
P

V

)
is too small, then a malicious prover can

succeed in producing a verifying proof by just guess the queries that V would
make in verifying a proof, and simulating the remaining ones. This means an
extractor should be able to produce a witness using just the queries that V
makes (since those are the only queries that this malicious prover P makes) and
this contradicts the hardness of the language.

We begin by constructing a new Prover algorithm P′ which internally runs
P, but simulates most of the random oracle calls for P and only makes a total
of V external calls to the real oracle H: P′H(x,w,P):

1. Sample a set of indices Q ⊂ [1, . . . , P ] such that |Q| = V

2. Define oracle H ′(v) as follows:

• If this is the ith invocation of the oracle and if i ∈ Q then return H(v)
• Otherwise return a uniform {0, 1}`

3. Obtain π ← PH′(x,w) and output π

Let QP represent the queries to H ′ made by P. Assuming no redundant queries
in QP , we note that H ′ agrees with H on V randomly chosen queries, and the
two are completely independent on all other inputs.

By completeness of (P,V), it holds with probability pC that VH′(x, π) = 1.
Our goal is to instead analyze the probability that VH(x, π) accepts, i.e., the
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verifier who makes queries to the real external oracle H accepts π. Denote the
queries made by V to H ′ as QV . Given that QV ⊂ QP , and that H ′ agrees with
H on V values,

Pr
[
VH(x, π) = 1 : π ← P′H(x,w,P)

]
= Pr

[
VH(x, π) = 1 : π ← PH(x,w)

]
· Pr[H ′(x) = H(x),∀x ∈ QV ]

≥ pC ·

(
P

V

)−1

Recall that the extractor’s error (in this case 2−λ) represents the difference
between the probability that a malicious prover P∗ is able to produce a proof
π, and the probability that the extractor Ext is able to produce a witness w for
x when given the proof π and list of queries made by P∗ in its production. Note
that P′ only queries QV to H, and so the set QV fully characterizes the list of
queries made by the malicious prover. We therefore determine that:

Pr[w ← Ext(x, π,QV ) : π ← P′H(x,w,P)]

≥ Pr
[
VH

′
(x, π) = 1 : π ← P′H(x,w,P)

]
− 2−λ

≥ pC ·

(
P

V

)−1

− 2−λ

As a final step, we replace π ← P′H(x,w,P) by (π,H)← Sim(x) to remove re-
liance on the witness w. Note that these two distributions of (π,H) are identical
due to the fact that when P′ outputs a proof, it is identically distributed to the
output of honest P, and that the perfect simulation is distributed identically
to the output of honest P. The set QV is fully specified by x, π,H as we show
below.
A(x):

1. Compute (π,H)← Sim(x)

2. Construct QV by collecting the queries to H made by VH(x, π)

3. Output π,QV

Firstly due to the perfect simulation we note that

Pr[w ← Ext(x, π,QV ) : (π,QV )← A(x)] = Pr[w ← Ext(x, π,QV ) : π ← P′H(x,w,P)]

≥ pC ·

(
P

V

)−1

− 2−λ

27



Second we note that w ← Ext(x, π,QV ) : (π,QV ) ← A(x) constitutes a
PPT adversary that finds a witness for any x ∈ L. Since L has a hard instance
generator I that admits a maximum advantage of ελ, for x← I(λ) it holds that

ελ ≥ Pr[w ← Ext(x, π,QV ) : (π,QV )← A(x)] ≥ pC ·
(
P

V

)−1

− 2−λ

Rearranging, we have that(
P

V

)
≥ pC

2−λ + ελ

and this proves the lemma.

We can use the above lemma to derive the optimal prover query complexity
for proofs that are non-trivially secure, i.e. when V �

(
P
V

)
. We define POPT(V )

to be the smallest prover query complexity for a given verifier query complexity
V .

Corollary 5.2. If (P,V) is a perfectly complete straight-line extractable NIZKPoK
scheme for a ελ-hard language L in the random oracle model with all the char-
acteristics required by Lemma 5.1 with the additional constraint that V < λ and
2−λ � ελ, then the optimal prover query complexity is given by:

POPT(V ) ≈
(
V ! · 2λ

) 1
V

Proof. As 2−λ � ελ, we make the approximation 2−λ + ελ ≈ 2−λ. From
Lemma 5.1 we have that POPT is the smallest P such that

(
P
V

)
≥ 2λ since

pC = 1. Simplifying, we have that:

2λ ≤
(
P

V

)
2λ · V ! =

∏
i∈[0,V )

(POPT − i)

≈ (POPT)V

Upon rearranging the terms, we get the statement of the corollary.

In subsequent text we drop the argument [λ, V ] when it is obvious. Note
that POPT only characterizes the optimal prover query complexity for perfectly
complete schemes. Since Lemma 5.1 accounts for schemes with arbitrary com-
pleteness errors, it is possible to amend Corollary 5.2 accordingly if desired.
However we will see that POPT serves as a useful benchmark for our study. In-
terestingly Fischlin’s scheme, which has the lowest prover query complexity in
the literature, performs worse than POPT for all V > 1.
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Claim 5.3. Let r parameterize the number of repetitions of a Sigma proto-
col used to instantiate Fischlin’s NIZK [Fis05] at a λ-bit security level. Then
the average prover query complexity of the resulting scheme TFis is a factor of
r/(r!)1/r worse than the corresponding POPT. Therefore TFis > POPT for every
r > 1.

Proof. The average prover query complexity TFis is given by the complexity
of finding r inversions of the all-zero string of r independent λ/r-bit random
oracles. This task requires r ·2λ/r tries in expectation. Since V = r, the optimal
prover complexity is given by POPT = (r!·2λ)1/r. The ratio of the average prover
complexity to the optimal is therefore:

TFis
POPT

= r · 2λ/r

(r! · 2λ)1/r = r

(r!)1/r

The ratio TFis/POPT = 1 only when r = 1, which is of no use as the average
complexity of computing a proof honestly matches the average complexity of
forging a proof when r = 1. This ratio is

√
2 ≈ 1.41 when r = 2, and continues to

increase as r grows, ultimately converging7 at e ≈ 2.71. Given this it is natural
to ask, is it possible to meet POPT for any non-trivial parameters?

5.3 Special Case: r + 1-Special Sound Sigma Protocols
Given a Sigma protocol that is r+ 1-special sound and r simulatable (i.e. given
r challenges, a simulator can produce r accepting transcripts) we are able to
apply a multicollision predicate and reduce the prover’s query complexity as
compared with Fischlin’s inversion predicate even further—to the point where
we can meet POPT for a non-trivial parameter range.

Note that we present a randomized construction here—this aspect is orthog-
onal to query complexity. The purpose is to avoid dependence on ‘quasi-unique
responses’, which we will discuss in detail in Section 6.

We begin by refining the standard definition of Sigma protocols [Dam02] to
incorporate a weaker notion of soundness and simulatability. This notion essen-
tially requires (1) r + 1-special soundness, which guarantees the success of an
extractor upon being given r + 1 accepting conversations that begin with the
same first message, and (2) r-simulatability, which requires that for any state-
ment, r accepting conversations (with the same first message) can be simulated
for any r given challenges. We defer a formal definition to Appendix A, and give
an instantiation based on Schnorr’s PoK of discrete logarithm in Appendix B.
We describe our NIZK transformation in Figure 6.

7limr→∞ r/(r!)1/r = e
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Protocol πNIZK

The prover P and verifier V are both given the statement x while the prover also
has a witness w for the statement x ∈ L. Both parties have access to an `-bit
Random Oracle H : {0, 1}∗ 7→ {0, 1}`. The underlying Strongly r + 1-special
sound sigma protocol is given by Σ = ((PΣ,a, PΣ,z),VΣ). Define t = `+ dlog re.

PH(x,w):
1. Run PΣ,a(x,w) to obtain a and state
2. Set E = Z = ∅ and do the following until an output is produced:

(a) Uniformly sample e← {0, 1}t \ E
(b) Set z = PΣ,z(state, e) and append (e, z) to Z and e to E
(c) If ∃(e1, z1), (e2, z2), · · · , (er, zr) ∈ Z such that

H(a, e1, z1) = H(a, e2, z2) = · · · = H(a, er, zr)

then set e = (ei)i∈[r] and (zi)i∈[r] and output π = (a, e,z)

VH(x, π):
1. Parse (a, e,z) = π, and (ei)i∈[r] = e, and (zi)i∈[r] = z.
2. Check that H(a, e1, z1) = H(a, e2, z2) = · · · = H(a, er, zr)
3. For each i ∈ [r], check that VΣ (x, (a, ei, zi)) = 1, aborting with output 0 if not
4. Accept by outputting 1

Figure 6: Collision Based NIZK

Theorem 5.4. If Σ is a strongly r+ 1-special sound Sigma protocol and `(r−
1) = λ, the protocol πNIZK is a straight-line extractable NIZKPoK in the random
oracle model, with an extractor that does not program the random oracle and
achieves extraction errorQ/2λ for an adversary making Q queries to the random
oracle.

Proof. (Sketch) We defer the full proof to Appendix A. Completeness follows
from the pigeonhole principle, as any function that maps a domain of size r · 2`
to a range of size 2` will produce at least one r-collision. Zero-knowledge comes
from the fact that the challenges e are distributed uniformly in {0, 1}t·r, and the
rest of the transcripts a, z can be simulated by invoking SimΣ(x, r, e). Proof-
of-knowledge follows from the fact that in order for an adversary to compute a
proof by querying fewer than r + 1 accepting Sigma protocol transcripts to H,
the first r accepting transcripts it queries to H must all evaluate to the same
`-bit string. This happens with probability (2−`)r−1 = 2−λ.

Query Complexity. We make use of the analysis of multicollision running
times by von Mises [vM39] and revisited by Preneel [Pre93, Appendix B].
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Corollary 5.5. [vM39][Pre93, Theorem B.2 and pg. 283] If T balls are ran-
domly distributed over n urns, the number T required to have at least one urn
with r balls with probability 1− exp(−αr) is given by the following equation:

T · exp
(
− T

r · n

)
=
(
αr · n(r−1) · r!

)1/r

In order to obtain the time TCol required to find an r-collision in expectation,
one must solve for T when the parameter αr = 1. Substituting n = 2λ/(r−1) for
our context, we get that:

TCol · exp
(
− TCol

r · 2λ/(r−1)

)
=
(
2λ · r!

)1/r = POPT

This equation is non-trivial to analyze relative to that of Fischlin, and so for
ease of understanding we plot the ratio T/POPT for both πNIZK and Fischlin’s
construction in Figure 7. This plot shows that for some reasonable parameteri-
zations around r ∼ 5, our construction achieves roughly 2x factor improvement
in Prover complexity.

Finally, we note that Figure 7 only plots the ratio of Fischlin/Collision/optimal
but does not convey the actual prover query complexities at those parameter
choices. Table 4 below shows the Prover query costs below for selected param-
eter 130 bit security) to highlight our improvement.

r Lower bound This Work Fischlin

4 1.34× 1010 1.34× 1010 2.43× 1010

5 1.75× 108 1.76× 108 3.36× 108

6 9.97× 106 1.02× 107 2.00× 107

7 1.32× 106 1.40× 106 2.73× 106

8 2.93× 105 3.26× 105 6.23× 105

9 9.25× 104 1.08× 105 2.01× 105

10 3.71× 104 4.55× 104 8.19× 104

Table 4: Prover work as a function of r for 130-bit security. Fixing the sound-
ness error and the proof size (which is governed by r), this table of analytical
estimates shows that our construction almost meets our lower-bound while using
a factor of between 2

√
2/π and 2 fewer queries than Fischlin’s transform.
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Figure 7: Ratio of prover query complexities TCol and TFis to the optimal
POPT (y-axis) for different r parameters (x-axis), where TCol[r] and TFis[r] are
the number of oracle queries required to compute a proof in expectation upon
fixing parameter r. Note that TCol/POPT depends on the security parameter,
whereas TFis/POPT is essentially invariant of it. Consequently we plot TCol/POPT
for a range of security parameters, where “λ-bit Col” denotes a λ-bit security
level.

6 Expanding the Applicability of Fischlin’s Trans-
form

As mentioned in Section 1, Fischlin’s transformation applies to only a limited
class of Sigma protocols that satisfy a quasi-unique responses constraint. Fis-
chlin relied on this property to prove both zero-knowledge as well as proof of
knowledge. While it is folklore that this property is not strictly necessary for
the extractor, its necessity for zero-knowledge has remained thus far unclear.

We begin by showing in Section 6.1 a concrete attack on Witness Indis-
tinguishability when Fischlin’s transformation is applied to the Sigma protocol
used to prove knowledge of one of two discrete logarithms [CDS94]. We then for-
malize a strong special soundness property for Sigma protocols that suffices for
extraction, which includes languages that do not by default support the quasi-
unique responses property, such as the logical OR Sigma protocol mentioned
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above. Finally we show how appropriately randomizing Fischlin’s construction
can achieve ZK unconditionally, for any strong special sound Sigma protocol.

6.1 Testing Witness Use in Fischlin’s Transformation
Our distinguisher will not rely on the ability to query multiple accepting tran-
scripts for the same challenge. For reference, we first recall the underlying Sigma
protocol (due to Cramer et al. [CDS94]) in Figure 8.

Protocol Σ∨DL

The prover P and verifier V are both given the statement (X0, X1) =
(w0 ·G,w1 ·G) ∈ G2 while the prover also has wb ∈ Zq for b ∈ {0, 1}.

PaΣ∨
DL

((X0, X1), wb):

1. Simulate a transcript for DLog proof of knowledge of X1−b:

• Sample e1−b ← {0, 1}λ and compute (a1−b, z1−b)← SimΣDL (X1−b, e1−b)

2. Sample rb ← Zq and compute ab = rb ·G
3. Publish commitment a = (a0, a1) and output state = wb, rb, (a1−b, e1−b, z1−b)

PzΣ∨
DL

(state, e): Compute eb = e⊕e1−b and zb = wb·eb+rb, and Output (e0, e1, z0, z1)

V(X, a, e, z):
1. Parse a = (a0, a1) and z = (e0, e1, z0, z1) and verify e0 ⊕ e1 = e

2. Verify zb ·G = eb ·Xb + ab for each b ∈ {0, 1}
Figure 8: Proving knowledge of one of two discrete logarithms [CDS94]

An adversary attackingWitness Indistinguishability conventionally possesses
two witnesses to the theorem and is given a proof π, and must determine which
witness was used to produce it. We construct a more powerful type of attack,
which makes use of a single witness and determines whether π was created using
this witness or the opposite one. This fact will be useful when examining the
protocol contexts in which our attack applies.

As we briefly discussed in Section 2.2, the attack strategy is to exploit the
deterministic nature of Fischlin’s prover by retrieving the Sigma protocol ran-
domness and retracing the prover’s steps. Concretely with Schnorr-style proofs,
the messages z and c and the witness determine the randomness. The attacker
can therefore retrieve this randomness, and simply replay the honest prover’s
algorithm and see if the resulting proof string is the same as the given one. The
main subtle step in this attack’s analysis is to argue that when this retrieve-
and-retrace procedure is applied using a different witness from the one used to
produce the proof string originally, there is a noticeable probability of producing
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a different proof string.
While the regular Witness Indistinguishability definition allows the adver-

sary to supply both witnesses, in order to stay within the constraints of quasi-
unique responses we formulate a stronger version of the WI experiment for our
specific setting. In our definition the challenger samples both witnesses and gives
the adversary only one of them (the other witness represents the trapdoor for
the system parameter k). We define our experiment as follows:

ExptDL-WI
A,P (1λ) :

1. The adversary A submits a bit b ∈ {0, 1} to the challenger

2. The challenger samples w0, w1 ← Zq and sets X0 = gw0 , X1 = gw1

3. The challenger tosses a coin β ← {0, 1}, and computes π ← P((X0, X1), wβ)

4. The challenger sends X0, X1, wb, π to A

5. A outputs a bit

The advantage AdvDL-WI[A,P] of an adversary A is defined as:

|Pr [A(b, wb, X1−b, π) = 1 | β = 0]− Pr [A(b, wb, X1−b, π) = 1 | β = 1]|

Clearly any Witness Indistinguishable scheme will guarantee that the above
advantage is negligible. We now give our concrete attack and analysis.

Lemma 6.1. Let P be the prover’s algorithm obtained by applying Fischlin’s
transformation [Fis05] to the Sigma protocol to prove knowledge of one of two
discrete logarithms [CDS94]. Then there is an efficient adversary A such that
AdvDL-WI[A,P] is non-negligible.

Equipped with this non-negligibly successful adversary A, in Section 6.2 we
will show how a natural protocol scenario that appears to enable quasi-unique
responses in fact structurally resembles the ExptDL-WI

A,P experiment. This allows us
to deploy our ExptDL-WI

A,P adversary A to break the security of the larger protocol.

Proof. For simplicity, we consider only a single base unit, i.e. assume that there
is only one repetition in the transformed Sigma protocol.

Consider an attacker, that on input a proof π = ((a0, a1), e, (e0, e1, z0, z1))
obtained by applying Fischlin’s transformation to Σ∨DL using `-bit output hash
function H, and witness wb, does the following:

1. Compute rb = zb − wb · eb and set stateb = wb, rb, (a1−b, e1−b, z1−b)

2. Starting with e = 0, increment e until H((a0, a1), e, (e0, e1, z0, z1)) = 0` is
found, where (e0, e1, z0, z1) = PzΣ∨

DL
(stateb, e)
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3. Set πb = (a0, a1), e′, (e′0, e′1, z′0, z′1)

4. If πb = π output b, otherwise output 1− b.

Denote the witness used by the challenger to produce the proof as wβ . When
β = b the attacker outputs the correct bit with certainty since the honest
prover’s steps are perfectly reconstructed to produce πb = π. The interesting
case to analyze is when β = 1 − b. There are two possible outcomes triggered
in this case, i.e., πb = π and πb 6= π. The latter outcome is induced by the
attacker finding an accepting transcript (a, e′, z′) with e′ < e that resulted in
H(a, e′, z′) = 0` (note that e′ > e is impossible as we know that H(a, e, z) = 0`,
and so the prover never increments past e). The implication in this event is that
π was certainly not produced using wb; this is because had the honest prover
started with witness wb and state stateb, it would have terminated with output
π′ = (a, e′, z′) rather than the given π.

It remains to show that this distinguishing event (call it diffProof) occurs
with non-negligible probability. Note that since the attack is always successful
when β = b, the value Pr[diffProof] characterizes the distinguishing advantage
of this attack. This is because AdvDL-WI[A,P] can be simplified as follows, given
that b is fixed:

|Pr [A(wb, X1−b, π) = b | β = b]− Pr [A(wb, X1−b, π) = b | β = 1− b]|

= |1− (1− Pr[diffProof])| = Pr[diffProof]

Let Qb,i be the query made by the attacker that corresponds to responding to
the ith challenge using witness wb; in particular

Qb,i = (a0, a1), i,PzΣ∨
DL

(stateb, i)

and thus πb = Qb,i for the smallest i such that H(Qb,i) = 0`. Define Q1−b,i the
same way using state1−b = w1−b, r1−b, (ab, eb, zb), except that the query is made
by the challenger rather than the attacker in this experiment (since β = 1− b).

Claim 6.2. ∀e′ 6= e, it holds that Q0,e′ 6= Q1,e′ .

Proof. Consider any e′ 6= e. Let e′0 = e′ ⊕ e1 and e′1 = e′ ⊕ e0. Clearly e′0 6= e0
and e′1 6= e1 as e′ 6= e = e0⊕ e1. By the structure of PzΣ∨

DL
(stateb, e′), the queries

Qb,e′ are correspondingly constructed as follows:

Q0,e′ = (· · · e′0, e1, · · · ) and Q1,e′ = (· · · e0, e
′
1, · · · )

Clearly Q0,e′ 6= Q1,e′ as e0 6= e′0 and e1 6= e′1.

Corollary 6.3. ∀e′ 6= e, the values H(Q0,e′) and H(Q1,e′) are independently
distributed.
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Recall that the event diffProof is precisely the event that the attacker finds
an accepting proof πb = (a, e′, z′) such that e′ < e. Rather than characterizing
diffProof in its entirety, we analyze a simpler special case. In particular, the event
H(Qβ,0) 6= 0` (implying e > 0 in π) and H(Q1−β,0) = 0` (implying e′ = 0 and
hence πb 6= π) induces diffProof. Then applying Corollary 6.3 we can therefore
lower bound Pr[diffProof] as follows:

Pr[diffProof] ≥ Pr[H(Qβ,0) 6= 0` ∧H(Q1−β,0) = 0`]
= Pr[H(Qβ,0) 6= 0`] · Pr[H(Q1−β,0) = 0`]

= 2` − 1
2` · 1

2` = 2` − 1
22`

As we know that ` ∈ O(log λ) is necessary for completeness, the denominator
of the above value 22` ∈ poly(λ). We therefore conclude that Pr[diffProof] is
non-negligible in λ, and this completes the analysis.

6.2 Where to Apply the Attack
Given the attack in Section 6.1, when is it safe to apply Fischlin’s transfor-
mation? Recall that the security of Fischlin’s transformation hinges on “quasi-
unique responses” as in Definition 2.1.

We argue that ensuring this property in a larger system is not always
straightforward for languages where the same statement can have multiple wit-
nesses, even when no individual party has more than one witness. In particular,
a larger cryptographic application that makes use of such proofs as subproto-
cols may rely on the ability of the same proof to be produced indistinguishably
by different methods, for example by an honest party using a witness in the
real protocol, and by a simulator using a trapdoor in the ideal protocol. This
subtlety is brought out in the following example protocol between Alice (who
only has public input B ∈ G) and Bob (who has private input b ∈ Zq):

• Alice samples a← Zq, sets A = ga, and computes πA as the Witness Hiding
PoK of DLogg(A). Alice sends A, πA to Bob.

• Bob and computes πB as the WIPoK of DLogg(A) ∨ DLogg(B) using b as a
witness. Bob sends B, πB to Alice.

Fischlin’s proof does not directly cover this use case, but it is suggested infor-
mally [Fis05, pg. 13] that their construction extends to logical compositions,
etc. in the presence of a system parameter enforcing quasi unique responses.

When Alice is corrupt in the above protocol, her view can be simulated
without knowledge of b. In particular the simulator simply extracts a from πA
and uses a as a witness to compute πB as the WIPoK of DLogg(A)∨DLogg(B).
This simulation is efficient due to extractability of the WHPoK, and will be
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indistinguishable from the real protocol by witness indistinguishability of the
WIPoK. Simultaneously the discrete log b of B is efficiently extractable due
to the witness hiding property of WHPoK (in conjunction with the hardness
of the discrete logarithm problem) and the extractablity of the WIPoK. This
template due to Feige and Shamir [FS90] was used by Pass [Pas03] to construct a
deniable two round zero-knowledge argument in the random oracle model, where
the simulator does not rely on programming the random oracle. As shown by
Canetti et al. [CJS14] this allows for secure composition in the Global Random
Oracle model.

Can we safely use Fischlin’s transformation here? At first glance, the
above protocol appears to be conducive to quasi-unique responses for the sigma
protocols that would underlie πA as well as πB . Indeed Alice only knows a8

allowing B to be treated as a system parameter if Alice is corrupt, and Bob
only knows b which allows A to be considered a system parameter when Bob is
corrupt, therefore neither party has the ability to efficiently compute multiple
accepting responses for the same challenge in Σ∨DL.

However this scenario structurally resembles ExptDL-WI
A,P , i.e. since our attack

on WI for Fischlin’s transformation does not require knowledge of both wit-
nesses, it can be applied here. In particular Alice knows a, and so can test
whether the proof πB was computed using a or b as the witness. This allows
her to distinguish between the real protocol (where Bob uses b as the witness
to compute πB) and the simulation (where πB is generated by the simulator
using a as the witness).

We therefore make the case that a cleaner definition is required, ideally one
that does not require reasoning about the context in which a sigma protocol is
used.

6.3 Strong Special Soundness
Before describing how to patch the above attack, we present an easily verifiable
property of Sigma protocols for which our transformation applies. Rather than
attempting to quantify the ability of an adversary to induce a bad event, we
take a constructive approach in our definition; i.e., it is easier to evaluate precise
deterministic conditions (such as special soundness) rather than reason about
probabilistic/computational system parameters (as in quasi-unique responses).

Our definition is a mild strengthening of the two-special soundness notion
for Sigma protocols [Dam02], and so we call it strong two-special soundness—
also in homage to the similar concept of strong unforgeability for signature
schemes. Informally stated, a strongly two-special sound sigma protocol has
an extractor which when given two distinct accepting transcripts (a, e, z) and

8We ignore the prospect of obtaining auxiliary information about b, for eg. b could be
sampled uniformly as part of a larger protocol.
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(a, e′, z′) that share the same first message, outputs a witness for the statement
with certainty (note that e = e′ is allowed). The standard two-special soundness
notion enforces that e 6= e′ for the extractor’s success. We give the formal
definition in Definition 3.2 in Section 3.

Many natural sigma protocols (including logical compositions [CDS94],Okamoto’s
identification protocol [Oka93], etc.) satisfy this definition (but may not satisfy
quasi-unique responses). There are two notable natural examples that may not
meet this definition: (1) Blum’s protocol to prove knowledge of a Hamiltonian
cycle [Blu86] allows the prover to open any cycle in the graph and it is un-
clear as to how an extractor for strong special soundness can deal with such a
situation, and (2) the Sigma protocol that underlies EdDSA [BDL+12], which
is Schnorr’s scheme implemented over an elliptic curve group of composite or-
der. The lax verification equation in the original specification means that the
verifier accepts multiple discrete logarithms for the same curve point. How-
ever we stress that this is due to lax realization of the abstraction required for
Schnorr’s sigma protocol, and is easily fixed in works that succeeded the origi-
nal spec [CGN20, BCJZ21]. Note that both cases will not support quasi-unique
responses either, if they are not strong special sound.

Note that any standard Sigma protocol that is not strongly two-special sound
can not have quasi-unique responses. In particular by definition the only way to
retain standard special soundness while violating strong two-special soundness
is by presenting accepting transcripts (a, e, z1), (a, e, z2) that do not yield a
witness for the theorem when given to the extractor. Any notion of efficient
adversaries being unable to find such transcripts in the case of quasi-unique
responses is captured by amending the theorem for the strong two-special sound
Sigma protocol to include a disjunctive clause for knowledge of the system
parameter trapdoor.

With our definition in place, we study how to compile such Sigma protocols
to NIZKPoKs using Fischlin’s technique.

6.4 Randomization Extends Fischlin’s Technique
The issue in Fischlin’s transformation is that the prover’s algorithm is deter-
ministic and consequently re-traceable. Indeed, if one were to instantiate the
transformation of Pass [Pas03] by simply constructing a hash tree of accepting
protocol transcripts instead of a Merkle tree of commitments to such transcripts,
the same issue as described above would present itself more directly: given a
proof and candidate witness for the statement, one could simply extract the
prover’s randomness and test if recomputing the proof once again yields the
given one. This issue is implicitly avoided by Pass (at constant factor overhead)
by constructing the Merkle tree with commitments to protocol transcripts. How-
ever it is unclear how to make such an approach work with Fischlin’s transform;
using randomized commitments appears to be at odds with obtaining sound-
ness.
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We show that an alternate method of randomization can be used to extend
Fischlin’s technique to any strong special sound Sigma protocol. The idea is
to randomize the NIZK prover’s algorithm so that the prover randomly steps
through the challenge space until an accepting transcript that hashes to the
all-zero string is found. Intuitively, proofs produced with this modified trans-
formation do not leak any information about how many queries the prover had
to make in order to find an accepting transcript. This makes it impossible for
a distinguisher to retrace the steps of a prover even given all witnesses as it
does not have access to the random sequence in which the prover queried the
random oracle. We give a formal description of the modified transformation in
Figure 9 below, along with a proof of security.

Protocol πF-rand
NIZK

The prover P and verifier V are both given the statement x while the prover also
has a witness w for the statement x ∈ L. The security parameter λ defines the
integers r, `, t. These integers are related as r · ` = 2λ, and t = dlog λe · `. Both
parties have access to a Random Oracle H : {0, 1}∗ 7→ {0, 1}`. The underlying
sigma protocol is given by Σ = ((PaΣ,PzΣ),VΣ).

PH(x,w):
1. For each i ∈ [r], compute (ai, statei)← PaΣ(x,w)
2. Set a = (ai)i∈[r]

3. For each i ∈ [r], do the following:

(a) Set Ei = ∅
(b) Sample ei ← {0, 1}t \ Ei and compute zi = PzΣ(statei, ei)
(c) If H(a, i, ei, zi) 6= 0`, update Ei = Ei ∪ {ei} and repeat Step 3b

4. Output π = (ai, ei, zi)i∈[r]

VH(x, π):
1. Parse (ai, ei, zi)i∈[r] = π, and set a = (ai)i∈[r]

2. For each i ∈ [r], verify that H(a, i, ei, z1) = 0` and VΣ (x, (ai, ei, zi)) = 1,
aborting with output 0 if not

3. Accept by outputting 1
Figure 9: Randomized Fischlin’s Transformation

Theorem 6.4. If Σ is a strongly two-special sound sigma protocol for the lan-
guage L, then protocol πF-rand

NIZK is a straight-line extractable non-interactive zero-
knowledge proof of knowledge for the language L in the random oracle model.

Proof. Completeness: follows from the same analysis as Fischlin [Fis05]. De-
note by Qi,ei the query made by P in Step 3c of its algorithm. The only event
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Extractor ExtNIZK

The extractor is given the statement x, a proof π, and the list of queries to the
random oracle Q that were made by the adversary in the production of this proof.
In addition to this, this extractor has access to the extractor ExtΣ of the strongly
special sound sigma protocol, which requires 2 accepting transcripts (with the
same a value) in order to produce a witness w for the statement.

ExtNIZK(x, π,Q):
1. Parse (ai, ei, zi)i∈[r] = π, and set a = (ai)i∈[r]

2. Search Q until a query of the form (a, i, e, z) is found such that (e, z) 6= (ei, zi),
and VΣ (x, ai, e, z)) = 1

3. Output ExtΣ(ai, ei, e, zi, z)
Figure 10: Extracting a witness

in which the prover does not find an accepting proof is when ∃i ∈ [r] such that
∀ei ∈ {0, 1}t, H(Qi,ei) 6= 0`. Call this event fail. As each H(Qi,ei) is indepen-
dent, we can bound the probability of fail as follows:

Pr[fail] = Pr[∃i ∈ [r] : ∀ei ∈ {0, 1}t, H(Qi,ei) 6= 0`]

≤
∑
i∈[r]

Pr[∀ei ∈ {0, 1}t, H(Qi,ei) 6= 0`]

=
∑
i∈[r]

∏
ei∈{0,1}t

Pr[H(Qi,ei) 6= 0`]

=
∑
i∈[r]

∏
ei∈{0,1}t

(
1− 1

2`

)
= r ·

(
1− 1

2`

)2t

= r ·
(

1− 1
2`

)λ·2`
≈ r · 1

eλ

≤ 2−λ

Proof of knowledge: This follows from the same analysis as Fischlin [Fis05]
as well.

The event in which this extractor fails is the event in which an adversar-
ial prover P∗ is able to produce a proof π by querying no more than a single
accepting Sigma protocol transcript for each i ∈ [r] to the random oracle. We
first ignore all queries made to H that are not accepting transcripts, and then
separate queries prefixed by different a as they essentially instantiate indepen-
dent random oracles (and can not be combined with one another to produce
a proof). For a given a, the event in which the adversary is able to output an
accepting proof with fewer than 2 accepting transcripts (prefixed by a) queried
to H for each i ∈ [r] is exactly the event that the first such accepting transcript
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Simulator SF
NIZK

Simulator SF
NIZK is given the statement x, and has the ability to program the

Random Oracle H. In addition to this SF
NIZK is given the simulator for the Sigma

protoocol SimΣ.

SF
NIZK(x):

1. Uniformly sample ei ← {0, 1}t for each i ∈ [r] and set e = (ei)i∈[r]

2. Run the simulator for the sigma protocol to obtain (ai, zi) ← SimΣ(x, ei) for
each i ∈ [r]

3. Program the random oracle H so that H(a, ei, zi) = 0 for each i ∈ [r]
4. Emulate H as a random oracle ‘honestly’ for every other query
5. Output π = (a, e,z)

Figure 11: Simulator for Zero-Knowledge

queried to H for every i ∈ [r] evaluates to 0. This is equivalent to r independent
uniformly chosen `-bit strings being equal to 0, which happens with probability
(2−`)r = 2−λ. For an adversary that makes |Q| queries to the random oracle,
the extraction error is therefore bounded by |Q|/2λ.

Zero-knowledge: We describe how to simulate a proof in Figure 11, and
then show its indistinguishability from a real proof.

We argue that the simulation is indistinguishable from a real proof through
a sequence of hybrid experiments, which are defined as follows.

Hybrid H1. The real prover’s algorithm (P from πF-rand
NIZK ) is used to find (a, e, z)

such thatH(a, e1, z1) = · · · = H(a, er, zr) = 0 whereH is emulated as a random
oracle by the standard technique of maintaining a (query, response) table. The
difference from the real prover’s algorithm is merely syntactic.

Hybrid H2. Implement Step 3 of SF
NIZK. In particular in this experiment, the

random oracle H is implemented as follows:

1. The first r queries by the honest prover Q1, Q2, · · ·Qr (where each Qi =
(a, ei, zi) as generated by P) will receive 0 as a response, i.e. H(Q1) =
H(Q2) = · · · = H(Qk) = 0

2. Emulate H as a random oracle ‘honestly’ for every other query

This hybrid differs from the last in that here the prover P will terminate af-
ter the first r queries it makes to H, whereas in H1 since H is not programmed
to shortcut to 0, P will have to ‘work’ to find accepting transcripts that evaluate
to 0. Since the difference in running time of H2 and H1 is invisible to a dis-
tinguisher and a are generated identically in both hybrids, the only component
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that remains to be analyzed is e (since z is implicitly fixed by w,a, e). In H1,
each ei represents the index at which the first pre-image of 0 was found by P
relative to H(a, i, ·). Since P steps through pre-images uniformly at random and
H is a random oracle (i.e. H has independent uniformly random outputs for
every pair of distinct inputs) each ei is distributed uniformly in {0, 1}t in H1.
In H2, each ei is clearly uniformly distributed in {0, 1}t as it corresponds to the
first r challenges tried by P, which are sampled uniformly and independently.

As a, e, z are distributed identically in H2 and H1, the only distinguishing
event corresponds to the programming ofH, i.e. if the adversary is able to query
H on some index that H2 subsequently programs to a different value. Since a
has at least λ bits of entropy and is a prefix for all queries programmed in
H2, this distinguishing event happens with probability no greater than |Q|/2λ,
where |Q| is the number of queries made by the adversary to the random oracle.

Hybrid H3. We define hybrid experiment H3
0 to be the same as the last,

with the only change being that the vector of challenges e is sampled before
invoking PΣ,a. This change is merely syntactic, and H3

0 is distributed iden-
tically to H2. We now define a sequence of sub-hybrids {H3

i}i∈[r] as follows:
hybrid experiments H3

i−1 and H3
i are identical except that they differ in their

computation of (ai, zi). In particular, H3
i−1 computes (ai, statei) ← PΣ,a and

zi ← PΣ,z(ei, statei) whereas H3
i computes (ai, zi) ← SimΣ(x, ei). Clearly dis-

tinguishing H3
i−1 from H3

i is equivalent to distinguishing a simulated Sigma
protocol transcript from a real one. By perfect simulation of the sigma protocol,
we have that H3

i−1 ≡ H3
i for each i ∈ [r].

The final experiment in this sequence H3
r implements Steps 1 and 2 of

SF
NIZK and is entirely independent of the witness, which completes the process

of replacing the real P(x,w) with the simulation SF
NIZK(x).
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Definition A.1. Let λ be the security parameter, which is polynomially related
to the instance size. A strongly r-special sound Sigma protocol for relation R is
a three move public coin protocol between a prover PΣ and verifier VΣ that has
the following properties:

• Completeness: If PΣ (with private input w) and VΣ with public input x
such that (x,w) ∈ R execute the protocol honestly, then the protocol always
terminates in poly(λ) time with V accepting.

• Strong r-special soundness: There exists a PPT extractor Ext which given
as input the accepting conversations {Ti = (a, ei, zi)}i∈[r] for statement x such
that Ti 6= Tj for every distinct pair i, j ∈ [r], outputs w such that (x,w) ∈ R.

• Honest verifier zero-knowledge/r − 1 Simulatability: There exists a
PPT simulator Sim which upon input a statement x and challenges {ei}i∈[r−1]
outputs a, {zi}i∈[r−1] such that each (a, ei, zi) is an accepting conversation.

We restate the theorem below, and give the full proof.

Theorem A.2. If Σ is a strongly r+ 1-special sound Sigma protocol and `(r−
1) = λ, the protocol πNIZK is a straight-line extractable NIZKPoK in the random
oracle model, with an extractor that does not program the random oracle and
achieves extraction errorQ/2λ for an adversary making Q queries to the random
oracle.

Proof. We first argue completeness, then extraction and zero-knowledge.
Completeness: The prover P terminates successfully with a proof when it

finds a multicollision of size r for a function that maps a domain of size r · 2`
to a range of size 2`. By the pigeonhole principle, there exists at least one
such multicollision, and since the prover checks the domain exhaustively, such
a multicollision is always found.

Extraction: We give the straight-line extractor ExtNIZK in Figure 12 and then
argue that it fails with probability exponentially small in λ.

The event in which this extractor fails is the event in which an adversarial
prover P∗ is able to produce a proof π by querying no more than r accepting
Sigma protocol transcripts to the random oracle. We first ignore all queries
made toH that are not accepting transcripts, and then separate queries prefixed
by different a as they essentially instantiate independent random oracles (and
are not compatible with one another). For a given a, the event in which the
adversary is able to output an accepting proof with fewer than r + 1 accepting
transcripts (prefixed by a) queried to H is exactly the event that all of the
first r such accepting transcripts queried to H evaluate to the same value.
This is equivalent to r independent uniformly chosen `-bit strings being equal,
which happens with probability (2−`)(r−1) = 2−λ. For an adversary that makes
Q queries to the random oracle, the extraction error is therefore bounded by
Q/2λ.
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Extractor ExtNIZK

The extractor is given the statement x, a proof π, and the list of queries to the
random oracle Q that were made by the adversary in the production of this proof.
In addition to this, this extractor has access to the extractor ExtΣ of the strongly
r + 1 special sound sigma protocol, which requires r + 1 accepting transcripts
(with the same a value) in order to produce a witness w for the statement.

ExtNIZK(x, π,Q):
1. Parse (a, e,z) = π, and (ei)i∈[r] = e, and (zi)i∈[r] = z

2. Initialize τ = (ei, zi)i∈[r]

3. Search Q until a query of the form (a, e, z) is found such that (e, z) 6∈ τ , and
VΣ (x, (a, e, z)) = 1

4. Output ExtΣ(ai, τ)
Figure 12: Extracting a witness

Zero-knowledge: We describe how to simulate a proof in Figure 13, and then
show its indistinguishability from a real proof.

We argue that the simulation is indistinguishable from a real proof through
a sequence of hybrid experiments, which are defined as follows.

Hybrid H1. The real prover’s algorithm (P from πNIZK) is used to find (~a,~e, ~z)
such that H(a, e1, z1) = · · · = H(a, er, zr) where H is emulated as a random
oracle by the standard technique of maintaining a (query, response) table. The
difference from the real prover’s algorithm is merely syntactic.

Hybrid H2. Implement Steps 3 and 4 of SNIZK. In particular in this experiment,
the random oracle H is implemented as follows:

1. Sample v ← {0, 1}`

2. The first r queries by the honest prover Q1, Q2, · · ·Qr (where each Qi =
(~a, ei, zi) as generatred by P) will receive v as a response, i.e. H(Q1) =
H(Q2) = · · · = H(Qk) = v

3. Emulate H as a random oracle ‘honestly’ for every other query

This hybrid differs from the last in that here the prover P will terminate after
the first r queries it makes to H, whereas in H1 since H is not programmed to
shortcut to a multicollision, P will have to ‘work’ to find a multicollision. Since
the difference in running time of H2 and H1 is invisible to a distinguisher and
a are generated identically in both hybrids, the only component that remains
to be analyzed is e (since z is implicitly fixed by w,a, e). In H1, e represents
the indices of the first multicollision found by P relative to H. Since P steps
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Simulator SNIZK

Simulator SNIZK is given the statement x, and has the ability to program the
Random Oracle H. In addition to this SNIZK is given the simulator for the Sigma
protoocol SimΣ. Let t = `+ log r

SNIZK(x):
1. Uniformly sample ei ← {0, 1}t for each i ∈ [r] and set e = (ei)i∈[r]

2. Run the simulator for the sigma protocol to obtain (a,z)← SimΣ(x, r, e)
3. Sample v ← {0, 1}`

4. Program the random oracle H so that H(a, ei, zi) = v for each i ∈ [r]
5. Emulate H as a random oracle ‘honestly’ for every other query
6. Output π = (a, e,z)

Figure 13: Simulator for Zero-Knowledge

through pre-images uniformly at random and H is a random oracle (i.e. H
has independent uniformly random outputs for every pair of distinct inputs)
e is distributed uniformly in {0, 1}t×r in H1. In H2, e is clearly uniformly
distributed in {0, 1}t×r as it corresponds to the first r challenges tried by P,
which are sampled uniformly and independently.

As a, e, z are distributed identically in H2 and H1, the only distinguishing
event corresponds to the programming ofH, i.e. if the adversary is able to query
H on some index that H2 subsequently programs to a different value. Since a
has at least λ bits of entropy and is a prefix for all queries programmed in H2,
this distinguishing event happens with probability no greater than Q/2λ, where
Q is the number of queries made by the adversary to the random oracle.

Hybrid H3. Replace the role of P in generating (a, e, z) by Steps 1 and 2 of
SNIZK. In particular while H2 computes a, state← PΣ,a(w), samples each chal-
lenge ei ← {0, 1}t×r, and produces each zi ← PΣ,z(state, ei), this hybrid simply
computes (a, e, z) ← SNIZK(x). This modification still retains perfect correct-
ness, as H2 already programs H to ‘shortcut’ to a multicollision upon being
queried on each (a, ei, zi) produced. Indistinguishability of (a, e, z) produced
in H3 and H2 directly follows from r-simulatability of the Sigma protocol; there
is a trivial lossless reduction to translate a distinguisher for H3 and H2 to a
distinguisher for r-simulatibility of the Sigma protocol.

The final hybrid experiment H2 implements the simulator SNIZK in its en-
tirety, and does not take the witness w as an input. As we show that for any
(x,w) ∈ R, it holds that PH(w, x) ≡ H1(w, x) ≈ H3(x) ≡ SNIZK(x), zero-
knowledge of πNIZK is hence proven.
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Protocol Σr,DL

The prover P = (PΣ,a, PΣ,z) and verifier V are both given public parameters
(G, G, q), r ∈ Z, and the statement X = x ·G. The prover additionally has witness
x as private input.

PΣ,a(X,x):
1. Sample r − 1-degree polynomial f ∈ Zq[X] such that f(0) = x

2. Compute commitment a = (f(i) ·G)i∈[r−1], and set state = f

3. Output (state,a)

PΣ,z(state, e):
1. Parse e ∈ Z∗q and output f(e)

V(X,a, e, z):
1. Parse a1, a2, · · · , ar = a

2. Define degree r − 1 polynomial F ∈ G[X] such that F (0) = X and F (i) = ai

3. Output F (e) ?= z ·G
Figure 14: r-special sound proof of Discrete Log

B Strongly r-special Sound Schnorr
It is easy to modify Schnorr’s proof of knowledge of discrete logarithm proto-
col [Sch91] to an r-special sound Sigma protocol with r− 1-simulatability. This
is achieved (in spirit) by instantiating the batched Schnorr protocol of Gennaro
et al. [GLSY04] where one ‘batches’ r − 1 random instances with the given in-
stance. Intuitively in order to prove knowledge of the discrete log x ∈ Zq of a
public X ∈ G (where G is say an elliptic curve group), the prover samples a
random degree r − 1 polynomial f ∈ Zq[X] such that f(0) = x, and publishes
a = (f(i) · G)i∈[r−1]. Given a challenge e ∈ Z∗q , the prover reveals f(e), which
the verifier can check is indeed the discrete logarithm of F (e) by interpolation
in the exponent, where F ∈ G[X] is the degree r − 1 polynomial such that
F (0) = X and {F (i) = ai}i∈[r−1].

We give the protocol Σr,DL in Figure 14.

Theorem B.1. The protocol Σr,DL is a strongly r-special sound Sigma protocol
for the language DLog.

Proof. Completeness is easy to verify. r− 1-simulatability and r-special sound-
ness are discussed below.

r−1-simulatability. Transcript a, (zi)i∈[r−1] can be simulated given X = gx

and e1, e2, · · · , er − 1 as follows:
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1. Sample zi ← Zq and compute Zi = zi ·G for each i ∈ [r − 1]

2. Define degree r−1 polynomial F ∈ G[X] such that F (0) = X and F (ei) = Zi

3. Compute a = {F (i)}i∈[r−1]

4. Output a, (zi)i∈[r−1]

The real prover samples f by choosing {f(i)}i∈[r−1] uniformly, and publishes
z = {f(ei)}i∈[r−1] which is effectively uniform in Zrq. The simulator chooses
uniform z = {f(ei)}i∈[r−1] directly, and so z is distributed identically in both
executions. As Zq is isomorphic to G, the a values are fixed given X, z, which
accounts for all components in the view and proves that the simulated and real
values are identically distributed.

Strong r-special soundness. Given r accepting transcripts (ie. correct poly-
nomial evaluations), by the facts that there can exist at most one r − 1-degree
polynomial passing through r points that Zq and G are isomorphic, the points
(e1, z1), (e2, z2), · · · , (er, zr) fully specify f ∈ Zq[X] such that {f(i)·G = ai}i∈[r−1]
and f(0)·G = X. Therefore x is given by f(0). Note that ‘strong’ special sound-
ness is achieved trivially as there is a unique z that satisfies any challenge e.

Efficiency. A single instance of the strongly r-special sound Schnorr is equiv-
alent in bandwidth, proving, and verification cost to r copies of the regular
2-special sound Schnorr Sigma protocol. However each new prover response re-
quires a factor of r more Zq (scalar) multiplications to compute than a single
copy of the regular 2-special sound Schnorr Sigma protocol. Our analysis, how-
ever, focuses on minimizing the number of hash queries to the random oracle.
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