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Abstract. Side-channel attacks are formidable threats to the cryptosystems
deployed in the real world. An effective and provably secure countermeasure
against side-channel attacks is masking. In this work, we present a detailed
study of higher-order masking techniques for the key-encapsulation mecha-
nism Saber. Saber is one of the lattice-based finalist candidates in the National
Institute of Standards of Technology’s post-quantum standardization proce-
dure. We provide a detailed analysis of different masking algorithms proposed
for Saber in the recent past and propose an optimized implementation of
higher-order masked Saber. Our proposed techniques for first-, second-, and
third-order masked Saber have performance overheads of 2.7x, 5x, and 7.7x
respectively compared to the unmasked Saber. We show that compared to
Kyber which is another lattice-based finalist scheme, Saber’s performance
degrades less with an increase in the order of masking. We also show that
higher-order masked Saber needs fewer random bytes than higher-order
masked Kyber. Additionally, we adapt our masked implementation to uSaber,
a variant of Saber that was specifically designed to allow an efficient masked
implementation. We present the first masked implementation of uSaber,
showing that it indeed outperforms masked Saber by at least 12% for any
order. We provide optimized implementations of all our proposed masking
schemes on ARM Cortex-M4 microcontrollers.

Keywords: Post-quantum cryptography · Higher-order masking · Saber · Key-
encapsulation mechanism

1 Introduction

The security of public-key cryptography (PKC) is dependent on the computational
intractability of some underlying mathematical problems. The current most widely
used public-key cryptographic algorithms RSA [44] and elliptic curve cryptography
(ECC) [37] are based on the hardness of large integer factorization problem and
elliptic curve discrete logarithm problem respectively. Unfortunately, both of these
hard problems can be solved in polynomial time with large-scale quantum computers
by using Shor’s [46] and Proos-Zalka’s [41] algorithm. Post-quantum cryptography
(PQC) is a branch of PKC that focuses on designing cryptographic algorithms whose
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underlying mathematical problems remain hard even in the presence of large quan-
tum computers. Considering the fast evolution of quantum computers and their
impending threat to our current public-key infrastructure, the National Institute of
Standards and Technology (NIST) started a procedure to standardize post-quantum
public-key cryptographic primitives such as digital signatures, public-key encryption,
and key-encapsulation mechanism in 2016 [39].

In 2020, NIST announced four finalists and five alternative candidates for the
post-quantum key-encapsulation mechanism (KEM) category, that advanced to the
3rd round [2]. Three of the four finalist KEMs: Saber [19], Kyber [10], and NTRU [26],
are lattice-based. NTRU is an NTRU-based KEM, whereas Kyber and Saber are
based on variants of the learning with errors (LWE) problem. The security of Kyber
can be reduced to module learning with errors (MLWE) problem, and the security of
Saber is based on module learning with rounding (MLWR) problem. The hardness of
both LWE and LWR problems are dependent on the difficulty to solve a set of noisy
linear equations. This noise is explicitly added for a LWE problem but is implicitly
generated in a LWR problem using the round-off of a few least significant bits.

Initially, the main focus of the NIST post-quantum standardization procedure
was the mathematical security of the schemes, together with the performance, and
the memory footprint of the cryptographic implementation in embedded devices.
With the advancement of the standardization process, the focus was broadened to
take into account the implementation-security of the schemes also. Side-channel
attacks (SCA) [34] are a well-known type of physical attacks against implementations
of cryptographic algorithms. These attacks exploit leakage of information, such as
timing information, power consumption, electromagnetic radiation, etc., which leaks
information from the physical device which runs the algorithm to extract the secret key.

Silverman et al. [47] first showed a timing attack on quantum secure lattice-
based cryptographic protocol NTRUEncrypt [28] by exploiting the non-constant
time implementation. To prevent the timing attack, most of the cryptographic pro-
tocols use constant-time implementation, including Saber and Kyber. In recent years,
many works [29,24,42,3,50] showed SCA on lattice-based cryptographic schemes
with the help of power consumption and electromagnetic leakage information. A
provably-secure countermeasure against these kinds of SCA is masking [13].

The masking technique can also provide security against higher-order attacks,
where the adversary can use the power consumption information of multiple points.
However, the performance cost of the masked scheme increases with the order of
SCA. Reparaz et al. [43] were the first to introduce a first-order SCA resistant
masked implementation of chosen-plaintext attack (CPA) secure ring-LWE based
decryption. Nevertheless, real-world applications use chosen-ciphertext attack (CCA)
secure cryptosystems. Lattice-based quantum secure KEMs such as Saber and Kyber
achieve CCA security by using a variant of Fujisaki-Okamoto transformation [30] on
their CPA secure design. Oder et al. [40] proposed a 1st-order CCA secure masked
Ring-LWE key decapsulation and reported an overhead factor of 5.2x in performance
over an unmasked implementation on an ARM Cortex-M4.

Van Beirendonck et al. [6] proposed the first-order SCA secure implementation
of Saber with an overhead factor of 2.5x. This performance was achievable because
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of the power-of-two moduli and efficient utilization of masking techniques specifically
aimed at first-order security [48]. Heinz et al. [25] presented an optimized first-order
masked implementation of Kyber with an overhead factor of 3.4x compared to the
unmasked implementation of Kyber. Fritzmann et al. [21] proposed first-order masked
implementations of Kyber and Saber with instruction set extensions, and Bos et
al. [11] proposed higher-order masked implementations of Kyber.

First-order masked implementations of schemes are typically vulnerable against
higher-order side-channel attacks [36,49], i.e., the attacks that exploit side-channel
leakages of multiple intermediate values. Ngo et al. [38] proposed an attack on the
first-order masked Saber using a deep neural network constructed at the profiling
stage. This attack does not violate the assumption of the first-order masked Saber but
exploits higher-order side-channel leakages. Higher-order masking increases the noise
level exponentially and prevents attacks that exploit higher-order side-channel leakages.

In the third-round of the NIST submission, the Saber team introduced uSaber
as a variant of Saber. In uSaber, the secrets are sampled from a uniform distribution
instead of a centered binomial distribution as used in Saber. The authors claim that
the advantage of this modification is twofold. First, it makes the scheme simpler since
sampling from a uniform distribution is more straightforward than sampling from
a centered binomial distribution, and it also reduces the modulus by a factor of two.
Second, this change allows a very efficient masking of the secret values. However,
this claim is yet to be proven as there exists no masked implementation of uSaber
to corroborate this claim.

Contribution. In this work, we provide arbitrary-order masked implementations
of Saber and uSaber, and we compare their performances with the state-of-the-art
masked implementations of Saber and Kyber. We are the first to propose a higher-
order masked implementation of uSaber. For this, we present a masked centered
uniform sampler which is then applied to uSaber instead of Saber’s centered binomial
sampler. We generally take advantage of Saber’s power-of-two moduli to mask both
Saber’s and uSaber’s decapsulation algorithm, and we compare different recently
proposed algorithms for ciphertext comparison in higher-order masked settings.

We implement and benchmark our higher-order masked Saber and uSaber on an
ARM Cortex-M4 microcontroller using the PQM4 framework. The first-, second-,
and third-order masked decapsulation algorithm of Saber has an overhead factor of
2.7x, 5x, and 7.7x over the unmasked implementation, respectively. In uSaber, the
overhead factor for first-order is 2.3x, second-order is 4.2x, and third-order is 6.5x
compared to the unmasked version. We include the performance results and requisite
of the random bytes during masking for each masked primitive of first-, second-,
and third-order masked Saber and uSaber. Our implementations are available at
https://github.com/KULeuven-COSIC/Higher-order-masked-Saber.

Finally, we compare the performances of our higher-order masked implementations
of Saber and uSaber with the higher-order masked implementations of Kyber and
Saber presented in [11,12]. We demonstrate that the performances of masked Saber
implementations outperform masked Kyber implementations. Further, we show that
the performance of masked uSaber is better and requires fewer random bytes than
masked Saber and Kyber for any order.

https://github.com/KULeuven-COSIC/Higher-order-masked-Saber
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2 Preliminaries

2.1 Notation

We denote the ring of integers modulo q by Zq and the quotient ring Zq[X]/(X256+1)
by Rq. We use Rl

q to represent the ring which contains vectors with l elements of Rq.

The ring with l×l matrices over Rq is denoted by Rl×l
q . We use lower case letters to

denote single polynomials, bold lower case letters to denote vectors and bold upper
case letters to denote matrices. The j-th coefficient of the polynomial c is represented
as c[j], where j∈{0,1,...,255}. The j-th coefficient of the i-th polynomial of the vector
b is represented as b[i][j], where j∈{0,1,...,255} and i∈{0,1,...,l−1}. Sometimes the
set of (n+1) elements {x0,x1,...,xn} from the same ring R is denoted by {xi}0≤i≤n.

The rounding operation is denoted by ⌊·⌉, and it returns the closest integer with
ties rounded upwards. The operations x≪ b and x≫ b denote the logical shifting
of x by b positions left and right, respectively. These operations are extended on
polynomials by performing them coefficientwise.

We denote x←χ(S) when x is sampled from the set S according to the distri-
bution χ. We use the notation x←χ(S,seedx) to represent that x belongs to the
set S and is generated by the pseudorandom number generator χ with the help of
seed seedx. To represent the uniform distribution we use U. The centered binomial
distribution is denoted by βµ with standard deviation

√
µ/4. The centered uniform

distribution is expressed as Uu, when it samples uniformly from [−2(u−1),2(u−1)−1].
We use HW(x) to represent the Hamming weight of x.

2.2 Saber

In this section, we introduce the Saber encryption scheme. The parameter set of
Saber includes three power-of-two moduli q, p and t, which define the rings Rq, Rp

and Rt used in the algorithm. From these moduli, one can calculate the number of
bits of one coefficient as ϵq =log2(q), ϵp=log2(p) and ϵt=log2(t). The parameter
set also includes a vector length l, which increases with increase in security, and an
integer µ defining the coins of the secret distribution βµ. Given a set of parameters,
the key generation, encryption, and decryption of Saber are shown in Figure 1. For an
in-depth review of the Saber encryption scheme, we refer to the original paper [19,20].

2.3 uSaber

uSaber or uniform-Saber was proposed in third round NIST submission [20] as a
variant of Saber. The principal alteration in uSaber from Saber is that it uses a
centered uniform distribution Uu for sampling secret vectors instead of the centered
binomial distribution βµ. The coefficients in polynomials of secret vector are from
[−2(u−1),2(u−1)−1] rather than [−µ/2,µ/2]. Due to this modification, uSaber receives
approximately the same level of security as Saber with a slightly reduced parameters
set as shown in Table 1.
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Saber.PKE.KeyGen()

1. seedAAA←U({0,1}256)
2. AAA :=U(Rl×l

q ;seedAAA)
3. r :=U({0,1}256)
4. sss :=βµ(R

l×1
q ;r)

5.

bbb :=((AAATsss+hhh) mod q)≫(ϵq−ϵp)∈Rl×1
p

6. return (pk :=(seedAAA,bbb),sk :=(sss))

Saber.PKE.Enc(pk=(seedAAA,bbb),m∈R2;r)

1. AAA :=U(Rl×l
q ;seedAAA)

2. if: r is not specified:
3. r :=U({0,1}256)
4. s′s′s′ :=βµ(R

l×1
q ;r)

5. bbb′ :=((AAAsss′+hhh) mod q)≫(ϵq−ϵp)∈Rl×1
p

6. v′ :=bbbT (sss′ mod p)∈Rp

7.

cm :=(v′+h1−2ϵp−1m mod p)≫(ϵp−ϵt)∈Rt

8. return c :=(cm,b′b′b′)
Saber.PKE.Dec(sk=sss,c=(cm,b′b′b′))

1. v :=bbb′T (sss mod p)∈Rp

2. m′ :=((v−2ϵp−ϵtcm+h2) mod p)≫(ϵp−1)∈R2

3. return m′

Fig. 1: Saber.PKE

Table 1: Parameters of Saber and uSaber with security and failure probability

Scheme

Parameters
Post-quantum

Security
Failure

Probability

NIST
Security
Level

Identical
Different

q
Secret

Distribution

uSaber
l = 3, p = 210

n = 256, t = 24

212 U2 2165 2−167 3

Saber 213 β8 2172 2−136 3

2.4 Fujisaki-Okamoto transformation

The encryption scheme outlined in the previous section only provides security against
passive attackers (IND-CPA security). One can obtain active security (IND-CCA)
security by using a generic transformation such as a post-quantum version of the
Fujisaki-Okamoto transformation [22,27]. The idea is that the encapsulation encrypts
a random input, and also uses this input as a seed for all randomness. The decap-
sulation can then decrypt the seed from the ciphertext and recompute the ciphertext.
This recomputed ciphertext can then be used to check if the input ciphertext is
generated correctly. The Fujisaki-Okamoto transformation transforms the encryption
scheme into a key encapsulation mechanism (KEM). Given hash functions F, G
and H, the saber KEM is given in Figure 2. Again, we refer to the original Saber
paper [19,20] for a more detailed description.
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Saber.KEM.KeyGen()

1. (seedAAA,bbb,sss)=Saber.PKE.KeyGen()
2. pk=(seedAAA,bbb)
3. pkh=F(pk)
4. z=U({0,1}256)
5.

return (pk :=(seedAAA,bbb),sk :=(sss,z,pkh))

Saber.KEM.Encaps(pk=(seedAAA,bbb))

1. m←U({0,1}256)
2. (K̂,r)=G(F(pk),m)
3. c=Saber.PKE.Enc(pk,m;r)
4. K=H(K̂,c)
5. return (c,K)

Saber.KEM.Decaps(sk=(sss,z,pkh),pk=(seedAAA,bbb),c)

1. m′=Saber.PKE.Dec(sss,c)
2. (K̂′,r′)=G(pkh,m′)
3. c∗=Saber.PKE.Enc(pk,m′;r′)
4. if: c=c∗
5. return K=H(K̂′,c)
6. else:
7. return K=H(z,c)

Fig. 2: Saber.KEM

2.5 Higher-order masking

Masking is a widely used countermeasure against side-channel attacks. The nth-order
masked scheme can provide security against at most nth-order differential power
attacks. The general idea of nth-order masking is to split the sensitive variable x into
n+1 shares and then perform all the operations of the algorithms on each of the
shares individually. The shares of the sensitive variable look uniformly random and
the sensitive information can only be retrieved after combining all the n+1 shares.
Moreover, if an adversary can get side-channel information from at most n points, he
will not learn anything about the sensitive variable. In an nth-order masked implemen-
tation, linear operations typically duplicate (n+1) times, and non-linear operations
need to use more complex and costlier methods. As a consequence, the performance
cost of a nth-order masked implementation increases at least by a factor of (n+1).

There are several methods for masking. We primarily deal with two kinds of
masking techniques: arithmetic masking and Boolean masking. For both the mask-
ing techniques, in order to obtain nth-order security, the sensitive variable x∈Zq

needs to be split into n+1 independent shares x0,x1, ... ,xn ∈ Zq. In arithmetic
masking, the relation between the sensitive variable x and the n+1 shares of x is
x=x0+x1+···+xn mod q. Whereas, in Boolean masking the sensitive variable x
and its n+1 shares are related as x=x0⊕x1⊕···⊕xn.

The arithmetic masking is advantageous for protecting arithmetic operations such
as addition, subtraction, multiplication. For example, to protect the modular addition
z = x+y mod q against n-order attacks, when only x contains sensitive data, we
split x into n+1 shares {xi}0≤i≤n such that

∑n
i=0xi mod q=x, then the shares of

z=
∑n

i=0zi mod q are:
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zi=

{
xi+y mod q, if i=0
xi, if 1≤i≤n .

If x and y both contains sensitive data, we split y together with x into n+1 shares
{yi}0≤i≤n such that

∑n
i=0yi=y mod q, then the shares of z=

∑n
i=0zi mod q are:

zi=xi+yi mod q, 0≤i≤n.

To securely compute the multiplication z=x·y mod q, when x only contains sensitive
data, we create n+1 shares {xi}0≤i≤n for x such that

∑n
i=0xi mod q=x, then the

shares of z=
∑n

i=0zi mod q are:

zi=xi·y mod q, 0≤i≤n.

We prefer Boolean masking for variables that undergo bitwise operations. For
example, if we want to perform logical shift operation z=x≫l securely, write x into
n+1 shares {xi}0≤i≤n such that ⊕n

i=0xi=x, then calculate zi=xi≫ l,∀i to obtain
the shares of z=⊕n

i=0zi.

3 Masking Saber

In a key encapsulation mechanism (KEM), the secret key remains fixed for a significant
amount of time. Specifically, the decapsulation algorithm uses the non-ephemeral secret
key s, and therefore it is the most susceptible operation against side-channel attacks.
In this paper, we focus on protecting the non-ephemeral secret key of Saber during the
decapsulation. We introduce a masked decapsulation algorithm for Saber, which can
resist higher-order side-channel attacks. The decapsulation procedure of Saber can
be partitioned into three segments, namely decryption, re-encryption, and ciphertext
comparison. For visualization, we present the flow of Saber’s decapsulation algorithm in
Figure 3. Here, all the modules that process sensitive data due to the involvement with
the secret have beenmarked grey. These modules are vulnerable from the perspective of
side-channel attacks and need to be masked. In this section, we describe all the masked
primitives that are used in the higher-order masked decapsulation procedure of Saber.
We also present a new algorithm to perform the ciphertext comparison component
in the masked setting. We will go through each part of the decapsulation algorithm
of Saber chronologically and explain the methods we have used to mask them.

3.1 Arithmetic operations

The decapsulation algorithm of Saber is heavily dependent on polynomial arithmetic,
such as polynomial addition/subtraction and polynomial multiplication. We use
arithmetic masking to protect these operations. As shown in Figure 3, the decap-
sulation algorithm requires the following operations: addition between one masked
and another unmasked polynomial, addition between two masked polynomials, and
multiplication between one masked and another unmasked polynomial. For masking
these operations, we follow the methods described in Section 2.5.
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Xbbb′

sss

+

hhh2

cm ≪ − ≫ G

pkh

K̂′

XOF βµ X

U

seedAAA

X

bbb

+

hhh

+

h1

+ ≫

≫ bbb′∗

cm∗

=

return H(K̂′,c)

yes

return H(z,c)

no

Fig. 3: Decapsulation of Saber. In grey the operations that are influenced by the
long term secret sss and thus vulnerable to side-channel attacks [6].

To perform the polynomial multiplication, the original unmasked Saber multi-
plication uses a hybrid multiplication, a combination of Toom-Cook-4, 2 levels of
Karatsuba, and school-book multiplication [19,35,33]. We use this same multiplication
technique in our masked implementation. Chung et al. [14] have recently introduced an
efficient method to perform polynomial multiplication by using the number-theoretic
transform. The same method could be used for the implementation of masked Saber
to provide a significant performance improvement [12]. However, this is not the goal
of our work and we keep this as future work.

3.2 Compression

In the last step of Saber.PKE.Dec, m is computed by calculating the most significant
bit (MSB) for each coefficient. It compresses each coefficient of the polynomial (v−
2ϵp−ϵtcm+h2) mod p to produce a polynomialm where each coefficient is one bit long.

The logical shift operation is easy on Boolean shares. In this situation, we need
to apply a logical shift operation on each share separately. Unfortunately, computing
this logical shift operation on arithmetic shares is not trivial. This fact is discussed
elaborately in [6] for the case of first-order masking, and the similar issue arises for
higher-order masking also.

We compute MSB on arithmetic shares by taking the following steps: first, convert
arithmetic shares to Boolean shares (A2B conversion), second, perform logical shift
operation on Boolean shares, and finally, return to arithmetic domain with the
Boolean to arithmetic (B2A) conversion. As m∈R2, the resultant polynomial after
compression is a polynomial with 1 bit coefficients. Here, the Boolean shares of m
act like arithmetic shares of m. Therefore, we do not need the B2A conversion step.

Bitslicing is a technique that helps to improve the performance of bitwise operations.
We have opted for the algorithm proposed in [15] using the bitsliced implementation
of [17] for the A2B conversion of our implementations.
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3.3 Masked hashing

In Saber, the hash function G and the pseudo-random number generator XOF are re-
alized by using SHA3-512 and SHAKE-128, respectively. Both are different instances
of the sponge function Keccak-f[1600] [7]. It has been shown that this construction
is easy to protect by using Boolean masking [23].

Keccak-f[1600] permutation has five steps: θ,ρ,π,χ and ι. In between these
θ,ρ,π are linear diffusion steps and ι is a simple addition. As all of these four are
linear operations on Boolean shares, we just need to apply them for each share. χ is a
degree 2 non-linear mapping and therefore requires extra attention to apply masking.
Gross et al. [23] developed a technique to implement χ in the higher-order mask
setting. We have adopted their technique in our implementations.

3.4 Masked centered binomial sampler

Saber.PKE.Enc uses the centered binomial sampler for sampling the vector s′. This
sampler outputs the result of HW(x)−HW(y), where x and y are pseudorandom numbers
of bit length four. These pseudorandom numbers are generated by using SHAKE-128.
As mentioned in Section 3.3, SHAKE-128 is protected by using Boolean masking.
After the generation of s′, polynomial multiplications with s′ (e.g. As′ and bTs′)
take place. SHAKE-128 creates Boolean shares, but polynomial multiplication is an
arithmetic operation that is less expensive with arithmetic shares. To mitigate this
issue, we need to include a conversion algorithm that converts Boolean shares into
arithmetic shares (B2A conversion) in the masked centered binomial sampler.

Schneider et al. [45] propose two efficient higher-order masked centered binomial
samplers: sampler1 computes masked shares bitwise, whereas sampler2 uses the
bitslicing techniques to improve throughput. We have adopted the implementation
of sampler2 together with the modification made by Van Beirendonck et al. [6]
specifically for Saber.

To convert shares from Boolean to arithmetic, we use the B2A algorithm pro-
posed in [8]. The details have been provided in the Algorithm 1. In this Algorithm,
SecBitAdd calculates shares of HW(x) and SecBitSub takes shares of HW(x) and
shares of y as inputs and outputs shares of z = HW(x)−HW(y). The function Sec-

ConstAdd adds µ/2=4 with the shares of z to avoid any negative value that can
occur after SecBitSub. In the next step the B2A function converts all the Boolean
shares of z to the arithmetic shares of A and the last step converts shares of A from
{0,1,...,8} to {−4,−3,...,3,4}.

3.5 Masked Comparison

The masked ciphertext comparison component is required to check the equality
between masked ciphertext generated from re-encryption and the public ciphertext.

This step performs the equality check c
?
=c∗ of the Saber.KEM.Decaps algorithm in

the masked domain.
An easy but efficient method for the first-order masked comparison is introduced

by Oder et al. [40]. Unfortunately, this hash-based method is limited to first-order
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Algorithm 1: Masked centered binomial sampler [45]

Input : {xi}0≤i≤n,{yi}0≤i≤n where xi,yi∈Rκ
2 such that

⊕n
i=0xi=x,

⊕n
i=0yi=y

Output : {Ai}0≤i≤n where Ai∈Rq and
∑n

i=0Ai= (HW(x)− HW(y)) mod q

1 {zi}0≤i≤n← SecBitAdd({xi}0≤i≤n) [6]
2 {zi}0≤i≤n← SecBitSub({zi}0≤i≤n,{yi}0≤i≤n) [45]
3 {zi}0≤i≤n← SecConstAdd({zi}0≤i≤n) [6]
4 {Ai}0≤i≤n← B2A({zi}0≤i≤n) [8]
5 A1←(A1−µ/2) mod q
6 return {yi}0≤i≤n

masking, and cannot be generalized to check ciphertext equality in the higher-order
masked settings.

Different approaches for higher-order masked comparison were recently analyzed
thoroughly by D’Anvers et al. [17]. In general, there are four approaches. The simple
method originally due to Barthe et al. [5] groups individual bits into a large SecOR

operation. This requires a pre-processing step to handle ciphertext compression that is
straightforward to mask for Saber, but more complex for Kyber [21]. The arithmetic
method was developed in a series of works [4,9,18], and aims to reduce the total num-
ber of comparisons by grouping coefficients into a random sum. The decompression
method [11] developed for Kyber avoids masking the compression of the re-encrypted
ciphertext, by decompressing the input ciphertext instead. Finally, the hybrid method
[16] introduced the idea of using different of the previously discussed methods for
the different components of the ciphertext. All of these approaches rely on A2B
conversions, which can be heavily optimized using bitslicing [17,12].

In this section, we will discuss two of these different approaches to higher-order
masked comparison. The first one is the Saber-adapted decompression method, which
was not considered in [17]. The second one is the simple method, which was found
to be the most efficient method for Saber in that same work. For both methods, we
consolidate concurrent A2B optimization techniques proposed in [17,12].

3.5.1 Decompressed masked comparison algorithm Bos et al. [11] intro-
duced a new method based on A2B conversion for the masked comparison algorithm
for Kyber, in order to reduce the cost of the Boolean equality check circuit. This
method does not perform the compression operation on the recomputed ciphertext,
but performs a decompression operation on the public ciphertext instead. Then, the
comparison is performed in the uncompressed domain. The decompressed operation
is less costly to apply on public ciphertext, as it is public and so this operation can
be performed unmasked.

Let us assume the public ciphertext be c=(b,cm), where b be the key contained
part and cm be the message contained part of the ciphertext c. In Saber, the compres-
sion operation is applied to generate the ciphertext during encryption, and this opera-
tion is a many-to-one operation. In this process, each coefficient of b loses three bits, and
each coefficient of cm loses six bits. So, as compensation for the masked comparison, we
use a decompression operation, which outputs an interval of integers for each coefficient
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Algorithm 2: Decompressed masked comparison algorithm

Input : {b′
i}0≤i≤n where each b′

i∈Rl
2ϵq and

⊕n
i=0b

′
i=b′,

{c′i}0≤i≤n where each c′i∈R2ϵp and
⊕n

i=0c
′
i=c′,

publicly available b and cm
Output : {biti}0≤i≤n with each biti∈{0,1} such that

⊕n
i=0biti=1 iff

b=b′≫(ϵq−ϵp) and cm=c′≫(ϵp−ϵt), else 0

1 //For b part of ciphertext
2 sb←(b≪(ϵq−ϵp))−1 //Decompression operation on b

3 eb←(b≪(ϵq−ϵp))+2(ϵq−ϵp)

4 {b′′
i }0≤i≤n←{b′

i}0≤i≤n

5 b′′
1←b′

1−sb+2(ϵq−1)

6 b′
1←b′

1−eb
7 {y′

i}0≤i≤n← A2B({b′′
i }0≤i≤n)

8 {yi}0≤i≤n← A2B({b′
i}0≤i≤n)

9 {yi}0≤i≤n←MSB({yi}0≤i≤n)||MSB({y′
i}0≤i≤n)

10 //For cm part of ciphertext
11 scm←(cm≪(ϵp−ϵt))−1//Decompression operation on cm

12 ecm←(cm≪(ϵp−ϵt))+2(ϵp−ϵt)

13 {c′′i }0≤i≤n←{c′i}0≤i≤n

14 c′′1←c′1−scm+2(ϵp−1)

15 c′1←c′1−ecm
16 {x′

i}0≤i≤n← A2B({c′′i }0≤i≤n)
17 {xi}0≤i≤n← A2B({c′i}0≤i≤n)
18 {xi}0≤i≤n←MSB({xi}0≤i≤n)||MSB({x′

i}0≤i≤n)

19 //Boolean circuit to test all bits of each coefficient of (y,x) is 1
20 {biti}0≤i≤n← BooleanAllBitsOneTest ({yi}0≤i≤n,{xi}0≤i≤n,2,2)

21 return {biti}0≤i≤n

of the public ciphertext. Let, c[j] be a coefficient of the public ciphertext c, and the
corresponding output of decompression operation be (sc[j],ec[j]). This implies every el-
ement in between the interval (sc[j],ec[j]) becomes c[j] after the compression operation.

Next, we verify that each coefficient of the shared uncompressed ciphertext of
c∗ which is generated from the re-encryption, lies in the corresponding decompressed
interval. Let c∗[j] be the arithmetically masked uncompressed ciphertext coefficient
corresponding to the public ciphertext coefficient c[j]. Now, if c∗[j] ∈ (sc[j],ec[j])
for all coefficients j, then the comparison returns success and outputs the shared

valid key else returns a random invalid key. The test c∗[j]
?
∈ (sc[j],ec[j]) is realized

by checking whether c∗[j]−sc[j] is a positive number and whether c∗[j]−ec[j] is
a negative number. We have adopted this method for performing the higher-order
masked ciphertext comparison in Saber as shown in Algorithm 2.

In Algorithm 2, lines 2-3 and 11-12 compute the start-point and the end-point of the
interval for each coefficient of the key contained part b and the message contained part
cm of the public ciphertext c, respectively. The MSB of any number acts as a sign bit,
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Algorithm 3: BooleanAllBitsOneTest

Input : {yi}0≤i≤n where each yi∈Rl
2bmod1 and

⊕n
i=0yi=y,

{xi}0≤i≤n where each xi∈R2bmod2 and
⊕n

i=0xi=x,
bmod1, and bmod2

Output : {biti}0≤i≤n with each biti∈{0,1} such that
⊕n

i=0biti=1 iff
each bit of every coefficients of y and x is 1, else 0

1 for j1= 1 to l do
2 for s= 1 to bmod1 do

3 {ui[s][j1]}0≤i≤n← Bitslice({y(s)
i [j1]}0≤i≤n)

4 for s= 1 to bmod2 do

5 {vi[s]}0≤i≤n← Bitslice({x(s)
i }0≤i≤n)

6 //Secure And on both
7 {wi}0≤i≤n←{vi[1]}0≤i≤n

8 for s= 2 to bmod2 do
9 {wi}0≤i≤n← SecAnd({wi}0≤i≤n,{vi[s]}0≤i≤n)

10 for j= 1 to l do
11 {yi[j]}0≤i≤n←{ui[1][j]}0≤i≤n

12 for s= 2 to bmod1 do
13 {yi[j]}0≤i≤n← SecAnd({yi[j]}0≤i≤n,{ui[s][j]}0≤i≤n)

14 {wi}0≤i≤n← SecAnd({wi}0≤i≤n,yi[j]}0≤i≤n)

15 for j= log2(256)−1 to 0 do
16 {w′

i}0≤i≤n←w0≤i≤n≫2j

17 {wi}0≤i≤n←w0≤i≤n mod (22
j

)
18 {wi}0≤i≤n← SecAnd({wi}0≤i≤n,{w′

i}0≤i≤n)

19 {biti}0≤i≤n←{wi}0≤i≤n

20 return {biti}0≤i≤n

i.e., if the MSB is 1 then the number is negative, else the number is positive. As in an
ideal case, c∗[j]−sc[j]>0 and c∗[j]−ec[j]<0, so the MSB(c∗[j]−sc[j]) should be 0 and
the MSB(c∗[j]−ec[j]) should be 1. In order to avoid two different kinds of checking for
c∗[j]−sc[j] and c∗[j]−ec[j], we need to add a constant l with c∗[j]−sc[j] such that its
MSB becomes 1. The value of l is 2(ϵq−1) and 2(ϵp−1) for b and cm part of c, respectively.
We compute the MSB of an arithmetically masked variable in the following way: we
convert the arithmetic shares to Boolean shares using A2B conversion, and then we
use a shift operation to extract the masked shares of MSB. Finally, Algorithm 2 uses
Algorithm 3, the BooleanAllBitsOneTest function to combine the output bits of
all coefficients and returns a single-bit indicating success or failure.

3.5.2 Simple masked comparison algorithm Next, we describe the simple
method as given in [17]. Note that the re-encrypted ciphertext c∗ is arithmetically
masked and uncompressed, but the public ciphertext c is unmasked and compressed.
As mentioned earlier, our task is to verify whether c equals c∗ after compression. In
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this method, we perform the following steps: firstly, we transform arithmetic shares
of c∗ to Boolean shares by using A2B conversion algorithm, secondly, we compress
the re-encrypted Boolean masked ciphertext c∗ by using coefficientwise logical right
shift, thirdly, we subtract the public ciphertext c from the compressed and masked
re-encrypted ciphertext c∗. This method is shown in Algorithm 4.

Algorithm 4: Simple masked comparison algorithm [16]

Input : {b′
i}0≤i≤n where each b′

i∈Rl
2ϵq and

⊕n
i=0b

′
i=b′,

{c′i}0≤i≤n where each c′i∈R2ϵp and
⊕n

i=0c
′
i=c′,

publicly available b and cm
Output : {biti}0≤i≤n with each biti∈{0,1} such that

⊕n
i=0biti=1 iff

b=b′≫(ϵq−ϵp) and cm=c′≫(ϵp−ϵt), else 0

1 //For b part of ciphertext
2 {yi}0≤i≤n← A2B({b′

i}0≤i≤n)
3 {yi}0≤i≤n←({yi}0≤i≤n≫(ϵq−ϵp))
4 y1←y1⊕b
5 //For cm part of ciphertext
6 {xi}0≤i≤n← A2B({c′i}0≤i≤n)
7 {xi}0≤i≤n←({xi}0≤i≤n≫(ϵp−ϵt))
8 x1←x1⊕cm
9 //Boolean circuit to test all bits of each coefficient of (y,x) is 0

10 y1←¬y1

11 x1←¬x1

12 {biti}0≤i≤n← BooleanAllBitsOneTest ({yi}0≤i≤n,{xi}0≤i≤n,ϵp,ϵt)

13 return {biti}0≤i≤n

3.5.3 Bitsliced A2B Both the decompression method and the simple method rely
heavily on A2B conversions. Throughout the implementations, we use the bitsliced
A2B conversion [17] for further speed-up. Moreover, A2B conversions use the SecAdd

sub-function to perform masked addition. Bronchain et al. [12] proposed a SecAdd

which uses k−1 SecAnd operations for k-bit inputs, as opposed to 2k−3 SecAnd

operations required in [17]. We included this technique into the implementation of [17]
to receive better performance.

4 Masking uSaber

In uSaber, the coefficients of the secret vector are sampled according to the centered
uniform distribution Uu instead of the centered binomial distribution βµ. Here, the
hamming weight computation of the centered binomial distribution is replaced by
the sign extension of u bits to ϵq bits, to generate a sample in [−2(u−1),2(u−1)−1]
from u uniformly random bits. This secret vector sampler is the only component that
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differs between Saber and uSaber. A main advantage of uSaber is that the centered
uniform sampler has fewer operations compared to the centered binomial sampler
and therefore, is easier to mask.

Similar to the centered binomial sampler, the centered uniform sampler takes
pseudorandom Boolean-masked bits as input that are produced by the masked
SHAKE-128 function. Our simple higher-order masked centered uniform sampler is
shown in Algorithm 5. We base it on SecConsAdd in the masked centered binomial
sampler, mentioned in Section 3.4. First, we use xor to transform a negative num-
ber into a positive number. Second, we apply B2A conversion algorithm to convert
Boolean shares to arithmetic shares. Third, we subtract 2u−1 from the arithmetic
shares to map them from [0,2u−1] back to [−2(u−1),2(u−1)−1]. This masked sampler
does not require SecBitAdd and SecBitSub which are used in masked centered
binomial sampler. The centered uniform sampler is simpler and requires fewer masked
operations than the centered binomial sampler.

Algorithm 5: Masked centered uniform Sampler

Input : {xi}0≤i≤n where xi∈Ru
2 such that

⊕n
i=0xi=x

Output : {Ai}0≤i≤n where Ai∈Rq and
∑n

i=0Ai= (x⊕2u−1)−2u−1 modq

1 {z0}←({z0}⊕2u−1)
2 {Ai}0≤i≤n← B2A({zi}0≤i≤n) [8]
3 A1←A1−2u−1 modq
4 return {yi}0≤i≤n

5 Performance evaluation

To demonstrate the performance of all of the proposed methods, we implement them
on a 32-bit ARM Cortex-M4 microcontroller, STM32F407-DISCOVERY development
board. We adopt the widely used PQM4 [32] post-quantum cryptographic library and
benchmarking framework for performance evaluation. In this framework, the system
timer (SisTick) is used to measure the cycle counts. This framework uses a 24MHz
main system clock and a 48MHz TRNG clock. We take advantage of the on-chip
TRNG for sampling masking randomness instead of generating in advance and storing
random bits in a table like Kyber [11]. This TRNG generates 32 random bits per
40 TRNG clock cycles, which is equal to 20 main system clock cycles. We include
the cost of randomness sampling with the benchmarks. We use arm-none-eabi-gcc

version 9.2.1 to accomplish the measurements of our implementations.

5.1 Performance analysis of comparison algorithms for Saber

We present the cycle counts of the implementation for arbitrary order masked com-
parison algorithms of Saber. In Saber, the parameters are: ϵq =13, ϵp=10, ϵt=4
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and l=3. We break down the cycle counts into three parts: spent during all the A2B

conversion, spent in computing the function BooleanAllBitsOneTest for the cor-
responding parameter, and spent in performing all other operations. Table 2 contains
the performance details of masked ciphertext algorithms presented in Sections 3.5.1
and Sections 3.5.2.

In Table 2, we include two versions of the decompressed comparison algorithm
and the simple comparison algorithm. We use the bitsliced A2B conversion technique
of masked simple comparator proposed in [17] for the first version, and we improve
this bitsliced A2B converter by employing the technique introduced in [12]. It can be
seen from the table the performance of the decompressed comparison algorithm gains
9%, 16%, and 17% improvements for first-, second-, and third-order masking after us-
ing [12], respectively. Side by side, the improved decompressed comparison algorithm
requires 21% fewer random bytes for any order masking. The performance of the
simple comparison algorithm improves by 8%, 15%, and 16% for first-, second-, and
third-order masking after using [12], respectively. The improved simple comparison
algorithm requires approximately 19% fewer random bytes for any order masking.

As we can see from the table, the cycle count for all A2B conversions employed in
the decompressed comparison algorithm is almost double for all orders compared to
the simple comparison algorithm. However, for all the orders, the clock cycle required
to compute the function BooleanAllBitsOneTest with corresponding parameters is
approximately one-fourth in the decompressed comparison algorithm than the simple
comparison algorithm. As we can see from Table 2, the improved simple comparison
algorithm is approximately 43% faster and employ roughly 42% fewer random bytes
than the improved decompressed comparison algorithm for any order masking of
Saber. Similar results can be found for the higher-order masked uSaber. So, we use
the improved simple comparison algorithm in our higher-order masked Saber and
uSaber decapsulation algorithms.

5.2 Performance analysis for masked Saber decapsulation

We present the performance cost of the Saber algorithm for higher-order masking
in Table 3. This table also provides the breakdown of the performance cost of the
higher-order masking for all the modules of the masked Saber decapsulation algorithm.
As mentioned earlier, for masked Saber implementations we use the hybrid polynomial
multiplication, a combination of Toom-Cook-4, Karatsuba, and schoolbooks multipli-
cation. Therefore, we use the Saber implementation which uses the hybrid polynomial
multiplication to get the overhead factor for n-th order masked Saber. To maintain
simplicity, most of the implementation is written in C. Only the hybrid multiplication
is in assembly and generated by using the optimal implementation proposed in [31].

From Table 3, we can see that the performance overhead factor of masked Saber
decapsulation implementation for first-order is 2.69x, for second-order is 4.96x, and for
third-order is 7.71x. From the table, we can see that the overhead factor for arithmetic
operations approximately is (n+1) for nth-order masking due to n+1 time repetitions
of each operation. On the other hand, the non-linear operations on arithmetic shares,
for example, hash functions, binomial sampler, compression operation, and ciphertext
comparison, have much larger overhead factors in the masked setting. To maintain
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Table 2: Performance breakdown of the implementation of masked comparison
algorithms in the Cortex-M4 platform.

CPU [k]cycles
Masked Comparator

1st 2nd 3rd

Decompressed comparison [This work] 651 2,107 3,606
all A2B conversion 612 2,047 3,518
BooleanAllBitsOneTest 9 29 50
Other operations 28 31 37
# random bytes 12,048 47,920 95,840

Improved decompressed comparison [This work] 588 1,756 2,962
all A2B conversion 549 1,696 2,875
BooleanAllBitsOneTest 9 29 50
Other operations 28 31 37
# random bytes 9,424 37,424 74,848

Simple comparison [17] 363 1,160 1,992
all A2B conversion 308 1,023 1,766
BooleanAllBitsOneTest 38 117 202
Other operations 16 19 24
# random bytes 6,992 26,864 53,728

Improved simple comparison [This work] 331 985 1,671
all A2B conversion 276 848 1,444
BooleanAllBitsOneTest 38 117 202
Other operations 16 19 24
# random bytes 5,680 21,616 43,232

Table 3: Performance cost of all the modules of the higher-order masked decapsulation
procedure of Saber.

CPU [k]cycles
Order No mask 1st 2nd 3rd

Saber-Decapsulation 1,121 3,022 (2.69x) 5,567 (4.96x) 8,649 (7.71x)
CPA-PKE-Decryption 129 297 (2.30x) 527 (4.08x) 775 (6.00x)
Polynomial arithmetic 126 237 (1.88x) 349 (2.76x) 464 (3.68x)
Compression 2 59 (29.50x) 178 (89.00x) 310 (155.00x)

Hash G (SHA3-512) 13 123 (9.46x) 242 (18.61x) 379 (29.15x)
CPA-PKE-Encryption 853 2,477 (2.90x) 4,670 (5.47x) 7,370 (8.64x)
Secret generation 69 909 (13.17x) 1,995 (28.91x) 3,561 (51.60x)
XOF (SHAKE-128) 63 611 (9.69x) 1,210 (19.20x) 1,887 (29.95x)
CBD (Binomial Sampler) 6 297 (49.50x) 785 (130.83x) 1,674 (279.00x)

Polynomial arithmetic 1,235 1,688 2,136
Polynomial Comparison

783
331

(2.00x)
985

(3.41x)
1,671

(4.86x)

Other operations 126 126 (1.00x) 126 (1.00x) 126 (1.00x)

the security assumption, we need to use random bytes in some masking algorithms
(example: SecAnd, SecAdd, SecRefresh, etc). Table 4 shows random bytes requirements
for all the components of the higher-order masked Saber decapsulation algorithm. It
can be seen from Table 4 that the random bytes requirement increases with the order.



Higher-order masked Saber 17

Table 4: Randomness cost of all the modules of the higher-order masked decapsulation
algorithm of Saber.

# Random bytes
Order 1st 2nd 3rd

Saber-Decapsulation 12,752 43,760 93,664
CPA-PKE-Decryption 928 3,712 7,424
Polynomial arithmetic 0 0 0
Compression 928 3,712 7,424

Hash G (SHA3-512) 192 576 1,152
CPA-PKE-Encryption 11,312 38,512 83,168
Secret generation 5,952 17,856 41,856
XOF (SHAKE-128) 960 2880 5,760
CBD (Binomial Sampler) 4,992 14,976 36,096

Polynomial arithmetic 0 0 0
Polynomial Comparison 5,680 21,616 43,232

Other operations 0 0 0

The first-order implementation requires 12k random bytes, the second-order and third-
order implementations require 43k (3.43x) and 93k (7.34x) random bytes, respectively.

5.3 Performance analysis for masked uSaber decapsulation

The performance cost and breakdown of the performance cost of the higher-order
masking for all the modules of the masked uSaber decapsulation algorithm are pre-
sented in Table 5. As we mentioned before, the main advantage of uSaber against
Saber is the coefficients of the secret vector are sampled from U2 instead of β8. Thanks
to the parameter choice of secret distribution in uSaber, it needs fewer numbers of
pseudorandom bits than Saber. This fact reduces the cycle cost of XOF by almost
60% for the unmasked version of uSaber compared to Saber. Another advantage is
that the hamming weight computation of µ bits in the centered binomial sampler βµ is
swapped by the sign extension of u bits in the centered uniform sampler Uu. It reduces
the performance cost of the secret sampler in unmasked uSaber by 50% compared
to Saber. Altogether, the secret generation is almost 59% faster for the unmasked
decapsulation algorithm of uSaber compared to Saber. The performance cost of the
secret generation is lower in uSaber compared to Saber also after integrating masking.
The performances of the secret generation in masked uSaber are 55%, 52%, and 45%
faster compared to masked Saber for first-, second-, and third-order, respectively.
Additionally, the value of q for uSaber is 212, whereas it is 213 for Saber. This factor
reduces one bit in the A2B conversion for uSaber during the masked polynomial
comparison. It makes the masked polynomial comparison 5%, 5%, and 2% faster in
uSaber than Saber for first-, second-, and third-order, respectively.

As we can observe from Table 5, the approximate performance overhead factor of
masked uSaber decapsulation implementation for first-order is 2.32x, for second-order
is 4.19x, and for third-order is 6.54x. Table 6 presents random bytes requirements for
all the segments of the higher-order masked uSaber decapsulation. We obtain from
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Table 6 that here also the random bytes requirement grows with the order of masking.
The first-order implementation needs 10k random bytes, the second-order and third-
order implementations use 36k (3.49x) and 79k (7.57x) random bytes, respectively.

Table 5: Performance cost of all the modules of higher-order masked decapsulation
procedure of uSaber.

CPU [k]cycles
Order No mask 1st 2nd 3rd

uSaber-Decapsulation 1,062 2,473 (2.32x) 4,452 (4.19x) 6,947 (6.54x)
CPA-PKE-Decryption 130 297 (2.28x) 527 (4.05x) 775 (5.96x)
Polynomial arithmetic 128 237 (1.85x) 349 (2.72x) 464 (3.62x)
Compression 2 59 (29.50x) 178 (89.00x) 310 (155.00x)

Hash G (SHA3-512) 13 122 (9.38x) 242 (18.61x) 379 (29.15x)
CPA-PKE-Encryption 791 1,928 (2.43x) 3,556 (4.49x) 5,667 (7.16x)
Secret generation 28 400 (14.28x) 954 (34.07x) 1,928 (68.85x)
XOF (SHAKE-128) 25 245 (9.80x) 484 (19.36x) 756 (30.24x)
Uniform distribution 3 155 (51.66x) 469 (156.33x) 1,172 (390.66x)

Polynomial arithmetic 1,214 1,667 2,114
Polynomial Comparison

763
313

(2.00x)
934

(3.40x)
1,623

(4.89x)

Other operations 126 126 (1.00x) 126 (1.00x) 126 (1.00x)

Table 6: Randomness cost of all the modules of higher-order masked decapsulation
algorithm of uSaber.

# Random bytes
Order 1st 2nd 3rd

uSaber-Decapsulation 10,544 36,848 79,840
CPA-PKE-Decryption 928 3,712 7,424
Polynomial arithmetic 0 0 0
Compression 928 3,712 7,424

Hash G (SHA3-512) 192 576 1,152
CPA-PKE-Encryption 9,104 31,600 69,344
Secret generation 4,032 12,096 30,336
XOF (SHAKE-128) 960 2880 5,760
Uniform distribution 3,072 9,216 24,576

Polynomial arithmetic 0 0 0
Polynomial Comparison 5,392 20,464 40,928

Other operations 0 0 0



Higher-order masked Saber 19

5.4 Comparison with state-of-the-art

In this section, we compare our masked Saber and uSaber implementations with
the state-of-the-art masked implementations of Saber and Kyber. We present the
performances of our masked implementations in the Cortex-M4 platform and present
them in Table 7. Bronchain et al. [12] introduced faster implementations of higher-
order masked A2B and B2A conversion utilizing bitsliced techniques and used these
conversions to propose higher-order masking implementations of Saber and Kyber.
The performances of Bronchain et al.’s masked Saber and Kyber implementations
in the Cortex-M4 platform are presented in Table 7. As we mentioned before, the
integration of NTT multiplication in masked Saber can provide a significant per-
formance boost. In [12], authors use NTT multiplication for Saber to receive better
performance. In order to use NTT multiplication, the authors use a multi-moduli
approach that extends the modulus [1]. Even so, the performance of our 1st, 2nd and
3rd order masked implementations of Saber achieve 39%, 23%, and 13% improvement
than their masked implementation of Saber, respectively.

In [11], Bos et al. proposed higher-order masked implementations of Kyber. The
masked kyber implementation in [11] is faster and uses fewer random bytes than the
implementation of masked kyber presented in [12] only for first-order because this
masked Kyber uses an optimized implementation for first-order, while Bronchain et
al.’s one uses the generalized one. The performance for 2nd and 3rd order masked
implementations of Kyber in [12] receives 73% and 85% improvement over the masked
Kyber of [11], respectively. However, our implementation of masked Saber is faster
than masked Kyber presented in [12] 60% for first-order, 53% for second-order, and
48% for third-order. Also, the performance of our first-order masked Saber is 3%
faster than the optimized implementation of the first-order masked Kyber presented
in [11]. In terms of random bytes requirement, our masked Saber receives factor
20.61x and 25.98x improvement over the masked Kyber in [11] for 2nd and 3rd order
masked implementations, respectively.

As discussed in Section 4, masked uSaber uses less number of operations and
random numbers than masked Saber due to the choice of secret distribution and pa-
rameters in uSaber. Table 7 shows the performances of higher-order masked implemen-
tations of uSaber. Further, this table contains the performance of first-order masked
Saber [6] and first-order masked Kyber [25], which are specially optimized to prevent
the first-order differential power attacks. We can observe from Table 7 that our gener-
alized implementation of first-order masked uSaber is 12% faster than the optimized
implementation of masked Saber and is 16% faster than the optimized implementation
of masked Kyber. The implementation of masked uSaber is faster than the fastest
implementation of higher-order masked Saber 20% for second-order and 19% for third-
order. Masked uSaber also needs 15% less random numbers for second-order and 14%
less random numbers for third-order over masked Saber. In conclusion, we observe from
the reported results of Table 7 that higher-order masked uSaber achieves better per-
formance and needs fewer random bytes than masked Saber and Kyber for any order.
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Table 7: The comparison between Saber and Kyber regarding the performance and
the random bytes requirement.

Performance CPU [k]cycles / Random bytes
Scheme

Unmask 1st 2nd 3rd 1st 2nd 3rd

uSaber This paper 1,062 2,473 4,452 6,947 10,544 36,848 79,840

This paper 1,121 3,022 5,567 8,649 12,752 43,760 93,664
[12] 773 5,027 7,320 9,988 - - -Saber
[6] 1,123 2,833 - - 11,656 - -

[11] 882 3,116* 44,347 115,481 12,072* 902,126 2,434,170
[12] 804 7,716 11,880 16,715 - - -Kyber
[25] 816 2,978 - - - - -

†: measurements are taken from the paper
*: uses optimized implementation for first-order masking

6 Conclusions

Saber is often touted as very helpful for masking because of its two unique design com-
ponents, the power-of-two moduli, and the MLWR problem. Van Beirendonck et al. [6]
showed the first-order masked Saber receives better performance and needs fewer ran-
dom bytes than the first-order masked Kyber. In our work, we substantiated this claim
for arbitrary higher-order masking and show that the higher-order masked Saber also
acquires better performance and requires fewer random bytes for its design decisions.

The third round submission document of Saber claims that the design decisions
behind uSaber will be further beneficial for masking even compared to Saber. This
work first concretely justifies those design decisions.

Furthermore, integrating our methods of masking is not dependent upon the
underlying polynomial multiplication, which is one of the computationally expensive
components. Our masked implementations can be adapted for Saber or uSaber that
use the NTT multiplication instead of the hybrid multiplication.

Acknowledgements

This work was supported in part by CyberSecurity Research Flanders with reference
number VR20192203, the Research Council KU Leuven (C16/15/058), the Horizon
2020 ERC Advanced Grant (101020005 Belfort) and SRC grant 2909.001.

Jan-Pieter D’Anvers and Angshuman Karmakar are funded by FWO (Research
Foundation – Flanders) as junior post-doctoral fellows (contract numbers 133185 /
1238822N LV and 203056 / 1241722N LV). Michiel Van Beirendonck is funded by
FWO as Strategic Basic (SB) PhD fellow (project number 1SD5621N).

References

1. Abdulrahman, A., Chen, J., Chen, Y., Hwang, V., Kannwischer, M.J.,
Yang, B.: Multi-moduli NTTs for Saber on Cortex-M3 and Cortex-M4.



Higher-order masked Saber 21

IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 127–151 (2022),
https://doi.org/10.46586/tches.v2022.i1.127-151

2. Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Kelsey, J., Liu, Y.K.,
Miller, C., Peralta, D.M.R., Perlner, R., Robinson, A., Smith-Tone, D.: Status Report
on the Second Round of the NIST Post-Quantum Cryptography Standardization
Process (2020), https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

3. Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.: Defeating NewHope with a Single
Trace. Cryptology ePrint Archive, Report 2020/368 (2020), https://ia.cr/2020/368

4. Bache, F., Paglialonga, C., Oder, T., Schneider, T., Güneysu, T.: High-Speed Masking for
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