
ECDSA White-Box Implementations:
Attacks and Designs from
WhibOx 2021 Contest

Guillaume Barbu1, Ward Beullens2, Emmanuelle Dottax1, Christophe Giraud1,
Agathe Houzelot1, Chaoyun Li3, Mohammad Mahzoun4, Adrián Ranea3, and

Jianrui Xie3

1 IDEMIA, Cryptography & Security Labs, Pessac, France.
firstname.lastname@idemia.com

2 IBM Research, Zurich, Switzerland
wbe@zurich.ibm.com

3 imec-COSIC, KU Leuven, Belgium
firstname.lastname@esat.kuleuven.be

4 Eindhoven University of Technology, Netherlands
m.mahzoun@tue.nl

Abstract. Despite the growing demand for software implementations of
ECDSA secure against attackers with full control of the execution envi-
ronment, the scientific literature on white-box ECDSA design is scarce.
To assess the state-of-the-art and encourage practical research on this
topic, the WhibOx 2021 contest invited developers to submit white-box
ECDSA implementations and attackers to break the corresponding sub-
missions.

In this work we describe several attack techniques and designs used dur-
ing the WhibOx 2021 contest. We explain the attack methods used by
the team TheRealIdefix, who broke the largest number of challenges, and
we show the success of each method against all the implementations in
the contest. Moreover, we describe the designs, submitted by the team ze-
rokey, of the two winning challenges; these designs represent the ECDSA
signature algorithm by a sequence of systems of low-degree equations,
which are obfuscated with affine encodings and extra random variables
and equations.

The WhibOx contest has shown that securing ECDSA in the white-
box model is an open and challenging problem, as no implementation
survived more than two days. To this end, our designs provide a starting
methodology for further research, and our attacks highlight the weak
points future work should address.

Keywords: ECDSA · White-box Cryptography · WhibOx

2 Barbu et al.

1 Introduction

Cryptographic techniques are primarily designed to be secure in a context where
the confidentiality of secret keys is ensured with black-box access to the algo-
rithm – only inputs and outputs are available to the attacker. Confidence in
security is built from detailed studies, carefully defined security notions, and
security proofs. Such a strong level of confidence is now a standard expectation.
However, real-life scenarios for implementations might jeopardize initial assump-
tions, where attackers have access to additional information via side channels
(e.g., timing or power consumption) or can modify the algorithm’s execution
and exploit faulty results. This is called the grey-box model. Developers have to
put countermeasures in place to reach the originally expected security level.

In the context of mobile applications – contactless payments, cryptocur-
rency wallets, streaming services – or connected objects, devices often lack se-
cure storage to protect secret keys, and their generally open execution envi-
ronment exposes a large attack surface. This hostile environment is captured
by the white-box model, which assumes an attacker having control of every as-
pect of the implementation: execution flow, memory content and addresses. The
first white-box implementations were proposed in the early 2000s by Chow et
al. [14,15], and the field has continuously developed since then, with design pro-
posals [7, 12, 20, 32, 39, 41, 45], attacks [2, 8, 17, 18, 26, 27, 34, 36, 44] and efforts to
define security notions [1, 19,40].

The industry is increasingly interested in white-box cryptography owing to
the widespread usage of security-related applications on connected devices. The
WhibOx contest, attached to the CHES conference, has been held biennially
since 2017 to encourage practical experiments both from the designer and at-
tacker perspectives. It lasts for months, inviting coders to post white-box im-
plementations and attackers to break them. Participants can remain anonymous
and silent about any detail on their work. The first two editions in 2017 and
2019 focused on white-box implementations of AES and exhibited the commu-
nity’s strong interest in this subject. Some candidates survived all attacks in the
second edition in 2019, showing a certain maturity for this algorithm. In 2021,
organisers changed the target for the third edition and decided to consider the
ECDSA signature algorithm, whose white-box implementation is of substantial
interest for industry but virtually lacks scientific literature.

From May 17th to August 22nd 2021, 97 candidate implementations were sub-
mitted for scrutiny by 37 (teams of) attackers. All challenges were broken within
35 hours, suggesting the difficulty of achieving a secure white-box implementa-
tion of ECDSA. Thus, studying the attacks helps to discern weak points inside
the implementations and deduce where to commit with robust countermeasures.
Besides, the core of these challenges successfully defeating most attackers would
also shed light on subsequent designs. The above sums up the purpose of reveal-
ing in what follows how the team TheRealIdefix who broke the most challenges
(92) and the team zerokey who proposed the winning challenge and the most
resistant one proceeded during the contest.

Attacks and Designs from WhibOx 2021 Contest 3

The paper is organized as follows. Section 2 outlines the rules of the WhibOx
2021 contest. Section 3 recalls the ECDSA algorithm and the state-of-the-art
regarding white-box implementations. Section 4 presents the different methods
that have been used by the team TheRealIdefix to break the implementations
and some statistics regarding their success. Section 5 discloses the designs of
Challenges 226 and 227 by the team zerokey, and Section 6 concludes this paper.

2 Rules of the WhibOx 2021 Contest

Designers were required to post challenges computing ECDSA signatures on the
NIST P256 curve under a hard-coded, freely chosen key and given as input any
message digest. At the same time, attackers were encouraged to extract the sign-
ing keys. In addition, acceptance of submitted implementations was conditional
on compliance with some requirements:

– the public key corresponding to the embedded private key, as well as a proof
of knowledge of the private key, had to be provided,

– submissions had to be source code in portable C,
– linking to external libraries was forbidden, except for the GNU Multi Preci-

sion library [28],
– the signature algorithm had to be deterministic,
– the execution time was limited to 3 seconds, the program size to 20 MB, and

the RAM usage to 20 MB as well.

There was an elaborate system with scoreboards to reward designers and
attackers. A challenge gains strawberries as time goes by till broken. Challenges
with a higher performance score (measured in terms of execution time, code
size, and RAM usage) gain strawberries faster. Accordingly, when submitting a
matching signing key to the system, attackers receive bananas, the number of
which is influenced by that of the strawberries of the challenge. More detailed
information can be found on the contest website [13].

3 ECDSA and White-box Implementations

3.1 ECDSA

In 1992, Vanstone introduced a variant of DSA based on elliptic curve cryptog-
raphy. The resulting public key signature algorithm is called the Elliptic Curve
Digital Signature Algorithm (ECDSA) [43]. Its parameters are an elliptic curve
E over a field Fq, a point G of prime order n and a cryptographic hash function
H. The secret key d is randomly drawn from J1, n−1K and the public key consists
of the point Q = [d]G where [d]G corresponds to the scalar multiplication of the
point G by the scalar d. The ECDSA signature is described in Algorithm 1.

Note that the key d is not the only sensitive value in that scheme. Indeed,
the recovery of the nonce k allows the computation of d from the signature (r, s)
and the hash e:

d = (ks− e)r−1 mod n . (1)

4 Barbu et al.

Algorithm 1: ECDSA signature

Input : the message m
Output: the signature (r, s)

1 e← H(m)

2 k
$←− J1, n− 1K

3 R = (Rx, Ry)← [k]G
4 r ← Rx mod n
5 s← k−1(e+ rd) mod n
6 if r = 0 or s = 0 then
7 Go to step 2
8 end
9 Return (r, s)

The nonce must not only remain secret but also differ for each execution of
the algorithm. Indeed, an efficient way to recover its value is to find another
signature of a different message e′ ̸= e using the same nonce, that is with k′ = k.
In that case, we also have r′ = r, so the adversary may compute

k = (e′ − e)(s′ − s)−1 mod n . (2)

In the black-box model, the security of ECDSA is widely believed to reduce
to the difficulty of the Elliptic Curve Discrete Logarithm Problem (ECDLP),
that is, on the difficulty of computing the scalar k (resp. d) from the points G
and R = [k]G (resp. Q = [d]G). To ensure that this problem is difficult to solve,
there are several standards to define elliptic curves, e.g. [24,31,35,42]. However,
there is a gap between the security of ECDSA in theory and that of practical
implementations. Many grey-box attacks have been described in the literature
(see for example [22]). Some of them directly target the key d while others aim
at recovering some information on the nonce k. As explained previously, the
knowledge of the nonce used in a signature allows an adversary to compute
the secret key. Even the recovery of a few bits of several nonces for several
executions may be enough for an attacker. Indeed, this allows the generation
of a system of equations that can be solved using lattice-based algorithms [11,
30] or Bleichenbacher’s Fourier analysis-based attacks [4]. These bits could, for
example, be recovered via side-channel analysis if the implementation is not
protected or simply guessed if the nonce is not drawn uniformly at random. These
attacks show that it is already not straightforward to make a secure ECDSA
implementation in the grey-box model, and of course, things get worse in the
white-box context.

3.2 White-box Implementation of ECDSA

The white-box model assumes that the attacker has total access to the exe-
cutable: he can read and modify it at will. He also has access to all the memory
used during execution, so a white-box designer does not only have to protect his

Attacks and Designs from WhibOx 2021 Contest 5

implementation against grey-box attacks but also against an adversary who can
dump the memory and search for sensitive values as k or d. Techniques to prevent
secret data from appearing in plain were introduced by Chow et al. in [15]. The
key is embedded into the algorithm, and each operation is performed with the
help of look-up tables protected by carefully crafted encodings. Informally, the
algorithm is broken into low-level operations, and each operation op is replaced
by f−1◦op◦f ′, where f and f ′ are bijections called respectively input and output
encodings. The drawback of this technique is that the memory needed drasti-
cally increases with the algorithm’s complexity, so applying it to operations as
complex as scalar multiplications or inversions while staying efficient is a real
challenge.

Another challenge in white-box cryptography is the impossibility of relying
on any external source of randomness. Indeed, such a source could be simply
disabled by an attacker fixing its output to a constant value. In the context
of AES, for example, this reduces the efficiency of the countermeasures against
side-channel or fault attacks based on randomization techniques. Nevertheless,
this is not the only problem when one considers ECDSA signatures. Disabling
the source of randomness yields multiple uses of the same nonce and, thus, easy
recovery of the secret key. The seemingly only solution is to compute k from the
only source of randomness available, the hash e of the message. The idea is that
two different hash values imply two different nonces k1 = f(e1) and k2 = f(e2).
To ensure the security of this deterministic scheme, the function f must be
unknown to the attacker and produce a random uniform distribution [5]. We
will see in the next section that many challenges of the WhibOx competition did
not fulfill this requirement.

4 Breaking the Challenges

The contest call for submissions encouraged the developers to rely on encoding
and/or other theoretically sound approaches to secure their white-box designs.
However, browsing the submitted source files reveals extensive use of obfuscation
techniques. In these circumstances, independently reverse-engineering each chal-
lenge appears too time-consuming, and so we considered some attack methods
that can be easily automated.

In this section we describe these automated methods, give some rationales to
explain why we chose to discard some of them, and, finally, analyze the results
of the different methods on the whole set of submissions.

4.1 Attack Methods

Hooking shared libraries In the context of the WhibOx contest, the definition
of the rules was a clear incentive for developers to use the GMP library for big
number arithmetic operations. A first attempt to break the submitted challenges
was then to search if sensitive values were manipulated in clear by the GMP

6 Barbu et al.

library. In order to perform this automatically, our approach was to hook the
calls to GMP functions thanks to the so-called LD PRELOAD trick.

Pre-loading is a feature of the dynamic linker on UNIX systems that allows
loading a specific shared library before all other libraries linked to a given exe-
cutable binary5. In our specific case, we built a shared library defining the same
function as the GMP library (e.g. mpz mul, mpz mod or mpz invert). Each of
these functions simply updates a log of the given parameters before calling the
real GMP function, explicitly using the dynamic linker (thanks to the <dlfcn.h>
module) to ensure the correct execution of the white-box implementation.

It is then only necessary to add our shared library to the LD PRELOAD envi-
ronment variable of the dynamic linker on our system before calling the ECDSA
binary to have our custom functions called in place of the genuine GMP ones.
The corresponding log is analysed in a second step to eventually reveal the secret
key if d, k or related values such as r · d or e + r · d are found in the log. Such
an approach allowed us to break 32% of the challenges.

Besides, we stress the fact that the LD PRELOAD trick also jeopardizes imple-
mentations relying on system-dependent random generators such as srand or
mpz XrandomX functions, and even on random sources such as time.

Biased nonces As explained in Sect. 3.2, the nonce k is generated from the
hash e, i.e. k = f(e). However, if the white-box designer is not very careful
about the selection of the function f , it could happen that the ki’s generated
from different ei are not independent.

In the worst case, it exists two different hash values e0 and e1 producing two
nonces k0 and k1 such that k0 = k1. If such a collision occurs, then one can re-
cover the private key d as explained in Sect. 3.1. One of the main challenges from
the attacker’s perspective is finding such hash values. Indeed, it is not possible
to check each and every possible value for e since there are 2256 possibilities.
The strategy we used during this competition to find a collision in a reasonable
amount of time is to use hashes ei such that the Hamming weight of ei is equal
to 1 or 2. We restricted ourselves to 32 896 hash values and were able to break
60% of the challenges.

We did not find any collision in some cases, but we assumed that the nonces
were biased. To exploit such a potential weakness, we used well-known lattice
attacks derived from [37] and [23]. Such attacks can recover an ECDSA private
key only with the knowledge of a few bits of the ephemeral keys of several
signatures.

A concrete example showing why such techniques can be successful in our
context consists in considering f = Id. Then ki = ei and with providing ei rang-
ing from 0 to 99 we obtained 100 signatures for which the 249 most-significant
bits of the nonces are 0. This bias is more than enough for a lattice attack to
recover the private key d.

5 https://man7.org/linux/man-pages/man8/ld.so.8.html

Attacks and Designs from WhibOx 2021 Contest 7

Lattice-based attacks can also be applied when the ephemeral key is the
product of a small random κ by another (large) constant scalar t. Such a design
allows to efficiently perform the scalar multiplication as R = [κ]T = [k]G, with
T = [t]G a precomputed value. The point is that the small size of κ reduces the
cost of the scalar multiplication.

To sum up, the relations we used for our lattice attacks are the following
(with ei ranging from 0 to 999):

– Assuming l known most- or least- significant bits of the ephemeral key :

khigh2
l + klow = s−1(e+ rd) mod n , (3)

with l = 6 (for known MSB) or l = 250 (for known LSB),
– Assuming the ephemeral keys are ki = tκi:{

t = κ−1
0 (e0 + r0d) mod n,

κi = t−1(s−1
i ei − s−1

i rir
−1
0 e0) + κ0(s

−1
i rir

−1
0 s0) mod n,

(4)

with κi < 2248 and t an unknown constant scalar.

Such an approach allowed us to break 72% of the challenges.

DCA In 2016, Bos et al. showed that although firstly described for the grey-box
context, the well-known side-channel attacks could be very well adapted to the
white-box model. The resulting attack [10] is called DCA (Differential Compu-
tational Analysis). The principle is very similar to classical side-channel attacks:
secret values are extracted from leakage traces obtained during several execu-
tions of a cryptographic algorithm with the help of statistical tools. The only
difference relies upon the nature of the traces. While in the grey-box context,
one records the device’s power consumption in which the algorithm is imple-
mented or its electromagnetic emanations. For example, a white-box attacker
can simply use software execution traces. Indeed, by instrumenting the binary,
he can record traces of all accessed addresses and data over time. This leads to
much more efficient attacks since, contrary to the traces obtained in the grey-box
model, these are completely noiseless.

In theory, this attack is particularly devastating since it can be fully au-
tomated and does not require an earlier reverse engineering step. In practice,
it is quite difficult to apply because of the size of the traces, in particular for
time-consuming cryptosystems such as ECDSA. Indeed if the whole white-box
execution were to be recorded, each trace would easily reach several gigabytes.
A first step of reverse engineering allowing to select a smaller window of the
implementation for the attack may thus be needed, and this explains why we
did not use this technique to break the challenges of the WhibOx contest.

Fault Injections Another attack method derived from the grey-box model con-
sists of disturbing the algorithm’s execution and exploiting the resulting faulty

8 Barbu et al.

cipher/signature. In the white-box context, faults can be induced easily since
the attacker is allowed to modify the binary or use debugging tools to stop the
execution and, for example, skip an instruction or modify the value of a particu-
lar register. Again, this attack can be automated and does not require an earlier
reverse engineering step.

In the case of an ECDSA white-box implementation, the fault can be induced
on different variables to give an exploitable result. All the fault attacks that can
be performed in the grey-box context are also a potential threat here. The most
obvious attack is to force the use of a weak elliptic curve during the scalar mul-
tiplication by disturbing the curve parameters [6] in order to solve the discrete
logarithm problem easily. The attacker can also force the use of a biased nonce,
for instance, by sticking a 32-bit word of k at zero during several executions.
The corresponding signatures can then be used to obtain information on the
key using lattice-based algorithms. Finally, modifying one byte of d during the
computation of rd may allow one to recover information on the key as shown
in [25].

Furthermore, the white-box model comes with new possibilities of fault at-
tacks [3, 21, 38]. They arise from the impossibility of using the usual sources of
randomness in that context, forcing the designers to implement deterministic
versions of the scheme. When the algorithm is used twice on the same message,
the same nonce k is derived. The attacker may thus obtain a correct signature
s = k−1(e + rd) mod n for a given message m, and sign it again, but this time
modifying an intermediate variable. To break the challenges of the WhibOx con-
test, we mainly disturbed the computation of the first part of the signature r,
obtaining a faulty result s̃ = k−1(e + r̃d) mod n. Some secret information can
be deduced from the correct/faulty signatures:

(r − r̃)(s− s̃)−1 ≡ (r − r̃)(k−1d(r − r̃))−1 ≡ kd−1 mod n . (5)

Let α = kd−1 mod n. The adversary can compute

d = e(α−1s− r)−1 mod n , (6)

It is also possible to disturb other variables, but the faulty value must be
known to exploit the result. Interestingly, when one modifies the first part of the
signature, if no countermeasure is implemented, the faulty value is just given to
the attacker as part of the output. Furthermore, the attack surface is huge: the
fault may happen anywhere during the scalar multiplication. This is why we con-
sidered only this perturbation in the context of this competition. This approach
is the most successful one as it allowed us to break 75% of the challenges.

4.2 Attacks Results

When applying the various attack methods described in Sect. 4.1, we obtain the
results presented in Table 1. We observe that lattice and fault attacks are very
efficient. Collision attacks also give good results.

Attacks and Designs from WhibOx 2021 Contest 9

Table 1. Success rate of each attack on the 97 challenges.

Attack type Percentage of
broken challenges

Hooking 32%

Bad nonce
Collision 60%
Lattice 72%

Fault Injection 75%

We give in Appendix A the specific vulnerabilities for each of the 97 submit-
ted challenges as well as the corresponding private key.

However, one could notice that many challenges have a low level of security.
Some of them are even plain implementations. We think these challenges are due
to the fact that the designers test the submission process with a toy example
before submitting their real challenge. Indeed, the WhibOx submission process
is difficult, and no proper explanation is given when a challenge is rejected.
Moreover, if the designer wants to resubmit its challenge again, he would have
to change the key, which is a complex process on white-box implementations. In
order to focus on the strongest white-box ECDSA implementations, we rejected
the challenges where the nonce and/or the private key is manipulated in plain.
By using such a criteria, we rejected 30 challenges6 and we analysed in Table 2
the efficiency of the attacks presented in Sect. 4.1 on the 67 remaining challenges.
We observe that hooking is useless, collision and lattice attacks are significantly
less efficient, and fault injection seems the most powerful attack.

Table 2. Success rate of each attack on the 67 strongest challenges.

Attack type Percentage of
broken challenges

Hooking 1%

Bad nonce
Collision 49%
Lattice 61%

Fault Injection 69%

Among the 67 strongest challenges, the challenges 226 and 227 are the win-
ning ones. In the next section, we present the design of these two white-box
implementations.

6 The challenges 3, 4, 8, 10, 11, 32, 45, 54, 55, 57, 85, 97, 114, 135, 136, 139, 153, 157,
174, 185, 187, 231, 235, 267, 274, 299, 307, 320, 321, and 323 are considered as weak.

10 Barbu et al.

5 Design of the Winning Challenges

In this section we describe the designs of the two winning challenges of the
WhibOx contest: Challenge 226 clever kare and Challenge 227 keen ptolemy.
The designs of both challenges were inspired from the implicit white-box im-
plementation framework [29], which allows encoding the whole state with large
affine permutations efficiently. We implemented both challenges with the same
methodology; they only differ in some additional countermeasures used.

As we mention in Section 2, in the WhibOx contest, a challenge gains straw-
berries as time goes by, from the moment it is submitted until it is broken.
Challenges with a higher performance score (measured in terms of the execu-
tion time, code size, and RAM usage) gain strawberries faster. As a result, we
strategically posted two challenges with different trade-offs between security level
and implementation cost. Challenge 227, our lightweight variant, was the win-
ning implementation of the contest, obtaining the highest number of strawberries
(20.39). On the other hand, Challenge 226, our hardened but heavier variant,
achieved second place in the contest with the second-highest number of straw-
berries (11.19). However, it was the challenge standing the longest time unbroken
(35 hours).

This section first introduces the (white-box) implicit framework, then de-
scribes the shared design approach of both challenges, and finally explains the
additional countermeasures used in each challenge.

5.1 Implicit White-box Implementations

The implicit framework is a method to obtain an implicit white-box implemen-
tation of a block cipher. Its main idea is to represent the round functions of the
cipher by implicit functions of low degree and protect these implicit functions
with large affine encodings. Before introducing implicit white-box implementa-
tions, we need to introduce the notions of encoding, encoded implementation,
and quasilinear implicit functions. While these notions are originally defined
in [29] for vectorial functions over the binary field, we will extend these notions
for an arbitrary finite field.

Let Fq be the finite field with q elements. A vectorial function F from the

vector space (Fq)
l to (Fq)

l′ will be called a (l, l′) function over Fq, and its l′

component functions will be denoted by (F1, F2, . . . , Fl′). The degree of an (l, l′)
function F denotes the maximum polynomial degree of the l′ multi-variate poly-
nomials uniquely representing the component functions of F .

Definition 1. Let F be an (l, l′) function over Fq, A be an (l, l) permutation
over Fq and B be an (l′, l′) permutation over Fq. The function F = B ◦F ◦A is
called an encoded function of F , and A and B are called the input and output
encodings respectively.

Definition 2. Let F = F (t) ◦F (t−1) ◦ · · · ◦F (1) be a vectorial function over Fq.
An encoded implementation of F , denoted by F , is an encoded function of F

Attacks and Designs from WhibOx 2021 Contest 11

composed of encoded functions of F (i), that is,

F = F (t) ◦ · · · ◦ F (1) = (B(t) ◦ E(t) ◦A(t)) ◦ · · · ◦ (B(1) ◦ F (1) ◦A(1)) ,

where the input and output encodings (A(i), B(i)) are permutations over Fq such

that A(r+1) =
(
B(r)

)−1
. The first and last encodings (A(1), B(t)) are called the

external encodings.

Definition 3. Let F be an (l, l′) function over Fq. A (l + l′, l′′) function T is
called an implicit function of F if it satisfies

T (u1, u2, . . . , ul, v1, v2, . . . , vl′) = 0 ⇐⇒ F (u1, u2, . . . , ul) = v1, v2, . . . , vl′ .

In this case, T is said to be quasilinear if for any (u1, u2, . . . , ul) ∈ (Fq)
l, the

function (v1, v2, . . . , vl′) 7→ T (u1, u2, . . . , ul, v1, v2, . . . , vl′) is affine over Fq.

The following lemma from [29] describes how the composition of affine per-
mutations translates to implicit functions.

Lemma 1. Let F be an (l, l′) function over Fq and T be a quasilinear implicit
(l + l′, l′′) function of F . Let A be an affine (l, l) permutation over Fq, B be an
affine (l′, l′) permutation over Fq, and M be a linear (l′′, l′′) permutation over Fq.
Then, T ′ = M ◦T ◦ (A,B−1) is a quasilinear implicit function of F ′ = B ◦F ◦A.

The quasilinear property allows the implicit evaluation of F in a point
(u1, u2, . . . , ul) by solving the affine system T (u1, u2, . . . , ul, v1, v2, . . . , vl′) = 0
for the variables v1, v2, . . . , vl′ . We are ready to present the definition of an im-
plicit implementation.

Definition 4. Let F = F (t) ◦F (t−1) ◦ · · · ◦F (1) be a vectorial function over Fq,

and let F = F (t) ◦F (t−1) ◦ · · · ◦F (1) be an encoded implementation of F . An im-
plicit (white-box) implementation of F with underlying encoded implementation

F is a set of quasilinear implicit functions {T (1), T (2), . . . , T (t)} where T (i) is an

implicit function of F (i).

5.2 White-boxing ECDSA Signature Algorithm Using the Implicit
Framework

In the WhibOx contest, designers submitted white-box implementations of the
ECDSA signature algorithm on the NIST P256 curve. As opposed to the stan-
dard ECDSA algorithm (Algorithm 1), the algorithm for the WhibOx contest
(hereafter denoted by E) takes as input the 256-bit message digest. The private
key is not an input of the algorithm; it is freely chosen by the designer, but it
is fixed (hard-coded) in the implementation. Algorithm 2 depicts a high-level
overview of this deterministic variant of ECDSA, where the deterministic nonce
derivation mechanism is chosen freely by the designer.

12 Barbu et al.

Algorithm 2: Deterministic ECDSA signature algorithm for WhibOx
contest
Input : 256-bit hashed message digest e
Output: the signature (r, s)

1 state← e
2 k, state← NonceDerivation(state)
3 R = (Rx, Ry)← [k]G
4 r ← Rx mod n
5 s← k−1(e+ rd) mod n
6 if r = 0 or s = 0 then
7 Go to step 2
8 end
9 Return (r, s)

The main steps of E can be represented by the functions E(1) and E(2). The
Fp-function E(1) is given by

E(1)(e) = (Rx, k, e) , (7)

which takes as input e ∈ Fp and computes the scalar multiplication R = [k]G
over Fp. On the other hand, the Fn-function E(2) can be written as

E(2)(R′
x, k

′, e′) = (r, s) , (8)

which takes as input (R′
x, k

′, e′) = (Rx mod n, k mod n, e mod n) and com-
putes (r, s) = (R′

x, k
−1(e+ rd)) over Fn.

Inspired from the implicit framework, we built the white-box implementa-
tions of the Challenges 226 and 227 by encoding E(1) and E(2) with affine per-

mutations and obtaining low-degree implicit round functions of E(1) and E(2),
the encoded functions of E(1) and E(2). We will first describe the implicit im-
plementation of E(1) and then that of E(2).

White-boxing the Scalar Multiplication

To build an implicit implementation of E(1), we need first to decompose E(1)

as the composition of Fp-functions, that we will call round functions. Then we
will explain how to encode these round functions and how to obtain low-degree
quasilinear implicit function of the encoded round functions.

Decomposing E(1) into round functions. The function E(1)(e) = (Rx, k, e),
mainly consists of the scalar multiplication r = [k]G of the nonce k and the
point G. For the scalar multiplication, we perform the following subroutine.
First, we precompute and store a list of t random point pairs on the curve,
i.e., (Gi0 = [ki0]G,Gi1 = [ki1]G) for 1 ≤ i ≤ t . Then, for each pair we se-
lect one of the two points together with its logarithm, denoted as (Gibi , kibi),

Attacks and Designs from WhibOx 2021 Contest 13

where bi ∈ {0, 1} and 1 ≤ i ≤ t . We add the selected points and the selected
logarithms, obtaining the scalar multiplication

G1b1 + · · ·+Gtbt = [k1b1 + · · ·+ ktbt]G = [k]G , (9)

where k = k1b1 + · · · + ktbt . This selection is done in a deterministic way de-
pending on the bits (e1, e2, . . . , e256) of the hash e, the only source of entropy
in the algorithm. Moreover, the selection is done with Fp-arithmetic operations
rather than with conditional instructions, so that each iteration only performs
Fp operations. The subroutine is given in Algorithm 3.

It is worth pointing out that the values kij are chosen such that the sum of
max(ki0, ki1) for all i is always smaller than n. That is, we have k < n. Hence,
r and s are never 0. In this way, we avoid the trivial case, i.e., avoid going to
Step 7 in Algorithm 2.

By considering the precomputed points and their logarithms as fixed function
parameters, we can represent each iteration or round as a vectorial function F (i)

over Fp, i.e.,

E(1) = F (t) ◦ · · · ◦ F (2) ◦ F (1) , (10)

where the input value is (0, 0, 0, 0, e1). The components of the each round func-
tion F (i)(u1, u2, u3, u4, u5) are given by

F
(i)
1,2(u1, u2, u3, u4, u5) = (u1, u2) + [1− u5]Gi0 + [u5]Gi1

F
(i)
3 (u1, u2, u3, u4, u5) = u3 + (1− u5)ki0 + u5ki1 ,

F
(i)
4 (u1, u2, u3, u4, u5) = u4 + u5 · 2i ,

F
(i)
5 (u1, u2, u3, u4, u5) = ei+1 ,

(11)

where the component function F
(i)
1,2 denotes a point on the elliptic curve with F

(i)
1

and F
(i)
2 the x- and y- coordinates respectively. The last round function F (t) only

outputs four components. i.e., (F
(t)
1 , F

(t)
2 , F

(t)
3 , F

(t)
4). It is worth pointing out that

kij and Gij are not inputs but fixed values, and that the elliptic curve additions
can be represented by operations over Fp.

The component function F
(i)
4 recovers one bit of the hash at a time and

passes the currently computed message to the next round. This is done because
E(1) needs to output the hash e for E(2).

Encoding the round functions. To protect the round functions, we encode each
round with random Fp-affine permutations A(i), obtaining the encoded round
functions

F (i) = A(i) ◦ F (i) ◦ (A(i−1))−1, 1 ≤ i ≤ t . (12)

In other words, the input and output encodings of F (i) are
(
(A(i−1))−1, A(i)

)
,

and the composition of the round functions cancels all intermediate encodings
except (A(0))−1 and A(t), that is,

E(1) = F (t) ◦ · · · ◦ F (2) ◦ F (1) = A(t) ◦ F (t) ◦ · · · ◦ F (2) ◦ F (1) ◦ (A(0))−1 , (13)

14 Barbu et al.

Algorithm 3: Round-based scalar multiplication used in E(1)

Input : the bits (e1, e2, . . . , e255) of the hash e (little-endian order)
Output: x-coordinate of [k]G and the message-dependent scalar k

/* Round 1: input e1, k10, k11, G10, G11 embedded values */

1 R← [1− e1]G10 + [e1]G11

2 k ← (1− e1)k10 + e1k11

/* Round i: input (R, k, ei), ki0, ki1, Gi0, Gi1 embedded values */

3 for 2 ≤ i ≤ t do
4 R← R+ [1− ei]Gi0 + [ei]Gi1

5 k ← k + (1− ei)ki0 + eiki1
6 end
7 return Rx, k // (Rx, Ry) = R = [k]G

where t is the number of rounds. The input encoding (A(0))−1 of F (1) is set as
the identity mapping to preserve the input-output behaviour of E.

Obtaining the implicit round functions. Now we proceed to obtain an implicit

round function T (i) of each encoded round function F (i). To this end, we need
to first deal with the implicit implementation of elliptic curve additions.

Let ADD(Px, Py, Qx, Qy) = (Rx, Ry) be the vectorial Fp-function denoting the
elliptic curve addition P +Q = R, that is,

Rx = (Qy − Py)
2((Qx − Px)

2)−1 − Px −Qx

Ry = (Qy − Py)(Px −Rx)(Qx − Px)
−1 − Py ,

(14)

more details can been found in [33]. While ADD has a high degree due to the inver-
sion over Fp, it is easy to show that the function IMP(Px, Py, Qx, Qy, Rx, Ry) =
(IMP0, IMP1) defined by

IMP0 = (Qy − Py)
2 − (Px +Qx +Rx)(Qx − Px)

2

IMP1 = (Qy − Py)(Px −Rx)− (Ry + Py)(Qx − Px)
(15)

is a quasilinear implicit round function of ADD with degree 3.
From the above implicit function of the elliptic curve addition, it is easy to

derive a quasilinear implicit function T (i) of each round function F (i). Then, we
sample a linear permutation M (i) for each round i, and by Lemma 1 the function

T (i) = M (i) ◦ T (i) ◦
(
(A(i−1))−1, (A(i))−1

)
(16)

is a quasilinear implicit function of F (i) for 1 ≤ i ≤ t.
The white-box implementations of the Challenges 226 and 227 contain this

implicit implementation of E(1), with underlying encoded implementation E(1),

given by the t implicit round functions {T (1), . . . , T (t)} in Eq. (16). Moreover,

E(1) is evaluated in our white-box implementations by implicitly evaluating the

Attacks and Designs from WhibOx 2021 Contest 15

encoded round functions F (i). In other words, given the output u of the round
i − 1, the output v of the ith round is computed by finding the solution of the

affine system T (i)(u;v) = 0 for v.

White-boxing the Computation of s

Now we turn our attention to E(2), the second step of the signing algorithm,
where we compute r = Rx mod n and s = k−1(e + dRx) mod n, and output
the signature (r, s). As opposed to E(1), we do not decomposed E(2), and we

build a single (vectorial) quasilinear implicit function of E(2) = E(2) ◦ (A(t))−1,
the encoded version of E(2).

The vectorial Fn-function T (t+1) defined as{
T

(t+1)
1 (Rx, Ry, k, e; s, r) = ks− e− dRx

T
(t+1)
2 (Rx, Ry, k, e; s, r) = r −Rx

. (17)

is a quasilinear implicit function of E(2). In other words, the polynomial system

T (t+1) = {T (t+1)
1 , T

(t+1)
2 } implicitly defines E(2) because (s, r) = E(2)(Rx, Ry, k, e)

if and only if T (t+1)(Rx, Ry, k, e; s, r) = 0. Moreover, the system is affine in r
and s, so after plugging in values for Rx, Ry, k and e the system can be solved
for r, s efficiently.

The encoded version E(2) gets as input A(t)(Rx, Ry, k, e), where A(t) is the
affine function that protects the last round of E(1). By Lemma 1, we build the

implicit round function of E(2) as

T (t+1)(u; r, s) = M · T (t+1)((A(t))−1(u); r, s) , (18)

where (A(t))−1 is the inverse of A(t) mod n, and where M is a random invertible

2-by-2 matrix mod n. The function T (t+1) is quasilinear, and we can implicitly

evaluate E(2) on input u = A(t)(Rx, Ry, k, e) by plugging u in the first slot of

T (t+1) and solving the remaining system (which is affine) for r and s over Fn.
However, the fact that E(1) works in Fp, and E(2) works in Fn causes some

problems. The problem is that the input to E(2) is u = A(t)(Rx, Ry, k, e) reduced
mod p, so (A(t))−1(u) is in general not equal to (Rx, Ry, k, e) mod n if there are
overflows in the computation of u. Let o be the vector of overflows mod p, such
that

u = A(t)(Rx, Ry, k, e)− po , (19)

then (A(t))−1(u) = (Rx, Ry, k, e)− pL−1
t (o) mod n, where Lt is the linear part

of the affine map A(t) (i.e., A(t)(x) = Lt(x) + c for some constant term c).
To deal with this problem, we will correct for the overflow mod p, by guess-

ing the overflow vector o, and setting u′ = u + po before plugging u′ into

T (t+1)(u; r, s) and solving for (r, s). If the guess is correct, then u′ is equal to
A(t)(Rx, Ry, k, e) over the integers, so the correct r, s will be recovered. There-
fore, we repeatedly run the last step with random guesses of o, to get a candidate

16 Barbu et al.

signature (r, s). Then we run the verification algorithm on (r, s) and we output
the first (r, s) for which the verification algorithm succeeds. Note that we do
not need to protect the verification algorithm because it does not use secret
information.

If A(t) was a random affine map with entries of size up to p, then guessing o
correctly would be very unlikely. Therefore, we choose the affine map A(t) with
small entries. For example, we could use

A(t)(Rx, Ry, k, e) =

1 0 1 2
1 1 2 0
0 1 2 1
1 2 0 1

Rx

Ry

k
e

+ c . (20)

With this choice, the weight of each row is four, so there are at most four
overflows mod p in each entry of u, which means o can be guessed more easily.
Not all guesses are equally likely, (e.g., o = [4, 4, 4, 4] only occurs if Rx, Ry, k, e
are all quite big, which is unlikely.) Rather than guessing o ∈ [0, 4]4 at random,
which is still quite inefficient, we precompute a list of guesses L ordered from
more likely to be correct to less likely, and we iterate through the list of guesses
in that order.

The white-box implementations of the Challenges 226 and 227 contain the

implicit function T (t+1), which allows the implicit evaluation of E(2), together
with the correction for the overflow mod p described above and summarized in
Algorithm 4.

Note that the severe restriction on the size of the entries of A(t) makes the
conversion from Fp to Fn one of the most vulnerable points in the white-box im-
plementation. In particular, an attacker knowing the specifications of the design
can easily recover A(t) by exhaustive search if no additional countermeasures are
used.

Algorithm 4: White-box implementation of ECDSA signature algo-
rithm for winning challenges

Input : 256-bit hashed message digest e
Output: the signature (r, s)

1 e← e mod p

2 (v1, v2, v3)← E(1)(e) // implicit evaluation

3 for o in L do
4 (u1, u2, u3)← (v1, v2, v3) + p · o
5 (r, s)← E(2)(u1, u2, u3) // implicit evaluation

6 if VerifySignature(r, s, e) = valid then
7 return (r, s)
8 end

9 end

Attacks and Designs from WhibOx 2021 Contest 17

5.3 Additional Countermeasures

The representation of the implicit round functions as systems of multivariate
polynomials allows applying countermeasures from multivariate public-key cryp-
tosystems. In fact, the challenges 227 and 226 only differ in the additional coun-
termeasures used.

In particular, we considered two techniques. First, we obfuscated the compo-

nents (seen as polynomials) of the implicit round functions T (i) by multiplying
them with random polynomials in the input variables. Note that the multiplica-
tion of inputs variables preserves the quasilinear property. Moreover, the image
of a random polynomial is non-zero with high probability, and multiplying an
equation with a non-zero value does not change its solution set. In the unlikely
case that one of the added polynomials vanishes, the output of the correspond-
ing implicit function will be invalid, and no valid signature will be obtained. To
prevent this extreme case, we made the first implicit round function dependent
on an initial value; if no valid signature is found, we simply repeated the whole
process with a different initial value.

This first technique increases the degree of the implicit round functions, sig-
nificantly increasing the implementation size. Thus, for the lightweight Challenge
227 we only applied this technique to raise the degree of the components to the
total degree of the functions, but for Challenge 226 we multiplied with polynomi-
als of higher degree to increase the total degrees of the implicit round functions.
The final degrees are listed in Table 3 and Table 4.

The second technique we used was adding additional variables and compo-
nents to the implicit round functions but preserving the input-output behaviour
of the underlying encoded round functions. Since this technique also introduces
significant overhead in the implementation size, we only applied it to Challenge
226. In particular, we added two variables and two equations in the implicit

round functions of E(1), and two variables and one equation in those of E(2).
We also used Tigress [16] for both challenges to obfuscate the C source code.

Tigress is an obfuscator for C language that protects programs against dynamic
and static reverse engineering attacks. We used the transformations7 Flatten
(flattens the code to remove structured flow), AntiTaintAnalysis (disrupts
tools that make use of dynamic taint analysis), AddOpaque (adds opaque pred-
icates), EncodeLiterals (replaces integers and strings with run-time expres-
sions) and CleanUp (renames variables and functions).

5.4 Challenge 227: The Winner

Description Following the method described above, we built Challenge 227
(keen ptolemy) as a lightweight white-box implementation without additional
countermeasures increasing the number of equations, the degree, or the number
of variables of the implicit round functions. Challenge 227 was the winning imple-
mentation of the WhibOx contest; it achieved the highest number of strawberries
(20.39), and it stood for 33 hours as the second longest.

7 https://tigress.wtf/transformations.html

18 Barbu et al.

Table 3 describes the memory complexity of {T (1), . . . , T (t)} and T (t+1), the

implicit round functions of E(1) and E(2) respectively, of Challenge 227 (after
applying the additional countermeasures). The number of coefficients in Table 3
denotes the maximum number of non-zero coefficients of a quasilinear vectorial
function with a given number of input variables, components, and degrees. If

each coefficient is represented with 256 bits, {T (1), . . . , T (t)} and T (t+1) require
in total roughly 4 MB.

Table 3. Information of the implicit round functions T (i) of Challenge 227.

T (1) {T (2), . . . , T (t−1)} T (t) T (t+1)

input variables 2+4 5+4 5+3 3+2
number of components 4 4 3 2

degree 3 3 4 2
number of coefficients 27× 4 130× 4 255× 3 18× 2

After obfuscating the code with Tigress, the size of the final C source code
of Challenge 227 is 4.4 MB. In a modern personal laptop with the environment8

provided by the competition, the size of the compiled binary is 4.42 MB, and the
average running time and RAM consumed is 0.04 s and 6.14 MB respectively.
The code obfuscation did not impact the running time but increased the binary
size by 8% and the average RAM by 3%.

Security Analysis Challenge 227 can be broken in different ways. Here, we
describe two methods that can be more or less automated.

Finding the inversion of the nonce. During the computation of s, the nonce k
must be inverted modulo n. This operation is very sensitive and can be quite
difficult to protect. In Challenge 227, it is not performed in the clear: the value
of k is protected by the encoding function A(t) and by the matrix M . If we note

M =

(
m0 m1

m2 m3

)
, the system that is solved for the computation of r and s is{

m0(ks− e− dRx) +m1(r −Rx) = 0

m2(ks− e− dRx) +m3(r −Rx) = 0
. (21)

We stress that k, e and Rx do not appear in the clear. They are expressed as

linear combinations of the input u = A(t)(k, e,Rx, Ry) of E(2). Nevertheless, the
factor of s has to be inverted at some point of the computation, so (m0k)

−1 mod
n appears in the clear, no matter how m0k is computed. If the attacker finds
this value during the computation of two different signatures, let’s say of (r1, s1)
and (r2, s2), he may compute α1 = m0k1 mod n and α2 = m0k2 mod n in order

8 https://github.com/CryptoExperts/whibox_contest_submission_server

Attacks and Designs from WhibOx 2021 Contest 19

to solve the following system of two equations with two unknowns (m0 and d)
in Fn: {

m0(e1 + r1d) = α1s1

m0(e2 + r2d) = α2s2
. (22)

Therefore, recovering the value (m0kt)
−1 mod n for two different signatures al-

lows an attacker to compute the private key.
This attack may seem very specific but protecting the inversion by multiply-

ing the nonce with a constant may look like an easy countermeasure for designers,
so it can possibly break several implementations. Also, finding the interesting
values inside the white-box may seem difficult without a reverse engineering step,
but the attack turns out to be easily automated on the challenges which use the
GMP library, as Challenge 227. Indeed, finding the inversion is easy when one
can simply trace the calls to the function mpz invert(). This attack can thus
be efficiently applied on Challenge 227 without requiring a reverse engineering
step.

With lattice reduction. There exists a more generic way of breaking challenge
227. Indeed, the way the ephemeral key is constructed (see Sect.9) opens the
way for an attack using lattice reduction techniques.

Given that the ephemeral key k is obtained by summing 256 scalars ki,j
according to each bit of the input, one can obtain the following signatures by
selecting couple of hashes (e0, ei), with e0 = 0 and ei = 2i :

s0 = (
255∑
j=0

kj,0)
−1(e0 + r0d) mod n

si = (ki,1 +
255∑

j=0,j ̸=i

kj,0)
−1(e0 + r0d) mod n

, (23)

which allow us to construct 256 equations involving only one of the ki,j :

ki,1 +
255∑

j=0,j ̸=i

kj,0 −
255∑
j=0

kj,0 = s−1
i (ei + rid)− s−1

0 (e0 + r0d) mod n

ki,1 − ki,0 = s−1
i ei − s−1

0 e0 + (ri − r0)d mod n

. (24)

Now, the additional constraint k < n lets us estimate that each ki,j is sampled
from [0, ⌊n/256⌋]. Consequently,

|ki,1 − ki,0|n = |s−1
i ei − s−1

0 e0 + (ri − r0)d|n < ⌊ n

256
⌋ , (25)

with |y|n := min
a∈Z

|y − an| to denote the distance of y ∈ R to the closest integer

multiple of n.
We recognize in Eq. 25 an instance of the Hidden Number Problem (HNP) [9].

Indeed, we are given many HNP inequalities of the form:

|αti − ui|n < ⌊ n

256
⌋ , (26)

20 Barbu et al.

with ti = ri − r0, ui = s−1
0 e0 − s−1

i ei and the hidden number α is the private
key d.

Solving HNP instances in the context of ECDSA given inequalities such as
Eq. 26, has been described numerous times in the literature. We refer the reader
to [30] for a more detailed description9. In particular, the authors detail the
reduction of the HNP instance to a Closest Vector Problem instance in a specific
lattice as well as the construction of this lattice.

Finally, we use 75 relations such as Eq. 25 (out of the 255 we can establish)
to build a lattice whose reduction allows us to recover the private key d.

5.5 Challenge 226: The Most Resistant

Description Challenge 226 (clever kare) was the second white-box imple-
mentation that we built following the method described above and including all
the additional countermeasures. While this challenge stood for the longest (35
hours), Challenge 226 achieved the second-highest number of strawberries due to
its higher time and memory complexity than Challenge 227.

Table 4 describes the memory complexity of {T (1), . . . , T (t)} and T (t+1) of
Challenge 226 after applying the additional countermeasures. Given each coef-

ficient as a 256-bit value, {T (1), . . . , T (t)} and T (t+1) require in total roughly 15
MB.

Table 4. Information of the implicit round functions T (i) of Challenge 226.

T (1) {T (2), . . . , T (t−1)} T (t) T (t+1)

input variables 2+6 7+6 7+5 5+2
number of components 6 6 5 2

degree 3 3 4 5
number of coefficients 37× 6 322× 6 854× 5 504× 2

The size of the final C source code of Challenge 266 is 17.54 MB, the size
of the compiled binary is 15.44 MB, and the average running time and RAM
consumed are 0.15 s and 17.27 MB respectively. The code obfuscation did not
significantly impact the performance of Challenge 266; the running time, the
binary size, and the average RAM increased by less than 1%.

6 Conclusion

This work describes several attack techniques and designs used in the WhibOx
2021 contest. We explained the attack methods used by the team TheRealIdefix,

9 We also highlight that the authors of [30] made their code available at https://

github.com/crocs-muni/minerva.

Attacks and Designs from WhibOx 2021 Contest 21

who broke the largest number of challenges, and we showed the success of each
method against all the implementations in the contest. Fault attacks were the
most efficient and effective ones; collision and lattice attacks were slightly less
efficient, and hooking succeeded against weak implementations only.

Among the three white-box implementations that resisted these attacks, the
one with the highest score was Challenge 226 (clever kare). This challenge,
together with Challenge 227 (keen ptolemy), was submitted by the team ze-
rokey, and they obtained the second-highest and the highest score in the contest
respectively. In this work, we described the design methodology of these two
challenges, which was inspired by the implicit white-box framework. We also
described the additional countermeasures used in each challenge.

The large number of implementations broken by our automated attacks and
the fact that no challenge survived more than two days show that securing
ECDSA in the white-box model is a challenging problem. White-box attacks
benefit from the huge progress in side-channel and fault attacks against ECDSA
implementations, but not much research has been done on the design part. To
this end, our designs provide insightful examples for future works, and our at-
tacks highlight the weak points future research should address.

One of the main challenges specific to white-boxing ECDSA is the conver-
sion from Fp to Fn. While grey-box countermeasures can protect this step (e.g.
Arithmetic to Boolean and Boolean to Arithmetic mask conversions), these tech-
niques rely on randomness, which is ineffective in white-box implementations.
In particular, the conversion from Fp to Fn is one of the weakest points in our
designs, and further research in white-boxing the field conversion is needed.

Acknowledgment

The authors would like to thank the other members of TheRealIdefix team: Yan-
nick Bequer, Luk Bettale, Laurent Castelnovi, Thomas Chabrier, Nicolas De-
bande, Roch Lescuyer, Sarah Lopez and Nathan Reboud. Adrián Ranea is sup-
ported by a PhD Fellowship from the Research Foundation – Flanders (FWO).
Chaoyun Li is an FWO post-doctoral fellow under grant No. 1283121N. Ward
Beullens is an FWO post-doctoral fellow under grant No. 1S95620N.

22 Barbu et al.

References

1. E. Alpirez Bock, A. Amadori, C. Brzuska, and W. Michiels. On the Security Goals
of White-Box Cryptography. Cryptology ePrint Archive, Report 2020/104, 2020.
https://eprint.iacr.org/2020/104.

2. A. Amadori, W. Michiels, and P. Roelse. A DFA Attack on White-Box Imple-
mentations of AES with External Encodings. In K. G. Paterson and D. Stebila,
editors, SAC 2019, volume 11959 of LNCS, pages 591–617. Springer, Heidelberg,
Aug. 2019.

3. C. Ambrose, J. W. Bos, B. Fay, M. Joye, M. Lochter, and B. Murray. Differ-
ential attacks on deterministic signatures. In Cryptographers’ Track at the RSA
Conference, pages 339–353. Springer, 2018.

4. D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and Y. Yarom. Ladder-
Leak: Breaking ECDSA with Less than One Bit of Nonce Leakage. In J. Ligatti,
X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 20, pages 225–242. ACM Press,
Nov. 2020.

5. E. Barker and J. Kelsey. Recommendation for Random Number Generation Using
Deterministic Random Bit Generators. Technical report, NIST, 2015. https:

//doi.org/10.6028/NIST.SP.800-90Ar1.
6. I. Biehl, B. Meyer, and V. Müller. Differential Fault Attacks on Elliptic Curve

Cryptosystems. In M. Bellare, editor, CRYPTO 2000, volume 1880 of LNCS,
pages 131–146. Springer, Heidelberg, Aug. 2000.

7. O. Billet and H. Gilbert. A Traceable Block Cipher. In C.-S. Laih, editor,
ASIACRYPT 2003, volume 2894 of LNCS, pages 331–346. Springer, Heidelberg,
Nov. / Dec. 2003.

8. O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a White Box AES
Implementation. In H. Handschuh and A. Hasan, editors, SAC 2004, volume 3357
of LNCS, pages 227–240. Springer, Heidelberg, Aug. 2004.

9. D. Boneh and R. Venkatesan. Hardness of Computing the Most Significant Bits
of Secret Keys in Diffie-Hellman and Related Schemes. In N. Koblitz, editor,
CRYPTO’96, volume 1109 of LNCS, pages 129–142. Springer, Heidelberg, Aug.
1996.

10. J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen. Differential Computation
Analysis: Hiding Your White-Box Designs is Not Enough. In B. Gierlichs and
A. Y. Poschmann, editors, CHES 2016, volume 9813 of LNCS, pages 215–236.
Springer, Heidelberg, Aug. 2016.

11. J. Breitner and N. Heninger. Biased Nonce Sense: Lattice Attacks Against Weak
ECDSA Signatures in Cryptocurrencies. In I. Goldberg and T. Moore, editors, FC
2019, volume 11598 of LNCS, pages 3–20. Springer, Heidelberg, Feb. 2019.

12. J. Bringer, H. Chabanne, and E. Dottax. White Box Cryptography: Another
Attempt. Cryptology ePrint Archive, Report 2006/468, 2006. https://eprint.

iacr.org/2006/468.
13. CHES 2021 Challenge - WhibOx Contest. https://whibox.io/contests/2021/.
14. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A White-Box DES

Implementation for DRM Applications. In J. Feigenbaum, editor, Security and Pri-
vacy in Digital Rights Management, ACM CCS-9 Workshop, DRM 2002, volume
2696 of LNCS, pages 1–15. Springer, Heidelberg, Nov. 2002.

15. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-Box Cryptog-
raphy and an AES Implementation. In K. Nyberg and H. M. Heys, editors, SAC
2002, volume 2595 of LNCS, pages 250–270. Springer, Heidelberg, Aug. 2003.

Attacks and Designs from WhibOx 2021 Contest 23

16. C. Collberg. The Tigress C Diversifier/Obfuscator. https://tigress.wtf.

17. Y. De Mulder, P. Roelse, and B. Preneel. Cryptanalysis of the Xiao-Lai White-Box
AES Implementation. In L. R. Knudsen and H. Wu, editors, SAC 2012, volume
7707 of LNCS, pages 34–49. Springer, Heidelberg, Aug. 2013.

18. Y. De Mulder, B. Wyseur, and B. Preneel. Cryptanalysis of a Perturbated
White-Box AES Implementation. In G. Gong and K. C. Gupta, editors, IN-
DOCRYPT 2010, volume 6498 of LNCS, pages 292–310. Springer, Heidelberg,
Dec. 2010.

19. C. Delerablée, T. Lepoint, P. Paillier, and M. Rivain. White-Box Security Notions
for Symmetric Encryption Schemes. In T. Lange, K. Lauter, and P. Lisonek,
editors, SAC 2013, volume 8282 of LNCS, pages 247–264. Springer, Heidelberg,
Aug. 2014.

20. P. Derbez, P.-A. Fouque, B. Lambin, and B. Minaud. On Recovering Affine Encod-
ings in White-Box Implementations. Cryptology ePrint Archive, Report 2019/096,
2019. https://eprint.iacr.org/2019/096.

21. E. Dottax, C. Giraud, and A. Houzelot. White-Box ECDSA: Challenges and Ex-
isting Solutions. In S. Bhasin and F. D. Santis, editors, COSADE 2021, volume
12910 of LNCS, pages 184–201. Springer, 2021.

22. J. Fan and I. Verbauwhede. An updated survey on secure ECC implementations:
Attacks, countermeasures and cost. In Cryptography and Security: From Theory
to Applications, pages 265–282. Springer, 2012.

23. J.-C. Faugère, C. Goyet, and G. Renault. Attacking (EC)DSA Given Only an
Implicit Hint. In L. R. Knudsen and H. Wu, editors, SAC 2012, volume 7707 of
LNCS, pages 252–274. Springer, Heidelberg, Aug. 2013.

24. FIPS PUB 186-4. Digital Signature Standard. National Institute of Standards and
Technology, July 19, 2013.

25. C. Giraud and E. W. Knudsen. Fault Attacks on Signature Schemes. In H. Wang,
J. Pieprzyk, and V. Varadharajan, editors, ACISP 04, volume 3108 of LNCS, pages
478–491. Springer, Heidelberg, July 2004.

26. L. Goubin, J.-M. Masereel, and M. Quisquater. Cryptanalysis of White Box DES
Implementations. In C. M. Adams, A. Miri, and M. J. Wiener, editors, SAC 2007,
volume 4876 of LNCS, pages 278–295. Springer, Heidelberg, Aug. 2007.

27. L. Goubin, M. Rivain, and J. Wang. Defeating State-of-the-Art White-Box Coun-
termeasures with Advanced Gray-Box Attacks. Cryptology ePrint Archive, Report
2020/413, 2020. https://eprint.iacr.org/2020/413.

28. T. Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 6.2.1 edition, 2020. http://gmplib.org/.

29. Implicit White-Box Implementations: White-Boxing ARX Ciphers, 2022. Submit-
ted.

30. J. Jancar, V. Sedlacek, P. Svenda, and M. Sys. Minerva: The curse of ECDSA
nonces. IACR TCHES, 2020(4):281–308, 2020. https://tches.iacr.org/index.
php/TCHES/article/view/8684.

31. JORF n°0241. Avis relatif aux paramètres de courbes elliptiques définis par l’État
français, Oct. 16, 2011.

32. M. Karroumi. Protecting White-Box AES with Dual Ciphers. In K. H. Rhee
and D. Nyang, editors, ICISC 10, volume 6829 of LNCS, pages 278–291. Springer,
Heidelberg, Dec. 2011.

33. J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition.
CRC Press, 2014.

24 Barbu et al.

34. T. Lepoint, M. Rivain, Y. De Mulder, P. Roelse, and B. Preneel. Two Attacks on a
White-Box AES Implementation. In T. Lange, K. Lauter, and P. Lisonek, editors,
SAC 2013, volume 8282 of LNCS, pages 265–285. Springer, Heidelberg, Aug. 2014.

35. M. Lochter. RFC 5639: ECC Brainpool Standard Curves and Curve Generation,
2010. https://tools.ietf.org/pdf/rfc5639.pdf.

36. W. Michiels, P. Gorissen, and H. D. L. Hollmann. Cryptanalysis of a Generic Class
of White-Box Implementations. In R. M. Avanzi, L. Keliher, and F. Sica, editors,
SAC 2008, volume 5381 of LNCS, pages 414–428. Springer, Heidelberg, Aug. 2009.

37. P. Q. Nguyen and I. E. Shparlinski. The Insecurity of the Elliptic Curve Dig-
ital Signature Algorithm with Partially Known Nonces. Des. Codes Cryptogr.,
30(2):201–217, 2003.

38. D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Rösler. Attack-
ing deterministic signature schemes using fault attacks. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 338–352. IEEE, 2018.

39. M. Rivain and J. Wang. Analysis and Improvement of Differential Computation At-
tacks against Internally-Encoded White-Box Implementations. Cryptology ePrint
Archive, Report 2019/076, 2019. https://eprint.iacr.org/2019/076.

40. A. Saxena, B. Wyseur, and B. Preneel. Towards Security Notions for White-Box
Cryptography. In P. Samarati, M. Yung, F. Martinelli, and C. A. Ardagna, editors,
ISC 2009, volume 5735 of LNCS, pages 49–58. Springer, Heidelberg, Sept. 2009.

41. O. Seker, T. Eisenbarth, and M. Liskiewicz. A White-Box Masking Scheme Re-
sisting Computational and Algebraic Attacks. Cryptology ePrint Archive, Report
2020/443, 2020. https://eprint.iacr.org/2020/443.

42. Standards for Efficient Cryptography Group (SECG). SEC 2 Ver 2.0 : Recom-
mended Elliptic Curve Domain Parameters. Certicom Research, Jan. 27, 2010.

43. S. Vanstone. Responses to NIST’s Proposal. Communications of the ACM, 35:50–
52, 1992.

44. B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. Cryptanalysis of White-
Box DES Implementations with Arbitrary External Encodings. In C. M. Adams,
A. Miri, and M. J. Wiener, editors, SAC 2007, volume 4876 of LNCS, pages 264–
277. Springer, Heidelberg, Aug. 2007.

45. Y. Xiao and X. Lai. A Secure Implementation of White-Box AES. In 2nd Inter-
national Conference on Computer Science and its Applications, pages 1–6. IEEE,
2009.

Attacks and Designs from WhibOx 2021 Contest 25

A Attacks Summary Table

Table 5 presents for each challenge submitted to WhibOx 2021, the successful
attacks and the value of the corresponding key.

Table 5. Vulnerabilities of the various challenges.

C
h
a
ll
en

g
e

H
o
o
k
in
g

C
o
ll
is
io
n

F
a
u
lt

L
a
tt
ic
e

K
ey

3 ✓ ✓ ✓ ✓ 45189C81EADEE03202BFA06EAA15831789F0C76575508A563E1A739CA37B87BE
4 ✓ ✓ ✓ ✓ 22BEF7AC4C31B2B98227D95B5EB49AF23343004CF2713FED48BEC3B5B7C3D24D
8 ✓ ✓ ✓ ✓ F484955872415A32B1B5B731EA1A8C729458055C17DC5FE9C57BCB39D1A40BFE
10 ✓ ✓ ✓ ✓ 32D67733DF0D0257DA78E92752494CFD5112E303BA1413388126EA33BB60AEFC
11 ✓ ✓ ✓ ✓ E7F3287D91B528D78BF19D5E62828C845E1A4027A3E1F988B62B7407EBF5CF38
12 ✓ ✓ 773F0C0FFACB531F50FAE0987D2B8972FE1B9231BBF46859F475BAFB45257FED
13 ✓ ✓ 034332A23341538143FDB88F314FD942501FF8B6BA6A14D5013F1FC0984924BE
15 ✓ ✓ 3F77C51259E1C8CC48217A66998CCF3212A17120B0FCA09163E300576DFCD9E7
16 ✓ 23773F0BECFACB534250FAE0987D2B8969D1AFD7EF942F148746DC73A3C6B39A
32 ✓ ✓ ✓ 32D67733DF0D0257DA78E92752494FFD5112E303BA14133FF126EA33BB60AEFC
33 ✓ CD9540B70C2F92B2894594CABC4E724203A615B9144C459714758BC3CAA12242
34 ✓ ✓ ✓ 70253E6587D04D7A9A30A1461A80FCD235B28FBFC11FE8534CDFCE0A341C9257
36 ✓ 10D7EF92F06DF6EB94F2F344085DAD51D3A550E24A4569922460F579CB5DF11A
38 ✓ 70C3A9F11773C8DD795FD7942B5DB448FDFA5D12E6EC387691A19B6E523AE6AE
42 ✓ 1BEDDC1DD79F8856BF2E1FD66EB194073D60FEC658C5D0E2C8BAE02DC72ADF65
44 ✓ B519BB44EC5BF3380CB2DF555F39ED836CDBF4961E43A66C218FADB211BF468C
45 ✓ ✓ ✓ ✓ 32D67733DF3D0257DA78E92752494FFD5112E303BA14133FF126EA33BB60AEFC
50 ✓ 7A7AA97370B1EE16D64C71C7C5BC8C9F9456FBEA603780883399D89DA43F8A15
54 ✓ ✓ ✓ ✓ 32D67733DF3D0257DA78E92752494FFD5112E22222222222F126EA33F6E49790
55 ✓ ✓ ✓ ✓ 00498594859849584954E92752494FFD5112E2222222EE22F126EA33F6E49790
57 ✓ ✓ ✓ ✓ 7D1BBD475A8EB5AF7DDB238CD8A67F86B601E0EA101C04036849B31F96CA6083
58 ✓ ✓ ✓ BD3026C700A75B5970807802E2B47C2A892DF85E3CE57366D335EEBABCAAE255
61 ✓ ✓ ✓ F4DDC95A88146CF52DEC752E737F8E3FB16AE4F6B7E726068946F3B0BA0C8E95
62 ✓ ✓ ✓ 0A99EB20F9DE4DD7607288B8B766F6217FE5D2CE6DDD51C6159941066AF192ED
66 ✓ ✓ ✓ 8836AC84AA148440A20628810CA65EB038BB625841275CC11590D8F5BC7F1BAC
70 ✓ ✓ ✓ 21A35C57E23B2D23ADDA19EA30325F1B532DA645489E29E47A13E92CA1F6670C
71 ✓ ✓ ✓ 588BEED930355AF54EEBAFAA46A7D26DA378A36EF5CD15D1F876D753A395F8AF
72 ✓ ✓ ✓ B7A9B0F7661FC9A1DEC001F2C2C9EAE08748AEB187E1247726663E3DD1AB36BF
73 ✓ ✓ ✓ 4DAA29CBD634F28137499B9557104FDD36D4D4EFDFE87EFC0D8BD03555F8497F
74 ✓ ✓ ✓ 12691AAC55A079F529FE81205DF775EF297A14CA81499BF0857643E694CF8816
76 ✓ ✓ ✓ F5178EEC7A9779E13CE01B35C8264BF32C094B172051CA32156DC61485718318
77 ✓ ✓ ✓ A0543814F86D1C4AF6A08094CD0246F606F7E76CEE47EC052B62328038146D93
78 ✓ ✓ ✓ 511128DCBF369E985B99D07CC1668A2D28F4BA535CF7AC7926D4C5F696C3D35F
79 ✓ ✓ ✓ 595AD4C8A0EB2FDA798BC01D322F4C5ED098A2E749004B2B54FD815215F46686
80 ✓ ✓ ✓ 8E938EA9BE9E51A28DFD30BD6EDB9D6765C1272B8F7048CE81021194759C3E52
81 ✓ ✓ ✓ F134975C5A989635F1D9FA7469C848A953622E9DA1BED7E12455DCD2AFA070BE
84 ✓ ✓ ✓ 36A990B9F35B79934FB25C64681DE3A83FC178DC2383C585FFCFDDD7C1F6C2B7
85 ✓ ✓ ✓ ✓ AB700D75274336FD26A1FE49D400ACEAE89F0FDBFE4BDE9A70373CA693003CA8
87 ✓ ✓ ✓ 9A4D4A94A1FE0FA1C559764C85D06496BD752498E0B5A2459624211013B9A088
89 ✓ ✓ C80682FCB2D78B2515A70A70D17C47A8512E24A127E797C073566D54586B9482
94 ✓ ✓ A04B6199A1DFE39EF35F6302454D71C872771A2F02A27AB5EC8130DA226F6F90
96 ✓ ✓ AFAAABE59B2EBB4FE15274E4EB5D1999C0554CC2D498BC92C59A3F6CD8FE2BC0
97 ✓ ✓ ✓ ✓ 0754CA8EA936675EC3F64782A14E1A75B3D357044D4B2C434C6011279D17E829
100 ✓ 7F58EDB783C1F3FA7FF424CF7F5DF6D4BCDCF18D8A98CE4559EC22EB17030578

26 Barbu et al.

C
h
a
ll
en

g
e

H
o
o
k
in
g

C
o
ll
is
io
n

F
a
u
lt

L
a
tt
ic
e

K
ey

101 ✓ 25D31D3AFF5773799ECF43DEC1882B8F05D9231697BDDA5482DE05B14FB8A63B
103 ✓ ✓ CC977E0748722D615B845C1B10EA554B69DFCA640440CA5C468BBEF84B8C0442
104 ✓ ✓ ✓ 638C9DFBF9F376CBB3E3B01DF27960EC53A689D2FF4DFF23D97EE5351ED4A3D0
105 ✓ ✓ ✓ D29E9D130016D930BF830BCAD071BC6503F877FB207922A9E495CF71A79631FE
107 ✓ ✓ ✓ 4E420B6AA9E9F07F19CF7ED97497871C1223BC2A68E83716575C235DE6D63E17
108 ✓ 60609404F0B9086D3A995AF0680D048724CF2B1AF2B33CEA8DD4AF4B62A5DDBB
114 ✓ ✓ ✓ 0005
127 ✓ 1144D82B9568581405D10CF8B219FF7E94E4559E0832B06056F1F87D43C75777
135 ✓ ✓ ✓ ✓ 0C2A5692FE1A7F9B8EE7EB4A7CD59CD62BCE33576B3123CECBB6406837BF51F5
136 ✓ ✓ ✓ 0C2A5692FE1A7F9B8EE7EB4A7CD59CD62BCE33476B3123CECBB6406837BF51F4
139 ✓ ✓ ✓ 000000000000000000000000000000004319055358E8617B0C46353D039CDAA9
153 ✓ ✓ 9C29EDDAEF2C2B4452052B668B83BE6365004278068884FA1AC3F6D0622875C3
157 ✓ ✓ ✓ ✓ F04DBFD1147F9D43747538C1C9256DD2BC20562F9D92B83E9AFA751299B160A4
165 ✓ ✓ ✓ 84DAF8B6620FC6669BF1EE264D1B214A4FBECACEADDFDC0DCBC89CF4B6E3232B
166 ✓’ ✓ C746740A4A6BCBD462D9041023A0FEF5CCF0328FF80D9C50132682030D77D33C
172 ✓ ✓ ✓ 285E57F7BDDAAA6201D8870A0B9B168C7A5D8200085F62504EE3EBFCC11EF150
174 ✓ ✓ ✓ ✓ 9C29EDDAEF2C2B4452052B668B83BE6365004278068884FA1AC3F6D0622875EC
185 ✓ ✓ ✓ ✓ 7729EDDAEF2C2B4452052B668B83BE6365004278068884FA1AC3F6D0622875EC
187 ✓ ✓ ✓ ✓ 7779EDDAEF2C2B4452052B668B83BE6365004278068884FA1AC3F6D0622875EC
192 ✓ 09302BDFA5313312B9A665316F7E9365DCC57DA7E21FD8612CDCD553BABB51FE
193 ✓ E0FE06BE0684455EDD2F5134A3AE8B9F6852561C821672FA16606986233BF811
209 ✓ 6E3A09F8EC613B8A524F7608CB80B2D3C510E27506AD84FA14C3B6D018E659F7
212 ✓ D663E156F036F11D4E73CC0EC09A952DEAED316947DF73EB28467EC623C5740D
226 6F1D9093F3D5AE7C5F133659295914C9AF22E54B4ADE38CA421CA9BBD3D48A50
227 ✓ ADA6C6A1049825989811C9495D83681A68C67AB5E8EBDDC126CEE77056A7BB27
228 ✓ EA7BA345EB9D99F54261D01AE6319B184769E5745621706D77018E0DB46DDAFA
231 ✓ ✓ ✓ ✓ 8ADE24EE6413C6E408784DBB4D81D04F33238AB503CBE35C77400517EE5ABC96
235 ✓ ✓ ✓ ✓ 00D0FACADE0DEFACED
251 ✓ ✓ ✓ DDE098A74086ECBB4DBA1848511BEA924145D1A9ED2EC9E64E0C5934BAAC97AE
253 ✓ ✓ B22DB44C9E66D567B3B2CBB3C720309D1EEAD38717017F5E79F05274F289A52C
256 ✓ F1662664E7E303740C0CA3927F9870A789978DAE95892302E73C85E3993B4CC9
261 ✓ ✓ 3266C9F6379DFDAE4AA763E8E6BA94526504CA364C482306829D4BF1E97BFF92
262 ✓ A0F00DCAA5DAB169FD4DFE2186BCBCBD22631AB68BFEFF1FC19306174EAF8970
264 ✓ D0EE17829A397C18074EA3888057AE815B5336773F9668E6CE4464D4B2B05F1F
267 ✓ ✓ ✓ ✓ C17536B60BCF94326A9C8CA17E0FC4EDBD76822532B350E8237CA2D8CF9C74B0
274 ✓ ✓ ✓ ✓ 0080ECD2A00080ECD2A00080ECD2A00080ECD2A00080ECD2A00080ECD2A00080
283 ✓ 79FE8D884DC2F7440824DE79C9F7C513C2B4549631D343523C73CB8F85983A4F
299 ✓ ✓ ✓ ✓ 3A0F803A874CD5B826023F2073FF200371D399E76E66B05E1241AA787B0564D6
304 ✓ EE8942A527CA1A58B8A8EA369441CB8518836DDB98F6380B8008B6053BC8182C
305 311EA92FBCDD3C6A29D269589A9E71F13A231FFEC85FF36B398967EC9934805E
307 ✓ ✓ FA3FCDE70679E7E44391F7157E2B5822F5B9B9C93ADD95C2BA90FF4B95C8A6BB
308 ✓ ✓ 84CCCAA904CB397F41A36FF9E05D4EB6C58B8E203E02373C465B6C3F03280C82
314 ✓ 7E045DB89DD77BD6B2EAF23172A89A656B5084748642DB82BBAE931E737560C2
320 ✓ ✓ ✓ D235C2B1D089F158A0AE4E7799C2DCA9985E3D44C8F243BAD8B5E1A4EB647E1B
321 ✓ ✓ ✓ ✓ BA15757E1B0DB122F349C0C50C97071A4CFFF4FD2875B4A092FBDD985E8595DE
323 ✓ ✓ ✓ ✓ C7491BBC530FFA9DDCF3E7D732536FACF04239693D549C50DDAD41931A6244C2
325 ✓ ✓ 6902CD65AE124A45B9DD16BAEFD26D9CFFB5C291DC1E256D9CCE17BE3CF11775
327 ✓ 2BC6F2467C7F8DFA164EDC68DDCF65E795B8A2153182565481D8D6878D80EA81
328 ✓ 37170CF851A89AAFD3511234BE2B96C89B783A44D7A6C22E9A150872809F7CDF
345 ✓ 3266C9F6378DFDAE4AA763E9166B131E6514CA364C482306829D4BF1E97BFF92
346 5EE43950837D0ABA419FE5B586D1A7AA44DDAAC6327DADC3133F18A850211B9F

Attacks and Designs from WhibOx 2021 Contest 27

B Some Remarks on the Challenges

Among the various submissions, we notice the following facts:

– Challenges 15 and 16 have a very small code size, only 194 bytes! To obtain
such tiny implementations, the designers use a fixed nonce k = 1 (i.e. r = Gx)
and use a private key d such that dr ≡ 2i mod n. In such a case, the signature
of a hash e is equal to (Gx, e+ 2i).

– Challenge 114 uses a very small private key, indeed d114 = 5
– Challenge 274 uses a sparse (and funny) private key equals to 0080ECD2A-

00080ECD2A00080ECD2A00080ECD2A00080ECD2A00080ECD2A00080.
– Despite what is indicated in the rules (cf. Sect. 2), some challenges are not

deterministic10, i.e. the two signatures of the same message could be different.
All these challenges use the time() function to obtain some randomness.
However, it is easy to hook such calls and return a constant value.

10 Challenges 54, 55, 57, 58, 61, 62, 66, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 84, 89,
94, 96, 103, 104, 105, 107, 136 and 139 are not deterministic.

