
Light Clients for Lazy Blockchains

Ertem Nusret Tas1, David Tse1, Lei Yang2, and Dionysis Zindros1

1 Stanford University
{nusret,dntse,dionyziz}@stanford.edu

2 MIT CSAIL
leiy@csail.mit.edu

Abstract. Lazy blockchains decouple consensus from transaction verifi-
cation and execution to increase throughput. Although they can contain
invalid transactions (e.g., double spends) as a result, these can easily be
filtered out by full nodes that check if there have been previous conflict-
ing transactions. However, creating light (SPV) clients that do not see
the whole transaction history becomes a challenge: A record of a transac-
tion on the chain does not necessarily entail transaction confirmation. In
this paper, we devise a protocol that enables the creation of efficient light
clients for lazy blockchains. The number of interaction rounds and the
communication complexity of our protocol are logarithmic in the block-
chain execution time. Our construction is based on a bisection game that
traverses the Merkle tree containing the ledger of all – valid or invalid –
transactions. We prove that our proof system is succinct, complete and
sound, and empirically demonstrate the feasibility of our scheme.

1 Introduction

A traveler in Naples saw twelve beggars lying in the sun. He offered a lira to
the laziest of them. Eleven of them jumped up to claim it, so he gave it to
the twelfth [41]. Towards scalable blockchains, the holy grail of cryptocurrency
adoption, it has become clear that lazy systems will similarly win the race.

Eager blockchain protocols, such as Bitcoin and Ethereum, combine transac-
tion verification and execution with consensus to ensure that only valid transac-
tions are included in their ledger. In contrast, lazy blockchain protocols separate
the consensus layer (responsible for ordering transactions) from the execution
layer (responsible for interpreting them) to remove the execution bottleneck on
scalability [3]. In these systems, a population of consensus nodes collects trans-
actions and places them in a total order, without care for their validity. This
produces a confirmed dirty ledger, a sequence of totally ordered, but potentially
invalid, transactions – such as double spends. It is the responsibility of full nodes
to sanitize the dirty ledger and ascertain which transactions are valid. This is
done by executing the valid transactions one by one, and ignoring transactions

Authors are listed alphabetically. Contact author: DT.
Full version of the paper with appendices is available at eprint.iacr.org/2022/384 [47].

https://eprint.iacr.org/2022/384

2 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

Charlie

Eve

light
client

open right

open right

tx

state

Fig. 1: Bisection Game. Charlie the challenger helps the light client iteratively traverse
the tree of Eve the evil responder. A green node indicates a match, while a red node
indicates a mismatch, between the two dirty trees.

that are not applicable. Examples of lazy distributed ledger protocols include Ce-
lestia (LazyLedger) [3], Prism [5], Parallel Chains [24] and Snap-and-Chat [39].

As consensus nodes do not execute transactions, they also cannot find and
include the state commitments in the blockchain. Hence, lazy protocols cannot
easily support light clients, and techniques from the realm of eager systems, such
as SPV (Simple Payment Verification [38,13]), are not applicable (cf. Appendix A
for an attack on the succinctness of the SPV clients on lazy blockchains). For
instance, in Ethereum, to prove to the light clients their current account balance,
a full node presents a block header containing a state commitment, together with
a Merkle inclusion proof of the account to be verified within the commitment.
However, in a lazy protocol, commitments posted to the blockchain cannot be
trusted since the consensus nodes do not check the validity of the state.

In this paper, we resolve this outstanding problem by introducing the first
light client for lazy blockchains. Consider a light client, such as the mobile wallet
of a vendor, wishing to confirm an incoming payment. Our construction allows
it to synchronize with the network and quickly learn its latest account balance.
Towards this purpose, the light client first connects to several full nodes (e.g.,
servers by Infura, Chainlink, Alchemy), at least one of which is honest (exis-
tential honesty). It then asks them its account balance. If the answers received
contradict each other, then it deduces that at least one of them is adversarial.
It interactively interrogates the full nodes in order to determine which of them
is truthful.

Lazy blockchains also appear in the context of optimistic rollups on Ethereum
[30,23,21]. In these rollups, transactions are bundled and posted to Ethereum.
Then, the rollup full nodes execute the transactions and send state commitments
to a smart contract. If an invalid commitment appears on the contract, honest
full nodes post fraud proofs to warn the light clients about the invalid state.
To guarantee that they will see a fraud proof on-chain when the state is invalid,
these clients wait for a dispute delay period, typically one week, before accepting
a rollup state commitment. Thus, Ethereum acts like a lazy blockchain towards

Light Clients for Lazy Blockchains 3

the pending rollup transactions and state commitments that are less than a week
old. With our light client protocol used on these pending transactions, clients
can sync with the latest rollup state within seconds.
Contributions. Our contributions are: (1) We put forth the first light client
for lazy blockchains, achieving exponential improvement over full nodes in terms
of communication and computational complexity (Section 3); (2) We show our
system is complete, sound, and succinct with reduction-based proofs (Section 5);
(3) We implement our scheme and measure its performance (Section 4).

Experiments show that our light client construction can be efficiently imple-
mented on commodity mobile hardware, and only requires slight, incremental
changes to blockchain full nodes serving these clients. Specifically, to synchro-
nize with the network, a light client connecting to 17 full nodes distributed across
the world only downloads a dozen MBs of data, as opposed to hundreds of GBs
if running as a full node. The entire process takes less than 25 seconds.

1.1 Construction Overview

Consider a light client connected to two full nodes, Charlie and Eve. Charlie is
honest and Eve is adversarial. The client begins by downloading the canonical
(confirmed) header chain, each header containing the Merkle root of the trans-
actions (valid and invalid) in its block. To find out its account balance, the client
queries the full nodes. If both of them return the same answer, it rests assured
that the balance reported is accurate, implying that the protocol terminates
quickly in the optimistic case. Otherwise, it must identify the truthful party.

To help convince the light client, Charlie augments his dirty ledger with
some extra information: Together with every transaction, he includes a state
commitment after the particular transaction has been applied to the previous
state. If a transaction is invalid, he does not update the state. He organizes this
augmented dirty ledger into a binary Merkle tree, the dirty tree. All honest full
nodes following this process will construct the same dirty tree and hold the same,
correct dirty tree root (assuming they claim the same number of leaves that is
a power of two). If the client somehow learns the correct dirty tree root, then
it can be convinced of its balance with a Merkle proof. Thus, it suffices for the
client to discover the correct root. (In practice, the dirty tree can be organized
on the granularity of blocks rather than transactions; cf. Section 4.2.)

Charlie gives the correct dirty tree root to the light client, whereas Eve gives
an incorrect root. Since the two roots are different, the underlying augmented
dirty ledgers must differ somewhere. Charlie helps the client identify the first leaf
in Eve’s dirty tree that differs from his own via a bisection game (cf. Appendix B
for a formal description): With reference to his own dirty tree, he guides the client
through a path on Eve’s dirty tree that starts at the root and ends at the first leaf
of disagreement. He does this by iteratively asking Eve to reveal an increasingly
deeper node at a time. Given a node revealed at a certain height, Charlie queries
the left or the right child as illustrated in Figure 1. The left child is queried if
it does not match the corresponding internal node of his own tree, indicating a
mismatch; otherwise he selects to query the right child, since the left subtrees

4 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

are identical. When the process finishes, the light client has arrived at the first
point of disagreement between Charlie’s and Eve’s augmented dirty ledgers.

Once the augmented dirty ledger entry of disagreement is identified, the client
must verify that Eve’s entry is fraudulent, as claimed by Charlie: It either con-
tains an incorrect transaction or an invalid state commitment. If the transaction
within Eve’s entry is different from the one in the confirmed dirty ledger at
the claimed position, the client can detect this by asking for the transaction’s
Merkle inclusion proof with respect to the header chain client already holds (cf.
Appendix E.2 for a formalization of this inclusion check and Appendix F for
an overview of how it can be implemented on different consensus protocols).
On the other hand, if the transaction is correct, the client can locally evaluate
the correct state commitment at that position by applying the transaction to
the previous state commitment (which is valid as Charlie agrees with it). For
this purpose, the client need not download the whole previous state tree, but
instead asks for a fraud proof from Charlie. Fraud proofs were first introduced
by Al-Bassam et al. [4] to provide security for light clients against dishonest ma-
jorities that can include invalid state commitments in Ethereum. They consist
of the state elements touched by the transaction and their Merkle proofs within
the previous state commitment. They allow the client to obtain the new, correct
state commitment by updating these state elements and the relevant inner nodes
of the state Merkle tree. Therefore, any discrepancy in the state commitment
can be caught by the client (cf. Appendix E.3 for a formalization of this state
check and how it can be implemented on UTXO based protocols).

1.2 Related work

Eager light clients were first introduced by Nakamoto [38]. Superlight clients for
eager proof-of-work blockchains were put forth as NIPoPoWs [35,12,31,37] and
Mina [8] (formerly known as CODA). Improved and superlight clients for eager
proof-of-stake chains were described by Gaži et al. [27] and Agrawal et al. [2]3

respectively. Our techniques are orthogonal to theirs and can be composed as
discussed in Appendix D. For an overview of different light client constructions,
we refer the reader to Chatzigiannis et al. [16].

Our interactive bisection game is based on the work of Canetti et al. [15]
which was first applied in the blockchain setting by Arbitrum [30]. Computation
over large public logs was also explored by VerSum [29]. Contrary to Canetti and
Arbitrum, where bisection games are used to dispute computation over static
data, our bisection games are administered over ledgers, ever-growing and with
different sizes. This challenge requires us to introduce novel techniques in these
refereed games such as the use of Merkle Mountain Ranges [48,22] and a Suffix
Monologue in our construction (Section 3.3). Finally, on the multi-server case,
we improve the quadratic communication complexity of Canetti [15] to linear by
our multiparty tournaments (Section 3.4).

3 The paper [2] was made public after an initial version of this work.

Light Clients for Lazy Blockchains 5

As an alternative to our construction, recursive compositions [7] of SNARKs
[6,8] or STARKs can be used to support non-interactive lazy light clients. For
example, Mina [8] relies on recursive SNARKs with trusted setup to enable ver-
ification of all past state transitions in constant time. Plumo [49] proposes a
SNARK-based blockchain client with trusted setup that can prove months of
state history with a single transition proof. Halo [9] (later formalized by [11]) in-
troduced the first practical recursive SNARK without trusted setup. Our work
also does not require a trusted setup and our provers can update their state
in an online fashion within milliseconds on commodity hardware, with minimal
RAM requirements (for comparison, zkBridge [51] that uses SNARK proofs in-
curs a proving cost of $50 million per year). We also do not require changes in
the consensus layer to support pairing-friendly and ZK-friendly elliptic curves.
Our construction uses simple primitives that are straightforward to implement
today, and give insight to the structure of the underlying problem. Lastly, al-
though the ZK-based solutions do not require synchrony and the existential
honesty assumption for the safety of the lazy light clients (albeit requiring them
for liveness), these assumptions are already needed for the clients to identify the
correct header chain (consensus security) upon bootstrapping on many block-
chains such as Bitcoin, Ethereum and Cardano. Therefore, our work does not
introduce extra assumptions for the security of the lazy light client construction.

2 Preliminaries & Model

Notation. For a natural number n, we use [n] to denote the set {1, · · · , n}. We
use ϵ for the empty string. Given two strings a and b, we write a ∥ b for some
unambiguous encoding of their concatenation. Given a sequence X, X[i] repre-
sents the ith element (starting from 0). Negative indices address elements from
the end, so X[−1] is the last element. We use X[i:j] to denote the subsequence
of X consisting of the elements indexed from i (inclusive) to j (exclusive). The
notation X[i:] means the subsequence of X from i onwards, while X[:j] means
the subsequence of X up to (but excluding) j. We use |X| to denote the size of
a sequence. For a non-empty sequence X, we use (x:xs)← X to mean that the
first element of X is assigned to x, while the rest of the elements are assigned
to the (potentially empty) sequence xs. In our multi-party algorithms, we use
m 99K A to indicate that message m is sent to party A and m L99 A to indicate
that message m is received from party A. We use X ⪯ Y (X ≺ Y) to mean
that X is a (strict) prefix of Y . If either X ⪯ Y or Y ⪯ X, then X and Y
are said to be consistent. We use X | Y to denote that X is a subarray of Y ,
i.e., all elements in X appear in Y consecutively. We use H to denote a generic,
collision-resistant cryptographic hash function [32].

There are three types of nodes: consensus nodes, full nodes, and light clients.

Consensus nodes receive constant size transactions from the network and run
a consensus protocol to obtain chains consisting of blocks. These chains are
subsequently broadcast to all other nodes. Upon receiving a confirmed chain

6 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

from the consensus nodes, each node reads its chain and produces a sequence of
transactions (with total order) called the ledger.

The consensus nodes are lazy : They treat transactions as meaningless strings,
without validating them. They include in their proposed blocks any received
transaction with some spam-resilience mechanism (e.g., they typically maintain
a minimal notion of state that enables transactions to pay fees for block space).

The ledgers held by different nodes satisfy two properties: (1) Safety man-
dates that the ledgers of all honest nodes are consistent with each other; (2)
Liveness mandates that, if an honest node broadcasts a new transaction, it will
eventually appear in the ledger of all honest nodes within some finite delay.

Full nodes do not execute the consensus protocol, and instead, rely on the con-
sensus nodes to provide them with a confirmed chain and the associated ledger.
Contrary to consensus nodes, full nodes execute transactions to maintain a state
(e.g., a Merkle tree of account balances) uniquely determined by the ledger. An
empty ledger corresponds to a constant genesis state, st0. To determine the state
of a non-empty ledger, transactions from the ledger are iteratively applied on
top of the state, starting at the genesis state. This is captured by a transition
function δ(·, ·) taking a state and a transaction and producing a new state. Given
a dirty ledger L = tx1 · · · txn, the state becomes δ(δ(· · · δ(st0, tx1), · · ·), txn). We
use the shorthand notation δ∗ to apply a sequence of transactions tx = tx1 · · · txn
to a state, i.e., δ∗(st0, tx) = δ(δ(· · · δ(st0, tx1), · · ·), txn).

Some transactions may not be applicable to a particular state, in which case
they are said to be invalid with respect to the state (e.g., double spends). As
we are dealing with lazy systems, invalid transactions may still be contained in
the ledger, hence the ledger is called dirty. We denote by Lv

r the dirty ledger in
the view of a full node v at time r. If safety is guaranteed, then we use L∪

r to
denote the longest among all the dirty ledgers kept by honest nodes at round
r. Similarly, we use L∩

r to denote the shortest among them. We skip r in this
notation if it is clear from the context. By convention, if a transaction tx cannot
be applied to state st, we let δ(st, tx) = st. Each state is committed to by a
succinct representation called the state commitment (e.g., a Merkle root) and
denoted by ⟨st⟩. State commitments have constant size. We denote by ⟨·⟩ the
commitment function that takes a state and produces its commitment, i.e., ⟨st⟩
is the commitment to the state st.

Light clients wish to find out a particular state element (e.g., its own account
balance) without downloading the whole ledger or executing the transactions.
As in the SPV model, the light client downloads and verifies the header chain
from the consensus nodes (e.g., the longest chain headers containing transaction
roots), but not the transactions themselves. Given a chain C with |C| blocks and
the corresponding ledger of size L = |L|, a full node downloads data proportional
to O(|C| + L), where |C| comes from the header chain and L comes from the
transactions. In contrast, a light client wants to learn its desired state element by
downloading asymptotically less data. We call a light client succinct if instead of
L, it only needs to download O(poly logL) bits after obtaining the header chain.

Light Clients for Lazy Blockchains 7

The Prover–Verifier model. We are interested in a light client V who is
booting up the network for the first time. It connects to full nodes who are fully
synchronized with the rest of the network. The client acts as a verifier, while
the full nodes act as provers [35]. We assume at least one of the provers that V
connects to is honest (the standard non-eclipsing assumption [25,26,28,50]), but
the rest can be adversarially controlled. The honest provers follow the specified
protocol and the adversary can run any probabilistic polynomial-time algorithm.

Network. Time proceeds in discrete rounds. The network is synchronous, i.e., a
message sent by one honest node at the end of round r is received by all honest
nodes at the beginning of round r + 1. The adversary can inject arbitrary, but
bounded number of messages to the network. She can also reorder the messages
sent by honest nodes and deliver them in a different order to different honest
nodes. However, she cannot censor honest messages. As popular lazy blockchain
systems such as Celestia (LazyLedger) [3], Prism [5], and Parallel Chains [24]
were proven secure under the synchronous network model, our construction does
not impose extra requirements for these systems.

3 Construction

We next describe the protocol for ledgers of variable and dynamic lengths.

3.1 Augmented Dirty Ledgers, Dirty Trees and MMRs

The prover augments each element of its dirty ledger L and produces an aug-
mented dirty ledger L+, where every transaction in the original dirty ledger is
replaced with a pair. The pair, denoted by (tx, ⟨st⟩), contains the original trans-
action tx as well as a commitment ⟨st⟩ to the state after this transaction is
applied. The first element of L+ is the pair (ϵ, ⟨st0⟩), consisting of the empty
string (as there is no genesis transaction) and the genesis state commitment ⟨st0⟩.
The state commitment of L+[i+ 1] is computed by applying the transaction at
L[i+1] to the state committed to by L+[i]. Concretely, if L = (tx1, tx2, . . .), then
L+ = ((ϵ, ⟨st0⟩), (tx1, ⟨δ(st0, tx1)⟩), (tx2, ⟨δ(δ(st0, tx1), tx2))⟩), ..).

The dirty tree T corresponding to an augmented dirty ledger L+ is defined
as the Merkle tree that contains L+[i] as the i-th leaf.

To organize ledgers of various sizes, provers use Merkle Mountain Ranges
(MMRs). Provers construct their MMRs on their augmented dirty ledgers. To
build an MMR, a prover divides his augmented dirty ledger L+ into segments
s1, s2, . . . , sk with lengths ℓ = (ℓ1, ℓ2, . . . , ℓk), where ℓ1 = 2q1 > ℓ2 = 2q2 > . . . >
ℓk = 2qk are unique decreasing powers of 2. Each of these k segments is then
organized into a dirty tree, and those trees T = (T1, T2, . . . , Tk) are collected
into an array, that is the MMR T . The roots ⟨T ⟩ = (⟨T ⟩1 , ⟨T ⟩2 , . . . , ⟨T ⟩k) of
these dirty trees, where ⟨T ⟩i = ⟨Ti⟩, are called the peaks. When there is a new
transaction, the provers update their MMRs in amortized constant time, worst
case update time per transaction being logarithmic in the size of the dirty ledger.

8 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

3.2 Views in Disagreement

Consider a light client V that connects to an honest prover P and an adversarial
prover P∗, but does not know who is who. Let st be the current state in P’s
view at round r. Let L denote the dirty ledger, L+ denote the augmented dirty
ledger, and T denote the MMR of P at round r. The last entry L+[−1] of the
honest augmented dirty ledger contains the commitment ⟨st⟩ to the latest state
st. The client V wishes to learn the value of a particular state element in st. For
this purpose, V only needs to learn a truthful state commitment ⟨st⟩; as from
there, an inclusion proof into ⟨st⟩ suffices to show inclusion of any state element
value. So the goal of P is to convince V of the correct state commitment ⟨st⟩.
If both provers respond to V’s request with the same commitment ⟨st⟩, then V
knows that the received state commitment is correct (because at least one prover
is honest). If they differ, it must discover the truth. If at any point in time, one
of the provers timeouts, i.e., fails to respond in one round of receiving its query,
the prover is considered adversarial and ignored thereafter (as the network is
synchronous, no honest prover would timeout). In practice, this equates to a
short timeout in the network connection.

Suppose the two provers claim different state commitments, ⟨st⟩ and ⟨st⟩∗
respectively, where ⟨st⟩ ≠ ⟨st⟩∗. To prove the correctness of its commitment,
P sends to V the peaks ⟨T ⟩ = (⟨T ⟩1 , . . . , ⟨T ⟩k) of its MMR T , the length
ℓ = |L+| of its augmented dirty ledger, and the Merkle proof π from the last
leaf L+[−1], which contains ⟨st⟩, to the root ⟨T ⟩k. The adversary P∗ sends to V
the alleged peaks ⟨T ⟩∗ = (⟨T ⟩∗1 , . . . , ⟨T ⟩

∗
k∗), an alleged length ℓ∗, and an alleged

Merkle proof π∗. Since ⟨st⟩ ≠ ⟨st⟩∗, if π and π∗ both verify, then we have that
⟨T ⟩k ̸= ⟨T ⟩

∗
k∗ . In this case, V mediates a challenge game between P and P∗ to

determine which of the peaks ⟨T ⟩ or ⟨T ⟩∗ were constructed honestly:

Definition 1 (Well-formed Ledgers, Trees and MMRs). An augmented
dirty ledger L+ is said to be well-formed at round r with respect to transition δ,
genesis state st0, and commitment function ⟨·⟩ if: L+[0] = (ϵ, ⟨st0⟩) and, ∀ i ∈
[|L+| − 1], L+[i] = (txi, ⟨sti⟩) such that (txi−1, txi) | L∪

r , and sti = δ∗(st0,L[:i]).
A dirty tree or MMR T is said to be well-formed if its leaves correspond to

the entries of a well-formed augmented dirty ledger.

The augmented dirty ledger and MMR held by an honest prover are al-
ways well-formed. Hence, to determine whether ⟨T ⟩k or ⟨T ⟩∗k∗ contain the cor-
rect state commitment, it suffices for the verifier to check if (⟨T ⟩1 , . . . , ⟨T ⟩k) or
(⟨T ⟩∗1 , . . . , ⟨T ⟩

∗
k∗) correspond to the peaks of a well-formed MMR.

3.3 Challenge Game

We now explore the challenge game that allows the verifier to compare competing
claims by two provers. During the game, the prover with the larger claimed ledger
length ℓ acts as the challenger while the other acts as the responder. The goal of
the challenger is to identify the first point on the responder’s alleged augmented
dirty ledger that disagrees with his own ledger. The challenge game consists of

Light Clients for Lazy Blockchains 9

Challenger

Responder

A

A

B
C

C

Fig. 2: The challenger’s MMR (top) is compared to the responder’s alleged MMR. The
first two peaks (A in blue) are the same, so they are skipped by Alg. 1. The second
peak of the challenger is reached (B in purple) and compared against the responder’s
second peak (C). When found to be different, the challenger knows that the remaining
responder peaks (in black, bottom) will lie within his own current tree (B, in purple);
so Alg. 1 Line 4 calls Alg. 2 to compare the black peaks against the purple tree.

two phases: During the first zooming phase, the challenger reduces his search of
the first point of disagreement to a single tree within the responder’s MMR. After
this first phase is completed, the second phase consists of either the two parties
playing a bisection game (cf. Section 1.1, and for a more detailed description
Appendix B) or the challenger going into a suffix monologue.

Zooming phase. To narrow his search down to a single tree, the challenger
first calls Alg. 1 to identify the earliest peak among the responder’s peaks that
disagrees with his own peaks. Alg. 1 iterates over the responder’s peaks (Alg. 1
Line 2) until the challenger finds a peak ⟨T ⟩∗i among those returned by the
responder, that is different from the corresponding root ⟨Ti⟩ in his own peaks.
If the number of leaves under both peaks are the same, the challenger plays a
bisection game on the Merkle trees whose roots are ⟨Ti⟩ and ⟨T ⟩∗i (Alg. 1 Line 7).
Otherwise, if the number of leaves under ⟨T ⟩∗i is smaller than the number of
leaves under ⟨Ti⟩, then, all the alleged data within the responder’s remaining
peaks lies under the ith peak of the challenger (see Figure 2). The challenger
has now reduced his search to his own ith tree and can compare it against the
responder’s remaining peaks. This is done by calling Alg. 2 on the remaining
peaks of the responder (Alg. 1 Line 4).

Alg. 2 narrows the search for the first point of disagreement to one of re-
sponder’s peaks, so that V can compare the two trees using a bisection game.
Consider the responder’s remaining peaks overlayed onto the challenger’s tree
Ti (dashed lines in Figure 2). They correspond to certain inner nodes within Ti
(black, red, and red subtrees at the top of Figure 2). Alg. 2 locates the first such
inner node that disagrees with the responder’s corresponding peak (the left-most
red subtree in Figure 2). Finally, at this point, the challenger plays the bisec-
tion game on the sub-trees under this inner node and the responder’s currently
inspected root (Alg. 2 Line 13). After the bisection game, either the challenger
or the responder is declared the winner and the other one is declared the loser.

Suffix monologue. When the MMRs are well-formed, there is no first point of
disagreement between the two alleged augmented dirty ledgers, and the ledgers
form a prefix of one another. In that case, the provers will not enter into a

10 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

Algorithm 1 The algorithm run by the challenger to identify the first peak in the
responder’s MMR that is different from that of the challenger. The variables T and ℓ
denote the challenger’s sequence of Merkle trees and a sequence of their respective sizes,
whereas ⟨T ⟩∗ and ℓ

∗
denote the responder’s sequence of peaks and the corresponding

number of leaves respectively. The algorithm BisectionGame initiates a bisection
game between the challenger’s tree and the responder’s alleged tree with the same size.

1: function PeaksVsPeaks(T , ℓ, ⟨T ⟩∗, ℓ∗)
2: for i = 0 to |⟨T ⟩∗| − 1 do
3: if ℓ[i] ̸= ℓ

∗
[i] then

4: return TreeVsPeaks(T [i], ⟨T ⟩∗[i:], ℓ∗[i:])
5: end if
6: if T [i].root ̸= ⟨T ⟩∗[i] then
7: return BisectionGame(T [i], ℓ[i])
8: end if
9: end for
10: end function

bisection game, and it is the challenger’s turn to present his augmented dirty
ledger entries extending the responder’s ledger with size ℓ∗. Specifically, the
challenger presents the suffix L+[ℓ

∗: min(ℓ, ℓ∗ + ψ)] and the verifier checks the
transitions within this suffix. Concretely, for every consecutive (txj , ⟨stj⟩) and
(txj+1, ⟨stj+1⟩), for ℓ∗ ≤ j < min(ℓ, ℓ∗ + ψ), the verifier checks the inclusion of
txj and txj+1 in the header chain as before, and verifies that the state ⟨stj+1⟩
has been computed correctly using δ. The verifier also checks the transition from
L∗
+[ℓ

∗−1] = L∗
+[−1], i.e., the responder’s last entry, to L+[ℓ

∗], i.e., the first entry
in the challenger’s suffix, since the challenger, by starting the suffix monologue,
claims that his augmented dirty ledger is a suffix of the responder’s.

The parameter ψ is a constant selected in accordance with the chain growth
and liveness parameters of the blockchain (cf. Appendix E). The bound ψ on
the number of transitions to check prevents the suffix monologue from violating
succinctness. By the Common Prefix property [25], discrepancy in the lengths
of two honest provers’ ledgers is bounded when there is an upper bound on the
chain growth rate, which is the case for our protocols of interest (cf. the ledger
Lipschitz property in Appendix E.1). Hence, if the challenger presents ψ or more
extra entries with consecutive transactions and correct state transitions, then
the responder is declared a loser, as he presented too short a ledger to possibly
be honest. In other words, if an adversarial responder presents a much shorter
ledger, then the honest challenger sends ψ entries, proving to the verifier that
the adversary’s ledger is too short. On the contrary, an adversarial challenger
cannot present a well-formed ledger much longer than an honest responder’s
ledger, without breaking the underlying consensus protocol. If the challenger
fails to present a well-formed suffix, then the responder is declared the winner,
while the challenger is declared the loser. Otherwise, if the suffix presented is
well-formed and has length less than ψ, then both provers are declared winners of

Light Clients for Lazy Blockchains 11

Algorithm 2 The algorithm run by the challenger to identify the first subtree, under
one of the challenger’s larger Merkle trees, that is different from the responder’s peak.
The variable T denotes the challenger’s larger Merkle tree whereas ⟨T ⟩∗ and ℓ

∗
denote

the responder’s sequence of peaks (with some of the first elements chopped off during
the recursion) and the corresponding number of leaves respectively.

1: function TreeVsPeaks(T , ⟨T ⟩∗, ℓ∗)
2: assert T .size >

∑
ℓ∗∈ℓ

∗ ℓ∗

3: if |⟨T ⟩∗| = 0 then
4: return ▷ Done: the MMRs are well-formed.
5: end if
6: (peak:peaks)← ⟨T ⟩∗
7: (reSize:reSizes)← ℓ

∗

8: if ⌊T .size
2
⌋ > reSize then

9: TreeVsPeaks(T .left, ⟨T ⟩∗, ℓ∗)
10: else if tree.left.root = peak then
11: TreeVsPeaks(T .right, peaks, reSizes)
12: else
13: BisectionGame(T , reSize)
14: end if
15: end function

the challenge game. Unlike the bisection game, at the end of the suffix monologue,
both the challenger and the responder can win.

3.4 Multiparty Tournaments

Upon joining the network, the verifier V contacts a subset of all available provers4

for queries. If all of the responses are the same, V accepts the response as the cor-
rect answer. If it receives different responses, V arbitrates a tournament among
the provers that responded. The tournament’s purpose is to select a prover whose
latest claimed state is as up-to-date as the state obtained by applying the tran-
sition function iteratively on the transactions in L∩.

Suppose V hears back from n provers. Before the tournament, V orders the n
provers into a sequence P1,P2, . . . ,Pn in an increasing order of their (claimed)
augmented dirty ledger sizes. This sequence dictates the order in which the
provers play the bisection games. Then, V starts the tournament that consists
of n steps (cf. Appendix B for the algorithm run by V). Before the first step, it
initializes the set S = ∅. At the end of each step t, S contains the provers that
have engaged in at least one challenge game, and have not lost any by step t.

The tournament starts with a challenge game between P1 and P2, during
which P1 with the larger alleged augmented dirty ledger challenges P2. The
winners are added to S and the tournament moves to the second step. At each
step of the tournament, the set S is updated to contain the winners so far.

4 For instance, according to https://github.com/bitcoin/bitcoin/blob/master/

doc/reduce-traffic.md, Bitcoin makes 8 outbound full-relay connections.

https://github.com/bitcoin/bitcoin/blob/master/doc/reduce-traffic.md
https://github.com/bitcoin/bitcoin/blob/master/doc/reduce-traffic.md

12 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

Algorithm 3 The algorithm ran by the responder to reply to the challenger’s queries
while the challenger tries to identify the first point of disagreement against the respon-
der’s MMR. The variable L+ denotes the responder’s augmented dirty ledger. The
algorithm MakeMMR returns the MMR based on the given augmented dirty ledger.

1: function Respond(L+)
2: trees←MakeMMR(L+)
3: peaks← {tree.root : tree ∈ trees}
4: peaks 99K Challenger
5: pNum L99 Challenger
6: tree← trees[pNum] ▷ Enter a particular Merkle Tree
7: loc← ⊥
8: while tree.size > 1 do
9: (tree.left, tree.right) 99K Challenger
10: dir L99 Challenger
11: if dir = 0 then
12: tree← tree.left
13: else
14: tree← tree.right
15: end if
16: loc← loc ∥ dir
17: end while
18: dirtyLedger[loc] 99K Challenger
19: end function

Players may be removed from the set S if they lose, and new winners can be
added to S as they win. Each player P is considered in order. Let P denote the
prover in S that claims to have the largest augmented dirty ledger at a given
step i. The prover among {P,P} with the larger alleged augmented dirty ledger
challenges the other prover. Depending on the outcome of the challenge game,
there are three cases:

1. If both provers win, P is added to S and the tournament moves to step i+1.

2. If P loses, the tournament directly moves to step i+ 1 and S stays the same.

3. If P wins and P loses, P is removed from S. Then, P challenges the new P,
the prover with the largest alleged size among those remaining in the set S (or
vice versa). This case is repeated until either one of cases (1) or (2) happens, or
there are no provers left in S. If the latter happens, P is added to S and the
tournament moves to step i+ 1.

The procedure above is repeated until the end of step n − 1, after which,
P wins the tournament. Then, the verifier accepts the state commitment of P
among those remaining in S as the correct state.

The tournament consists of O(n) bisection games and has an O(n) running
time5. The reason is that, after each game, one party is eliminated from the
winners, either by not being added to S, or by being removed from S, and every

5 In contrast, the playoff in [15, Appendix G] consists of O(n2) games and has an
O(n) running time due to games happening in parallel.

Light Clients for Lazy Blockchains 13

party can be eliminated at most once. Parallelizing the tournaments can also
help make the runtime sublinear in the number of provers.

4 System Considerations

4.1 Running Time of Bisection Games

Implementation and experimental setup. We report on a prototype im-
plementation of the prover and the verifier in 1000 lines of Go6, and set up 17
provers on AWS r5.xlarge instances distributed across 17 data centers around
the globe. All provers have ledgers of the same size, but only one of the provers
has the correct augmented dirty ledger. Ledgers of the remaining 16 provers
differ from the correct one at a randomly selected position. To simplify the pro-
totype, we do not implement a state transition function δ, e.g., the Ethereum
Virtual Machine. (We explore the cost of proving state transitions in the next
subsection.) Instead, all transactions and state commitments (cf. Algorithm 4)
are random byte strings. We hard code the prover and the verifier such that a
state commitment is valid to the verifier only if the prover has the correct com-
mitment in its augmented dirty ledger. We run the verifier under a residential
internet connection with 300 Mbps downlink and 10 Mbps uplink bandwidth.
The verifier connects to all of the 17 provers, and arbitrates the tournament (cf.
Algorithm 6) among them.
Verification latency. We first explore the duration of the tournament. So far,
we have only discussed binary Merkle trees for use in our bisection game, but
we can consider m-ary Merkle trees more generally. Increasing the degree m of
a dirty tree flattens the tree, resulting in fewer rounds of interactivity in the
bisection game. On the other hand, opening an inner node now requires sending
m children, resulting in higher bandwidth usage. Appendix C models the latency-
bandwidth trade-off realized by tuning m. Here, we experimentally explore the
trade-off. For this experiment, we fix the ledger size to 10 million transactions and
vary m. For each configuration, we run 10 tournaments and measure the average
and the standard deviation of the duration (Figure 3a). When m = 300, the
duration reaches the lowest, at 18.37s. Most blockchains confirm transactions
with a latency of tens of seconds. In comparison, the tournament adds little
extra time on top of the end-to-end latency that a light client perceives for new
transactions. Under this configuration, a tournament consists of 16 games, and
each game involves 4 rounds of interaction between the verifier and the provers.
On average, each round of interaction lasts for 0.287s. In comparison, the average
network round-trip time (RTT) from the verifier to the provers is 0.132s.

As we vary m, tournaments take longer to finish. Specifically, a smaller m
makes each Merkle tree opening smaller, but increases the number of openings
per game, making network propagation latency the main bottleneck of the game.
In contrast, a larger m makes bandwidth the main bottleneck. As we increase

6 The code is open source under MIT license, and is available at https://github.

com/yangl1996/super-light-client.

https://github.com/yangl1996/super-light-client
https://github.com/yangl1996/super-light-client

14 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

 0

 20

 40

 60

 80

 100

 120

 10 100 1000 10000

D
ur
at
io
n

 (
s)

Tree degree

 0

 5

 10

 15

 20

 25

 30

 1000 10000 100000 1x106 1x107 1x108

D
ur
at
io
n

 (
s)

Ledger size

 0

 200

 400

 600

 800

 1000

 50 100 150 200 250 300

T
hr
ou
gh
pu
t
(g
am
es
/s
)

games in parallel

Fig. 3: In (a) and (b), we measure the time to complete a tournament of 17 geo-
distributed provers. Error bars show the standard deviation. Solid lines show the trend.
(a) Time when varying the tree degree m. (b) Time when varying the ledger size L.
(c) Throughput of games with two provers and one verifier co-located in a data center.
The verifier initiates games with variable parallelism to saturate the provers.

m to 10000, each opening of the Merkle tree becomes large enough such that
message transmission is affected by the fluctuation of the internet bandwidth,
causing a higher variation in the tournament duration.
Scalability. We now evaluate how our scheme scales as the ledger size grows.
We fix the tree degree m to 300, vary the size of the ledger from 1000 to 100
million transactions and report the mean and the standard deviation over 10
tournaments for each datapoint (Figure 3b). As we increase the ledger size by
105×, the tournament duration grows from 13s to 26s, an increase of only 2×.
This is because the number of interactions in a game is equal to the depth of
the Merkle tree, which grows logarithmically with the ledger size.
Prover throughput. Finally, we evaluate the throughput of a prover partici-
pating in many games (Figure 3c). To minimize the network influence, we run
two provers in the same datacenter. Each prover has a ledger of 10M transactions,
which differ at a random location. We start a verifier in the same datacenter,
which initiates a variable number of bisection games between the two provers
in parallel. We gradually ramp up the parallelism to generate enough load and
saturate the provers. During the process, the achieved throughput first increases
due to the increased load, and then stays flat because the provers have saturated
their computational resources. Specifically, a prover running our prototype can
support a throughput of 680 games/second using its 4 virtual CPU cores. We
expect the throughput to scale with the available CPU cores and disk IO.

4.2 Proving State Transitions

We next discuss the cost of proving and verifying state transitions, which hap-
pens when a bisection game ends with a point of disagreement. For concreteness,
we use the Ethereum Virtual Machine (EVM) as an example, but the discussion
applies to other state machines.
Ledger granularity. So far, we have assumed that the bisection game runs
with a granularity of transactions. While the proof size is small in this natu-
ral configuration (less than 20 state elements on average for recent Ethereum
transactions), an honest prover needs to maintain snapshots of ledger states as

Light Clients for Lazy Blockchains 15

of every historical transaction to generate such proofs for arbitrary points in
the dirty ledger. Maintaining these snapshots can be costly, since even block-
chain nodes in “archival” mode—ones that store the most historical data—do
not keep such fine-grained information. We propose that real-world deployments
use a granularity of blocks, i.e., treating an entire block as a single entry in the
dirty ledger. To generate state transition proofs, provers only need access to
state snapshots as of each block, which are readily available from archival nodes.
A direct benefit is that provers can be implemented using public RPC APIs
provided by EVMs, namely the debug traceBlock RPC which lists all state
elements read/written by a block. This allows provers to make use of existing
archival nodes and eliminates the need to maintain separate state snapshots.

An apparent downside of this coarse-grained approach is that state transition
proofs are larger, consisting of state elements touched by an entire block plus
the relevant Merkle proofs. However, our experiments show that such proofs are
less than 10 MB for recent Ethereum blocks, which can be downloaded within
0.3 seconds with a 300 Mbps internet connection used in previous experiments,
adding little to the seconds-long duration of the bisection game.
Verification costs. Upon downloading a state transition proof (consisting of
the state elements touched by the transactions within the block at the first
point of disagreement and their Merkle proofs), the verifier needs to check the
proof by executing the transactions locally. We implemented a verifier by forking
foundry7, an EVM implementation in Rust, and used it to benchmark verifica-
tion costs on commodity mobile hardware.

Experimental results show that verifying state transition of recent Ethereum
blocks takes less than 0.8 seconds per block on average on a M1MacBook Pro and
consumes 2.5 Joules of energy8. The same verification takes less than 1.5 seconds
on an underpowered tablet with a 2-core Intel m5 low-power CPU manufactured
in 2015. In comparison, a full node syncing with the latest EVM state from
genesis has to execute all historical transactions, which takes at least a full day
on a workstation with 32 GB of RAM and a 4-core Intel Xeon CPU, and uses 540
GB of SSD. Our construction saves significant time, computation, and storage
because the light client only needs to locally execute the one block at the first
point of disagreement.

5 Analysis

We state our security theorems informally in this section. For the rigorous theo-
rem statements and proofs, see Appendix G. We begin by defining State Security,
which captures the verifier’s goal of obtaining a state consistent with the rest of
the network: There is no disagreement with the other honest nodes (safety), and
the state downloaded is recent (liveness).

Definition 2 (State Security). An interactive Prover–Verifier protocol (P, V)
is state secure with safety parameter ν, if there exists a ledger L such that the

7 https://github.com/foundry-rs/foundry
8 Measured using powermetrics built into macOS.

16 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

state commitment ⟨st⟩ obtained by the verifier at the end of the protocol execution
at round r satisfies ⟨δ∗(st0,L)⟩ = ⟨st⟩, and for all rounds r′ ≥ r+ν: L is a prefix
of L∪

r′ (safety) and L∩
r is a prefix of L (liveness).

The theorems for succinctness and security of the protocol are given below.
Security consists of two components: completeness and soundness.

Lemma 1 (Succinctness (Informal)). The challenge game invoked at round
r with sizes ℓ1 and ℓ2 > ℓ1 ends in O(log(ℓ1)) rounds of communication and has,
considered in isolation, a total communication complexity of O(log r).

Theorem 1 (Completeness (Informal)). The honest responder wins the chal-
lenge game against any PPT adversarial challenger.

Theorem 2 (Soundness (Informal)). Let H be a collision resistant hash
function. For all PPT adversarial responders A, an honest challenger wins the
challenge game against A with overwhelming probability in λ.

Theorem 3 (Tournament Runtime (Informal)). Consider a tournament
started at round r with n provers. Given at least one honest prover, for any
PPT adversary A, the tournament ends in O(n log r) rounds of communication
and has, considered in isolation, a total communication complexity of O(n log r),
with overwhelming probability in λ.

The theorem below is a direct consequence of the above theorems.

Theorem 4 (Security (Informal)). Consider a tournament started at round
r with n provers. Given at least one honest prover, for any PPT adversary A, the
state commitment obtained by the prover at the end of the tournament satisfies
State Security with overwhelming probability in λ.

Acknowledgements

We thank Shresth Agrawal, Kostis Karantias, Angel Leon, Joachim Neu, and
Apostolos Tzinas for several insightful discussions on this project. Ertem Nusret
Tas is supported by the Stanford Center for Blockchain Research. Lei Yang is
supported by a gift from the Ethereum Foundation.

References

1. Colored coins (2015), https://en.bitcoin.it/wiki/Colored_Coins
2. Agrawal, S., Neu, J., Tas, E.N., Zindros, D.: Proofs of proof-of-stake with sublinear

complexity. In: AFT. LIPIcs, vol. 282, pp. 14:1–14:24. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2023)

3. Al-Bassam, M.: Lazyledger: A distributed data availability ledger with client-side
smart contracts. arXiv:1905.09274 [cs.CR] (2019), https://arxiv.org/abs/1905.
09274

https://en.bitcoin.it/wiki/Colored_Coins
https://arxiv.org/abs/1905.09274
https://arxiv.org/abs/1905.09274

Light Clients for Lazy Blockchains 17

4. Al-Bassam, M., Sonnino, A., Buterin, V., Khoffi, I.: Fraud and data availability
proofs: Detecting invalid blocks in light clients. In: Financial Cryptography (2).
Lecture Notes in Computer Science, vol. 12675, pp. 279–298. Springer (2021)

5. Bagaria, V.K., Kannan, S., Tse, D., Fanti, G., Viswanath, P.: Prism: Deconstruct-
ing the blockchain to approach physical limits. In: CCS. pp. 585–602. ACM (2019)

6. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: CRYPTO (2). Lecture Notes in Computer Science,
vol. 8617, pp. 276–294. Springer (2014)

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: STOC. pp. 111–120. ACM
(2013)

8. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: Decentralized cryptocurrency
at scale. Cryptology ePrint Archive, Paper 2020/352 (2020), https://eprint.

iacr.org/2020/352
9. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without

a trusted setup. Cryptology ePrint Archive, Paper 2019/1021 (2019), https:

//eprint.iacr.org/2019/1021
10. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. CoRR

abs/1807.04938 (2018)
11. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from

accumulation schemes. In: TCC (2). Lecture Notes in Computer Science, vol. 12551,
pp. 1–18. Springer (2020)

12. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: Flyclient: Super-light clients for cryp-
tocurrencies. In: SP. pp. 928–946. IEEE (2020)

13. Buterin, V.e.a.: Light client protocol (2014), https://eth.wiki/en/concepts/

light-client-protocol
14. Canetti, R., Riva, B., Rothblum, G.N.: Practical delegation of computation using

multiple servers. In: CCS. pp. 445–454. ACM (2011)
15. Canetti, R., Riva, B., Rothblum, G.N.: Refereed delegation of computation. Inf.

Comput. 226, 16–36 (2013)
16. Chatzigiannis, P., Baldimtsi, F., Chalkias, K.: Sok: Blockchain light clients. In:

Financial Cryptography. Lecture Notes in Computer Science, vol. 13411, pp. 615–
641. Springer (2022)

17. Dahlberg, R., Pulls, T., Peeters, R.: Efficient sparse merkle trees - caching strategies
and secure (non-)membership proofs. In: NordSec. Lecture Notes in Computer
Science, vol. 10014, pp. 199–215 (2016)

18. Daian, P., Pass, R., Shi, E.: Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Financial Cryptography. Lecture
Notes in Computer Science, vol. 11598, pp. 23–41. Springer (2019)

19. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: EUROCRYPT (2). Lecture
Notes in Computer Science, vol. 10821, pp. 66–98. Springer (2018)

20. Developers, B.: Developer Guide - Bitcoin, https://bitcoin.org/en/developer-
guide

21. Developers, F.: Fuel - Beyond Monolithic, https://www.fuel.network/
22. Developers, G.: Merkle Mountain Ranges (MMR), https://docs.grin.mw/wiki/

chain-state/merkle-mountain-range/
23. Developers, O.: Optimism, https://www.optimism.io/
24. Fitzi, M., Gazi, P., Kiayias, A., Russell, A.: Parallel chains: Improving throughput

and latency of blockchain protocols via parallel composition. Cryptology ePrint
Archive, Paper 2018/1119 (2018), https://eprint.iacr.org/2018/1119

https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://eth.wiki/en/concepts/light-client-protocol
https://eth.wiki/en/concepts/light-client-protocol
https://bitcoin.org/en/developer-guide
https://bitcoin.org/en/developer-guide
https://www.fuel.network/
https://docs.grin.mw/wiki/chain-state/merkle-mountain-range/
https://docs.grin.mw/wiki/chain-state/merkle-mountain-range/
https://www.optimism.io/
https://eprint.iacr.org/2018/1119

18 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

25. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analy-
sis and applications. In: EUROCRYPT (2). Lecture Notes in Computer Science,
vol. 9057, pp. 281–310. Springer (2015)

26. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: CRYPTO (1). Lecture Notes in Computer Science, vol.
10401, pp. 291–323. Springer (2017)

27. Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: IEEE Symposium
on Security and Privacy. pp. 139–156. IEEE (2019)

28. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: USENIX Security Symposium. pp. 129–144. USENIX
Association (2015)

29. van den Hooff, J., Kaashoek, M.F., Zeldovich, N.: Versum: Verifiable computations
over large public logs. In: CCS. pp. 1304–1316. ACM (2014)

30. Kalodner, H.A., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
Scalable, private smart contracts. In: USENIX Security Symposium. pp. 1353–
1370. USENIX Association (2018)

31. Karantias, K., Kiayias, A., Zindros, D.: Compact storage of superblocks for
nipopow applications. In: MARBLE. pp. 77–91. Springer Proceedings in Business
and Economics, Springer (2019)

32. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. CRC
Press (2014)

33. Kiayias, A., Lamprou, N., Stouka, A.: Proofs of proofs of work with sublinear
complexity. In: Financial Cryptography Workshops. Lecture Notes in Computer
Science, vol. 9604, pp. 61–78. Springer (2016)

34. Kiayias, A., Leonardos, N., Zindros, D.: Mining in logarithmic space. In: CCS. pp.
3487–3501. ACM (2021)

35. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In:
Financial Cryptography. Lecture Notes in Computer Science, vol. 12059, pp. 505–
522. Springer (2020)

36. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: CRYPTO (1). Lecture Notes in Computer
Science, vol. 10401, pp. 357–388. Springer (2017)

37. Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: Financial Cryptography
Workshops. Lecture Notes in Computer Science, vol. 11599, pp. 21–34. Springer
(2019)

38. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), https://
bitcoin.org/bitcoin.pdf

39. Neu, J., Tas, E.N., Tse, D.: Snap-and-chat protocols: System aspects.
arXiv:2010.10447v1 [cs.CR] (2020), http://arxiv.org/abs/2010.10447v1

40. Neu, J., Tas, E.N., Tse, D.: Ebb-and-flow protocols: A resolution of the availability-
finality dilemma. In: 2021 IEEE Symposium on Security and Privacy (SP). pp.
446–465. IEEE (2021)

41. Russell, B.: In Praise of Idleness. Unwin (1935)
42. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: SPECTRE: A fast and scalable cryp-

tocurrency protocol. IACR Cryptol. ePrint Arch. p. 1159 (2016)
43. Sompolinsky, Y., Wyborski, S., Zohar, A.: PHANTOM GHOSTDAG: a scalable

generalization of nakamoto consensus: September 2, 2021. In: AFT. pp. 57–70.
ACM (2021)

44. Sompolinsky, Y., Zohar, A.: PHANTOM: A scalable blockdag protocol. IACR
Cryptol. ePrint Arch. p. 104 (2018)

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/2010.10447v1

Light Clients for Lazy Blockchains 19

45. Tas, E.N.: Woods Attack on Celestia (2021), https://forum.celestia.org/t/
woods-attack-on-celestia/59

46. Tas, E.N., Tse, D., Gai, F., Kannan, S., Maddah-Ali, M.A., Yu, F.: Bitcoin-
enhanced proof-of-stake security: Possibilities and impossibilities. In: SP. pp. 126–
145. IEEE (2023)

47. Tas, E.N., Tse, D., Yang, L., Zindros, D.: Light clients for lazy blockchains. Cryptol-
ogy ePrint Archive, Paper 2022/384 (2022), https://eprint.iacr.org/2022/384

48. Todd, P.: Merkle mountain ranges (2012), https://github.com/opentimestamps/
opentimestamps-server/blob/master/doc/merkle-mountain-range.md

49. Vesely, P., Gurkan, K., Straka, M., Gabizon, A., Jovanovic, P., Konstantopoulos,
G., Oines, A., Olszewski, M., Tromer, E.: Plumo: An ultralight blockchain client.
In: Financial Cryptography. Lecture Notes in Computer Science, vol. 13411, pp.
597–614. Springer (2022)

50. Wüst, K., Gervais, A.: Ethereum eclipse attacks (2016), https://www.research-
collection.ethz.ch/bitstream/handle/20.500.11850/121310/eth-49728-

01.pdf

51. Xie, T., Zhang, J., Cheng, Z., Zhang, F., Zhang, Y., Jia, Y., Boneh, D., Song, D.:
zkbridge: Trustless cross-chain bridges made practical. In: CCS. pp. 3003–3017.
ACM (2022)

A Attack on SPV Clients on Lazy Blockchains

We examine a hypothetical attack on the succinctness of the communication
complexity of the Bitcoin’s SPV [38] on a lazy blockchain protocol with UTXO-
based execution model. Suppose at round r, the confirmed sequence of blocks
contain the transactions txi, i ∈ [n] in the reverse order: for i ∈ {2, . . . , n−1}, txi
appears in the prefix of txi−1. Each transaction txi, i ∈ [n], spends two UTXO’s,
UTXOp

i and UTXOl
i, such that for i = 2, .., n, UTXOl

i = UTXOp
i−1, and UTXOl

1

UTXOp
i i ∈ {2, . . . , n − 1}, and UTXOp

n are all distinct UTXOs. Thus, if txi−1

appears in the prefix of txi, it invalidates txi as txi will be double-spending
UTXOl

i = UTXOp
i−1 already spent by txi−1. However, txi, i ∈ {3, . . . , n}, does

not invalidate txj for any j < i− 1. We assume that no transaction outside the
set txi, i ∈ [n], invalidates txi for any i ∈ [n− 1].

If n is even, tx1 would be invalid, since each transaction txi with an odd index
i ∈ {1, 3, . . . , 2n − 1}, will be invalidated by the transaction txi−1. However, if
n is odd, each transaction txi, with an even index i ∈ {2, 4, . . . , 2n− 1}, will be
invalidated by the transaction txi−1, which has an odd index. Hence, tx2 would
be invalid, implying that tx1 would be valid as no transaction other than tx2 can
invalidate tx1 by our assumption.

Consider a light client whose goal is to learn whether tx1 is valid with respect
to the transactions in its prefix. Suppose n is even, i.e., tx1 is invalid. Towards
its goal, the client asks full nodes it is connected to, whether tx1 is valid with
respect to the transactions in its prefix. Then, to convince the light client that
tx1 is invalid, an honest full node shows tx2, which invalidates tx1, along with
its inclusion proof. However, in this case, an adversarial full node can show tx3
to the client, which in turn invalidates tx2, and gives the impression that tx1 is
valid. Through an inductive reasoning, we observe that the adversarial nodes can

https://forum.celestia.org/t/woods-attack-on-celestia/59
https://forum.celestia.org/t/woods-attack-on-celestia/59
https://eprint.iacr.org/2022/384
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/121310/eth-49728-01.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/121310/eth-49728-01.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/121310/eth-49728-01.pdf

20 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

force the honest full node to show all of the transactions txi with even indices
i ∈ {2, . . . , n}, to the light client, such that no adversarial full node can verifiably
claim tx1’s validity anymore. However, since n can be arbitrarily large, e.g., a
constant fraction of the confirmed ledger length, light client in this case would
have to download and process linear number of transactions in the ledger length.

A related attack on rollups that use a lazy blockchain as its parent chain is
described by [45].

B Bisection Game

The game is terminated by the verifier as soon as the victory of one of the provers
becomes certain.
Challenger wins. The challenger wins the bisection game in the verifier’s view when-
ever one of the following conditions fails:

1. The responder must not timeout, i.e., must reply to a query within one round of
receiving it from the verifier.

2. The response of the responder must be syntactically valid according to the expec-
tations of the verifier, e.g., if the challenger has asked for the two children of a
Merkle tree inner node, these must be two hashes.

3. For the two nodes hl and hr returned by the responder as the children of a node
h on its dirty tree, h = H(hl ∥hr).

4. If j ≥ 1, the Merkle proof for the (j−1)st leaf of the responder’s dirty tree is valid.
5. If j ≥ 1, (txj−1, txj) | L∪.
6. If j ≥ 1, for the claimed state commitments ⟨st⟩j−1 , ⟨st⟩j , there is an underlying

state stj−1 such that ⟨stj−1⟩ = ⟨st⟩j−1 and ⟨st⟩j = ⟨δ(stj−1, txj)⟩.
7. If j = 0, the claimed state commitment ⟨st⟩0 matches the genesis state commitment
⟨st0⟩ known to the verifier and tx0 = ϵ.

To check condition 5, the verifier consults the already downloaded header chain (cf.
Appendix E.2). To check condition 6, the verifier requests a proof from the responder
that illustrates the correct state transition from ⟨st⟩j−1 to ⟨st⟩j , e.g., the balances that
were updated by txj (cf. Appendix E.3).
Responder wins. The responder wins and the challenger loses in the verifier’s view
if one of the following conditions fails:

1. The challenger must send valid queries. A valid query is a root number on the first
round (if the responder holds multiple Merkle trees), or a single bit in any next
round.

2. The challenger must not timeout, i.e., must send a query within a round of being
asked by the verifier.

If both parties respond according to these rules, then the responder wins.

Fig. 4: The alg. ran by the verifier to determine the winner of the bisection game.

Light Clients for Lazy Blockchains 21

The bisection game is played between two provers, a challenger and a re-
sponder. The challenger sends queries to the responder through the verifier. The
responder replies through the same channel (cf. Figure 1). The challenger sends
his first query to the verifier. The verifier forwards this query to the responder.
The responder sends his response back to the verifier. Lastly, the verifier for-
wards this response to the challenger. Subsequently, the challenger follows up
with more queries. As the verifier forwards queries and responses, it checks they
are well-formed and the responses correspond to the queries. All communication
between the two provers passes through the verifier. The challenger’s goal is to
convince the verifier that the responder’s dirty tree root does not correspond
to the root of a well-formed tree. The responder’s goal is to defend his claim
that his dirty tree root is the root of a well-formed tree. We design the game so
that an honest challenger always wins against an adversarial responder, and an
honest responder always wins against an adversarial challenger.

Algorithm 4 The algorithm ran by an honest challenger to identify the first point
of disagreement against the responder’s dirty tree, given that the trees have the same
size ℓ, but different roots. The variable T represents the challenger’s dirty tree.

1: function BisectionGame(T , ℓ)
2: if ℓ = 1 then
3: return ▷ We are done; let the verifier check the leaf
4: end if
5: (h∗

l , h
∗
r) L99 Responder ▷ Ask to open inner node

6: (hl, hr)← T .left.root, T .right.root
7: if hl = h∗

l then
8: 1 99K Responder
9: BisectionGame(T .right, ⌊ ℓ

2
⌋)

10: else
11: 0 99K Responder
12: BisectionGame(T .left, ⌊ ℓ

2
⌋)

13: end if
14: end function

The game proceeds as a binary search [15,14,30]. For simplicity, let us for
now assume that ℓ = ℓ∗ and they are a power of two. If ⟨T ⟩ ̸= ⟨T ⟩∗, then there
must be a first point of disagreement between the two underlying augmented
dirty ledgers L+ and L∗

+ alleged by the two provers. During the game, an honest
challenger tries to identify the first point of disagreement between his augmented
dirty ledger L+ and the one the adversarial responder claims to hold. Let j be
the index of that first point of disagreement pinpointed by the honest challenger.
Then, the challenger asks the responder to reveal the (j − 1)st and jth entries
of his augmented dirty ledger. Upon observing that the revealed entries violate
the well-formedness conditions of Definition 1, the verifier concludes that the
responder’s tree is not well-formed. On the other hand, the honest responder

22 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

replies to the adversarial challenger’s queries truthfully. Therefore, the adversar-
ial challenger cannot pinpoint any violation.

The honest challenger runs Algorithm 4, whereas the honest responder runs
Algorithm 5. The verifier forwards and verifies exactly up to log ℓ inner node
queries and one leaf query. Then, at the end of the algorithm, the challenger
arrives at the first point j of disagreement, and the honest responder reveals the
leaf data (txj , ⟨stj⟩) (Algorithm 5 Line 14). Finally, if j ≥ 1, the honest responder
also sends the leaf (txj−1, ⟨stj−1⟩) at index j − 1, along with its Merkle proof π
within its dirty tree in a single round of interaction (if j = 0, then the verifier
already knows the contents of the first leaf). This last response is only checked
by the verifier and does not need to be forwarded to the challenger. For brevity,
we omit this portion from the responder’s algorithm.

Algorithm 5 The algorithm ran during the bisection game by the responder to reply
to the challenger’s queries. The variable L+ denotes the responder’s augmented dirty
ledger. The algorithm MakeMerkleTree returns the Merkle tree based on the given
augmented dirty ledger.

1: function Respond(L+)
2: T ∗ ←MakeMerkleTree(L+)
3: T ∗.root 99K Challenger
4: while T ∗.size > 1 do
5: (h∗

l , h
∗
r)← (T ∗.left.root, T ∗.right.root)

6: (h∗
l , h

∗
r) 99K Challenger

7: dir L99 Challenger
8: if dir = 0 then
9: T ∗ ← T ∗.left
10: else
11: T ∗ ← T ∗.right
12: end if
13: end while
14: T ∗.data 99K Challenger
15: end function

If the responder is adversarial, she could send malformed responses. We use
the notation ⟨st⟩j to denote the claimed jth state commitment by the responder,
but this may be malformed and does not necessarily correspond to an actual
commitment ⟨stj⟩, where stj is the jth state of an honest party’s augmented
dirty ledger. In fact, it may not be a commitment at all. Similarly, the claimed
tree root ⟨T ⟩∗, provided by the adversary may not necessarily be a correctly
generated Merkle tree.

C Latency-Bandwidth Trade-off for Bisection Games

This section models the latency-bandwidth trade-off realized by tuning the de-
gree m of dirty trees, and complements the experimental results in Section 4.1.

Light Clients for Lazy Blockchains 23

Algorithm 6 The tournament among the provers administered by the verifier. It takes
a sequence of provers P, ordered from the one with the largest alleged augmented dirty
ledger size to the smallest. The algorithm Challenge initiates a challenge game with
the first given prover as the challenger and the second one as the responder.

1: function Tournament(P)
2: sizes← {}
3: for p ∈ P do
4: sizes[p]← p.getsize()
5: end for
6: S ← {P[0]}
7: largest← P[0]
8: for i = 1 to |P| − 1 do
9: do
10: if largest.getsize() > sizes[i] then
11: result← Challenge(largest,P[i])
12: else
13: result← Challenge(P[i], largest)
14: end if
15: if result is “nested MMRs” then
16: S ← S ∪ {P[i]}
17: else if result is “largest loses” then
18: S ← S \ {largest}
19: largest← argmaxp∈S sizes
20: end if
21: ▷ The set S is not updated if P[i] loses.
22: while result is “largest loses” ∧ S ̸= ∅
23: if S = ∅ then
24: S ← {P[i]}
25: end if
26: end for
27: return largest
28: end function

24 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

In an m-ary dirty tree representing an L-sized ledger, the tree height decreases
logarithmically as the degree m of the tree increases, making the number of
rounds of interactivity in the bisection game logm L. However, the challenger
must now indicate the index of the child to open, making its messages logm
bits in size. Similarly, when the responder opens up an inner node and reveals
its children, m children need to be sent over the network. If the hash used is
H bits long, then the messages sent by the responder are mH bits. There is
therefore a latency/bandwidth tradeoff in the parameter m. A large m incurs
less interactivity, but larger network messages, while a small m incurs more in-
teractivity but shorter messages. In this section, we calculate the optimal m,
given the respective network parameters on bandwidth and latency.

Let ∆ be the network latency between the prover and verifier, measured in
seconds, and C be the communication bandwidth of the channels connecting each
prover to the verifier. We assume that, upon downloading any given message,
the prover and the verifier compute the corresponding reply instantly (network
latency dominates computational latency). At each round of the bisection game,
logm and mH bits are downloaded by the responder and the challenger respec-
tively. Moreover, each message sent between the responder and challenger takes
2∆ seconds to reach its destination, because it has to be forwarded through the
verifier. Hence, each round is completed in 4∆+(mH+logm)/C seconds. As the
bisection game lasts for logm L rounds, the total running time of the game be-
comes (4∆+mH/C + logm/C) logm L = logL

logm (4∆+mH/C) + logL/C. This

expression is minimized for m that satisfies the expression m(logm − 1) =
4∆C/H, i.e., m = exp (W1(4∆

C
eH) + 1), where W1 is the Lambert W func-

tion. The different optimal m for common bandwidths and latencies are plotted
in Figure 5.

50 100 150 200 250 300
Bandwidth (Mbps)

25

50

75

100

125

150

175

200

L
at

en
cy

(m
s)

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000
60,000
65,000

70,000
75,000

80,000

20,000

40,000

60,000

80,000

Fig. 5: Optimal Merkle tree degree m (isolines) for a given network connection band-
width (x-axis, in Mbps) and latency (y-axis, in ms). The × marker marks the particular
example described in the text.

Light Clients for Lazy Blockchains 25

Given9 C = 290 Mbps, ∆ = 13 ms, H = 256 bits, the optimal m is 7,442,
yielding dirty trees that have quite a large degree. The optimal m only depends
on the network parameters and not the ledger size. Given the Ethereum ledger
of L = 1.5 ·109 transactions at the time of writing10, using the optimal m for the
given network parameters gives an estimate of 0.96 seconds, where 0.86 seconds
of the time is due to the network delay ∆. This captures the duration of the
whole bisection game with its logm L rounds of interactivity.

D Superlight Clients

In our construction, we abstracted the checking of transaction order that the
verifier performs into a consensus oracle, and discussed how this can be realized
in the blockchain setting using the standard SPV technique, achieving communi-
cation complexity of O(C) = O(r), where C is the chain size and r is the round
during which the light client is booting up. This gives a total of O(C + logL)
communication complexity for our lazy light client protocol. However, the con-
sensus oracle can be replaced with a superlight client that does not download the
whole header chain, and instead samples a small portion of it. Such examples
include interactive [33] or non-interactive PoPoWs and PoPoS, a primitive which
can be constructed using either superblocks [35,34], FlyClient [12] or bisection
games [2], and brings down the consensus oracle communication complexity to
a succinct O(poly logC) = O(poly log r). When composed with our protocol for
identifying lazy ledger disagreements, the total communication complexity then
becomes O(poly logC + logL) = O(poly log r), which is the desirable succinct-
ness. We highlight the different roles of each protocol here: On the one hand,
the superlight client, such as FlyClient or superblocks, plays the role of the con-
sensus oracle and is used to answer queries about which transaction succeeds
another on the chain; on the other hand, the interactive verification game is
administered to determine the current state of the world, given access to such
a consensus oracle. The two protocols are orthogonal and can be composed to
achieve an overall performant system.

The interactivity and communication complexity for synchronization times
for lazy light clients composed with different consensus oracles is illustrated in
Table 1. A Full Node (left-most column) downloads the whole header chain of
size C and every transaction of size L, thus does not need to play any interactive
games, achieving constant interactivity but large communication complexity. A
Custodian Node (right-most column) is a wallet that trusts a server to deliver
correct data and does not verify it (e.g., MetaMask); this has the best perfor-
mance in both complexity and interactivity. These were the only two previously
known means of constructing clients for lazy blockchains. The two protocols

9 Typical conditions for the network connection in Stanford university graduate stu-
dent residences.

10 Google Cloud Platform BigQuery table bigquery-public-data:crypto ethereum.

transactions as of March 6th, 2022

26 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

Full
Node

Light
Client

Superlight
Client

Custodian
Wallet

Interactivity O(1) O(logL) O(logL) O(1)

Communication O(C + L) O(C + logL) O(logCL) O(1)

Decentralized ✓ ✓ ✓ ×

Table 1: Comparison of different client types on a lazy blockchain.

titled Light Client and Superlight Client in the middle columns are clients com-
posed with the lazy light clients explored in this work. In the light client case, an
SPV client is used for the consensus oracle, while in the super light client case,
a NIPoPoW superblock client is used for the consensus oracle. The C or logC
term stems from the underlying consensus oracle, while the logL term stems
from our lazy protocol.

E Generalizing the Model

So far, we assumed the underlying consensus protocol is blockchain-based and
the computation of state mimicks Ethereum’s EVM. There exist different archi-
tectures for consensus (e.g., DAG-based constructions [24,44,42]) and execution
(e.g., UTXO [20]). Our protocol is generic and agnostic to these details. To en-
able the formal analysis of our construction in a generic manner, in this section
we axiomatize the protocol requirements regarding consensus and execution.

E.1 Consensus Protocol

We consider a consensus protocol C executed by honest full nodes. Each honest
full node P exposes a read ledger functionality which, at round r, returns a finite
sequence LP

r of stable transactions as the dirty ledger. They also expose a write
transaction functionality which, given a transaction tx at round r, attempts to
include the transaction into the ledger.

Our consensus protocol must satisfy the following properties.

Definition 3 (Ledger Safety). A consensus protocol C is safe if for all honest
parties P1, P2 at rounds r1 < r2, LP1

r1 is a prefix of LP2
r2 .

Definition 4 (Ledger Liveness). A consensus protocol C is live with liveness
parameter u if, when an honest party P attempts to write a transaction tx to the
ledger at round r, the transaction appears in LP

r+u.

Proof-of-work (in static and variable difficulty) and proof-of-stake protocols
satisfy the above properties [25,26,36,19,18].

Light Clients for Lazy Blockchains 27

Primitive Axiom Param Requirement

Ledger

Safety - LP1
r1 ⪯ LP2

r2

Liveness u tx in LP
r+u

Lipschitz α |LP
r2 | − |L

P
r1 | ≤ α(r2 − r1)

Consensus

Completeness - (tx, tx′) in L∪
r → COr(tx, tx

′)

Soundness ν (tx, tx′) not in L∪
r+ν → ¬COr(tx, tx

′)

Succinctness f f(r) ∈ O(poly log r)

Execution

Completeness - δ(st, tx) = st′ → ⟨δ⟩ (⟨st⟩ , tx, π) = ⟨st′⟩

Soundness - ⟨δ(st, tx)⟩ ̸= ⟨δ⟩ (⟨st⟩ , tx, π) is hard

Succinctness g g(r) ∈ O(poly log r)

Table 2: The 9 axioms required to construct a succinct light client.

Definition 5 (Ledger Lipschitz). A consensus protocol C is Lipschitz with
parameter α if for every honest party P and rounds r1 ≤ r2, we have that
|LP

r2 | − |L
P
r1 | < α(r2 − r1).

The above requirement states that ledgers grow at a bounded rate. For pro-
tocols that have a longest chain component such as Prism, Snap-and-Chat,
Ouroboros, Babylon and Bitcoin, this follows from the fact that chains have
an upper bound in their growth rate [25, Lemma 13], and that the number of
transactions in each block is limited by a constant. Such a chain growth upper
bound is also present for Tendermint, which Celestia is based on, as each Ten-
dermint round has a duration of at least ∆ [10]. Given the definitions of α, u and
ν in the section below, we express the parameter ψ used in the suffix monologue
as ψ = α(u+ ν).

E.2 Consensus Oracle

To enable queries about the order of transactions on the dirty ledger, we assume
that the lazy blockchain protocol provides access to a consensus oracle CO.
The consensus oracle is a single-round black box interactive protocol executed
among the verifier and the provers. The verifier invokes the oracle with input two
transactions (tx, tx′) and receives a boolean response. The goal of the verifier is
to determine whether a transaction tx′ immediately follows another transaction
tx on L∪ (i.e., (tx, tx′) | L∪).

We require that the consensus oracle satisfies the following properties.

Definition 6 (Consensus Oracle Security). An consensus oracle is secure
if it satisfies:

28 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

– Completeness. (tx, tx′) | L∪
r ⇒ COr(tx, tx

′).
– Soundness. The consensus oracle is sound with delay parameter ν if for any

PPT adversary A, Pr[(tx, tx′, r) ← A(1λ); COr(tx, tx
′) ∧ (tx, tx′) ∤ L∪

r+ν] ≤
negl(λ) .

Definition 7 (Consensus Oracle Communication Complexity). A con-
sensus oracle has communication complexity f(r) if the total size of the query
and response messages exchanged during an oracle query invoked at round r is
f(r) ∈ O(r).

We assume that every transaction in the dirty ledger is unique and there are
no duplicate transactions. Under this assumption, a consensus oracle on top of
the Nakamoto longest chain consensus protocol can be instantiated as follows.
Since the construction below also applies to protocols that output a chain of
blocks, we will refer to the longest chain as the canonical chain.

The blockchain consists of a header chain, each header containing the Merkle
tree root, i.e. the transaction root, of the transactions organized within the as-
sociated block. The ordering of the blocks by the header chain together with the
ordering of the transactions by each Merkle tree determine the total order across
all transactions. Thus, to query the consensus oracle with the two transactions
tx and tx′ ̸= tx, the verifier first downloads all the block headers from the hon-
est provers and determines the canonical stable header chain. Then, it asks a
prover if tx immediately precedes tx′ on its dirty ledger. To affirm, the prover
replies with (a) the positions i and i′ of the transactions tx and tx′ within their
respective Merkle trees, (b) the Merkle proofs π and π′ from the transactions
tx and tx′ to the transaction roots, (c) the positions j ≤ j′ of the block headers
containing these transaction roots, on the canonical stable header chain.

Then, the verifier checks that the Merkle proofs are valid, and accepts the
prover’s claim iff either of (1) the two blocks are the same, i.e., j′ = j, and
i′ = i+1, or (2) otherwise, the two blocks are consecutive, i.e., j′ = j+1, and i
is the index of the last leaf in the tree of block j while i′ is the index of the first
leaf in the tree of block j′ = j + 1.

If no prover is able to provide such a proof, the oracle returns false to the
verifier. The oracle’s soundness follows the ledger safety.

The above is one example instantiation of a consensus oracle. Appendix F
gives proofs of completeness and soundness for the consensus oracle as well as
notes on how it can be implemented on different blockchain protocols.

To relax the uniqueness assumption for the transactions in the dirty ledger,
each augmented dirty ledger entry containing a transaction tx can be extended
by adding the index jtx of the header of the block containing tx, and the index
of tx within the Merkle tree of that block. In this case, the verifier queries the
consensus oracle not only with transactions tx and tx′ ̸= tx, but also with the
corresponding block header and Merkle tree indices jtx, itx and jtx′ , itx′ . Hence,
during the query, the verifier also checks if the block and transaction indices
for tx and tx′, e.g., j, i and j′, i′, received from the prover matches the claimed
indices: j = jtx, j

′ = jtx′ , i = itx, i
′ = itx′ .

Light Clients for Lazy Blockchains 29

E.3 Execution Oracle

To enable queries about the validity of state execution, we assume that the lazy
blockchain protocol provides access to an execution oracle. The execution oracle
is a single-round black box interactive protocol executed among the verifier and
the provers. The verifier invokes the oracle with a transaction tx and two state
commitments, ⟨st⟩ and ⟨st⟩′ as input, and receives a boolean response. The goal
of the verifier is to determine whether there exists a state st such that ⟨st⟩ is the
commitment of st and ⟨st⟩′ = ⟨δ(tx, st)⟩.

The execution oracle is parametrized by a triplet (δ, ⟨·⟩ , ⟨δ⟩) consisting of
an efficiently computable transition function δ(·, ·), a commitment scheme ⟨·⟩,
and a succinct transition function ⟨δ⟩ (·, ·, ·). The succinct transition function ⟨δ⟩
accepts a state commitment ⟨st⟩, a transaction tx, and a proof π, and produces
a new state commitment ⟨st⟩′ which corresponds to the commitment of the
updated state.

To query the execution oracle on tx, ⟨st⟩ and ⟨st⟩′, the verifier first asks a
prover for a proof π. If the prover claims that he knows a state st such that ⟨st⟩ is
the commitment of st and ⟨st⟩′ = ⟨δ(tx, st)⟩, it gives a proof π. Then, the verifier
accepts the prover’s claim if ⟨st⟩′ = ⟨δ⟩ (⟨st⟩ , tx, π). Otherwise, if ⟨δ⟩ throws an
error or outputs a different commitment, the verifier rejects the claim.

Definition 8 (Execution Oracle Security). An execution oracle is secure if
it satisfies:
Completeness. Execution oracle is complete with respect to a proof-computing
PPT machine M if for any state st and transaction tx, it holds that M(st, tx)
outputs a π that satisfies ⟨δ⟩ (⟨st⟩ , tx, π) = ⟨δ(st, tx)⟩.
Soundness. For any PPT adversary A:

Pr[(st, tx, π)← A(1λ); ⟨δ(st, tx)⟩ ≠ ⟨δ⟩ (⟨st⟩ , tx, π)] ≤ negl(λ) .

Definition 9 (Execution Oracle Communication Complexity). An exe-
cution oracle has communication complexity g(r) if the total size of the query
and response messages exchanged during an oracle query invoked at round r is
g(r) ∈ O(r).

In the account based model [4], the state is a Sparse Merkle Tree (SMT) [17]
representing a key-value store. The values constitute the leaves of the SMT and
the keys denote their indices. The state commitment corresponds to the root.

The verifier queries the execution oracle with tx, ⟨st⟩ and ⟨st⟩′. Suppose there
is a state st with commitment ⟨st⟩ and ⟨st⟩′ = ⟨δ(st, tx)⟩. Let D denote the leaves
of the SMT st. Let Stx be the keys of the SMT that the transaction tx reads from
or writes to11. We assume that the number of leaves touched by a particular
transaction is constant. Then, the proof required by ⟨δ⟩ consists of:

– The key-value pairs (i,D[i]) for i ∈ Stx within st.
– The Merkle proofs πi, i ∈ Stx, from the leaves D[i] to the root ⟨st⟩.

11 In Ethereum, these can be obtained by the verifier via the eth createAccessList RPC.

30 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

Given the components above, ⟨δ⟩ verifies the proofs πi and the validity of
tx with respect to the pairs (i,D[i]), e.g., tx should not be spending from an
account with zero balance. If there are pairs read or modified by tx that have
not been provided by the prover, then ⟨δ⟩ outputs ⊥. If all such key-value pairs
are present and tx is invalid with respect to them, ⟨δ⟩ outputs ⟨st⟩, and does not
modify the state commitment. Otherwise, ⟨δ⟩ modifies the relevant key-value
pairs covered by Stx, which can be done efficiently [14]. Finally, it calculates the
new SMT root, i.e. the new state commitment, using the modified leaves and
the corresponding Merkle proofs among πi, i ∈ Stx.

SMTs can also be used to represent states based on the UTXO [38] model.
In this case, the value at each leaf of the SMT is a UTXO. Thus, the execution
oracle construction above generalizes to the UTXO model.

F Consensus Oracle Constructions

Consensus oracle constructions for Celestia (LazyLedger) [3], Prism [5], and
Snap-and-Chat [40,39] follow the same paradigm described in Section E.2.

F.1 Celestia

Celestia uses Tendermint [10] as its consensus protocol, which outputs a chain of
blocks containing transactions. Blocks organize the transactions as namespaced
Merkle trees, and the root of the tree is included within the block header. Hence,
the construction of Section E.2 can be used to provide a consensus oracle for
Celestia.

Celestia is designed as a data availability and consensus layer for multiple
rollups. However, as Celestia is a lazy blockchain, each rollup on Celestia (called
‘sovereign rollups’) also need a mechanism for their rollup light clients to discover
the correct latest rollup state. Towards this goal, our succinct light client con-
struction can be utilized by the rollup nodes to support these light clients. For
instance, as rollups are maintained by full nodes that execute the rollup-specific
transactions (ignoring other transactions) posted to Celestia, these nodes can aid
the rollup light clients by creating a dirty ledger of rollup-specific transactions,
the corresponding dirty trees and MMRs, in the same way as the full nodes of a
lazy blockchain with a single state transition function would help its light clients
discover the correct latest state.

F.2 Prism

In Prism, a transaction tx is first included within a transaction block. This block
is, in turn, referred by a proposer block. Once the proposer block is confirmed in
the view of a prover P at round r, tx enters the ledger LP

r . Hence, the proof of
inclusion for tx consists of two proofs: one for the inclusion of tx in a transaction
block BT , the other for the inclusion of the header of BT in a proposer block BP .
If transactions and transaction blocks are organized as Merkle trees, then, the

Light Clients for Lazy Blockchains 31

proof of inclusion for tx would be two Merkle proofs: one from tx to the Merkle
root in the header of BT , the other from the header of BT to the Merkle root in
the header of BP .

The construction of Section E.2 can be generalized to provide a consensus
oracle for Prism. In this case, to query the consensus oracle with two transactions
tx and tx′ ̸= tx, the verifier first downloads all the proposal block headers from
the honest provers and determines the longest stable header chain. Then, it asks
a prover if tx immediately precedes tx′ on its dirty ledger.

To affirm, the prover replies with:

– the positions it and i
′
t of the transactions tx and tx′ within their respective

Merkle trees contained in the respective transaction blocks BT and B′
T .

– the Merkle proofs πt and π′
t from the transactions tx and tx′ to the corre-

sponding Merkle roots within the headers of BT and B′
T ,

– the positions ip and i′p of the headers of the transaction blocks BT and
B′

T within their respective Merkle trees contained in the respective proposal
blocks BP and B′

P .

– the Merkle proofs πp and π′
p from the headers of BT and B′

T to the corre-
sponding Merkle roots within the headers of BP and B′

P ,

– the positions j ≤ j′ of the headers of BP and B′
P on the longest stable

header chain.

Then, the verifier checks that the Merkle proofs are valid, and accepts the
prover’s claim if and only if either of the following cases hold:

1. if j = j′ and i′p = ip, then i
′
t = it + 1.

2. if j = j′ and i′p = ip + 1, then it is the index of the last leaf in the tree of
BT while i′t is the index of the first leaf in the tree of B′

T .

3. if j′ > j, then ip is the index of the last leaf in the tree of BP while i′p is the
index of the first leaf in the tree of B′

P . Similarly, it is the index of the last
leaf in the tree of BT while i′t is the index of the first leaf in the tree of B′

T .

If no prover is able to provide such a proof, the oracle returns false to the verifier.

F.3 Snap-and-Chat

In Snap-and-Chat protocols, a transaction tx is first included within a block
BT proposed in the context of a longest chain protocol. Upon becoming k-deep
within the longest chain, where k is a predetermined parameter, BT is, in turn,
included within a block BP proposed as part of a partially-synchronous BFT
protocol. Once BP is finalized in the view of a prover P at round r, tx enters the
finalized ledger LP

r . There are again two Merkle proofs for verifiable inclusion,
one from tx to the Merkle root included in BT , the other from the header of
BT to the Merkle root in the header of BP . Consequently, the consensus oracle
construction for Prism also applies to Snap-and-Chat protocols.

32 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

Remark 1. We remark here that protocols that do not follow the longest chain
rule, or are not even proper chains, can be utilized by our protocol. Such ex-
amples include Parallel Chains [24], PHANTOM [44] / GHOSTDAG [43], and
SPECTRE [42]. The only requirement is that these systems provide a succinct
means of determining whether two transactions follow one another on the ledger.

F.4 Colored Coins and Babylon

Colored coins [1] refer to assets other than Bitcoin that are maintained on the
Bitcoin blockchain, and derive their security from the consensus security of Bit-
coin. Babylon [46] is a protocol that checkpoints off-the-shelf PoS protocols onto
Bitcoin to mitigate PoS-related problems such as non-slashable posterior cor-
ruption attacks, low liveness resilience and difficulty to bootstrap from low to-
ken valuation. To post checkpoints and other types of data, Babylon and other
colored coin applications use the OP RETURN scripting code, which allows ar-
bitrary data to be recorded in an unspendable Bitcoin transaction. Since the
miners do not check the validity of the data within the OP RETURN transac-
tions with respect to the corresponding application state, Bitcoin acts as a lazy
blockchain towards these applications. Section F.5 describes how a consensus
oracle can be instantiated for longest chain protocols such as Bitcoin.

In the case of Babylon, provers can interact with an consensus oracle after
the bisection game to prove the validity of the checkpoint at the first point of
disagreement. To support an consensus oracle, each checkpoint posted to Bit-
coin must be augmented by the active validator set of the portion of the PoS
protocol ledger corresponding to the checkpoint (cf. [46][Sections IV-C and V-
B]). To verify the validity of the disputed checkpoint (via [46][Algorithms 1 and
2]), the verifier has to read only a constant-size portion of the PoS protocol
ledger, namely the portion between the chain checkpointed by the earlier, com-
mon checkpoint, and the latter checkpoint at the source of disagreement.

F.5 Longest Chain

As an illustration of how the consensus oracle can be realized in a longest header
chain protocol, we provide sketches for the proofs of consensus oracle complete-
ness and soundness in the Nakamoto setting.

Even in the original Nakamoto paper [38], a description of an SPV client is
provided, and it realizes our consensus oracle axioms, although these virtues were
not stated or proven formally. The consensus oracle works as follows. The verifier
connects to multiple provers, at least one of which is assumed to be honest. It
inquires of the provers their longest chains, downloads them, verifies that they
are chains and that they have valid proof-of-work, and keeps the heaviest chain.
It then chops off k blocks from the end to arrive at the stable part. Upon being
queried on two transactions (tx, tx′), the oracle inquires of its provers whether
these transactions follow one another on the chain. To prove that they do, the
honest prover reveals two Merkle proofs of inclusion for tx and tx′. These must

Light Clients for Lazy Blockchains 33

appear in either consecutive positions within the same block header, or at the
last and first position in consecutive blocks.

The terminology of typical executions, the Common Prefix parameter k, and
the Chain Growth parameter τ are borrowed from the Bitcoin Backbone [25]
line of works, where these properties are proven. We leverage these properties
to show that our Consensus Oracle satisfies our desired axioms. Our proofs are
in the static synchronous setting, but generalize to the ∆-bounded delay and
variable difficulty settings.

Lemma 2 (Nakamoto Completeness). In typical executions where honest
majority is observed, the Nakamoto Consensus Oracle is complete.

Sketch. We prove that, if (tx, tx′) are reported in L∪, then an honest prover
will be able to prove so. Suppose the verifier chose a longest header chain CV .
If (tx, tx′) appear consecutively in L∪, by ledger safety, this means that they
belong to the ledger of at least one honest party P who is acting as a prover.
Since (tx, tx′) appear consecutively in LP , therefore they appear in the stable
portion CP [:− k] of the chain CP held by P . By the Common Prefix property,
CP [: − k] is a prefix of CV and therefore (tx, tx′) appear consecutively in the
stable header chain adopted by the verifier. Therefore, the verifier accepts.

Lemma 3 (Nakamoto Soundness). In typical executions where honest ma-
jority is observed, the Nakamoto Consensus Oracle instantiated with a Merkle
Tree that uses a collision resistant hash function is sound, with soundness pa-
rameter ν = k

τ where k is the Common Prefix parameter and τ is the Chain
Growth parameter.

Sketch. Suppose for contradiction that (tx, tx′) are not reported in L∪
r+ν , yet the

adversary convinces the verifier of this at round r. This means that the adversary
has presented some header chain CV to the verifier which was deemed to be the
longest at the time, and (tx, tx′) appear in its stable portion CV [:− k]. Consider
an honest prover P . At time r, the honest prover holds a chain CP

r and at round
r + ν, it holds a chain CP

r+ν . By the Common Prefix property, CV [: − k] is a
prefix of CP

r and of CP
r+ν . Furthermore, (tx, tx′) will appear in the same block (or

consecutive blocks) in all three. By the Chain Growth property, CP
r+ν contains

at least k more blocks than CP
r . Therefore, (tx, tx′) appears in CP

r+ν [: − k] and
are part of the stable chain at round r+ ν for party P . They are hence reported
in LP

r+ν ⊆ L∪
r+ν , which is a contradiction. Finally, by Proposition 1, proofs of

inclusion for tx and tx′ cannot be forged with respect to Merkle roots in block
headers other than those in CV , that were initially shown to contain tx and tx′

(except with negligible probability).

Proofs of correctness and soundness for the consensus oracle constructions
of Celestia, Prism and Snap-and-Chat follow a similar pattern to the proofs for
the Nakamoto setting.

Lastly, for succinctness, one must leverage a construction such as superblock
NIPoPoWs [35]. Here, proofs of the longest chain are poly logC where C denotes

34 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

the chain size. Transaction inclusion proofs make use of infix proofs [35] in addi-
tion to Merkle Tree proofs of inclusion into block headers. As C ∈ O(poly log r),
these protocols are O(poly log r) as desired. Completeness and soundness follow
from the relevant security proofs of the construction.

G Proofs

Our proof structure is as follows. First, we prove some facts about the bisection
game, in particular its succinctness, soundness, and completeness. We later lever-
age these results to show that our full game enjoys the same virtues. This section
is based on the generalized model for lazy blockchains presented in Section E,
and the axioms used by the proofs are given by Table 2.

Lemma 4 (Bisection Succinctness). Consider a consensus oracle and an
execution oracle with f and g communication complexity respectively. Then, the
bisection game invoked at round r with trees of size ℓ ends in log(ℓ) rounds of
communication and has a total communication complexity of O(log ℓ + f(r) +
g(r)).

Proof. When the dirty trees have ℓ leaves, there can be at most log ℓ valid queries,
as the verifier aborts the game after log ℓ queries. Hence, the bisection game ends
in log ℓ rounds of interactivity.

At each round of communication, the challenger indicates whether he wants
the left or the right child to be opened (which can be designated by a constant
number of bits), and the responder replies with two constant size hash values.
At the final round, the responder returns (txj−1, ⟨st⟩j−1) and (txj , ⟨st⟩j), the
augmented dirty ledger entries at indices j − 1 and j, along with the Merkle
proof for the j−1st entry (Alternatively, it only returns (tx0, ⟨st⟩0)). The entries
have constant size since transactions and state commitments are assumed to
have constant sizes. The Merkle proof consists of log ℓ constant size hash values.
Consequently, the total communication complexity of the bisection game prior
to the oracle queries becomes O(log ℓ).

Finally, the verifier queries the consensus oracle on (txj−1, txj) and the ex-
ecution oracle on (⟨st⟩j−1 , txj , ⟨st⟩j) with O(f(r)) and O(g(r)) communication
complexity. Hence, the total communication complexity of the bisection game
becomes O(log(ℓ) + f(r) + g(r)).

Lemma 5 (Bisection Completeness). Suppose the consensus and execution
oracles are complete and the ledger is safe. Then, the honest responder wins the
bisection game against any PPT adversarial challenger.

Proof. We will enumerate the conditions checked by the verifier in Algorithm 4
to show that the honest responder always wins.

The honest responder replies to each valid query from the verifier, and the
replies are syntactically valid. Hence, conditions (1) and (2) of Algorithm 4
cannot fail.

Light Clients for Lazy Blockchains 35

By the construction of the honest responder’s Merkle tree, each inner node h
queried by the challenger satisfies h = H(hl ∥hr) for its children hl, hr returned
in response to the query. For the same reason, the Merkle proof given by the
responder is valid. Hence, conditions (3) and (4) cannot fail either.

If j = 0, by the well-formedness of the responder’s dirty ledger, (txj , ⟨st⟩j) =
(ϵ, ⟨st0⟩), so condition (7) cannot fail.

Let r denote the round at which the bisection game was started. If j ≥ 1,
by the well-formedness of the responder’s dirty tree, for any consecutive pair of
leaves at indices j − 1 and j, it holds that (txj−1, txj) | LP

r ⪯ L∪
r due to ledger

safety. As the consensus oracle is complete, by Definition 6, it returns true on
(txj−1, txj), implying that the condition (5) cannot fail.

Finally, by the well-formedness of the responder’s dirty tree, for any consec-
utive pair of leaves at indices j − 1 and j, there exist a state stj−1 such that
⟨st⟩j−1 = ⟨stj−1⟩, and ⟨st⟩j = ⟨δ(stj−1, txj)⟩. As the execution oracle is complete,
by Definition 8, M(stj−1, txj) outputs a proof π such that ⟨δ⟩ (⟨stj−1⟩ , txj , π) =
⟨δ(stj−1, txj)⟩. Using the observations above, ⟨δ⟩ (⟨st⟩j−1 , txj , π) = ⟨st⟩j . Conse-
quently, condition (6) cannot fail. Thus, the honest responder wins the bisection
game against any adversary.

Let Verify(π, ⟨T ⟩ , ℓ, i, v) be the verification function for Merkle proofs. It
takes a proof π, a Merkle root ⟨T ⟩, the size of the tree ℓ, an index for the leaf
0 ≤ i < ℓ and the leaf v itself. It outputs 1 if π is valid and 0 otherwise. The
following proposition is a well-known folklore result about the security of Merkle
trees, stating that it is impossible to prove proofs of inclusion for elements that
were not present during the tree construction. It extends the result that Merkle
trees are collision resistant [32].

Proposition 1 (Merkle Security). Let Hs be a collision resistant hash func-
tion used in the binary Merkle trees. For all PPT A: Pr[(v,D, π, i) ← A(1λ) :
⟨T ⟩ = MakeMT(D).root ∧D[i] ̸= v ∧Verify(π, ⟨T ⟩ , |D|, i, v) = 1] ≤ negl(λ).

Proof. Suppose A is the adversary of the statement. We will construct a hash
collision adversary A′ that calls A as a subroutine. The adversary A′ works
as follows. It invokes A(1λ), and obtains v,D, π, i. Let h∗1, . . . , h

∗
a−1 denote the

hash values within π, where a = log |ℓ| + 1 is the height of the Merkle tree.
Let h1, . . . , ha−1 denote the inner nodes within the Merkle tree at the positions
that correspond to those of h∗1, . . . h

∗
a−1. Let h̃1, . . . , h̃a−1 denote the siblings of

h1, . . . , ha−1. Define h̃a := ⟨T ⟩. Then, h̃1 = H(D[i]), and for i = 1, . . . , a− 1;

– If hi is the left child of its parent, h̃i+1 = H(hi ∥ h̃i).
– If hi is the right child of its parent, h̃i+1 = H(h̃i ∥hi).

Consider the event Merkle-Collision that A succeeds. In that case, there
exists a sequence of hash values h̃∗1, . . . , h̃

∗
a such that h̃∗1 = H(v), h̃∗a = ⟨T ⟩, and

for i = 1, . . . , a− 1,

– If hi is the left child of its parent, h̃∗i+1 = H(h∗i ∥ h̃∗i).
– If hi is the right child of its parent, h̃∗i+1 = H(h̃∗i ∥h∗i).

36 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

Finally, for i = 1, . . . , a, define hi,m and hi,c as follows:

– ha,m = ⟨T ⟩, ha,c = ⟨T ⟩.
– h0,m = v, h0,c = D[i].

– If hi is the left child of its parent, hi,m = h∗i ∥ h̃∗i and hi,c = hi ∥ h̃i.
– If hi is the right child of its parent, hi,m = h̃∗i ∥h∗i and hi,m = h̃i ∥hi.

Finally, the adversary A′ finds the first index p for which there is a collision

H(hi,m) = H(hi,c) and hi,m ̸= hi,c

and returns a := hp,m and b := hp,c, if such an index p exists. Otherwise, it
returns Failure.

In the case of Merkle-Collision, for i = 0, . . . , a − 1, hi+1,m = H(hi,m),
hi+1,c = H(hi,c). As v ̸= D[i], a collision must have been found for at least one
index p ∈ [h− 1]. Therefore, Pr[A′ succeeds] = Pr[Merkle-Collision].

However, since ∀ PPT A′:

Pr[(a, b)← A′(1λ) : a ̸= b,H(a) = H(b)] ≤ negl(λ) ,

therefore, Pr[Merkle-Collision] = negl(λ).

Honest tree T

⟨T⟩
 _

hq,

D[j]

Adversarial responses

hq,r

D[j - 1]

h2,r
h1,r

_
h3 _

h2 _
h1

h3

h2
h1

h2,
h1,

h3,

⟨T⟩*
 _

h*
q, ≟

D*[j]

h*
q,r

D*[j - 1]

h*
2,r

h*
1,r

_
h*

3 _
h*

2 _
h*

1

h*
3

h*
2

h*
1

h*
2,

h*
1,

h*
3,h3,r h*

3,r

Fig. 6: The world in the view of the proof of Lemma 6. Starred quantities (right-hand
side) denote adversarially provided values. Unstarred quantities (left-hand side) denote
the respective honestly provided values. The inner node at height q from the leaves is
the level containing the lowest common ancestor between leaves with indices j and
j − 1.

The next lemma establishes an important result for our bisection game: That
the honest challenger can pinpoint the first point of disagreement or last point
of agreement indices j− 1 and j within the responder’s claimed tree. The result
stems from the fact that the data are organized into a Merkle tree which can be
explored, moving left or right, one level at a time, ensuring the invariant that
the first point of disagreement remains within the subtree explored at every step.

Light Clients for Lazy Blockchains 37

Lemma 6 (Bisection Pinpointing). Let Hs be a collision resistant hash func-
tion. Consider the following game among an honest challenger P, a verifier V
and an adversarial responder P∗: The challenger P receives an array D of size
ℓ from P∗, and calculates the corresponding dirty tree T with root ⟨T ⟩. Then,
P plays the bisection game against P∗ claiming root ⟨T ⟩∗ ̸= ⟨T ⟩ and size ℓ.
Finally, V outputs (1, D∗[j − 1], D∗[j]) if P wins the bisection game; otherwise,
it outputs (0,⊥,⊥). Here, D∗[j − 1] and D∗[j] are the two entries revealed by
P∗ for the consecutive indices j − 1 and j during the bisection game. (D∗[−1]
is defined as ⊥ if j = 0.) Then, for all PPT adversarial responder A, Pr[D ←
A(1λ); (1, D∗[j−1], D∗[j])← V∧(D∗[j−1] ̸= D[j−1]∨D∗[j] = D[j])] ≤ negl(λ).

Proof. Consider a PPT adversarial responder P∗ playing the bisection game
against the honest challenger P at some round r. Since the challenger is honest,
his queries are valid and he does not time out. For the responder to win the
bisection game, she must satisfy all the conditions checked by Algorithm 4.

Consider the event Bad that the responder wins. Conditioned on Bad, the
responder does not timeout and her replies are syntactically valid. Let a =
log ℓ+1 denote the height of the challenger’s dirty tree. At each round i ∈ [a−1]
of interactivity in the bisection game, the responder reveals two hash values h∗a−i,l

and h∗a−i,r. The subscript a − i signifies the alleged height of the nodes h∗a−i,l

and h∗a−i,r. Let hi,l and hi,r denote the inner nodes in the honest challenger’s
dirty tree with the same positions as h∗i,l and h∗i,r. These will always exist, as
the verifier limits the rounds of interaction to a.

At the first round, the responder reveals h∗a−1,l and h
∗
a−1,r as the alleged left

and right children of its dirty tree root ⟨T ⟩∗. By condition (3) of Algorithm 4,
H(h∗a−1,l ∥h∗a−1,r) = ⟨T ⟩∗. However, since ⟨T ⟩∗ ̸= ⟨T ⟩ = H(ha−1,l ∥ha−1,r),
either ha−1,l ̸= h∗a−1,l or ha−1,r ̸= h∗a−1,r or both. Then, if ha−1,l ̸= h∗a−1,l, the
challenger picks h∗a−1,l to query next; else, he picks h∗a−1,r.

We observe that if a node h∗ = h∗i,l or h
∗ = h∗i,r, i ∈ {2, . . . , a− 1}, returned

by the responder, is queried by the honest challenger,

– For the two children h∗i−1,l and h
∗
i−1,r of h

∗, it holds that h∗ = H(h∗i−1,l ∥h∗i−1,r)
by condition (3).

– For the nodes h, hi−1,l and hi−1,r in the challenger’s dirty tree that have the
same positions as h∗, h∗i−1,l and h

∗
i−1,r; h = H(hi−1,l ∥hi−1,r), and h ̸= h∗.

– By implication, either hi−1,l ̸= h∗i−1,l or hi−1,r ̸= h∗i−1,r or both. If hi−1,l ̸=
h∗i−1,l, the challenger picks h

∗
i−1,l as its next query; else, it picks h

∗
i−1,r as its

next query.

The queries continue until the challenger queries a node h∗ = h1,l or h
∗ = h1,r

returned by the responder, and the responder reveals the leaf D∗[j] such that
H(D∗[j]) = h∗. By induction, h∗ is different from the node h = H(D[j]) with
the same position in the challenger’s dirty tree. Thus, D∗[j] ̸= D[j].

If j = 0, it must hold that D∗[0] = (ϵ, ⟨st0⟩) by condition (7) of Algorithm 4.
However, since the challenger’s dirty tree is well-formed, D[0] = (ϵ, ⟨st0⟩) as well.
Hence, D∗[0] = D[0], therefore necessarily j > 0.

38 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

(When the provers hold MMRs instead of Merkle treees, responder’s aug-
mented dirty ledger entries D∗[j − 1] and D∗[j] can lie in different Merkle trees
held by the responder. In this case, since the honest challenger did not initiate
a bisection game between the responder’s peak T ∗

i containing D∗[j − 1] and his
corresponding inner node Ti = T ∗

i , D∗[j − 1] = D[j − 1] with overwhelming
probability. To show this, we construct the PPT Merkle tree adversary that out-
puts D∗[j − 1], the honest challenger’s leaves under Ti, the responder’s Merkle
proof π∗ for D∗[j − 1] with respect to Ti = T ∗

i and the index of D[j − 1] within
the subtree of Ti, if D∗[j − 1] ̸= D[j − 1]; and Failure otherwise. Since this
adversary succeeds except with negligible probability in λ, D∗[j − 1] = D[j − 1]
with overwhelming probability, and this concludes the proof. In the rest of this
section, we assume that j−1 and j lie in the same Merkle tree of the responder.)

As j > 0, there must exist a last node queried by the challenger such that
for its children h∗q,l and h

∗
q,r revealed by the responder at height q, it holds that

h∗q,l = hq,l and h∗q,r ̸= hq,r (This is the last time the challenger went right).
Define h∗last = h∗q,l (see Figure 6).

By condition (4) of Algorithm 4, the Merkle proof π∗ for D∗[j − 1] is valid
with respect to ⟨T ⟩∗. Let h∗1, h∗2, . . . , h∗a−1 denote the sequence of nodes on π∗

Let h̃∗1 := H(D∗[j − 1]) and define h̃∗i+1, i = 1, . . . , a− 1, recursively as follows:

h̃∗i+1 := H(h∗i ∥ h̃∗i) if h∗i is the left child of its parent, and, h̃∗i+1 := H(h̃∗i ∥h∗i) if
h∗i is the right child of its parent. Since π∗ is valid, h̃∗a = ⟨T ⟩∗ (The nodes h̃∗i ,
i ∈ [a − 1], are the alleged nodes on the path connecting D∗[j − 1] to the root
⟨T ⟩∗, and h∗i are their alleged siblings).

Let hi, i ∈ [a − 1], denote the inner nodes in the challenger’s dirty tree
with the same positions as h∗i . Let h̃i, i ∈ [a − 1], denote the inner nodes in
the challenger’s dirty tree on the path from D[j − 1] to ⟨T ⟩. These inner nodes
satisfy the following relations for i ∈ [a − 1]: h̃a = ⟨T ⟩, h̃1 := H(D[j − 1]),
h̃i+1 = H(hi ∥ h̃i) if hi is the left child of its parent, and, h̃i+1 = H(h̃i ∥hi) if hi
is the right child of its parent.

Consider the event Discrepancy that h̃∗q ̸= h∗last and the event

Invalid-Proof that h̃∗q = h∗last ∧ D[j − 1] ̸= D∗[j − 1]. Since Pr[D[j − 1] ̸=
D∗[j − 1] | Bad] ≤ Pr[Discrepancy] + Pr[Invalid-Proof] we next bound the
probabilities of these events.

We first construct a hash collision adversary A1 that calls the responder as
a subroutine, and show that the event Discrepancy implies that A1 succeeds.
For i ∈ {q, . . . , a}, define h∗i,c as: h∗a,c := ⟨T ⟩∗ and h∗i,c := h∗i,l ∥h∗i,r if i < h.

Similarly, define h∗i,m as: h∗a,m := ⟨T ⟩∗, h∗i,m := h̃∗i ∥h∗i if hi is the right child of

its parent, and h∗i,m := h∗i ∥ h̃∗i if hi is the left child of its parent.

The adversary A1 calls the responder as a sub-routine, and obtains the values
h∗i,c and h

∗
i,m, i ∈ {q, . . . , h}. It finds the first index p for which there is a collision

H(h∗p,m) = H(h∗p,c) and h
∗
p,m ̸= h∗p,c and returns a := h∗p,m and b := h∗p,c, if such

an index p exists. Otherwise, it returns Failure.

In the case of Discrepancy, h̃∗q ̸= h∗last = h∗q,l. Hence, it must be the case

that h∗q,m ̸= h∗q,c. However, since h∗a,m = ⟨T ⟩∗ = h∗a,c, a collision must have been

Light Clients for Lazy Blockchains 39

found for at least one index i ∈ {q, . . . , a − 1}. Consequently, Discrepancy
implies that A1 succeeds.

We next construct a Merkle tree adversary A2 that calls the responder as a
subroutine, and show that the event Invalid-Proof implies that A2 succeeds.

Let P denote the sequence of leaves in the challenger’s dirty tree, i.e., within
D, that lie under the subtree with root hq,l. Let π denote the sub-sequence
h∗1, . . . , h

∗
q−1 within π∗. The adversary A2 receives P from the responder, and

constructs a well-formed dirty tree using P in time O(poly(ℓ)). It then obtains
the leaf v := D∗[j−1] and the Merkle proof π = (h∗1, . . . , h

∗
q−1) from the respon-

der. Finally, it returns v, P , π and the index idx of the leaf D[j − 1] within the
sequence P such that P [idx] = D[j − 1].

If Invalid-Proof, it must be the case that h̃∗q = h∗last = hq,l and D[j −
1] ̸= D∗[j − 1] = v. Hence, π is a valid Merkle proof for v with respect to the
root hq,l of the Merkle tree with leaves P . Moreover, v ̸= P [idx]. Consequently,
Invalid-Proof implies than A2 succeeds.

Finally, by the fact thatH is a collision-resistant hash function and Lemma 1,

Pr[D[j − 1] ̸= D∗[j − 1] | Bad] ≤
Pr[Discrepancy] + Pr[Invalid-Proof] ≤
Pr[A1 succeeds] + Pr[A2 succeeds] ≤ negl(λ) .

Hence, for any PPT adversarial responder, the probability that the responder
wins and (D∗[j − 1] ̸= D[j − 1]) ∨ (D∗[j] = D[j]) is negligible in λ.

The next lemma ensures that an honest challenger can win in the bisec-
tion game by leveraging sound consensus and execution oracles to resolve any
disagreements at the leaf level.

Lemma 7 (Bisection Soundness). Let Hs be a collision resistant hash func-
tion. Consider an execution that satisfies ledger safety and in which the consen-
sus and execution oracles are sound. Then, for all PPT adversarial responders
A claiming root ⟨T ⟩∗ and size ℓ, the honest challenger claiming ⟨T ⟩ ≠ ⟨T ⟩∗ and
ℓ wins the bisection game against A with overwhelming probability in λ.

Proof. Consider an adversarial PPT responder P∗ playing against the honest
challenger P at some round r. Since the challenger is honest, his queries are
valid and he does not time out. For the responder to win the bisection game, it
must satisfy all the conditions checked by Algorithm 4. Let (tx∗j−1, ⟨st⟩

∗
j−1) and

(tx∗j , ⟨st⟩
∗
j) denote the two entries revealed by P∗ for the consecutive indices j−1

and j in the event that it wins.
Define Consensus-Oracle as the event that the responder wins and

(txj−1, ⟨st⟩j−1) = (tx∗j−1, ⟨st⟩
∗
j−1) ∧ tx∗j ̸= txj . We construct a consensus ora-

cle adversary A1 that calls P∗ as a subroutine and outputs (tx∗j−1, tx
∗
j , r). By

the well-formedness of the challenger’s dirty ledger and ledger safety, it holds
that (txj−1, txj) | LP

r ⪯ L∪
r ⪯ L∪

r+ν . Therefore, if Consensus-Oracle, it must
be the case that tx∗j ̸= txj does not immediately follow tx∗j−1 = txj−1 on L∪

r+ν

40 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

as every transaction on L∪
r+ν is unique. However, as the responder wins, the

consensus oracle must have outputted true on (tx∗j−1, tx
∗
j , r) by condition (5).

Hence, Consensus-Oracle implies that A1 succeeds.
Define Execution-Oracle as the event that the responder wins and

(txj−1, ⟨st⟩j−1) = (tx∗j−1, ⟨st⟩
∗
j−1) ∧ tx∗j = txj ∧ ⟨st⟩∗j ̸= ⟨st⟩j . By the well-

formedness of the challenger’s dirty tree, there exist a state stj−1 such that
⟨st⟩j−1 = ⟨stj−1⟩, stj−1 = δ∗(st0,L[:j − 1]), and, ⟨st⟩j = ⟨δ(stj−1, txj)⟩. There-
fore, ifExecution-Oracle, it holds that ⟨st⟩j−1 = ⟨st⟩∗j−1, and ⟨δ(stj−1, txj)⟩ =
⟨st⟩j ̸= ⟨st⟩

∗
j . However, as the responder wins, the execution oracle must have

outputted true on tx∗j , ⟨st⟩
∗
j−1 and ⟨st⟩∗j by condition (6). Thus, the responder

must have given a proof π such that ⟨δ⟩ (⟨st⟩∗j−1 , tx
∗
j , π) = ⟨st⟩∗j . This implies

⟨δ⟩ (⟨st⟩j−1 , txj , π) = ⟨st⟩
∗
j ̸= ⟨δ(stj−1, txj)⟩.

Finally, we construct an execution oracle adversary A2 that calls P∗ as a
subroutine and receives π. Then, using L, A2 finds stj−1 = δ∗(st0,L[:j − 1]) in
O(poly(ℓ)) time. It outputs (stj−1, txj , π). Observe that if Execution-Oracle,
then A2 succeeds.

Note that the event (txj−1, ⟨st⟩j−1) = (tx∗j−1, ⟨st⟩
∗
j−1) ∧ (txj , ⟨st⟩j) ̸= (tx∗j , ⟨st⟩

∗
j) ∧

Responder wins is the union of the events Consensus-Oracle and
Execution-Oracle:

Pr[(txj−1, ⟨st⟩j−1) = (tx∗j−1, ⟨st⟩
∗
j−1)∧

(txj , ⟨st⟩j) ̸= (tx∗j , ⟨st⟩
∗
j) ∧ Responder wins] =

Pr[Consensus-Oracle ∨Execution-Oracle] ≤
Pr[A1 succeeds] + Pr[A2 succeeds] ≤ negl(λ) .

Moreover, by Lemma 6;

Pr[((txj−1, ⟨st⟩j−1) ̸= (tx∗j−1, ⟨st⟩
∗
j−1) ∨

(txj , ⟨st⟩j) = (tx∗j , ⟨st⟩
∗
j)) ∧ Responder wins] ≤ negl(λ) .

Consequenty, Pr[Responder wins] = negl(λ).

Theorem 5 (Succinctness). Consider a consensus and execution oracle with
f and g communication complexity respectively. Then, the challenge game in-
voked at round r with sizes ℓ1 and ℓ2 > ℓ1 ends in log(ℓ1 + α(u+ ν)) rounds of
communication and has a total communication complexity of O(log(ℓ1))+α(u+
ν)(f(r) + g(r))).

Proof. Suppose the challenge game was invoked on augmented dirty ledgers with
(alleged) sizes ℓ1 and ℓ2 > ℓ1 respectively. The zooming phase of the challenge
game does not require any communication among the provers and the verifier.

Suppose that at the end of the zooming phase, the provers play a bisection
game on two Merkle trees with ℓ ≤ ℓ1 leaves. By Lemma 4, the bisection game
ends in Θ(log ℓ) = Θ(log ℓ1) rounds and has a total communication complexity
of O(log ℓ+ f(r) + g(r)) = O(log ℓ1 + f(r) + g(r)).

Light Clients for Lazy Blockchains 41

Suppose that the challenge game reaches the suffix monologue. Since the ver-
ifier checks for at most α(u+ν) extra entries, (txj , ⟨st⟩j), j ∈ {ℓ1, . . . ,min(ℓ2, ℓ1+
α(u+ν))}, at most α(u+ν) entries are sent to the verifier by the challenger. These
entries have constant sizes since the transactions and the state commitments are
assumed to have constant sizes. Finally, the verifier can query the consensus
oracle on the α(u + ν) transaction pairs (txj−1, txj), j ∈ {ℓ1 + 1,min(ℓ2, ℓ1 +
α(u+ ν))}, and the execution oracle on the α(u+ ν) triplets (⟨st⟩j−1 , txj , ⟨st⟩j),
j ∈ {ℓ1 + 1,min(ℓ2, ℓ1 + α(u+ ν))}, with O(α(u+ ν)f(r)) and O(α(u+ ν)g(r))
communication complexity respectively. Hence, the total communication com-
plexity of the challenge game becomes O(log ℓ1 + α(u+ ν)(f(r) + g(r))).

By the Lipschitz property of the ledger, |L∪
r | < αr, and α, ν, u are con-

stants. Superlight client constructions [35,12] place f in O(poly log r), and g is
in O(poly log r) if standard Merkle constructions [4] are used and the transition
function δ ensures the state grows at most linearly, as is the case in all practi-
cal constructions. In light of these quantities, the result of the above theorem
establishes that our protocol is also O(poly log r) and, hence, succinct.

Theorem 6 (Completeness). Suppose the consensus and execution oracles
are complete and the ledger is safe. Then, the honest responder wins the challenge
game against any PPT adversarial challenger.

Proof. Suppose that at the end of the zooming phase, the challenger invoked the
bisection game between one of the honest responder’s peaks, ⟨T ⟩i, and a node
⟨T ⟩∗ alleged to have the same position as ⟨T ⟩i within the challenger’s MMR. By
Lemma 5, the honest responder wins the bisection game. If the challenger starts
a suffix monologue instead of the bisection game at the end of the zooming phase,
the responder automatically wins the challenge game. Hence, the responder wins
the challenge game.

Proposition 2. For any honest prover P and round r, |L∪
r | < |LP

r |+ αu.

Proof. Towards contradiction, suppose |L∪
r | ≥ |LP

r |+αu. By ledger safety, there
exists an honest prover P ′ such that LP′

r = L∪
r , which implies |LP′

r | ≥ |LP
r |+αu.

Again by ledger safety, LP
r ⪯ LP′

r . By ledger liveness, every transaction that is in
LP′

r and not in LP
r becomes part of LP

r+u, for which LP
r ⪯ LP

r+u holds by ledger

safety. Hence, LP
r ⪯ LP′

r ⪯ LP
r+u and, |LP

r+u| ≥ |LP′

r | ≥ |LP
r | + αu. However,

this is a violation of the ledger Lipschitz property. Consequently, it should be
the case that |L∪

r | < |LP
r |+ αu.

Lemma 8 (Monologue Succinctness). Consider an execution of a consen-
sus protocol which is Lipschitz with parameter α and has liveness with parameter
u. Consider the challenge game instantiated with a collision-resistant hash func-
tion Hs and a consensus oracle which is sound with parameter ν. For all PPT
adversarial challengers A, if the game administered by the honest verifier among
A and the honest responder P at round r reaches the suffix monologue, the ad-
versary cannot reveal α(u + ν) or more entries and win the game except with
negligible probability.

42 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

Proof. Suppose the game between the challenger A and the honest respon-
der P reaches the suffix monologue. Consider the event Bad that the chal-
lenger reveals β ≥ α(u + ν) entries and wins the game. Let D = ((tx1, ⟨st⟩1),
(tx2, ⟨st⟩2), . . . , (txβ , ⟨st⟩β)) denote these entries, and (tx0, ⟨st⟩0) the responder’s
last entry prior to the monologue phase. Because P is in agreement with tx0,
therefore tx0 = LP

r [−1]. Let J = (tx0, tx1, . . . , txβ). Since the challenger wins,
the verifier has invoked the consensus oracle α(u + ν) times for all consecutive
pairs of transactions within K = J [:α(u+ν)]. At each invocation, the consensus
oracle has returned true.

We next construct a consensus oracle adversary A′ that calls A as a sub-
routine. If β ≥ α(u + ν), A′ identifies the first index p ∈ [α(u + ν)] such that
txp does not immediately follow txp−1 on L∪

r+ν , and outputs (txp−1, txp, r). If
β < α(u+ ν), A′ outputs Failure.

By the ledger Lipschitz property, |LP
r+ν | < |LP

r |+αν. Moreover, by Lemma 2,
|L∪

r+ν | < |LP
r+ν |+ αu. Thus, |L∪

r+ν | < |LP
r |+ α(u+ ν).

Let ℓ = |LP
r |. By ledger safety, tx0 = LP

r [ℓ − 1] = L∪
r+ν [ℓ − 1]. Hence, if

(tx0, tx1) | L∪
r+ν , tx1 = L∪

r+ν [ℓ] as every transaction on L∪
r+ν is unique. By

induction, either there exists an index i ∈ [β] such that txi does not immediately
follow txi−1 on L∪

r+ν , or |L∪
r+ν | ≥ ℓ+ β and txi = L∪

r+ν [ℓ+ i− 1] for all i ∈ [β].
Finally, if β ≥ α(u + ν), there exists an index i ∈ [α(u + ν)] such that txi

does not immediately follow txi−1 on L∪
r+ν . Thus, Pr[Bad] = Pr[A′succeeds].

However, by the soundness of the consensus oracle, ∀ PPT A′, Pr[A′succeeds] =
negl(λ). Therefore, Pr[Bad] = negl(λ).

Theorem 7 (Soundness). Let Hs be a (keyed) collision resistant hash func-
tion. Suppose the consensus and execution oracles are complete and sound. Then,
for all PPT adversarial responders A, an honest challenger wins the challenge
game against A with overwhelming probability in λ.

Proof. Suppose that at the end of the zooming phase, the honest challenger P
identified one of the responder P∗’s peaks, ⟨T ⟩∗i , as being different from a node
⟨T ⟩ within the challenger’s MMR that has the same position as ⟨T ⟩∗i . In this case,
the challenger initiates a bisection game between ⟨T ⟩∗i and ⟨T ⟩. By Lemma 7,
the honest challenger wins the bisection game with overwhelming probability.

Suppose the challenger observes that the peaks shared by the responder cor-
respond to the peaks of a well-formed MMR. Then, at the end of the zooming
phase, the honest challenger starts the suffix monologue. Let ℓ and ℓ∗ denote
the challenger’s and the responder’s (alleged) augmented dirty ledger sizes re-
spectively. Let r denote the round at which the challenge game was started.
During the suffix monologue, the challenger reveals its augmented dirty ledger
entries (txj , ⟨st⟩j) at the indices ℓ∗, . . . ,min (ℓ, ℓ∗ + α(u+ ν)) − 1. Then, for all
j ∈ {ℓ∗ + 1, ℓ∗ + 2, . . . , min (ℓ, ℓ∗ + α(u+ ν))− 1}, the verifier checks the trans-
actions and the state transitions between (txj−1, ⟨st⟩j−1) and (txj , ⟨st⟩j). The
verifier does the same check between the responder’s last (alleged) augmented
dirty ledger entry (tx∗ℓ∗−1, ⟨st⟩

∗
ℓ∗−1) and (txℓ∗ , ⟨st⟩ℓ∗).

Consider the event Equal that (tx∗ℓ∗−1, ⟨st⟩
∗
ℓ∗−1) = (txℓ∗−1, ⟨st⟩ℓ∗−1). By

the well-formedness of the challenger’s augmented dirty ledger, for any pair

Light Clients for Lazy Blockchains 43

of leaves at indices j − 1 and j, j ∈ {ℓ∗, . . . ,min (ℓ, ℓ∗ + α(u+ ν)) − 1}, it
holds that (txj−1, txj) | LP

r , thus, on L∪
r by ledger safety. As the consensus

oracle is complete, by Definition 6, it returns true on all (txj−1, txj) for j ∈
{ℓ∗, . . . ,min (ℓ, ℓ∗α(u+ ν)) − 1}. Similarly, by the well-formedness of the chal-
lenger’s augmented dirty ledger, for any pair of leaves at indices j− 1 and j, j ∈
{ℓ∗, . . . ,min (ℓ, ℓ∗ + α(u+ ν))−1}, there exists a state stj−1 such that ⟨st⟩j−1 =
⟨stj−1⟩, and, ⟨st⟩j = ⟨δ(stj−1, txj)⟩. As the execution oracle is complete, by
Definition 8, for all j ∈ {ℓ∗, . . . ,min (ℓ, ℓ∗ + α(u+ ν)) − 1}, M(stj−1, txj) out-
puts a proof πj such that ⟨δ⟩ (⟨stj−1⟩ , txj , πj) = ⟨δ(stj−1, txj)⟩. Thus, for all
j ∈ {ℓ∗, . . . , min (ℓ, ℓ∗ + α(u+ ν))− 1}, the verifier obtains a proof πj such that
⟨δ⟩ (⟨st⟩j−1 , txj , πj) = ⟨st⟩j . In other words, if the challenge protocol reaches the
suffix monologue and Equal, the honest challenger wins the suffix monologue.

Finally, consider the Merkle tree adversary A′ that calls the responder P∗

as a subroutine. Let π∗ denote the Merkle proof revealed by the responder for
(tx∗ℓ∗−1, ⟨st⟩

∗
ℓ∗−1) with respect to its last (alleged) peak ⟨T ⟩∗. Let ⟨T ⟩ denote

the corresponding node in the challenger’s MMR. Let D denote the sequence
of augmented dirty ledger entries held by the honest challenger in the subtree
rooted at ⟨T ⟩. Let idx := |D| denote the size of this subtree. If the game reaches
the suffix monologue and ¬Equal, A′ returns v := (tx∗ℓ∗−1, ⟨st⟩

∗
ℓ∗−1), D, π and

idx. Otherwise, it returns Failure.
If the game reaches the suffix monologue, ⟨T ⟩∗ = ⟨T ⟩, and π is valid with

respect to ⟨T ⟩. Then, if (tx∗ℓ∗−1, ⟨st⟩
∗
ℓ∗−1) ̸= (txℓ∗−1, ⟨st⟩ℓ∗−1), therefore ⟨T ⟩ =

MakeMT(D).root, D[idx] ̸= v, and Verify(π, ⟨T ⟩ , idx, v) = 1. Conditioned on
the fact that the challenge game reaches the suffix monologue, by Proposition 1,
Pr[¬Equal] = Pr[A′ succeeds] = negl(λ). Thus, the honest challenger wins the
challenge protocol with overwhelming probability.

Theorem 8 (Tournament Runtime). Suppose the consensus and execution
oracles are complete and sound, and have f and g communication complexity
respectively. Consider a tournament started at round r with n provers. Given
at least one honest prover, for any PPT adversary A, the tournament ends in
2n log(|L∪

r | + α(u + ν)) rounds of communication and has a total communica-
tion complexity of O(2n log(|L∪

r | + α(u + ν)) + 2nα(u + ν)(f(r) + g(r))), with
overwhelming probability in λ.

Proof. By the end of the first step, size of the set S can be at most 2. Afterwards,
each step of the tournament adds at most one prover to S and the number of
steps is n− 1. Moreover, at each step, either there is exactly one challenge game
played, or if k > 1 games are played, at least k − 1 provers are removed from
S. Hence, the maximum number of challenge games that can be played over the
tournament is at most 2n− 1.

Recall that the size alleged by Pi is at most the size alleged by Pi+1, i ∈ [n−1].
Let i∗ be the first round where an honest prover plays the challenge game. If
i∗ > 1, until round i∗, the sizes alleged by the provers are upper bounded by
|L∪

r |. From round i∗ onward, at each round, the prover P claiming the largest
size is either honest or must have at least once won the challenge game as a

44 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

challenger against an honest responder. During the game against the honest
responder, by Lemma 8, P could not have revealed α(u+ν) or more entries except
with negligible probability. Hence, from round i∗ onward, with overwhelming
probability, the size claimed by P at any round can at most be |L∪

r |+α(u+ν)−
1. Thus, with overwhelming probability, by Theorem 5, each challenge game
ends after at most log(|L∪

r | + α(u + ν)) rounds of interactivity and has total
communication complexity O(log(|L∪

r | + α(u + ν)) + α(u + ν)(f(r) + g(r))).
Consequently, with overwhelming probability, the tournament started at round
r with n provers ends in at most 2n log(|L∪

r |+ α(u+ ν)) rounds of interactivity
and has total communication complexity O(2n log(|L∪

r | + α(u + ν)) + 2nα(u +
ν)(f(r) + g(r))).

Lemma 9. Consider a challenge game invoked by the verifier at some round r.
If at least one of the provers P is honest, for all PPT adversarial A, the state
commitment obtained by the verifier at the end of the game between P and A
satisfies state security with overwhelming probability.

Proof. If the challenger is honest, by Theorem 7, he wins the challenge game
with overwhelming probability and the verifier accepts his state commitment.

Suppose the responder P of the challenge game is honest, and it is chal-
lenged by a challenger P∗. If P∗ starts a bisection game, by Lemma 5, P∗ loses
the challenge game and P wins the game. In this case, the verifier accepts the
state commitment given by the honest responder. On the other hand, if the chal-
lenge game reaches the suffix monologue and the challenger loses the monologue,
the verifier again accepts the state commitment given by the honest responder.
As the state commitment of an honest prover satisfies security as given by Def-
inition 2, in all of the cases above, the commitment accepted by the verifier
satisfies state security with overwhelming probability.

Finally, consider the event Win that the game reaches the suffix monologue
and the challenger wins. Let ℓ and ℓ∗ denote the responder’s and the chal-
lenger’s (alleged) augmented dirty ledger lengths respectively. During the suf-
fix monologue, the challenger reveals its alleged entries (tx∗i , ⟨st⟩

∗
i) at indices

i = ℓ + 1, . . . ,min (ℓ∗, ℓ+ α(u+ ν)) − 1. Let (txℓ−1, ⟨st⟩ℓ−1) denote the respon-
der’s last entry. As the challenger wins, consensus oracle must have returned true
on (txℓ−1, tx

∗
ℓ) and (tx∗i−1, tx

∗
i) for all i ∈ {ℓ+ 1, . . . ,min (ℓ∗, ℓ+ α(u+ ν))− 1}.

Similarly, for all i ∈ {ℓ, . . . ,min (ℓ∗, ℓ+ α(u+ ν))}, execution oracle must have
outputted a proof πi−ℓ+1 such that ⟨δ⟩ (⟨st⟩ℓ−1 , tx

∗
ℓ , π1) = ⟨st⟩∗ℓ and it holds

⟨δ⟩ (⟨st⟩∗i−1 , tx
∗
i , πi−ℓ+1) = ⟨st⟩∗i for i ∈ {ℓ+ 1, . . . ,min (ℓ∗, ℓ+ α(u+ ν))− 1}.

LetD denote the sequence txℓ−1, tx
∗
ℓ , . . . , tx

∗
min (ℓ∗,ℓ+α(u+ν))−1 of transactions.

Consider the event Consensus-Oracle that Win holds, ℓ∗ < ℓ+α(u+ν), and
there exists an index i ∈ {1, . . . , ℓ∗ − ℓ} such that D[i] does not immediately
follow D[i − 1] on L∪

r+ν . We next construct a consensus oracle adversary A1

that calls P∗ as a subroutine. The adversary A1 identifies the first index p > 0
such that D[p] does not immediately follow D[p − 1] on L∪

r+ν if such an index
exists, and outputs (D[p − 1], D[p], r). Otherwise, A1 outputs Failure. Hence,
Consensus-Oracle implies that A1 succeeds.

Light Clients for Lazy Blockchains 45

Let S denote the sequence ⟨st⟩ℓ−1 , ⟨st⟩
∗
ℓ , . . . , ⟨st⟩

∗
min (ℓ∗,ℓ+α(u+ν))−1. Define

sti = δ∗(st0,LP
r ||(tx∗ℓ , . . . , tx∗ℓ+i−1)) for i ∈ {1, . . . , ℓ∗ − ℓ} (st0 = δ∗(st0,LP

r)).
Consider the event Execution-Oracle that Win holds, ℓ∗ < ℓ + α(u + ν),
¬Consensus-Oracle holds, and S[i] ̸= ⟨sti⟩ for at least one index i ∈ {1, . . . , ℓ∗−
ℓ}. We next construct an execution oracle adversary A2 that calls P∗ as a sub-
routine. Using LP

r , A2 finds sti for all i ∈ {0, 1, . . . , ℓ∗ − ℓ} in O(poly(|LP
r |)

time. Then, A2 identifies the first index p > 0 such that S[p] ̸= ⟨stp⟩ if such
an index exists, and outputs st = stp−1, tx = D[p] = tx∗ℓ+p−1, and π = πp.
Otherwise, A2 outputs Failure. Since ⟨δ⟩ (S[i − 1], D[i], πi) = S[i] for i ∈
{0, 1, . . . ,min (ℓ∗ − ℓ, α(u+ ν))− 1}, the Execution-Oracle implies that

⟨δ(stp−1, D[p])⟩ = ⟨stp⟩ ≠ S[p] = ⟨δ⟩ (S[p− 1], D[p], πp) = ⟨δ⟩ (⟨stp−1⟩ , D[p], πp),

i.e., A2 succeeds.
Finally, if Win ∧ ¬Consensus-Oracle ∧ ¬Execution-Oracle ∧ ℓ∗ <

ℓ+ α(u+ ν), the verifier accepts the commitment ⟨st⟩∗ℓ∗−1, which satisfies state

security by Definition 2 (Here, L = LP
r ∥ (tx∗ℓ , . . . , tx∗ℓ∗−1) ⪯ L∪

r+ν and ⟨st⟩∗ℓ∗−1 =
⟨δ∗(st0,L)⟩ = ⟨st⟩). However,

Pr[Consensus-Oracle ∨Execution-Oracle] ≤
Pr[A1 succeeds] + Pr[A2 succeeds] ≤ negl(λ) .

Moreover, by Lemma 8, P∗ cannot reveal α(u+ ν) or more entries and win the
game except with negligible probability. Hence,

Pr[Win] =negl(λ) + Pr[Win ∧ ¬Consensus-Oracle

∧ ¬Execution-Oracle ∧ ℓ∗ < ℓ+ α(u+ ν)] .

which implies that either Pr[Win] = negl(λ) or conditioned on Win, the com-
mitment accepted by the verifier satisfies state security except with negligible
probability. Consequently, in a challenge game invoked by the verifier at some
round r, if at least one of the provers is honest, the state commitment obtained
by the verifier satisfies state security except with negligible probability.

Theorem 9 (Security). Suppose the consensus and execution oracles are com-
plete and sound, and have f and g communication complexity respectively. Con-
sider a tournament started at round r with n provers. Given at least one honest
prover, for any PPT adversary A, the state commitment obtained by the prover
at the end of the tournament satisfies State Security with overwhelming proba-
bility in λ.

Proof. Let Pi∗ denote an honest prover within P. Let n = |P| − 1 denote the
total number of rounds. By Theorems 6 and 7, Pi∗ wins every challenge game
and stays in S after step i∗ with overwhelming probability.

The prover P with the largest alleged MMR at the end of each step i ≥ i∗

is either Pi∗ or has a larger (alleged) MMR than the one held by Pi∗ . In the
first case, as Pi∗ is honest, its state commitment satisfies safety and liveness per

46 Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros

Definition 2. In the latter case, P must have played the challenge game with Pi∗ .
Then, by Lemma 9, the state commitment of P satisfies safety and liveness per
Definition 2 with overwhelming probability. Consequently, the state commitment
obtained by the verifier at the end of the tournament, i.e., the commitment of
P at the end of round n ≥ i∗, satisfies safety and liveness with overwhelming
probability.

Theorem 10 (Prover Complexity). When updating the MMR on a rolling
basis, provers do constant amortized number of hash computations per transac-
tion. Moreover, a node with an MMR of ℓ leaves can append a new leaf to its
MMR with at most O(log ℓ) hash computations.

Proof. Given an augmented dirty ledger of length ℓ, a prover can construct the
corresponding MMR with O(ℓ) operations upon entering the challenge game.
This is because each prover can obtain the binary representation of ℓ with
O(ℓ) operations, and create each of the k Merkle trees Ti, i ∈ [k], with O(2qi)
hash computations, making the total compute complexity O(ℓ) (cf. Section 3.1).
Hence, updating the MMR on a rolling basis, each prover can obtain an MMR
with ℓ leaves with O(1) amortized number of operations per transaction.

Finally, a node with an MMR of ℓ leaves can append a new leaf to its MMR
with O(log ℓ) hash computations; since in the worst case, it only needs to combine
the existing log ℓ hashes to update the MMR. Hence, per each new transaction,
each prover only incurs at most logarithmic compute complexity.

	Light Clients for Lazy Blockchains

