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Abstract. We study witness-authenticated key exchange (WAKE), in
which parties authenticate through knowledge of a witness to any NP
statement. WAKE achieves generic authenticated key exchange in the
absence of trusted parties; WAKE is most suitable when a certificate
authority is either unavailable or undesirable, as in highly decentralized
networks. In practice WAKE approximates witness encryption, its elusive
non-interactive analogue, at the cost of minimal interaction.
This work is the first to propose, model and build witness-authenticated
key exchange amongst groups of more than two parties, as well as the first
to provide practical and provably secure constructions in the two-party
case for general NP statements. Specifically our contributions are:

1. both game-based and universally composable (Canetti, FOCS ’01)
definitions for WAKE along with equivalence conditions between the
two definitions,

2. a highly general compiler that introduces witness-authentication to
any key exchange protocol along with, as a direct consequence, a
three-round group WAKE protocol from DDH and signatures of
knowledge (SOK), and

3. an optimized two-round group WAKE construction from DDH and
SOK along with experimental benchmarks to demonstrate concrete
practicality.

Additionally, we study the specialized two-party case and provide a cri-
tique of prior work on this topic (Ngo et al., Financial Crypto ’21) by
pinpointing nontrivial weaknesses in the model, constructions and se-
curity proofs seen therein. We rectify those limitations with this work,
significantly diverging in our techniques, design and approach.

1 Introduction

Public-Key cryptography as introduced in the seminal paper by Diffie and Hell-
man [23] allows two parties who have never met to confidentially exchange infor-
mation. This can be achieved via non-interactive encryption with which a sender
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encrypts a message under a receiver’s public key [36], or via an interactive key
exchange [23].

Traditionally parties’ identities are endorsed by a trusted certifying authority
(CA) through published certificates i.e. digital signatures binding identities to
public keys. Beyond such a public key infrastructure, in both the encryption and
key-exchange cases, there are more flexible methods of designating for which
entities secure communications are intended: in identity-based cryptography [38]
public keys are replaced by arbitrary party identity strings and in attribute-
based cryptography [37] policies define sets of attributes that parties must satisfy.
Critically, both of these primitives employ a trusted party to issue certificates
or keys corresponding to a party’s claimed identity or attributes and therefore
can be considered to assume a centralized CA.

Witness encryption (WE) [27] is arguably the most general way to specify the
intended recipient of an encrypted message. With WE a message is encrypted
to an instance ϕ of some NP language L such that if ϕ ∈ L then the message
can be recovered via an efficient decryption algorithm which requires as input a
witness w for ϕ. As an example one can encrypt a message to a Sudoku puzzle
resulting in a WE ciphertext that is decryptable with any valid solution to that
puzzle. Remarkably this primitive does not require a trusted party “to certify
a receiver’s key”; in WE the secret decryption key is the (uncertified) witness
itself. Despite recent progress [11] practical WE for all of NP from standard
assumptions remains elusive.

In this work we turn our attention to another “witness-flavored” primitive
that (i) similarly to WE, can be used in several applications where an arbi-
trary1 secret enables secure communication, yet (ii) differently from WE, can
be conretely and efficiently instantiated under computational assumptions held
today. We achieve the latter through an extremely low amount of interaction – in
some cases only two messages. We refer to this primitive, the interactive process
in which parties mutually authenticate with respect to knowledge of a witness
to an NP statement, as witness-authenticated key exchange (WAKE). We argue
that the interactive abstraction deserves to be studied in its own right, due to
both its utility in several applications and its generality. Just as WE is the most
general form of encryption, the interactive witness-authenticated key exchange
subsumes all efficiently verifiable means of authentication as special cases.

Our Contributions. This work is the first to propose, model and build witness-
authentication amongst groups of authenticated parties. We are also the first to
provide practical and provably secure constructions for two-parties authenticat-
ing under general statements. Our contributions are as follows:

(1) We revisit witness-authentication: we identify the shortcomings of [33]—the
model’s applicability, the construction’s practicality, and the security proof. Our
discussion demonstrates a need for new models and constructions in the two-
party case, a specialization of our general model for groups.

1 That is, not certified by an authority and not the output of a specific key generation
algorithm e.g. the Sudoku solution in the example above.
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(2) We define WAKE via both a modular and intuitive game-based formalization
and a universally composable (UC) ideal functionality. UC is the most desirable
security guarantee for authenticated key exchange; satisfaction of the stronger
variant of our game-based definition is proven equivalent to UC-realizing our
ideal functionality.

(3) We construct new protocols for groupWAKE. We first show a general compiler
transforming any passively secure key exchange protocol (without any guarantees
on witnesses held by each user) into one with witness-authentication and thus
full security. The main features of the general construction is that it is concep-
tually simple, modular and efficient. Abstractly the compiler relies on strongly
simulation-extractable signatures of knowledge [30], the properties of which can
be leveraged to provide different security and efficiency guarantees. Concretely
we instantiate our compiler on the Diffie-Hellman style group key exchange of
Burmester and Desmedt to provide a practical 3-round WAKE protocol.

(4) We optimize the above 3-round solution to a 2-round concretely efficient
group WAKE protocol. This improved solution achieves UC security, though this
does not trivially follow from the security of the above compiler and demands
particular care in the proof. We show that this protocol remains practical, as
evidenced by our estimated benchmarks in Section 4.

Our general protocol in a nutshell. We begin with the Katz-Yung [31]
approach to authenticated group key exchange but replace the standard digi-
tal signature authentication mechanism with simulation-extractable signatures
of knowledge (SOK) [30], enabling a party to verifiably claim knowledge of a
particular secret. While the idea is fundamentally simple, modeling the WAKE
primitive and proving security of the protocols requires much care and should
be considered our main technical contribution.

Applications. The main application of WAKE is, of course, the establishment
of secure communication channels between groups of parties contingent upon
the information that parties provably know. The lack of a trusted CA renders
WAKE especially compelling for decentralized applications requiring parties to
confidentially connect based on arbitrary, dynamic policies. Decoupling authenti-
cation and identity permits flexible, deniable and anonymous authentication. We
present several concrete examples of applications employing WAKE. Estimated
runtime benchmarks for parties authenticating in dark pools and retrieval mar-
kets can be found in Section 4.

Dark Pool Transactions. Appearing as the primary motivation for a prede-
cessor toWAKE [33], dark pool transactions allow for confidential and anonymous
negotiation. In this scenario Alice is selling an item and wants to confidentially
negotiate with any party holding enough funds to purchase that item. Alice de-
termines a minimum balance B and any party Bob can establish a key with
Alice if, for a public commitment c to his private balance b, the following rela-
tion is satisfied R

(
(B, c), (b, r)

)
=

(
c = comm(b; r) ∧ b ≥ B

)
. Alice can remain

unauthenticated, as in unilateral WAKE, or Bob may wish that Alice authenti-
cates her ownership of the item for sale. Given our group WAKE the dark pools
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Model Protocol
Primitive

GB UC All NP No CA ML Groups O(1)-rnd All NP

PAKE [12]

CAKE [17]

ABKE [32]

LAKE [13]

WKA* [33]

WAKE

[This Work]

Table 1. Comparison to related work. Model/GB: “has a game-based model?”
Model/UC: “has a UC-based model?” Model/All NP: “does the model support any
efficiently computable relation over the inputs of each party?” Model/No CA: “can
do without an underlying CA?” Model/ML: “supports multi-lateral authentication?”
Model/grp: “supports more than two parties?” Protocol/O(1)-rnd: “has a constant
number of rounds?” Protocol/All NP: “does the construction support any efficiently
computable relation?”; WKA* is discussed further in Section 1.

scenario can be extended to a group chat between many parties, each satisfying
the condition of holding enough funds to participate.

Retrieval Markets. In decentralized storage systems such as Filecoin [34] and
IPFS [35] files are stored by providers and addressed with a content identifier
(CID) that is typically a cryptographic hash of the file additionally serving as a
commitment to that file. A provider can authenticate to any client interested in
retrieving the file if that provider holds the private file associated to the public
CID. Similarly providers storing the same file can establish a confidential group
channel to communicate via group WAKE.

Chat with the same wallet. Several services are offered that allow parties
to create chatrooms and schedule meetings amongst parties that hold similar
tokens in a blockchain (e.g. [3, 7]). A group WAKE can be used to establish
secure communication channels for such tasks. Thanks to the inherent flexibility
of WAKE these existing schemes can be extended to more general conditions,
e.g. confidential group chatrooms between owners of NFTs by a certain artist.

Decentralized Anonymous Routing. Several proposals have been put for-
ward for decentralized naming and routing protocols over the internet (see e.g.
[6] and [4]). WAKE can play an important role in securing such protocols by
providing a method by which parties can authenticate without a CA.

Related Work. The relevant generalizations of authenticated key exchange are
summarized in Table 1. Credential-authenticated and attribute-based key ex-
change (CAKE [17] and ABKE [32]) respectively model bilateral and unilateral
authentication on the basis of efficiently computable relations over a certified
set of credentials. Both CAKE and ABKE stipulate an authority to issue these
certificates (CA) and therefore depend upon the strong assumption of unani-
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mous trust in an honest, incorruptible CA. Beyond this impracticality and other
certificate governance concerns, no CA could possibly certify any and every ar-
bitrary property potentially desirable for authentication; any CA is a limitation
against a truly general key exchange.

In the absence of a CA password-authenticated key exchange (PAKE) per-
mits parties to boost shared low entropy passwords into a shared high entropy
key [12], and has been generalized to noisy, approximately equal passwords [25].
Even closer to the goal of witness-authentication is language-authenticated key
exchange (LAKE [13]), which enables two parties to establish a shared key over
an insecure network if each participant has knowledge of a word that lies in
the language defined by their partner. Notably, the language and the statement
remain secret with LAKE. In contrast, our definition of WAKE does not straight-
forwardly guarantee secrecy of the statement and language as modeled. As the
model closest to our goal, it is important to note that the LAKE protocol exclu-
sively supports self-randomizable algebraic languages, the a subset of languages
which admit a smooth projective hash function [22]. Therefore the LAKE pro-
tocol cannot support all of NP.2

We note that in comparison to generic multiparty computation (MPC) or
fully homomorphic encryption, state of the art SNARKs are both mature and
efficient. One primary observation that we wish to communicate is the simplicity
of our solutions. A custom protocol for WAKE, as in Section 4, is lighter and
simpler than employing the heavy hammer that is MPC.

Authenticated key exchange (AKE) can be modeled in a game-based way or
in the universal composability framework. A game-based security definition is
a natural, modular formalization of our intuitions about exactly which proper-
ties are desirable for security. A composable definition models the key exchange
as an ideal functionality, or a trusted party that is given all of the relevant
secrets to carry out that task, and ultimately UC security guarantees that an
AKE protocol is (1) just as secure as the ideal functionality, and (2) remains
secure independently of how the keys are employed afterwards. We provide both
formalizations and give equivalence conditions between the two.

Analysis of Witness Key Agreement (WKA) [33]. We briefly discuss
witness-key-agreement (WKA) [33], which inspired our work and proposed inter-
esting applications. We identify three primary shortcomings of WKA, discussed
further in Appendix A. First, a note on terminology: WAKE and WKA aim at
modeling similar settings but the models in our work are more general. In light
of the observations in this section we chose to reflect these major differences in
approach by further differentiating WAKE from WKA in name.

Limitations of the WKA model. A standard security requirement for key
exchange is that an adversary should not be able to learn anything about the
session key from the interaction—a random key should be indistinguishable from
those output by participants in the protocol. Against active adversaries, how-
ever, the [33] definition employs unpredictability in lieu of indistinguishability.

2 If every language in NP admits a smooth projective hash function then the polyno-
mial hierarchy collapses.
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As a consequence this model may consider secure a construction where an active
adversary is able to distinguish keys. Additionally, active adversaries are unre-
alistically weakened: they can generate only a single session to leverage against
the challenge. Furthermore, confidentiality in WKA neglects the case that an
adversary knows some relevant witness as auxiliary input.3

Is the WKA protocol provably secure? We observe that security for the
scheme in [33] requires a more elaborate proof under stricter assumptions than
those acknowledged in the paper. We do not know if the assumed primitive is
realizable. The construction in [33] can be seen as a designated-verifier proof
system, adapted and extended from the ideas in [15]. The [15] construction
argues soundness under the IND-CPA security of a linear-only encryption (LOE)
scheme and includes these LOE ciphertexts in the CRS. WKA [33] augments that
CRS with encryptions of the randomness used to generate the CRS ciphertexts.
As such WKA requires a stronger variant of IND-CPA security that accounts for
randomness-dependent message (RDM) security [14], yet the proof sketch fails
to discuss RDM security. A concrete instance would require an IND-CPA and
RDM secure LOE scheme. We are not aware of any such schemes in literature.

Impracticality of the WKA protocol. A primary limitation of WKA
is that a trusted setup is required every time a new party wants to initiate a
key exchange.4 Every time a party aims to initiate an exchange an authority
must be invoked to distribute a secret (tantamount to a verification key in a
designated-verifier SNARK) for the key exchange; the trusted authority is in-
voked at least once per party in the system. Such an exchange is highly imprac-
tical. Beyond this impracticality it is undesirable to have a trusted centralized
authority producing—and potentially leaking—trapdoors that allow imperson-
ation. If relied on frequently this may compromise the entire system. On the
other hand our instantiations can rely on no trusted setup [21], one trusted
setup generated once and for all per given computation (reusable in all relevant
key exchanges) [30] or a single trusted setup generated once and for all [26].

2 Our Model: Witness-Authenticated Key Exchange

We provide both a game-based definition and a universally composable (UC)
ideal functionality [19] for WAKE, ultimately proving the two equivalent under
certain conditions. The two modeling approaches offer a tradeoff: game-based
definitions are modular and make explicit the exact properties we expect from
a secure protocol whereas UC guarantees security under composition with arbi-
trary protocols, as is desirable for key exchange.

The objective of WAKE, and the primary modeling challenge, is that any set
of participants terminate with a shared key if each participant has knowledge

3 If Alice and Bob authenticate using witness w the adversary should not learn their
key even with knowledge of w; our definition models this case, while in WKA the
definition is silent.

4 Although if the same party wants to run multiple key agreements for the same
relation this setup could potentially be reused.
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of a witness to their own efficiently verifiable statement. Clearly witness en-
cryption is not a useful starting point in this interactive setting; the unintuitive
WE “security-correctness gap”—explicitly requiring semantic security for state-
ments not in the language and correctness for statements in the language—is at
odds with our goal. Instead our approach takes inspiration from the group key
exchange of [31] modified to the unique case of witness-authentication.

In a model with a public key infrastructure (PKI) a participant’s identity
is typically synonymous with their certified public key. Yet again a direct ana-
logue to the witness-based setting is not straightforward, erroneously conflating
knowledge of a witness with identity. The first dissimilarity is redundancy; as op-
posed to party identity, statements are not necessarily unique. Secondly, aWAKE
protocol is required to maintain secrecy of the witnesses. This zero-knowledge
flavored security requirement implies that all participants authenticating with
respect to the same statement are indistinguishable. Crucially any meaningful
notion of personal identity is absent from WAKE; witness-authentication must
remain agnostic to the true identity of the sender and instead exclusively asks:
were these protocol messages generated with knowledge of a witness?

Notation. For an oracle O we use AO to say that algorithm A has access to
oracle O. The transcript of a protocol execution is defined to be the concate-
nation of all messages sent and received by any participant in the execution. A
participant U is initialized with input inputU using square brackets and a proto-
col executed between a set of participants generating transcript T is written as
(T, out1, . . . , outℓ)← ⟨P1[input1], . . . , Pℓ[inputℓ]⟩. The view of party Pi is written
viewPi

and is defined to be the entire state of the party.

Signatures of Knowledge. A signature of knowledge (SOK) [21] is a witness-
based generalization of a traditional digital signature. For security parameter λ,
NP relation R, statement ϕ, witness w and message m, a SOK has three main al-
gorithms: SSetup(1λ,R)→ pp is a randomized relation-specific setup outputting
public parameters pp, SSign(pp, ϕ, w,m)→ σ is a randomized signing algorithm
outputting signature σ and SVfy(pp, ϕ,m, σ) → {0, 1} is a deterministic verifi-
cation algorithm outputting 1 for acceptance. The ideal functionality for SOK
can be found in Appendix B.

Correctness requires that verification will accept if the SOK was produced
with a valid witness. Towards security we require that a signature of knowledge
be simulation-extractable. Simulatability, at a high level, requires that there
exists a simulator which can output public parameters that are indistinguishable
from those output by SSetup along with a trapdoor τ that can then be used to
simulate signatures without witnesses. Simulation-extractability, at a high level,
requires that an efficient adversary with access to simulated signatures cannot
output a verifying signature without knowledge of a witness. Knowledge of a
witness is modeled via the existence of an efficient extractor that can output a
witness from the view of the adversary.

The Model. We fix a relation R and consider a set of participants P of size
ℓ = ℓ(λ). Each P ∈ P is associated with the public statement ϕP and has input
a private string wP . The public statement vector is Φ = ⟨ϕ1, . . . , ϕℓ⟩. We assume
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a distribution over witnesses DΦ such that each w← DΦ is a vector of witnesses
w = ⟨w1, . . . , wℓ⟩ corresponding to the statements in Φ.5

Each P ∈ P can participate in a polynomial number of protocol sessions
with arbitrary subsets of P. This is modelled via single-execution instances: Πi

P

is the ith instance of participant P . In addition to (ϕP ,wP ) each instance stores
a boolean acciP indicating acceptance, a session identifier sidiP i.e. the transcript,
and the session key skiP . Relation-specific public parameters are generated via
a setup algorithm: pp ← SetUp(1λ,R).6 Correctness requires that for all NP
relations R and set of participants P, instances terminate with a shared key if
all parties know witnesses to their associated statements and the instances have
matching session identifiers.7

Admissible Adversaries. The adversary controls all communication between
participants in the network via three oracles: Send(P, i,M) sends message M
to instance Πi

P and returns the response, Execute(Pi1 , j1, . . . , Pik , jk) runs an
honest execution of the protocol between the queried instances and Reveal(P, i)
outputs session key skiP . A passive adversary, playing as a wire between parties,
attempts to learn about the key from the session transcript. An active adver-
sary, participating in an exchange by injecting her own messages into a session,
attempts to successfully authenticate to any other participant in that exchange.
Notably the passive adversary trivially convinces every party in the exchange to
accept by merely forwarding protocol messages between parties but does not do
so adversarially. We therefore must clearly define what adversarial behavior is
considered admissible.

A forwarding adversary engages in passive behavior; a forwarding adver-
sary is such that for every Send query with input message M and instance Πj

Q

(except the first) there exists a preceding call to Send which output the message
M as a response. Moreover, the query which output message M must have taken
as input an instance Πi

P with session identifier sidiP ≡ sidjQ. For each instance

Πi
P we define the impersonation set of an instance as I(P, i) as the set of

instances to which the adversary impersonated Πi
P by injecting her own message

“from” Πi
P that was not output by a corresponding query Send(P, i, ·). Notably,

by definition, a passive adversary without access to the Send oracle cannot be
forwarding. Likewise, queries to Reveal can trivially compromise session keys.
This motivates the following freshness requirement: an instance is considered
fresh if the adversary has neither revealed the session key stored by that in-
stance nor the key stored by any instance participating in the same session.8

5 The subscript notation is overloaded for ease; it is convenient to associate partic-
ipants Vi, statements ϕi and witnesses wi with the same index i when listing or
assigning these values, but it is also convenient to index statements ϕP and wit-
nesses wP by their associated participant P when discussing a single instance.

6 The syntax requires one setup per relation but it can be easily extended to the case
where a setup is universal [29].

7 As the session identifiers are set to be the transcript of the session having matching
session identifiers indicates that the instances have recorded the same transcript and
therefore were participating in the same session.

8 Instances are participating in the same protocol session if the stored session identi-
fiers agree on the first round messages.
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ExpWAKE-confid
Π,A ,ExpWAKE-auth

Π,A,E⋆ ,ExpWAKE-sim
Π,A

ExpWAKE-confid
Π,A (λ,R, Φ,DΦ):

b←$ {0, 1}
pp← SetUp(1λ,R)
W ← DΦ

P ← {Pi([ϕi, wi]}ni=1

(C, i)← AExecute(),Reveal()(pp, Φ,W )

if acciC = FALSE : output b

k1 ← skiC , k0 ←$ {0, 1}λ

b′ ← AExecute(),Reveal()(kb)

output b == b′

Exp
WAKE- nBB - sl-BB -auth
Π,A,E

*
(λ,R, Φ,DΦ):

pp, τ ← SimSetUp(1λ,R)
w← DΦ;P ← {Pi[ϕi,wi]}ni=1

(C, i, P )← ASend(),Reveal()(pp, Φ)

assert (P ∈ I(C, i))
bimp ← acciC

w′ ← EA(viewA) : w′ ← Eτ (transA)

bext ← (ϕP ,w
′) ∈ R

output (bimp ∧ b̄ext)

ExpWAKE-sim
Π,A (λ,R):

b
$←− {0, 1};P ← ∅; c← 0

pp0 ← SetUp(1λ,R)
(pp1, τ)← SimSetUp(1λ,R)

b′ ← ASendb,Reveal,SetKeys(ppb)

output b == b′

SetKeys(ϕ,w):

assert (ϕ,w) ∈ R
P ← P ∪ Pc[ϕ,w]

c← c+ 1

Send0pp0
(P, j,m):

The real party: Pϕ,w ← P
output Send(Pϕ,w, j,m)

Send1pp1,τ (P, j,m):

The simulated party.

output Simτ (P, j,m)

Fig. 1. The WAKE confidentiality, authenticity and simulatability experiments.

An admissible adversary is an adversary that does not trivially compromise
the session key; an adversary A is considered admissible for an experiment if A
outputs a fresh challenge (P, i) on which A is not forwarding.

Security. Minimally a WAKE protocol should be secure in the standard unau-
thenticated key exchange sense. Confidentiality is the standard security notion
and guarantees that an eavesdropping adversary with access to an arbitrary num-
ber of honest transcripts and session keys cannot distinguish a random string
from the real session key associated to some adversarially-chosen challenge tran-
script. In the confidentiality experiment, ExpWAKE-confid

Π,A in Figure 1, the adversary
has access to Execute and Reveal and is also given the entire vector of witnesses.
This formulation strengthens confidentiality to additionally provide forward se-
crecy. We observe that this is a slightly stronger variant of forward secrecy than
that modelled via a corruption oracle as in [31].

Definition 1 (Confidentiality). Consider experiment ExpWAKE-confid
Π,A in Fig-

ure 1. A WAKE protocol Π is confidential if for all relations R, for all statement
vectors Φ, for all distributions over witness sets DΦ and for all admissible non-
uniform PPT A: |2·Pr[ExpWAKE-confid

Π,A (λ,R, Φ,DΦ)]− 1| ≤ negl(λ).
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Simulatability is the requirement that the messages exchanged in a protocol
hide the witnesses used to generate them. This means that an adversary cannot
learn anything about a participant’s witness from the messages sent by that
participant. The simulatability experiment is ExpWAKE-sim

Π,A in Figure 1. Simulata-
bility stipulates the existence of a two part simulator, S = {SimSetUp,Sim}. The
simulated setup algorithm SimSetUp takes as input the security parameter and
the relation R and outputs a trapdoor τ along with public parameters that are
indistinguishable from those output by SetUp. The simulated party algorithm
Simτ is a stateful party simulator which uses the trapdoor τ to output messages
that are indistinguishable from those generated by real parties with knowledge
of witnesses. Simulatability then requires that no efficient adversary can distin-
guish between access to the simulated parameters and parties with Send1pp1,τ

from access to real parties with Send0pp0
. The adversary is permitted to use the

SetKeys oracle to decide the statements and witnesses used for authentication.

Definition 2 (Simulatability). Consider the experiment ExpWAKE-sim
Π,A in Fig-

ure 1, ExpWAKE-sim
Π,A . A WAKE protocol Π is simulatable if there exist efficient

algorithms (SimSetUp,Sim) (the latter stateful) such that for all relations R and
for all non-uniform PPT A: |2·Pr[ExpWAKE-sim

Π,A (λ,R)]− 1| ≤ negl(λ).

Authenticity is the requirement that an unauthenticated participant can-
not convince another participant to accept. In the related experiment seen in
Figure 1, the adversary is given access to Send and Reveal with the goal of au-
thenticating to at least one instance of one participant. Authenticity guarantees
that if the adversary can authenticate then either she was forwarding (and there-
fore inadmissible) or she had knowledge of a witness. The adversary can be said
to know a witness if there exists an efficient extractor that can output a witness
from that adversary. The adversary then wins the experiment if the extractor
fails.

We define two variants of authenticity that differ exclusively in the style of ex-
traction: straightline-black-box versus non-black-box extraction. A straightline-
black-box extractor (sl-BB) has access to the adversary’s transcript along with
the simulation trapdoor τ and is black-box in the adversary. The sl-BB extrac-
tor is additionally restricted from employing a common rewinding technique in
which, while interacting with the adversary, the extractor reverts the adversary
to a previous state after receiving a response to a challenge message and can
then extract if the adversary outputs a distinct response to the same challenge.
Thus the sl-BB extractor is limited to straightline extraction techniques. The
sl-BB extractor does not depend on the adversary and therefore a single ex-
tractor can extract from any successfully authenticating adversary. A protocol
admitting such an extractor satisfies our stronger notion of authenticity which
is ultimately proven, in conjunction with our other WAKE security properties,
to be equivalent to UC security in Theorem 1.

The strength of straightline black-box extraction comes at a price. In order
for a protocol to admit such an extractor, producing witnesses from transcripts
alone, the protocol messages must somehow encode witnesses for extraction. This
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seemingly puts a lower bound on message length where message length must
depend on the encoded witness length. This motivates a non-black-box (nBB)
variant of extraction: an nBB extractor outputs a witness from the entire view
of the adversary. This correspondingly weakens our authenticity requirement, in
part because the nBB extractor is adversarially dependent. Fortunately such an
extractor ultimately permits efficiency as discussed further in Section 4.

In summary our authenticity definition provides the following tradeoff: the
stronger sl-BB authenticity provides equivalence to UC security while the weaker
nBB authenticity admits practical protocols. The authenticity experiments are
ExpWAKE-⋆-auth

Π,A,E⋆ in Figure 1, and are color-coded by variant.

Definition 3 (Authenticity). Consider the experiments ExpWAKE-⋆-auth
Π,A,E⋆ in

Figure 1. A WAKE protocol Π is nBB-witness-authenticated if for all admis-
sible non-uniform PPT A there exists a PPT extractor EA, such that for all
relations R, for all statement vectors Φ and for all witness distributions DΦ:

Pr[ExpWAKE-nBB-auth
Π,A,EA (λ,R, Φ,DΦ)] ≤ negl(λ)

A WAKE protocol Π is sl-BB-witness-authenticated if there exists a straightline
PPT extractor E such that for all admissible non-uniform PPT A, for all rela-
tions R, for all statement vectors Φ and for all witness distributions DΦ:

Pr[ExpWAKE-sl-BB-auth
Π,A,E (λ,R, Φ,DΦ)] ≤ negl(λ)

A WAKE is called passively secure if it satisfies confidentiality. We observe
that the confidentiality-only security requirement corresponds to passive security
in classical group key exchange, though with different syntax. A WAKE protocol
achieves full security if it is passively secure and additionally satisfies authen-
ticity and simulatability. A WAKE protocol satisfying nBB-extraction is also
specified as nBB-WAKE-secure, whereas a protocol satisfying sl-BB-extraction is
sl-bb-WAKE-secure. As a sl-BB extractor is also a nBB extractor we note that
any sl-bb-WAKE-secure protocol Π is also nBB-WAKE-secure.

We remark that unilateral authentication in the two party case, or a WAKE
generalization where an arbitrary subset of the participants are unauthenticated
in the group case, is achievable if that subset authenticates with respect to trivial
or empty statements.9 This is further explored in Appendix C.

Universally Composable WAKE. We provide a UC definition in addition
to our game-based one. In the UC framework a cryptographic task is defined
with respect to an ideal functionality F , a trusted party that behaves ideally
with access to every secret. Proving that a protocol Π is indistinguishable from
the ideal functionality then guarantees that the protocol is just as good as the
ideal functionality and that the protocol is resilient against arbitrary adversarial
attacks in arbitrary environments. Such a proof of UC-security then ensures
that our WAKE will remain secure when composed with any protocol making

9 This can also be seen as an adaptation of Unilaterally Authenticated Key Exchange
[24] to the witness-based setting.
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use of the generated keys, for example symmetric encryption, as is ideal. In the
case of WAKE parties provide the ideal functionality FWAKE with their witnesses
and the functionality verifies the witnesses and issues keys accordingly. The
ideal functionality also models ideal leakage and adversarial influence. The UC
framework is discussed in detail in Appendix B.1.

In fact, as mentioned above, UC-security is equivalent to our game-based def-
inition of sl-bb-WAKE-security. Theorem 1 formalizes this equivalence by stating
that any sl-bb-WAKE protocol Ω can be used to UC-realize the WAKE ideal func-
tionality FWAKE directly. The simplicity of realizing UC security is the point; the
code for parties executing the UC secure ΠΩ is the same as that for parties
executing Ω, except inputs are received from and outputs are forwarded to “the
environment”. The proof, along with a presentation of the ideal functionality
and a complete discussion of WAKE in the UC framework, can be found in Ap-
pendix D.

Theorem 1. Let Ω be a fully secure group sl-bb-WAKE protocol. Then there
exists a simple protocol ΠΩ which UC-realizes FWAKE in the presence of static,
malicious adversaries without the assumption of authenticated channels.

3 A General Compiler to Witness-Authentication

We describe a compiler that transforms any passively-secure key exchange, i.e.
a WAKE satisfying confidentiality-only, into a fully-secure witness-authenticated
protocol. Our compiler adapts the compiler presented in [31] to and can be ap-
plied to arbitrary passively-secure key exchange protocols. Given a passively se-
cure key exchange protocolΠ between set of parties P and a strongly simulation-
extractable signature of knowledge Σ the compiled protocol Π∗ satisfying full
WAKE security is presented in Figure 2.

To transform Π to a witness-authenticated protocol with respect to relation
R with statement set Φ, each party Pi on input (ϕi, wi) uses the passively secure
protocol Π as a black box. The compilation is at the expense of an additional
round in which participants sample and exchange random nonces. After the
preliminary round parties use these nonces as the session identifier and proceed
according to Π with two additional steps: (1) each message to be sent according
to Π by party P is first concatenated to the session identifier and signed with
the signature of knowledge under ϕP , and (2) all message-signature pairs are
verified according to (Φ,R) upon receipt.

Theorem 2. If Π is a passively secure key exchange, satisfying confidentiality
only, and Σ is a strongly simulation-extractable signature of knowledge then the
resulting protocol Π∗ obtained from applying the compiler on Π is a fully secure
nBB-WAKE protocol.

The confidentiality of Π∗ is inherited from the underlying protocol Π, sim-
ulatability is reducible to the simulatability of Σ, and authenticity is reducible

12



CΣWAKE(Π,R, Φ)

Setup

ppΠ ← Π.SetUp(1λ,R)

ppΣ ← Σ.SetUp(1λ,R))

ppΠ∗ := (ppΠ , ppΣ)

Round 1 for Pi[ppΠ∗ , Φ, ϕi, wi]

ri ←$ {0, 1}
λ

Send (Pi||0||ri)→ P

Receive {mj = (Pj ||0||rj)}j ← P

nonces := (P1||r1|| . . . ||Pℓ||rℓ)

S := {P1, . . . , Pℓ} \ {Pi}

Round k = 2, . . . , K

If k > 2, ∀j : receive (Mj , σj)← S

verify message format and signature ∀j

Pj , k
′
,mj , nonces

′ ←Mj

assert k
′
= k − 1 ∧ nonces = nonces′

assert Σ.Verify(ppΣ , ϕPj
,Mj , σj)

For all k reply according to Π

m← Π
(
{mj}Pj∈S

)
M := (P ||k||m||nonces)

σ ← Σ.SSign(ppΣ , ϕP , wP ,M)

Send (M,σ)→ S

Key Computation

Receive {(Mj = (Pj , k
′
,mj , nonces

′
), σj)}j ← S

assert (k
′
= K) ∧ (nonces = nonces′) ∧ (Σ.Verify(ppΣ , ϕPj

,Mj , σj))

Output sk← Π
(
{mj}Pj∈S

)

Fig. 2. A compiler from passively secure key exchange to full WAKE security.

to the simulation-extractability of Σ. A full proof of the theorem appears in
Appendix E.

Theorem 8 directly implies a three round group WAKE protocol as the image
of our compiler applied to ΠBDKE, the two round passively secure Burmester-
Desmedt group key exchange protocol [16]. This is discussed further in Ap-
pendix F.

4 Two-Round Group WAKE

The two round protocol Π2-WAKE in Figure 3 UC-realizes FWAKE. This two round
protocol Π2-WAKE directly achieves session authenticity, the guarantee that
senders are consistent throughout the exchange. Security is stated in Theorem 3
and proven in Appendix G.

The protocol below is optimized when compared to straightforwardly apply-
ing either the split functionality transformation [10] to achieve UC security or
our compiler from Section 3 to achieve game-based security. The split function-
ality transformation, discussed at length in Appendix D, is the standard method
of achieving UC-secure authenticated key exchange and adds two rounds to any
passively secure protocol. This transformation introduces session authenticity
and removes the assumption of authenticated channels in the UC framework.
Our compiler achieves nBB-WAKE by adding a single round to any passively
secure protocol.
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Most notably the second round of protocol Π2-WAKE requires each partic-
ipant to simultaneously authenticate with respect to their statement and their
first round message; party Pi signs their second message mi with a signature of
knowledge under statement ϕi and the ephemeral Diffie-Hellman value zi sent in
the first round: ϕ′i = (ϕi, zi) with witness (wi, xi). The signature of knowledge

is initialized with relation R′ = R × RDLP at setup, where R(G,g)
DLP := {(h =

gx, x)|h ∈ G, x ∈ ord(h)} is the discrete logarithm relation. Note that indices are
taken modulo the number of parties n.

Π2-WAKE(sid,R, Φ, ϕi, wi)

Setup

(G, g, q)← FCRS(CRS)

R′ ← R×R(G,g)
DLP

(Algorithms)← FSOK(Setup)

Round 1

xi ←$ Z∗
q , zi := g

xi

Send (Pi||zi)→ P

Round 2

Receive (Pj ||zj)← P, ∀j :

ϕ
′
j := (ϕj , zj), ϕ

′
i := (ϕi, zi), w

′
i := (wi, xi)

vk := (P1||z1|| . . . ||Pn||zn)

Zi ← (zi+1/zi−1)
xi

mi := (Pi||Zi||vk)

σi ← FSOK(Sign : sid′,mi, ϕ
′
i, w

′
i)

Send (Pi||Zi||σi)→ P

Key Computation

Receive (Pj ||Zj ||σj)← P

If
∧

Pj∈P
FSOK(Verify : sid′,mj , ϕ

′
j , σj) ̸= 1 : Output ski ←$ {0, 1}

λ

Else: Output ski := (zi−1)
nxi ·Zn−1

i ·Zn−2
i+1 · · ·Zi+n−2

Fig. 3. A two-round WAKE protocol.

Theorem 3. For any NP relation R protocol Π2-WAKE UC-realizes FWAKE in the
(FCRS,FSOK)-hybrid model against malicious adaptive adversaries in the unau-
thenticated, asynchronous setting.

The protocol can be instantiated without any reference to FCRS at the ex-
pense of one round in which some party generates and broadcasts the group
parameters as (G, g, q) prior to the exchange. When our protocol is instanti-
ated with a succinct simulation-extractable signature of knowledge it is possible
to achieve efficiency at the expense of weakening security to nBB-WAKE from
sl-bb-WAKE, and thereby sacrificing provable security in the UC setting.

Estimated benchmarks for the above protocol are presented in Table 2.
Our communication complexity is constant and estimated to be below 0.5 KB in
total for the unilateral two-party case and of approximately N KB for the group
authenticated case with N parties. When using BLS12-381 [1] as the concrete
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Setting Rel R ∈ NP Stmnt ϕ Wtns w T(s)

Dark Pools c̄ = Comm(s; ρ) ∧ s ≥ B̄ c̄, B̄ (ρ, s) 4

IPFS h̄ = blake3hash(F) h̄ F 68

ZKCP solvesSudoku(sol, pzl) pzl sol 1

Bug bounty Cbuggy(bug) ∧ ¬Cexpect(bug) C{buggy,exp} bug 58

Table 2. Run time estimation (in seconds, rounded through ceiling). The
authenticated party running time can be found in the last column. The timings refer
to our protocol instantiated through Snarky Signature [30], a succinct SOK variant of
[30]. See also Appendix I for more on the experimental setting.

curve a signature is 224 bytes.10 We remark that an additional offline-online
optimization of our protocol can be applied to migrate a majority of the online
running time, i.e. the signature, to an offline phase. This example is further
discussed in the unilaterally-authenticated two-party case in Appendix H.

We briefly describe detail one more application scenario we benchmarks in
our table, that of Zero-Knowledge Contingent Payment (ZKCP), where a seller
wants to initiate a channel with any party claiming to have a digital good that
satisfies a certain property to negotiate a price for that good prior to a ZKCP
protocol [5, 18]. We benchmark the ZKCP case of payments for Sudoku Solutions
(also used in prior work [5, 18] and for the case of bug bounties. In the latter,
the software producer of a (potentially buggy) program Cbuggy can incentivize
users to find bugs bug in it. These can be checked through additional program
Cexpect, guaranteeing an expected condition for an input the program accepts
(which will be violated by the bug, a false positive). 11
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Supplementary Material

A More on Prior Work: Witness-Key-Agreement (WKA)

This appendix discusses the work of Ngo, Massacci, Kerschbaum and Williams
[33], which proposed the first model, definition and construction of a witness-
authenticated key exchange as witness key agreement (WKA). Three main lim-
iations are identified in the work of NMKW, namely: (1) the formalized model
is not sufficient for the desired application, (2) the construction is impractical
in that it requires a trusted authority (roughly) for each key agreement, and (3)
the security proof of the construction is flawed.

Model and Definitions: A general requirement for key agreement is that the
transcript should not leak any information about the session key. This property is
usually modeled as indistinguishability requiring that an eavesdropping (passive)
adversary cannot efficiently distinguish the real session key from a random key.
Indistinguishability, while not always required, is used to argue that exchanging
messages encrypted under the shared key is equivalent to sending those messages
over a secure channel.

The definition of NMKW (see Page 7 of [33]) weakens this security require-
ment on the session key. The set of properties, as defined, only requires indistin-
guishability against passive adversaries. The weaker property of unpredictability
is required against active adversaries. Property (4) only requires that an adver-
sary cannot compute the key rather than that an adversary cannot distinguish
the key from a random one. Notice that Property (4) itself does not ameliorate
this because it concerns a leakage of the witness, not of the key. As a conse-
quence this model may consider a construction where an active adversary is able
to learn 80% of the bits in the session key as secure. This is clearly unacceptable.

Another important security consideration is forward security, the case when
long term secrets are compromised after the exchange is initiated. In the case
of witness-authentication this consideration is fundamental, in that there is the
inherent possibility of an offline attack in which the adversary recovers a witness
that can be verified independently. The definition of NMKW fails to address the
case where the adversary has a valid witness for one of the relevant statements,
in which security should be maintained.

Finally, a key exchange should maintain security against an active adversary.
Specifically the adversary can initiate additional sessions with any party in the
exchange and can inject arbitrary messages into the transcript. NMKW considers
an adversary that is restricted from these behaviors. Property (5) provides the
adversary with a single session that can be used against the challenge session
and, along with Property (4), still does not permit adversarially chosen messages
and challenges.

Constructions: It is unclear if the NMKW construction is secure. While we
have not identified a concrete attack against the construction, it is unclear if



the latter is provably secure, given one major flaw in the security proof in the
original paper.

On a high level, the construction and proof use a variation on the techniques
of [15] where secret points in the setup are encrypted with a limited-malleability
encryption scheme. The original proof in [15] relies on IND-CPA for security. The
NMKW construction diverges from [15] through the addition of encryptions of
the randomness used to encrypt the other ciphertexts, but still uses IND-CPA
which is no longer sufficient due to the extension. The modification introduces
additional leakage and plausibly requires a stronger encryption scheme: one with
randomness-dependent message security [14]. Neither the theorem statement nor
the proof explicitly acknowledge this fact.

Here the issue is explained in more detail, but is still simplified. The NMKW
construction is roughly an adapted designated-verifier proof system [15]. The
scheme uses a Linear-Only Encryption scheme (i.e. a scheme with limited mal-
leability) to encrypt messages ct = Enc(pk,m; r) that are then included in the
CRS. To ensure soundness, the prover must not learn the corresponding plain-
texts. This is common both in [15] and [33]. Where the two constructions diverge
is that NMKW also extends the CRS with public encryptions of the randomness
r used to generate ct, that is it includes ct′ = Enc(pk, r; ρ) for some randomness
ρ.

The proof of security in [15] invokes the IND-CPA of these ciphertexts to
argue soundness of the system. This IND-CPA is no longer sufficient for secu-
rity in the case that encryption of the randomness is also provided. A stronger
variant of IND-CPA which accounts for randomness-dependent message (RDM)
security is required [14]. Yet, the NMKW proof sketch (page 25, “adaptive knowl-
edge soundness”) only informally invokes the standard notion of IND-CPA and
neglects to mention any requirements for RDM security anywhere.

It is unclear whether the proof can be mended. While it is possible that
invoking and appropriately using RDM encryption could patch the proof, this
requirement may still not be sufficient to obtain a concrete construction. It is
unknown (to the writer) if there exist encryption schemes which are both Linear-
Only and RDM secure, or if such schemes are even possible.

It is also unclear if the NMKW construction satisfies the stronger game-based
security requirements provided in Section 2. It is unclear if the construction
from [33] is secure in their own model. Due to the use of frequent setups, the
complexity of the construction, the additional requirement of RDM security and
the lack of detail in the existing proof, we do not attempt to prove the NMKW
construction secure with respect to our game-based model for WAKE.

Frequent Trusted Setup:All of the constructions in this work employ publicly-
verifiable signatures of knowledge. The construction provided by NMKW also
relies on NIZK through the use of designated-verifier SNARKs.

One primary limitation of NMKW is the requirement of a trusted setup each
time a party initiates a key exchange.12 The construction implicitly requires

12 Although, if the same parties want to run multiple key agreements on the same
relation, it could potentially reuse the setup.
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a designated-verifier SNARK (e.g., a designated verifier version of [28]). Ev-
ery time a party initiates a key exchange a trusted authority must be invoked
that provides a secret (tantamount to a verification key in a designated-verifier
SNARK) which is then used in the key exchange. Thus, at least one trusted
party must be invoked per party in the system, and even more if the parties
intend to exchange keys with respect to different relations.On the other hand,
the constructions provided herein use the same parameters generated once and
for all per relation.13

A key exchange requiring frequent trusted setups is highly impractical. First,
parties interested in exchanging keys would need to engage a trusted third party.
This party would need to be available, adding complexity and overhead to the
system14. Additionally, it is undesirable to have a centralized entity acting as
such trusted authority. Whoever produces the trusted setup knows (and may in-
advertently leak) trapdoors allowing the system to be completely compromised.
In order to mitigate this problem one can distribute the setup through a large
scale MPC ceremony. It is not plausible to perform such distributed setups each
time a new key generation is executed, as in [33].

B Expanded Preliminaries

B.1 Universal Composition

A minimal and simplified description of the UC model is contained within this
section. The curious reader is referred to the detailed and regularly updated
manuscript by Canetti [19]. A majority of this review section is adapted from
that work by Canetti.

Game-based definitions of a cryptographic primitive can explicitly capture
most security requirements. However there is always the possibility that some
necessary condition is absent from even the best cryptographer’s intuition. This
motivates the question: how can we be certain that a witness-authenticated key
exchange satisfying our game-based definition is actually secure? Did we think
of everything? Universal composability (UC) can eliminate these concerns [19].

Systems of Interactive Turing Machines In the universal composability
(UC) model all protocols, adversaries and parties are modeled as interactive
turning machines (ITM). An ITM is a turing machine augmented with special
tapes and instructions used to facilitate interactivity between ITMs in a system.
ITMs can interact through these shared tapes via the special instructions. An
ITM M has the following special tapes:

13 Once if our constructions employ signatures of knowledge with universal setup ob-
tainable from [26].

14 A trusted setup can alternatively generated through a large scale multiparty compu-
tation. They have been performed before, but they can practically be carried out only
occasionally since they are expensive, require hours of computations, days of logis-
tical coordination and plenty of resources/money. Such distributed ceremonies have
been before, e.g., for Zcash and Filecoin. See https://z.cash/technology/paramgen
and https://filecoin.io/blog/posts/update-trusted-setup.
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– identity tape: a read-only tape containing the extended identity of the ITM
as (codeM , id) consisting of a canonical representation of the code describing
the behavior of the ITM (specifically the state transition function and initial
tape contents) and an identity string used to uniquely identify the ITM
within the system

– outgoing-message tape: this tape is written to by M with any outgoing mes-
sages along with addressing information for delivery

– input tape: this tape is externally writable and is written to by the caller of
M

– subroutine-output tape: this tape is externally writable and is written to by
any subroutines of M ie any ITMs called by M

– backdoor tape: this tape is externally writable, is written to by the adversary
ITM and allows for adversarial influence on the system

– activation tape: this tape contains a single bit indicating if M is currently
executing

And two special instructions:

– external-write instruction: indicates that M intends to write the message m
on its outgoing-message tape to some other ITM in the system

– read-next-message instruction: this instruction moves the reading head to the
beginning of the next message on the tape specified

A configuration of an ITM M is the contents on all the tapes, its current
state and the location of the head. An instance of an ITM M , called an ITI, is
a run-time object consisting of the immutable contents of the identity tape. An
activation of ITI M = (codeM , id) is a sequence of configurations corresponding
to codeM , starting from when the bit on the activation tape is 1 and ending when
that bit is 0.

A system of ITMs is a pair (I, C) with I the initial ITM and C : {0, 1}∗ →
{0, 1} the control function. The system can be executed on input z and random
tape r via a sequence of activations, starting with the activation of the initial
ITI I with identity id = 0 as (I, 0) and contents of the input tape set to z. The
execution terminates when I halts and the output is the first message on I’s
outgoing message tape. After activation ITI I can invoke new ITIs with which
to interact via the shared tapes and instructions.

The control function is responsible for determining if messages are allowed,
transferring allowed messages and activating new ITIs according to external-write
instructions. Outgoing messagesm from ITIM are written byM to it’s outgoing-
message tape as the external-write instruction:

(f,M ′, t, r,M,m)

This instruction indicates the ITI with extended identity M intends to send the
message m to the ITI with extended identity M ′ on tape t. The component f is
the forced-write flag indicating if a new ITI should be activated in the case that
the intended recipient does not exist within the system. The component r is the
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reveal-sender-id flag, indicating if M is written to the receiver. In an extended
system the control function is also permitted to modify the tuple in any way, in
order to formalize UC emulation and security.

A protocol is defined as a single ITM which describes the program(s) to be run
by each participant in the computation as π. The extended identity (codeP , idP )
of an ITI P that is participating in a protocol session can be parsed as a session
identifier and party identifier idP = (sid, pidP ) with codeP set to π. Then the
protocol session is defined as the set of all ITIs participating in the session sid
and running the same code, namely that of the protocol π.

Resource Bounded Computation Security is argued via the presentation
of an efficient transformation from one computation to another (called the sim-
ulator), and indistinguishability requires a bound on feasible computations. In
order to formulate security the model must include some notion of efficiency and
resource bounded computation. A probabilistic polynomial time ITM includes,
in both incoming and outgoing messages, an import field. The sum of the incom-
ing imports minus the sum of the outgoing imports n is the runtime-budget of
the ITI. Each ITI M is required to be T -bounded in n, meaning that for some
polynomial T the number of computational steps executed by M are bounded
by T (n). The imports can be thought of as runtime tokens which are distributed
along with messages within the system. This resource bounded computation is
consistent with the standard notions; for the system (I, C) if both I and C
are PPT then a single non-interactive Turning machine µ which is PPT in the
import to the system can simulate the entire execution.

An ITM is parameterized by security parameter λ if it does not start running
unless the overall import is at least λ. A system of ITMs is parameterized with
security parameter λ if all of the ITIs in the system are parameterized with λ
and the import of the input to the initial ITI is at most polynomial in λ. The
system is called M -balanced if, at any point during the execution the imports
given to ITI M is at least the sum of the imports of all other inputs in the system
except the initial ITI.

Execution and Emulation Protocol execution is modeled via a system of
ITMs (I, C), where I corresponds to the environment machine Z and C en-
codes the adversary A, the protocol π and any communication rules. Below is a
simplified explanation of the model for protocol execution.

Given ITMs A, Z, Π, the model for protocol execution of a single instance of
Π is the system of ITMs (Z, CΠ,A

Exec ) with input z encoding an initial state of the
environment and parameterized by security parameter λ. The control function
CΠ,A
Exec enforces the following rules. The program of the first ITI invoked by Z is
A, and the subsequent programs are set to be Π. All of the ITIs invoked by Z
in the system belong to the same protocol session so the session identifiers of all
ITIs must be the same. The environment Z can only write to the input tapes of
the main ITIs in the system. The adversary A can write to any backdoor tapes
of the ITIs and cannot invoke new ITIs. All other ITIs P in the system can write
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to the backdoor tape of A, the input and output tapes of subroutines and calling
ITIs and, if P is in the protocol session, can write to the subroutine output tape
of Z.

As an example consider a system (Z, CΠ,A
Exec ) executing a protocol session

Π with session identifier sid between set of parties P = {P1, . . . , Pn} on in-
puts z = (z1, . . . , zn) with adversary A. The initial ITI Z with input z, ran-
dom tape r and id = 0 first activates the adversary A = (A, (sid, ⋆)) and
then activates the main parties Pi = (Π, (sid, i)) via external-write instructions:
(1, Pi, input, 0,Z, zi). Parties invoke subroutines, send messages and return out-
puts via external-write instructions according to Π on their outgoing-message
tapes. Parties can not communicate to each other directly; messages permit-
ted by CΠ,A

Exec are sent through and scheduled by A. Certain subroutine ITIs,
for example the ideal functionality for a CRS, are shared and can write to the
subroutine-output tape of any parties executing Π. The parties terminate and
output to the subroutine-output tape of Z. Eventually the initial ITI Z termi-
nates with output written on the outgoing-message tape.

Define ExecΠ,A,Z(λ, z) to be the binary output of environment Z when in-
teracting with adversary A and executing protocol Π with security parame-
ter λ and input z. Consider the binary distribution ensemble ExecΠ,A,Z :=
{ExecΠ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ restricted to the case that the import of z is poly-
nomial in λ.

Definition 4 (UC-Emulation). Let Π and Γ be PPT protocols. The protocol
Π UC-emulates Γ if, for any PPT adversary A there exists a PPT adversary S
such that for any A-balanced PPT environment Z:

ExecΓ,S,Z ≈ ExecΠ,A,Z

Informally, the protocol Π emulates Γ if for every adversary A there is a
simulator S such that for all PPT environments Z, the environment cannot
distinguish an execution involving (Π,A) from an execution involving (Γ,S).
This property is transitive, meaning that if Π1 emulates Π2 and Π2 emulates
Π3 then Π1 emulates Π3.

Security and Composition In order to capture the desired functionality of
a protocol meant to achieve some task, one must specify an ideal process for
carrying out that task. This is done by defining an ideal functionality as is a
single trusted party that works to accomplish the task in an idealized way. The
ITM ideal functionality F then participates in a session of the ideal protocol
for the task: IdealF . The code for dummy party Pi executing the ideal protocol
IdealF for the ideal functionality F with session identifier sid is (simplified) as
follows:

– Upon activation with input (z, eidcaller, (sid, i)) forward (z, eidcaller) to F with
the forced-write and reveal-sender-id flags set.

– Upon activation with subroutine output (z, (sid, i), eidcaller) pass output z to
eidcaller with the forced-write and reveal-sender-id flags set.
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– Ignore all messages written on the backdoor tape as the adversary gives
corruption instructions directly to the ideal functionality.

An execution of the ideal protocol IdealF by system of ITMs (Z, C) consist
of main parties Pi = (IdealF , (sid, i)) all sharing F as a subroutine. The main
ITIs, upon activation by Z with input z, merely format and forward this input
to the ideal functionality F and wait for subroutine output from F . This output
is then written to the subroutine-output tape of Z.

A protocol Π is called subroutine respecting if for each session the ITIs in
that session do not accept or pass input or subroutine output to ITIs that are
not in the session.

Definition 5 (UC-Realization). Let F be an ideal functionality and Π be a
protocol. The protocol Π is said to UC-realize F if Π is subroutine respecting
and Π UC-emulates IdealF , the ideal protocol for F .

UC-emulation is essentially possible through the control function. The control
function (1) enforces the communication structure within the system which is
required for Z to remain unaware of the presence of F and (2) modifies the
external-write instructions to account for differences in the extended identities of
the ITIs executing Π versus IdealF . Then the environment Z remains unaware
of the actual protocol under execution.

If protocol Π UC-emulates IdealF then Π UC-realizes F and it can be said
that Π is at least as secure as the ideal functionality. This is relatively intuitive,
if the environment colluding with adversary A cannot distinguish if it is in the
system (Z, CΠ,A

Exec ) with ITMs (Π,A) or in the system (Z, CIdealF ,S
Exec ) with ITMs

(IdealF ,S) then Π must not leak more information to the environment than
IdealF and must be “just as good” as IdealF in every way detectable by Z.

Let protocol Γ emulate protocolΠ. If protocol Γ is “just as good” as protocol
Π then every call to Π can be replaced by a call to Γ without problem. Consider
protocol ρmaking subroutine calls to protocolΠ. Consider protocol ρΓ→Π which
is exactly ρ except that every call to Π is replaced with a call to Γ . Formally, it
is the case that ρΓ→Π emulates ρ.15 This is the universal composition theorem,
appearing in Theorem 4.

Theorem 4 (Universal Composition [20]). Let Π, Γ be subroutine re-
specting protocols such that Π emulates Γ . Let ρ be a protocol, and ρΓ→Π be the
protocol ρ with all calls to Π replaced by corresponding calls to Γ . Then protocol
ρΓ→Π emulates ρ with UC security. If ρ realizes some ideal functionality F , then
so does ρΓ→Π .

Consider the ideal functionality F for cryptographic task x and the ideal
protocol IdealF in which main parties P engage to accomplish x. Ideal function-
ality F is a trusted third party ITM with code written to specify each desired
requirement for task x, therefore protocol IdealF is essentially ideal for achieving

15 This applies only to subroutine respecting protocols for this particular formulation
of UC security.
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ExpKEM-CPAK,A

ExpKEM-CPAK,A (λ)

b←$ {0, 1}
(ek, dk)← KEM.KG(1λ)

(C, k1)← KEM.Encap(ek)

k0 ←$ {0, 1}λ

b′ ← A(ek, C, kb)
output b′ == b

Fig. 4. The KEM chosen plaintext attack experiment.

task x. Consider protocol Π which UC-emulates IdealF , meaning that Π is “just
as good” as the ideal protocol. Consider protocol ρ which invokes and executes
multiple sessions of ideal protocol IdealF as a subroutine along with sequen-
tial, parallel and concurrent executions of arbitrary other protocols. Universal
composition guarantees that the protocol ρΠ→IdealF is at least as secure as ρ.

Universal composition guarantees that protocols remain secure in any envi-
ronment and context. A more detailed discussion and taxonomy of composition
appears in [19].

B.2 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) can be thought of as a key exchange
protocol between two parties in which each party sends a single message. Defi-
nition 6 provides the details.

Definition 6 (Key Encapsulation Mechanism (KEM)). A key encapsula-
tion mechanism is a triple of algorithms (KG,Encap,Decap) with the following
syntax:

KG(1λ)→ (ek, dk) : the key generation algorithm is a randomized and on input
the security parameter λ outputs an encapsulation key ek and a decapsulation
key dk.

Encap(ek)→ (C, k) : the encapsulation algorithm is randomized and on input
the encapsulation key ek outputs a ciphertext C and a session key k.

Decap(dk,C)→ k : the decapsulation algorithm is deterministic and on input
the decapsulation key dk and ciphertext C retrieves the session key k.

Correctness requires that for all (ek, dk) output by the key generation algo-
rithm, ke = kd for Encap(ek)→ (C, ke) and Decap(dk,C)→ kd. Security against
a chosen plaintext attack (KEM-CPA) requires that an efficient adversary cannot
distinguish the real session key from a random one, as described in Definition 7.
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Definition 7 (KEM-CPA). A KEM protocol K is KEM-CPA-secure if for any
PPT adversary A the advantage of A as defined is negligible in λ, where ExpKEM-CPAK,A
is as in Figure 4:

AdvKEM-CPA
K,A (λ) := 2·Pr[ExpKEM-CPAK,A (λ) = 1]− 1

B.3 Signatures of Knowledge

Game-based security for signatures of knowledge. Towards security, a
signature should not leak any information about the witness used during signing.
This is captured by the existence of a polynomial time simulator composed of
an additional two algorithms {SSimSetup,SSimSign}:

SSimSetup(1λ,R)→ (pp, τ) : randomized simulated setup takes as input relation
R and security parameter λ and returns public parameters pp along with
trapdoor τ .

SSimSign(pp, τ, ϕ,m)→ σ : randomized simulated signing takes as input pp,
trapdoor τ and instance ϕ and returns signature σ.

Simulatability then requires for all efficient adversaries A querying the
(simulated) signing oracle with (ϕ,w,m) ∈ R×Mλ:

∣∣∣∣Pr[ASSimSignpp,τ (·,·,·)(pp) : (pp, τ)← SSimSetup(1λ,R)]−
Pr[ASSignpp(·,·,·)(pp) : pp← SSetup(1λ,R)]

∣∣∣∣ ≤ negl(λ)

Simulation extractability requires that an adversary cannot generate a
new signature with respect to any statement ϕ without knowledge of a witness,
which is modeled via the existence of an efficient extractor that can output a wit-
ness to ϕ from the view of any adversary outputting a verifying signature under
ϕ. The adversary is granted access to a simulated signing oracle for statements
in the language. The set Q is the set of queries to the signing oracle. This strong
definition of simulation extraction also does not permit an adversary to create
new signatures on a queried statement-message pair. Simulation extractability
requires that the following value is bounded from below by 1− negl(λ).

Pr

[
(ϕ,w) ∈ R ∨ (ϕ,w,m) ∈ Q ∨ SVfy(pp, ϕ,m, σ) = 0 : w ← EA(viewA);

(ϕ,m, σ)← ASSimSignpp,τ (·,·,·)(pp); (pp, τ)← SSimSetup(1λ,R)

]
Universally composable signatures of knowledge. Consider a lan-

guage L ∈ NP and polynomial time Turing machine ML that computes the
associated relation RL such that ϕ ∈ L iff there exists a witness w such that
(|w| = p(|x|)) ∧ (ML(ϕ,w) = 1).

The ideal functionality for a signature of knowledge FSOK is in Figure 5. The
functionality as written in [21] was parameterized by ML but the functionality
provided in Figure 5 is instead parameterized by the relation RL = R. It is
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required that the parameter R (alternatively the TM ML) be included in the
session identifier, as it is mandatory that all participants agree on this value.

Upon receipt of the first SetUp query the functionality prompts the adver-
sary S to supply algorithms {Verify,Sign,Simsign,Extract} for the signature. The
algorithms {Sign,Verify} are then output to the querying party party, and each
party in P upon receipt of a query from that party. Parties can compute signa-
tures on messages m either through the signing interface of FSOK or by using the
Sign algorithm. It is required that the signing query (m,ϕ,w) contains a valid
witness w to statement ϕ, otherwise the query is ignored. The functionality uses
the simulated signing algorithm to produce all signatures output by the sign-
ing interface, thereby guaranteeing that all signatures are independent of, and
thus cannot leak information about, the witnesses used to generate them. All
signatures are verified prior to being output by FSOK, providing completeness.

Verification can be accomplished either through the Verify interface or the
Verify algorithm. The verification algorithm is required to be perfectly complete;
in the case that verification cannot be completed on a correctly generated sig-
nature the functionality halts and outputs a completeness error. On verification
query (m,ϕ, σ), verification checks that the signature was generated with knowl-
edge of a witness by using the Extract algorithm if there is no record of a signature
for (ϕ,m). An unforgeability error is triggered when a signature verifies but a
valid witness cannot be extracted.

As discussed in [21], when parameterized by a polynomial time TM ML, the
functionality FSOK can be defined with respect to any other functionality and
signers can produce signatures on the basis of knowing an accepting input to
any other functionality.

C Unilateral Witness-Authenticated Key Exchange

C.1 UWAKE Definitions

Unilateral authentication is defined in the two participant setting. The initia-
tor Init is unauthenticated and the Responder Res is authenticated. The set of
potential participants is changed to be P = {Init,Res1, . . . ,Resn−1}, authen-
ticating with respect to the vector Φ = ⟨ϕInit, ϕR1

, . . . , ϕRn−1
⟩ where ϕInit is a

“dummy statement” for which a witness can be computed in polynomial time.
All participant-associated variables and oracles remain the same as in the group
setting of WAKE.

Correctness for UWAKE then requires that Init, when executing the protocol
with any Resj (authenticated with respect to the instance ϕRj

), will accept and
the two participants will terminate with a common session key. Correctness is
adapted to explicitly apply to the unilateral authentication case but, the group
WAKE definition can still apply under the condition that the statement ϕInit is
easy.

The goal of the adversary in the confidentiality experiment is to be able
to distinguish a random key from the real session key generated by an eaves-
dropped protocol execution. The modification to the group WAKE experiment
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FSOK

The functionality FSOK is parameterized by a relation R and interacts with a
set of parties P = {P1, . . . , Pn} and adversary S via the following queries:

– Setup Queries from party Pi: (SetUp : sid)
• If any of the following do not hold: ignore the query

∗ This is the first query for sid
∗ sid = (RL, sid

′) for some sid′

• Record (sid, Pi)
• Output (SetUp, sid) to the adversary S
• Receive (Algorithms : sid,Verify,Sign,Simsign,Extract) from S where

the following hold:
∗ Sign, Simsign,Extract are descriptions for PPT TMs
∗ Verify is a description of a deterministic polytime TM

• Record (sid, Pi,Verify,Sign,Simsign,Extract)
• Output (Algorithms, sid,Sign,Verify) to Pi

– Signature Generation Queries from Pi: (Sign : sid,m, ϕ,w)
• If RL(ϕ,w) ̸= 1: ignore the query
• Compute σ ← Simsign(m,ϕ)
• If Verify(m,ϕ, σ) = 1

∗ Output (Signature, sid,m, ϕ, σ) to Pi

∗ Record (m,ϕ, σ)
• Otherwise: output (Completeness− Error) to Pi and halt

– Signature Verification Queries from Pi: (Verify : sid,m, ϕ, σ)
• If there exists a record (m,ϕ, σ′) for some σ′: output

(Verified, sid,m, ϕ, σ,Verify(m,ϕ, σ)) to Pi

• Compute w ← Extract(m,ϕ, σ)
• If RL(ϕ,w) = 1: output (Verified, sid,m, ϕ, σ,Verify(m,ϕ, σ)) to Pi

• If Verify(m,ϕ, σ) = 0: output (Verified, sid,m, ϕ, σ, 0) to Pi

• Else: output (Unforgeability − Error) to Pi and halt

Fig. 5. The signature of knowledge ideal functionality.

seen in Figure 1 is that the challenge must be an instance of Init. Otherwise,
confidentiality is defined just as in Definition 1.

The goal of the adversary in the authenticity experiment should be to con-
vince an instance of the Initiator to accept and consequently generate a session
key. Then, A must convince Πi

Init to accept without knowledge of a witness.
The adversary A must accomplish this goal without merely playing as a wire
between Init and some Res. Therefore, the change to Figure 1 is also that the
challenge instance output by A should always be an instance of Init. Otherwise,
authenticity is defined just as in Definition 3.

The simulatability experiment remains unchanged.

C.2 UWAKE Construction

Given a signature of knowledge and a key encapsulation mechanism one can con-
struct UWAKE. As a concrete example to keep in mind throughout this section,
we recommend considering Diffie-Hellman (DHKE): Init first samples randomness
x and sends as their first message the associated public key hI = gx and Res
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does the same, computing hR = gy, along with a signature of knowledge σ on
m = hI ||hR. The response is then hR, σ. Contingent upon signature validation,
the Initiator then computes sk = (hR)

x and the Responder computes sk = (hI)
y

as the session key.

For UWAKE, the public parameters output by SetUp are ppUWAKE = (λ,R, ppΣ),
the security parameter, the relation and the public parameters for the signature
of knowledge scheme Σ. The public parameters output by SimSetUp also include
the trapdoor for the signature τΣ . In Figure 6 we present the construction of
UWAKE from KEM protocol K and SOK scheme Σ.

ΠK,ΣUWAKE

Init(ppΣ , ϕ) Res(ppΣ , ϕ, w)

(ek, dk)← K.KG(1λ)

ek

(k, C)← K.Encap(ek)
m← C||ek
σ ← SSign(ppΣ , ϕ, w,m)

C, σ

m := C||ek
b← SVfy(ppΣ , ϕ,m, σ)

if b == 1 :

k ← K.Decap(dk, C)

else : k = ⊥

Fig. 6. A UWAKE protocol from KEM K and SOK Σ.

Theorem 5 (ΠK,ΣUWAKE is secure.). Let K be a correct and KEM-CPA-secure
key encapsulation mechanism as in Definition 7 and let Σ be as-nBB-SE-secure
signature of knowledge as defined in Section B.3. Then the protocol ΠK,ΣUWAKE as
seen in Figure 6 is a fully secure UWAKE.

Proof. Correctness: Correctness follows directly from the correctness of the
KEM and SOK. As these are both perfectly correct the UWAKE is also perfectly
correct.

Confidentiality: An adversary AC with nonnegligible advantage in the UWAKE
confidentiality experiment implies the existence of an adversary AK with non-
negligible advantage in the KEM-CPA experiment seen in Figure 4. Assume that
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R, Φ, DΦ are such that AC has a nonneligible advantage in the confidentiality
experiment.

The adversary AK is given challenge tuple (ek∗,C∗, k∗bKEM-CPA) and must guess
the real or random bit bKEM-CPA. The adversary AK sets up the UWAKE as fol-
lows: generates the public parameters for the signature of knowledge ppΣ ←
Σ.SSetup(R), and sets the public parameters as pp = (λ,R, ppΣ) and samples
W ← DΦ. Then, AK runs AC with input (pp, Φ,W ). In response to any queries
from AC to Execute of the form qk = (Init, k,Resi, j), AK generates an honest
transcript between Πk

Init and Πj
Resi

of the form Tk = (ekk, (Ck, σk)) with signa-
ture generated as σk ← Σ.SSign(ppΣ , ϕi, wi, (ekk||Ck)) for the sampled wi. AK

stores the generated session key as skkInit and skiResj , sets sidkInit = sidjResi = Tk

and sets acckInit = accjResi = TRUE. Let QE be the total number of queries

made to Execute by AC . With probability 1
QE

, AK injects as the query response

T ∗ = (ek∗, (C∗, σ∗)) for σ∗ ← Σ.SSign(ppΣ , ϕj , wj , (ek
∗||C∗)). In response to

any queries to Reveal of the form (Init, i), AK replies with skiInit.
If AC outputs challenge (Init, i) such that sidiInit ≡ T ∗ then AK provides

k∗bKEM-CPA as the challenge session key. In this case, when AC outputs guess bit

b′confid, AK forwards this bit as the guess b′KEM-CPA. If AC outputs some other
challenge transcript then AK flips a bit and provides either the real key or a
random key.
AK runs 2QE independent copies of AC . Call E the event that T ∗ appears

only once in the set of responses to all queries. If T ∗ appears only once in the list
of QE queries, in other words if E happened, then the probability that AC selects
T ∗ as her challenge is 1

QE
. Consequently, Pr[ExpKEM-CPAAK

(λ)] is lower bounded by
the following:

≥ 2QE ·Pr[ExpWAKE-confid
Π,AC

(λ,R, Φ,DΦ)]·Pr[T ∗ ← AC(Φ,w)] + negl(λ)

= 2QE ·Pr[ExpWAKE-confid
Π,AC

(λ,R, Φ,DΦ)]·Pr[T ∗ ← AC(Φ,w)|E]·Pr[E] + negl(λ)

= 2 · Pr[ExpWAKE-confid
Π,AC

(λ,R, Φ,DΦ)] · Pr[E] + negl(λ)

≥ 2· (1− 1

e
)·Pr[ExpWAKE-confid

Π,AC
(λ,R, Φ,DΦ)] + negl(λ)

≥ Pr[ExpWAKE-confid
Π,AC

(λ,R, Φ,DΦ)] + negl(λ)

Authenticity: An adversary AA with nonnegligible advantage against the au-
thenticity experiment implies an adversary AS against the sig-ext of the SOK
scheme Σ. Assume that R, Φ and DΦ are such that AA has a nonneligible ad-
vantage in the authenticity experiment.
AS assigns as the public parameters pp ← (ppΣ ,R, λ) and runs AA with

input Φ. Queries to Send and Reveal are answered by AS honestly except that
the signatures are generated via queries to the SSimSign oracle. AA outputs
challenge (Init, i,Resj) with Resj ∈ I(Init, i). AA is admissible and thus AA was
not forwarding for Πi

Init and Resj . By the definition of forwarding adversary, this

implies that for all Resj′ ∈ P such that ϕResj′ = ϕResj we have for all k
′: sidk

′

Resj′
̸≡
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sidiInit. We can then (wlog) assume that the only participant authenticating with
respect to ϕj is Resj , as there is only a single message sent from the Res to the
Init. AA either (1) sent to the instance Πk

Resj
for some k a new encapsulation

key not generated by the initiator ek′ ̸= ek ← Send(Init, i,Resj), or (2) sent
to the initiator a signed ciphertext not output by a corresponding send query
(C ′, σ′) ̸= (C, σ) ← Send(Resj , k, êk), or (3) both. Consider case (1) where AA

did not forward the first message, but forwarded the second. The signature σ
must be a signature of the message m = (C||ek), so if AA sent an ek′ ̸= ek, σ will
not verify and Init will not accept. Therefore, AA must not have replaced only
the first message. In the remaining cases (2) and (3), (C ′, σ′) was not generated

as a response to a query Send(Resj , k, êk) for any k, êk. Therefore σ′ was not an
output of some query to the SSimSign oracle made by AC . But Πi

Init accepted
and therefore we know that σ′ verifies: SVfy(ppΣ , ϕResj ,m = (C ′||ek), σ′) = 1 for
ek output by Πi

Init. So, AS outputs (ϕj ,m = (C ′||ek), σ′) as the forgery.

If there exists an extractor for AS then there necessarily exists an extractor
for AA. The view of AS contains no information that cannot be calculated in
polynomial time from viewAA

. Let this transformation be viewAS
= T (viewAA

).
Construct EAA

, running on viewAA
, assuming the existence of EAS

as follows:
EAA

runs T on the view of the AA to get the viewAS
then runs EAS

to get a
witness w′ and outputs this witness. Therefore, if there is no extractor for AA

then there is no extractor for AS .

The advantage AS is then non-negligible, as it is greater than or equal to
that of AA.

Simulatability: AW with nonnegligible advantage against UWAKE simulatabil-
ity implies the existence of an adversary AS against the simulation experiment
for Σ. Assume that R is such that AW has a nonnegligle advantage in the
simulation experiment.

On input ppbΣ , AS constructs the public parameters for the UWAKE as ppb =

(ppbΣ ,R, λ) and inputs this to AW . For the ith call to SetKeysb by AW , AS saves
the statement witness pair as (ϕi, wi) to use when responding to queries. AS

responds to all queries to Send and Reveal honestly except AS queries the oracle
Sb
ppb

Σ ,τ
to generate any signatures. Upon receipt of the guess bit b′Σ from AW ,

AS uses this as guess bit b′ for the real or random bit. The advantage of AS is
then non-negligible as it is greater than or equal to that of AW .

D Universally Composable Witness-Authenticated Key
Exchange

Summary: the functionality FWAKE is realized by the functionality sFWAR. The
functionality sFWAR is the result of applying the split functionality transforma-
tion on FWAR, a variant of FWAKE with the assumption of authenticated channels,
thereby removing that assumption.
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D.1 The Ideal WAKE Functionality

In the UC framework cryptographic tasks are modeled as ideal functionalities,
which are essentially a trusted third party which behaves ideally with knowl-
edge of all of the relevant inputs of each party. In this case the parties provide
FWAKE with their witnesses and the functionality verifies these witnesses and
then issues keys to the parties upon verification. The ideal functionality is also
modeled to allow for an ideal amount of leakage to the adversary and permit
ideal adversarial influence on the outcome of the exchange through adversarial
influence interfaces.

The functionality FWAKE is parameterized by λ and R and interacts with
parties in P along with the ideal world adversary S. The parties in P inter-
act with the functionality FWAKE via NewSession queries. Each of these queries
include the session identifier sid = (sid′,R), the secret witness wi, the public
statement ϕi and the set of expected statements Φ.16 The functionality enforces
that all queried Φ are equal. Upon receipt of a NewSession query the functionality
checks that the query is as expected meaning that the statement set Φ is consis-
tent with all previously received queries and that there are not too many parties
authenticating with respect to the same statement.17 Modeling ideal leakage,
the functionality leaks the public values in each NewSession query to the adver-
sary and then records the query and marks it as fresh. Then the adversary S
has access to three types of queries: Knowledge, CompromiseSession and NewKey
queries. In terms of ideal leakage, the Knowledge queries leak to the adversary
if the queried party has knowledge of a valid witness on record. The remaining
two queries model ideal influence on the exchange.

The adversary can always internally verify any witness against the public
statements, meaning that S can in theory do an offline attack against the ex-
change and recover, with complete certainty, a witness to the statement of any
party. As WAKE is computed over unauthenticated and asynchronous adversar-
ially controlled channels, it is possible for the adversary to compute a witness
w′i and impersonate party Pi authenticating with respect to ϕi without formally
corrupting that party. The CompromiseSession query allows the adversary to
do exactly this and declare knowledge of a witness relevant to the exchange.
When the adversary queries on (P, ϕ,w), if the party P is recorded as associ-
ated to statement ϕ and the queried (ϕ,w) ∈ R, then the party P is marked as
compromised and is treated as corrupt for the remainder of the execution. The
compromised marker indicates that this party can be impersonated by A, and
therefore all partners of a compromised party in a successful exchange receive ad-
versarially chosen outputs. If the adversary queries with an invalid witness then

16 Note that the format of Φ has changed in an inconsequential but convenient way
from the previous chapter; in the game-based definitions Φ is a vector of statements,
here Φ is a set of the form Φ = {(ϕj ,mj)}∑j mj=n where each statement-multiplicity

pair in the set indicates that the querying party expects to interact with mj parties
authenticating with respect to the statement ϕj .

17 Optionally, the set Φ can be included in the session identifier of the protocol along
with R to model that this set is public, fixed prior to execution and all parties agree
on the set.
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FWAKE

The functionality FWAKE is parameterized by security parameter λ and NP
relation R, and interacts with the adversary S and a set of parties P via the
following queries:

– (NewSession : sid,wi, Φi, ϕi)← Pi

• Ignore the query if any of the following are true:
∗ This is not the first NewSession query for party Pi

∗ There does not exist a uniquemk ∈ {1, . . . , n} such that (ϕi,mk) ∈
Φi

∗ There existmk records of the form (Pj , Φi, ϕi, wj) for (ϕi,mk) ∈ Φi

∗ There exists a record (Pj , Φj , ϕj , wj) such that Φj ̸= Φi

• Leak (NewSession, sid, Pi, Φi, ϕi) to the adversary S
• Record (Pi, Φi, ϕi, wi) and mark this record fresh

– Knowledge queries from the adversary S: (Knowledge : sid, Pi)
• If there exists a record (Pi, Φ, ϕ, w): output (Knldg, sid, Pi, ϕ,R(ϕ,w))

to S
• Otherwise: ignore the query

– Compromise Session Queries from the adversary S: (CompromiseSession :
sid, P, ϕ, w)
• If any party in P is marked completed or there does not exist a record

of the form (P,Φ, ϕ,w′): ignore the query
• If (ϕ,w) ∈ R: mark the record as compromised
• If (ϕ,w) /∈ R and the record is marked fresh: mark the record as

interrupted
• Leak (Compromised : sid, ϕ,R(ϕ,w)) to S

– New Key Queries from the adversary S: (NewKey : sid, Pi, sk)
• Ignore the query if any of the following hold:

∗ There is no record (Pi, Φ, ϕi, wi)
∗ This is not the first NewKey query for Pi

∗ There are not m′ records of the form (P ′, Φ, ϕ′, w′) for each
(ϕ′,m′) ∈ Φ

• Compute the boolean Succ:
∗ If, for the record (Pi, Φ, ϕi, wi), for all (ϕ′,m′) ∈ Φ there exist m′

records {(Pk, Φ, ϕk, wk)}k≤m such that for all k: R(ϕk, wk) = 1
then Succ = True

∗ Otherwise: Succ = False
• If all of the following hold: output (sid, sk′) to Pi

∗ The record is marked fresh
∗ All parties P ∈ P are honest and all records (P,Φ, ϕ,w) are marked

fresh or interrupted
∗ Succ = True
∗ A key sk′ was already sent to party Pj for session sid

• If any of the following is true: output (sid, sk) to Pi

∗ Pi is corrupt or marked compromised
∗ There Pj ∈ P which is corrupt or is marked compromised and

Succ = True
• In any other case: sample a random key skr ←$ {0, 1}λ and send

(sid, skr) to Pi

• Mark the record (Pi, Φi, ϕi, wi) as completed

Fig. 7. The witness-authenticated key exchange ideal functionality.

that party is marked interrupted, which can be overwritten with a compromised
upon a query with a valid witness. These queries are a controlled adaptive corrup-
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tion mechanism for a static adversary, where the queried party does not output
their entire state to the adversary so any secure erasure concerns are avoided.
As such, CompromiseSession query can be submitted after a NewSession query
whereas the Corrupt instructions must be submitted prior to any NewSession
queries.

The NewKey queries from S issue keys to the queried party. In any successful
session in which all parties are honest and uncompromised all parties receive
the same uniformly random key from the functionality, as is ideal. Parties which
are corrupted, compromised, or are participating in a successful session with a
corrupt partner receive adversarially chosen keys. This models that there cannot
be any guarantees made on the distribution of the keys generated by honest
parties interacting with corrupt parties in a successful exchange. In all other
cases the functionality samples and outputs an independent and freshly random
key to issue to the queried party.

D.2 The Split Functionality

Link initialization, i.e. session authenticity, is achieved by the split authentica-
tion functionality FSA = sFMAUTH which is the split functionality of the multi-
authenticated message functionality. The multi-authenticated message function-
ality allows parties to exchange multiple messages over authenticated channels
and can be thought of as the minimal task upon which to apply the split trans-
formation. If parties can exchange messages over authenticated channels then
they can execute arbitrary other tasks over these channels.

The functionality FSA is UC-realized by ΠΨ
SA which can be seen in Figure 8

[10]. This protocol is proven to UC-realize the split authentication functional-
ity in the presence of malicious, adaptive, adversaries in the bare model with
no setup, given that the digital signature Ψ is EUF-CMA-secure. Protocol ΠΨ

SA

proceeds in two steps: (1) set up authenticated channels, (2) continue over these
authenticated channels with a protocol that is secure under bounded concurrent
composition. The code seen in Figure 8 is run by each party Pi ∈ P to initialize
links and send authenticated messages.

In summary, split authentication is achieved by having all parties generate
and exchange verification keys for an existentially unforgeable digital signature,
and then sign each subsequent message with this verification key. Intuitively, this
style of link initialization provides session authentication only the party who
generated the verification key can produce verifying signatures. Additionally,
the session identifier held by each party uniquely determines it’s authentication
set and any adversarial splitting must occur during this exchange of verification
keys.

The main result of [10] relevant to this work is that, in the standalone model
with no setup whatsoever, under the assumption of collision resistant hash func-
tions and enchanced trapdoor permutations, for any PPT multiparty functional-
ity Ffunc there is a protocol that securely computes the split functionality sFfunc

in the presence of static malicious adversaries. Assuming existence of enhanced
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ΠΨ
SA

ΠΨ
SA(Init, sid) :

Link Initialization :

Generate keys (vki, ski)← Ψ.KG(1λ)

Send vki to all other parties

Wait to receive all keys: sidi = VK = (vki1 , . . . , vkin)

Sign σi ← Ψ.Signski
(sidi)

Send αi = (sidi, σi) to all other parties

Wait to receive all α = (αi1 , . . . , αin)

Verify all signatures and session identifiers:

sidi1 = . . . = sidin and Ψ.Verifyvkij
(sidij , σij ) = 1

Output (Init, sid, sidi)

Authenticating Messages :

Initialize c← 0

On input (Send : sid, Pi, Pj ,m) from Z :

σ ← Ψ.Sign(sidi,m, Pj , c)

Send (Pi,m, c, σ) to Pj

c← c+ 1

On receipt of (Pj ,m, c, σ) from Pj :

Verify σ

Verify c

Output (Received, sid, Pj , Pi,m) to Z

Fig. 8. The secure authentication protocol.
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non-committing encryption this holds even with respect to adaptive adversaries
without data erasures.

D.3 Witness Authenticated Randomness

One method of realizing FWAKE is to realize an ideal functionality for the task
which assumes authenticated channels and then employ the split functionality
to remove the assumption of authenticated channels. Functionality FWAR, the
witness-authenticated randomness functionality seen in Figure 10, is the ana-
logue of FWAKE under the assumption of authenticated channels. The primary
difference between FWAKE and FWAR is the absence of compromisation queries;
the controlled adaptive corruption permitted by CompromiseSession in FWAKE is
not possible in a setting with authenticated channels and is therefore not present
in the definition of FWAR.

The split functionality is adapted to WAKE by modifying queries to accept
appropriate parameters needed to invoke instances of FWAR. This split function-
ality sFWAR can be seen in Figure 9.

The split functionality is parameterized by security parameter λ and NP
relation R and interacts with set of parties P and adversary S. Initialization
queries from parties in P contain the session identifier and the public parameter
Φ as the set of expected statements. The functionality enforces that all queried Φ
are equal; optionally, the parameter Φ can be included in the session identifier,
along with the relation R, to model that all parties agree upon the set prior
to execution. Upon receipt of this Init query, the functionality leaks the party
identifier and the public information to the adversary and records the query. The
adversary S is permitted to adaptively split sessions via it’s own Init interface,
which include an authentication set H ⊂ P and a unique session identifier sidH
for the set. The ideal functionality checks that the set H is as expected, specif-
ically that is disjoint or equal to all prior queried H ′ and has a unique session
identifier. If this is the first query for H then the split functionality initializes a
new instance of the functionality FH

WAR. The functionality also sends a notifica-
tion to the queried party, including the unique session identifier and the public
information Φ. Following this, the split functionality routes messages between
parties, the adversary, and the instances of FWAR through the Input and Output
interfaces.

Corruption is modeled as a message from the ideal-world adversary S to
the functionality, as in the UC framework. The split functionality records the
corrupted parties, and informs instances of FWAR of the entire set of corrupted
parties upon invokation. As these functionalities are secure under static corrup-
tion the ideal adversary S can only deliver corruption instructions prior to the
start of the execution, specifically prior to any Init queries to sFWAR.

As discussed the split functionality can be used to remove the assumption of
authenticated channels from a functionality. A variant of WAKE that assumes
authenticated channels could then be compiled with the split functionality to
remove that assumption. The witness-authenticated randomness functionality
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sFWAR

The split functionality sFWAKE is parameterized by security parameter λ, NP
relation R, invokes instances of FWAR, and interacts with a set of parties P =
{P1, . . . , Pn} and the adversary S via the following queries:

– Initialization:
• (Init : sid, Φi) from a party Pi:

∗ If Φi ̸= Φj for any record (Pj , Φj): ignore the query
∗ Record (Pi, Φi)
∗ Leak (Init, sid, Pi, Φi) to the adversary S

• (Init : sid, Pi, H, sidH , Φ) from the adversary S:
∗ If any of the following do not hold: ignore the query

· Pi ∈ H ⊆ P
· For all Pj ∈ H: there exist records (Pj , Φj) and for all other
Pi ∈ H we have Φj = Φi

· For all previously recorded (H ′, sidH′ , Φ′) either: (1) H ′∩H =
∅ and sidH′ ̸= sidH , or (2) H = H ′, sidH′ = sidH and Φ = Φ′

∗ Record (H, sidH , Φ) if it is not already recorded
∗ Output (Init, sid, sidH , Φ) to party Pi

∗ Initialize a new instance of the functionality FWAR as

FH,sidH
WAR (λ,R, Φ) with session identifier sidH , set of honest parties

H and statement set Φ, denoted FH
WAR for ease of notation.

– Computation:
• (Input : sid,m) from Pi:

∗ Find the set H such that Pi ∈ H and forward m to FH as if from
Pi. If no such H exists then ignore the message.

• (Input : sid, H, Pj ,m) from S:
∗ Find the record (H, sidH , Φ) and forward m to FH as if coming

from Pj . If with Pj ∈ H or FH not initialized then ignore the
message.

• (Output : Pi,m) from FH :
∗ If Pi ∈ H: forward m to Pi
∗ If Pi /∈ H: forward m to S

– Corruption:
• (Corrupt : P ) from S

∗ Record (Corrupt, P )
∗ Forward (Corrupt : P ) to FH

WAR for all H

Fig. 9. The split witness authenticated randomness ideal functionality.

FWAR outputs random strings (not called session keys) to parties upon success-
ful authentication with a witness to some public statement. This functionality,
seen in Figure 10, is essentially WAKE under the assumption of authenticated
channels.

The witness-authenticated randomness functionality is parameterized by se-
curity parameter λ, relation R and set of statements Φ = {ϕk,mk} and interacts
with the adversary S and set of parties P. Just as above, the set Φ can optionally
be included in the session identifier. Just as with FWAKE parties must submit a
NewSession query to FWAR detailing their statement-witness pair. The function-
ality, upon receipt of this query, verifies that it is as expected, records the query
and leaks the public information to S.
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FWAR

The functionality FWAR is parameterized by security parameter λ, an NP rela-
tion R, and set of statements Φ = {(ϕk,mk)}Nk=1 such that

∑N
k=1 mk = n, and

interacts with the adversary S and a set of parties P = {P1, . . . , Pn} via the
following queries:

– New Session Queries from party Pi: (NewSession : sid, ϕi,wi)
• If any of the following are true: ignore the query

∗ There does not exist an mk ∈ N such that (ϕi,mk) ∈ Φ
∗ There already exist mk records of the form (Pj , ϕi, wj) for

(ϕi,mk) ∈ Φ
• Leak (NewSession, sid, ϕi, Pi) to the adversary S
• Record (Pi, ϕi, wi)

– Has Knowledge Queries from the adversary S: (Knldg : sid, Pi)
• If there exists a record (Pi, ϕi, wi) and (ϕi, wi) ∈ R: leak

(Knldg, sid, Pi, ϕi, 1) to S
• If there exists a record (Pi, ϕi, wi) and (ϕi, wi) /∈ R: leak

(Knldg, sid, Pi, ϕi, 0) to S
• Otherwise: ignore the query.

– New Key Queries from the adversary S: (NewKey : sid, Pi, sk)
• If any of the following are true: ignore the query

∗ There is no record (Pi, ϕi, wi)
∗ This is not the first new key query for Pi

∗ There is not a record (Pj , ϕj , wj) for each Pj ∈ P
• Compute the boolean Succ:

∗ If for each (m′, ϕ′) ∈ Φ there are m′ records {(Pk, ϕk, wk)}k≤m′

such that for all k: (ϕk, wk) ∈ R then Succ = True
∗ Otherwise: Succ = False

• If all of the following are true: output (sid, sk′) to Pi

∗ All parties are honest
∗ Succ = True
∗ Key sk′ was already output to some Pj

• If either the following are true: output (sid, sk) to Pi

∗ Pi is corrupt
∗ There is some corrupt Pj and Succ = True

• Else: sample a random key skr ←$ {0, 1}λ and output (sid, skr) to Pi

– (Corrupt : P ) from S
• Record (Corrupt, P )

Fig. 10. The witness-authenticated randomness ideal functionality.

The Knldg queries submitted by the adversary leak if the queried party has
knowledge of a valid witness if the party has submitted a NewSession query, just
as with FWAKE. Upon receipt of a NewKey query submitted by the adversary the
ideal functionality determines if the parties have all successfully authenticated
and then issues a key to the queried party. If the exchange was successful and all
parties were honest then an equal and uniformly random key is output to those
parties. If a party is corrupt or was participating in a successful exchange with
a corrupt party then the queried key is forwarded to the queried party, again
modeling that these keys can be arbitrarily distributed. Otherwise, a freshly
sampled independently random key is output to the queried party.
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Again, the CompromiseSession query is absent from FWAR. This is because un-
der the assumption of authenticated channels the adversary cannot impersonate
another party participating in the exchange after the session has started. The
static adversary is limited to Corrupt queries prior to the start of the session.

We present a protocol ΠWAKE which realizes the functionality FWAKE in the
sFWAR-hybrid model towards proving the equivalence of FWAKE and sFWAR. The
simplicity of the protocol ΠWAR is intentional; ΠWAR is essentially the ideal pro-
tocol IdealsFWAR

as defined in Section B.1. In other words, this means that the
split witness-authenticated randomness functionality is enough to realize FWAKE.

ΠWAKE

ΠWAKE(sid,R, Φ, ϕ, w) :
Initiation :

Send initialization query to sFWAR : (Init : sid, Φ)

Receive from sFWAR : (Init, sid, sidH , Φ)

New Sessions :

Send new session query through sFWAR : (Input : sid, (NewSession : sidH , ϕ, w))

Output :

Receive output (sidH , sk) from sFWAR

Output sk

Fig. 11. A (dummy) WAKE protocol in the sFWAR-hybrid model.

ΠWAR is a dummy protocol in which a real world party has a the same
behavior as an ideal world (dummy) parties, creating and submitting queries
from the inputs provided by Z and forwarding the output from the functionality
to Z. The protocol in Figure 11 describes the behavior of each party in P upon
activation with inputs (sid,R, Φ, ϕ, w) by Z. The inputs are the session identifier,
the relation, the statement set, the party’s specific statement and a witness to
that statement, respectively. The party first sends an intialization query to the
split functionality, then a new session query. The party then waits for output
from the split functionality and outputs the received key to Z.

Theorem 6 states that this protocol, the ideal protocol IdealsFWAR
, realizes

FWAKE.

Theorem 6. Protocol ΠWAKE securely realizes FWAKE in the sFWAR-hybrid model
with respect to any NP relation R in the presence of static malicious adversaries.

Proof. Consider static malicious real-world adversariesA corrupting an arbitrary
number of parties. For every efficient A there exists a simulator SWAKE such
that no efficient environment Z can distinguish between an execution involving
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(FWAKE,SWAKE) from an execution involving (ΠWAKE,A) in the sFWAR-hybrid
model. This simulator is presented in Figure 12.

SWAKE

S initializes A and reliably forwards all messages between Z and A. Corruption
instructions from A are obeyed and forwarded to sFWAR if they occur prior to
any initialization queries.

– For each honest Pi:
• Receive (NewSession, sid, Pi, Φi, ϕi) from FWAKE

• Query (Knowledge : sid, Pi) to FWAKE and receive (Knowledge :
sid, Pi, bi)

• Record (Pi, bi)
– The Split Functionality:
• For each honest Pi: leak (Init, sid, Pi, Φi) to A
• Upon (Init : sid, Φj) from corrupt Pj : leak (Init, sid, Pj , Φj) to A
• Upon (Init : sid, Pi, H, sidH , Φ) from A:

∗ If the following conditions hold: output (Init, sid, sidH , Φ) to Pi and
(if this is the first query for H) begin to simulate a session of
FH

WAR(λ,R, Φ)
· Pi ∈ H ⊆ P and for all Pk ∈ H the input Φ provided by Z is
such that Φ = Φk = Φi

· The authentication set H is either disjoint from (with an un-
equal session identifier) or equal to (with an equal session iden-
tifier) all prior queried H ′

· Record IH = {Pj /∈ H|Pj not corrupt according to FWAKE}
• Upon (Input : sid,m) from Pi: parse m as if sent directly to the inter-

nally simulated FH
WAR for Pi ∈ H

• Upon (Input : sid, H, Pj ,m) from A: parse m as if sent directly to the
internally simulated FH

WAR from Pj /∈ H
• All other queries: ignore and do nothing

– The Witness Authenticated Randomness Instance H:
• For honest parties Pi: leak (NewSession, sid, ϕi, Pi) to A
• Upon (NewSession : sidH , ϕj , wj) from corrupt Pj :

∗ Record (Pj , sidH , ϕj , wj) and leak (NewSession, sidH , ϕi, Pi) to A
• Upon (NewSession : sidH , ϕj , wj) from Pj ∈ IH :

∗ Query (CompromiseSession : sid, ϕj , wj) to FWAKE

• Upon (Knowledge : sidH , Pi) from A:
∗ Query (Knowledge : sid, Pi) to FWAKE, receive

(Knowledge, Pi, ϕi, bi) and leak to A
• Upon (NewKey : sidH , Pi, sk) from A to simulated FH

WAR

∗ If Pi is corrupt or Pi ∈ IH : output (sidH , sk) to Pj

∗ If Pi is honest: generate the output of simulated FH
WAR to Pi (ex-

actly as the real functionality would) as s̄k and issue (NewKey :
sid, Pi, s̄k) to FWAKE

– Corrupt NewSession Queries:
• For all corrupt Pj : if there exists a record (Pj , sidH , ϕj , wj) such that

(ϕj , wj) ∈ R set w′ ← wj , otherwise set w′ as a random wj on record
• Query (NewSession : sid, w′, Φ, ϕ) to FWAKE

Fig. 12. The simulator for protocol ΠWAKE.
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The simulator SWAKE must simulate: (1) the public messages sent by any
honest parties according to ΠWAKE, exactly the two messages to the ideal split
functionality sFWAR and the instance of FWAR, (2) responses to queries from
corrupt parties and the adversary on behalf of sFWAR and the instance of FWAR,
and (3) the outputs to the parties.

The environment does not learn any communication between honest parties
and ideal functionalities, and only learns the view of the adversary consisting of
any communications involving corrupt parties. More explicitly in the real world
the environment does not learn anything about the honest parties except their
inputs and outputs. All the simulator needs to produce are the query responses
output to the adversary and any corrupt parties. The simulator produces query
responses in exactly the same way as the split functionality in Figure 9. The
simulation is straightforward as the simulator receives queries with the secrets.
Honest party outputs are those output by sFWAR from FWAR in the real world
and are those output by FWAKE in the ideal world. Therefore, what remains to
be proven is that these output distributions are identical.

Consider a party Pi which is honest (not corrupted) in the real world while
running ΠWAKE. This party interacts with the split functionality sFWAR and a
single instance of FH

WAR. In all other instances the party Pi is controlled by the
adversary and considered corrupt: all Pi /∈ H ′ are corrupt in the execution of
FH′

WAR as guaranteed by the split functionality. Party Pi outputs the key output
to it by FH

WAR for Pi ∈ H according to the protocol. If the real world session
was split by A then every honest party P necessarily interacts with at least
one adversarially controlled partner in the execution of FWAR so in the case of
success that party receives an adversarially chosen key and in the case of failure
that party receives a random key. Then the output of each party in ΠWAKE will
be either adversarially chosen or random depending on the outcome of each
instance. If the session was not split then a single common instance of FWAR is
executed by all honest and corrupt parties and the cases for key distribution are
as in the functionality FWAR. Observe that the output distribution in the real
world is dependent upon adversarial splitting. Therefore the output in the ideal
world must also be dependent on splitting by A.

In the ideal world an honest party Pi is simulated after the dummy party
issues their query to FWAKE which is then leaked (without the secret) to the simu-
lator. The parties necessarily engage in a single execution of FWAKE and the keys
output to the parties are as in the functionality FWAKE. Dependence of the out-
put on splitting is enforced by the simulator through CompromiseSession queries.
There are four cases, corruption indicates that the adversary issued corruption
instructions that were followed and splitting indicates that the adversary split
the session of FWAR. In all four cases the outputs of the parties in the real world
are identically distributed from those output in the ideal world. That is, that
the keys as output in a session with FWAKE are identically distributed to those
output when running protocol ΠWAKE by sFWAR.

Claim 1: In the case of (corruption, splitting) the distributions of outputs
between the real and ideal worlds are identical.
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If the adversary issued corruption instructions to FWAKE these parties are
corrupted according to FWAKE and to all instances of FWAR. If the adversary split
the session of FWAR, each individual copy of FWAR contains additional corrupt
parties which are considered honest to FWAKE. Each individual session of FWAR

contains corrupted parties, therefore if a session is successful then honest parties
receive adversarially chosen keys, otherwise the parties receive independently
random keys.

If there is at least one successful copy of FWAR then every adversarially con-
trolled party issued a query with a valid witness, therefore the simulator will
have issued a NewSession query for each corrupted party. Then, FWAKE will issue
adversarially chosen keys to honest parties as well because they participated in a
successful exchange with at least one corrupt partner. The keys that are queried
to FWAKE by the simulator are exactly those keys held by the simulated parties,
so FWAKE outputs to the dummy parties the same keys held by the simulated
parties and thus the distributions are equal.

If all copies of FWAR fail then every simulated party receives an independently
random output. In this case the simulator will have queried either valid or invalid
witnesses for each corrupt party. If all of the issued queries for the corrupt parties
are valid (meaning that the impersonated parties were the fault in each execution
of FWAR) then the session of FWAKE succeeds and outputs adversarially chosen
keys. The queried keys are exactly the keys generated in the simulation so the
distributions are identical. Otherwise, FWAKE fails and the outputs of FWAKE are
uniformly random, distributed just as in the simulation and real world.

Claim 2: In the case of (corruption, no splitting) the distributions of outputs
between the real and ideal worlds are identical.

If the adversary issued corruption instructions to FWAKE and did not split
the session of FWAR then the single copy of FWAR contains at least one corrupted
party. If the session of FWAR is successful then the adversary issued queries
with valid witnesses on behalf of all corrupted parties, the simulated parties
output adversarially chosen keys, the simulator issues NewSession queries to
FWAKE containing valid witnesses on behalf of all corrupted parties, the session
of FWAKE is successful and the honest parties receive adversarially chosen keys
as well. The keys queried to FWAKE are exactly those output by the simulated
parties, so the distributions are equal.

If the session of FWAR fails then the parties all receive independently random
keys, the simulator received at least one query from A which did not verify
against the relation and therefore the simulator issued a NewSesssion query to
FWAKE with an invalid witness. The session of FWAKE fails and the parties receive
independently random outputs, distributed exactly as in the simulation and the
real world.

Claim 3: In the case of (no corruption, splitting) the distributions of outputs
between the real and ideal worlds are identical.

If the adversary did not issue corruption instructions but did split the func-
tionality then each instance of FWAR is executed with at least one corrupt par-
ticipant. The functionality FWAKE is running in the all honest case. This is the
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case in which the simulator must influence FWAKE to allow adversarially chosen
outputs.

In the case that at least one instance of FWAR is successful then every im-
personated party in the execution issued a query with a valid witness and the
simulator queries CompromiseSession on behalf of each impersonated party with
a valid witness so these parties are all compromised by FWAKE. In any case the
simulated parties receive adversarially chosen keys from FWAR and the honest
parties receive the same adversarially chosen keys from FWAKE.

In the case that all instances of FWAR failed all simulated honest parties re-
ceived uniformly random outputs from their instance of FWAR. There are two
cases (a) either the simulator queried CompromiseSession with all invalid wit-
nesses or (b) there was at least one valid witness queried. In case (a) all parties
are marked as interrupted by FWAKE and receive uniformly random outputs. In
case (b) then at least one party is marked as compromised by FWAKE and re-
ceives adversarially chosen output, while all partners either receive adversarially
chosen outputs if FWAKE succeeds or uniformly random outputs if FWAKE fails.
The outputs queried to FWAKE are those output by the simulated FWAR, so the
parties all receive from FWAKE either the queried key which is uniformly random
or a freshly sampled uniformly random key.

Claim 4: In the case of (no corruption, no splitting) the distributions of
outputs between the real and ideal worlds are identical.

In the case that the adversary did not issue any corruption instructions to
FWAKE and did not split the session of FWAR both functionalities are running
in the all honest case. In the ideal world the dummy parties issue their queries
to FWAKE which leaks all but the secret to the simulator. The simulator issues
Knowledge queries to FWAKE to determine the success or failure of the simulated
FWAR and leaks everything necessary for a simulation of FWAR to A. The simu-
lated FWAR exchange is successful iff the FWAKE is successful. The functionalities
behave the same way in both cases, thus their outputs are distributed identically.

Table 3 details the output of the honest parties and corrupt parties in both
ΠWAR and FWAKE in the cases of corruption, splitting and success of the ex-
change. In the case of splitting there can be some instances of FWAR which are
successful and others which fail. In terms of notation: A indicates that the ad-
versary determines the output to the party ie the functionality forwards the
queried key, ($)|H| indicates that there are H uniformly random keys output,
$ indicates that a single random key is output to all of the parties, ∅ indicates
that there are no such parties, and ($)|H| / A is a special case which depends
on if parties are marked as corrupt or interrupted. Notably, even in the case that
the adversary selects the keys and the functionality forwards the queried keys
those queried keys are in fact independently random keys. So even in this case
the distributions are identical with simulator S2-WAKE.

D.4 sl-bb-WAKE achieves UC security

Let Ω be a fully sl-bb-WAKE with straightline black-box extraction, meaning
that Ω satisfies confidentiality (Definition 1), simulatability (Definition 2) and
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Output Distributions

Corrupt Split Succ
ΠWAR FWAR

H C H C

T T
T A

A

A

A
F ($)|H| ($)|H| / A

T F T A A

T F F ($)|H| ($)|H|

F T
T A

∅

A

∅
F ($)|H| ($)|H| / A

F F T $ $

F F F ($)|H| ($)|H|

Table 3. Table detailing outputs in proof of Theorem 6.

straightline black-box authenticity (Definition 3). By definition Ω has setup al-
gorithm SetUp and simulator SΩ = (SimSetUp,Sim) consisting of algorithms
which output the simulated setup and simulated messages, respectively.

Consider the protocol ΠΩ
UC-W in Figure 13. Each party P in the execution

receives input from Z and queries FCRS to receive the public parameters pp for
Ω, as the distribution of the CRS is set to be the distribution of Ω.SetUp(1λ,R).
Party P then executes protocol Ω exactly as described. When Ω finalizes the
parties have either accepted or rejected the session, which is reflected in the
party’s internal variable accP . In the case that P has accepted and has generated
a key skP according to Ω then P outputs this session key. In the case that P
has not accepted it outputs a random value r.

The protocol is executed over an unauthenticated, asynchronous network,
therefore the adversary is permitted to arbitrarily delay messages, or inject and
deliver entirely unrelated messages. This is modeled by requiring the ITIs that
are functioning as channels in the network leak all messages to the adversary,
only deliver messages upon adversarial instruction, and allow these messages
to be replaced, duplicated, reordered, dropped, etc, which is referred to as the
unauthenticated setting in Theorem 1.

Theorem 7. If Ω is an sl-bb-WAKE protocol with straightline black-box extrac-
tion then protocol ΠΩ

UC-W UC-realizes FWAKE in the FCRS-hybrid model in the
presence of static, malicious adversaries in the unauthenticated setting.

Proof. Let Ω be an sl-bb-WAKE protocol between set of parties P. For every PPT
adversary A there exists a PPT simulator SUC-W such that no PPT environment
Z can distinguish between a real world interaction with (A, ΠΩ

UC-W) and an ideal
world interaction with (SUC-W,FWAKE). This simulator is described in Figure 14.
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ΠΩ
UC-W

ΠΩ
UC-W(sid,R, Φ, ϕ, w) :

SetUp :

Send query to FCRS : (CRS : sid)

Receive from FCRS : (CRS, sid, pp)

Execution of Ω :

Follow Ω exactly

Key Computation :

If acc = True :

Compute the key as in Ω : k

Else: k ←$ {0, 1}λ

Output: k

Fig. 13. A UC-secure WAKE protocol from sl-bb-WAKE Ω.

The simulator SUC-W internally invokes the real world adversary A and simulates
a copy of the uncorrupted parties internally, along with a copy of the ideal
functionality FCRS. The simulator SUC-W forwards messages between Z and A
reliably. As the system is in the unauthenticated setting the adversary may
choose to drop or deliver arbitrary messages throughout the protocol in both
worlds. What proceeds is a sequence of indistinguishable games starting in the
real world and ending in the ideal world.

Game G0: Real Protocol

This is the real world. The protocol ΠΩ
UC-W is run by the environment Z

with party set P and adversary A, all having direct access to the ideal
functionality FCRS.

Game G1: Ideal Grouping

Parties P, functionality FCRS and A are grouped into a single machine called
the simulator SUC-W. An ideal functionality node and dummy party nodes
are introduced. The dummy party nodes receive input from Z and issue
queries to FWAKE from those inputs, which are leaked in their entirety to
SUC-W. The simulator simulates all honest parties with knowledge of these
complete queries while the adversary controls any corrupt parties.

G1 is indistinguishable from G0: This grouping and labeling does not change
the view of the environment. The protocol messages, along with the outputs,
are generated identically and thus are identically distributed in both games.

Game G2: Record Keeping, Simulated FCRS, Knowledge Queries
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SUC-W

SUC-W initializes the real world adversary A and reliably forwards all messages
between Z and A. Corruption instructions from A are forwarded to FWAKE and
obeyed by SUC-W if they are issued prior to receipt of any NewSession query
leakage.

– CRS Functionality:
• Set the distribution D := Ω.SimSetUp(1λ,R)
• Upon receipt of the first query (CRS : sid) from corrupt party P :

Parse sid = (sid′,R), sample (pp, τ)← Ω.SimSetUp(1λ,R), and send a
delayed public output (CRS, sid, pp) to P

• Upon all subsequent queries (CRS : sid) from corrupt party P : Parse
sid = (sid′,R) and send a delayed public output (CRS, sid, pp) to P

• For each honest party Pi: send a delayed public output (CRS, sid, pp)
to Pi

– Simulating Ω: query (Knowledge : sid, Pi) to FWAKE and receive
(Knldg, sid, Pi, bi) for each honest Pi

• For all Pi such that bi = 1: use the CRS trapdoor τ and the simulator
algorthm Sim from Ω to generate all messages on behalf of Pi exactly
as in Ω

• For all Pi such that bi = 0: set ski ← {0, 1}λ
• Keys ski are computed according to Ω

– Adversarial Queries:
• If there is some honest Pi such that accPi = True then for all corrupt

Pj

∗ Extract a witness from the transcript of the accepting Pi: w
′
j ←

E(pp, τ, transPi , ϕj)
∗ Query (NewSession : sid, w′

j , Φ, ϕj) to FWAKE

• Else if the parties terminated but no honest party accepted then for
each corrupt Pj

∗ Sample w′
j ←$ {0, 1}|ϕj |

∗ Query (NewSession, sid, w′
j , Φ, ϕj) to FWAKE

• Else: halt the simulation
– New Key Queries: For all honest Pi

• Query (NewKey : sid, Pi, ski) to FWAKE

Fig. 14. The simulator for protocol ΠΩ
UC-W.

The ideal functionality now keeps records for the queries received as seen
in the description in Figure 7. The functionality responds to these knowl-
edge queries as described in Figure 7. The simulator simulates FCRS ex-
actly as described in Figure 14 but instead uses the distribution D =
Ω.SimSetUp(1λ, rel) which outputs pp along with trapdoor τ . The simulator
issues a knowledge query to FWAKE for each honest party and receives output
bit bi. The simulator then uses the simulator Ω.Sim to generate messages
on behalf of honest parties Pi with bi = 1 instead of honestly generating
messages with the witnesses leaked by FWAKE. When bi = 0 the simulator
sets ski ←$ {0, 1}λ and halts on behalf of that party (stops simulating that
party).

G2 is indistinguishable from G1: The public parameters and transcript mes-
sages generated by SUC-W are generated using the simulator for Ω, meaning
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that they are indistinguishable from those output by SetUp and messages
sent by real parties. This is due to the simulatability (zero knowledge) prop-
erty of WAKE.

Any environment Z that could distinguish between G2 and G1 would imply
an adversary B against the simulatability of Ω. The environment sees the
entire transcript of the protocol, Adversary B in the experiment in Figure 1
receives the public parameters ppb and initializes Z, then emulates the sim-
ulator in G2 using ppb as the public parameters output by the simulated
FCRS. Adversary B issues a SetKeys query for each honest party using the
leaked associated statement and witness. Then, B engages in the protocol
Ω with A controlling the corrupted parties and uses his Sendb oracle to
construct the messages on behalf of the honest parties. The view of Z in
when b = 1 corresponds exactly to the view of Z in G1 and otherwise to
the view of Z in G2. Assume that Z outputs the bit b̄ = 0 for a guess of
G1. Then the end of the protocol B issues a Reveal query for each honest
party and outputs the keys to Z and outputs whichever bit Z does. If Z
has a non-negligible advantage in distinguishing the games then B has a
non-negligible advantage in breaking the simulatability of Ω.

Game G3: Ideal Functionality Stops Leaking Secrets, Simulator Sub-
mits NewSession Queries

The ideal functionality FWAKE no longer forwards the queries submitted
by the dummy parties in their entirety, no longer leaking the witnesses to
SUC-W. The simulator submits NewSession queries on behalf of the corrupt
parties in the case that an honest party accepts the session, using the wit-
nesses extracted from the transcript of the accepting honest party. In the
case that extraction fails the simulator outputs error − E and halts.

G3 is indistinguishable from G2: The environment cannot see the queries
by SUC-W or leakage to SUC-W so there is no change in the view of the
environment in the case that the error error − E does not happen.

Let E be the event in which the extractor fails to output a witness for
some corrupt P ′ from the transcript of an honest and accepting party P :
transP . This is the only case in which the extractor is run by the simulator.
By definition the failure of the extractor violates the authenticity require-
ment seen in Definition 3. Let Φ,R be the set of statements and relation
for which event E happens with nonnegligible probability. An adversary B
in the authenticity game invokes the adversary (A,Z) providing input Φ
and emulates the simulator in the above game, providing the public pa-
rameters pp. The adversary B replies to all messages using the Send oracle.
When event E happens with accepting party P and corrupt P ′ adversary B
outputs challenge (P, 0, P ′). As P ′ is corrupt and B provided all messages
sent by P ′ to the oracle as output by A, P ′ is in the impersonation set
of P . The extractor in the authenticity game will also fail, and B will win
the experiment. This adversary B has advantage equal to the probability of
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event E. Therefore, event E happens with negligible probability under the
authenticity of Ω.

Game G4: Functionality Stops Forwarding Keys in All Honest Case

The ideal functionality FWAKE no longer forwards the keys sent from SUC-W
to the dummy parties to then be output to Z. The functionality now samples
the keys issued to these parties when all parties are honest, in both the cases
of success and failure.

G4 is indistinguishable from G3: In the case of failure the honest parties
did not accept. The keys output by the functionality to the dummy parties
are uniformly and independently random keys, distributed exactly as those
generated by honest parties participating in the protocol ΠΩ

UC-W in the case
of failure. In the case of success the keys output by FWAKE were: in G3 the
real keys output by accepting parties in an execution of Ω and, in G4 a
random string of appropriate size. These two games are indistinguishable in
the case of success because any Z which can distinguish the keys would be
an adversary against the confidentiality of Ω as in Definition 1.

An environment Z which can distinguish between the two games can be
used to build an environment B against the confidentiality experiment in
Figure 1 of Ω. Let (Φ,R,W ) be the inputs provided by Z on which it
has non-negligible advantage in distinguishing the games. Assume that all
statements in Φ are satisfied by the inputs provided by Z otherwise the
simulator would halt on behalf of some party in both games. Adversary B
receives the public parameters pp, statement set Φ and witnesses W , then
emulates the simulator of G3 using the public parameters pp. As the parties
are all honest B makes a single query to Execute → T for the transcript of
Ω and outputs (P, 0) as the challenge for some P ∈ P. Adversary B receives
key kb and provides Z with (T, kb) to complete the view of Z. If b = 1 then
the view of Z is that G3 and if b = 0 then the view of Z is that in G4.
Assume Z outputs a guess bit b̄ which is 1 if the guess is G3. Adversary
B outputs this same bit. The advantage of B in the confidentiality game is
equal to that of Z in distinguishing between the games.

Game G5: Simulator Submits NewKey Queries, Functionality Manages
Keys in All Cases

The simulator formally submits NewKey queries for all honest parties as
detailed in Figure 14 using the key generated by the protocol. The func-
tionality forwards these keys as output in the case that the party is corrupt
or the party had a corrupt partner in a successful key exchange. In all other
(not all honest) cases the functionality outputs a uniformly random string
with length of the security parameter as the key.

G5 is indistinguishable from G4: The environment does not see the queries.
The functionality was already forwarding the keys in the case of a corrupt
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party or a partner of a corrupt party participating in a successful exchange.
In the case of failure with corrupt partners, the honest parties already output
random keys which were then queried by SUC-W and forwarded by FWAKE.
Therefore the output is distributed the same.

SEQUENCE OF GAMES

Game
FWAKE SUC-W Property Used

NewSession Knldg CompSes NewKey

G0 N/A: this is the real protocol

G1 forwards
queries to S

forwards
outputs to P

sends
messages for
honest parties

N/A

G2 record
keeping

responds to
queries

simulates
FCRS &
simulates

parties with
Sim

FWAKE (simu-
latability)

G3 no longer
leaks

witnesses

submits
corrupt

NewSession
queries

FWAKE
(authenticity)

G4 follows
instructions
for keys in all
honest case

FWAKE (confi-
dentiality)

G5 follows
instructions
for keys in all

cases

submits
formal key
queries

N/A

Table 4. Summary of hybrids for Theorem 1.

E Proof of Our Witness-Authentication Compiler

Theorem 8. If Π is a passively secure WAKE protocol satisfying confidentiality
only and Σ is a nBB-s-SE-secure SOK then Π∗, the output of running com-
piler CΣWAKE on Π as presented in Figure 2, is an nBB-fully secure witness-
authenticated key exchange protocol.

Theorem 8 has been split into Lemmas 1, 2 and 3 which assert the confi-
dentiality, authenticity and simulatability of the compiled protocol, respectively.
Together, these lemmas imply the theorem.

Lemma 1. The compiled protocol Π∗ as shown in Figure 2 satisfies confiden-
tiality (Definition 1).
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Proof. The confidentiality of Π∗ reduces to the confidentiality of the underlying
scheme Π. An adversary AΠ∗ against the confidentiality of the compiled proto-
col Π∗ implies an adversary AΠ against the the confidentiality of the passively
secure protocol Π. Let R, Φ, DΦ be such that the adversary AΠ∗ has a nonnegli-
gable advantage in the confidentiality experiment seen in Figure 1. In Figure 15
is the adversary AΠ against Π with the same parameters. The advantage of
AΠ in the confidentiality game for protocol Π is equal to that of AΠ∗ in the
confidentiality game for protocol Π∗.

AΠ

AExecuteΠ ,RevealΠ
Π (ppΠ , Φ,W )

Parse ppΠ which contains 1λ,R
ppΣ ← Σ.SSetup(1λ, R)

ppΠ∗ ← (ppΠ , ppΣ)

Run AΠ∗(ppΠ∗ , Φ,W ) :

∗ ExecuteΠ∗(Pi1 , j1, . . . , Pik , jk) called by AΠ∗ :

− T ← ExecuteΠ(Pi1 , j1, . . . , Pik , jk)

− For each participant Πj
Pi

sample nonceji ←$ {0, 1}∗

− For each message m sent by Πj
Pi

in round k in T :

m∗ ← (Pi||k||m||noncesjPi
)

σ∗ ← Σ.SSign(ppΣ , ϕi, wi,m
∗)

− Return the resulting transcript T ∗

∗ Reveal(P, j) called by AΠ∗ :

− Return RevealΠ(P, j)

∗ Challenge (P, i) output by AΠ∗ :

−Output (P, i) and receive key kb

Run AΠ∗(kb) :

∗ Respond to any queries as above

∗ Bit b′ output byAΠ∗ :

−Output b′

Fig. 15. Reduction from the confidentiality of Π∗ = CΣWAKE(Π) to that of Π.

Lemma 2. The compiled protocol Π∗ as shown in Figure 2 satisfies authenticity
with non-black-box extraction (Definition 3).

Proof. The authenticity of Π∗ reduces to the strong simulation extractability of
Σ with non-black-box extractor as in Appendix B.3.
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An adversary AΠ∗ against the authenticity experiment seen in Figure 1 im-
plies the existence of an adversary AΣ against the simulation-extractability of
the signature, more specifically if no extractor EAΠ∗ running on the view of AΠ∗

can efficiently output a witness to the statement associated to the impersonated
party P ′ then no extractor EAΣ

can efficiently output a witness to the statement
associated to the forgery output by AΣ . Let R, Φ be a relation and statement
vector, respectively, with respect to which AΠ∗ has nonnegligible advantage in
the experiment seen in Figure 1, then AΣ presented in Figure 16 has nonnegli-
gible advantage in the extraction experiment for the signature with respect to
the same relation R.

The adversary AΣ , in the case that the challenge instance Πi
P selected by

AΠ∗ accepts and that the party P ′ was impersonated to the challenge instance ie
P ′ ∈ I(P, i), outputs a triple (ϕP ′ ,m∗, σ∗) for message m = (m∗, σ∗) appearing
in sidiP but not sidjP ′ for j such that noncesiP = noncesjP ′ . This message necessarily
exists becauseAΠ∗ is necessarily not forwarding on the instanceΠi

P and, in order
for P ′ ∈ I(P, i) there must have been a call to Send(P, i,m) without m being
output by a corresponding call to Send(P̄ , j̄, ·) with ϕP̄ = ϕP ′ . If that message
were the nonce of round 1 then Πi

P would reject. Thus, m must be a message
exchanged in a different round and therefore contains a signature. The signature
appearing in m is not a signature generated as SSimSign(ϕP ′ ,m) because it was
not output as a query to Send for a party authenticating with respect to ϕP ′

and thus does not appear in the recorded set of queries. Additionally, in order
for acciP = 1 that signature must verify with respect to the statement ϕP ′ . We
can claim that either the returned triple is a valid challenge for the simulation-
extractability game (with non-negligible probability), or AΠ∗ is not admissible.

An extractor EΣ which can output a witness to the forged signature implies
an extractor EAΠ∗ which can also output a witness on input the view viewAΠ∗ .
There is a polynomial time transformation from the view of AΠ∗ to that of AΣ ,
which is called T . This extractor can also be seen in Figure 16. Thus, if there is
no extractor for AΠ∗ then there is no extractor for AΣ .

Lemma 3. The compiled protocol Π∗ in Figure 2 satisfies simulatability (Defi-
nition 2).

Proof. The simulatability of Π∗ reduces to the perfect simulatability of the sig-
nature Σ, as defined in Appendix B.3. An adversary AΠ∗ against the WAKE
simulatability implies an adversary AΣ against the perfect simulatability of the
signature of knowledge Σ. This reduction can be found in Figure 18.

A simulator, the SimSetup and SimSend algorithms for Π∗, are presented in
Figure 17.

F Three-Round WAKE for Groups

This section shows how to instantiate the compiler presented in Section 3 on
a passively secure WAKE protocol to obtain a three-round protocol for group
WAKE.
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AΣ , EΣ

ASSimSign(·)
Σ (ppΣ)

(1λ,R)← ppΣ

ppΠ ← Π.SetUp(1λ,R)
ppΠ∗ ← (ppΠ , ppΣ)

Run AΠ∗(ppΠ∗ , Φ) :

∗ Send(P, i,m) called by AΠ∗ :

− Emulate Send as in Figure 2 except signatures

−Generate signatures on message m∗ as:

σ ← SSimSign(ϕP ,m
∗)

∗ Reveal(P, j) called by AΠ∗ :

− Respond honestly with the generated skj
P

(P, i, P ′)← AΠ∗ :

− If acciP ̸= 1 or P ′ /∈ I(P, i) : output (⊥,⊥,⊥)
− Fetch sidiP , sid

j
P ′ : nonces

i
P = noncesjP ′

− Find m = (m∗, σ∗) : m ∈ sidiP ,m /∈ sidjP ′

−Output (ϕP ′ ,m∗, σ∗)

EΣ(viewAΠ∗ )

Compute viewΣ ← T (viewAΠ∗ )

w ← EΣ(viewΣ)

Output w

Fig. 16. Reduction from the nBB-auth of Π∗ = CΣWAKE(Π) to sim of Σ.
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SΠ∗

Π∗.SimSetup(1λ,R)

(ppΠ , τΠ)← Π.SimSetup(1λ,R)
(ppΣ , τΣ)← Σ.SSimSetup(1λ,R)
pp← (ppΠ , ppΣ)

τ ← (τΠ , τΣ)

Output (pp, τ)

Π∗.SimSendpp,τ (P, j,m)

Parse (pp, τ) as (ppΠ , ppΣ), (τΠ , τΣ

If m = (m′, σ′) verify σ and set m← m′

m← Π.SimSendppΠ ,τΠ (P, j,m)

Proceed as in Figure 2 except

Generate all signatures as:

σ∗ ← Σ.SSimSign(ppΣ , τΣ , ϕP ,m
∗)

Output (m∗, σ∗)

Fig. 17. The simulator for the WAKE protocol Π∗ = CΣWAKE(Π).

First we review the Decisional Diffie-Hellman Assumption. For G a cyclic
group of order q ∈ P with generator g, the Decisional Diffie-Hellman (DDH)
Problem is to distinguish between Diffie-Hellman tuples (gx, gy, gxy) and random
tuples of the form (gx, gy, gz) for x, y ∈ Z∗q , z ∈ Z∗q . Consider an infinite sequence
of groups G = {Gλ}λ≥1 indexed by the security parameter λ and define the
advantage of an adversary A against DDH in Gλ as follows:

AdvDDH
Gλ,A(λ) := |Pr[A(g

x, gy, gxy) = 1|x, y ← Z∗q ]
− Pr[A(gx, gy, gz) = 1|x, y, z ← Z∗q ]|

The DDH assumption states that for all PPT A, the advantage AdvDDH
Gλ,A(λ) is

negligible.18

Presented in Figure 19 is ΠBDKE, a passively secure protocol for (standard)
group key exchange. This protocol was constructed by Burmester and Desmedt
[16] and was adapted and proven secure under the Decisional Diffie-Hellman
assumption by Katz and Yung [31]. Running the compiler seen in Figure 2 on
ΠBDKE yields a three round, fully secure WAKE protocol. This is formally stated
in Theorem 1.

The participant set is denoted P = {Pi}ni=1 with participants indexed mod n,
such that Pn = P0 and Pn+1 = P1. The inputs (G, g, q) are generated beforehand
but can also be generated by a single player at the expense of an additional round.

18 The variant of DDH described in [31] excludes the possibility that z = xy for sim-
plicity, but this modificiation is mentioned to be of essentially no consequence.
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AΣ

AS
b(·)

Σ (ppbΣ)

Parse ppbΣ as it contains (1λ,R)
(τΠ , ppΠ)← Π.SimSetup(1λ,R)
ppbΠ∗ ← (ppΠ , ppbΣ)

Run AΠ∗(ppbΠ∗) :

∗ SetKeys(ϕ,w) called by AΠ∗ for the k-th time :

− Consider input (ϕ,w) as inputs to a new party Pk[ϕ,w]

∗ Sendb(P, i,m) called by AΠ∗ :

− Emulate Send as in Figure 2 except signatures

−Generate signatures on message m as:

σ ← Sb(ϕP , wP ,m)

b output by AΠ∗ :

Output b

Fig. 18. Reduction from the simulatability of Π∗ = CΣWAKE(Π) to that of Σ.

The communication style is referred to as broadcast but it is important to note
that a broadcast channel is not assumed in the construction; participants send
all messages via point-to-point links, sending a message to the entire group via
these links is referred to as broadcasting.

The session key generated by the protocol in Fig. 19 is sk = gx1x2+x2x3+···+xnx1

and is common to all participants. ΠBDKE achieves passive security for group key
exchanges; the protocol is secure against an eavesdropping adversary in a real-or-
random confidentiality experiment. Passive security, along with forward security,
is proven in [31].

As the definition of passively secure key exchange coincides with passively
secure WAKE, the reader is pointed to the definition of confidentiality seen in
Definition 1 which, with an empty statement set and witness set, is essentially
the confidentiality experiment for standard (group) key exchange. More explic-
itly, the adversary is given the parameters of the key exchange, an oracle which
generates transcripts to the key exchange and an oracle which reveals keys cor-
responding to the transcripts. The adversary outputs a challenge transcript and
is given either the real key or a random string. In the case that the adversary
guesses correctly if the key is real or random then the experiment outputs 1 and
the adversary wins. The exchange is considered confidential, ie passively secure,
if for all PPT adversaries their advantage in the experiment is negligible.

Theorem 9 (Confidentiality of ΠBDKE [31]). The group key exchange proto-
col ΠBDKE seen in Figure 19 satisfies confidentiality under the DDH assumption.
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ΠBDKE

ΠBDKE(G, g, q) :

Round 1:

xi
$←− Zq

zi := gxi

Broadcast zi

Round 2:

Xi := (zi+1/zi−1)
xi

Broadcast Xi

Key Computation:

return ski = (zi−1)
nxi ·Xn−1

i ·Xn−2
i+1 · · ·Xi+n−2

Fig. 19. The Burmester-Desmedt passively secure group key exchange protocol.

For concreteness, let Σ be the signature of knowledge detailed in [30]. We
apply the compiler detailed in Section 3 to ΠBDKE, using Σ as the signature of
knowledge, to get a three-round actively secure WAKE protocol.

Corollary 1 (Three Round WAKE). ΠWAKE, the protocol resulting from
applying the compiler CΣWAKE (Figure 2) on ΠBDKE (Figure 19) with any correct,
simulatable and nBB-s-SE-secure signature of knowledge Σ yields a three round
fully secure WAKE.

G Two Round WAKE Security Proof

Theorem 10. For any NP relation R protocol Π2-WAKE securely UC-realizes
sFWAR in the (FCRS,FSOK)-hybrid model in the presence of malicious adaptive
adversaries in the unauthenticated asynchronous setting.

Proof. Consider an adversary A corrupting an arbitrary number of parties and
adaptively splitting sessions. There exists for each efficient adversary A a sim-
ulator S2-WAKE such that no efficient environment Z can distinguish between
an execution involving (Π2-WAKE,A) from one involving (sFWAR,S2-WAKE). The
simulator is presented in Figure 20.

The simulator S2-WAKE must simulate three things: (1) FSOK and FCRS, (2) the
messages sent by any honest simulated parties in Π2-WAKE, (3) queries to both
sFWAR and FWAR so that these functionalities issue the appropriate outputs.
The proof proceeds with a sequence of indistinguishable games as illustrated in
Table 5, starting in the real world and ending in the ideal world with simulator
S2-WAKE.

Following this is an argument that the errors of the FSOK happen with the
same probability in both the real and ideal worlds.
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Game G0: Real Protocol

This is the real world. The protocol Π2-WAKE is initiated by the environment
Z with party set P = {P1, . . . , Pn} and (wlog dummy) adversary A, all
having direct access to the ideal functionalities FSOK and FCRS.

Game G1: Ideal Grouping & Splitting Queries

Group the adversary A and the parties P into a single machine referred to
as the simulator S2-WAKE. Add in dummy party and functionality nodes such
that each channel between the environment and the simulated party is in-
stead linked first to the corresponding dummy party, which then has a chan-
nel to the split functionality, then to the simulator. Upon activation with
inputs (sid,R, Φ, ϕ, w) from Z the honest dummy parties issue Init queries to
sFWAR as (Init : sid, Φ) which are forwarded exactly as queried to S2-WAKE.
The simulator begins with round 1 messages from Π2-WAKE, sending all
messages through A and each simulated party P receives a set of messages

{(P ′, z(i)P ′ )}P ′ ̸=P . For each simulated party P the simulator constructs the

string of verification keys as vkP = (P1||z(P )
1 ||P2||z(P )

2 || · · · ||Pn||z(P )
n ) with

parties ordered by their party identity. These strings define the session iden-
tifiers for the split session. The simulator then queries a split to sFWAR with
the vkP received by each party as (Init : sid, P,H, vkP , Φ) where H is defined
to be the set of other honest parties which have an equal set of verification
keys. The simulator then receives the leakage of (NewSession : sid, ϕ, P ) for
each honest party P and continues to simulate the honest parties. When
keys are generated the functionality forwards these keys to the dummy par-
ties.

G1 is indistinguishable from G0: The inputs are forwarded to the simulator
as is, and the outputs are forwarded from the functionality nodes directly to
the dummy parties thus the inputs, transcript and outputs remain the same.
The grouping and labeling does not change the view of the environment, and
the environment does not know how man instances of FWAR are invoked.

Game G2: Record Keeping by sFWAR & New Key Queries

The functionality node for sFWAR now keeps records of the Init queries
made by the parties and performs the required checks when queried prior
to initiating new instances of FWAR as detailed in Figure 9. The simulator
now issues NewKey queries for all parties in H to each instance of FH

WAR.
The keys as queried are output to the queried parties.

G2 is indistinguishable from G1: Internal record keeping is not visible to the
environment. The same keys are output to the parties.

Game G3: Record Keeping by FWAR & Simulated FSOK,FCRS
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The functionality nodes for FWAR now keep records of the NewSession queries
made by the parties, as detailed in Figure 10. The simulator S2-WAKE now
simulates the ideal functionality FCRS, so this node is added to the simula-
tor grouping mentioned in G1. S2-WAKE first samples from the distribution
(G, g, q) ← D over groups, as described, and responds to each query from
corrupt Pj with the delayed public output (CRS, sid, r). As the outputs are
delayed and public, the simulator must simulate generating these outputs
to the honest parties as well just as the ideal functionality would. The sim-
ulator S2-WAKE now simulates the ideal signature of knowledge functionality
FSOK. S2-WAKE first generates an output (SetUp, sid′ = (sid,R′)) for the
relation R′ = (R ∧ Rg

DLP) to A and receives in response the algorithms.
S2-WAKE records and responds to all SetUp queries from corrupt Pj with
(Algorithms, sid′,Sign,Verify) as well as responds to any signature and ver-
ification queries honestly, just as FSOK would. In the case of any errors
S2-WAKE halts the simulation of FSOK.

G3 is indistinguishable from G2: The environment does not see any inter-
nal records of the functionalities. The simulator’s output for the simulated
FCRS is identically distributed to that of the ideal functionality, as the dis-
tribution is public. The simulator internally runs FSOK so it’s behavior is
indistinguishable from the actual functionality. The environment does not
see any queries or responses to the actual or simulated FSOK.

Game G4: Knowledge Queries

The ideal functionalities FWAR now respond to any Knowledge queries from
S by checking the record for the queried P and outputting for the witness
on record b = R(ϕ,w). These queries are, as all other communication is,
routed through the split functionality.

G4 is indistinguishable from G3: The knowledge queries are neither seen nor
detected by the environment, and the output is not used in any meaningful
way by the simulator in this hybrid.

Note: The following four games (G5 through G7) apply to the instances of FWAR

where all of the participating parties are honest. This means that the adversary
must have decided to not split the sessions and that there is only one authenti-
cation set H = P detected by the simulator.

Game G5: FWAR Chooses Keys in the Event of Success

In the event that all parties in H are honest and the exchange was suc-
cessful, thus Succ = True meaning that the records in FH

WAR are such that
(ϕi, wi) ∈ R for all Pi. Then, for the first NewKey query the functionality
FWAR samples a key at random from {0, 1}λ and outputs this key to all
queried parties, just as outlined in Figure 10, instead of forwarding the key
queried by the S2-WAKE. The key queried was the key generated on behalf
of the simulated party, which in the case of success is the real key as would
be output in the protocol by the parties in H.
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G5 is indistinguishable from G4: This indistinguishability holds under the
DDH assumption in G.
Any environment Z that can distinguish between G4 and G5 with nonneglible
advantage can be used to build an adversary B breaking the DDH assump-
tion in G. By the passive security of the Burmester-Desmedt group key
exchange, in order to construct such an adversary B it suffices to construct
a D with nonnegligible advantage against the passive security (confidential-
ity) of ΠBDKE seen in Figure 19.
The environment receives transPΠ2-WAKE

and the output keys, with

transPΠ2-WAKE
= {(Pi, zi, ϕi), (Pi, Zi, σi)}Pi∈P

The environment does not see any FSOK queries and responses but does see
the public output of FCRS queries as (G, g, q).
On input CRS = (G, g, q) (with empty Φ,W,R) the distinguisher D first
queries Execute(0) ← T ′ receiving a transcript T ′ = (z′i), (Z

′
i)Pi∈P between

honest parties in protocol ΠBDKE and then emulates G4 with some minor
modifications to the simulator S2-WAKE: (1) in round 1 the simulator uses
z′i as the round one message, sending instead (Pi, z

′
i), (2) in round 2 the

simulator sends Z ′i from T ′ instead of Zi. As the signature of knowledge
is simulated without knowledge of any witness in G4, the simulator does
not need to know the discrete logarithm x′i = logg(zi) to generate these
signatures. Once S2-WAKE has completed the two rounds D outputs (1, 1)
and receives back the challenge s̄k. Then, for each party Pi the simulator
queries (NewKey : sid, Pi, s̄k). In the case that the challenge s̄k is the real key
then the environment’s view will be that in G4, otherwise the environment’s
view will be that in G5. Assuming Z outputs b̄ = 1 when it has determined
to be in G4 then D forwards the guess bit and outputs b′ = b̄ as his own
output. The advantage of D in the confidentiality experiment is equal to
that of Z in distinguishing the games. If Z has non-negligible advantage in
the confidentiality game then there exists an adversary against DDH in G.

Game G6: FWAR Chooses Keys in the Event of Failure

In the event that all parties in P are honest and there is some Pi with cor-
responding record (Pi, ϕi, wi) such that (ϕi, wi) /∈ R then Succ = False. In
this case the functionality FWAR independently samples new keys to output
to the queried parties instead of forwarding the queried keys as outlined in
Figure 10.

G6 is indistinguishable from G5: The outputs are identically distributed. In
G5, in the event of failure, the simulated parties do not accept and output a
uniformly random key which the simulator then queries to the functionality.
This key is then output to the parties (and then to the environment). In
G6 upon receipt of each new key query the functionality samples a new
independent and uniformly random key to output to the parties.
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Game G7: FWAR No Longer Leaks Secrets

In the event that all parties in P are honest the instances of FWAR no longer
forward the witnesses included in the NewSession queries by the dummy
parties. The functionality instead forwards only (NewSession, sid, Pi, Φi) to
S2-WAKE as detailed in the description found in Figure 10. As S2-WAKE no
longer receives the witnesses from the functionality it uses knowledge queries
(Knldg : sidH , Pi) to determine the response bit bi indicating if the party
has knowledge of a valid witness prior to simulating any signatures on their
behalf. If bi = 0 then the simulator halts on behalf of that party, just as an
honest party would if they could not generate a verifying signature. Oth-
erwise, S2-WAKE generates verifying signatures using the Simsign algorithm
and ensures that these signatures verify using Verify, otherwise halting with
an error on behalf of FSOK.

G7 is indistinguishable from G6: the knowledge queries provide the simula-
tor with the same information used in the previous game to determine if
signatures should verify. The signatures output are independent of the ac-
tual witness, and the bit returned by the knowledge query is merely used to
determine if the signature should verify. Any verifying signature generated
in the previous hybrid would also verify in this hybrid. In both games the
simulated honest parties output veryfing signatures iff the corresponding
dummy party had queried the functionality with a valid witness.

Note: All of the above games handle the cases when all parties are honest and
no man in the middle attack happened. At this point the functionalities and
the simulator manage all of the inputs and outputs, message routing, and the
protocol transcript in the all honest no splitting case in a way that is consistent
with Figure 10. In this case the proof is completed. The following games (G8
through G10) modify the behavior of the simulator S2-WAKE and the functionality
FWAR in the case that the instance of FWAR is running with some corrupt parties.
This means that either the adversary issued corruption queries prior to any Init
queries or that A split the sessions.

Game G8: S2-WAKE Sets Corrupt Inputs as Extracted Witnesses

For each authentication set H, the simulator S2-WAKE extracts from the
signatures received from corrupt parties Pj /∈ H witnesses w′j with the
Extract algorithm. After verifying that the relation holds with respect to
the extracted signature, the simulator submits for all Pj /∈ H a NewSession
query to FH

WAR via an input query to the split functionality on behalf of that
party in order to set the corrupt witness: (Input : sid, H, Pj , (NewSession :
sidH , ϕj , w

′
j)).

G8 is indistinguishable from G7: The environment does not see the queries
submitted to the ideal functionalities, and do not see the internal records
of the functionalities.

Game G9: FWAR Follows All NewKey Instructions
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In this game each instance of FWAR follows all of the instructions in Fig-
ure 10 for sampling and distributing keys to all parties in all cases, including
the only remaining case: that the NewKey query is for an honest party inter-
acting with at least one corrupt party and the exchange fails, meaning that
there is at least one Pi such that (ϕi, wi) /∈ R for the recorded (Pi, ϕi, wi).
In this case, upon receipt of each NewKey query, the functionality samples
a fresh and independent random key to output to the queried party.

G9 is indistinguishable from G8: The outputs are identically distributed as,
in G8 when the simulated parties do not accept and the exchange is a failure
the simulator queries the functionality with an independent and uniformly
random key which is then forwarded to the parties as output. In G9 upon
receipt of each new key query the functionality samples a new uniformly
random key and outputs this key to the queried party.

Game G10: FWAR No Longer Leaks Witnesses

The functionality FWAR no longer forwards witnesses to S2-WAKE upon re-
ceipt of NewSession queries, instead forwarding only (NewSession, sid, Pi, ϕi)
as in Figure 10. As S2-WAKE no longer receives witnesses from the func-
tionality it queries (Knowledge : sidH , Pi) to determine the response bit bi
indicating the validity of the witness input by Pi. If bi = 0 then the sim-
ulator halts on behalf of that party, just as an honest party would if they
could not generate a verifying signature. Otherwise, S2-WAKE generates all
signatures using the Simsign algorithm and ensures that these signatures
verify using Verify, otherwise halting with an error on behalf of FSOK.

G10 is indistinguishable from G9: The honest parties still have signatures
that verify based on the validity of the witness input by Z, thus the view
of the environment does not change.

The games are indistinguishable in the event that the simulator does not
output an unforgeability-error or an incompleteness-error. Let ER

uf and ER
inc be

the events that in the real world FSOK outputs an unforgeability-error and an
incompleteness-error respectively. Let EI

uf and EI
inc be these events but for the

simulated FSOK in the ideal world.
Event ER

inc occurs when the functionality FSOK receives a signature query
(Sign : sid,m, ϕ, w) and computes σ ← Simsign(m,ϕ) but Verify(m,ϕ, σ) ̸= 1.
Event EI

inc occurs when the simulated FSOK does the same, either (1) when
responding to an adversarial signing query or (2) when generating the round
2 messages. Case (1) is exactly when FSOK would generate an error. As the
simulator perfectly simulates FSOK the simulated functionality would output an
incompleteness-error with the same probability that the real functionality would
output an incompleteness-error .

Event ER
uf occurs when a party issues a verification query (Verify : sid,m, ϕ, σ)

for (m,ϕ) which was not signed through the signing interface of FSOK (otherwise
there would be a record) and the Extract algorithm does not output a valid
witness but the signature verifies with the Verify algorithm. This implies that
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the query is issued by an honest party on an adversarially generated signature
which violates extractability. Event EI

uf occurs when (1) simulated parties verify
adversarial signatures in the ideal world through the simulated FSOK or (2)
when the simulator extracts from verifying signatures to construct new session
queries on behalf of the impersonated parties for each instance of FWAR. Case
(1) is exactly the case in which an error occurs in the real world. In case (2)
the simulator only extracts witnesses from signatures that have already verified
through a simulated query to the simulated FSOK. Any signature which triggers
an error in the real world would trigger that error in the ideal world prior to
the simulator running the extractor for the new session queries. As these events
happen with the same probability in both worlds, the errors occuring do not
effect the view of Z or help the environment to distinguish.

H Offline/Online Computation

The most expensive part of these WAKE protocols is the computation of the
Signature of Knowledge, implemented using a Non-Interactive Proof of Knowl-
edge of the witness. If implemented with a SNARK, a succinct noninteractive
argument of knowledge, the proof can be constructed with small bandwidth and
verification time. The ability to instantiate the protocols using SNARKs comes
from the choice of non-black-box extraction, which permits succinctness.

It is well known that the bottleneck cost of such computations is the prover
time ie the time it takes to compute the proof. The following is an optional
optimization which migrates the cost of computing the SNARK to an offline
phase prior to the participant initiating a WAKE session or being contacted for
a WAKE. The optimization is shown in the two party case for simplicity.

Let Ψ be an existentially unforgeable under chosen message attack (EUF-CMA)
digital signature scheme defined by the following three algorithms: key gener-
ation (vk, sk) ← Gen(1λ), signature σ ← Sign(sk,m) and verification {0, 1} ←
Vfy(vk,m, σ).

Let the Prover P hold a witness w to the statement ϕ such that (w, ϕ) ∈ R.
Let Σ be a nBB-s-SE-secure signature of knowledge and K a KEM-CPA-secure
key encapsulation mechanism. During the offline phase P generates (sk, vk) ←
Ψ.Gen(1λ) as a key pair for a digital signature scheme Ψ with sk the secret
signing key and vk the public verification key. Then, P uses the SOK Σ to sign
vk, storing

(
(sk, vk), σ1

)
for:

σ1 ← Σ.SSign(ppΣ , ϕ, w, vk)

During the online phase, any party V to whom P wants to authenticate
generates and sends ek. With this key P encapsulates (k,C)← K.Encap(ek), sets
m := (C||ek) and signs σ2 ← Ψ.Sign(sk,m). Then P sends (C, vk, σ1, σ2) back
to V for verification and decapsulation. If V verifies σ1 and σ2 then V computes
the key k ← K.Decap(dk,C). This is the protocol ΠK,ΣUWAKE from Appendix B.

The offline-online optimized protocol can be seen in Figure 21 for any exis-
tentially unforgeable EUF-CMA-secure digital signature scheme Ψ . Incidentally,
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the digital signature Ψ can be a one-time signature as each verification key is
used to sign a single message. Intuitively, the proof of security follows from the
security of Σ and Ψ .

Concerning security: the main technical issue is extraction. The Prover is
guaranteed to know the witness during the offline phase during the computation
of σ1 but not upon completion of the online phase of the protocol. This is an
inherent limitation of the optimization. In some applications this may be an issue
eg if a party must prove storage of a certain file. One way to address this issue
in practice is to add a timestamp to the offline signature, thereby mitigating
the problem and guaranteeing that the Prover knew the witness at a relatively
recent known time.

While the above discussion and Figure 21 refer only to the UWAKE setting
this modification can be generalized and applied to the group-WAKE setting by
having all authenticated participants execute the offline phase.

I Experimental Settings

The signature of knowledge used for instantiation [30] requires groups endowed
with bilinear pairings; its signatures consist of only two elements of G1, one
element of G2 and a hash. Estimateds are derived through the implementation
of [30] in libsnark19 using curve BN254 with 110 bits of security. 20 All experiments
were run on Amazon EC2 c5ad.16xlarge with 128 GiB of RAM running 3.3GHz
AMD EPYC 7002 series CPUs, using a single thread.

Zero-Knowledge Contingent Payment:
(a) Sudoku Solutions In the benchmarks in table, the party authenticates

with respect to knowledge of a solution to a sudoku puzzle of standard size
N = 10. The circuit complexity of this verification grows roughly with N3. (b)
Bug Bounties: Benchmarks are for |Cexpect| ≈ 500K wires and |Cbuggy| ≈ 10K
wires.

Dark Pools: This scenario is introduced in Section 1. Each party authenticates
on the basis that some committed value is in a certain range. The range for these
benchmarks B̄ is 32 bits and the commitment c̄ is a SHA256 hash.

Retrieval Market: This scenario is introduced in Section 1. The content
identifier (CID) h̄ of the file F is the the Blake3 [9] hash, similarly to with
IPFS [35]. Files are broken into 256KB block sizes.21

19 https://github.com/scipr-lab/libsnark
20 This curve has comparable runtime to BLS12-381 with 128 bits of security. More

specifically, the work in [8] reports a slowdown factor of roughly 2× for G1 operations
and 3× for G2 operations in BLS12-381 when compared to BN254.

21 These benchmarks differ from the current implementation of IPFS which employs
SHA256, but producing a (very succinct) SOK for such a SHA computation of that
size is significantly more expensive. Hashing with Blake3 requires approximately 219

constraints while SHA256 would require approximately 227.
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S2-WAKE

S initializes A and reliably forwards all messages between Z and A. Corruption
instructions from A are obeyed if they occur prior to any initialization queries.

– CRS Functionality:
• Sample (G, g, q)←$ D
• Upon queries (CRS : sid) from party Pj , send a delayed public output

(CRS, sid, (G, g, q)) to Pj

• For each honest party Pi: send a delayed public output
(CRS, sid, (G, g, q)) to Pi

– Signature of Knowledge Functionality:
• Initial Set Up:

∗ Set R′ = R×R(G,g)
DLP and sid′ = (sid,R′)

∗ Output (SetUp, sid′) to A and receive (Algorithms :
sid′,Verify, Sign, Simsign,Extract) from A

• Set Up, Signing and Verification Queries: responses are simulated ex-
actly as in the description of FSOK, except the simulator records any
valid witnesses submitted by corrupt parties

• In the case that the simulated FSOK generates an error: halt the simu-
lation of FSOK

– Round 1 Messages: For all honest Pi, after receipt of (Init, sid, Pi, Φi)
from sFWAR
• Sample xi ←$ Z∗

q compute zi := gxi . Send (Pi||zi) to all P and receive

(Pj ||z(i)j ) for all P and set vki := P1||z(i)1 ||P2||z(i)2 || · · · ||Pn||z(i)n

– Adversarial Init Queries:
• For each corrupt Pj : query (Init : sid, Φ) to sFWAR from Pj

• For each honest Pi: determine the authentication set as Hi = {Pk ∈
P|vkk = vki}

• For each authentication set H:
∗ For any Pi ∈ H: set sidH = vki
∗ For each Pi ∈ H: query (Init : sid, Pi, H, sidH , Φ) to sFWAR

– Round 2 Messages: For all honest Pi after receipt of
(NewSession, sidH , ϕi, Pi) from FH

WAR through sFWAR

• Query (Knowledge : sidH , Pi) to sFWAR and receive
(Knowledge, Pi, ϕi, bi). If bi = 0: halt

• Compute Zi := (z
(i)
i+1/z

(i)
i−1)

xi and mi := (Pi||Zi||vki)
• Compute σi ← Simsign(mi, ϕ

′
i) for ϕ

′
i = (ϕi, zi) and if Verify(mi, ϕ

′
i) ̸=

1 halt the simulation of FSOK and the party Pi, otherwise record
(mi, ϕ

′
i, σi) on behalf of the simulated FSOK

• Send (Pi||Zi||σi) to all P and receive m
(i)
j = (Pj ||Z(i)

j ||σ
(i)
j ) from each

Pj

• Verify each σ
(i)
j by simulating the behavior of FSOK in a verification

query. Let {b(i)j }j be the returned verification bits. If any b
(i)
j = 0 set

ski ← {0, 1}λ
– Key Computation: For each honest Pi: if ski is not set compute ski

using the messages that party received
– New Session Queries: For each H, for all Pj /∈ H:

• If any b
(i)
j = 1 for Pi ∈ H: Extract w̄

(i)
j ← Extract(m

(i)
j , ϕ

(H)
j , σ

(H)
j )

∗ If (w̄, ϕ
(H)
j ) ∈ R: Query (NewSession : sidH , ϕ

(i)
j , w̄

(i)
j ) to FH

WAR

∗ Else: halt on behalf of FSOK with an unforgeability-error

• Query (NewSession : sidH , ϕ
(i)
j , w̄

(i)
j ) to sFWAR as (Input :

sid, H, Pj , q
(H)
j )

– New Key Queries: For all honest Pi:
• Query FH

WAR with (NewKey : sidH , Pi, ski)

Fig. 20. The simulator for protocol Π2-WAKE.
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SEQUENCE OF GAMES

Game
sFWAR FWAR SWAR Property

Init I/O NewSession Knldg NewKey

A
ll
C
a
se
s

G0 N/A: this is the real protocol

G1 forwards
queries &
invokes
instances
of FWAR

routes
communi-
cation

forwards
queries
from

dummy
parties to
S

forwards
outputs
from S to
dummy
parties

simulates
messages of

honest
parties &
splits

sessions

N/A

G2 records
inputs &
checks
queries

issues
queried
keys

submits
NewKey
queries

N/A

G3 records
inputs

simulates
FSOK & FCRS

N/A

G4 verifies
witness

knowledge
when
queried

submits
Knowledge
queries

N/A

A
ll
H
o
n
es
t
&

N
o
M
IT

M G5 Succ =
T⇒
sends

consistent
random
key

DDH

G6 Succ =
F⇒

sends in-
dependent
random
keys

N/A

G7 no longer
forwards
witnesses

uses
knowledge
queries to
learn if

parties have
witnesses

N/A

S
o
m
e
C
o
rr
u
p
ti
o
n
s
o
r
M
IT

M G8 corrupt
inputs are
set by S

uses Extract
to obtain
witnesses

and
forwards
them to
FH

WAR

FSOK

G9 Succ =
F⇒

samples
indepen-
dent keys
for any
honest
partners

N/A

G10 no longer
forwards
witnesses

to S

uses
knowledge
queries to
learn if

parties have
witnesses

N/A

Table 5. Summary of hybrids for Theorem 3.64



Πoff-on
UWAKE

Offline & Online UWAKE

Offline Phase

Responder(ppWAKE, ϕ, w)

(vk, sk)← Ψ.Gen(1λ)

σ1 ← Σ.SSign(ppΣ , ϕ, w, vk)

s← {sk, vk, σ1}
Online Phase

Initiator(ppWAKE, ϕ) Responder(ppWAKE, ϕ, w, s)

(ek, dk)← KEM.KG(1λ)

ek−−−−−−−−−−→
(k, C)← K.Encap(ek)
m := (C||ek)
σ2 ← Ψ.Sign(sk,m)

C,vk,σ1,σ2←−−−−−−−−−−
bΣ ← Σ.SVfy(ppΣ , ϕ, vk, σ1)

bΨ ← Ψ.Vfy(vk, C||ek, σ2)

if (bΣ ∧ bΨ ) :

k ← K.Decap(dk, C)

else : k = ⊥

Fig. 21. The offline-online optimized protocol for UWAKE.
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