A Linear-Time 2-Party Secure Merge Protocol

Brett Hemenway Falk!'*, Rohit Nema?:*, and Rafail Ostrovsky® *

! University of Pennsylvania fbrett@cis .upenn.edu
2 UCLA rnema®ucla.edu
3 UCLA rafail@cs.ucla.edu

Abstract. We present a linear-time, space and communication data-
oblivious algorithm for securely merging two private, sorted lists into a
single sorted, secret-shared list in the two party setting. Although merg-
ing two sorted lists can be done insecurely in linear time, previous secure
merge algorithms all require super-linear time and communication. A
key feature of our construction is a novel method to obliviously traverse
permuted lists in sorted order. Our algorithm only requires black-box use
of the underlying Additively Homomorphic cryptosystem and generic se-
cure computation schemes for comparison and equality testing.

Keywords: Secure Computation - Homomorphic Encryption - Oblivi-
ous Protocols.

1 Introduction

Securely merging two sorted lists into a single, globally sorted list with the same
asymptotic complexity as in the insecure setting has been a long-standing open
problem. It is a fundamental tool in many machine learning and data-processing
applications [4T6/56], Oblivious RAM [44130], and Private Set Intersection (PST)
[34]. A series of works [1IB2I3TII3] have shown that securely sorting a list can
be done with the same asymptotic complexity as insecure sorting. On the other
hand, for merging, a gap remains. In the past, it has been solved with compli-
cated techniques that either run in super-linear time or communication, or make
unnatural assumptions.

In the insecure setting, and in the three-party ORAM setting, where there
are three servers and a trusted client, merging two sorted lists of length n can be
done in O(n) time, [10], whereas in the secure setting, the best existing 2-party
secure merge algorithm requires O(nloglogn) communication [25].

Our main result is to close this gap. More explicitly, we show

Theorem 1 (Main Theorem). There exists a 2-party protocol for merging
two locally sorted lists in linear-time, space and communication that provides
security against semi-honest adversaries. The protocol only requires black-box use
of an Additively-Homomorphic cryptosystem and a generic secure computation
protocol for comparison and equality-testing on secret shares.

* Work done while consulting for Stealth Software Technologies, Inc.

Secure 2-party merge protocols arise naturally, since the two participants can
each sort their list locally before the protocol begins. Three-party protocols for
secure merge are less natural, since there are still only two lists being merged,
but these lists are secret-shared amongst the three computation parties. If the
two lists being merged were initially held in the clear by two parties, then it’s
unnatural to require a third party to aid in the secure merge procedure. On the
other hand, if the two lists were initially secret-shared among two parties (e.g. as
the output of a previous 3-party computation) it becomes less natural to assume
that they are pre-sorted (since they cannot have been sorted locally).

One application of two-party merge protocols is in Private Set Intersec-
tion (PSI). There are many PSI protocols, but most output the intersection
in the clear (e.g. [27U3813512003313612T122/24 50047405 TI52B7TATTA6II6]). In
many applications, however, PSI is only a first step in a larger computation, and
in these settings the PSI must return secret shares of the intersection, rather
than the list itself — but these secret-shared PSI protocols (e.g. [I7/49/48]) tend
to be less efficient than protocols that reveal the intersection in the clear. One
of the earliest methods for secret-shared PSI is the sort-compare paradigm [34],
where the participants sort their joint list, then compare adjacent elements in
a linear pass, deleting singletons. The problem with this approach is that the
initial sorting step takes O(nlogn) communication. Using our novel linear-time
secure merge protocol, the sort-compare paradigm gives a simple, efficient linear-
communication secret-shared PSI protocol.

Our protocol is inspired by the 3-server ORAM merge protocol of [10], where
the two sorted lists are treated as linked lists, then each linked list is shuffled
with a collection of “dummy” elements using a linear-time three-party secure
shuffle [42]. Thereafter, the trusted client can traverse the shuffled linked lists,
comparing one element at a time, as in the standard insecure merge protocol.

There are several obstacles that need to be overcome in order to eliminate
the trusted client and one of the servers from the [I0] merge protocol. We can
use a linear-time 2-party secure shuffle [25] to replace the 3-party shuffle, but
updating the pointers in the shuffled lists is challenging without a trusted client.

To overcome this obstacle, we develop a technique for converting values en-
crypted under the key of one participant into additive secret shares of the same
underlying plaintext. (See Section) This conversion process is extremely
efficient, and only relies on the cryptosystem being additively homomorphic.
Moreover, the trusted client in [I0] can easily switch from the real to dummy
list obliviously once the real list is exhausted; however, this is non-trivial in our
2-party setup since obviously neither party should learn when a real list has been
exhausted. We combat this issue by creating a unique, partially circular linked
list (Section Figure|l) such that the protocol can seamlessly switch from the
real to dummy list.

Using this novel linked list construction and ciphertext-to-secret-sharing tool,
we give a two party secure merge protocol, where each participant treats their
input as a linked list, then allows the other participant to shuffle this linked list
(while updating the pointers). The parties then re-share these permuted linked

lists, and compare elements one at a time (using a secure comparison protocol),
while the exact sequence of data accesses from each list is independent of the
underlying data. See Section [5| for the full construction.

2 Previous Work

2.1 Secure sorting

Merging two sorted lists can be seen as a special case of sorting, and thus any
sorting protocol is also a merge protocol. When security is not required, a simple
counting argument shows that any comparison-based sorting algorithm requires
O(nlogn) comparisons, whereas two sorted lists can be merged using only O(n)
comparisons. Although secure merge protocols are a building block for many
secure multiparty computations, most applications focus on the more general
(and more difficult) problem of secure sorting.

One route for building a secure sorting protocol is to securely implement a
data-oblivious sorting network using a generic circuit-based secure multiparty
computation (MPC) protocol (e.g. GMW [29], BGW [7] or Garbled Circuits
[68/59]). Asymptotically, the best sorting network is the AKS network [I], which
requires O(nlogn) comparisons. Although the AKS network is asymptotically
optimal, the hidden constants are extremely large [2], and so the AKS network
has little practical value. In practice, Batcher’s bitonic sort [5] which requires
O(nlog2 n) comparisons is much faster and is widely implemented in practice,
including in the ABY [23], Obliv-C [60] and EMP [57] compilers. Batcher’s
sorting network is defined recursively, and thus when using Batcher’s network
to merge two pre-sorted input lists, all but the final level of the recursion can be
omitted. Unfortunately, this does not improve the asymptotic complexity, but it
does increase the concrete performance by about a factor of 2.

One problem with implementing traditional sorting algorithms (e.g. quick-
sort, mergesort, radix sort) using generic secure computation, is that the they are
not data-oblivious — even if the comparisons are implemented securely, the data
movement depends on the underlying values being sorted. The shuffle-then-sort
paradigm [323TT3], solves this problem by first obliviously shuffling the input
lists, then securely executing a traditional sorting algorithm. The initial shuffle
ensures that the data movement (which is not hidden by the secure computation)
is independent of the underlying data. These techniques yield an asymptotically
optimal (O(nlogn)) sorting algorithms, that are also efficient in practice.

The efficiency of the shuffle-then-sort paradigm rests on the efficiency of the
secure shuffle protocol. In the 3-party setting there are linear-time secure shuffles
(based on one-way functions) [42], and in the 2-party there are linear-time secure
shuffles (based on additively homomorphic encryption) [28§].

Applying the shuffle-then-sort paradigm to the problem of merging immedi-
ately yields O(nlogn)-communication oblivious merge protocols, but does not
achieve the O(n)-time merging that is possible in the insecure setting. In fact,
the 2(nlogn) lower bound on comparison-based sorting means that this ap-

proach will never yield a linear-time secure merge algorithm — unless we can
take advantage of the fact that the initial lists being merged are pre-sorted.

Alternative sorting schemes (e.g. Radix sort) avoid the £2(nlogn) lower
bounds on comparison-based sorting. These sorting algorithms are efficient, but
rely on the RAM model of computation, and their data-dependent access pat-
terns cannot be efficiently implemented in the circuit model. One exception is
[4], which uses non-comparison based techniques to beat the 2(nlog(n)) lower
bound, but still remains in the circuit model.

2.2 Secure merging

Secure, multiparty merge protocols have been studied separately from secure
sorting protocols, and just as in the insecure case, focusing on the problem of
merging allows us to circumvent the 2(nlogn) lower bound for sorting.

The first secure merge protocol with (asymptotically) less communication
than a corresponding secure sort was given in the 3-server ORAM setting (which
requires 3-servers and a trusted client), where there is an information-theoretic
secure merge protocol with only O(n) communication [I0]. In general, any k-
server ORAM protocol, the client can be emulated using secure multiparty com-
putation (MPC), thus the protocol of [I0] also yields a 3-server secure merge pro-
tocol. Unfortunately, using MPC to securely emulate an ORAM client can dra-
matically hurt performance since the ORAM client may not be “MPC friendly”,
e.g. the client may have a very large circuit complexity, which leads inefficiencies
when emulating the ORAM client under MPC.

The key idea of [I0] is to apply “shuffle-then-sort” [32IBIIT3] to the idea
of merging. Essentially, the participants shuffle the two (sorted) linked-lists —
updating the pointers to each element’s new, shuffled location. Then the partici-
pants apply a standard (non-oblivious) merge protocol to traverse these shuffled
linked lists (without needing to hide the data movement). These techniques yield
a linear-communication secure merge protocol, but the construction of [10] only
works in the 3-party ORAM setting, i.e., when there are four parties, three
servers and a trusted client.

The “shuffle-then-merge” paradigm is a bit more delicate than the “shuffle-
then-sort” paradigm, since the input lists in a merge are pre-sorted, and the
merge protocol must process them in this sorted order (even after the oblivious
shuffle). To overcome this difficulty, the pre-sorted input lists can be turned into
linked lists, and the oblivious shuffle can update each item’s pointer to point to
the permuted position of its successor [10].

In the two-party setting, [25] gives a protocol based on additively homomor-
phic encryption that securely merges two lists using O(nloglogn) communica-
tion. The key idea of [25] is that since the input lists are pre-sorted, we can
divide the entire list into poly-logarithmic sized blocks, and focus on moving
these blocks into (nearly) the correct positions. Once the large blocks are in
place, the small number of remaining “strays” that are out of place, can be iden-
tified and moved efficiently. Although our solution is fundamentally different,
like [25], we also rely on a linear-time 2-party shuffle.

Our protocol follows a shuffle-then-merge paradigm that is similar to [10],
but in order to adapt this to the two-party setting, we create a new protocol for
shuffling linked lists in the two-party setting (which can be seen as an extension
of the two-party oblivious shuffle of [28/25]).

3 Overview

3.1 Challenges

In the insecure setting, two parties can merge their locally sorted lists by sim-
ply comparing their smallest elements and advancing the list with the smaller
element. This operation is linear in the length of the two lists. The core issue in
translating this linear-time merge algorithm to a secure version is that advancing
a list is not data-oblivious — it reveals which list contained the smaller element.

Protocol 1 A basic, data-dependent merge.
Input: Two sorted input lists A, B of lengths na and np
Output: A sorted output list C of length na + ng

1: Initialize i4 =ip =ic =0

2: while ic <na+np do

3: if Afia] < B[ig] or ig >np then

4: Clic] = Alia]
5: iAa=1%4+1

6: else

7: Clic] = Blis]
8: iB = ’iB +1

9: end if

10: ic=1c+1

11: end while

There are two key challenges when trying to adapt the non-oblivious naive
merge protocol (Protocol , into an oblivious variant.

1. Which list is being accessed: Whether the algorithm reaches Line [4] or
Line [7] reveals which list is being accessed.

2. Which location is being accessed: When the algorithm reaches Line [4]
(resp. Line|7)), it reveals which element of A’s (resp. B’s) list is being accessed
at iteration ¢.

We also face an additional challenge: we have only two participants in the
protocol unlike these prior works which had three, either two servers and a
trusted client [43] or three servers and trusted client [I0].

3.2 Intuition and Construction Overview

Oblivious shuffle with linked list: To address challenge [2, we rely on an
oblivious permutation. In the multiparty setting, it is possible to perform efficient
(linear-time), oblivious shuffles of secret-shared lists [42]. Similarly, in the two-
party scenario, the participants can use additively homomorphic encryption to

obliviously shuffle ciphertexts in linear time [28)25]. These linear-time multiparty
shuffles are a key building block of many secure multiparty sorting protocols
[3231)13], and secure merge algorithms [T0J25].

By viewing each participant’s sorted input as a linked list, then shuffling that
list, the parties can decouple the locations being accessed from the iteration of
the loop — for example, at Line [4f the protocol would read location IT4 (i) for
some random permutation I7 4, instead of directly reading i 4.

There are some subtleties here, as the parties need to obliviously permute
their linked lists, and then obliviously traverse them.

In order to allow the parties to traverse the permuted linked lists in the
original (sorted) order, the parties must also update the pointers. Thus if 7 is a
permutation of [n], and the original list is (v[0],...,v[n - 1]), the parties will
create two new arrays

w=(v [ﬂ’l(())],...,v[w’l(n—l)]) Permuted data
t=(m (7r_1 (0)+1),...,m (7r_1 (n-1)+1)) Permuted tags

With ¢[7(n-1)] =L. Thus if w[i] =v [j], then w[t[i]] =v[j +1].

This structure allows the parties to traverse the permuted list, w, by first
revealing 7 (0) and then, selectively revealing elements of ¢, starting with ¢[7(0)],
t{r(1)], ...

Our goal is for each party to achieve a secret-shared, permutation of their
own list permuted (as well as the updated pointers) by the other party. In our
construction, the second party acts as a permuting party for the first and gen-
erates both the permuted list and the corresponding linked list to traverse it.
To maintain privacy of the data and obliviousness of the memory accesses, the
second party’s permutation, and the first party’s data must remain private.

Now, if the permuting party holds on to its share of the owner party’s list,
it is not clear how to obliviously traverse the permutation since the permuting
party knows the position of each accessed share, and thus each element.

When there are three participants this can be done information-theoretically,
by having each participant generate a permutation and secret-share to the other
two participants [10]. In the two party setting, we can use additively homomor-
phic encryption to (obliviously) permute a private list [28/25], but we cannot use
those constructions in a black-box manner, since they do not allow us to create
the shared tags needed to traverse the permuted list.

Instead, we recombine the shares at the owner party but to maintain oblivi-
ousness, i.e. to hide the data itself so as to not leak the permutation, both parties
somehow convert their shares into shares encrypted using the permuting party’s
public key. The owner party can then use the additive homomorphism of the
encryption scheme to add the encrypted shares and obtain an encryption of the
element under the other (permuting) party’s public key. Therefore, it cannot
decrypt to learn the underlying value (and thus, permutation).

Adding dummies and oblivious pointer advancement: To address chal-
lenge [we add “dummy” elements to each party’s list so that we are able to

advance both lists every iteration of the loop. For simplicity, suppose both par-
ties’ lists are of size n. Then, both parties can generate n dummy elements and
maintain two separate pointers to keep track of the real and dummy elements
respectively. These dummies are interspersed with the real elements to create a
list of 2n elements. At every iteration, the party with the smaller element ad-
vances its real pointer, while the other party advances its dummy pointer. This
ensures that an element is consumed from both lists every iteration of the merge.
Finally, we are left with two more operations: (1) comparing encrypted real
values efficiently and (2) advancing lists obliviously. We achieve (1) using a
trick to convert ciphertexts into secret shares which can be passed to any state-
of-the-art 2-party comparison protocol [54I8] to avoid executing an expensive
decryption circuit jointly; and we accomplish (2) by a clever construction of the
linked list. The detailed shuffle and merge protocol is shown in Section [f]

4 Preliminaries

4.1 Secret sharing

Our protocol makes use of an additive secret sharing scheme, where a secret z € G
is shared as (z —r, r), for some random r < G where G is the finite group that
parameterizes the Group Homomorphic Encryption scheme. In the two-party
setting all linear secret-sharing schemes are essentially equivalent [I9], so we can
focus on this scheme without loss of generality.

As is standard, we use the notation [z] to denote a secret sharing of the
plaintext x. Using the linearity of the secret sharing scheme, the participants
can compute [z + y] from [z] and [y] with no communication.

For more complex calculations on shares, we rely on secure multiparty com-
putation (MPC), described below.

4.2 Secure computation

Our protocol makes use of a few simple primitives for processing on secret shares,
comparisons, multiplexing and equality tests. These basic primitives are imple-
mented in essentially every secure computation framework, including ABY [23],
EMP [57], SCALE-MAMBA [3] and MPyC [53].

We assume that there is an underlying ordering on the elements of G — this
is a necessary assumption since the parties want to sort their elements.

Our construction is compatible with both arithmetic and boolean secure
computation protocols, although comparisons and equality tests are likely to be
more efficient in boolean-circuit-based secure computation protocols.

4.3 Additively homomorphic encryption

Our construction makes use of a semantically secure, additively homomorphic
cryptosystem, (KeyGen, Enc, Dec, Add). Our system is compatible with classical
additively homomorphic schemes like Paillier [45], or lattice-based schemes that

Comparisons

[0] if z >
[["“yﬂ:{[m] ifx<Z

Multiplexing

e (0L) - { o 302

Multiplexes are often implemented as a simple multiplication

mux ([o], [=], [y]) = [=] + [6] - ([v] - [=])

Equality tests

[0] if z
[[“zyﬂz{[u]] 1ijz

natively work over Z/27Z, e.g. BEV [26/9] or CGGI [14/T5], both of which are
widely supported by current FHE implementations [55]. Note that the security
we require for the Add(-,-,-) is much weaker than full circuit privacy [8], since
in our application the summations being computed are known to both parties,
and only the summands are private.

In order for our final merge protocol to achieve linear communication, the
underlying addively homomorphic cryptosystem must have constant ciphertext
expansion.

4.4 Notation

As there are only two parties, and each party has a unique public key (for the
additively homomorphic cryptosystem), when we say “key ¢” we mean the public
key of party i, pk;.

We denote each party as P; where i € {0,1}. As all our protocols are two-party
protocols (and most are completely symmetric), we take all subscripts modulo
2, thus if P; is one party, P;;1 is the other party.

Several protocols below must be run twice, one time for each party, so we
give such protocols an index with respect to which we write the steps within the
protocol. For example, Protocol; will be called twice, for i € {0,1} and we use
index ¢ within the protocol to identify the parties. Similarly, we use the same
index to define the ideal functionality.

We introduce some more notation in Table [Il

Additively Homomorphic Encryption
Semantic security: for all x,y € G

pk, sk < KeyGen (lA) pk, sk < KeyGen (1)‘)
k:7 x) * Re k7 : .
{(p @), Enc(pk, z) (pk.cy) ¢y < Enc(pk,y)

Security of Add: for all z,y € G

pk, sk < KeyGen (1) pk, sk < KeyGen (1)
c ¢z < Enc(pk, x) c ¢z < Enc(pk,x)
Cor ey, v ENC(PR,Y) me | Carcy, : v ENC(DhY)
pk, sk r<g pk, sk r<g
cr < Enc(pk,r) ¢r < Enc(pk,r)
c < Add(pk,cz,cr) ¢« Add(pk, cy, cr)

Decrypting the sum of two ciphertexts yields nothing about the individual sum-
mands.
Correctness: for any z,y€ G, and ¢ >0

pk, sk < KeyGen (1)‘)
¢z < Enc(pk,x)
¢y < Enc(ph.y)
Ca+y < Add(pk, ¢z, cy)

Pr[{ Dec(sk,cziy) : =z+y[>1-0(X\)

[] A secret sharing of the value x

[]: Party ¢’s secret share of the value z

{mh: An encryption of the message m under public key of party ¢

Table 1. More Notation

5 Construction and protocol definitions

In this section we describe our construction. First, we present a two-party algo-
rithm for creating and shuffling linked lists. Second, we present a technique for
converting encryptions (encrypted by one party) into secret shares. Third, we
show how to combine these tools into our main construction which is a linear-
communication secure merge protocol.

We assume that party ¢ has a key pair (pk;, sk;) for an additively homomor-
phic cryptosystem (KeyGen, Enc, Dec, Add).

5.1 Obliviously shuffling input lists

In this section, we describe our novel two-party protocol for padding and shuffling
private linked lists. ShuffleLL; (Protocol . The goal of the ShuffleLL; protocol

is for party i to achieve a random permutation of its input list with dummies
encrypted under party (i + 1)’s public key. The protocol takes a parameter, m,
defining how many “dummy” elements are created. Although ShuffleLL; takes m
as a parameter, in our final merge protocol, P; should set m equal to the length
of its input list. The ShuffleLL; protocol realizes the ideal functionality, F2, e
below.

Ideal Functionality fsilluﬂqe

1. Input: P; with sorted list v of size n, and P;,; with permutation
m:[m+n] - [m+n] for some m > 0.

2. Create v’ by concatenating m dummy elements to the end of v and
shuffle v using m, w[j] < v’ [7r_1 (j)] for j€{0,....,n+m-1}.

3. Create linked list ¢ to traverse w, such that if w [j] = v [k], then w [¢[i]] =

v[k+1].

4. For j €{0,...,n+m -1}, output {w[j])i+1, and {t[j])i+1 to P;, and
1 to Pi+1'

5. gutput ([« (n+)]s, [7 (0)]s) to Pi, and ([7 (n+1)]is1, [7(0)]i+1) to

6. Output [w (n)]; to P; and [w (n)]i+1 to Piia.

In the second last step, we output a 2-tuple which are secret shares of the
head pointers (positions) of the dummy and real list respectively. In the last
step, we output the secret share of the position of a special end-of-list dummy
element. This special element is used to obliviously switch between the real and
dummy list. It is explained in detail in Section [5.1] and

Below, we describe the shuffle for party Py but in the final protocol they also
swap positions and rerun. Assume that Py holds a sorted list v of length n, and
Py generates a random permutation 7w over [m + n]. Then, the protocol proceeds
as follows,

1. Encrypt sorted list: To hide its real elements (input list), Py encrypts each
element using its public key pko and sends the list of ciphertexts (in sorted
order of the underlying value) to P;.

2. Generate shares: Given a value v, party 1 can create an additive sharing of
v as (v —r,r) for some random value r € G. In our setting, however, P; does
not have the plaintext value, v’, but instead has an encryption {v').
Using the additively homomorphism, given a ciphertext {v’)o, party 1 cre-
ates the encrypted pair ({v" =)o, {r)1). See Line

3. Concatenate encrypted dummies: Party P; creates a special dummy known
as the end-of-list element, and m — 1 random dummy elements. The end-of-
list element marks the end of both the real and dummy list but also points
to the first element of the dummy list. Therefore, the end-of-list element
along with the dummy elements form a cycle. The end-of-list element stores
the largest real value in sorted order instead of a random number as its
value. P; easily constructs the end-of-list element encrypted under pky by

10

just duplicating (v [n - 1])o. Instead of a linked list terminating by pointing
to 1, we will have it point to the this end-of-list element. The purpose of the
special element becomes apparent when either party’s real list is exhausted
and we must obliviously switch to traversing the dummy list while we access
the remaining real elements from the other party. (See Section [5.3])

. Permute ciphertexts and create linked list: Party P; permutes the pair of
shares using 7 by assigning the k'™ element of the permuted list to the
o (k:)th element of the concatenated list as shown in Line [5| To traverse
the permuted list in sorted order, P; also generates a linked list such that the
ih element is the position of the next element in sorted order (see Line @
We also point the last dummy element to the end-of-list element. Therefore,
the real (resp. dummy) list reaches the end-of-list element after n (resp. m)
steps. See Figure [I] below which illustrates this construction.

To hide the linked list from party Py (and thus, the underlying permutation),
P, encrypts each element of the linked list using its public key, pk;. Finally,
it secret shares the position of the first dummy and the first real element as
a 2-tuple head pointer, and the end-of-list element.

. Recombine shares: P; sends both the shuffled ciphertext pairs and the en-
crypted linked list to Py. Party P, first decrypts the ciphertexts which were
encrypted under its own public key, pkg and then re-encrypts them using
pk1, Pi’s public key. Using the additive property of the encryption scheme,
P, adds the newly obtained ciphertexts to their corresponding ciphertexts in
the pair. Due to the homomorphic property, Py obtains an encryption of the
sum of the underlying value which is in fact, the original set of real/dummy
elements as the pairs were constructed precisely from those values.

<
—
o
[t}
+
I~
—
—
[
+
N

v[n-1]| Real list

d[m-1]| Dummy list

W
W

| end-of-list I—) d[1]

\

Fig. 1. Construction of the linked list. d[1] and v[0] (as pair of encrypted shares) are
the at the head of the dummy and real pointer respectively. Both the last real element,
v[n - 1] and last dummy element, d[m — 1] point to the end-of-list element.

Therefore, at the end of Protocol [2| Py obtains a permutation (oblivious to

itself) of its original list with dummies encrypted under P;’s public key, along
with an encrypted linked list to traverse it. Note that the end-of-list element is
treated as a dummy element but stores a real value which is crucial in proceeding

11

obliviously when either party exhausts its real list. We further elaborate on this
in Section (.3

We prove ShuffleLL; securely computes the ideal functionality F) . in
Lemma 4

Protocol 2 ShuffleLL;: Pad and Permute Linked Lists

Input: Party P; holds sorted list v of size n; P;+1 holds random permutation 7:[m +
n] = [m +n] for some m > 0.

Output: P; obtains a permutation (under) of its elements (with m dummies) and
linked list, both encrypted using P;.1’s public key.

(index j € {0,...,n+m-1})
1: For k€{0,...,n—1}, P; encrypts c[k] < (v [k]):, and sends c to P;i1
2: For k ¢ {0,...,n—-1}, Pi;1 generates random value 7, < G, and creates
ci[k] < (c[k] = {re)i, {r)ic1) > 2-tuples of the form (c; [k][0],c; [K][1])
3: P11 generates random 7 < G and sets ¢} [0] < (c[n—1] = {r)i, (r)i+1)
> end-of-list element. c[n—1] - {r):; ={v[n-1] -7
4: For k € {1,...,m-1}, P;;1 generates dummies, d[k] = do[k] + d1 [k] where
do [k],d1 [k] < G are random, and creates, c; [k] < ({d; [K])i, {dis1 [k])is1)
5: Py1 permutes, ¢f [5] < (cif¢i) [77" (5)]

6: P11 creates linked list, ¢’ [7 (§)] < 7 (j + 1) with ¢’ [r(n+m - 1)] =7 (n) > point
the last dummy to the end-of-list element

7: P encrypts ti[5] < (¢'[j])in

8: P;41 secret shares p; = (7 (n+1),7(0)) > head pointers tuple

9: P;41 secret shares ¢; = w(n) > end-of-list element

10: P;;1 sends ¢}, and t; to P;

11: P; recombines ¢"[j] < ¢f [7][1] + {Dec(sko, ci [7][0]) Yi+1

5.2 Converting ciphertexts to secret shares

In this section, we give an efficient 2-party protocol for converting ciphertexts
from an additively homomorphic cryptosystem into secret shares of the same
underlying value. A similar idea was used implicitly for creating “blinded per-
mutations” [28].

In principle, a general-purpose MPC protocol can always be used to con-
vert ciphertexts to secret shares by evaluating the decryption circuit for the
encryption scheme within the MPC, but, in general, this is extremely ineffi-
cient. EncToSS; (Protocol |3) gives an extremely efficient two-party protocol for
achieving the same result when the underlying cryptosystem is additively homo-
morphic. EncToSS; realizes the ideal functionality, féecrypt defined below.

Ideal Functionality féecrypt

12

1. Input: P; with ciphertext, {v)i41-
2. Output secret shares of value v: [[v]; to P;, and [v];+1 to Piyq.

In our setting, party ¢ holds a ciphertext ¢ = (v);1 of a private value, v,
encrypted under party (i + 1)’s key. At the end of the protocol, the parties
hold additive secret shares of the underlying value v, and neither party learns
anything about v.

We prove that EncToSS; securely computes féecrypt in Lemma

Protocol 3 EncToSS;: Convert Ciphertext to Secret Share

Input: Party P; inputs ciphertext, ¢ = (v))i+1 (encrypted using pkis1).

Output: Returns secret sharing of the underlying plaintext, v.
1: P, generates random value, r; < G

P; encrypts (r;)i+1

P; uses the additive homomorphism to compute (v + 7)is1

P; sends ¢’ = (v +7;)is1 to Pi

P;;1 decrypts v < Dec(ski+1,c’)

P;;1 shares v’

P; sets [v"]; = [v']i -7

return [v"]

5.3 Securely merging obliviously shuffled lists

We are finally ready to securely merge the two parties’ lists. Our Merge protocol
realizes the ideal functionality, Fierge defined below.

Ideal Functionality Fmerge

1. Input: For i € {0,1}, P; with list v; of size n;.

2. Fmerge merges the two lists v; and vy such that the resultant list, v is
sorted.

3. Output secret shares of each element of v, [v[j]]o to Py, and [v[j]]1 to
Pl, fOI'jE {0,...,7’10+7’L1}.

Suppose party P; holds list v; of size n;. The protocol proceeds as described
below.

1. Obliviously shuffie padded list with linked list: First, both parties call ShuffleLL;
(for i € {0,1} (as described in Protocol [2)) to obtain an encrypted, permuted
version of their input list padded with dummies (including the end-of-list
element). ShuffleLL; also outputs an encrypted linked list that party ¢ later
uses to traverse their list without leaking the accessed positions to party i+ 1
(who knows the permutation).

13

2. Access elements from shuffled list: The parties maintain a secret-shared bit

for each party, [b;], and b; = 1 at iterations where P; needs to access a real
element, and b; = 0 at iterations where P; needs to access a dummy element.
In the first step, both parties access their first real element, in all subsequent
steps by # by since only one party advances its real listﬁ The bit, b;, allows
the parties to select and update the appropriate values obliviously using the
mux operation (e.g. Protocol [5] line [9).
At every step in the protocol, the parties also maintain a secret sharing of
the last observed real value in P;’s list, cur;. In any iteration where a dummy
element must be consumed from party i’s list, we use b; to obliviously select
cur; over the dummy value, effectively discarding it in place of the actual
real value to be compared. See Line [14] of Protocol

3. Compare real values: Using b;, we obtain the real values at the head of
each real list. To find the smaller element, we use a generic comparison
protocol (Section which returns a (secret-shared) bit equal to 1 if party
0’s real value was smaller than party 1’s. Therefore, we set by to the result
of the comparison protocol (line[15) and by « 1 - by (line [16]) allowing us to
appropriately update the head pointer for the next step.

4. Update head pointer: Now, we advance one party’s real list and the other
party’s dummy list as follows. First, we find the next position from the
encrypted linked list using EncToSS;. Then, we update the appropriate entry
of the head pointer using bit, b; (line . If b; = 1, then this means that P;’s
real value was smaller and we must advance the real (resp. dummy) pointer
to obtain the next real (resp. dummy) value from P;’s (resp. Pj.1’s) list.
Protocol [] details how the head pointer is advanced. Lemma [2] shows that
every memory location in the shuffled list is accessed exactly once, which
makes the overall access pattern independent of the underlying data.

5. Switching from an exhausted list: When either party exhausts their real list,
we must somehow notify the protocol and secret-share the remaining values
of the other real list.

We keep track of when a real list is exhausted by checking when the real
pointer reaches the end-of-list element. We do so securely using a generic
equality testing MPC protocol as described in Section We maintain
another secret-shared bit, fin initialized to 0, which acts like a boolean flag
and is inverted as soon as either real pointer reaches its corresponding end-
of-list element. See line [I0] of Protocol [}

Without loss of generality, suppose that party 0 exhausted its real list first.
This implies that by = 1 (and by = 0) from the previous iteration, and the real
pointer has been advanced to store the position of the end-of-list element.
Recall that the underlying value of the end-of-list element is exactly the same
as the largest real value, i.e., the most recent element that party 0 accessed in
the previous iteration. So on Line valy will equal the end-of-list element
i.e., the largest real value of party 0, and val; will equal cury, the most recent

4 Since by = —b; at every iteration after the first, we could increase efficiency by storing
only a single bit, but the exposition is simpler if we forego this minor optimization.

14

real value from party 1 that has not been advanced and secret-shared yet.
Therefore, essentially, we will perform the same comparison as the previous
iteration and conclude that valy is smaller. However, valy is a duplicate of the
most recent real value that was secret-shared in the previous iteration. This
is where we use the fin bit to “reverse” the bits so that we instead select valy
as the next real value, and advance the real pointer of party 1 (and dummy
pointer of party 0) as required since we're only left with real values from
party 1’s list. As valy is smaller than every remaining real value in party 1’s
list, every comparison hereafter will always return by = 1 which we always
invert hereafter using fin. We prove fin remains 1 once set in Lemma
thus proving the correctness of the algorithm. In summary, performing these
dummy comparisons allows the protocol to remain oblivious by still accessing
elements from the permuted list, and using the fin bit allows the the protocol
to correctly compute the merge.

Lastly, notice that if party 1 exhausts it real list first, then by construction,
party 0’s dummy pointer will reach the end-of-list element as we consume
one dummy for each real element after the first one and thus, cycle back
from the last dummy element to the end-of-list element. And since party 1
just exhausted its real list, we know by = 0 and b; = 1. So, posg is equal to the
position of the dummy pointer, i.e., the position of the end-of-list element.
Therefore, in either case (whether party 0 or 1 exhausts a real list), posg
will always equal the position of the end-of-list element and it is sufficient
to only test posy for setting fin (line[10).

Protocol 4 UpdateHead,: Update Head Pointer to Linked Lists

Input: Bit, [b]; Head pointer tuple, [p]; linked list, ¢ held by party P;.
Output: Head pointer tuple updated with the next real or dummy position from ¢

UL W=

according to bit, b.

+ [pos] < mux([b], [p[0]], [p[11])

: Reveal; (pos) > The revealed pos is an index in the shuffled list

[next] « EncToSS; (t[pos])

¢ [pnew[1]] < mux ([o], [p[1]]; [next])
¢ [pnew[0]] < mux ([b], [next], [p[0]])

: return [Prew]

In the end, both parties obtain element-wise secret shares of the merge of

their two sorted lists such that the resulting list is also in sorted order. We prove
Merge securely computes Ferge in Lemma @

Our algorithm runs in time linear in the length of the two lists requires

only linear communication between the two parties assuming the underlying
encryption scheme produces ciphertexts with constant factor expansion. The
concrete costs are outlined in Theorem 2

6

Conclusion

In this paper, we presented the first linear-communication 2-party secure merge
protocol. The protocol is asymptotically optimal, and efficient enough for prac-

15

Protocol 5 Merge: Securely Merge Sorted Lists

Input: Party P; holds input list v; of size n;.

Output: Parties obtain a secret sharing of the merge of the lists in sorted order.

1: For i € {0,1}, P; locally generates random permutation, m;: [no + n1] — [no + n1].

2: For i € {0,1}, run ShuffleLL; (v;, mi+1) so that P; obtains ciphertext list, ¢;, linked
list, ¢; and secret shares, [p;]: and [e;]: for j € (0,1).

3: For i € {0,1}, [b;] < [1] > b; indicates real or dummy list
4: For i € {0,1}, [cur:] < [L] > cur; is the current value in the real list
5: Jend] « [eo] > position of the end-of-list element
6: [fin] < [O] > fin =1 if either real list is exhausted
7. k<0

8: while k < ng +n; do

9: For i € {0,1}, [pos;] < mux ([b:], [ps[0]], [p:[1]]) > Choose pos; based on b;
10: [fin] < [fin] & [poso = end] > If fin =1 it will remain 1
11: For i € {0,1}, Reveal; ([pos;])

12: For ¢ € {0,1}, [ps] « UpdateHead, ([b:], [p:], ¢:) > Move to new head
13: For i € {0,1}, [temp;] < EncToSS; (¢; [pos:]) > Access next position
14: For i € {0,1}, [val;] < mux ([b:], [curs], [temp;]) > Choose real values
15: [bo] < [valo <wvali] @ [fin] > Compare real values
16: [b1] < [1 - bo]

17: [I[K]] < mux ([bo], [vals], [valo]) > [[k] is the smaller value
18: For i €{0,1}, [cur;] < [val;] D> Store most recent real value

19: k<~k+1
20: end while
21: return ([I[0]],...,[![no +n1 —1]]) > secret-sharing of sorted merged list

tical applications. To achieve this protocol, we introduced a 2-party method to
obliviously traverse a permuted list using a novel linked list construction and an
extremely efficient technique to convert ciphertexts to secret shares.

Our secure merge protocol makes only black-box use of an additively homo-
morphic cryptosystem, and a secure computation protocol supporting compar-
isons, equality tests, and multiplexing on secret shared values.

7 Analysis and Security

7.1 Correctness

Lemma 1. In Pmtocol@ (Merge), the variable fin is assigned the value 1 at
some iteration and remains 1 for every subsequent iteration.

Proof. 1t suffices to show posy = end exactly once. By construction, we know
that if either party exhausts their real list, then posy is set to end (see Sec-
tion . Moreover, the other direction is also true i.e., if posg = end, then some
party exhausted their real list. This is easy to see as posg stores the position of
either the real or dummy pointer. Suppose the real pointer reaches end. Then
we know that party 0 has exhausted their real list. Alternatively, suppose the

16

dummy pointer reaches end. Then, we will have consumed n; — 1 dummies and
by construction we always consume one dummy element for each real element
of the other party seen after the first one, it must be that party 1 has seen n,
real elements i.e., exhausted their real list.

Since the number of iterations is equal to the length of the lists (ng + nq,
ng,n1 > 1), and we advance a real list and secret-share exactly one real element
every iteration, both parties will exhaust their real lists at distinct iterations.
Furthermore, party 0 exhausts its real list between iteration ng and ng + ny
and party 1 exhausts its real list between iteration n; and ng + ni. Therefore,
posg = end at least once. Without loss of generality, suppose party 0 exhausts
its real list first. Then by construction, we set fin = 1 and continue to advance
the dummy pointer of party 0 and the real pointer of party 1, essentially secret-
sharing the remaining elements of party 1’s real list. Since there are exactly
ng + n1 real elements, party 1 will only exhaust its list at iteration ng + ny
but then, the protocol terminates and we never access posy again. Therefore,
posg = end exactly once.

Lemma 2. In Pmtocol@ (Merge), every element in the permuted lists of both
parties is accessed exactly once.

Proof. Note that by construction, we will have exhausted both real lists when
the protocol terminates. Consider the iterations before either party reaches the
end-of-list element i.e., neither party has exhausted their real list. As we always
advance a pointer in each iteration and pointers never loop back before we reach
the end-of-list, it is clear that each element accessed before the end-of-list is
encountered, is accessed exactly once.

Now, consider the iterations after some party reaches its end-of-list element.
Without loss of generality, suppose party 0 exhausted its real list first. Since we
advance a party’s dummy pointer for each real element accessed from the other
party after the first one, we will have accessed all ng — 1 dummies in P;’s list
and arrived at the end-of-list dummy element as well. Until this iteration, party
0 has accessed ng real elements and suppose party 1 has accessed n of its real
elements (which implies party 0 has accessed nf — 1 of its dummy elements).

Then, both parties access their end-of-list element. Once this happens how-
ever, fin is set to 1 and by construction, party 1 switches to the head of its real
list while party 0 switches to the head of its dummy list. Therefore, as soon as
both parties arrive to their end-of-list element, they switch over to consuming
the remaining elements of the other list until the end of the protocol preventing
either pointer to move from the end-of-list element into the other list which
would have caused duplicate accesses. Party 0 now accesses its remaining nq —nj
dummy elements and party 1 accesses its remaining n; — n} real elements (for
the first time). Therefore, both parties access their remaining dummy and real
elements. As soon as party 1 updates its real pointer (resp. party 0 updates is
dummy pointer) to the position of the end-of-list element, the protocol will ter-
minate as this will only happen when all real elements have been accessed (after
ng or ny iterations) and the end-of-list element is not accessed a second time.

17

Theorem 2. Protocol@ (Merge) outputs a secret-shared, sorted list, using 11n
multiplexes, n comparisons, n equality tests, and 13n+4 (local) encryptions,
where n = ng + ny, the sum of the length of the two lists. Furthermore, Merge
runs in O(n) time and requires O(n) communication between both parties.

that each element is accessed exactly once (proved in Lemm . The exact
number of operations can be calculated by simple counting as there is only one
computation path and no alternate branches of computation.

The linear-time and communication complexity of the Merge algorithm fol-
lows from two points: (1) the ShuffleLL; protocol can be run efficiently by eas-
ily generating a random permutation in linear-time using an algorithm such
as Fisher-Yates [39], and only requires sending ciphertexts linear in the length
of the inputs a constant number of times; and (2) UpdateHead, and EncToSS;
perform only a constant number of O(1)-time operations with O(1) communi-
cation overhead, and therefore each iteration of the Merge protocol (lines [8| to
requires only O(1)-time and communication.

For a more concrete analysis, we also calculate the communication cost, i.e.,
the number of messages sent as a function of n. Observe that the protocol secret
shares exactly 21n + 10 values and sends exactly 11n ciphertexts. As these are
the only messages sent, the communication cost is 32n + 10.

Proof. Correctness follows directly from construction (Section [5.3)) and the fact
2)

7.2 Security

Assuming the security of the underlying cryptographic primitives (homomor-
phic encryption, secure equality tests, comparisons and multiplexes) it is fairly
straightforward to show that our protocols are indeed secure against semi-honest
adversaries.

The biggest challenge is to show that the memory access pattern, as revealed
in line [2] in Protocol [] and line [I1] in Protocol [f] are data-oblivious, and this
follows from Lemma 2

For completeness, we include the proofs of security below.

Lemma 3. EncToSS; (Protocol@) securely computes F',
a semi-honest adversary.

cerypt 110 the presence of

Proof. Correctness: It is straightforward to check that the secret shared value
outputted by the protocol is v = v+r;—r; which is the same as the input plaintext,
.

Security: To prove security, we show that there is a simulator, that can
simulate the view of each party given only that party’s inputs and the outputs
of the ideal functionality. Since the protocol is asymmetric, we give two separate
simulators for the two parties.

First, we show that there is an efficient simulator, Sim;, that can simulate
the view of party i, together with the output of the ideal functionality, given
only party i’s input ({v);+1) and party i’s output, [v”];. Since party i receives

18

only one message during the protocol (line[6)), and this message is [v'];, which is
a uniformly random element in G, the simulator can perfectly simulate the view
of party ¢, by sampling a random element from G, and the simulator simulates
party (i +1)’s output by sampling a random element from G. To see this, note
that party i’s view of the protocol is {v})i+1, [v']i, [v"]i, and the output of the
protocol is [v"]; and [v"];+1 which are uniform subject to the constraint that
[[U"Hi + [[U"ﬂHl = .

Next, we show that there is an efficient simulator, Sim;,;, that can simu-
late the view of party ¢ + 1, together with the output of the ideal functionality,
given only party (i + 1)’s input (@) and party (i +1)’s output ({v)is1). Dur-
ing the execution of the protocol EncToSS;, party i + 1 receives a single message
¢ = [v+r;]i+1, thus the simulator must simulate three messages, ¢/, party (i+1)’s
output, [v"];+1, and party ¢’s output, [v”];. The simulator proceeds as follows:
Since r; is chosen uniformly at random in the real protocol, the plaintext v+r; is
also uniformly random in G, and by the security of the Add function the distri-
bution of the ciphertext ¢’ = Add(pki1, {(v)is1, {ri)i+1) is indistinguishable from
the distribution of ¢’ < Enc(pk;.+1,v + r;), the simulator can simulate ¢’ by gen-
erating a random value 7, and creating the single message cs = Enc(pkiy1,7s).
The simulator simulates the values [v"']; and [v"'];+1 by generating uniformly
random values [v"]; and [v""];+1. As above, the semantic security of the underly-
ing cryptosystem shows that is computationally indistinguishable from the joint
view of party i + 1, together with the output of the protocol.

Lemma 4. ShuffleLL; (Protocol@) securely computes fﬁhuﬁqe in the presence of
a semi-honest adversary.

Proof. Correctness: By construction, ShuffleLL; outputs a permutation of P;’s
input list padded with m dummies, and the corresponding linked list both en-
crypted under pk;,1 to P;, and a secret-sharing of the first dummy (7 (n + 1)),
first real (7 (0)), and end-of-list (w (n)) element’s position to both parties. This

is straightforwardly identical to the functionality, F3 me-

Security: To prove security, we show that there is a simulator, that can sim-
ulate the view of each party together with the output of the ideal functionality,
given only that party’s inputs and the outputs. Since the protocol is asymmetric,
we give two separate simulators for the two parties.

First, we show that there is an efficient simulator, Sim;, that can simulate
the view of party 4, together with the output of the ideal functionality, given
only party ¢’s input and party ¢’s output. Essentially since P;1 uses a permuta-
tion unknown to P;, Sim; can generate any random permutation, 7, and follow
the steps of the protocol exactly. It immediately follows that Sim; simulates
the messages received by P; and the output of Piy1, ([7-(n+1)]ir1, [7-(0)]iz1),
and [m.(n)]i+1. The output of P; includes (1) a permuted list and linked list
encrypted under pk;.1, (2) a secret-sharing of the head pointer, and (3) a secret-
sharing of the end-of-list element. Since it follows the protocol exactly, it’s im-
mediately true that it can simulate (2) and (3). To simulate (1), encrypt n +m

19

random values (from G) using pk;,1 to simulate the permuted list with dummies,
and encrypt another n +m random values (from G) using pk;,; to simulate the
linked list. Output both these lists for (1) along with ([m,(n + 1)]:, [7(0)]:)
for (2), and [m,.(n)]; for (3). This output is computationally indistinguishable
from the output of an execution of the protocol on the same inputs assuming
the underlying encryption scheme is semantically secure so we cannot distin-
guish between the ciphertexts. Furthermore, a distinguisher cannot distinguish
between the secret-shared output of the functionality and that of the simulator
since the distinguisher does not know the permutation and the secret shares are
generated with uniform and fresh randomness.

Next, we show that there is an efficient simulator, Sim;,;, that can simu-
late the view of party ¢ + 1, together with the output of the ideal functionality,
given only party (i + 1)’s input (permutation, 7) and party (i + 1)’s output
([(n+)], [r(O)]) .y and [w(n)]isn)-

To simulate the first message received by P;;1 (line , Sim;,1 generates n
uniformly random elements, w[0],...,w[n—-1] from G, and encrypts them under
pk;. Then the simulator executes the protocol ShuffleLL; using these values in
place of c[k].

To simulate party 4’s output (line , the simulator generates m dummy
elements and encrypts the n +m values w[0],...,w[n — 1] together with the m
dummies, permuted under 7 under the key pk;,1. It also generates the corre-
sponding linked list using 7. Finally, it can easily generate the secret shares in
party 4’s output, (7(n+1) - [r(n+1)];,7(0) - [7(0)];), and w(n) - [r(n)]; as
it has access to .

The fact that transcript produced by the simulator is indistinguishable from
a real execution of the protocol follows immediately from the semantic security
of the underlying cryptosystem.

Lemma 5. Merge (Protocol@ securely computes ideal functionality Fperge 0
the presence of a semi-honest adversary.

Proof. Although the Protocol[f]is somewhat complex, the security follows almost
immediately from the security of the underlying primitives. The key observation
is that the memory access pattern is data-oblivious.

The data-access pattern is defined by the Reveal (line[11]in Merge and line
in UpdateHead,), we note that these reveal statements define the positions being
accessed, and in the real execution of the protocol every element is accessed
exactly once (Lemma . The shuffle ensures that these positions are uniform,
and independent of the underlying data, thus this sequence of reveals can easily
be simulated by simply revealing a random permutation.

Lines[3} [[6] [I0} require basic operations on secret shares, either sharing new
values, or updating existing shares which can either be done locally, or can result
in a uniformly random value being sent to each party.

We assume that the underlying MPC protocol supports multiplexing (Line@
and equality tests (Line , thus these messages can be simulated by calls to
the underlying MPC simulator.

20

To see that the messages sent in each iteration (from line [8| to can be
efficiently simulated, note that it only involves basic operations on secret shares
(lines multiplexing (lines , comparisons (line , equality tests
(Line [10)), a call to EncToSS; (line [13)), and a call to UpdateHead; (line [12).
We assume that the underlying secret sharing scheme is secure, and supports
multiplexing and comparisons, and Lemma [3| shows that EncToSS; is secure.
Finally, note that UpdateHead; only makes calls to multiplexing and EncToSS;.
Thus every iteration can be efficiently simulated using the simulators for the
multiplexing, equality tests, comparisons which are assumed to exist, together
with the simulator for EncToSS; which was shown to exist in Lemma

Finally, Lemma [4] shows that the views produced by ShuffleLL; can be effi-
ciently simulated.

Thus by stringing together these existing simulators, we can simulate the
view of either party in the Merge protocol.

References

1. Ajtai, M., Komlés, J., Szemerédi, E.: Sorting in clog(n) steps. Combinatorica 3,
1-19 (1983)

2. Al-Haj Baddar, S., Batcher, K.: The AKS sorting network. In: Designing sorting
networks (2011)

3. Aly, A., Keller, M., Rotaru, D., Scholl, P., Smart, N.P., Wood, T.: Scale-mamba.
https://homes.esat.kuleuven.be/ nsmart/SCALE/ (2019)

4. Asharov, G., Lin, W., Shi, E.: Sorting short keys in circuits of size o(n log n). In:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, Virtual Conference, January 10 - 13, 2021. pp. 2249-2268. STAM (2021)

5. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the April
30-May 2, 1968, spring joint computer conference. pp. 307-314. ACM (1968)

6. Bater, J., Elliott, G., Eggen, C., Goel, S., Kho, A., Rogers, J.: SMCQL: secure
querying for federated databases. Proceedings of the VLDB Endowment 10(6),
673-684 (2017)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC. pp. 1-10. ACM,
New York, NY, USA (1988)

8. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for free.
In: CRYPTO. pp. 62-89. Springer (2016)

9. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: CRYPTO. pp. 868-886. Springer (2012)

10. Chan, T.H.H., Katz, J., Nayak, K., Polychroniadou, A., Shi, E.: More is less:
Perfectly secure oblivious algorithms in the multi-server setting. In: ASTACRYPT.
pp. 158-188. Springer (2018)

11. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: CCS. pp. 1223-1237. ACM (2018)

12. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: CCS. pp. 1243-1255 (2017)

13. Chida, K., Hamada, K., Ikarashi, D., Kikuchi, R., Kiribuchi, N., Pinkas, B.: An
efficient secure three-party sorting protocol with an honest majority. IACR ePrint
2019/695 (2019)

21

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Chillotti, 1., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: international conference
on the theory and application of cryptology and information security. pp. 3—-33.
Springer (2016)

Chillotti, I., Gama, N., Georgieva, M., Izabachéne, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for tthe. In: International Conference
on the Theory and Application of Cryptology and Information Security. pp. 377—
408. Springer (2017)

Chongchitmate, W., Ishai, Y., Lu, S., Ostrovsky, R.: PSI from ring-OLE. In: CCS
2022. ACM (2022)

Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party
computation. In: SCN (2018)

Couteau, G.: New protocols for secure equality test and comparison. In: ACNS.
pp- 303-320. Springer (2018)

Cramer, R., Damgard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Theory of Cryptography Conference.
pp. 342-362. Springer (2005)

Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private
set intersection. In: Applied Cryptography and Network Security. pp. 125-142.
Springer (2009)

De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with
linear complexity. In: FC. vol. 10, pp. 143-159. Springer (2010)

De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection.
Trust 7344, 55-73 (2012)

Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: CCS. pp. 789-800 (2013)

Falk, B.H., Ostrovsky, R.: Secure merge with o(nloglogn) secure operations. In: 2nd
Conference on Information-Theoretic Cryptography (ITC 2021). Schloss Dagstuhl-
Leibniz-Zentrum fiir Informatik (2021)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
ePrint 2012/144 (2012)

Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: EUROCRYPT. pp. 1-19 (2004)

Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-
over-ORAM architecture. In: ACNS. pp. 172-191. Springer (2015)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC.
pp. 218-229 (1987)

Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. Journal of the ACM (JACM) 43(3), 431-473 (1996)

Hamada, K., Tkarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: An effi-
cient sorting algorithm for practical secure multi-party computation. IACR ePrint
2014/121 (2014)

Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically effi-
cient multi-party sorting protocols from comparison sort algorithms. In: Interna-
tional Conference on Information Security and Cryptology. pp. 202-216. Springer
(2012)

Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. Journal of cryptology 23(3),
422-456 (2010)

22

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

53.

56.

Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better
than custom protocols? In: NDSS (2012)

Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive ot and secure computation of set intersection. In: TCC. vol. 5444, pp.
577-594. Springer (2009)

Jarecki, S., Liu, X.: Fast secure computation of set intersection. Security and Cryp-
tography for Networks pp. 418-435 (2010)

Kiss, A., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for
unequal set sizes with mobile applications. PoPETs 4, 97-117 (2017)

Kissner, L., Song, D.: Privacy-preserving set operations. In: CRYPTO. vol. 3621,
pp. 241-257 (2005)

Knuth, D.E.: The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-
merical Algorithms. Addison-Wesley Longman Publishing Co., Inc. (1997)
Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: CCS. pp. 818-829 (2016)
Laud, P., Pankova, A.: Privacy-preserving record linkage in large databases using
secure multiparty computation. BMC medical genomics 11(4), 84 (2018)

Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: International Conference on Information Security. pp. 262-277. Springer
(2011)

Lu, S., Ostrovsky, R.: Distributed Oblivious RAM for Secure Two-Party Compu-
tation. In: Theory of Cryptography. pp. 377-396. Springer (2013)

Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC. pp. 514-523
(1990)

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: EUROCRYPT. pp. 223-238. Springer (1999)

Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: Lightweight private set
intersection from sparse OT extension. In: CRYPTO (2019)

Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersection
using permutation-based hashing. In: USENIX Security Symposium. pp. 515-530
(2015)

Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: EUROCRYPTO. pp. 122-153 (2019)

Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: EUROCRYPT (2018)

Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on ot
extension. In: USENIX. pp. 797-812 (2014)

Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. IACR Cryptology ePrint Archive (2016)

Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: EUROCRYPT. pp. 235-259 (2017)

Schoenmakers, B.: MPyC: secure multiparty computation in Python. Github (Feb
2019)

Veugen, T., Blom, F., de Hoogh, S.J., Erkin, Z.: Secure comparison protocols in
the semi-honest model. IEEE Journal of Selected Topics in Signal Processing 9(7),
1217-1228 (2015)

Viand, A., Jattke, P., Hithnawi, A.: SoK: Fully homomorphic encryption compilers.
arXiv preprint arXiv:2101.07078 (2021)

Volgushev, N., Schwarzkopf, M., Getchell, B., Varia, M., Lapets, A., Bestavros,
A.: Conclave: secure multi-party computation on big data. In: EuroSys. p. 3. ACM
(2019)

23

57.

58.

59.
60.

Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient multiparty computa-
tion toolkit. https://github.com/emp-toolkit/emp-sh2pc (2016)

Yao, A.: Protocols for Secure Computations (Extended Abstract). In: FOCS ’82.
pp. 160-164 (1982)

Yao, A.: How to Generate and Exchange Secrets. In: FOCS ’86. pp. 162-167 (1986)
Zahur, S., Evans, D.: Obliv-c: A language for extensible data-oblivious computa-
tion. IACR Cryptology ePrint Archive 2015/1153 (2015)

24

	A Linear-Time 2-Party Secure Merge Protocol

