
Share&Shrink: (In-)Feasibility of MPC from one
Broadcast-then-Asynchrony, and Delegated

Computation

Abstract. We consider protocols for secure multi-party computation
(MPC) under honest majority, i.e., for n=2t+1 players of which t are
corrupt, that achieve guaranteed output delivery (GOD), and operate
in a single initial round of broadcast (BC), followed by steps of asyn-
chronous peer-to-peer (P2P) messages. The power of closely related “hy-
brid networks” was studied in [Fitzi-Nielsen, Disc’09], [BHN, Podc’10]
and [Patra-Ravi, IEEE Tr. Inf. Theory’18]. The interest of such proto-
cols is that they go at the actual speed of the network, and security is
preserved under arbitrary network conditions (past the initial BC).
We first complete the picture of this model with an impossibility result
showing that some setup is required to achieve honest majority MPC
with GOD. We then consider a bare bulletin-board PKI setup, and lever-
age recent advances in multi-key homomorphic encryption [BJMS, Asi-
acrypt’20], to state the feasibility of MPC in a tight 1-BC-then-1 single
step of asynchronous P2P messages.
We then consider efficiency. The only protocols adaptable to such a net-
work model and setup are [BJMS, Asiacrypt’20], which does not scale
well for many players, and [GLS, Crypto’15], which does not support
input delegation from external resource-constrained owners (such as IoT
devices or smartphones), limiting its practical use. Our main contribution
is a generic design that enables MPC in 1BC-then-asynchronous P2P. It
operates over ciphertexts encrypted under a (threshold) single-key en-
cryption scheme, resulting in the smallest sizes expectable and efficient
evaluation. It can be implemented from any homomorphic encryption
scheme built from linear maps (e.g., GSW, CL, ...). Our main building
block is the squishing of the verifiable input sharing (“Share”), in parallel
with the distributed key generation (DKG) in the single BC, followed by
threshold encryption (“Shrink”) in one asynchronous step. Interestingly,
it can be compiled as the first constant-round YOSO protocol in 1 BC.

Keywords: MPC,Verifiable Computation,Homomorphic Encryption,Yoso

1 Introduction

Byzantine broadcast (BC) and round-by-round synchronous communication are
handy abstractions for designing simple multi-party computation protocols. How-
ever, in practice implementing a broadcast channel requires either multiple rounds
of peer-to-peer communication [60,85,112] or special channels (such as blockchains),
and is therefore costly and difficult in itself. This difficulty was pointed out in

2

the comments of NIST’s recent call for standardization of multiparty threshold-
cryptography[2]. Moreover, implementing BC fails beyond t < n/3 corruptions
if the network cannot deliver a number of consecutive synchronous rounds. An
example is the protocol of [109] for the closely related primitive of consensus,
without trusted distributed key generation (trusted DKG) setup, i.e., without
distribution of correlated secrets to players by a trusted authority, which re-
quires an expected 36 rounds. Thus significant effort is currently being put into
minimizing the use of broadcast rounds in MPC [66,21,68,104,75,56,57]. We push
further this line of work by asking for only one initial call to BC, i.e. a broadcast-
optimal protocol as studied in [49,56,75,18], without any trusted DKG setup,
followed by a fully asynchronous protocol. Beyond their security under network
slowdowns, a further benefit of asynchronous protocols is that they go at the
actual speed of the network, i.e., are responsive [50,104].

Since we aim at the (arguably gold standard) of guaranteed output delivery
(GOD) under honest majority, this initial call to BC is necessary, as shown by an
elementary split-brain attack [21]. Overall, two main approaches exist to design
constant-round MPC protocols based on fully homomorphic encryption (FHE):

Threshold FHE-based: A mainstream tool for round-efficient MPC is based
on (n, t)−Threshold Fully Homomorphic Encryption schemes. The following
generic approach or close variations[25], that may be called “DKG-then-Input-
distribution” in two BC, consists of: 1 the distributed generation (DKG) of a
common threshold encryption key ek, with private assignment of a decryption key
share to each player, such that the scheme provides IND-CPA security against
adversaries controlling up to t key shares. It is followed 2 by the broadcast
of encrypted inputs under the common threshold encryption key. Then, players
locally evaluate a circuit through an algorithm Eval on the encrypted inputs,
that outputs a ciphertext. Finally, players 3 perform an asynchronous thresh-
old decryption protocol using their key shares, so that any set of t+ 1 of them
can recover the output.
Multikey-FHE-based: Another popular tool to further reduce the number of
rounds is to use a (n,n)-threshold Multikey-FHE scheme [40,89,90], for which no
DKG is needed before the input distribution, effectively reducing the number of
broadcast to just one: it starts 1 with the local generation of keys, directly
followed by the broadcast of encrypted inputs under the different keys. Then,
players proceed with the multikey evaluation of a circuit through an expensive
algorithm MultikeyEval, before 2 performing a (n, n)-threshold decryption.

These two methods highlight a tradeoff: one allows efficient evaluation at the
cost of one extra broadcast, while the other allows obtaining an MPC protocol
in an optimal number of broadcasts with an expensive evaluation. In this work,
our goal is to propose a new method that offers the best of both worlds:

A protocol with an efficient evaluation and only one initial broadcast.

Overall, our aim is to develop a new approach that eliminates the need for a
DKG before the input distribution. To achieve this, we face two key challenges:

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 3

• Challenge 1: Delegation. We observe from the DKG-then-Input-distribution
approach that calls to BC are used to provide players with a common view on
threshold-encrypted inputs. In a breakthrough approach, Gordon et al. [61] pro-
posed the first (n, t)-threshold multikey-FHE scheme enabling the construction
of an MPC protocol with GOD requiring one single BC1. However, it suffers
from a practical issue. Indeed, as pointed out by [19], the most important prop-
erty for deploying MPC in practice is the ability to delegate the costly compu-
tation to an untrusted cloud, in order to handle inputs coming from external
resource-constrained input-owners (e.g. Iot devices, smartphones, ...) that, after
the initial distribution of their inputs, do not take further part in the compu-
tation. Numerous techniques [15,103,107,41,64,113,100] have been proposed to
achieve a secure and verifiable delegation of computation, scaling [24,22,106,9]
to thousands or even millions of private inputs2. Unfortunately, the construc-
tion of [61] cannot enable delegation. Moreover, as it is based on GSW [74],
sizes of ciphertexts are d× larger (where d is the lattice dimension, see Table 2)
than those of the latest FHE schemes based on the ring-learning-with-errors
(RLWE) assumption [96]. Unfortunately, the approach of [61] is not generic,
and in particular, not portable to RLWE (see Appendix A.1).
• Challenge 2: Efficient Evaluation. To remedy the latter issue, Badrinarayanan

et al.[17] built an MPC protocol based on multikey-FHE using a more generic
construction. However, this approach suffers from a major drawback: the sizes
of their (multikey) ciphertexts are quadratic in the number |Q| of input-owners,
and the same quadratic dependency applies to the multikey evaluation, making
it inefficient. Part of this inefficiency is due to the use of the GSW-based multi-
key scheme from [101]. However, even using recent works [89,90] that reduced
the overhead in homomorphic evaluation complexity to linear in |Q|, it would
still be |Q|× less efficient than their single-key counterparts.
In this work, we then ask the following question:

Is there a generic method providing a common view on ciphertexts of inputs
under a (threshold) single-key encryption (so of sizes independent of |Q|),

using no more than one broadcast, without a trusted DKG setup?

1.1 Results

Before we move to our main contribution, we first complete the theoretical pic-
ture of honest majority MPC with GOD from one initial round of broadcast.
We enrich it with two new (in)feasibility results, as illustrated in Table 1.

A) Contribution 1: Feasibility of 1 BC+asynch P2P MPC with GOD
under honest majority. We assume one initial access to a broadcast func-
tionality BC, which guarantees output whatever the (non)behavior of the sender.

1plus preliminary publication of input-independent material on a bulletin board PKI
2see the recent real-world applications, e.g. for health statistics with the COVID-19

Exposure Notification system developed jointly by Apple and Google [1], or for secure
advertising by Meta [3,100], that is used for queries with up to 1 billion records.

4

Theorem 1. There exists an MPC protocol with GOD under honest majority,
under the sole setup of a bulletin board PKI; which furthermore enjoys (i) termi-
nation in 1BC-then-1 step of asynchronous P2P messages; and (ii) allows inputs
from external owners, i.e., which do not take part in the computation;

The baseline is the protocol of [17], that, as stated, lacks properties (i) and
(ii). In Section 6, we show how their three-round MPC protocol in the plain
model can be modified to work in a single-BC model and support external input-
owners. Our proof differs from the one of Goel et al. [75], which considers a weaker
setting as explained in Appendix C.

Comm.
Setup Trusted

DKG
bPKI + URS bPKI No

setup

1 BC + 1 Sync P2P [61]+[56]
X

X [71]
%

1 BC + ∞ Asynch P2P [21]
X X

Thm. 5
%

[17] +Thm. 1

Table 1: Feasibility and impossibility of MPC with GOD under honest majority with
different setups and communication patterns. URS stands for uniform random string,
and bPKI for bulletin-board PKI.

B) Impossibility of 1-Broadcast-then-Asynchronous MPC without setup.
In Theorem 5, we show that for t ≥ 3 and n ≤ 3t − 4, then some functionali-
ties are not securely implementable, without setup, in one broadcast followed by
an arbitrary number of pairwise asynchronous communications. It thus parallels
[104], which dealt with perfect security. The strategy adapts [71, §4.1].

Related Works. A long line of recent works [57,56,75] have undertaken to
fully characterize what MPC protocols with one initial broadcast round allow
achieving across various setup settings (such as with or without PKI, URS, ...).
For instance, [57] studied the feasibility and impossibility of two-round MPC
with different guarantees and broadcast patterns considering a model in which
only a URS is available, but no PKI nor correlated randomness. It has been
extended in [56] when a PKI is also available. In Table 1, we complete the picture
by studying the case where a bulletin board PKI is available but no URS.

C) Main Result: Share&Shrink. We answer positively the main question
by proposing a new generic protocol in the bulletin-board PKI model, called
Share&Shrink. Considering a set Q of input-owners wishing to delegate a
computation on their inputs to a set of n = 2t + 1 players, our new proto-
col simultaneously addresses the main problems raised in Section 1: a) MPC
with GOD in one Broadcast, b) Delegability, and c) Efficient Evaluation.

Overall, Share&Shrink performs in parallel : a DKG, and the distribution of
inputs encrypted under a single threshold encryption key (thus of sizes indepen-
dent of |Q|). The broadcast BC is used only once in parallel by both players
and input-owners. The second step is performed over asynchronous point-to-
point channels. It leverages two main ingredients:

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 5

– First, any linear homomorphic encryption (`-HE) scheme as defined in Defini-
tion 3. This includes close variations of some well-known schemes such as GSW
[101] or BFV [62]. This linearity property allows us to express these schemes as
a set of linear maps. In particular, encryption consists in the evaluation of a
linear map Λek

Enc, parametrized by an encryption key ek, over the secret input.
– Second, (any) publicly verifiable secret sharing (PVSS) scheme [73,83], formal-

ized as a functionality FLSS in Section 3.2. Recall that a PVSS sharing algorithm,
on input a secret s, roughly consists in generating a (n, t)-linear secret sharing
of s, encrypting each n shares with one of the n players keys, before returning
the resulting vector of n ciphertexts. Interestingly, thanks to the linearity prop-
erty of the sharing, one can compute linear combinations on the shared inputs.

Share & Shrink can be described as follows.
0. Setup. Each player non-interactively generates then publishes a public key
in a bulletin board PKI, for any public-key encryption scheme (PKE). Players
also retrieve a URS (see Section 2.2), as needed in most of the practical cases.
1. Share. Players run a DKG protocol in one broadcast round. The pattern is as
in [67], possibly with the generation of a relinearization key as done in [111], if
the `-HE scheme is a RLWE-based scheme with fully homomorphic capabilities.
In parallel, input-owners broadcast PVSSs of their inputs and of encryption
randomnesses.
2. Shrink. Each player obtains a common threshold encryption key ek and per-
form threshold encryptions of the shared inputs under ek, thereby “shrinking”
them down to the sizes of ciphertexts encrypted under the (threshold) single-
key ek. What makes threshold encryption work in one step of peer-to-peer asyn-
chronous messages, is that it simply consists in the opening of a linear map
Λek
Enc, parametrized by ek, evaluated over the shared inputs (and the shared

randomnesses), leveraging the functionality FLSS we introduced.

At the end, players obtain a common view on inputs encrypted under a single-key
ek. They can proceed as in the DKG-then-Input-distribution method, i.e. with
evaluation and later threshold decryption, which require no further broadcast.

In short, as shown in Table 2, Share&Shrink enables building a delegated
MPC protocol with GOD in one broadcast with the following properties:

– Generic (RLWE compatible), i.e. it is scheme-independent, and in particular
can be built from RLWE-based schemes.

– Short ciphertexts size (efficient Eval), i.e. the size of the ciphertexts under-
going homomorphic evaluation does not depend on the number of inputs-owners.
This matters in practice as it is linked to computation complexity. Notably, the
multikey ciphertexts used in previous works [17] have sizes that depend on |Q|,
leading to homomorphic operations complexity that also grows with |Q|.

Theorem 2 (Share&Shrink). For any linear homomorphic encryption scheme
in the sense of Definition 3, and evaluation algorithm (or asynchronous protocol)
over encrypted inputs in the sense of Section 5.1, there exists an MPC proto-
col under honest majority with GOD, in 1 BC followed by asynchronous P2P

6

messages. It furthermore allows inputs from external input-owners. It operates
on ciphertexts under a (threshold) single-key encryption, and in particular, their
sizes are independent of the number |Q| of input-owners, and of n. Moreover,
it can straightforwardly be adapted to the YOSO model (see Appendix G).

Protocol 1 BC + asynch P2P GOD
for t < n/2

Delegability Size of
ciphertexts

[88][99] [102][98] % % X |C |

[40] X % % |Q| · |C |

[61] X X % |C |

[17] + Thm. 1 X X X |Q| · |C |
Thm. 2 X X X |C |

Table 2: MPC for n = 2t + 1 players and |Q| input-owners, using FHE with lattice
dimension d and modulus q, and assuming a URS and a bulletin-board PKI. The “Size”
is the one of the ciphertexts which undergo homomorphic evaluation. “Delegability”
means that input-owners can outsource the computation to a set of players. Protocols
that must restart if a player aborts mid-process are not marked as GOD.

It has furthermore the reusability property (see Appendix C), i.e., messages
from input-owners are independent of the circuit, allowing multiple circuits to
be evaluated on a set of distributed inputs. [19] pointed out that not handling
inputs from external lightweight owners, like mobile phones, is one of the main
obstacles to the deployment of MPC. We thus believe that enabling delegation,
and not having a complexity that grows with the number of input-owners, are
significant advantages over previous works in 1BC then asynchrony [61,17].

1.2 More Related Works

Approach of [61]: Their protocol is detailed in Appendix A.1 and based on a
threshold multikey-FHE scheme. Unfortunately, as previously argued, their con-
struction is not generic, i.e. cannot be built from any RLWE-based FHE scheme,
and not delegable, i.e. cannot accommodate external input-owners.
Approach of [17]. Their protocol is described in Section 6 and leverages a
multikey-FHE scheme. As previously argued in Section 1, its main drawback is
that the multikey evaluation unavoidably introduces an overhead in |Q|, even in
|Q|2 in their construction that uses GSW, which makes it very expensive to use.
Approach of [11]: Another useful (non FHE-based) tool to locally evaluate
a circuit on encrypted data is garbled circuits. Following Yao’s seminal work
[114], they have become a core concept for 2-party secure computation, enabling
one player to "encrypt" a circuit while another privately evaluates it. For more
than two players, it was extended by [20], and followed by numerous constant-
round protocols [94,11,93,12,13]. However, garbled-circuit-based protocols face
scalability issues as the circuit size grows linearly with the number of players,
making the per-player communication cost depend on the circuit size |C|. In [11],
this cost is O(nτ |C| + nτ+1d), where τ > 2 and d is the depth of C, increasing
data processing and communication bandwidth requirements.

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 7

2 Model

General notations. We denote x $←− D the sampling of x according to the
distribution D . Cardinality of a set X is denoted as |X|. For a finite set E,
we denote the uniform distribution on E as U(E). The set of positive integers
[1, . . . , n] is denoted [n]. We denote vectors in bold, e.g., v, and

−→
D a vector of

distributions. We denote by λ the security parameter throughout the paper.
We consider a positive integer d, denoted the lattice dimension; a monic poly-

nomial f of degree d; k < q positive integers denoted as plaintext and ciphertext
moduli; and R := Z[X]/f(X). We denote Rk = R/(k.R) and Rq = R/(q.R) the
residue rings of R modulo k and q. We denote [.]k the reduction of an integer
modulo k into Rk. When applied to polynomials or vectors, these operations are
performed coefficient-wise. All linear forms are succinctly specified as formal
linear combinations, e.g., let (xi)i denote labels of some variables (xi)i, then,∑
i λixi denotes

{
(xi)i →

∑
i λixi

}
.

2.1 Players, Input Owners and Corruptions.

We consider n=2t+1 players P=(Pi)i∈[n], which are probabilistic polynomial-
time (PPT) machines, of public identities. We also consider PPT machines called
input-owners Q, and an output-learner L, which are logically disjunct from play-
ers. Using the Universal Composability (UC) model [32] with static corruptions
(Appendix B.8), we consider a PPT machine, denoted as the Environment Env.
It fully controls an entity called the “dummy adversary” A. At the start of the
execution, A may corrupt up to t players of its choosing, along with any number
of input-owners. They behave as instructed by A. Without loss of generality,
A corrupts exactly t players, indexed by I ⊂ [n]. The remaining honest ones
are indexed by H = [n] \ I . A notifies Env of every message received by cor-
rupt players and from (simulated) functionalities. A can rush, i.e. all messaging
functionalities (BC, bPKI, FAT) let A learn the messages sent by honest players
before choosing those sent by corrupt ones.

For simplicity, we present our protocol in the semi-malicious corruption
model of [14], widely adopted since [61]. Details are provided in Appendix B.9.

2.2 Ideal Functionalities
Broadcast with eventual termination: BC. We formalize in Fig. 5 in Ap-
pendix B.3 the ideal functionality of broadcast. It is parametrized by a sender,
and by a set of receivers. It has the following properties: (Termination) all honest
receivers eventually output, and (Consistency) any two honest receivers output
the same value. Finally, (Validity) if the sender is honest and inputs value m, all
honest receivers output the same m.
(Asynchronous) Authenticated Message Transmitting: FAT. We formal-
ize in Fig. 6 the ideal functionality of asynchronous public authenticated message
transmitting with eventual delivery delay. It is parametrized by a sender and
a receiver, hence the terminology authenticated. It delivers every message sent
within a finite delay D, although D can be adaptively increased by A. It leaks
the content of every message to A, hence the terminology public.

8

“Bulletin Board PKI": bPKI. We present in Fig. 7 the ideal functionality of
a bulletin board of public keys, denoted as bPKI. Upon receiving a key pki from
any player Pi ∈P, it stores (Pi, pki) and leaks this information to the adversary
A. Then, it waits until it receives a public key from every honest player in P,
and sets a timeout. After it elapsed, bPKI sets to ⊥ the keys of the players which
did not give a key and eventually delivers pk← (pki)i∈[n].

Global Public Uniform Random String (URS): GURS. It samples uni-
formly at random a sequence of bits of pre-defined length κ, denoted URS, then
outputs it to all players. It is further formalized in Fig. 8 of Appendix B.6.

2.3 Ideal Functionality of MPC FC.
The ideal functionality of MPC that we aim to UC implement, is formalized as
FC in Fig. 4. It returns to an output-learner L the evaluation of an arithmetic
circuit C : (M ∪ {⊥})n →M over inputs in M . For simplicity: C has n input
gates, one output gate, and FC expects one single input from each owner.

The functionality works as follows. Upon receiving an input from any input-
owner Qi, it stores (Qi,mi)

3 and leaks this toA. Before delivering the output, FC

needs to wait for the inputs to be submitted. However, A may prevent corrupt
owners from sending their inputs. To handle this, the functionality i) waits until
it receives an input from every honest owner, ii) sets a timeout TA, and iii) sets
to ⊥ the inputs of the (corrupt) owners which did not give an input after the
timeout. The evaluation is delivered after a finite delay chosen by A.

3 Cryptographic Ingredients
We now detail the main cryptographic ingredients needed for the remainder
of the paper. After defining a Linear Homomorphic Encryption scheme in Sec-
tion 3.1 and detailing an example, we describe in Section 3.2, an ideal function-
ality for linear secret sharing, denoted FLSS, and discuss its implementation.

3.1 Toy model of linear homomorphic encryption scheme.

We observe that in many encryption schemes, key generation, encryption, and
decryption are essentially linear maps. For simplicity’s sake, we assume that all
operations take place over Z/qZ-modules, where q is a known modulus4. A linear
map between two Z/qZ-modules g : (E,+)→ (F, ∗) satisfies g(e1 + e2)=g(e1) ∗
g(e2) for e1, e2 ∈ E, and, g(a · e) = a · g(e) for all a ∈ Z/qZ. In such schemes,
key generation is a linear function in a decryption key sk and some randomness,
encryption is linear in a plaintext and some randomnesses, while decryption
is, roughly, linear in sk. This linearity implies that there exists a public map
which, given an offset (roughly: sk′), maps encryptions under sk into ciphertexts
which have the same distribution as fresh encryptions under sk + sk′. This lin-
earity also supports partial homomorphic operations, such as addition and/or

3Where mi denotes the label of variable mi
4However, this formalization can be adapted to settings where q is unknown, such as

in the CL case, where secret-sharing operates over Z, as explained in [31].

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 9

multiplication, in some form. The following Definition 3 provides a wrapper for
all such schemes, formalized using generic linear maps (ΛEKeyGen, ΛEnc and ΛDec).

Definition 3 (Linear Homomorphic Encryption (`-HE)). A `-HE scheme
consists of a message space M ; spaces of decryption and encryption keys X , E k;
randomness spaces BKey and

−−−→
BEnc, both (subsets of) vector spaces over Z/qZ

modules; and a ciphertext space C ; along with the following PPT algorithms:
• Setup(1λ): On input the security parameter λ, the setup algorithm outputs a

set of public parameters pp and a uniform random string a.
• KeyGen(pp, a): On input some public parameters pp, and a URS a, the key

generation algorithm samples a decryption key sk $←−X and a key randomness
ρkey $←− BKey. When BKey is not closed under addition, the randomness ρkey

is drawn small enough such that the sum of n such terms remains statistically
within BKey. In our multiparty setting, this ensures that a common key re-
sulting from a sum of n keys remains valid, as illustrated in Equation (1). The
algorithm outputs an encryption key ek ← ΛaEKeyGen(sk, ρkey) ∈ E k5, where
ΛaEKeyGen is a public linear map with coefficients determined by the URS a.
• Enc(pp, ek ∈ E k, m ∈M): On input public parameters pp, an encryption key

ek and a plaintext m, the encryption algorithm samples a vector of random-
nesses ρEnc $←−

−−−→
BEnc and outputs a ciphertext c← Λek

Enc(m,ρEnc) ∈ C .
• Dec(sk ∈ X , c ∈ C): On input a ciphertext c and a decryption key sk, the

decryption algorithm computes µ ← Λc
Dec(sk), and either outputs a plaintext

m = ΩDec(µ) or ⊥, where ΩDec denotes a non-linear decoding function.

Examples. Definition 3 applies to various classical schemes such as BGN [26],
exponentiated ElGamal [81,110], GSW [74] or CL [39], as discussed in Ap-
pendix D. Interestingly, this definition wraps schemes with different degrees of
homomorphic capabilities. In particular, FHE schemes that satisfy Definition 3
are categorized as `-FHE, with more details provided in Section 3.1.1.

MPC from `-HE. Our main goal is to build a constant-round MPC protocol in 1
BC using efficient RLWE-based public-key FHE schemes. Modern schemes like
BFV[62] or CKKS[43] require the generation of an extra “relinearization key” rlk
for homomorphic evaluation of a circuit. To be compatible with our Share&Shrink
protocol in 1 BC later described in Section 4, such FHE schemes must meet the
`-HE criteria outlined in Def. 3, i.e. to be built from linear maps, including for this
relinearization key. Unfortunately, most RLWE-based schemes [88,102,99] do not
satisfy this, as their rlk are quadratic in the decryption key sk. In Section 3.1.1,
we consider the only known RLWE-based scheme that meets this requirement.

3.1.1 `-BFV: A RLWE-based `-FHE scheme with Linear Relineariza-
tion Key Generation. In [111], Urban and Rambaud introduced `-BFV, a
variant of the BFV FHE scheme, with a relinearization key generation that is
linear in the decryption key, unlike the original [62].

5sometimes with a relinearization key rlk∈Rlk, which must also be linear in sk

10

Definition 4. (`-BFV [111]) `-BFV is defined as a mere `-HE scheme, aug-
mented with an additional linear map, ΛRlkGen, for generating a relinearization
key. `-BFV takes two URSs as inputs: a and d1. Let Xq, Ψq and BEnc,q be dis-
tributions over Rq, with coefficients distributed according to a centered discrete
Gaussian with standard deviation σ (resp σEnc) and truncated support over
[−B,B] (resp BEnc) where σ and B are cryptosystem parameters. `-BFV lever-
ages the well-known gadget toolkit [74,40], including the following gadget vector:
g ∈ Rlq, for some parameter l ∈ N, and consists of the following PPT algorithms:

• `-BFV.KeyGen(): Parse the URSs as (a ∈ Rlq,d1 ∈ Rlq), sample e(pk) $←− Ψq and
sk $←−Xq, and set a=a[0]. Define ΛaEKeyGen : (sk, e(pk))→(−a · sk + e(pk), a).
Sample r ← Xq, e

(rlk)
0 , e

(rlk)
2 ← Ψ lq, and define Λa,d1,g

RlkGen : (sk, r, e
(rlk)
0 , e

(rlk)
2) →

(−sk · d1 + e
(rlk)
0 + r · g,d1, r · a+ e

(rlk)
2 + sk · g)

Output ek← ΛaEKeyGen(sk, e(pk)) = (−a · sk + e(pk), a) = (b, a), the relinearization
key rlk← Λa,d1,g

RlkGen(sk, r, e
(rlk)
0 , e

(rlk)
2) and sk.

• `-BFV.Enc(ek = (b, a),m ∈ Rk): Sample the encryption randomnesses
e
(Enc)
0

$←−BEnc,q, e
(Enc)
1

$←−Ψq, and u $←−Xq. Thus here:
−−−→
BEnc = BEnc,q × Ψq ×Xq.

Define Λb,aEnc : (∆m,u, e
(Enc)
0 , e

(Enc)
1)→

(
∆m+u·b+e(Enc)0 , u·a+e(Enc)1

)
with ∆=bq/kc.

Output c← Λb,aEnc

(
∆m,u, e

(Enc)
0 , e

(Enc)
1

)
∈ R2

q .
• `-BFV.Dec(sk, c): Given a ciphertext c = (c[0],c[1]) ∈ R2

q , define Λc
Dec : sk →

c[0]+c[1]·sk and compute µ←Λc
Dec(sk).

Output m←
[⌊

k
q (µ)

⌉]
k
:= ΩDec(µ) ∈ Rk.

`-BFV is a fully homomorphic `-FHE scheme that serves as our main example
for our security proof in Section 5.3 and experiments in Section 7.

3.2 Toy functionality of LSS, and instantiation in 1BC+1 async P2P
The main ingredient in building a robust threshold scheme is a (n, t)-linear secret
sharing scheme ((n, t)-LSS, Definition 9), that divides a secret s into n shares,
allowing only authorized subsets of t+1 of them to reconstruct the secret. Due to
the linearity of the scheme, given shared secrets m1, . . . ,mn, some linear map Λ
can be applied to compute the linear combination Λ({mi}i) on the shared inputs.
We now abstract this through a functionality FLSS and provide an overview of
its implementation. A detailed description and security proof are in Appendix E.

3.2.1 Functionality FLSS. We specify in Fig. 10, an ideal functionality for
linear secret sharing, denoted FLSS. It is parametrized by i) a set P of n players,
ii) a list S of entities of the senders, where each S ∈ S has a list of inputs:
(xS,α)α∈XS , identified by input labels (xS,α)α∈XS . We denote XS the list of
indices α of inputs of sender S . Finally iii), we consider an output-learner L.

Setup. Before any sender starts interacting with FLSS, it needs to wait until
(Setup, P) is stored ∀P ∈ P. However, the adversary A can choose to never
instruct corrupt players to setup. To remedy this, we use the fetch-and-delay
mechanism explained in Appendix B.1 and introduce a timeout TA.

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 11

Input. Upon receiving (ready) from FLSS, any S ∈ S can then send its inputs
(xS,α)α∈XS of labels (xS,α)α∈XS , after which FLSS notifies all the players. These
values cannot be subsequently updated; S is committed to the submitted values.

Opening. Let HOpeners be a set of players, initially empty. Any player Pi can
call LCOpen for some linear map Λ, and is then included in HOpeners (for some
Λ). Upon receiving LCOpen for some linear map Λ from t+1 honest players, i.e.
when |HOpeners| ≥ t +1, and if FLSS has stored all the inputs appearing with
nonzero coefficient in Λ, then it eventually delivers its evaluation.

3.2.2 Implementation of FLSS. Our goal is to build a protocol ΠLSS that
implements FLSS, i.e. that enables, after the unique round of broadcast, players to
have a common view on a set of shared secrets. Subsequently, they can perform
the threshold opening of the evaluation of any linear map over these shared
secrets, using one step of all-to-all asynchronous peer-to-peer messages. ΠLSS is
detailed in Fig. 12 in Appendix E.2. Overall it can be outlined as follows.

First, each player generates then registers its public key to bPKI. To send a
secret s to FLSS, i.e., to share it, the first step is to generate a (n,t)-linear secret
sharing of s, yielding shares {s(i)}i∈[n]. Encrypt each share s(i) under Pi’s public
key. The resulting n-sized vector of ciphertexts is called a public verifiable secret
sharing (PVSS, see Def 13). The term verifiable is used because when compiling
to fully malicious security, NIZKs of knowledge of plaintexts and of a degree t
polynomial are appended. For state-of-the-art implementations, see [73,83].

To open a linear map Λ over a set of shared secrets (sj)j : every Pi decrypts
its encrypted shares s(i)j , then evaluates Λ on them. By linearity of the (n, t)-LSS

scheme, the result is a partial opening share z(i) of Λ((sj)j). Then, it sends z(i)
to all via asynchronous P2P channels. Finally, from any t + 1 partial opening
shares, the desired linear combination Λ((sj)j) is efficiently reconstructible.

We provide more details about the LSS instantiation in Appendix E and
prove, in Proposition 15, that the construction does UC-implement FLSS.

4 Share&Shrink: DKG & Encrypted Input Distribution
in 1 BC + 1 Async. P2P

We follow the model and the formalism introduced in Sections 2 and 3 and as-
sume a linear homomorphic encryption scheme as in Definition 3, represented by
a tuple of PPT algorithms `-HE = (Setup,KeyGen,Enc,Dec). Recall in particular
that they are built from public fixed linear maps ΛaEKeyGen, Λ

ek
Enc, Λ

c
Dec

6.
We now describe a protocol in the FLSS-hybrid model, called Share&Shrink

and formalized in Fig. 1, which performs a “DKG & Encrypted Input distribu-
tion” in 1 BC+asynch P2P. It allows players to obtain all-at-once: (i) a common
threshold encryption key ek7, (ii) a secret-shared decryption key sk; (formally:
in FLSS); and (iii) a common view on `-HE ciphertexts of the inputs encrypted

6And possibly an extra ΛRlkGen if the specific scheme requires a relinearization key.
7Possibly along with a common relinearization key rlk, e.g. in the case of `-BFV.

12

under ek. The challenge is that the input-owners have access to the broadcast
to distribute their inputs only before the encryption key ek is known!

0 Setup: Players receive some public parameters pp and a URS a.
In parallel, they Setup FLSS (concretely: publish PKE encryption keys).

1 Broadcast: Input-owners send (Share) their inputs m & encryption ran-
domnesses ρEnc to FLSS (concretely: broadcast PVSSs of them).
In parallel , based on public parameters pp and URS a, players generate ad-
ditive contributions ski to the `-HE decryption key, which they input to FLSS;
and eki to the threshold encryption key (using randomness ρkey

i), which they
broadcast (along with possibly extra material, e.g., a relinearization key for `-BFV).

• Local computation: Then, each player locally computes the common thresh-
old encryption key ek7, out of the contributions from the subset S of indices
of non-aborting players. Precisely, S ⊂ [n] are indices of those that broadcast
correct material (including the PVSS, as captured by FLSS). By linearity of the
`-HE scheme, this key is merely the sum of the contributions from S:

(1) ek = Σi∈SΛ
a
EKeyGen(ski, ρ

key
i) = ΛaEKeyGen(Σi∈S(ski, ρ

key
i))

Share & Shrink protocol
Participants: n players (Pi)i∈[n], and |Q| input owners;
Inputs (for each input owner Qj ∈ Q): plaintext mj with label mj .

• 0 Setup. Each player Pi:
• Sends (Setup) to FLSS

• Obtains some public parameters pp← `-HE.Setup, and a URS a← GURS.
• 1 Broadcast.
• Input and Randomness Distribution (I): Each Qj ∈ Q:
∗ Samples ρj

$←−
−−−→
BEnc and sends (input, {mj ,ρj}, {mj ,ρj}) to FLSS.

• DKG (I): Each player Pi:
∗ Computes (ski, eki)← `-HE.KeyGen(pp, a). Sends (input, ski, ski) to FLSS and

broadcasts eki //possibly along with rlki ∈ Rlk.
• Local computation.
• DKG (II): let S be the subset of indices of players that broadcast a eki and

for which FLSS has acknowledged the receipt of an additive contribution to the
decryption key. Each player Pi:
∗ Computes ek = Σi∈Seki

a and defines the (secret shared) decryption key as
sk = Σi∈Sski and its label as sk //sk is accessible only through FLSS

• 2 Asynchronous step
• Input and Randomness Distribution (II): let Sc be the set of indices of input

owners for which FLSS has acknowledged the receipt for all variables of Qj ’s
“input and randomness distribution” step. Each player Pi:
∗ For each j ∈ Sc, given labels (mj ,ρj) and a key ek, sends(

LCOpen, Λek
Enc(mj ,ρj)

)
to FLSS, and obtains a ciphertext cj .

aAnd possibly a common relinearization key rlk.

Fig. 1: Share & Shrink Protocol

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 13

2 Asynchronous step (Shrinking of the inputs): Finally, players jointly
compute threshold encryptions under ek of the shared inputs mj . Concretely,
thanks to linearity of the `-HE scheme, this can be done as threshold openings of
the images of themj and of shared encryption randomnesses ρEnc,j by the linear
map Λek

Enc, in one step of asynchronous P2P messages, as recalled in Section 3.2.

The outlined protocol differs fundamentally from related threshold-FHE works
[88,98] which follow the pattern DKG-then-Input-distribution, since using Share&
Shrink the Input Distribution is done without knowing a common key, which
allows us i) to reduce the number of broadcast rounds to just one while guaran-
teeing output delivery, and ii) to keep short ciphertexts compared to [17].

5 MPC Protocol ΠFLSS
MPC

We now present our delegated MPC protocol that operates in one single initial
BC followed by asynchronous P2P messages, leveraging our novel Share&Shrink
protocol introduced in Section 4. First, we discuss the computation itself. When
using a scheme with fully homomorphic capabilities, specifically one that satisfies
Definition 3, i.e. a `-FHE scheme like `-BFV (see Definition 4), players can locally
evaluate a circuit on the encrypted inputs and produce an output ciphertext.
While our primary focus is on evaluating circuits using FHE, we also explore al-
ternative approaches for generating this output. To formalize this, we introduce
a generic evaluation protocol Eval in Section 5.1, to evaluate a circuit on `-HE-
encrypted ciphertexts in various ways. This protocol, possibly interactive over
asynchronous channels, must be simulatable. We then review several known eval-
uation protocols that meet these criteria. Next in Section 5.2, we detail methods
for threshold decryption, and finally describe our generic MPC protocol ΠFLSS

MPC

in the FLSS-hybrid model in Section 5.3, which integrates these components.

5.1 (Asynchronous) Evaluation of a Circuit
Consider a linear homomorphic encryption scheme `-HE (Def 3), and players
with input a set of ciphertexts {cj}j∈[|Q|] of plaintexts {mj}j∈[|Q|] under a com-
mon threshold encryption key ek. We assume that there exists an asynchronous
evaluation protocol Eval for any arithmetic circuit C : (M ∪{⊥})|Q| → M with
|Q| input gates, that outputs a ciphertext of the evaluation. Formally, we re-
quire that ∀ pp,a← `-HE.Setup(1λ), there exists a DKG in one BC that returns
a threshold encryption key ek and, privately to the players, shares ski of the
corresponding decryption key sk; ∀ (mj)j∈[|Q|], cj ← `-HE.Enc(pp, ek,mj); then
`-HE.Dec(sk,Eval(C, c1, . . . , c|Q|, ek8))=C(m1, . . . ,m|Q|). We also require Eval to
be simulatable. In practice, it can be implemented in various ways, including:

• `-FHE. When using a scheme with fully homomorphic capabilities as a particular
kind of `-HE scheme (as for `-BFV, see Section 3.1.1), there exists a built-in
non-interactive function Eval, simulatable from the knowledge of the threshold
encryption key and of the relinearization key.

8Possibly along an extra relinearization key.

14

• [46]. Choudhury et al. proposed, using pre-processed masks, a protocol for eval-
uating a circuit based on an efficient interactive multi-party bootstrapping pro-
tocol for an encryption scheme that supports a limited number of homomorphic
operations. Here, players open threshold decryptions of masked intermediary
evaluations; and the simulator simulates the opening of a random value.
• [21]. From a common view of `-HE encrypted inputs and decryption key shares

assigned to each player, one can apply the asynchronous CDN-like[51] protocol
of [21] to evaluate a circuit using a `-HE scheme with only partial homomorphic
properties. Players open threshold decryptions of masked intermediary results.
Since some masks can be inferred from each other by adversarially-chosen (but
extractable) offsets, the simulator takes extra care.

5.2 Threshold Decryption.

`-HE decryption can be seen as a two steps process: (1) the interactive opening
of a linear map Λc

Dec applied to the (secret shared) decryption key sk, with
public coefficients equal to the ciphertext c, (2) followed by local computation
of a non-linear decoding function ΩDec. However, a direct adaptation from this
decryption to the threshold setting is not straightforward whenΩDec is nontrivial.
This is notably the case for the RLWE-based schemes, such as `-BFV, that we
now consider in the remainder of this section.

In this setting, the output µdec of (1) allows recovering the plaintext, but also
reveals a small decryption noise term that depends on the given ciphertext and
the decryption key. Asharov et al. [14] demonstrated that this noisy output of (1)
reveals too much information about the decryption key. To prevent information
leakage, [14] introduced the technique of adding additional noise to µdec before it
can be reconstructed. This “smudging” noise esm is, roughly, sampled uniformly
in some large enough interval [−Bsm, Bsm]. Now consider an arithmetic circuit
C, and denote BC the upper-bound on the decryption noise of a ciphertext after
evaluation of C. The choice of Bsm is crucial for both the security and correctness
of our MPC protocol. This translates into the following two requirements:

1. First, the output of (1) µdec=Λ
c
Dec(sk) must be statistically close to the (scaled)

plaintext circuit evaluation ∆ ·y. Then, some level of noise Bsm should exist so
that adding a uniform noise esm∈ [−Bsm, Bsm] to both µdec and ∆ · y, makes
them indistinguishable, while leaving correct the result: y =ΩDec(µdec+esm).
Lemma 20 imposes a level of noise high enough so that BC/Bsm 6 negl(λ).

2. Second, the correctness requirement imposes that BC added with this smudging
noise stays small, e.g. in the case of `-BFV, we want that BC + n ·Bsm ≤ ∆/2.

Different methods exist for distributively opening µdec added with such noise:

• Most previous works [14,25,88] let each player Pi locally sample a smudging
noise esm,i $←− [−Bsm, Bsm], multiply it by n!2, then add it to its opening share
of µdec, which it sends. The reason for multiplying by n!2 is to clear-out the
denominators of the Lagrange coefficients applied during reconstruction (see
[7,25]) when Shamir LSS is used. This introduces an overhead of n.n!3 on the
ciphertext modulus q, and therefore, a n× blowup of the ciphertext size.

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 15

• To keep the ciphertext size small, an improved method [61,111] has been pro-
posed, in which players do not anymore smudge their opening share of µdec,
but open all at once the decryption µdec and a common shared noise esm, i.e.,
the linear map defined as:

(2) Λc
Dec+sm : (sk, esm)→ Λc

Dec(sk) + esm

The distributed generation of the noise (one for every circuit to be evaluated) is
simply by adding secret-shared contributions esm,i sampled in [−Bsm, Bsm]. As
a result, the correctness constraint now imposes that the ciphertext expansion
factor ∆ has a dependency in n which is only linear, instead of cubic previously.

Protocol ΠFLSS

MPC

Participants: n players {Pi}i∈[n], and |Q| input-owners;
Inputs (for each Qj ∈ Q): a plaintext mj with label mj .

• Share & Shrink. Players and Input-Owners play the Share&Shrink protocol
of Fig. 1 (with the added smudging noise sharing by players), in which each
input-owner Qj ∈ Q has an input mj .
Denote Sc ⊂ [|Q|] the indices of input-owners (resp. S ⊂ [n] of players), for which
no instance returned ⊥.
After Share&Shrink, players have a common view on i) a threshold encryption key
eka, ii) a set of ciphertexts {cj}j∈Sc encrypted under ek, iii) a shared decryption
key sk in FLSS, as well as, iv) a shared smudging noise esm in FLSS.

• Evaluation. To evaluate a circuit C, each player runs c← Eval(C, {cj}j∈Sc , ek
a).

• Threshold Decryption. Players play the Threshold Decryption protocol of
Section 5.2 with input the ciphertext c and the shared decryption key sk in FLSS.
They output the plaintext m obtained.

aPossibly along with a common relinearization key rlk.

Fig. 2: MPC protocol ΠFLSS

MPC

5.3 Protocol ΠFLSS

MPC in (FLSS,BC)-hybrid model, with external
resource GURS

Consider a `-HE scheme satisfying Def 3. Specifically, in this section we consider
the RLWE-based `-BFV scheme defined in Section 3.1.1 as an example (although
other `-HE schemes could have been used). We show in Fig. 2 how to build
a delegated MPC protocol ΠFLSS

MPC from the Share&Shrink protocol introduced
in Section 4, an evaluation algorithm Eval as discussed in Section 5.1, and a
threshold decryption protocol as detailed in Section 5.2.

Sketch of UC Proof of Theorem 2. Following [32], a protocolUC-implements
the ideal functionality FC if there exists a PPT simulator Sim, such that for ev-
ery PPT environment Env, that controls a “dummy” adversary A and which may
send inputs to honest participants and is forwarded their outputs in real-time,
has negligible advantage in distinguishing between the following two executions:

16

- REALA: an actual execution of the MPC protocol ΠFLSS

MPC, with adversary A
fully controlled by Env, and functionalities FLSS, BC;

- IDEALFC,Sim: an execution denoted as ideal, where Sim interacts with Env on
behalf of A. On the other side, Sim interacts with FC on behalf of the corrupt
participants, and also of A. The honest dummy participants are connected to
Env as in a real execution. But on the other side, they only interact with FC.

In more detail, Sim initiates in its head, sets P of n players and Q of inputs-
owners, and may initially receive corruption requests from Env for arbitrarily
many owners and up to t players, indexed by I . It simulates functionalities
(BC,FLSS) following a correct behavior, apart from the value returned by FLSS

in the Output Computation step. Sim does the following:

• Setup. Simulates the setup of FLSS and retrieves the URS a from GURS and
sends it to all on behalf of GURS.
• Distributed Key and Smudging Noise Generation: Simulates a correct

behavior of FLSS. For every simulated honest player (Pi)i∈H:
? Samples ski $←−Xq, and sends it to FLSS.
? Samples esm,i $←− [−Bsm, Bsm], and sends it to FLSS.
? Samples bi $←− U(Rq), and sends eki = (bi, a) over BCPi9.

• Input &Randomness Distribution: Simulates correct behavior of FLSS, and:
? ∀ simulated honest input-owners Qj ∈ Q: sets m̃j := 0 and samples ρEnc,j $←−

−−−→
BEnc.

Then sends (input, {m̃j ,ρEnc,j}, {m̃j ,ρEnc,j}) to FLSS.
? ∀ simulated corrupt Qj ∈ Q, upon receiving (cj) from Env, uses sk to decrypt

cj into mj and sets m̃j := 0 if mj = ⊥ or m̃j := mj otherwise, and sends
(input,Qj ,mj) to FC.

As in the protocol, Sim sets Sc ⊂ [|Q|] the indices of input-owners, resp. S ⊂ [n]
of the players, for which no instance returned ⊥.

• Threshold Encryption: Simulates correct behaviors to compute key ek :=
(
∑
i∈S bi, a)

9; to make FLSS, ∀j ∈ Sc, eventually output:
(
Λek
Enc(m̃j ,ρEnc,j)

)
.

• Circuit Evaluation: Simulates Eval as discussed in Section 5.1.
• Output Computation:Upon being leaked the evaluation y from FC, where by

definition y = C({mi}i∈Sc
), then Sim simulates the following incorrect behavior:

? FLSS outputs
(
Λc
Dec+sm, ∆y +Σj∈Sesm,j

)
to L. (See Equation (2))

Recall that the view of Env consists of its interactions with A/Sim, and of
the outputs of the actual honest players. To show indistinguishability, we go
through a series of hybrid games starting from the real execution. The first
hybrid, HybridFLSS , modifies the behavior of FLSS in the Output Computation
step, to incorrectly return a simulated output µSim := ∆.y + Σj∈Sesm,j , where
y := C((mj)j∈Sc

) is the evaluation of the circuit on the actual inputs. Indistin-
guishability follows from the “smudging” Lemma 20, as detailed in Appendix F.
In the second hybrid, Hybridkey, the additive contributions (bi)i∈H of honest
players to the encryption key9 are replaced by a sample in U(Rq). Then, in

9And possibly a relinearization key rlki depending on the chosen Eval.

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 17

HybridEval, the Evaluation is simulated using techniques that depend on the Eval
instantiation as discussed in Section 5.1. Finally, Hybrid0Share replaces the input
of simulated honest input-owners by 0. By this point, honest players’ decryption
keys are no longer in use. Furthermore, since honest players sample their con-
tributions eki to the common threshold encryption key independently, we can
assume without loss of generality that corrupt contributions are generated after
seeing the honest ones. We can thus apply the classical “IND-CPA under Joint
Keys” Lemma [14], adapted in [111, §D] for RLWE-based schemes.

In conclusion, we arrived at a view produced by a machine that interacts
only with Env and FC. We discuss malicious security in Appendix F.2.

6 Proof of Theorem 1

The MPC protocol of [17] proceeds in 3 rounds of broadcasts described as follows:

Setup: Players first run a distributed setup to generate public/secret key pairs
and contributions to public parameters and to the uniform random strings.
These public contributions and the public keys are then broadcast.
Input Distribution: Let S1 ⊆ [n] be the set of indices of players that sent a
round 1 message. Players encrypt their inputs using a multikey-FHE scheme,
then broadcast the ciphertexts along with PVSSs of their decryption keys.
Evaluation and Threshold Decryption: Let S2⊆S1 be the set of indices of
players that sent a round 2 message. Players then evaluate a circuit C on the
encrypted inputs and perform a threshold decryption in one BC.

Now let us show how to (i) obtain termination in 1 BC-then-1 step of asyn-
chronous P2P messages; and (ii) to allow inputs from external owners.

We first note that the first broadcast round is input-independent. Hence,
we replace their round 1 by publication of public keys and URSs on bPKI. The
modification to obtain (ii) is simply to allow any external input-owner to perform
their round 2 broadcast, directed to the n players. In more detail, consider the
subset S2 ⊂ [|Q|] of owners which correctly shared their inputs and shares of
multikey-FHE keys (in [17], S2 is instead a subset of players). From these secret
shared keys, it is described in [17] how honest players in round-3 can emulate
multikey-FHE reconstruction, as if it would have been performed by members of
S2 themselves (their participation as input-owners is not needed anymore).

Finally, to obtain (i), we need to replace the broadcast in their third round
with asynchronous P2P messages, such that the output after round 3 is un-
changed: players still obtain the same common threshold decryption. We remark
that their round 3 can be performed over asynchronous P2P channels, since the
computation step performed by a player P at the end of round 3 is: choose any
set U of t+ 1 valid decryption shares received in round-3 messages, then apply
the local threshold decryption algorithm on them. So this step does not depend
on whether all round-3 messages from honest players were received by P or not,
but it may well be that t out-of-the t + 1 valid decryption shares chosen by P ,
originate from corrupt players, without impacting decryption correctness.

18

7 Experimental Evaluation
We present a proof-of-concept implementation that shows that our approach
leads to practical results. We instantiate Share&Shrink from the `-BFV scheme
presented in Section 3.1.1 and, for a fair comparison, we compare it to our
Theorem 1 instantiated from an efficient multikey scheme [89] based on BFV,
denoted MK-BFV. We consider inputs in Rk with log k = 16, and parameters
that achieve at least 128-bit of security level according to LWE-estimator [8]:
• For MK-BFV, we use the candidate parameter set described in [89, Table 2],

recalled in Table 3, that supports circuits of depth 6.
• For Share&Shrink instantiated from `-BFV, we use the same parameters as for

MK-BFV in our specific single-key case.
We consider the following delegated setting:

• A number of input-owners ranging from 1 to 128, each owning inputs in Rk,
• A cluster of n = 11 or 50 players to perform the computation.
All experiments were performed on a MacBookPro with a 3.1GHz Intel i5 pro-
cessor, using Lattigo10 as well as the implementation of MK-BFV done by [89]11.

7.1 Experiment#1: Mult gate computation

We first compare in Fig. 3a the running time of a Multiplication between two
ciphertexts for different numbers of input-owners ranging from 1 to 64 (we can
run MK-BFV with up to 64 input-owners, but RAM prevents scaling to 128).

Overall, this verifies that the running time is almost linear with the number
of input-owners when using a multikey scheme, while Share&Shrink reduces this
duration to a small constant, independent of |Q| as expected.

0 15 30 45 60
0

5

10

15

20

|Q| (Number of Input Owners)

T
im

e
(s

)

Share&Shrink Theorem 1

(a) Comparison of median
Mult gate computation times
of the Theorem 1 instantiated
from the MK-BFV scheme [89]
and Share&Shrink instantiated
from `-BFV.

0 30 60 90 120
0

25

50

75

100

|Q| (Number of Input Owners)

B
ro

a
d
ca

st
si

ze
(G

ib
)

1 input

10 inputs

(b) Comparison of the to-
tal broadcast size between
the Theorem 1 instanti-
ated from MK-BFV [89] and
Share&Shrink for 1 and 10
inputs per owner, for n = 11.

0 30 60 90 120
0

60

120

180

240

300

|Q| (Number of Input Owners)

B
ro

a
d
ca

st
si

ze
(G

ib
)

1 input

10 inputs

(c) Comparison of the to-
tal broadcast size between
the Theorem 1 instanti-
ated from MK-BFV [89] and
Share&Shrink for 1 and 10
inputs per owner, for n = 50.

Fig. 3: Experimental Results

7.2 Experiment #2: Broadcast size

We compare in Fig. 3b the total broadcast size for n = 11 and a different number
of input-owners ranging from 1 to 128 that each owns one or ten inputs in Rk,
when using MK-BFV or Share&Shrink instantiated from `-BFV. It comprises:

10https://github.com/tuneinsight/lattigo
11https://github.com/SNUCP/MKHE-KKLSS/

https://github.com/tuneinsight/lattigo
https://github.com/SNUCP/MKHE-KKLSS/

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 19

• An input-independent part that consists of the encryption and relinearization
keys as well as a PVSS of some decryption key.
• An input-dependent part that consists either of MK-BFV ciphertexts or of PVSSs

of inputs and randomnesses e(Enc)0 , e
(Enc)
1 , u over Rq as required in Fig. 1.

Let us first provide some details about Fig. 3b. For the PVSS, we use the
class-group-based public-key encryption scheme recently employed in [84], while
omitting zero-knowledge proofs in our semi-malicious corruption model. For n
players, the total bit-length of ciphertexts is 1752 · (n + 1) bits for a 256-bit
plaintext, resulting in an asymptotic ciphertext expansion factor of 6.8.
Following Section 3.1.1 and denoting |#inputs| the number of inputs per input-
owner, the broadcast for Share&Shrink instantiated from `-BFV is of size:

n · |(3 · l · |Rq|+ PVSS(|Rq|))|+ |Q| · |#inputs| · |PVSS(3 · |Rq|+ |Rk|)|.(3)

For Theorem 1 instantiated from MK-BFV, the broadcast is of size:

|Q| · (4 · l · |Rq|+ PVSS(|Rq|)) + |Q| · |#inputs| · 2|Rq|.(4)

In Fig. 3b, we remark that for a small number of inputs per owner, Theorem 1
requires broadcasting a comparable amount of data than Share&Shrink. How-
ever, the greater the number of inputs per owner, the more the RHS of both
Equations (3) and (4) dominates. Consequently, Share&Shrink requires a larger
broadcast since a greater number of n-sized PVSSs are sent, which are larger
than a MK-BFV ciphertext, whose size is 2|Rq|.

Impact of the number n of players: For completeness, Fig. 3c illustrates the
broadcast size for different numbers of input-owners when n = 50. In this case,
for the PVSS, we use the LWE-based encryption scheme employed in [73]. For
n = 50, this results in an amortized ciphertext expansion factor of 4.8. Overall,
the results exhibit a similar dynamic to the n = 11 case shown in Fig. 3b.

In practice, we believe that it is reasonable to consider a small number n of
powerful computation players and a very large number of resource-constrained
input-owners sending few inputs.

8 Impossibility of 1-Broadcast-then-Asynchronous MPC

“Secure channels" is the upgrade of FAT which does not leak the content of
messages to A. The functionality of simultaneous broadcast ([44]), denoted SB,
is parametrized by two senders P1 and Pn, and returns to all players a pair
(x1, xn) such that, for i ∈ {1, n}, xi is the input of Pi if it is honest.

Theorem 5. Consider a hybrid network in which players are initially given ac-
cess to one single round of: synchronous pairwise secure channels and broadcast
(non-simultaneous, i.e., the adversary observes the honest broadcasts before rush-
ing the ones from corrupt players); then: only access to pairwise secure channels
with guaranteed eventual delivery. Then for any t ≥ 3 and n ≤ 3t − 4 there is
no computationally secure SB protocol. The impossibility holds given any public
setup, i.e., a possibly structured random string.

20

Proof. We assume such a protocol for n=3t−4. We construct an adversary A
which corrupts Pn but not P1, and still manages that the second output: xn, will
be correlated with the input of the honest P1. However, in an ideal execution,
there is no link between A and P1 until SB reveals (x1, xn). Thus, A’s influence
on the outcome is unachievable in the ideal execution, hence a contradiction.

We define the subsetsQ :={P1, . . . , Pn−t=2t−4} andQ′ :={Pt, . . . , Pn−1=3t−5},
denoted as ”quorums". The 3t−4 comes from the following tight constraints: We
managed to have |Q|= |Q′|=n − t, so that in our proof, for each of these quo-
rums, when all its members behave honestly and do not hear from the outside,
then its honest members must output in a finite number of steps. A corrupts a
well-chosen player Pi ∈ Q, which we will detail. A selects a player Pj in Q′ at
random and corrupts it. A corrupts the remaining players in Q ∩ Q′, which it
can do since they are at most t− 3, reaching a total of at most t corruptions.

In the first round, all players act honestly, except Pn, which we will detail.
Then in the asynchronous phase, Pn is silent. A cuts the network in two, i.e.:
A does not deliver {any message from honest players in Q to honest players in
Q′}, nor {any message from honest players in Q′ to honest players in Q}. Q∩Q′
behaved honestly so far, thus it is meaningful to define the internal states they
would have if honest. A makes a copy of these States(Q ∩Q′).
A first “probes” the value of x1 as follows. It “freezes” Q, i.e., it does

not deliver any message to honest players in Q. A makes the corrupt players in
Q′ play honestly, and has messages in Q′ delivered in round-robin order. Thus,
the view of honest players in Q′ is indistinguishable from an execution in which
{Q′ were the n−t honest players, while the remaining ones would be silent}. Thus,
there is a finite number of steps after which they all output. In particular, since
Pj plays the correct algorithm, it will learn the same output as honest players.
With probability 1/(n−t), Pj is the first in Q′ to learn the output (x1, xn).

Upon Pj being the first to learn, i.e., a “successful probing” , then
(i) A learns the actual input value x1 of P1; (ii) whereas no honest player has
output yet, thus, the actual output of the protocol is not yet defined. In this case,
A (immediately) “freezes” Q′, i.e., delivers no more message to honest players in
Q′, so none will ever output, and reinitializes corrupt players in Q ∩Q′ back to
their States(Q ∩Q′) just after the first round.

The rest of the strategy is that A “un-freezes” the set of honest players in
Q, and has all players in Q play honestly the protocol, with their messages
delivered in round-robin order. A will manage to correlate their second output
to x1, thereby breaking SB. To this end, it chooses carefully which “influential”
player Pi to corrupt, i.e., such that the first-round messages from Pi to Q have a
substantial impact on the second output. We carry out the details in Appendix I:
they are an adaptation of [71, Thm 2] in our hybrid network setting. Roughly,
such Pi exists because otherwise, the first-round broadcasts would be enough to
predict the protocol outputs, which would enable to break SB. In Appendix I,
we pin down how a bulletin board PKI would defeat such a prediction (which
was to be expected since SB is feasible in a hybrid network with a PKI).

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 21

References

1. Google apple. exposure notification privacy-preserving analytics (enpa). Online:
https://covid19-static.cdn-apple.com/applications/covid19/current/
static/contact-tracing/pdf/ENPA_White_Paper.pdf (2021)

2. Compilation of public comments on multi-party threshold cryptogra-
phy project. Online: https://csrc.nist.gov/files/pubs/ir/8214/c/ipd/docs/
nistir-8214c-ipd-public-feedback.pdf (2023)

3. Delegated multi-key private matching for compute: Improving match rates
and enabling adoption. Online: https://research.facebook.com/blog/2023/
1/delegated-multi-key-private-matching-for-compute-improving-match-
rates-and-enabling-adoption/ (2023)

4. Abraham, I., Asharov, G., Patil, S., Patra, A.: Asymptotically free broadcast in
constant expected time via packed vss. In: TCC (2022)

5. Abspoel, M., Cramer, R., Damgård, I., Escudero, D., Yuan, C.: Efficient
information-theoretic secure multiparty computation over z/pkz via galois rings.
In: TCC (2019)

6. Acharya, A., Hazay, C., Kolesnikov, V., Prabhakaran, M.: Scales: Mpc with small
clients and larger ephemeral servers. TCC (2022)

7. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional
encryption for threshold functions (or fuzzy ibe) from lattices. In: PKC (2012)

8. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi,
S., Hoffstein, J., Laine, K., Lauter, K., Lokam, S., Micciancio, D., Moody, D.,
Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic Encryption Standard
(2021)

9. Alon, B., Naor, M., Omri, E., Stemmer, U.: Mpc for tech giants (gmpc): enabling
gulliver and the lilliputians to cooperate amicably. CRYPTO (2024)

10. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
CRYPTO (2014)

11. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. In: CRYPTO (2018)

12. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Two round information-theoretic
mpc with malicious security. In: EUROCRYPT (2019)

13. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Towards efficiency-preserving
round compression in mpc. In: ASIACRYPT (2020)

14. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold fhe. In: EUROCRYPT (2012)

15. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the Twenty-Third Annual ACM Symposium
on Theory of Computing. STOC’91 (1991)

16. Badertscher, C., Hesse, J., Zikas, V.: On the (ir)replaceability of global setups, or
how (not) to use a global ledger. In: TCC (2021)

17. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Secure mpc: Laziness leads
to god. In: ASIACRYPT (2020)

18. Badrinarayanan, S., Miao, P., Mukherjee, P., Ravi, D.: On the round complexity
of fully secure solitary mpc with honest majority. In: TCC (2023)

19. Barak, A., Hirt, M., Koskas, L., Lindell, Y.: An end-to-end system for large scale
p2p mpc-as-a-service and low-bandwidth mpc for weak participants. In: CCS
(2018)

https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://csrc.nist.gov/files/pubs/ir/8214/c/ipd/docs/nistir-8214c-ipd-public-feedback.pdf
https://csrc.nist.gov/files/pubs/ir/8214/c/ipd/docs/nistir-8214c-ipd-public-feedback.pdf
https://research.facebook.com/blog/2023/1/delegated-multi-key-private-matching-for-compute-improving-match-rates-and-enabling-adoption/
https://research.facebook.com/blog/2023/1/delegated-multi-key-private-matching-for-compute-improving-match-rates-and-enabling-adoption/
https://research.facebook.com/blog/2023/1/delegated-multi-key-private-matching-for-compute-improving-match-rates-and-enabling-adoption/

22

20. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols.
In: Proceedings of the twenty-second annual ACM symposium on Theory of com-
puting. pp. 503–513 (1990)

21. Beerliová-Trubíniová, Z., Hirt, M., Nielsen, J.B.: Almost-asynchronous mpc with
faulty minority. PODC’10 (2010), we refer to eprint 2008/416

22. Bell, J.H., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-
server aggregation with (poly) logarithmic overhead. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security (2020)

23. Blum, E., Liu-Zhang, C.D., Loss, J.: Always have a backup plan: fully secure
synchronous mpc with asynchronous fallback. In: CRYPTO (2020)

24. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel,
S., Ramage, D., Segal, A., Seth, K.: Practical secure aggregation for privacy-
preserving machine learning. In: CCS (2017)

25. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P., Sahai,
A.: Threshold cryptosystems from threshold fully homomorphic encryption. In:
CRYPTO (2018)

26. Boneh, D., Goh, E., Nissim, K.: Evaluating encryption schemes for pattern match-
ing. In: EUROCRYPT 2005. pp. 40–62. Springer (2005)

27. Borcherding, M.: Levels of authentication in distributed agreement. In: WDAG
(1996)

28. Boudgoust, K., Scholl, P.: Simple threshold (fully homomorphic) encryption from
LWE with polynomial modulus. In: ASIACRYPT (2023)

29. Boyle, E., Cohen, R., Goel, A.: Breaking the o(
√
n)-bit barrier: Byzantine agree-

ment with polylog bits per party. In: PODC (2021)
30. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation

without setup. In: TCC (2017)
31. Braun, L., Damgård, I., Orlandi, C.: Secure multiparty computation from thresh-

old encryption based on class groups. In: CRYPTO (2023)
32. Canetti, R.: Universally composable security: A new paradigm for cryptographic

protocols. In: FOCS (2001), we refer to eprint 2000/067 version 02/20/2020
33. Canetti, R.: Universally composable signature, certification, and authentication.

In: CSFW. p. 219. IEEE Computer Society (2004)
34. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with

global setup. In: TCC (2007)
35. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge

(extended abstract). In: STOC (2000)
36. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-

party and multi-party secure computation. In: STOC (2002)
37. Cascudo, I., David, B.: Albatross: Publicly attestable batched randomness based

on secret sharing. In: ASIACRYPT (2020)
38. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-

efficient threshold ec-dsa. In: PKC (2020)
39. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from ddh. In:

CT RSA (2015)
40. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryp-

tion with packed ciphertexts with application to oblivious neural network infer-
ence. In: CCS (2019)

41. Chen, S., Cheon, J.H., Kim, D., Park, D.: Verifiable computing for approximate
computation. Cryptology ePrint Archive (2019)

42. Cheon, J.H., Cho, W., Kim, J.: Improved universal thresholdizer from threshold
fully homomorphic encryption. ePrint 2023/545 (2023)

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 23

43. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: ASIACRYPT (2017)

44. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: FOCS (1985)

45. Choudhury, A.: Brief announcement: Almost-surely terminating asynchronous
byzantine agreement protocols with a constant expected running time. In: PODC
(2020)

46. Choudhury, A., Loftus, J., Orsini, E., Patra, A., Smart, N.P.: Between a rock and
a hard place: Interpolating between mpc and fhe. In: ASIACRYPT (2013)

47. Choudhury, A., Patra, A.: On the communication efficiency of statistically-secure
asynchronous mpc with optimal resilience. Iacr ePrint 2022/913 (2022), long ver-
sion of ICITS 2009 and INDOCRYPT 2020

48. Cohen, R.: Asynchronous secure multiparty computation in constant time. In:
PKC (2016)

49. Cohen, R., Garay, J., Zikas, V.: Broadcast-optimal two-round mpc. In: EURO-
CRYPT (2020)

50. Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-
party computation based on one-way functions. In: ASIACRYPT (2016)

51. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: EUROCRYPT (2001)

52. Cramer, R., Damgård, I.B., Nielsen, J.B.: Secure Multiparty Computation and
Secret Sharing. Cambridge University Press (2015)

53. Dachman-Soled, D., Gong, H., Kulkarni, M., Shahverdi, A.: Towards a ring ana-
logue of the leftover hash lemma. Journal of Mathematical Cryptology (2021)

54. Dahl, M., Demmler, D., Elkazdadi, S., Meyre, A., Orfila, J.B., Rotaru, D., Smart,
N.P., Tap, S., Walter, M.: Noah’s ark: Efficient threshold-fhe using noise flooding.
ePrint 2023/815 (2023)

55. Damgård, I., Geisler, M., Kroigaard, M., Nielsen, J.: Asynchronous multiparty
computation: Theory and implementation. In: PKC (2009)

56. Damgård, I., Magri, B., Ravi, D., Siniscalchi, L., Yakoubov, S.: Broadcast-optimal
two round mpc with an honest majority. In: CRYPTO (2021)

57. Damgård, I., Ravi, D., Siniscalchi, L., Yakoubov, S.: Minimizing Setup in
Broadcast-Optimal Two Round MPC (2023)

58. Dao, Q., Grubbs, P.: Spartan and bulletproofs are simulation-extractable (for
free!). In: EUROCRYPT (2023)

59. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust
non-interactive zero knowledge. In: CRYPTO 2001 (2001)

60. Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agree-
ment. Journal of the ACM (JACM) 32(1), 191–204 (1985)

61. Dov Gordon, S., Liu, F.H., Shi, E.: Constant-round mpc with fairness and guar-
antee of output delivery. In: CRYPTO (2015)

62. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption.
IACR ePrint (2012)

63. Fehr, S.: Span Programs over Rings and How to Share a Secret from a Module.
Master’s thesis, ETH Zurich (1998)

64. Fiore, D., Nitulescu, A., Pointcheval, D.: Boosting verifiable computation on en-
crypted data. In: Public-Key Cryptography–PKC (2020)

65. Fitzi, M., Liu-Zhang, C.D., Loss, J.: A new way to achieve round-efficient byzan-
tine agreement. In: PODC (2021)

66. Fitzi, M., Nielsen, J.B.: On the number of synchronous rounds sufficient for au-
thenticated byzantine agreement. In: DISC (2009)

24

67. Fouque, P.A., Stern, J.: One round threshold discrete-log key generation without
private channels. In: PKC (2001)

68. Garay, J., Givens, C., Ostrovsky, R., Raykov, P.: Broadcast (and round) efficient
verifiable secret sharing. In: ITC (2013)

69. Garay, J., Kiayias, A., Ostrovsky, R.M., Panagiotakos, G., Zikas, V.: Resource-
restricted cryptography: Revisiting mpc bounds in the proof-of-work era. In: EU-
ROCRYPT (2020)

70. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain, with applications to consensus and fast pki setup. In: PKC (2016)

71. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: CRYPTO (2002)

72. Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J.B., Rabin, T., Yak-
oubov, S.: Yoso: You only speak once / secure mpc with stateless ephemeral roles.
In: CRYPTO (2021)

73. Gentry, C., Halevi, S., Vadim, L.: Practical non-interactive publicly verifiable
secret sharing with thousands of parties. In: EUROCRYPT (2022)

74. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In: CRYPTO
(2013)

75. Goel, A., Jain, A., Prabhakaran, M., Raghunath, R.: On communication models
and best-achievable security in two-round mpc. In: TCC (2021)

76. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. J. of Cryptol.
(2014)

77. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for
NP. In: EUROCRYPT (2006)

78. Guo, Y., Pass, R., Shi, E.: Synchronous, with a chance of partition tolerance. In:
CRYPTO (2019)

79. Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party
computation with optimal resilience. In: EUROCRYPT (2005)

80. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-
way functions. In: Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing. STOC ’89 (1989)

81. ISO/IEC: Iso/iec 18033-6:2019 it security techniques-encryption algorithms-
part 6: Homomorphic encryption (2019), https://www.iso.org/obp/ui/#iso:
std:iso-iec:18033:-6

82. Jain, A., Rasmussen, P.M.R., Sahai, A.: Threshold fully homomorphic encryption.
ePrint 2017/257 (2017)

83. Kate, A., Mangipudi, E.V., Mukherjee, P., Saleem, H., Thyagarajan, S.A.K.: Non-
interactive vss using class groups and application to dkg. ePrint 2023/451 (2023)

84. Kate, A., Mangipudi, E.V., Mukherjee, P., Saleem, H., Thyagarajan, S.A.K.: Non-
interactive VSS using class groups and application to DKG. CCS (2024)

85. Katz, J., Koo, C.Y.: On expected constant-round protocols for byzantine agree-
ment. In: Annual International Cryptology Conference (2006)

86. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: TCC (2011)

87. Kiayias, A., Moore, C., Quader, S., Russell, A.: Efficient random beacons with
adaptive security for ungrindable blockchains. IACR ePrint 2021/1698 (2021),
https://ia.cr/2021/1698

88. Kim, E., Jeong, J., Yoon, H., Kim, Y., Cho, J., Cheon, J.H.: How to securely
collaborate on data: Decentralized threshold he and secure key update. IEEE
Access (2020)

https://www.iso.org/obp/ui/#iso:std:iso-iec:18033:-6
https://www.iso.org/obp/ui/#iso:std:iso-iec:18033:-6
https://ia.cr/2021/1698

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 25

89. Kim, T., Kwak, H., Lee, D., Seo, J., Song, Y.: Asymptotically faster multi-key ho-
momorphic encryption from homomorphic gadget decomposition. In: CCS (2023)

90. Klemsa, J., Önen, M., Akin, Y.: A practical tfhe-based multi-key homomorphic
encryption with linear complexity and low noise growth. In: ESORICS (2023)

91. Kolby, S., Ravi, D., Yakoubov, S.: Constant-round YOSO MPC without setup.
Cryptology ePrint Archive, Paper 2022/187 (2022)

92. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. (1982)

93. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant-round multi-
party computation combining bmr and spdz. Journal of Cryptology 32, 1026–1069
(2019)

94. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from bmr and she. In: TCC (2016)

95. Liu-Zhang, C., Loss, J., Maurer, U., Moran, T., Tschudi, D.: MPC with syn-
chronous security and asynchronous responsiveness. In: ASIACRYPT (2020)

96. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. J. ACM (2013)

97. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-lwe cryptography. In:
EUROCRYPT (2013)

98. Mouchet, C., Bertrand, E., Hubaux, J.P.: An efficient threshold access-structure
for rlwe-based multiparty homomorphic encryption. Journal of Cryptology 36(2),
10 (2023)

99. Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P., Hubaux, J.P.: Multiparty ho-
momorphic encryption from ring-learning-with-errors. PoPETS (2021)

100. Mouris, D., Masny, D., Trieu, N., Sengupta, S., Buddhavarapu, P., Case, B.: Del-
egated private matching for compute. Proceedings on Privacy Enhancing Tech-
nologies (2024)

101. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key fhe.
In: EUROCRYPT (2016)

102. Park, J.: Homomorphic encryption for multiple users with less communications.
IEEE Access (2021)

103. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In: TCC (2012)

104. Patra, A., Ravi, D.: On the power of hybrid networks in multi-party computation.
IEEE Transactions on Information Theory (2018)

105. Rachuri, R., Scholl, P.: Le mans: dynamic and fluid mpc for dishonest majority.
In: CRYPTO (2022)

106. Reyzin, L., Smith, A.D., Yakoubov, S.: Turning HATE into LOVE: compact ho-
momorphic ad hoc threshold encryption for scalable MPC. In: CSCML (2021)

107. Schoenmakers, B., Veeningen, M., de Vreede, N.: Trinocchio: Privacy-preserving
outsourcing by distributed verifiable computation. In: ACNS (2016)

108. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (nov 1979),
https://doi.org/10.1145/359168.359176

109. Shrestha, N., Bhat, A., Kate, A., Nayak, K.: Synchronous distributed key gener-
ation without broadcasts. ePrint 2021/1635 (2021)

110. Tang, F., Ling, G., Cai, C., Shan, J., Liu, X., Tang, P., Qiu, W.: Solving small ex-
ponential ecdlp in ec-based additively homomorphic encryption and applications.
IEEE Transactions on Information Forensics and Security 18, 3517–3530 (2023)

111. Urban, A., Rambaud, M.: Robust multiparty computation from threshold encryp-
tion based on rlwe. ISC (2024)

https://doi.org/10.1145/359168.359176

26

112. Wan, J., Momose, A., Ren, L., Shi, E., Xiang, Z.: On the amortized commu-
nication complexity of byzantine broadcast. In: Proceedings of the 2023 ACM
Symposium on Principles of Distributed Computing. pp. 253–261 (2023)

113. Wu, W., Homsi, S., Zhang, Y.: Confidential and verifiable machine learning del-
egations on the cloud. Cryptology ePrint, Paper 2024/537 (2024)

114. Yao, A.C.: Protocols for secure computations. In: 23rd annual symposium on
foundations of computer science (sfcs 1982). pp. 160–164. IEEE (1982)

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 27

A Further Details on Related Works

A.1 Details on the Approach of [61]

Let us recap their construction. Players first receive a uniform random string
(denoted B), and, 0 generate and publish GSW encryption keys on the PKI.
To encrypt its input mi, each player Pi 1 generates a ciphertext ci,i of it un-
der its own GSW encryption key and concatenates to it, encryptions of 0 under
the n − 1 keys of other players, all with the same encryption randomness (de-
noted R). Such a vector of ciphertexts ĉi = (ci,1, ci,2, . . . , ci,n) is denoted as a
flexible ciphertext, and is broadcast. In parallel 1 , players perform the sec-
ond event of a DKG, establishing a common threshold encryption key. Because
a flexible ciphertext is generated using the same secret randomness for all the
n GSW ciphertexts contained in it, players are able to Transform, locally and
deterministically, a flexible ciphertext into a GSW ciphertext under the com-
mon threshold encryption key by linearity. Then, players proceed with the local
evaluation of the circuit, and finally 2 with the threshold decryption, which
can be done over asynchronous P2P channels, by our observation. Because the
same encryption randomness is used, and given that t of these ciphertexts are
encrypted under GSW encryption keys which were generated by the adversary
A, this a priori gives A an extra advantage to guess the plaintext of ci,i. For
the security of GSW to hold, their encryption keys are thus scaled slightly larger
(m = Ω((d + n) log(q)) vs m = Ω(d log(q)) in GSW), in order to apply the
leftover-hash-lemma (LHL [61, lemma 1]).

Overall, this protocol has two main limitations:

1. It is not delegable! The generation of the flexible ciphertext ĉi has, by con-
struction the decryption key ski known by the corresponding player Pi (i.e. ĉi re-
veals the encrypted input mi to the player Pi that owns the GSW decryption key ski).
It is therefore impossible to accommodate external input-owners without losing
privacy, which prevents delegation and a fortiori lightweight input-owners.

2. It is not generic! A second limitation is that, since this technique relies on the
Leftover Hash Lemma (LHL) [80], it is unknown how to port this construction
over other FHE schemes. Let us illustrate this issue by taking the BFV scheme
detailed in Section 3.1.1 as an example. Overall, their technique is not easily
transposable to efficient RLWE-based cryptosystems, for the following reasons.
Suppose that the adversary is given one (or several) BFV encryptions of 0 under
semi-maliciously generated key(s) (a, bi), i.e.,

(
u ·bi+e(Enc)0,i , u ·a+e(Enc)1,i

)
, which

would all be generated with the same secret randomness u ← Xq. Then this
may provide it with a distinguishing advantage when given a BFV encryption
of some m under some honest key (a, bj) which would re-use the same random-
ness u. One could possibly think of a fix, e.g., adapting BFV by specifying that
the first component of the encryption key, a := a[0], would be instead vectors
with coordinates in Rq, and encryption randomness u equal to a random vector
with entries in Rq. But this fails since [53, §1] has evidenced a counterexam-
ple showing that the LHL does not hold in general (a leakage of 1/d of the

28

secret randomness which would make the outcome far from indistinguishable
from uniform). They also point that [97, Cor 7.5] showed that a weaker version
of LHL, denoted “regularity”, does apply in this setting, nonwithstanding the
previous leakage issue, in the case where the distribution of secret randomness
would be Discrete Gaussian with a sufficiently large parameter. Concretely,
we would apply “regularity” to A.u, where A would be a matrix with n rows
encoding all encryption keys. The problem is that for the applicability of “reg-
ularity”, it is required that A be sampled uniformly, whereas in our setting we
have t keys in A which are semi-maliciously generated, furthermore possibly
depending on the other t+1 honest keys. Thus, this situation could potentially
leak substantial information on u, and thus potentially enable to distinguish
the outcome from random uniform, such as mentioned above [53, §1].

Remark 1. As a final remark on [61], notice that, on the face of it, their DKG
is specified over pairwise channels, thus a player that would abort after sending
only part of the messages it is meant to send, would leave honest players with
inconsistent views on which contributions to the threshold key should be taken
into account. However this is handled by [61, Remark 4.1], who observe that
players can be instructed to broadcast the set of their messages, encrypted under
each recipient’s public key. From this perspective, their DKG, as well as the one
of [67], can be seen as a particular case of FLSS to do a sum of contributions to
the secret threshold decryption key, for the particular parameter of a modulus q
equal to a prime larger than n+ 1 [61, §B,§C].

A.2 Related Works based on (n, t)-threshold FHE

The work of Asharov et al. [14] was the first to introduce a (n, t)-threshold FHE
scheme with thresholds t lower than n−1. Unfortunately, their construction adds
2 additional rounds to the MPC protocol as soon as one player aborts. Indeed, in
this case, it is required that the honest majority reconstructs the player’s state
and resume the protocol.

The work [88, §IV B] implements a DKG for CKKS with reconstruction from
t+ 1-out-of-n Shamir shares of the decryption key. It is implemented by having
players reshare the key from n-out-of-n, into t+1-out-of-n. A variant of the DKG
of [88] is proposed in [98]. Since [88,98] follow the DKG-then-input distribution
approach, they require at least two broadcasts, which is incompatible with our
requirement. Finally, the MPC protocols suggested in [88,98] are also non-robust,
by lack of a robust distributed generation of relinearization & bootstrapping
keys.

The work [25] also proposed (n, t)-threshold FHE schemes. However, their §5
leaves unspecified the DKG, while their §6.2 has the drawback that the encryption
and decryption key pair is generated by one entity (typically, one secret owner,
before encrypting its secrets), thus it would be unsafe to have other secret owners
also encrypt their secret under this same key, which prevents MPC.

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 29

A.3 Other synchronous / asynchronous hybrid models

The question of minimizing the number of initial synchronous rounds or broad-
cast(s) in an execution of MPC was initiated in [79]. The broadcast of [66] uses
a few synchronous rounds, then guarantees eventual output delivery, under an
honest majority. The consensus of [45] with t < n/3 tolerance uses one initial
round of synchrony. In information-theoretic MPC with t < n/3, [104] reached an
optimal 3 initial synchronous rounds. In the setting of MPC with non-constant
latency, then [21] exhibited a protocol with only one all-to-all broadcast of en-
crypted inputs, followed by asynchronous peer-to-peer messages. However, they
assume for granted a DKG setup, i.e., a (n, t)-threshold additively homomorphic
encryption scheme. Establishing such a DKG setup with Paillier, as they suggest,
would cost a number of more broadcast rounds, so is incompatible with our goal.

The protocol [23] proceeds by intervals of fixed duration, denoted rounds, of
which the number grows with the depth of the circuit. Since their model is free
of primitives such as Byzantine Agreement under honest majority, if the network
is asynchronous and more than ta < n/3 players are corrupt, then they cannot
guarantee input provision, nor agreement on the output.

The protocols [50,48] are purely asynchronous, i.e., responsive, and thus do
not withstand more than t < n/3 corruptions. Even if the latter has a trusted
setup, withstanding more than t < n/3 corruptions is impossible since the pro-
tocol is purely responsive.

B Model: Further Formalism and Discussion

B.1 Formalizing Eventual Delivery in UC.

We now explain the high-level idea of the mechanism, denoted fetch-and-delay,
used to formalize eventual delivery following [86,50]. Every ideal functionality
F , when it needs to eventually deliver (ssid, v) to some entity P , engages in
the following interaction. It notifies A of the output id (ssid), and initializes a
counter Dssid←1, which captures the delivery delay. Upon receiving (delay) from
A , it sets Dssid←Dssid+1. Upon receiving (fetch) from P, it sets Dssid←Dssid−1,
as well as for all other counters related to pending outputs for P . In addition,
we specify that it leaks (fetch) to A12. It is left implicit that entities fetch as
much as they can all. Since A is PPT, at some point, it gets exhausted from
pressing the button delay. So, after sufficiently many fetches more, the counter
drops down to 0. Then F can deliver (ssid, v) to P .

B.2 More on FC

We describe in Fig. 4 the ideal functionality of secure circuit evaluation, as
introduced in Section 2.3. In the presentation, C is hardcoded in FC. But our
MPC protocol allows players to adaptively choose C based on the list of non-⊥
inputs received.

12This precision is not present in previous works [86,50,95], since that way, the
adversary knows at any moment in time when an output will be delivered.

30

FC

Output format Initialize an empty vector m = {>}n.
• Initialize outpout−available← false.
• When all mi 6= >, ∀i ∈ [n], set outpout−available = true. //it is now frozen

Formalizing timeout for inputs of corrupt players

• Initialize a counter TA ← 1 // the timeout.
• Upon receiving delay−inputs from A, TA ← TA + 1.
• Upon receiving fetch from L, TA ← TA − 1.
• When TA = 0 for the first time, freeze forever TA = 0. Then, for all i ∈ I : if
mi = >, then set mi ← ⊥.

Input (Only accessible while outpout−available = false) On input (input, m̃i ∈M)
from any Qi ∈ Q for the first time, or possibly from A if Qi is corrupt, set
mi ← m̃i, then store (input,S ,mi), and eventually-deliver (stored,mi) to each
player P ∈P. //eventually-delivers” consists of the fetch-and-delay mechanism
explained in Appendix B.1.

Formalizing eventual delivery

• Initialize a counter DR ← 0 // the delivery delay.
• Upon receiving fetch from L, DR ← DR − 1.
• When DR = 0 for the first time, if no output was delivered yet to L, wait
until outpout−available = true, then deliver y = C(m) to L.

Fig. 4: Functionality of secure circuit evaluation. Each input mi is identified by
a public label mi.

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 31

B.3 More on Broadcast BC with Possibly External Senders

B.3.1 Broadcast functionality

Definition 6. A broadcast protocol [65, Definition 1] involves a sender S and
a set of receivers R. It requires the following properties:

(Termination): all honest receivers eventually output;
(Consistency): any two honest receivers output the same value;
(Validity): if the sender S is honest and input value x, all honest receivers

output the same value x.

We dub it as BC and formalize it in Fig. 5.

Overall, it simply proceeds as follows. On receiving a message s from the
sender S , it sends s to each receiver R ∈ R by using the fetch-and-delay mecha-
nism introduced in Appendix B.1.

BCS→R

• Upon receiving a message (send,m) from S , for each R ∈ R, do the
following. Initialize Dmid ← 1, where mid is a unique message ID, store
(mid, Dmid,m,R) and leak (mid, Dmid, R,m) to A.

• Upon receiving a message (fetch) from R:
1. Set Dmid ← Dmid − 1 for all (mid, Dmid, R,m) stored, and leak

(fetch, R,m) to A.
2. If Dmid = 0 for some stored (mid, Dmid, R,m), deliver the message m

to R and delete (mid, R,m) from the memory.
• Upon receiving a message (delay,mid, R) from A, for some stored
(mid, Dmid, R,m), set Dmid ← Dmid + 1.

Fig. 5: Ideal functionality of reliable broadcast. It is parametrized by a sender S
and a set of receivers R.

Remark 2. There exists another functionality for broadcast in [47,4], which is
denoted as FACast. The difference is that for every given R ∈ R, FACast may
never deliver s to R if the adversary does not allow to, nonwithstanding other
honest players could have been delivered s. The reason is that they use the
classical UC framework of delayed output of Canetti, in which the delivery of
every single output from a functionality needs to be allowed by the adversary.

B.3.2 Sub-sessions For the sake of UC analysis, in our MPC protocol, we
specify multiple broadcast instances per sender. This is why we formalize BCS→R

with sub-session identifiers denoted ssid. Importantly, we force BCS→R into al-
lowing at most one ssid per sender, to prevent two players from receiving different
outputs from a corrupt sender for the same ssid. In practice, in our protocol, the

32

ssid is the label of the variable that is broadcast. Furthermore, we make the abuse
of notation, in our protocol, to have one sender concatenate multiple broadcast
instances of several variables at once, likewise for the input command of FLSS.
Indeed this is how the protocol would be efficiently implemented. In a model
allowing that, an input owner can possibly be logically identified to some player,
and thus both would either be simultaneously honest or corrupt. One could
furthermore have them concatenate all their broadcasts in 1 .

B.4 FAT

In Fig. 6, we present our Authenticated Message Transmitting functionality FAT.
Our baseline for FST is the functionality denoted Fed-smt [86]. For FAT, we made
the addition to leak the contents of the messages to A. We also incorporated two
other additions, borrowed from the FNET in [95]. The first consists in attaching
a unique identifier to each message and counter, in order to give to A a control
on the delay of each message individually. Notice that [50] model this individual
control by, instead, giving the power to A to re-order messages not delivered yet.
The second addition consists in forcing explicitely A to press (delay) to augment
the delay by +1, instead of the (equivalent) formalization in which A enters the
additional delay in unary notation.

FAT /FST

• Upon receiving a message (send,m) from S , initialize Dmid ← 1, where
mid is a unique message ID, store (mid, Dmid,m) and leak (mid, Dmid,m)
to A. FST leaks only (mid, Dmid, |m|).

• Upon receiving a message (fetch) from R:
1. Set Dmid ← Dmid − 1 for all mid stored, and leak (fetch) to A.
2. If Dmid = 0 for some stored (mid, Dmid,m), deliver the message m to
R and delete (mid ,m) from the memory.

• Upon receiving a message (delay,mid) from A, for some stored mid , set
Dmid ← Dmid + 1.

• (Adaptive message replacement) Upon receiving a message ((mid,m)→
m′) from A, if S is corrupt and the tuple (mid, Dmid > 0,m) is stored,
then replace the stored tuple by (mid, Dmid,m

′).
Fig. 6: Ideal functionality of asynchronous public authenticated message trans-
mitting with eventual delivery delay, parametrized by sender S and receiver R.
The straightforward upgrade to obtain asynchronous secure message transmit-
ting FST is described inline.

Remark 3. In the last (asynchronous) steps of our MPC protocol, when FLSS is
instantiated with ΠLSS, each player is instructed to send the same opening share
to all using FAT. Notice that nothing prevents corrupt players from sending

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 33

different opening shares to different players. However, when sending a share,
semi-maliciously corrupt players must exhibit an input tape containing a pair of:
a decryption key and a key noise, compatible with the bi which they broadcast in
1 . Thus, for whatever compatible pair which they could exhibit, the decryption
share coming with it is necessarily correct.

Remark 4. Notice that, in our protocol, players are instructed to publish their
public key on bPKI at the beginning, thus FAT could actually have been imple-
mented from non-authenticated channels.

B.5 More on our bPKI, and the { Bulletin board / Untrusted /
bare } PKI model

In Fig. 7, we present our bulletin board PKI functionality bPKI. For our usage,
bPKI is limited to the publication of public keys, and could be traded by the
assumption denoted {Bare/Untrusted/Bulletin board} public key setup (PKI)”
[11,29,75]. Importantly, bPKI does not perform any checks on the written strings,
it displays them to all players.

B.5.1 PKI assumptions in the literature The bPKI functionality, for our
usage limited to publication of public keys, could be traded by the assumption
denoted {Bare/Untrusted/Bulletin board} public key setup (PKI)” [11,29,75].
The PKI model was first sketched in [35, §6], then denoted as “bare PKI” in [11].
It is renamed as “untrusted PKI” in [75]. As specified in [35, §6.1][78,56], the PKI
model is slightly stronger than ours, since it abstracts-out all the implementation
constraints discussed in Appendix B.3, in a way which could be phrased as: (i)
all instances of bPKI are assumed to terminate before a public time denoted
t = 0, (ii) players (and owners) are then able to reset their clocks synchronously
at t = 0, which, e.g., enables them to subsequently run implementations of BC.
By contrast, the implementation of BC in [66] does not guarantee delivery within
a fixed delay (the “t = 0”), only eventually. Notice that, formalized like this, the
“t = 0” is related to the notion of “synchronization point” in [55,95].

Likewise, in the specific case of protocols for Byzantine agreement, [29] also
assumes access to the board only before players are assigned their inputs, which
is the same assumption in our case. We refer to [29] for a comparison of bulletin-
board PKI with more demanding setup assumptions. Notice that our generaliza-
tion, where inputs are formally assigned to owners instead of players, parallels
the regime of state machine replication in which commands originate from ex-
ternal lightweight “clients”.

B.5.2 The power of { Bulletin board / Untrusted / bare } PKI in
MPC By construction, bPKI does not perform any checks on the written strings,
it displays them to all players. Thus, it is strictly weaker than the setup denoted
as “registered PKI”, or KRK, in [34], where it is proven to have strictly more
power. Notice that implementing KRK without GURS would, in turn, require

34

bPKI

Output format Initialize an empty vector pk = {>}n.
When all pki 6= >, ∀i ∈ [n], set outpout−available = true.

Formalizing eventual delivery For every R ∈ R, initialize a counter DR ←
0 // the delivery delay.
Initialize outpout−available← false //the flag telling if the output can be
delivered.
Upon receiving fetch from any R ∈ R, DR ← DR − 1. When DR = 0
for the first time, if no output was delivered yet to R, wait until
outpout−available =true then deliver pk to R.

Formalizing timeout for keys of corrupt players Initialize a counter TA ←
1 // the timeout.
Upon receiving delay−keys from A, TA ← TA + 1.
Upon receiving fetch from any R ∈ R, TA ← TA − 1.
When TA = 0 for the first time, freeze forever TA = 0. Then, for all i ∈ I :
if pki = >, then set pki ← ⊥.

Honest keys registration Upon receiving the first message (Register, p̃ki)

from an honest key-holder Pi, send (Registered, Pi, p̃ki) toA and set pki ←
p̃ki.

Corrupt keys registration Upon receiving a message (Register, (p̃ki 6=
>)i∈I) from A, set pki ← p̃ki ∀i ∈ I .

Fig. 7: The bulletin board of public keys functionality bPKI, parametrized by a
set of n key-holders, of which the corrupt ones are indexed by I ⊂ [n], and by
a set of receivers R. It does not perform any checks on the keys received. A
published key that is not in the correct distribution is automatically considered
as ⊥ by honest players.

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 35

an extra event before bPKI in which players would publish multi-string CRS.
Fortunately, KRK is not required in our protocol, only plaintexts are extracted
in our UC proof, not secret keys.

In [75] it is proven that MPC in two rounds is impossible in the plain model,
even with identifiable abort. However, it is feasible assuming the bare/untrusted
PKI Model.

To the best of our knowledge, bPKI is the minimal setup necessary in all im-
plementations of synchronous broadcast for t ≥ n/3, since the seminal [92]. Also,
[27, Thm 1] shows that the relaxation of bPKI denoted as “local setup”, precludes
synchronous broadcast for t ≥ n/3. [Local setup means that a corrupt player
can possibly make bPKI display different strings to different players. However, it
cannot claim for itself a string previously published by an honest player.]

To be complete, let us mention that Borcherding’s impossibility is circum-
vented with the additional assumption that the majority of a restricted resource,
e.g. the computing power (or, alternatively, storage space) is in the hands of hon-
est players, which we may denote as the “proof of work (PoW) model”. There,
[70] implement what is denoted as a “pseudonymous” PKI, i.e., a mechanism that
outputs to all honest players a single set of public keys, with possibly several
keys assigned to the same players, while guaranteeing that the majority of keys
were issued by, and thus are owned by, honest players. In the same PoW model,
[69] implement an actual untrusted PKI, i.e., the FCA of [33], which they denote
FREG.

B.6 GURS

GURS is a particular case of Fcrs in [36].

GκURS
On input query from all honest players in P, then samples a sequence of κ
bits uniformly at random then outputs it to each player P ∈P, then halts.

Fig. 8: Uniform Random String.

On the one hand, MPC under honest majority enables to UC implement
fair coin tossing. Thus GURS could have been implemented, at the cost of extra
preliminary steps. Notice that optimized implementations exist, but at the cost
of more assumptions. E.g., [37] requires a CRS for the generation of NIZKs,
while [87] requires an initial seed.

On the other hand, when upgrading GURS to a global setup, then it is not
proven in general if one can safely implement a global setup by using any protocol
proven UC secure, e.g., see [16].

36

B.7 UC Non-Interactive Zero-knowledge (NIZK) functionality

Definition 7. (Zero-Knowledge Proof) A pair of probabilistic polynomial time
interactive programs P, V is a zero-knowledge proof if the following properties
are satisfied:

Soundness : If the statement is false, a cheating prover P cannot convince the
honest verifier V that it is true, except with negligible probability.

Completeness: If the statement is true, then an honest verifier V will be con-
vinced by an honest prover P .

Zero-knowledge : If the statement is true, no verifier V learns anything beyond
the statement being true.

We present in Fig. 9 the ideal functionality of non-interactive zero-knowledge
arguments of knowledge, denoted as FNIZK and mainly borrowed from [77]. It is
parametrized by an NP relation R. Upon request of a prover P exhibiting some
public input x and knowledge of some secret witness w, it verifies if (x,w) ∈ R
then deletes w from its memory. If the verification passes, then FNIZK outputs
to P a string π. We denote Π the space of such strings π. During the delay of
output, A has the power to set the value of π. If it does not use this power, then
FNIZK sets π to a default value π0. Upon subsequent input the same string π
and x from any verifier, FNIZK then confirms to the verifier that P knows some
witness for x.

Remark 5. The main difference with [77], in which A could delay forever the
delivery of π, is the introduction of a time-out, based on the fetch-and-delay
mechanism. Sticking to this model would have prevented us from specifying a
protocol with guaranteed output delivery (GOD) in case of honest majority.

UC implementations of FNIZK exist, which do not require honest majority
[59], but at the cost of requiring a uniform random string (URS). Nonwithstand-
ing that [59] allows the same URS to be reused in concurrent executions, the
bottom-line is that the URS needs to be part of a local setup in their implemen-
tation. Without an honest majority assumption, then [34] prove that UC NIZK
is non-implementable in the global common random string model, i.e., which we
formalized as GURS in the particular case where the string is uniform.

Remark 6. The need for a URS can be escaped under honest majority, provided
access to bPKI, thanks to the technique denoted multi-string CRS [76,17].

B.8 Reminder of the UC model

Consider a protocol Π, a functionality F and any PPT environment Env which
can interact with either one or the other of the following protocols, without
being informed which of them. In every execution, Env may provide inputs to
honest players, may provide instructions to the adversary, and may observe the
outputs of players. At some point in every execution, Env must output a bit. In

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 37

FNIZK

The functionality is parametrized with an NP relation R of an NP language
L and a prover P .

Proof: On input (prove, sid, ssid, x, w) from P , ignore if (x,w) /∈ R. Request
(proof, x) to A then go to the next step.
Reception of the NIZK Initialize a counter TA ← 1.
Upon receiving delay from A, TA ← TA + 1.
Upon receiving fetch from P , TA ← TA − 1.
Upon receiving (activate, π) from A and if TA > 0, then: freeze forever
store (x, π) and deliver (proof, sid, ssid, π) to P.
If TA = 0, then: freeze forever TA = 0, store (x, π) and deliver
(proof, sid, ssid, π0) to P.
Verification: On input (verify, sid, ssid, x, π) from any verifier V , check
whether (x, π) is stored. If not, then do the following instructions:
• request (verify, x, π) to A;
• initiate a counter Dverif which A can increase by +1 steps, and V by
−1 steps;
• upon receiving an answer (activate,witness, w) from A and if Dverif >
0 and if (x,w) ∈ R, then: store (x, π);
• when Dverif = 0, halt those instructions and go to the next (and last)

step.
If (x, π) is stored, return (verification, sid, ssid, 1) to V , else return
(verification, sid, ssid, 0).

Fig. 9: Non-interactive zero-knowledge functionality

38

the first, denoted “real” REALΠ , Env interacts with the dummy adversary A,
and honest players follow the actual protocol Π. In the second, denoted “ideal”
IDEALF ,Sim,Env, Env interacts with an adversary Sim, while honest players are
connected only to F . Following [32], we say that protocol Π UC emulates F if
there exists a PPT machine, denoted as the simulator Sim, such that for any such
Env, the gap of probabilities of outputting 1 when faced with an execution of
the first protocol, and when faced with an execution of the second, is negligible.
Notice that this definition, with only the dummy adversary, is easily seen, and
proven in [32, §4.3.1], to be equivalent to UC emulation against any adversary.

B.9 Semi-Malicious corruptions.

In our protocols and proofs, we will consider what we define as Semi-Malicious
Corruptions, following [14, §A.2] [30,61,17]. Semi-maliciously corrupt players and
input-owners continuously forward to A their outputs received from ideal func-
tionalities, and act arbitrarily as instructed by A. E.g., they can possibly not
send some message although the protocol instructs them to. However, when a
corrupt entity M inputs a message m to FAT or BC, then the sending of m
must be compatible with the requirements of the protocol, with respect to: (i)
all outputs of instances of GURS, bPKI, BC, and also FLSS in the case of our Π,
required for sending m, and (ii) an internal witness tape that M must have, of
the form (x, r) with x an input and r of the same length as all random coins that
an honest player would have been meant to have tossed upon sending m. M can
however use conflicting (x, r) when sending different messages m, m′. Moreover,
we also require that the semi-malicious adversary can only make BCM to output
v for some corruptM only if: either v could have been input to BCM byM itself
according to the above rule, or, if v = ⊥.

In summary, the adversary must have a witness tape containing: an input
value of P , coins explaining the random choices of P , and the set of all broadcast
values so far (possibly from other senders), including in our case the encryption
keys, and, for each previous asynchronous step, a set of t+1 received messages.
The latter requirement is new and specific to our asynchronous context. Recall
that in [14], semi-malicious players simply had to explain their behavior based
on previous broadcast messages. By contrast, in our model, nothing prevents
them from arbitrarily picking the sets of t+ 1 messages. The observation which
we make is that this new choosing power is useless, since our MPC protocol is
made only of threshold openings of linear maps. Precisely, the choice of the t+1
messages does not modify the reconstructed value, from which semi-malicious
players must build their next message.

Finally, notice that we do not impose any condition for the sending of some
m on bPKI. Concretely, this is because in the UC proof of Prop. 15 of our
implementation of FLSS, we do not need extractable secret keys. The consequence
is that our protocol can be instantiated with NIZKs with non-necessary straight
line simulation extractability, so this allows more efficient NIZKs. Recent such
examples are Bulleproofs and Spartan [58], of which the former are the ones used

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 39

in [73] for our purpose. See Appendix F.2 for more details on the consequences
of this relaxation.

B.10 Reminder of IND-CPA security

Definition 8. PKE A public-key encryption scheme consists of the following
algorithms:

• Key Generation (dk, pk) ← EKeyGen(1λ): Given a security parameter λ,
the key generation algorithm outputs the public key pk ∈ Pk with the
associated private key dk;

• Encryption c ← Enc(pk,m): Given a message m and a public key pk, it
outputs the ciphertext c;

• Decryption m′ ← Dec(dk, c): Given a ciphertext c and a private key dk, it
outputs a message m′.

1. Security: For subsequent use later in this work, we now describe in more
detail the semantic security of a PKE scheme E = (EKeyGen,Enc,Dec). Con-
sider the following IND-CPA game:

GameAIND-CPA(1
λ)

1 : b $←− {0, 1}
2 : (dk, pk) $←− EKeyGen(1λ)

3 : (m0,m1)← A(1λ, pk)
4 : c← Enc(pk,mb)

5 : b′ ← A(1λ, pk, c, state)
6 : return b = b′

The advantage of A in this game is defined as AdvAEnc = |Pr[b = b′]|.
We say that E is IND-CPA secure if, for any PPT adversary A, it holds that:

(5) |2.AdvAEnc − 1| ≤ negl(λ)

2. Correctness: A public-key encryption scheme if said correct is for all mes-
sage m and (dk, pk)← EKeyGen(1λ),

(6) Dec(dk,Enc(pk,m)) = m.

C On Reusability and Comparison with [75]

In the MPC protocols we present in Theorems 1 and 2, we point out that they
verify the reusability property of [17], defined as follows:

40

• Reusability (from [17]): Given the transcript of the input distribution phase
of the protocol, the computation phase of the protocol should be able to be
reused across an unbounded polynomial number of executions to compute
different functions on the same fixed joint inputs of all the players.

The latter is to be compared with the weaker delayed-function property used
until now, e.g. in [11], which roughly states that the first round messages of the
honest players are computed independent of the function and the number of
players.

Let us note that the concurrent work of [75] presented a result close to our
Theorem 1, discovered independently, which affirms the feasibility of MPC with
GOD under honest majority with a bulletin board PKI. However, we believe
that our result is stronger for several reasons. Notably, we identified a miscitation
[61] for their feasibility result (p10). Upon notification, they confirmed that their
result was derived from [11], which carries several important implications:

1. First, their MPC protocol does not have the reusability property (as observed
by [17])

2. Second, the communication complexity of their protocol is, as observed in
[17], linear in the circuit size, when it is only proportional to the circuit
depth and the number of inputs in our Theorem 1.

3. Third, broadcast is assumed in both rounds in [75, Section 6], while our
Theorem 1 requires only an asynchronous 2nd round.

4. Finally, we believe that their protocol, in its current form, is not delegable.
Indeed, the computation of both round 1 and round 2 messages by a player
Pi requires the player’s own input xi. As a result, the only way an external
input-owner could delegate a computation would be to reveal its input in
clear text to one of the players, which compromises security. However, we
do not rule out the possibility of a more sophisticated solution that enables
delegation, similar to approaches like [17] or [25], albeit with the additional
overhead such methods entail.

D Examples of LHE schemes

We now give more examples of `-HE schemes following Definition 3.

D.1 CL [39].

The `-HE of Castagnos-Laguillaumie (CL) [39] has plaintexts in Z/pZ but ci-
phertexts in a group of hidden order, hence the operations are seen as Z-linear
(the law ∗ in the target group being multiplication). In [38, §3.2] it is described
how to set-up the parameters for a public common prime p.

We refer to [31, Fig.4] for details about how to perform a DKG for CL, in-
cluding a suitable secret sharing over Z. Note that the DKG can be made non-
interactive in one round of BC, using PVSS (Section 3.2).

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 41

D.2 GSW.

From a remote perspective, the original GSW [74] public key FHE scheme falls
short from our linearity requirements. Indeed the encryptor needs to secretly
compute a non-linear function, which takes as input the public key and some
encryption randomness (namely: BitDecomp(A.R)). Then, [10] introduced a vari-
ation of GSW which is compatible with our syntax, since encryption is now a
linear map. Furthermore, they observe that their variation is lossless, i.e., a ci-
phertext under their variation can be transformed into a GSW ciphertext without
knowing the secret decryption key. This GSW-AP variation is explicitly spelled-
out in [101] ([10] described only a symmetric-key simplification) and used in [25,
Appendix B]. Then, [30] and [17] used a dual version of the GSW-AP variation,
which we call “GSW∗”. It differs from GSW only from the choices of dimensions
and distributions. Below we recall the GSW-AP13, where E is a distribution over
Z, m an integer, G ∈ Zn×mq a fixed efficiently computable matrix and G−1(.) an
efficiently computable deterministic “short preimage” function as defined in [101,
Lemma 2.1]. Moreover recall that, unlike `-BFV, there is not need for a relin-
earization key for performing homomorphic operations. As in Section 3.1.1, for
additivity reasons we consider that the public uniform randomness A ∈ Z(n−1)m

q

is fixed and drawn from a common URS.

• GSW.KeyGen(pp = (A∈Z(n−1)m
q)): Sample e(pk) $←− Em and s $←− Zn−1q and set

sk = (−s, 1) ∈ Znq , and define the linear map ΛA
EKeyGen : (sk, e(pk)) → (s.A +

e(pk),A).

Output ek← ΛA
EKeyGen(s, e

(pk)) = (sk.A+ e(pk),A) = (b,A).

• GSW.Enc(ek = (b,A), m ∈ Z): Sample R $←− {0, 1}m×m, and define the linear

map ΛA,b
Enc : (R,m)→

([A
b

]
R+mG

)
, where G ∈ Zn×mq .

Output c← ΛA,b
Enc

(
R,m

)
∈ Zn×mq .

• GSW.Dec(sk, c): Given a ciphertext c∈Zn×mq , define a vectorw=[0, . . . , 0, dq/2c]∈
Znq , and Λ

c
Dec : (sk)→ sk.cG−1(wT) and compute µ← Λc

Dec(sk).

Output m :=
∣∣∣⌊ µ
q/2

⌉∣∣∣ = ΩDec(µ).

E More on FLSS and Secret Sharing over Rings

In this section, we first detail in Appendix E.1, what is a (n, t)-Linear Secret
Sharing scheme (LSS) and how it can be used to design a Publicly Verifiable
Secret Sharing scheme (PVSS). Then in Appendix E.2, we detail the implemen-
tation of FLSS and its security.

13That we denote simply as GSW for simplicity.

42

FLSS

Participants: A set S of senders, an output learner L, and a set P of players.
Inputs (For each S ∈ S): a list (xS,α)α∈XS , where each input xS,α is identified
by a unique predefined ’label’ xS,α.
Setup
• On input (Setup) from any P ∈ P for the first time, or possibly from A

if P is corrupt: stores (Setup, P), and eventually-delivers (Setup, P) to each
player P ∈ P . //eventually-delivers” consists of the same fetch-and-delay
mechanism as explained in Appendix B.1.

• Initialize a counter TA ← 1 //Formalizing timing for setup of corrupt players
• Upon receiving delay−Setup from A, TA ← TA + 1.
• Upon receiving fetch from any P ∈P, TA ← TA − 1.
• When TA = 0 for the first time, freeze forever TA = 0. Then, send ready to

every S ∈ S .
Input On input (input, xS,α, xS,α ∈ Rq) from any S ∈ S for the first timea,
or possibly from A if S is corrupt: first, if xS,α = ⊥ then set it to 0, store
(input,S , xS,α), and eventually-deliver (stored, xS,α)

b to each player P ∈P .
A delaying eventual delivery
• Initialize D ← 1 // Delivery delay
• Upon receiving delay from A, set D ← D + 1

Bookkeeping requests from honest players
• Initialize HOpeners← {}c

• Upon receiving (LCOpen, ssid = Λ) from any honest player Pi ∈ P, set
HOpeners← HOpeners∪{Pi}, set D ← D− 1 and leak (LCOpen, ssid = Λ,Pi)
to A.

LCOpen

• [Early Opening] If |HOpeners| ≥ 1 and if all xS,α appearing with nonzero
coefficient in Λ are stored, then,
1. if L is corrupt, leak y := Λ((xS,α)S,α) to A;
2. if L is honest, upon receiving (open−order, Λ) from A, if no output was

delivered yet to L, then send (ssid = Λ, y := Λ((xS,α)S,α)) to L.
• [Collective Opening] If |HOpeners| ≥ t + 1 and D ≤ 0 and no output was
delivered yet to L, and if all xS,α appearing with nonzero coefficient in Λ are
stored, then send (ssid = Λ, y := Λ((xS,α)S,α) to L.

aOnce a sender S (or A) send an input xS,α with label xS,α, the former cannot
be subsequently updated.

bAppended with “xS,α = ⊥” when this is the case.
cRecall that we consider in this description an unique Λ. If multiple are con-

sidered, then several sets HOpenersΛ must also be considered.

Fig. 10: Sharing with Linear Combination functionality for one single linear map
Λ. sid omitted

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 43

E.1 Linear Secret Sharing

We now introduce the concept of linear secret sharing that will prove useful
throughout this work to design multiparty schemes.

Definition 9. ((n, t)-LSS) Let R be a ring. A (n, t)-Linear Secret Sharing Scheme
is defined by the following two algorithms:

• LSS.Share(s ∈ R, n, t)14 → (s(1), . . . , s(n)): For a given secret s ∈ R, the sharing
algorithm generates a vector (s(1), . . . , s(n)) of shares, where s(i) is the share of
player Pi.

• LSS.Reco({s(i)}i∈U ,U) → s: For any set U of size t + 1 and shares {s(i)}i∈U ,
the reconstruction algorithm outputs a secret s ∈ R.

To ease notations, we define a sharing of some secret s ∈ R as [s] = {s(1), . . . , s(n)}.

Furthermore, it must satisfy the following properties:

1. Correctness: For any set U of size t + 1, the value s can be efficiently re-
constructed from the set of shares {s(i)}i∈U , i.e. for any projection SU of
S ←LSS.Share(s, n, t), it holds that LSS.Reco(SU ,U)=s with probability 1.

2. Privacy: For all V such that |V | ≤ t, and secrets sL, sR ∈ R, then the shares
of sL and sR output by LSS.Share follow the same distribution. More formally,
we have:

(7)

{
{s(i)R }i∈V ≈ {s

(i)
L }i∈V

∧{s(i)R }i∈[n] ← Share(sR, n, t)

∧{s(i)L }i∈[n] ← Share(sL, n, t)

}

In other words, the set of shares {s(i)}i∈V does not leak anything about the
value s.

3. Linearity: Linear operations (namely additions and subtractions) can be ap-
plied on the shares of different secrets to obtain the shares of the corresponding
operations applied on these secrets. Specifically, when considering two sharings
[x] = {x(1), . . . ,x(n)} and [y] = {y(1), . . . ,y(n)} of some values x, y ∈ R, then
{x(1) + y(1), . . . ,x(n) + y(n)} (resp - for the subtraction) is a sharing of x + y
(resp x− y).

This notion can be generalized to any set of secret values. Consider a linear
map Λ and a set of sharings {[xi]}i∈S of some secrets {xi}i∈S ∈ R. Then, we
have that {Λ({x(1)

i }i∈S), . . . , Λ({x
(n)
i }i∈S)} = [Λ({xi}i∈S)].

Moreover, for our UC proofs to go through, we require in addition the following
two properties (4) and (5), which enable the simulation of shares. They are
satisfied by all linear secret sharings used in practice, e.g., Shamir[108] and the
{0, 1}-LSSD of [82] (renamed {0, 1}-LSS in [28]).

14We leave implicit the randomness used for the sharing.

44

4. Simulatability: Additionally, we require the existence of an efficient func-
tion ShSim such that for every PPT adversary A, for any set V such that
|V | ≤ t (and U = [n]\V), and any two secrets sL, sR ∈ R, for (s(1)L , . . . , s

(n)
L)←

LSS.Share(sL, n, t), (s
(1)
R , . . . , s

(n)
R) ← LSS.Share(sR, n, t) and

{s̃(i)L }i∈U ← ShSim({s(i)R }i∈V , sL),

∣∣∣Pr[A({s(i)L }i∈V , {s(i)L }i∈U) = 1]− Pr[A({s(i)R }i∈V , {s̃
(i)
L }i∈U) = 1]

∣∣∣ ≤ negl(λ)

(8)

5. Inference of Shares: Finally, we require the existence of an efficient func-
tion ShInfer such that for every PPT adversary A, for any set (t + 1)-sized
set U (and V = [n] \ U), and any two secrets sL, sR ∈ R, for (s(1)L , . . . , s

(n)
L)←

LSS.Share(sL, n, t), (s
(1)
R , . . . , s

(n)
R) ← LSS.Share(sR, n, t) and

{s̃(i)L }i∈V ← ShInfer({s(i)L }i∈U),

∣∣∣Pr[A({s(i)L }i∈V , {s(i)L }i∈U) = 1]− Pr[A({s̃(i)L }i∈V , {s
(i)
L }i∈U) = 1]

∣∣∣ ≤ negl(λ)

(9)

We now discuss a classical example of a linear secret-sharing scheme.

Example: Shamir Secret Sharing. For the purpose of this section, we con-
sider a finite field F and assume that each player Pi ∈ P is associated with a
non-zero element αi ∈ F such that if i 6= j then αi 6= αj . We recall the secret-
sharing scheme of Shamir [108] that implements a (n, t)-LSS scheme based on
polynomial interpolation in a finite field. As a reminder, let us first define what
are Lagrange coefficients.

Definition 10. Given U ⊆ [n] with |U | = t+ 1, we denote as Lagrange coeffi-
cients the values {λUi }i∈U computed as

(10) λUi =
∏

j∈U ,j 6=i

α0 − αj
αi − αj

Intuitively, Shamir uses polynomial evaluation to share a secret and interpo-
lation to reconstruct it from shares. In more detail, to share a value s ∈ F using
Shamir, the dealer samples at random a polynomial f(Y) ∈ F≤t[Y] of degree at
most t, such that f(0) = s. The shares corresponding to each player Pi are then
define as the evaluation of f in αi, i.e. s(i) = f(αi). The reconstruction of the
secret is done by doing a Lagrange interpolation at α0 from any set of t+1 shares.

Formally, the scheme can be defined by the following two algorithms:

Shamir.Share(s, n, t): To secret-share a value s ∈ F, sample f1, . . . , ft $←− F and
output s(i) = s+Σt

j=1fjα
j
i for all i ∈ [n].

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 45

Shamir.Reco({s(i)}i∈U ,U): To reconstruct s from shares {s(i)}i∈U , compute

(11) s =
∑
i∈U

λUi s
(i)

Correctness of the scheme follows from polynomial evaluation and recon-
struction, while privacy intuitively follows from the fact that any set of t shares
does not leak anything about the secret s.

Instantiation of Linear Secret Sharing over Polynomial Rings: Since
we are working with efficient linear homomorphic encryption schemes in which
the ciphertext space can be a polynomial ring Rq, we require an efficient LSS
scheme over polynomial rings. We now briefly discuss possible instantiations:

• First, one can consider the {0, 1}−LSSD scheme of [82] over Rq. [111] showed
it fulfills all the properties desired in Definition 9, in particular the simulata-
bility and the inference of shares. Note that in a similar way, the recent
TreeSS scheme presented in [42] also satisfies the properties we seek.
• For Shamir, let us recall that it is a known result since [63] that using a ring

is possible, as long as the set of Shamir public-points forms an exceptional
sequence [5,52] as defined in Definition 11. We then consider two cases:
• First, let us recall that such an exceptional sequence exists when the

prime factor q is of size at least n+ 1.
• Second, let us note that following [5], an exceptional sequence can be

built for an arbitrary modulus q, and therefore by Theorem 12, a Shamir
secret-sharing scheme. We refer to [111] for details about this construc-
tion.

All in all, provided with an exceptional sequence over R, we then have the
following Theorem 12.

Definition 11. From [5] For a ring R, the sequence α1, . . . , αn of elements of
R is an exceptional sequence if αi − αj is a unit in R for all i 6= j.

Theorem 12. From [5] Let R be a commutative ring and α1, . . . , αn be an ex-
ceptional sequence in R. Then, a Shamir secret-sharing scheme instantiated in
R with Shamir public-points, α1, . . . , αn, is correct and secure.

E.1.1 Publicly Verifiable Secret Sharing (PVSS) Let PKE = (EKeyGen,Enc,Dec)
be any public key encryption scheme satisfying IND-CPA. We introduce the fol-
lowing definition:

Definition 13. (Publicly Verifiable Secret Sharing (PVSS)) Let us consider the
following randomized function PVSS, parametrized by n strings (pkPKEi)i∈[n].
On input s ∈ Rq compute (s(1), . . . , s(n)) ← LSS.Share(s), and output[
PKE.Enc(pkPKEi , s(i))

]
i∈[n]

along with a NIZK proof π of correct sharing for

46

the following relation:
(12)

RShare=

{
x=({pkPKEi }j∈[n], enc−shares)
w = (s, r, {ρi}i∈[n])

∧{s(i)}i∈[n] ← LSS.Share(s; r)

∧ enc−shares← [Enc(pkPKEi , s(i); ρi)]i∈[n]

}

PVSS is IND-CPA for anyA being given at most t secret keys
(
dkPKEi

)
i∈I⊂[n],|I|≤t,

as will be shown in Proposition 14.

Remark 7. By convention, encryption under an incorrectly formatted public key
pkPKE, e.g., ⊥, returns the plaintext itself.

Remark 8. We describe the MPC protocols in Section 5 in the semi-malicious
model, for which the NIZK proof can be dropped. This leads to the manipulation
of new structures, denoted as Public Secret Sharing, namely a PVSS without a
proof of correctness.

Proof of IND-CPA of Publicly Verifiable Secret Sharing. Proposition 14
states that any PPT adversary A corrupting at most t players, has negligible
advantage in distinguishing between the encrypted (n, t)−LSS sharings of any
two chosen secrets (sL, sR) ∈ R2

q .

Proposition 14 (IND-CPA of encrypted sharing). For any integers 0 ≤ t ≤
n, we consider the following game between an adversary APVSS and an oracle O .
O is parametrized by a secret b ∈ {L,R} (left or right oracle).

GameAPVSS

IND−PVSS

Setup. APVSS gives to O: a subset of t indices I ⊂ [n], and a list of t
public keys (pki)i∈I ∈ (Pk t ⊥)t. For each i ∈ [n]\I , O generates
(dki, pki)← EKeyGen(1λ) and shows pki to APVSS.

Challenge. APVSS is allowed to query O an unlimited number of times
as follows. APVSS gives to O a pair (sL, sR) ∈ R2

q . Depending on
b ∈ {L,R}, O replies as either OL or OR:
OL: computes (s(1), . . . , s(n)) ← Share(sL) and returns

(Encpk
i

(s(i)))i∈[n]
OR: computes (s(1), . . . , s(n)) ← Share(sR) and returns

(Encpk
i

(s(i)))i∈[n].
Guess. APVSS gets some (Encpk

i

(s(i)))i∈[n] and outputs b′ ∈ {L,R}. It
wins if b′ = b.

Fig. 11: IND-CPA of encrypted sharing

At some point APVSS may output a string, e.g., a bit. Then for any PPT
machine APVSS, we want to show that the distinguishing advantage AdvL,R =
|Pr(1← AO L

PVSS)− Pr(1← AO R

PVSS)| is negligible.

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 47

Proof. Overall, the intuition of proof is that, under the idealized assumption
that PKE ciphertexts under the unknown t+ 1 public keys would perfectly hide
their content, then, the view of the adversary is the vector of t plaintext shares
{s(i)}i∈I . In particular, for any value s ∈ Rq, we have that, in a PVSS of s, the
t + 1 coordinates

[
Enc(pkPKEi , s(i)), i ∈ [n]\I

]
, which are encrypted under the

honest keys pkPKEi , perfectly hide the plaintext coordinates s(i) to the adversary.
We refer to [111] for a detailed proof of this proposition.

E.2 Implementation of FLSS.

We now detail in Fig. 12 protocolΠLSS that instantiates FLSS in the (BC,FAT, bPKI)-
hybrid model. Recall from Section 3.2 that we consider a set P of n players, a
set S of senders, and an output learner L.

Proposition 15. Protocol ΠLSS UC implements FLSS

ΠLSS

Parameters: Any PKE = (EKeyGen,Enc,Dec) and LSS = (Share,Reco) and,
from them, the PVSS algorithm detailed in Definition 13.
Participants: A set S of senders, an output learner L, and a set P of n players.

ΠLSS.Setup : ∀P ∈ P: (dkPKEP , pkPKEP) ← PKE.EKeyGen(1λ), send
(Register, pkPKEP) to bPKI.

ΠLSS.Input :
• Each sender S ∈ S sets (pkPKEP)P∈P as the output delivered by bPKI. For

each α ∈ XS :
• Compute enc−sharesS,α,_ := PVSS

(
(pkPKEP)P∈P , xS,α

)
.

• Broadcast (input, ssid := xS,α, enc−sharesS,α) over BCS .
• ∀Pj ∈ P, upon receiving outputs from all sub-instances of all BCS whose

label ssid = xS,α has nonzero coefficient in Λ: for each output (xS,α, ∗),
if ∗ = ⊥ then set x(j) := 0; else if ∗ = [c

(1)
S,α, . . . , c

(n)
S,α] then set x(j)S,α :=

PKE.Dec(dkPKEj , c
(j)
S,α).

ΠLSS.LCOpen(Λ) :

• Upon calling LCOpen, each player Pj ∈ P evaluates µ(j) := Λ
(
(x

(j)
S,α)S,α

)
and sends it over FPj

,L
AT to L.

• Upon receiving opening shares (µ(i))i∈U from any (t + 1)-set U ⊂ [n] of
players, outputs µ := LSS.Reco

(
µ(i))i∈U ,U).

Fig. 12: Protocol for secret-sharing then linear combination

Proof. For simplicity, we construct a simulator for an honest L15 and the opening
of only one evaluation of one linear map. The case of multiple openings is handled
as in [52, p127], when they simulate each new Open.

15The case where the output learner is corrupt is easy. Namely, the simulator plays
ΠLSS honestly, then indistinguishability follows from the correctness of ΠLSS.

48

The UC security property follows from four hybrids. The first two, HybridShSim

and HybridFC , replace the opening shares of honest players of the output of the
protocol ΠLSS, by ones simulated out of the actual evaluation of a linear map Λ.
They are indistinguishable from the real execution, by simulatability of openings
and by correctness of ΠLSS. Then, Hybrid0Share replaces the input of a simulated
honest senders by 0. Finally, HybridShInfer changes the way opening shares of cor-
rupt players are obtained.

Game REALA. This is the actual execution of the protocol ΠLSS with adver-
sary A fully controlled by Env (and ideal functionalities bPKI,FAT,BC).

Game HybridShSim. (Skipped if L is honest.)
In this hybrid, we change the method of computation of the opening shares

of honest players. To do so, we first define quantities denoted Inferred Corrupt
Opening Shares (µ(i))i∈I , nonwithstanding corrupt players may not have any
opening shares on their witness tapes, since they may not send any.

For every input xS,α of some honest S , we simply define
(
x
(i)
S,α
)
i∈I as the

actual shares produced by S when it computes the PVSS of xS,α.
For each output (xS,α, ∗) of BCS from some corrupt S : (i) if ∗ = ⊥ then

we define
(
x
(i)
S,α := 0

)
i∈I , otherwise (ii) this implies that ∗ is a correctly formed

PVSS. Thus in this case, we define as
(
x
(i)
S,α
)
i∈I the plaintext shares read on the

witness tape of S .

For all i ∈ I we set µ(i) := Λ
(
(x

(i)
S,α)α∈XS ,S∈S

)
. By linearity of the LSS

scheme, they are equal to the opening shares of ỹ that the (Pi)i∈I would have
sent if they were honest. Finally, we generate the opening shares of honest players
as ShSim(ỹ, (µ(i))i∈I).

Claim 16. REALA ≡ Hybrid0Share.
Proof: Since ShSimI simulates perfectly, they are identical to the ones of the
Real execution.

Game HybridFLSS. (Skipped if L is honest.) This game differs from HybridShSim

in that the input ỹ to ShSim is replaced by the actual y leaked by FLSS.

Claim 17. Hybrid0Share ≡ HybridFLSS .
Proof: By correctness of ΠLSS, y = ỹ so the view of Env is unchanged.

Game Hybrid0Share. We modify HybridFC in that each simulated honest sender
plays the protocol as if it had input 0 instead of x.

Claim 18. HybridFLSS ≡ Hybrid0Share.
Proof: Since the private decryption keys dkh of all honest players h ∈ H are not
used anymore, we have that the IND-CPA property of PVSS stated in Proposition
14 applies. Thus the view of Env is indistinguishable from the one in the previous
game.

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 49

Game HybridShInfer. If L is honest, this game is identical to Hybrid0Share. Else
(if L is corrupt), we now modify the method to Infer the corrupt shares of the
enc−sharesS,α broadcast by corrupt senders S . First, decrypt the honest shares
of enc−sharesS,α using, again, the honest private keys (dkh)h∈H. From them,
compute the opening shares {µ̃(i)}i∈I and use them to infer the corrupt shares
using ShInferH.

Claim 19. Hybrid0Share ≡ HybridShInfer.
Proof: The inferred shares are identical to the ones in the previous game, by the
property of ShInferH.

What we have achieved is a simulator that interacts only with the environ-
ment and with the ideal functionality of linear combination computation, so this
concludes the proof.

F Further Details on the Proof of Theorem 2

F.1 Smudging Lemma

The following lemma states that two distributions differing by a small noise, can
be made indistinguishable by adding an exponentially larger “smudging” noise
to both. Its parameters were recently improved in [54, Lemma 2.3], in our use-
case where the smudging noise comes itself as the sum of several contributions
(sampled uniformly by honest players).

Lemma 20 (Smudging lemma [14]). For B1, B2 positive integers and e1 ∈
[−B1, B1] a fixed integer, sample e2 uniformly at random in [−B2, B2]. Then
the distribution of e2 is statistically indistinguishable from that of e2 + e1 if
B1/B2 = ε, where ε = ε(λ) is a negligible function.

F.2 Semi-malicious Security to Malicious Security

At a high level, malicious security can be achieved by applying the compiler
of [14, §E], i.e., by instructing players and owners to append NIZK to their
messages, to prove knowledge of a witness explaining them. But the compiler
of [14] is designed for broadcast-based protocols, whereas in ours, players in 2
and 3 also act based on previous outputs of FLSS. This is why we also required
semi-malicious players to explain their messages based on these outputs, in our
adapted model in Appendix B.9. We can also simplify their compiler by allowing
players to prove their statements with UC NIZKs, recalled in Appendix B.7, since
these can be set-up under honest majority from one initial call to bPKI, thanks
to the technique denoted Multi-String CRS [76,17]. On the face of it, this call
pre-pends one more step before the publication of keys on bPKI. However, we

50

can actually have players publish multi-strings in parallel. Indeed in our semi-
malicious model Appendix B.9 we did not impose any condition when publishing
on bPKI. Multi-Strings instead of GURS-based NIZKs have the merits (i) to
relieve Owners from the need to access GURS when constructing their NIZKs,
and (ii) to preserve GURS as a global resource, which would otherwise have
needed to be simulated if used to produce NIZKs: see Appendix B.7.

G YOSO MPC

A recent line of research [72,105,6] studies MPC with specialized computation
models, that support a dynamically evolving set of players, i.e. where partici-
pants can join and leave the computation as desired, without interrupting the
protocol. The rationale is that players may devote only a limited amount of time
(and computational resources) to a computation that can last a long period. This
computation model was captured by Gentry et al. [72] under the name YOSO
(You Only Speak Once), where the computation is divided into a number of
successive steps d = 1, For each one of them, a committee C(d) of ephemeral
players carries out some local computation, each of them publishes a single
message on a bulletin board, and then vanishes from the system. An attractive
consequence of this model is the drastic reduction of the window for adaptive
corruption of these players due to the unpredictable selection of committees of
players for the computation. Unfortunately, this model inherently requires some
form of consistent terminating broadcast (BC) at the end of each computation
step, often modeled as a public ledger [72]. Roughly, this is needed for players
to perform their computation on the same intermediary values.

It is not difficult to imagine building a YOSO MPC protocol from our
Share&Shrink protocol in one single BC instantiated from an `-FHE scheme
presented in Section 5.3. Indeed, we have already dissociated the input-owners
from the players, so the former can distribute their inputs in only one message
without knowing the threshold encryption key. In order to fully move to the
YOSO model, we can further dissociate the participants in the 3 rounds of the
original protocol, by introducing the following committees:

• a key generation committee C(DKG), whose members broadcast their contri-
butions to the encryption key and PVSSs of their decryption keys;

• an input-owner committee C(owners), whose members broadcast in parallel
with C(DKG), PVSSs of their inputs and encryption randomnesses;

• a shrinking committee C(Shrink), which encrypts the distributed inputs under
a common threshold encryption key, by sending opening shares for some
linear form via asynchronous P2P channels to the next committee;

• and finally, a decryption committee C(Dec), whose members locally perform
the evaluation and the threshold decryption in one step of P2P asynchronous
messages.

We refer to [91] for further discussion about adaptions to be made to move to
the YOSO setting.

Share&Shrink: Delegated MPC from one Broadcast-then-Asynchrony 51

H Experimental Parameters

In Table 3, we recall the candidate parameter set described in [89, Table 2], that
achieves at least 128-bit of security level according to LWE-estimator [8]. We
also use the error distribution Ψq with σ = 3.2.

log k log d log q l
16 14 438 8

Table 3: Experimental cryptographic parameters: Overview

I End of the proof of Theorem 5

Choosing Pi and its joint action with A. By (B,M), where M = (M1,
. . . ,Mn), we denote the joint distribution of broadcast and messages sent by
Pn in round 1. By (B0,M0) and (B1,M1) we denote the honest distributions for
inputs xn=0 and xn=1. For a distribution (B,M), and σ∈{0, 1}, let qσ(B,M)
be the probability that the protocol’s output second entry is 1, given that:

(1) x1 = σ,
(2) Pn’s messages in round 1 are (B,M), then Pn becomes silent,
(3) all players in Q follow the protocol, with their messages delivered in round-

robin order, while players in Q′\Q play honestly in round 1 and then become
silent.

Finally, let q(B,M) := (q0(B,M), q1(B,M))

Lemma 21. (B0,M0
1) and (B1,M1

1) are computationally indistinguishable.
Proof. Assume a distinguisher D with non-negligible advantage. Then we could
construct an adversary A1 corrupting P1, but not Pn, rushing to learn (B0,M0

1)
before other players, submit it to D, obtain an estimate of xn, and choose P1’s
input equal to this estimate, obtaining a non-negligible correlation.

Corollary 22. ∀σ ∈ {0, 1}, qσ(B
0,M0

1)− qσ(B1,M1
1) = negl.

Proof. For each, we build a distinguisher Env for the distributions of Lemma 21
as follows. Simulate a set P of players, all starting with a blank state excepted P1

with input σ. Upon receiving a challenge (Bb,M b
1), make Pn broadcast Bb and

send M b
1 , while the other players play the first round honestly. Then silence all

players not in Q, simulate an execution complete for Q with messages delivered
in round-robin order, and output the same b := xn as players.

Remark 9. This leverages the lack of private correlated randomness setup. Oth-
erwise, with a bulletin board PKI, Env would need to initialize players with an
internal state compatible with their public keys, somehow guessing their secret
keys. Such an Env is impossible since there exists a secure n-SB under a bulletin
board PKI setup. Namely: players would broadcast PVSSs of their inputs, then
threshold-decrypt them over asynchronous channels).

52

Consider now the following four pairs of probabilities:
Q1 = q(B1,M1

1 , . . . ,M
1
n−t, 0, . . . , 0)

Q2 = q(B1,M1
1 , 0, . . . , 0, . . . , 0)

Q3 = q(B0,M0
1 , 0, . . . , 0, . . . , 0)

Q4 = q(B0,M0
1 , . . . ,M

0
n−t, 0, . . . , 0)

Claim: By the protocol’s correctness, we have that Q1≥1−negl, where the latter
notation means that both entries of the Q1 are ≥1−negl.
[Proof of the Claim The view of honest players inQ under (B1,M1

1, . . . ,M
1
n−t, 0, . . . , 0)

is indistinguishable from (B1,M1
1, . . . ,M

1
n). Recall that in the latter case, they

must ultimately output by what was observed above: “for each of these quorums
(in our case: Q), when all its members behave honestly and do not hear from
the outside (in our case: (Q′ \ Q) ∪ Pn), then its honest members must output
in a finite number of steps.”. Furthermore, honest players in Q cannot tell apart
if Pn is corrupt and silent after the first round; or, honest with input 1 and its
messages delayed for very long. Because of the latter possibility, by the correct-
ness of SB, their output must be 1.]

Claim bis: Symmetrically we have Q4≤negl.
But by Corollary 22, Q2−Q3=negl. Hence, there is a substantial difference

either between Q1 and Q2 or Q3 and Q4. W.l.o.g., we assume the former, i.e.,
that |Q1−Q2| ≥ 1/3 (the other cases are similar). By a hybrid argument, we
have existence of a i ∈ [2, . . . , n− t] such that |q0(B1,M1

1, . . . ,M
1
i , 0, . . . , 0) −

q0(B
1,M1

1, . . . ,M
1
i−1, 0, . . . , 0)| ≥ 1/(3(n−t)). It follows, that one of the two q0

probabilities above must be different by at least 1/(6(n−t)) from one of the two
corresponding q1 probabilities, e.g., w.l.o.g.:

(13) |q0(B1,M1
1 , . . . ,M

1
i , 0, . . . , 0)− q1(B1,M1

1 , . . . ,M
1
i−1, 0, . . . , 0)| >

1

6(n− t)
Back to the main strategy. In round 1, A sends (B1,M1

1 , . . . ,M
1
i , 0, . . . , 0).

In the asynchronous phase, after having learned x1, once Q′ is frozen, and upon
unfreezing Q, then if x1 = 0, A instructs Pi to play honestly; else if x1 = 1, Pi
is instructed to play as if it had not received Mi but otherwise honestly. In the
first case, the view of honest players follows the distribution which defines the q0
on the left-hand in (13), while in the latter case, follows the distribution which
defines the q1 on the right-hand in (13). Thus, the joint action of Pi and Pn will
have for effect to substantially correlate the second output xn with x1.

	Share&Shrink: (In-)Feasibility of MPC from one Broadcast-then-Asynchrony, and Delegated Computation

