
1

A High-performance ECC Processor over
Curve448 based on a Novel Variant of the
Karatsuba Formula for Asymmetric Digit

Multiplier
Asep Muhamad Awaludin, Jonguk Park, Rini Wisnu Wardhani, and Howon Kim.

Abstract—In this paper, we present a high-performance architecture for elliptic curve cryptography (ECC) over Curve448, which to the
best of our knowledge, is the fastest implementation of ECC point multiplication over Curve448 to date. Firstly, we introduce a novel
variant of the Karatsuba formula for asymmetric digit multiplier, suitable for typical DSP primitive with asymmetric input. It reduces the
number of required DSPs compared to previous work and preserves the performance via full parallelization and pipelining. We then
construct a 244-bit pipelined multiplier and interleaved fast reduction algorithm, yielding a total of 12 stages of pipelined modular
multiplication with four stages of input delay. Additionally, we present an efficient Montgomery ladder scheduling with no additional
register is required. The implementation on the Xilinx 7-series FPGA: Virtex-7, Kintex-7, Artix-7, and Zynq 7020 yields execution times
of 0.12, 0.13, 0.24, and 0.24 ms, respectively. It increases the throughput by 242% compared to the best previous work on Zynq 7020
and by 858% compared to the best previous work on Virtex-7. Furthermore, the proposed architecture optimizes nearly 63% efficiency
improvement in terms of Area×Time tradeoff. Lastly, we extend our architecture with well-known side-channel protections such as
scalar blinding, base-point randomization, and continuous randomization.

Index Terms—elliptic-curves cryptography (ECC); Curve448; high-speed multiplier; asymmetric Karatsuba; field-programmable gate
array (FPGA)

F

1 INTRODUCTION

THE performance of Public-Key Cryptography has be-
come one of the main factors of interest in the re-

cently emerging technologies such as the 5G System [1]
and Blockchain [2]. At the same time, there is increasing
demand to increase the security level against attacks that
could compromise the overall performance. In particular,
applications enabled on Internet of Things (IoT) devices suf-
fer from performance degradation due to limited resources
on the processing unit. Elliptic Curve Cryptography (ECC)
has been chosen as the building block in the security proto-
col of those technologies among asymmetric cryptographic
algorithms due to its smaller key size. The Internet Research
Task Force (IRTF) [3] recommended Curve25519 [4] and
Curve448 [5] for a high level of practical security with
128-bit and 224-bit security levels, respectively, along with
inclusion in Transport Layer Security (TLS) standard 1.3 [6].
Afterward, National Institute of Standards and Technology
(NIST) [7] also included these curves in their standard.

Curve448 is a conservatively designed elliptic curve with
very competitive performance on a wide variety of plat-
forms, leading to ECC construction issues and to advances
in strong cryptanalysis and classical attacks [5]. Obviously,
this research is being performed not only due to the wide
use of high-performance ECC Processors over Curve448
but also to address the need for achieving a high-security
and efficient ECC processor architecture as an imperative

• The authors are with the School of Computer Sciense and Engi-
neering, Pusan National University, Busan 609735, Korea; (E-mail:
{asep.muhamad11, daiula10, rini.wisnu, howonkim}@pusan.ac.kr)

step for the emergence of Post-Quantum Cryptography
(PQC). We must acknowledge, with the invention of the
Shor’s factorization algorithm [8], that the current state of
the cryptographic system will soon likely be compromised
by quantum computing; likewise, the classic public key
exchange algorithm will soon be replaced. Nevertheless, as
long as PQC has not been fully implemented, hybrid mode
ECC will still be used in order to sustain the compatibility
of industry and government regulations. Since in the hybrid
schemes, classic and PQC will work concurrently during the
transition to PQC [9]. Classical cryptographic system will
still be needed, even though PQC development has come
a long way. Consequently, designing an ECC processor
architecture with a high level of security, high speed, low
latency, and high efficiency in every single processing step
is crucial.

Generally, optimization can be done through algorithmic
improvement to reduce the number of calculation steps for
such expensive primitive operations such as finite field and
group operations. Despite that, keeping a short critical delay
path on hardware implementation is even more challenging
due to being limited by technology, as it determines the
maximum working frequency. Thus, critical delay requires
more attention than software implementation.

Prior work: To the best of our knowledge, there are only
a few published results on hardware implementations tar-
geting ECC with a security level above 128 bits, particularly
Curve448.

The first hardware implementation of Curve448 was
investigated by Sasdrich and Güneysu in [10]. Their de-

2

sign employed schoolbook multiplication with interleaved
reduction for the underlying modular multiplier. The im-
plementation results on a Xilinx Zynq 7020 Field Pro-
grammable Gate Arrays (FPGA) archived a throughput of
1087 ECC point multiplication (ECPM) per second and
consumed 1580 logic slices and 33 Digital Signal Processor
(DSP) blocks. Their design also offered basic side-channel
protections, such as scalar blinding and base-point random-
ization. Furthermore, they extended their previous design
with additional protection against horizontal attacks in [11]
by adding a re-randomization countermeasure. At the same
time, they evaluated their countermeasure with scalar- and
base-point-dependent leakage side-channel evaluations.

In [12], Shah et al. proposed the hardware design of
Curve448 utilizing LookUp Table (LUT) only, which aims
to be platform independent. They adopted the redundant-
signed-digit (RSD) representation for arithmetic operations
and the segmentation approach at the architectural level
to reduce the required number of clock cycles for ECPM
operations. Their implementation results targeting Virtex-7
achieved a throughput of 869 ECPM per second utilizing
50,143 LUTs.

The proposal by Niasar et al. [13] represents a very
recent work hardware implementation of Curve448. They
investigated three different implementation strategies (i.e.,
lightweight, area-time efficient, and high-performance ar-
chitectures) targeting the Xilinx Zynq 7020 FPGA. Their
high-performance architecture increased throughput by 12%
by executing 1,219 ECPM per second and increased effi-
ciency by 40% in terms of required clock cycles×utilized
area compared to the initial work in [10]. They achieved
their speed-up by utilizing 81 DSPs for parallelization in the
lowest level of Karatsuba computation. To the best of our
knowledge, their high-performance variant is the state-of-
the-art of Curve448 hardware implementation in terms of
ECPM throughput.

The Karatsuba-Ofman formula [14], also known as
Karatsuba formula, has been a widely used method of
multiplying two n-bit arbitrary-precision numbers, which
reduces the asymptotic complexity to O(n1.585) bit opera-
tions compared to O(n2) bit operations for the schoolbook
method. However, the nature of its algorithm that uses
recursion to construct higher precision numbers leads to
the extra overhead of additions. In particular, implementing
parallel Karatsuba in hardware is problematic in that it
increases the critical delay path due to the addition tree, de-
spite using parallel DSP blocks for digit multipliers at lower
levels. Therefore, despite reducing the number of required
DSP blocks, the overall operating frequency remains low, as
shown in the implementation results in [13] and [15].

Awaludin et al. [16] demonstrated a new way of using
the Karatsuba formula for high-speed hardware parallel
multiplier without the cost of increasing the critical delay
path. The technique employs the combination of the school-
book method and the Karatsuba algorithm with a compres-
sor circuit (i.e., carry-save-adder tree(CSAT)), despite requir-
ing slightly more DSP blocks than the original Karatsuba
method. Apparently, the presented equation is similar to the
method discovered earlier by Khachatrian et al. [17], which
was then formalized by [18], called the arbitrary degree vari-
ant of Karatsuba (ADK). The method was initially intended

to avoid overflow during the accumulation of the partial
products on a typical word-based processor (i.e., software
implementation), which is technically implemented in an
iterative way.

Apart from optimizing the cost of extra addition, the
method employed by [16] does not leverage the full ca-
pability of DSP blocks (i.e., Xilinx DSP48E1), as they use
a symmetric 16x16-bit digit multiplier. Thus, the use of
the Karatsuba formula with the asymmetric feature of DSP
blocks remains unexplored. To the best of our knowledge,
Roy et al. [19] represents the most recent work that uses
the full capability of asymmetric DSP blocks, which reduces
the required DSP blocks in the schoolbook method using
the nonstandard tiling method. This method is also used by
[20] to construct a 257-bit signed multiplier for the hardware
implementation of PQC SIKE.

Our contributions: The contributions of this paper are
summarized as follows:

1) We present a novel variant of the Karatsuba for-
mula for asymmetric digit multiplier, which reduces
DSP block utilization while offering a high-speed
multiplier through parallelization and pipelining.
To the best of our knowledge, this is the first work
considering the full capability of DSP blocks with
the Karatsuba algorithm. Furthermore, it can be
generalized for broader use in a cryptographic al-
gorithm that employs multiplication.

2) We then present a high-performance ECC processor
architecture over Curve448 that to the best of our
knowledge, outperforms the existing architecture
in terms of execution time as well as Area×Time
efficiency.

3) For the underlying architecture, we propose a 12-
stage pipelined modular multiplier with four stages
of input delay, which is built from a five-stage 244-
bit fully pipelined multiplier with an interleaved
fast reduction over the modulus p = 2448−2224−1.

4) The presented five-stage 244-bit fully pipelined mul-
tiplier is constructed from a novel variant of Karat-
suba in point 1. At the same time, the interleaved
fast reduction is obtained by exploiting the Solinas
prime with the golden ratio φ = 2224.

5) We provide an efficient Montgomery ladder
scheduling algorithm without the requirement of an
additional temporary register.

6) Lastly, the proposed architecture is extended with
side-channel attack countermeasures such as scalar
blinding, base-point randomization, and continuous
randomization, which are expected to resist vertical
and horizontal attacks.

The rest of this paper is organized as follows: Section 2
gives a brief introduction to Curve448 with the underlying
group arithmetic and field arithmetic. Section 3 describes
the proposed novel variant of the Karatsuba formula for
asymmetric digit multiplier. Section 4 presents the proposed
hardware architecture of the ECC processor over Curve448.
Then, in section 6, we present our hardware implementation
results and compare them to those of the existing methods.
Lastly, Section 7 concludes the paper.

3

2 PRELIMINARIES

Ed448-Goldilocks is an elliptic curve over prime fieldGF (p)
with a 244-bit security level introduced by Hamburg in [5],
which is defined in untwisted Edwards form:

Ed : y2 + x2 = 1 + dx2y2 mod p (1)

with d = −39081 and p = 2448 − 2224 − 1. The curve is
birationally equivalent to the Montgomery curve defined in
RFC 7748 [21] called Curve448, the term we will use for
the rest of the paper. Curve448 satisfies the requirement of
SafeCurves and is included in TLS standard 1.3 [6].

2.1 ECC Group Law
Let k be a scalar, P = (xP , yP) and Q = (xQ, yQ) be two
point represented in affine coordinates where P,Q ∈ E and
xP , yP ∈ GF (p). An ECC point multiplication (ECPM),
Q = k · P , is a k-times additions of point P (i.e.,
P + P + ... + P), which can be performed with group
operation of point doubling (PD) and point addition (PA).
Typically, the projective coordinate representation is used to
avoid modular inversion during intermediate computation,
where an affine point P = (xP , yP) can be converted to
projective point P = (X,Y, Z) such that xP = X/Z and
yP = Y/Z .

The Montgomery ladder was introduced to perform
ECPM over the Montgomery curve, which processes point
point doubling and addition computation in a single step
[22]. A single step of Montgomery ladder is computed with
the following formula (taken from [4]):

XPD = (X2 − Z2)
2

(X2 + Z2)2

ZPD =
(
(X2 + Z2)2 − (X2 − Z2)2

)
.(

(X2 + Z2)2 + a24
(
(X2 + Z2)2 − (X2 − Z2)2

))
XPA = ((X2 − Z2)(X3 + Z3) + (X2 + Z2)(X3 − Z3))

2

ZPA = ((X2 − Z2)(X3 + Z3)− (X2 + Z2)(X3 − Z3))
2
xP
(2)

where Q2 = 2P2 and Q3 = P2 + P3 with Q2 =
(XPD, ZPD), Q3 = (XPA, ZPA), P2 = (X2, Z2), and
P3 = (X3, Z3). A constant value a24 = 39081 is used
specifically for Curve448. Note that this formula needs only
x-coordinate of base point P to perform ECPM. The formula
requires ten modular multiplications and eight modular
additions/subtractions.

2.2 Field Arithmetic
The name ”Goldilocks” refers to the prime modulus of
Curve448 that is defined as the Solinas trinomial prime with
the golden ratio φ = 2224, which offers fast arithmetic in
typical (i.e., 32-bit or 64-bit) machines. Moreover, with its
golden ratio φ, it allows Karatsuba multiplication of two
operandsA = (a1φ+a0) andB = (b1φ+b0),A,B ∈ GF (p),
to be calculated efficiently as follows:

C = (a1φ+ a0) · (b1φ+ b0)

≡ (a1b1 + a0b0) + (a1b0 + a0b1 + a0b0)φ (mod p)
= (a1b1 + a0b0) + ((a0 + a1)(b0 + b1)− a0b0)φ

(3)

A modular inversion is required to convert back projec-
tive coordinate Q = (X,Z) to affine coordinates represen-
tations Q = (xQ) at the end of ECPM operation. A constant

time modular inversion can be implemented using Fermat’s
Little Theorem (FLT) such that Z−1 ≡ Zp−2 mod p. Finally,
the affine representation of the point Q is calculated as
xQ = XZ−1, with Z−1 is computed using FLT.

3 NOVEL VARIANT OF KARATSUBA FORMULA FOR
ASYMMETRIC DIGIT MULTIPLIER

Consider two n-bit arbitrary-precision numbers A and B
represented in asymmetric radixes α and β, where α 6= β.

A =
u∑

i=0

aiα
i, B =

v∑
j=0

bjβ
j (4)

u and v are the degree of A and B, respectively. The product
C = A ·B is calculated as follows:

C =
u−1∑
i=0

aiα
i
v−1∑
j=0

bjβ
j =

u−1∑
i=0

v−1∑
j=0

aiα
ibjβ

j (5)

The schoolbook algorithm multiplies u digit and v digit
numbers by multiplying each digit of one input by each
digit of the other, which takes O(uv) digit multiplications
in total. Clearly, it requires un DSP blocks when performing
full parallelization on digit multiplication. We investigate a
novel variant of the Karatsuba formula for asymmetric digit
multiplier, which later reduces the complexity as well as the
number of required DSPs compared to other similar works
(i.e., [16], [19], [23]).

We rewrite the Equation 5 as follows:

C =
u−1∑
i=0

iα
β∑

j=0

aiα
ibjβ

j +
u−1∑
k=0

v−1∑
l=kα

β

akα
kblβ

l (6)

where when αiβj = αkβl, we obtain the following identity:

aiα
ibjβ

j+akα
kblβ

l = [(ai − ak) (bj − bl) + aibl + akbj]α
iβj

(7)
Equation 7 shows that two multiplications can be re-

duced into one multiplication for a condition where αiβj =
αkβl. This is similar to the Karatsuba [14] for α = β where it
reduces four-digit multiplications to three-digit multiplica-
tions, as a generalization of our problem illustrated in Fig. 1.

Fig. 1. Karatsuba on Asymmetric Digit Multiplier

The red points are two-digit multiplications that are
calculated prior to other digit multiplications. At the same
time, the black points, which are connected by a line, are the
two-digit multiplications that later can be reduced to one-
digit multiplication. In general, the Karatsuba formula can
be applied when two-digit multiplications are connected via
a diagonal line without being restricted by the used radix.
This method works ideally on a radix with a power of two.

4

TABLE 1
Comparison of required digit multipliers for different operand widths

with existing methods

Operand
Width Schoolbook Nonstandard

Tiling [19]

Schoolbook
+ Karatsuba

[16]

Our
method

192 96 90 78 60
224 140 120 105 88
256 176 160 136 113
384 368 360 300 216
521 682 660 561 433

Fig. 2. Top-level Architecture

In particular, if we let α = 2w1 and β = 2w2 , a greater reduc-
tion in complexity can be obtained whenGCD(w1, w2) 6= 1.
Table 1 shows the complexity comparison of our method
with existing methods. By setting up α = 224 and β = 216,
our method reduces the DSP utilization compared to the
existing methods in the literature.

4 PROPOSED HARDWARE ARCHITECTURE

Fig. 2 depicts the the proposed top-level architecture of
Curve448. This is the typical architecture consisting of
the control unit, modular multiplier module, and modular
adder/subtractor module. In contrast to the architecture
proposed in [13], which uses RAM to store the ladder
variables, we use register files utilized from flip-flop (FF).
This is because in a typical FPGA (i.e., Xilinx FPGA [24]),
the availability of FF is higher than that of LUT cells (e.g.,
in Xilinx, a single slice consists of four LUTs and eight
FFs). Therefore, with a design that has higher LUT cell
utilization than FF, increasing FF utilization will not dras-
tically increase the slice utilization. Moreover, utilizing FF
instead of BRAM preserves the overall performance without
introducing overhead on memory read/write access. Apart
from performance and utilization considerations, the use of
Block Random Access Memory (BRAM) introduces a new
opportunity for attackers to extract secret scalar information
by recovering information on the BRAM addressing pattern
using Differential Power Analysis (DPA). Although it can
be protected via address scrambling, such as the design

Fig. 3. Proposed 12-stage Pipelined (with four stages of input delay)
Modular Multiplier

proposed in [11], clearly, it consumes more area due to
the utilization of logic cells. Furthermore, all the compu-
tation steps are one-way controlled by precise scheduling of
Montgomery ladder without need handshake process such
as valid/ready protocol.

4.1 Modular Multiplier
We construct a 12-stage pipelined modular multiplier with
four stages of input delay based on a 224-bit pipelined
multiplier. We choose a 244-bit width multiplier because the
prime number of Curve448 has a golden ratio φ = 224,
which later optimizes the reduction step as we propose the
reduction algorithm for Curve448.

Fig. 3 shows the overall structure of our modular multi-
plication design. It consists of a 224-bit pipelined multiplier
followed by two Ripple-Carry-Save Adders (RCSAs). An
RCSA is actually a pair of adders, which in our case are
carry-compact adders (CCAs) [25] that are used to limit
the critical delay path of the ripple-carry-adder at some
point, as shown in Fig. 4. The carry for the first half is not
propagated; instead, it is saved and included as an input
for another half in the next stage. This method is suitable
for accumulator circuits. Additionally, the pipelined one-
hot encoding is used with simple shift register to control
the input-output signal between the stages. Note that the
output valid and busy signal are not necessary in our design
since we use a precise ladder scheduling, considering the
restriction in modular multiplier module (i.e., requires four
cycles input delay).

4.1.1 244-bit Pipelined Multiplier
The construction of the 244-bit pipelined multiplier based
on Equation 7 is given in the Fig. 5. As shown in, all the

5

Fig. 4. Ripple-Carry-Save Adder (RCSA). Technically, it limits the carry
propagation to a predefined delay, which is the delay of a 244-bit Carry-
Compact-Adder (CCA) in our case.

Fig. 5. Construction of 244-bit Multiplication with Asymmetric Digit Mul-
tiplier (α = 224 and β = 216). Note that since 224 does not divisible by
24, there will be unused bits at the most significant bit of the intermediate
results.

red points represent a single-digit multiplication, while the
two black points connected by a line represent a single-digit
multiplications that are reduced from two-digit multipli-
cations. Note that some lines may pass through multiple
points, yet the relation should satisfy the Equation 7. There
are some exceptions; when the point is already applied as
a red point (i.e., due to the Karatsuba multiplication on the
counterpart), it cannot be further reduced, even if it satisfies
Equation 7. Thus, it remains as red point (including the
counterpart) as in our case, as shown in points (8,2), (9,2),
(8,5), (9,5), (8,2), and (9,2) in Fig. 5. Finally, we obtain less
complexity, as it requires only 88 DSPs instead of 140 DSPs
in the schoolbook method or 105 DSPs in the nonstandard
tiling method [19].

Fig. 6 shows the architecture of the 224-bit pipelined
multiplier. The architecture contains five fully pipelined
stages, which means it can process an input on each cycle.
Our calculation steps of C = A ·B are described as follows:

• Stages 1 and 2: The parallel 16-bit ripple-carry adder
(RCA) is used to compute bj − bl. The output of the
16-bit RCA is wired to 25x17-bit signed Multiply-
Accumulate (MAC) modules, which also have a pre-
adder input to compute ai − ak before going to
the multiplication stage. At the same time, parallel
24x16-bit signed multiplier (MUL) modules are used
to compute aibl and akbj . Both the 25x17-bit signed
MAC with the pre-adder and 24x16-bit signed MUL
are utilized from DSP primitive with a three-stage
and two-stage pipeline, respectively, to achieve max-
imum performance, as recommended in [26], which
is shown in Fig. 7.

• Stage 3: The output of 24x16-bit signed MUL avail-
able in this stage is then used by the 40-bit CCA
to calculate aibl + akbj . The output 40-bit CCA is
routed to the input accumulator of the MAC mod-
ules. Note that the output of 24x16-bit signed MUL
is also stored in registers, as it will be used in the
compression stage (Stage 4).

• Stage 4: Before being processed by the CSAT, all inter-
mediate values are grouped and aligned into 40-bit
segments to reduce the number of inputs in the CSAT
as well as the depth of the tree. However, while the
output of 24x16-bit signed MUL is already in 40-bit
width, the calculation of (ai−ak)(bj−bl)+aibl+akbj
obviously produces up to a 41-bit output width.
We employ an alignment method similar to that
used by [16] to handle the overflow bit (i.e., 41st

bit). All intermediates values are compressed using
homogeneous 3:2 compression to achieve balanced
performance.

• Stage 5: In this stage, a final propagated addition
of sum and carry from the output of the CSAT
is performed using the CCA proposed in [25]. We
obtained the optimal parameter CCA with H = 3 and
L = 30 experimentally based on trial and error after
synthesis and implemention in FPGA. Furthermore,
the input and output of CCA are enclosed by regis-
ters to minimize the critical delay path.

4.1.2 Fast Reduction over p = 2448 − 2224 − 1

We propose the fast reduction technique interleaving with
the intermediate output from the 244-bit pipelined multi-
plier, which is given in Algorithm 1. The multiplication of A
andB, which each have a 448-bit width, can be decomposed
into four 244-bit multiplications. Note that we do not take
the Karatsuba approach recommended by [5], since it does
not give an advantage in our reduction step; rather, we take
the additional cost of one clock cycle on the pipelined mul-
tiplier. We perform partial reduction for three intermediate
results in advance (i.e., z4 = (z1 + z2 + z3) · 2224 mod p),
while the second term (i.e., z0 + z3 mod p) is accumulated
with the first reduction step result and we perform the
second reduction accordingly (i.e., C = z0+z3+z4 mod p).
This technique relies on the following property:

(a+ b) mod p = (a+ (b mod p)) mod p (8)

Considering the advantage of the Goldilocks modulus p =
2448 − 2224 − 1 and the fact that 2448 ≡ 2224 + 1 mod p,
the reduction of z4 = T · 2224 mod p, where T = z1 + z2 +
z3, can be performed efficiently, as mentioned in Step 13
of Algorithm 1. Referring to the structure of the RCSA, the
actual addition is performed only in the second adder (i.e.,
226-bit CCA). Accordingly, the reduction of C = G mod p,
where G = z0 + z3 + z4 yields 3 bits of overflow, can be
performed efficiently with the RCSA as mentioned in Steps
18–20 of Algorithm 1. Note that the final reduction might
produce a carry at the first adder of the RCSA, as this carry
needs to be propagated to the second adder at the final step.

6

Fig. 6. Proposed Five-stage 244-bit Fully Pipelined Multiplier.

(a)

(b)

Fig. 7. Digital Signal Processing (DSP) utilization for (a) a three-stage
25x17-bit signed Multiply-Accumulator with pre-adder and (b) a two-
stage 24x16-bit signed multiplier.

Algorithm 1 Proposed Interleaved Fast Reduction for p =
2448 − 2224 − 1) modulus
Require: Integer A,B satisfying 0 ≤ A,B < p
Ensure: C = A ·B mod p

1: a0 ← A[223:0]

2: a1 ← A[447:224]

3: b0 ← B[223:0]

4: b1 ← B[447:224]

5: z1 ← a0.b1
6: z2 ← a1.b0

244-bit pipelined
multiplications

7: z3 ← a1.b1
8: z0 ← a0.b0
9: T ← z1 + z2 + z3 {450-bit}
10: t0 ← T[223:0]
11: t1 ← T[449:224]
12: t2 ← T[449:448]
13: z4 ← (t0 + t1 + t2) ‖ t1[223:0] {450-bit}
14: G← z3 + z0 + z4 {451-bit}
15: g0 ← G[223:0]

interleaved fast
reduction16: g1 ← G[447:224]

17: g2 ← G[450:448]

18: U ← g0 + g2 {225-bit}
19: V ← g1 + g2 {224-bit}
20: C ← (V + U[244]) ‖ U[243:0] {448-bit}
21: return C

Algorithm 2 Fermat-based inversion for Curve448 (p =
2448 − 2224 − 1)).
Require: Integer z satisfying 0 < z < p
Ensure: Modular inverse z−1 ≡ zp−2 mod p

1: u← z2
1 · z z(2

2−1)

2: u← u2
1 · z z(2

3−1)

3: u← u2
3 · u z(2

6−1)

4: u← u2
6 · u z(2

12−1)

5: u← u2
1 · z z(2

13−1)

6: u← u2
13 · u z(2

26−1)

7: u← u2
1 · z z(2

27−1)

8: u← u2
27 · u z(2

54−1)

9: u← u2
1 · z z(2

55−1)

10: u← u2
55 · u z(2

110−1)

11: u← u2
1 · z z(2

111−1)

12: v ← u2
111 · u z(2

222−1)

13: u← v2
1 · z z(2

223−1)

14: u← u2
223 · v z(2

446−2222−1)

15: u← u2
2 · z z(2

448−2224−3)

16: return u

The precise scheduling of modular multiplication is pre-
sented in Fig. 8. The first four stages are used to calculate
z1, z2, z3, and z0. In these stages, the input A and B are
held in the input register, placing the modular multiplier
core in a busy state and causing input delay for four cycles.
Stages 7 and 8 perform the first accumulation z1 + z2 + z3,
followed by addition t0 + t1 + t2 in Stage 9 using A1. At the
same time, Stages 8 to 10 perform the second accumulation
z3 + z0 + z4, followed by two parallel additions g0 + g2 and
g1 + g2 in Stage 10 using A2. Lastly, the output product is
available in Stage 12. Therefore, the modular multiplication
takes 12 cycles, pipelined with four stages of input delay.

4.2 Modular Adder/Subtractor
A unified modular adder/subtractor is utilized from a sin-
gle CCA, which calculates C = A±B±p, as shown in Fig. 9.
The calculation takes two steps: it first calculates r1 = A±B
and then calculates s = r1 ± p with op to control the sign
of ±B and ±p using masking. The output C is selected
between r1 and s depending on the value of sel, which is the
XOR value of cout of the first step and op. Basically, it detects
whether the first step calculation produces a carry/borrow.
While the sign of ±b is converted with two’s complement,
the sign of±p is rather than more efficient due to the special

7

Fig. 8. Modular Multiplication Calculation Steps. M , A1, and A2 are a
244-bit multiplier, first RCSA, and second RCSA, respectively.

Fig. 9. Proposed Modular Adder/Subtractor Module

form of its prime number. With the value of 2448 − 2224 − 1,
we can construct its value with the following signal instead
of masking (written in Verilog syntax):

Therefore, it takes two cycles to complete a single modu-
lar addition/subtraction. The critical path of this module is
defined by the CCA circuit with optimal parameters H = 3
and L = 30 obtained experimentally on FPGA.

4.3 Modular Inverse

A modular inversion is required to transform back from
projective coordinates to affine coordinates at the end of
the ECPM operation. A fully constant time modular inver-
sion can be performed based on Fermat’s Little Theorem
(FLT). Let p = 2448 − 2224 − 1 be the prime of Curve448;
then, the modular inverse of z−1 can be calculated as

z−1 ≡ z2448−2224−3(mod p). The modular inversion calcula-
tion via exponentiation can be performed with a total of 462
modular multiplications, as given in Algorithm 2, which can
be utilized from the modular multiplier module. Therefore,
no additional module for inversion is employed.

4.4 Efficient Montgomery Ladder Scheduling
The scheduling of the Montgomery ladder algorithm,
Equation 2, is given in Fig. 10. The gray line in the
multiplier indicates the busy signal of the 224-bit pipelined
multiplier modules, where a single modular multiplication
takes four 224-bit multiplications, as mentioned previously.
It shows that the 224-bit pipelined modular multiplier
module is nearly busy, which yields high usage efficiency
for the pipelined architecture. It takes 52 cycles to perform
a single Montgomery ladder step. Furthermore, with
the pipelined architecture of the modular multiplier, no
temporary register in addition to input registers (i.e.,
xP , X2, Z2, X3, and Z3) is required.

The Montgomery ladder in Equation 2 requires condi-
tional swap such that:

(X2, Z2, X3, Z3) = (X2+b, Z2+b, X3−b, Z3−b) (9)

with b respect to the most two significant bit values of scalar
on each iteration, assuming the scalar register is shifted
left. Constant-time conditional swap can be implemented
easily on hardware since the update of X2, Z2, X3, and Z3

naturally are performed in parallel.

5 SIDE-CHANNEL ATTACK COUNTERMEASURES

In this section, we extend our proposed architecture with
side-channel attack protection for both vertical (classical)
and horizontal attacks by incorporating several well-known
methods from the literature.

5.1 Secure against Vertical Side-channel Attack
Our proposed architecture, presented in section 4, is natu-
rally resistant to timing attacks and simple power analysis
due to inherently resistant algorithms (i.e., Montgomery
Ladder and FLT). To provide protection against Differential
Power Analysis (DPA), additional methods such as base-
point randomization and scalar blinding have to be im-
plemented [27]. Enabling these countermeasures provides
protection against vertical side-channel attacks, in which the
attacker tries to observe multiple runs of ECPM operation.

5.1.1 Base-Point Randomization
Point randomization can be achieved by multiplying a ran-
dom value λ ∈ Z2448\{0} to the projective point P = (X,Z)
such that P = (λX, λZ). The output of ECPM is not
changed in this respect, which can be proven as follows:

xp =
X

Z
=
λX

λZ
(10)

Base-point randomization provides different point rep-
resentations corresponding to the entropy given by the
random value λ to prevent any information extraction using
statistical analysis. In particular, this process initializes the

8

Fig. 10. Pipelined Montgomery Ladder Scheduling of Curve448. The total latency is 52 clock cycles, without the requirement of an additional
temporary register. The constant a24 is equal to 39081.

z-coordinate with λ and uses a modular multiplication to
update the x-coordinate accordingly. Hence, this counter-
measure can be integrated easily by using an additional
multiplication call during the initialization phase of the
ECPM operation.

5.1.2 Scalar Blinding
Scalar blinding can be achieved by adding multiple group
order #E to scalar k such that kr = k + r × #E where r
is a random value. The correctness of this approach can be
proven as follows:

krP = (k + r ×#E)P = kP + rΘ = kP (11)

Note that the multiplication of point P and group order
#E results a point at infinity. The computation removes the
correlation between the Montgomery ladder swap function
and the corresponding bit in scalar k. For ECC with spe-
cial prime field (i.e., Solinas prime), it is recommended to
provide sufficient larger blinding factors r as investigated
in [27], which is at least half of the field size. Thus, the
blinding factor r with 224-bit length builds kr with 672-bit
length. The latency of ECPM is increased accordingly.

5.2 Secure against Horizontal Side-channel Attack
The horizontal side-channel attack is another type of attack
in which the attacker observes leakage within a single run
of ECPM operation. Continuous point randomization for
each Montgomery ladder within a single ECPM operation
can be applied sequentially to prevent horizontal attacks.
It requires two more modular multiplications applied on in-
termediates output (i.e., λXPA and λZPA) to re-randomized
Montgomery ladder computation.

Hence, enabling horizontal attack protection with a
continuous point randomization will increase Montgomery
ladder time and total latency. In particular, the Montgomery
scheduling in Fig. 10 is enlarged to 64 cycles. We assume that
the random number is provided externally with sufficient
throughput, such as the Random Number Generator (RNG)
design proposed by [28].

6 HARDWARE IMPLEMENTATION RESULT AND
COMPARISON

The proposed design has been described by SystemVerilog
HDL. Synthesizing, mapping, placing, and routing were car-

ried out using Xilinx Vivado 2020.1, targeting four modern
devices (Xilinx Virtex-7 [XC7VX690T], Kintex-7 [XC7K325T],
Artix-7 [XC7A100T], and Zynq 7020 [XC7Z020] FPGA) for a
more comprehensive evaluation with other related works.
The correctness of implementation was verified by using
the testbench with reference to the test vector provided in
RFC 7748 [21].

The result of our ECC processor implementation, as
well as those of several related papers over Curve448, are
presented in Table 2. We achieve the lowest latency among
the proposals targeting Xilinx Zynq 7020 FPGA with 0.24
and 0.39 ms for the unprotected and protected designs,
respectively.

Additionally, we provide the implementation results on
various devices for future reference, such as Artix-7, Kintex-
7, and Virtex-7, achieving latency of 0.24, 0.13, and 0.12
ms for the unprotected design, and 0.40, 0.22, and 0.20 ms
for the protected design, respectively. For the unprotected
design, our fastest implementation (Virtex-7) requires 7,521
slices, while Kintex-7, Artix-7, and Zynq 7020 utilize 7,210,
6,826, and 6,946 slices, respectively. On all four platforms,
we utilize 88 DSPs and no BRAM. As can be inferred from
the table, our architecture yields the highest efficiency in
terms of Area×Time and DSP×Time tradeoff compared to
other existing architectures.

To the best of our knowledge, the method by Ni-
asar et al. [13] represents the state-of-the-art high-
performance hardware implementation of Curve448. They
provide three different designs (i.e., lightweight, area-time
efficient, and high-performance); in particular, we compare
our proposed design with their high-performance variant.
Our proposed design increases the throughput by 242%
for the unprotected design and by 259% for the protected
design. Their approach is based on the refined Karatsuba
formula by Bernstein in [29], employing five levels of Karat-
suba computation and parallel multiplication using 81 DSP
cores. However, the multilevel Karatsuba approach yields a
longer addition tree that increases the critical path delay,
limiting their operating frequency to 95 MHz, which is
lower than our design.

Table 3 provides the detailed performance analysis with
a comparison to their design. The latency of our archi-
tecture outperforms the state-of-the-art in all underlying
field arithmetic and ECC group operations. The signifi-

9

TABLE 2
Performance comparison of the proposed High-Performance ECC Processor over Curve448 with existing literatures

Design Platform SCA* Slices DSP BRAM
Latency

[CCs]

Max.
Freq

[MHz]

Total
Time
[ms]

Throughput
[OP/s]

Area×Time**
[×10−3]

DSP×Time
[×10−3]

[10] Zynq 7020
(-) 1,580 33 14 328,286 357 0.92 1,087 4,490 30.36
(+) 1,648 35 14 473,926 335 1.41 709 7,259 49.35

[11] Zynq 7020
(+) 1,985 33 14 499,344 341 1.46 685 7,716 48.18

(++) 2,056 33 14 547,728 341 1.61 621 8,623 53.13

[12] Virtex-7 (-)
50,143
(LUT)

- - 372,742 325 1.15 870 14,416*** -

[13] Zynq 7020
(-) 4,354 81 - 77,702 95 0.82 1,220 10,212 66.42

(++) 4,424 81 - 133,254 95 1.40 714 17,534 113.40

This
work

Zynq 7020
(-) 6,946 88 - 30,469 128 0.24 4,167 3,779 21.12

(++) 6,984 88 - 49,735 126 0.39 2,564 6,156 34.32

Artix-7
(-) 6,826 88 - 30,469 127 0.24 4,167 3,750 21.12

(++) 6,934 88 - 49,735 125 0.40 2,500 6,294 35.20

Kintex-7
(-) 7,210 88 - 30,469 237 0.13 7,692 2,081 11.44

(++) 7,269 88 - 49,735 230 0.22 4,545 3,535 19.36

Virtex-7
(-) 7,521 88 - 30,469 250 0.12 8,333 1,959 10.56

(++) 7,666 88 - 49,735 245 0.20 5,000 3,293 17.60
* (-): no protection, (+): scalar blinding and point randomization countermeasures,

(++): scalar blinding and point re-randomization countermeasures
** Area = Slices + DSPs×100
*** Area = LUTs/4 (Assume 1 Slice contains 4 LUTs as mentioned in specification [24])

TABLE 3
Performance Analysis of Proposed ECC Processor in comparison with

State-of-the-art on Zynq 7020 FPGA

Operations
Clock Cycles

Niasar et al. [13]
@95 MHz

Our Work
@128 MHz

1 x Modular Addition 7 2
1 x Modular Subtraction 7 2
1 x Modular Multiplication 15 12
10 x Modular Multiplication 150 48
1 x Modular Inverse 6,917 5,544

Montgomery Ladder Step 158 52

Single ECC Point Multiplication 77,702 30,469

Total Latency [ms] 0.82 0.24

cant latency improvement is mainly due to a pipelined
modular multiplier, which is constructed from a 244-bit
fully pipelined multiplier and proposed fast reduction over
p = 2448 − 2224 − 1. Thanks to the novel variant of the
Karatsuba formula, we can enable the parallelization at
the digit multiplication level without causing large delay
propagation caused by additions in the recursion tree while
offering relatively low DSP block utilization. Although a
single modular multiplication operation does not give sig-
nificant latency improvement (i.e., 12 cycles compared to
15 cycles), employing multiple operations (i.e., 10 modular
multiplications as in Equation 2) results in a significant
latency improvement due to pipelining compared to their
design (i.e., 52 cycles compared to 158 cycles). Furthermore,

all the stages in the 224-bit multiplier are nearly busy during
the Montgomery ladder operation with the utilization of
48
52 ×100 ' 92%, making the use of the pipeline architecture
in the highest efficiency. On the other hand, the modular
inversion via FLT consumes almost 18% of the total latency
and is considered an inefficient method in our design. This
is because the exponentiation z2

448−2224−3 mod p requires
462 consecutive modular multiplications rather than paral-
lelization through the pipelining architecture.

In terms of area, their design has lower slices utilization
(i.e., 4,354 slices for the unprotected design and 4,424 slices
for the protected design). However, in terms of Area×Time
tradeoff, our design is 63% more efficient for both the
unprotected and protected designs. It turns out that the
cost of higher utilization is well absorbed by the latency
improvement. Note that we use the same assumption as
they do where the area is equivalent to slices + DSPs, while
each DSP is assumed to be equivalent to 100 slices.

It is worth mentioning that the first hardware implemen-
tation of Curve448 was carried out by Sasdrich and Güneysu
in [10], who later proposed the protected architecture by
considering side-channel attack countermeasures [11]. They
demonstrated an evaluation to detect scalar- and base-point-
dependable leakage on hardware with side-channel protec-
tions (i.e., scalar blinding and point randomization) and
proved that their methods are secure against side-channel
attacks. Thanks to their results, we also include side-channel
protections (i.e., scalar blinding, base-point randomization,
and continuous point randomization) in our protected de-
sign, yet we present a 313% speed-up compared to their
results on the same target device (i.e., Zynq 7020).

Shah et al. [12] proposed a LUT-based implementation

10

targeting Virtex-7, employing the RSD technique for the
arithmetic operations. Their proposed designs aimed to
be platform independent by using LUTs only, consuming
50,143 LUTs with a throughput of 870 ECPM operations per
second, yet our design is 858% faster than their design.

7 CONCLUSIONS

In this paper, we proposed a high-performance ECC pro-
cessor over Curve448 that outperformed all the previous
results in terms of execution time. The implementation on
the Xilinx 7-series FPGA Virtex-7, Kintex-7, Artix-7, and
Zynq 7020 yielded execution times of 0.12, 0.13, 0.24, and
0.24 ms, respectively. The speed was obtained by utilizing a
novel variant of the Karatsuba for asymmetric digit multi-
plier, constructing a high-throughput 244-bit fully pipelined
multiplier. The method combined schoolbook long and
Karatsuba multiplication, allowing its digit multiplication to
be performed in parallel while leveraging the full capability
of asymmetric DSP blocks. It is worth mentioning that the
algorithm even works on arbitrary degrees, which means
it can be generalized for wider use in a cryptographic
algorithm that requires multiplication. In sequence, the in-
terleaved fast reduction over 2448 − 2224 − 1 was presented,
yields a high throughput 12-stage modular multiplier with
four stages of input delay. Furthermore, we also proposed
certain components to maximize the speed gain and the
overall performance, such as employing a low-latency mod-
ular adder/subtractor as well as efficient scheduling of the
Montgomery ladder. Finally, the proposed architecture was
extended with both vertical and horizontal side-channel
protection through well-known countermeasures such as
scalar blinding, base-point randomization, and continuous
randomization.

ACKNOWLEDGMENTS

This work was supported by Institute of Information
& Communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government(MSIT)
(2019-0-01343, Regional strategic industry convergence se-
curity core talent training business) and supported by
the MSIT(Ministry of Science and ICT), Korea, under
the ITRC(Information Technology Research Center) sup-
port program(IITP-2021-2020-0-01797) supervised by the
IITP(Institute for Information & Communications Technol-
ogy Planning & Evaluation).

REFERENCES

[1] 3GPP, “Security architecture and procedures for 5g system,” Tech-
nical Specification (TS) 3GPP TS 33.501 V17.4.1 (2022–01), 2022.

[2] C. Fan, S. Ghaemi, H. Khazaei, and P. Musilek, “Performance
evaluation of blockchain systems: A systematic survey,” IEEE
Access, vol. 8, pp. 126 927–126 950, 2020.

[3] A. Langley, M. Hamburg, and S. Turner, “Rfc 7748: Elliptic curves
for security,” Internet Research Task Force (IRTF), 2016.

[4] D. J. Bernstein, “Curve25519: new diffie-hellman speed records,”
in International Workshop on Public Key Cryptography. Springer,
2006, pp. 207–228.

[5] M. Hamburg, “Ed448-goldilocks, a new elliptic curve.” IACR
Cryptol. ePrint Arch., vol. 2015, p. 625, 2015.

[6] E. Rescorla, “The transport layer security (tls) protocol version
1.3,” Internet Requests for Comments, RFC Editor, RFC 8446,
August 2018.

[7] L. Chen, D. Moody, A. Regenscheid, and K. Randall, “Recom-
mendations for discrete logarithm-based cryptography: Elliptic
curve domain parameters,” National Institute of Standards and
Technology, Tech. Rep., 2019.

[8] P. W. Shor, “Algorithms for quantum computation: discrete log-
arithms and factoring,” in Proceedings 35th annual symposium on
foundations of computer science. Ieee, 1994, pp. 124–134.

[9] N. Bindel, U. Herath, M. McKague, and D. Stebila, “Transitioning
to a quantum-resistant public key infrastructure,” in International
Workshop on Post-Quantum Cryptography. Springer, 2017, pp. 384–
405.

[10] P. Sasdrich and T. Géneysu, “Cryptography for next generation
tls: Implementing the rfc 7748 elliptic curve448 cryptosystem
in hardware,” in 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2017, pp. 1–6.

[11] P. Sasdrich and T. Güneysu, “Exploring rfc 7748 for hardware
implementation: Curve25519 and curve448 with side-channel pro-
tection,” Journal of Hardware and Systems Security, vol. 2, no. 4, pp.
297–313, 2018.

[12] Y. A. Shah, K. Javeed, M. I. Shehzad, and S. Azmat, “Lut-based
high-speed point multiplier for goldilocks-curve448,” IET Comput-
ers & Digital Techniques, vol. 14, no. 4, pp. 149–157, 2020.

[13] M. B. Niasar, R. Azarderakhsh, and M. M. Kermani, “Effi-
cient hardware implementations for elliptic curve cryptography
over curve448,” in International Conference on Cryptology in India.
Springer, 2020, pp. 228–247.

[14] A. A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital
numbers by automatic computers,” in Doklady Akademii Nauk, vol.
145, no. 2. Russian Academy of Sciences, 1962, pp. 293–294.

[15] R. Salarifard and S. Bayat-Sarmadi, “An efficient low-latency
point-multiplication over curve25519,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, vol. 66, no. 10, pp. 3854–3862,
2019.

[16] A. M. Awaludin, H. T. Larasati, and H. Kim, “High-speed and
unified ecc processor for generic weierstrass curves over gf (p) on
fpga,” Sensors, vol. 21, no. 4, p. 1451, 2021.

[17] G. H. Khachatrian, M. K. Kuregian, K. R. Ispiryan, and J. L.
Massey, “Fast multiplication of integers for public-key applica-
tions,” in International Workshop on Selected Areas in Cryptography.
Springer, 2001, pp. 245–254.

[18] M. Scott, “Missing a trick: Karatsuba variations,” Cryptography and
Communications, vol. 10, no. 1, pp. 5–15, 2018.

[19] D. B. Roy, D. Mukhopadhyay, M. Izumi, and J. Takahashi, “Tile
before multiplication: An efficient strategy to optimize dsp multi-
plier for accelerating prime field ecc for nist curves,” in Proceedings
of the 51st Annual Design Automation Conference, 2014, pp. 1–6.

[20] P. M. C. Massolino, P. Longa, J. Renes, and L. Batina, “A Com-
pact and Scalable Hardware/Software Co-design of SIKE,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020.

[21] A. Langley, M. Hamburg, and S. Turner, “Elliptic curves for
security,” Internet Requests for Comments, RFC Editor, RFC 7748,
January 2016.

[22] P. L. Montgomery, “Speeding the pollard and elliptic curve meth-
ods of factorization,” Mathematics of computation, vol. 48, no. 177,
pp. 243–264, 1987.

[23] B. Devlin, Blockchain Acceleration Using FPGAs - Elliptic curves, zk-
SNARKs, and VDFs, ZCASH Foundation, 2019.

[24] Xilinx, 7 Series FPGAs Data Sheet: Overview, 2020 (ac-
cessed January 26, 2022), https://www.xilinx.com/support/
documentation/data sheets/ds180 7Series Overview.pdf.

[25] T. B. Preußer, M. Zabel, and R. G. Spallek, “Accelerating computa-
tions on fpga carry chains by operand compaction,” in 2011 IEEE
20th Symposium on Computer Arithmetic. IEEE, 2011, pp. 95–102.

[26] Xilinx, 7 Series DSP48E1 Slice User Guide, 2018 (accessed Decem-
ber 28, 2020), https://www.xilinx.com/support/documentation/
user guides/ug479 7Series DSP48E1.pdf.

[27] W. Schindler and A. Wiemers, “Efficient side-channel attacks on
scalar blinding on elliptic curves with special structure,” in NIST
Workshop on ECC standards, 2015.

[28] A. M. Awaludin, D. Pratama, and H. Kim, “Anytrng: Generic,
high-throughput, low-area true random number generator based
on synchronous edge sampling,” in International Conference on
Information Security Applications. Springer, 2021, pp. 157–168.

[29] D. J. Bernstein, “Batch binary edwards,” in Annual International
Cryptology Conference. Springer, 2009, pp. 317–336.

