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Abstract. New symmetric primitives are being designed to address a novel set of
design criteria. Instead of being executed on regular processors or smartcards, they
are instead intended to be run in abstract settings such as multi-party computations
or zero-knowledge proof systems. This implies in particular that these new primitives
are described using operations over large finite fields. As the number of such primi-
tives grows, it is important to better understand the properties of their underlying
operations.
In this paper, we investigate the algebraic degree of one of the first such block ciphers,
namely MiMC. It is composed of many iterations of a simple round function, which
consists of an addition and of a low-degree power permutation applied to the full state,
usually x 7→ x3. We show in particular that, while the univariate degree increases
predictably with the number of rounds, the algebraic degree (a.k.a multivariate degree)
has a much more complex behaviour, and simply stays constant during some rounds.
Such plateaus slightly slow down the growth of the algebraic degree.
We present a full investigation of this behaviour. First, we prove some lower and
upper bounds for the algebraic degree of an arbitrary number of iterations of MiMC
and of its inverse. Then, we combine theoretical arguments with simulations to prove
that the upper bound is tight for up to 16265 rounds. Using these results, we slightly
improve the higher-order differential attack presented at Asiacrypt 2020 to cover one
or two more rounds. More importantly, our results provide some precise guarantees
on the algebraic degree of this cipher, and then on the minimal complexity for a
higher-order differential attack.
Keywords: symmetric cryptography, cryptanalysis, block cipher, finite field, algebraic
degree, MiMC, higher order differential attack

1 Introduction
New computing environments are emerging that differ significantly from the traditional

computer processors, micro-controllers, or smartcards. These traditional platforms are those
for which symmetric primitives have been optimized. However, the rise of environments
implementing Multi-Party Computation (MPC) protocols such as smart-contracts or zero-
knowledge proofs creates a new need. Indeed, symmetric primitives are still needed in these
contexts, in particular to ensure computation integrity [BBHR18]. However, the basic
operations provided by these platforms correspond neither to the CPU instructions (bit-wise
AND, rotations, etc.) nor to the hardware components (XNOR, wires, etc.) that are used
as building blocks in the traditional case. Instead, the core operations that implementers
can use are finite-field operations over fields Fq of large size q, where the size q is typically
bigger than 264 and is usually either a prime number or a power of 2 [AGP+19, AAB+20].
Primitives that are designed using such operations only are called arithmetization-friendly,
see e.g. [BGL20] for a detailed survey on the arithmetization-friendly hash functions.
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Designing arithmetization-friendly symmetric primitives is different from the “tradi-
tional” case. Instead of using operations on F2n where n is a small even integer, typically
n = 4 or 8, the underlying alphabet is now a large field whose cardinality is chosen
according to some other parts in the protocol. For example, some zero-knowledge proof
systems are defined over the finite field underlying a standard elliptic curve, in which case
typical values of q would correspond to prime number of about 256 bits.

It would be possible to use “classical” symmetric primitives such as the AES in such
contexts, but the cost of the encoding and decoding of the binary operations into finite
field operations would be extremely costly (as can be seen for instance in the benchmarks
presented in [BGL20]). As a consequence, dedicated primitives are designed so that they
can work natively in such large fields. Furthermore, the advanced protocols running over
such large fields require that the operations used have a low degree. Overall, there is a
need for new symmetric cryptographic primitives operating over large (possibly prime)
fields, and that rely on low degree operations.

In fact, several such proposals have been found to have significant flaws, from ad-hoc
attacks relying on internal simplifications [ACG+19], to integral attacks [BCD+20]. As a
consequence, it is necessary to better understand the behaviour of even the most basic
cryptanalysis techniques when they are applied to arithmetization-friendly designs.

Univariate and Algebraic Degrees. In this paper, we investigate the algebraic degree of an
arithmetization-friendly block cipher. The complexity of so-called higher-order differential
attacks [Knu95] decreases with the algebraic degree, implying that it is important to
understand how this quantity increases as a given round function is iterated. Let Fq be a
finite field of size q, where q > 1 is a prime power. In what follows we will focus on the
particular case where q is a power of 2. First, let us recall the two notions of degree which
apply to a function over a finite field with characteristic 2.

Definition 1.1 (ANF and Algebraic Degree). Let f : Fn
2 → F2 be a Boolean function.

Its Algebraic Normal Form (ANF) is the unique representation of f as a multivariate
polynomial in F2[x1, ..., xn]/(x2

1 + x1, ..., x
2
n + xn). The ANF is of maximum degree 1 in

each variable, so that
f(x0, ..., xn−1) =

∑
u∈Fn

2

aux
u ,

where au ∈ F2 for all u, and xu =
∏n−1

i=0 x
ui
i . The algebraic degree of f is

degaf = max
{

wt(u) : u ∈ Fn
2 , au 6= 0

}
,

where wt(u) is the Hamming weight of u. If F : Fn
2 → Fm

2 , then its algebraic degree, degaF ,
is the maximal algebraic degree of the coordinates of F .

The algebraic degree should not be confused with the univariate degree, which is defined
for any function F : Fq → Fq.

Definition 1.2 (Univariate Representation and Degree). Let q > 1 be a prime power and
let F be a function from Fq to Fq. Then the univariate polynomial representation of F is

F (x) =
q−1∑
i=0

uix
i ,

where ui ∈ Fq for all integers i. Its univariate degree deguF is the largest integer i for
which ui 6= 0.

If q = 2n, then a function F : Fq → Fq can be seen both as a function defined over the
finite field, and as a function defined over the vector space Fn

2 using a simple isomorphism
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of vector spaces between Fn
2 and F2n . For such a function, the algebraic and univariate

degrees are different quantities that are related as follows [Cha13, Page 254]:

degaF = max{wt(i) : i ∈ N, ui 6= 0} ,

where {ui, i ≥ 0} is the set of all coefficients in the univariate representation of F .

Our Target. In this paper, we focus on the block cipher MiMC, introduced by Albrecht
et al. [AGR+16], which operates1 on F2n . It consists of r iterations of an extremely simple
round function: round i, 0 ≤ i < r, corresponds to x 7→ xd + ci+1, where d is coprime with
(2n−1) in order to ensure that the round function is bijective, and where c = (c1, . . . , cr) is
a sequence of r round constants. As a consequence, the round function of a MiMC instance
is fully specified by the exponent d and by the sequence c of all round constants, and we
denote such a MiMC instance MIMCd,c[r]. It is worth noting that the key is omitted in
this description: indeed, as far as the algebraic degree is concerned, it can be considered
to be part of the round constants.

x xd

c1

⊕ xd . . .

cr−1

⊕ xd

cr

⊕ y

Figure 1: MIMCd,c with r rounds.

More precisely, our aim is to investigate the security of MiMC against higher-order
differential attacks, and thus its algebraic degree. We denote (Br

d)r≥1 the sequence of the
maximal degrees of r rounds of MIMCd, i.e., for any r ≥ 1, Br

d is the degree of MIMCd,c[r]
for at least one sequence c = (c1, . . . , cr) of constants:

Br
d := max

c
degaMIMCd,c[r] .

Note that, without loss of generality, we can assume that cr = 0. On the other hand, it
may happen that this degree is not reached for some specific sets of round constants as we
will point out in Section 5.1, hence the need to take the maximum of them. Our goal is
then to find the exact value of Br

d. Indeed, a (very expensive) attack on MIMC3 has been
exhibited in [EGL+20], exploiting the fact that the number of rounds proposed by the
designers is not sufficient for achieving a maximal algebraic degree. However, this weakness
is based on a simple upper-bound on Br

d and any gap between this bound and the exact
value of the degree would decrease the complexity of the attack (or increase the number
of rounds covered for a given complexity). Our aim is therefore to determine the exact
value of Br

d, or equivalently the minimal complexity of any attack based on higher-order
differentials sych as those in [EGL+20].

A First Observation. A pattern of particular interest to us is what we call a plateau. To
understand what it corresponds to, let us first consider a simple example. For any input x,
the output of the composition of the first two rounds is

(x3 + c1)3 + c2 = x9 + c1x
6 + c2

1x
3 + c3

1 + c2 . (1)

We deduce that the composition of these two rounds is quadratic as its algebraic degree is
equal to max {wt(i), i ∈ {0, 3, 6, 9}}, which is equal to 2. It is counter-intuitive: we would
expect the algebraic degree to increase when a non-affine function is iterated. Such an
event is what we call a plateau.

1There is also a version of MiMC defined over prime fields Fp but in this paper we only focus on the
one defined over binary fields.
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Definition 1.3 (Plateau). We say that there is a plateau whenever Br
d = Br−1

d .

Since (Br
d)r≥1 is a non-decreasing sequence as proved later in Prop. 2.4, the existence

and the frequency of plateaus are the most relevant elements when estimating the degree
of MIMCd after a large number of rounds.

Outline. Our work aims at a better understanding of these plateaus, first to identify them,
and then to exploit them. In Section 2, we derive a simple method to generate the set of
all exponents appearing in the univariate representation of MIMC3,c[r] (Proposition 2.2).
Then, we first bound the algebraic degree of MIMC3,c[r] in Section 3, and identify in
Section 4 a sequence of exponents that reach the upper bound.

We then perform a similar analysis of two ciphers closely related to MIMC3,c[r], namely
its inverse and MIMC9,c[r] (Section 5). Finally, in Section 6, we use our results on the
algebraic degree of MIMC3,c[r] to slightly improve the results presented in [EGL+20] and
to identify the best possible attacks exploiting the degree of the cipher. We then provide
some guarantees on the lowest possible complexity for any integral attack based on the
same methods as in [EGL+20].

2 Quantifying the Evolution of the Univariate Degree
In this section, we identify a process that generates the set of all the exponents appearing

in the univariate form of r rounds of MIMCd (Proposition 2.2). We then discuss several
direct consequences of this observation.

2.1 Main Proposition
Recall that MIMCd,c corresponds to the composition Fr−1 ◦ . . . ◦ F0 where for any

i, 0 ≤ i < r, Fi : F2n → F2n , x 7→ xd ⊕ ci+1, and the ci+1 ∈ F2n are arbitrary constants.
Then, for the successive values of r, it is possible to recursively determine the list of
monomials appearing in the univariate polynomial representing MIMCd,c[r] for some c.

The following notation will be extensively used in the paper.

Definition 2.1 (Covering). For two elements x and y in Fn
2 , we say that y is covered by

x and we write y � x if yi ≤ xi for all i.
Similarly, for two integers i and j, j � i if the 2-adic expansion of j is covered by the

2-adic expansion of i.

Proposition 2.2. Let n and d < 2n − 1 be two integers such that gcd(d, 2n − 1) = 1.
Let Er be the set of exponents of the monomials appearing in the univariate polynomial
MIMCd,c[r] over F2n for at least one sequence c. Then, we have:

Er = {dj mod (2n − 1) where j � i, i ∈ Er−1} .

Proof. If the univariate form of MIMCd,c[r − 1] with c = (c2, . . . , cr) is given by

Pr−1(x) =
∑

i∈Er−1

αix
i ,

then the univariate form of MIMCd,ĉ[r] with ĉ = (c1, . . . , cr−1, cr) is

Pr(x) = Pr−1(xd + c1) =
∑

i∈Er−1

αi(xd + c1)i .

But
(xd + c1)i =

∏
`∈Ii

(xd + c1)2`

=
∏
`∈Ii

(xd2`

+ c2`

1 )
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where Ii corresponds to the support of the 2-adic expansion of i. Thus, the terms obtained
after expansion have the following form:

αi

(
c

∑
`∈Ii\Ji

2`

1

)(
x

d
∑

`∈Ji
2`
)

where Ji ⊆ Ii .

It follows that the monomials that may appear in Pr are of the form xdt mod (2n−1) with
t � i, and that the corresponding coefficient is equal to

pt =
∑
i∈Et

αic
t⊕i
1 where Et = {i ∈ Er−1 : t � i} .

By definition of Er−1, there exists at least one sequence of constants c such that αi 6= 0 for
some exponent i in Et. Then, pt is a nonzero polynomial in c1 and cannot vanish for all
c1 ∈ F2n , implying that xdt mod (2n−1) appears in Pr for at least one sequence of constants
ĉ = (c1, c). It follows that the set of all exponents after r rounds is:

Er = {(dj) mod (2n − 1) where j � i, i ∈ Er−1} .

The maximum algebraic degree after r rounds, Br
d, is then the maximal weight of the

elements in Er.

2.2 Reinterpreting Proposition 2.2
After round 0, we always have E1 = {0, d}. We can then apply Proposition 2.2

recursively to construct Er from Er−1. In practice, this process revolves around two
operations defined for any set of integers.
• The first multiplies each element of the input set by d modulo (2n − 1):

Multd :
{
NN → NN

{j0, ..., j`−1} 7→ {(dj0) mod (2n − 1), ..., (dj`−1) mod (2n − 1)} ,

• the second returns the set of elements covered by elements in the input:

Cover :
{
NN → NN

{j0, ..., j`−1} 7→ {k � ji, i ∈ {0, ..., `− 1}} .

Using these operations, Proposition 2.2 can be re-written

Er = Multd

(
Cover(Er−1)

)
. (2)

Each element in Er can be seen like a child of all the elements in (Multd ◦ Cover)({j}) for
some j ∈ Er−1. This view is summarized in Figure 2. While each element in Er has at
least one parent in Er−1, this parent might not be unique.

Only Multd depends on the exponent of the round function. It trivially satisfies the
following relation:

Multe

(
Multd(E)

)
= Multed(E) . (3)

It is also such that the cardinality of the output is the same as the cardinality of the input.
A simple but useful observation is that the input E of the cover operation is contained

in its output:
E ⊆ Cover(E) .

By combining this relation with Equation (2), a trivial induction using Equation (3) yields

Multd`(Er−`) ⊆ Er . (4)

The simplicity of these two operations implies the following lemma.
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j ∈ Er−1 Cover

Multd Cover ...

Multd Cover ...

...

Multd

Multd

Multd

Cover. . . ...

Multd

Cover. . . ...

...

Multd

Multd

Multd

Multd

...

r − 1 r r + 1

Figure 2: Getting next-round exponents.

Lemma 2.3. The operations Mult2 and Cover commute, i.e. for any set E of integers, we
have

Mult2
(
Cover(E)

)
= Cover

(
Mult2(E)

)
.

Proposition 2.4. For any integer d, (Br
d)r≥1 is a non-decreasing sequence. Moreover,

when d is odd, we have
Er−1 ⊆ Er, ∀r ≥ 1 .

Proof. Let d =
∑wt(d)−1

i=0 2`i , with 0 ≤ `0 < . . . < `wt(d)−1. We will first prove by induction
on r, that Mult2`0 (Er) ⊆ Er+1.
It holds for r = 1 since E1 = {0, d}, so Mult2`0 (E1) = {0, 2`0d}. In particular, 2`0 ∈
Cover(E1) so that:

Mult2`0 (E1) ⊆ Multd(Cover(E1)) = E2 .

Then, let us assume that the property holds for Er.

Mult2`0 (Er+1) = Mult2`0 (Multd(Cover(Er)) by Equation (2),
⊆ Multd(Mult2`0 (Cover(Er))) by Equation (3),
⊆ Multd(Cover(Mult2`0 (Er))) by Lemma 2.3,
⊆ Multd(Cover(Er+1)) by induction hypothesis,
= Er+2 by Equation (2).

Finally, the result follows by observing that

wt(2`0i mod (2n − 1)) = wt(i) .

In particular, if d is odd, `0 = 0, which implies that Er−1 ⊆ Er.

Our main goal in this work is to estimate the algebraic degree of multiple iterations
of MIMCd. As a consequence, our focus is on the Hamming weight of the exponents.
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Because of Lemma 2.3, we can reduce the size of Er at each iteration by keeping only one
representative per cyclotomic class. In other words, if 2ix appears in Er, we can replace it
with x without loosing information about the algebraic degree of the block cipher. More
interestingly, if x is already in Er, it means we can simply remove 2ix from it. In practice,
this significantly simplifies the computations.

2.3 Some Simple Applications
It is possible to use Proposition 2.2 for d = 3 to determine the exponents in the

univariate representation of two rounds of MiMC, as in (1). Using that E1 = {0, 3}, we
have:

E2 = Mult3 (Cover({0, 3}))
= Mult3 ({0, 1, 2, 3})
= {0, 3, 6, 9} .

In fact, we can prove that there will always be such a plateau between the first and
second rounds for all d of the form d = 2k − 1 for some k.

Proposition 2.5. Let F : x 7→ xd be a permutation of F2n where d = 2k − 1, and
gcd(k, n) = 1. Then, if d2 < 2n − 1, we have:

dega((xd + c)d) = dega(F ) ,

where c is an arbitrary constant.

Proof. Since d = 2k − 1, it holds that Cover({d}) = {0, 1, ..., d}. It follows that

E2 = Multd({0, 1, ..., d}) .

In order to derive the result, it is sufficient to show that wt(dj) = wt(d) = k for any integer
1 ≤ j ≤ d. To show this, let j ∈ {0, ..., d} be such that j =

∑k−1
`=0 b`2`, where b` ∈ {0, 1}

for all `. We can thus write:

jd = (2k − 1)
k−1∑
`=0

b`2` =
k−1∑
`=0

b`2k+` −
k−1∑
`=0

b`2`

Using that d =
∑k−1

`=0 2`, we can write

d−
k−1∑
`=0

b`2` =
k−1∑
`=0

(1− b`)2`

from which we deduce that

(j + 1)︸ ︷︷ ︸
j′

d =
k−1∑
`=0

b`2k+` + d−
k−1∑
`=0

b`2` =
k−1∑
`=0

b`2k+`

︸ ︷︷ ︸
wt=wt(j)

+
k−1∑
`=0

(1− b`)2`

︸ ︷︷ ︸
wt=k−wt(j)

.

As a consequence, the weight of dj′ for any j′ ∈ {1, ..., d} is equal to k.

When d = 3, there exists another plateau during the first four rounds. Indeed, by using
Proposition 2.2 again, we have:

E3 = Mult3 (Cover(E2))
= {0, 3, 6, 9, 12, 18, 24, 27} ,
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which implies that the algebraic degree at the third round is wt(27) = 4.
Using that

E4 = Mult3 (Cover(E3)) ,

we deduce that the maximum-weight exponents in E4 are

{27, 30, 51, 54, 57, 75, 78} ,

so that the algebraic degree is also 4 after the fourth round.
Therefore, there are two plateaus in the growth of the degree during the first four

rounds, and actually, some other ones can be observed in the following rounds. Figure 3
shows the degree established using Proposition 2.2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Rounds

2
4
6
8

10
12
14
16
18
20
22
24
26
28

De
gr

ee

Figure 3: Algebraic degree of MIMC3.

3 Bounding the Algebraic Degree of MIMC3

We now mainly focus on the algebraic degree of MIMC3 over F2n , i.e., on the value of
Br

3 . Obviously, as long as the degree of the univariate polynomial does not exceed 2n − 1,
the algebraic degree of r rounds of MIMC3 is upper-bounded by dlog2(3r)e = dr log2 3e.
But this trivial bound, used in [EGL+20] to set up integral attacks, can be easily improved
by showing that the elements in Er satisfy some particular properties.

3.1 Missing Exponents
Lemma 3.1. Let Er be the set of exponents in the univariate form of MIMC3[r], as defined
in Prop. 2.2. Then, any i ∈ Er satisfies

i 6≡ 5, 7 mod 8 .

Proof. We prove the result by induction on r. It holds at round 3, since E3 = {3k, k ∈
{0, . . . , 9}} \ {15, 21}.

Let us now assume that the property holds for Er, i.e., any i ∈ Er satisfies i 6≡ 5, 7 mod 8.
It follows that, for any j ∈ Cover(Er), we have j 6≡ 5, 7 mod 8. Any element i in Er+1 is given
by i = 3j with j ∈ Cover(Er). But, if j mod 8 ∈ {0, 1, 2, 3, 4, 6}, then we necessarily have
3j mod 8 ∈ {0, 1, 2, 3, 4, 6}. It follows that any i ∈ Er+1 is such that i 6≡ 5, 7 mod 8.

This lemma implies that the degree of MIMC3[r] cannot exceed

kr := br log2 3c
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since Er ⊆ {i : i ≤ 3r} ⊆ {i : i < 2kr+1}. Indeed, the only integer i < 2kr+1 of
weight strictly greater than kr is 2kr+1 − 1, which does not belong to Er since it satisfies
2kr+1 − 1 ≡ 7 mod 8.

3.2 An Upper-Bound on the Degree
We now exhibit a more accurate upper-bound on the degree, which makes use of the

following result.

Lemma 3.2. [Her36] The equation 2x − 3y = 5 admits only two solutions (x, y) = (3, 1)
and (5, 3).

Proposition 3.3. For all r > 4, we have

2kr+1 − 5 > 3r,

where kr = br log2 3c.

Proof. The proof depends on the parity of kr.

• When kr = 2k + 1, it is enough to show that

3r /∈ {22k+2 − 5, 22k+2 − 4, 22k+2 − 3, 22k+2 − 2, 22k+2 − 1},

since 3r < 22k+2 by definition of kr. Moreover, 22k+2 − 5, 22k+2 − 3, 22k+2 − 2 are
not divisible by 3, and 3r 6= 22k+2 − 4 because 3r is not a multiple of 4. Finally,
3r 6= 22k+2 − 1 because 22k+2 − 1 ≡ 7 mod 8, which is impossible for a power of 3.
So 3r < 22k+2 − 5.

• When kr = 2k, we first prove that 3r /∈ {22k+1 − 4, 22k+1 − 3, 22k+1 − 2, 22k+1 − 1}.
Indeed, 22k+1 − 4, 22k+1 − 3, 22k+1 − 1 are not divisible by 3, and 3r 6= 22k+1 − 2
because 3r is odd. Now, according to Lemma 3.2, the equation 3r = 22k+1 − 5 has
no solution for r > 4.

Proposition 3.4. For any r ≥ 4, the algebraic degree after r rounds of MIMC3 satisfies

Br
3 ≤ 2× dkr/2− 1e,

where kr = br log2 3c.

Proof. We first show that the algebraic degree at round r is at most kr − 1.
The degree cannot be kr because all exponents of the form 2kr+1 − 2j − 1 with 0 ≤ j ≤ kr

are either non-divisible by 3 or missing. Indeed, we know from Lemma 3.1 that, when
j 6∈ {0, 2}, exponents 2kr+1 − 2j − 1 are missing since 2kr+1 − 2j − 1 mod 8 ∈ {5, 7}. And
for j ∈ {0, 2}, we derive from Prop. 3.3 that

2kr+1 − 2j − 1 ≥ 2kr+1 − 5 > 3r ,

implying that this exponent does not belong to Er.
Now, we prove that, when kr is even, the degree cannot be kr − 1. The only possible

exponents of weight kr − 1 are of the form

2kr+1 − 2j − 2i − 1, with 0 ≤ i < j ≤ kr .

All such exponents are equal to 5 or 7 modulo 8 unless i or j belongs to {0, 2}. The only
exponents of weight (kr − 1) which may appear in Er are then of the form (2kr+1 − 2` − 2)



10 On the Algebraic Degree of Iterated Power Functions

or (2kr+1 − 2` − 5). But, when kr is even, 2kr+1 − 2 and 2kr+1 − 5 are divisible by 3. It
follows that neither 2kr+1 − 2` − 2 nor 2kr+1 − 2` − 5 can be divisible by 3.

The result then follows by observing that

2× dkr/2− 1e =
{
kr − 1 if kr ≡ 1 mod 2
kr − 2 if kr ≡ 0 mod 2.

Besides the previous upper bound, a trivial lower bound can also be exhibited. Indeed,
if the univariate degree 3r is lower than 2n − 1, then the monomial x3r appears in the
polynomial and its coefficient is always 1, independently of the choice of the constants
and therefore never vanishes. Then, knowing that Br

3 is a non-decreasing sequence (see
Proposition 2.4), this obviously defines a trivial lower bound:

max{wt(3i), i ≤ r} ≤ Br
3 ≤ 2× dkr/2− 1e .

Figure 4 compares the observed degree with these two bounds, in the particular case where
the degree of extension is n ≥ 31. We then notice that the observed degree seems to
coincide with the upper bound.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Rounds

2
4
6
8

10
12
14
16
18
20
22
24
26
28

De
gr

ee

Lower Bound
Upper Bound
Observed Degree

Figure 4: Comparison between the observed degree and the bounds (for n ≥ 31).

4 Exact Degree of MIMC3

While an upper bound on the algebraic degree enables an attacker to exhibit some
higher-order integral attacks as in [EGL+20], it does not provide the designers with any
guarantee that such attacks cannot be significantly improved. In the case of MIMC3,
the gap between our upper bound and the trivial lower bound raises concerns about the
complexity of most efficient higher-order differential attacks that could be mounted. This
issue is addressed in this section, where we show that, for all but a few round-reduced
versions of MIMC3, the upper bound exhibited in Prop. 3.4 coincides with the exact value
of Br

3 . More precisely, our approach consists in investigating Conjecture 4.1, which exhibits
an exponent in the univariate polynomial representing MIMC3 whose weight equals the
upper bound.

In what follows, we let (kr)r>0 and (br)r>0 be two sequences defined by

kr = br log2 3c and br = kr mod 2 .
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Conjecture 4.1. Let (ωr)r>0 be the sequence of integers defined by

ωr = 2kr − αbr , where αbr =
{

7 if br = 0
5 if br = 1 .

Then, for all r > 0, it holds that ωr ∈ Er.

While the most general case remains a conjecture at the time of writing, we show in
this section that the conjecture is true for all2 r ≤ 16265, except for a few sporadic cases
for which a proof remains out of reach.

Our proof of this theorem is divided in two parts which correspond to the subsections
of this section.

• We exhibit an inductive procedure establishing that, for most values of r, ωr ∈ Er

using the fact that ωr−` ∈ Er−` for some ` < r.

• We describe a MILP-based computationnally intensive procedure for proving that
ωr ∈ Er for some sporadic values of r, corresponding to the cases which are not
covered by the inductive procedure.

• These results and algorithms are then put together in order to prove Theorem 4.10.

4.1 Properties of (br)r>0 and (kr)r>0

It can be shown that (kr)r>0 is determined by the sequence (sr)r>0 of the switches
from one parity to another, i.e.

s1 = 0 and sr = br ⊕ br−1 .

Proposition 4.2. For any ` ≥ 1, and any r > `, we have

kr − kr−` = 2`−
`−1∑
i=0

sr−i ∈ {k`, k` + 1} . (5)

Proof. By definition, kr = br log2 3c. As a consequence, since log2 3 ≈ 1.59, the sequence
kr increases by 1 or 2 for each increment of r. If this increase is by 1, then the parities of
kr and kr−1 have to be different. Otherwise, they have to be identical. Equivalently,

kr − kr−1 = 2− sr ,

from which we deduce

kr − kr−` = kr − kr−1 + kr−1 − kr−2 + . . .+ kr−`+1 − kr−` = 2`−
`−1∑
i=0

sr−i .

At the same time, we also have kr − kr−` = br log2(3)c − b(r − `) log2(3)c. Using that

bx− yc ≤ bxc − byc ≤ bx− yc+ 1 ,

we can write

b` log2(3)c ≤ 2`−
`−1∑
i=0

sr−i ≤ b` log2(3)c+ 1 ,

which implies that the number of switches, i.e. the Hamming weight of the subsequences
(sr−i)0≤i<`, can take two values only.

2We have chosen to stop at this point since 16266 is one of the cases not covered by our inductive
procedure and for which we need a MILP solver, but it is too costly (see Section 4.3).
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Remark 1. Moreover, we can use the same argument on sequence (br)r>0 so that

br⊕br−` = br⊕br−1⊕br−1⊕br−2⊕. . .⊕br−`+1⊕br−` =
`−1⊕
i=0

sr−i = (kr−kr−`) mod 2 .

We then deduce the following proposition.
Proposition 4.3. Let r ≥ 3. Then there exists 1 ≤ ` < r such that

kr − kr−` = k`

if and only if (s1 . . . sr) is not a palindrome, i.e. if there exists i, 0 ≤ i < r such that
sr−i 6= si+1 .

Proof. From (5), we have, for any 1 ≤ ` < r,

kr − kr−` = 2`−
`−1∑
i=0

sr−i

and k` − k1 = 2`− 2−
`−2∑
j=0

s`−j = 2`− 2−
∑̀
i=2

si .

It follows that

kr − kr−` − k` = −k1 + 2−
(

`−1∑
i=0

sr−i −
∑̀
i=2

si

)

= 1−
(

`−1∑
i=0

(sr−i − si+1)
)

where the last equality comes from the fact that s1 = 0. It follows that, if (s1 . . . sr) is
a palindrome, then all terms in the sum vanish and kr − kr−` = k` + 1 for all 1 ≤ ` < r.
Conversely, if (s1 . . . sr) is not a palindrome and if ` denotes the smallest index such that
sr−`+1 6= s`, we obtain that

kr − kr−` − k` = 1− (−1)s` ∈ {0, 2} ,
by observing that sr−`+1 − s` = (−1)s` since it differs from 0. Using that kr − kr−` − k` ∈
{0, 1}, we deduce that s` = 0 and kr − kr−` − k` = 0.

Remark 2. The sequence formed by the values r such that (s1 . . . sr) is a palindrome is a
subset of

D = {2, 3, 5, 7, 12, 17, 29, 41, 53, 94, 147, 200, 253, 306, 359, 665, 971} ,
which corresponds to the sequence of the first denominators of the semiconvergents3 of
log2 3.
Remark 3. For small values of r, we have computed the set Lr = {`, 1 ≤ ` < r, s.t. kr−` =
kr − k`} involved in the previous proposition, and we have noticed the following property,
which has been checked up to r ≤ 16265, but which remains a conjecture in the general
case.
Conjecture 4.4. Let r ≥ 3 be such that (s1 . . . sr) is not a palindrome. Let Lr and Pr be
the two sets defined as follows:

Lr = {`, 1 ≤ ` < r, s.t. kr−` = kr − k`}
Pr = {ri < r s.t. (s1 . . . sri) is a palindrome} .

Then min(Lr) ∈ Pr and max(Pr) ∈ Lr.
3The “semiconvergents” of a real number x is the sequence (pi/qi)i≥0 such that all pi and qi are

positive integers, and such that the sequence (|x− pi/qi|)i≥0 is strictly decreasing.
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4.2 Inductive Procedure
Our objective is now to prove Prop 4.8, in which we identify a process establishing that

ωr ∈ Er knowing that ωr−` ∈ Er−` for ` ∈ Lr. This result is valid up to a certain value of
r, i.e. r ≤ 16265, and also excludes a few sporadic cases. These constraints originate from
the following two observations, which may be valid in the general case, but remain open.

Observation 4.5. Let r ≥ 4 be such that s1...sr is a palindrome. If r ≤ 665, then

3r > 2kr + 2r .

Corollary 4.6. Let (kr)r>0 be the sequence defined by kr = br log2 3c. If 4 ≤ r ≤ 16265,
then

3r > 2kr + 2r .

Proof. We prove it by induction on r.

• For r = 4: we have kr = 6, and 34 = 81 > 80 = 26 + 24 .

• Induction step. We suppose that ∀i < r

3i > 2ki + 2i .

If (s1, . . . , sr) is a palindrome, r ∈ {7, 12, 53, 359, 665}, we know from Observation 4.5
that the property holds. Otherwise, there exists ` ∈ Lr, implying that

3r = 3r−`3` > (2kr−` + 2r−`)(2k` + 2`) = 2kr + 2kr−`+` + 2k`+r−` + 2r > 2kr + 2r .

We also need the following observation, on the representation of all elements in Z/3tZ
as a sum of even powers of 2.

Observation 4.7. Let 1 ≤ t ≤ 21, then

∀x ∈ Z/3tZ, ∃ε2, . . . , ε2t+2 ∈ {0, 1}, s.t. x =
2t+2∑
j=2

εj4j mod 3t .

However, we conjecture that this result holds in general for any value of t.
We now prove that, in most cases, the fact that the exponent

ωr = 2kr − αbr
, where αbr

=
{

7 if br = 0
5 if br = 1 ,

belongs to Er can be derived from the fact that ωr−` ∈ Er−`.

Proposition 4.8. Let (kr)r>0 be the sequence defined by kr = br log2 3c, and (br)r>0 the
sequence defined by br = kr mod 2. Let r ≥ 4, and ` ∈ Lr such that one of the following
situation occurs:

(1) ` = 1,

(2) ` = 2,

(3) 2 < ` ≤ 22 such that kr ≥ k` + 3`+ br + 1, and one of the following situation occurs:

• ` is even, or
• ` is odd, with br−` = br;
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(4) 2 < ` ≤ 22 is odd such that kr ≥ k` + 3`+ br + 5 and br−` = br.

Then ωr−` ∈ Er−` implies that ωr ∈ Er.

Proof. As a preliminary remark, we first observe that, for any even k,

(2k − 1)/3 =
k/2−1∑

i=0
22i ,

implying that

• for k even,
2k − 7

3 = 2k − 1
3 − 2 = 3 +

k/2−1∑
i=2

22i

• for k odd,
2k − 5

3 = 2k − 2
3 − 1 = 1 +

(k−1)/2−1∑
i=1

22i+1 .

Therefore, for any i ≥ 3,

ωi

3 = 2ki − αbi

3 = (8− αbi
) +

b ki
2 c−1∑

j=1+bi

22j+bi . (6)

The proof consists, for given r and `, in exhibiting a sequence of exponents (er−` . . . er)
such that er = ωr = 2kr − αbr

and each er−i, 0 < i ≤ `, belongs to Er−i. It is worth
noting that proving that ej+1 ∈ Ej+1 boils down to exhibiting some ej ∈ Ej such that
(ej+1/3) � ej . Let us now investigate the different cases for `.

(1) When ` = 1, we have kr−1 = kr−1 and br−1 = br. By hypothesis, ωr−1 = 2kr−1−αbr

belongs to Er−1. Moreover, from (6), we deduce that

2kr − αbr

3 = (8− αbr
) +

b kr
2 c−1∑

j=1+br

22j+br � er−1 ,

implying that 2kr − αbr
belongs to Er.

(2) When ` = 2, we have kr−2 = kr − 3 and br−2 = br. Therefore, by hypothesis,
ωr−2 = 2kr−3 − αbr

belongs to Er−2. Let us choose

er−1 = (8− αbr
) +

b kr
2 c−1∑

j=1+br

22j+br +
b kr

2 c−1∑
j=2

22j+br ,

so that regardless of the value of br, one of the sums corresponds to even powers of
2, the other to odd powers. Then, joining both sums, we get

er−1 = (8br + 8− αbr
) +

b kr
2 c−1∑
j=2

(22j + 22j+1)

= (8br + 8− αbr
) + 3×

b kr
2 c−1∑
j=2

22j .
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The general idea is to reduce the expression to sums which are multiples of 3. Indeed,
here we use that

3×
jm∑

j=j0

22j =
jm∑

j=j0

(22j + 22j+1) =
2jm+1∑
j=2j0

2j .

Noting that
8br + 8− αbr

= 3(8− αbr
) ,

we then deduce that

er−1/3 = (8− αbr ) +
b kr

2 c−1∑
j=2

22j � ωr−2 ,

implying that er−1 belongs to Er−1. Moreover,

(2kr − αbr )/3 = (8− αbr
) +

b kr
2 c−1∑

j=1+br

22j+br � er−1 ,

implying that ωr ∈ Er.

(3) Let ` > 2, such that kr ≥ k` + 3`+ br + 1. While the proposition considers two cases,
we split the first one into two, so that we consider three cases:

(a) ` is even, with br−` = br,
(b) ` is even, with br−` = br,
(c) ` is odd, with br−` = br.

By hypothesis, ωr−` = 2kr−k` − αbr−`
belongs to Er−`.

We now choose

er−1 = (8− αbr
) +

b kr
2 c−1∑

j=1+br

22j+br + S ,

with

S =



2`−1+br∑
j=1+br

εj22j+br in Cases (a), (c)

2br +
2`−1+br∑
j=1+br

εj22j+br in Case (b)

where the (2`− 1) coefficients εj ∈ {0, 1} are chosen such that er−1 ≡ 0 mod 3`−1.
Indeed, it is known from Observation 4.7 that such a choice is always possible since
` ≤ 22.
We then use that

er−1 =

(8− αbr
) + S +

2∑̀
j=1+br

22j+br

+
b kr

2 c−1∑
j=2`+1

22j+br

< 24`+br+1 +
(kr−br−1)/2−2`−br∑

j=1
2kr−2j .
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It follows that

3er−1 < 3×

24`+br+1 +
(kr−br−1)/2−2`−br∑

j=1
2kr−2j


≤ 24`+br+1 + 2kr

≤ 2kr−k`+` + 2kr

where the last inequality comes from the hypothesis on `. Moreover, since ` ≤ 22,
we deduce from Observation 4.5 that

3er−1 < 2kr−k`
(
2` + 2k`

)
≤ 2kr−k`3` ,

which implies that er−1 < 3`−12kr−k` .
We deduce that, for proving that er−1/3`−1 � ωr−`, it is sufficient to show that this
holds for their remainders modulo 8. This last result comes from the following facts,
for each of the three cases:

(a) 3`−1 ≡ 3 mod 8 and S ≡ 0 mod 8, leading to er−1/3`−1 ≡ (8− αbr
) mod 8

(b) 3`−1 ≡ 3 mod 8 and S ≡ 2br mod 8, leading to er−1/3`−1 ≡ 1 mod 8
(c) 3`−1 ≡ 1 mod 8 and S ≡ 0 mod 8, leading to er−1/3`−1 ≡ (8− αbr

) mod 8 .

So, we obtain that
er−1/3`−1 � ωr−` ,

implying that er−1 belongs to Er−1. Moreover,

2kr − αbr

3 = (8− αbr
) +

b kr
2 c−1∑

j=1+br

22j+br � er−1 ,

which proves that ωr ∈ Er.

(4) Let ` > 2, such that kr ≥ k` +3`+br +5. When ` is odd and br−` = br, by hypothesis,
ωr−` = 2kr−k` − αbr

belongs to Er−`. We now choose

er−2 = (8−αbr
)+
b kr

2 c−3
⌊

k`−`

6

⌋
−5+br∑

j=1+br

22j+br +S+

⌊
k`−`

6

⌋
+1∑

j=1
(2kr−(6j−2)+2kr−(6j−1)+2kr−6j) ,

with

S = 2br +
b kr

2 c−3
⌊

k`−`

6

⌋
−5∑

j=1+br

εj22j+br

where the εj are chosen such that er−2 ≡ 0 mod 3`−2, which is always possible from
Obervation 4.7 since ` ≤ 22 and the number of coefficients εj in the sum is⌊
kr

2

⌋
−3
⌊
k` − `

6

⌋
−5−br ≥

kr − br − k` + `

2 −5−br ≥
4`− br − br + 5

2 −5 ≥ 2`−3

Then, we have

er−2 <

⌊
k`−`

6

⌋
+1∑

j=1
(2kr−(6j−2) + 2kr−(6j−1) + 2kr−6j) + 2kr−6

⌊
k`−`

6

⌋
−8)

≤

⌊
k`−`

6

⌋
+1∑

j=1
(2kr−(6j−2) + 2kr−(6j−1) + 2kr−6j) + 2kr−k`+`−8 .
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It follows that

9er−2 < 9×


⌊

k`−`

6

⌋
+1∑

j=1
(2kr−(6j−2) + 2kr−(6j−1) + 2kr−6j) + 2kr−k`+`−8


≤ (26 − 1)

⌊
k`−`

6

⌋
+1∑

j=1
2kr−6j + 9× 2kr−k`+`−8

≤ 2kr − 2kr−6
⌊

k`−`

6

⌋
−5 + 9× 2kr−k`+`−8

< 2kr + 2kr−k`+`

≤ 2kr−k`
(
2k` + 2`

)
< 3`2kr−k`

where the last inequality comes from Corollary 4.6 since ` ≤ 22. We then deduce
that er−2 < 3`−22kr−k` .
Therefore, it is now sufficient to prove that er−2/3`−2 ≡ 1 mod 8 to order to prove that
er−2/3`−2 � ωr−`. This result on the remainders modulo 8 comes from the fact that
3`−2 ≡ 3 mod 8 since ` is odd, and S ≡ 2br mod 8, leading to er−2/3`−2 ≡ 1 mod 8.
So, we have

er−2/3`−2 � ωr−` ,

implying that er−2 belongs to Er−2.
Let now

er−1 = (8− αbr
) +

b kr
2 c−1∑

j=1+br

22j+br +
b kr

2 c−3
⌊

k`−`

6

⌋
−5+br∑

j=1+br

22j+br .

Then, we have

er−1 = (8− αbr
) + br23 + 3

b kr
2 c−3

⌊
k`−`

6

⌋
−5+br∑

j=1+br

22j+br +
b kr

2 c−1∑
j=b kr

2 c−3
⌊

k`−`

6

⌋
−3

22j+br .

We use that

b kr
2 c−1∑

j=b kr
2 c−3

⌊
k`−`

6

⌋
−3

22j+br =
3
⌊

k`−`

6

⌋
+3∑

i=1
2kr−2i

=

⌊
k`−`

6

⌋
+1∑

i=1
2kr−6i

(
1 + 22 + 24)

= 3

⌊
k`−`

6

⌋
+1∑

i=1
2kr−6i(1 + 2 + 22) .

Moreover, since
(8− αbr

) + br23 = 3(8− αbr
) ,

we obtain that

er−1

3 = (8− αbr
) +

b kr
2 c−3

⌊
k`−`

6

⌋
−5+br∑

j=1+br

22j+br +

⌊
k`−`

6

⌋
+1∑

i=1
2kr−6i(1 + 2 + 22) � er−2 ,
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implying that er−1 belongs to Er−1.
Finally,

2kr − αbr

3 = (8− αbr
) +

b kr
2 c−1∑

j=1+br

22j+br � er−1 ,

implying that ωr ∈ Er.

4.3 MILP-based Algorithm
The induction procedure from Prop. 4.8 relies on some assumptions which are not

satisfied for some values of r. These sporadic cases then need to be handled in a different
(but more expensive) way.

According to Proposition 4.3, rounds r such that (s1 . . . sr) is a palindrome are the
only ones for which there is no ` < r such that kr−` = kr − k`. Then, Prop. 4.8 does not
apply to these values of r.

Moreover, in this proposition, we need ` ≤ 22, since Observation 4.7 has been proved up
to ` ≤ 22 only. Also, there is an additional constraint on kr − k` − 3`. Let 1 ≤ r ≤ 16265,
such that we are not in a case of a palindromic sequence, then by computing the minimum
values in Lr, we can exhibit all the rounds for which there is no ` satisfying the two
constraints of Prop. 4.8:

• If r = 19, 24, then min(Lr) is respectively 7 or 12. However, the hypotheses of
Prop. 4.8 are not satisfied:

k19 = 30 < 33 = k7 + 3× 7 + b19 + 1,
k24 = 38 < 56 = k12 + 3× 12 + b24 + 1.

• If r belongs to the set

{665λ+ 53µ, 0 ≤ λ ≤ 24, 0 ≤ µ ≤ 6} ∪ {359 + 665λ+ 53µ, 0 ≤ λ ≤ 23, 0 ≤ µ ≤ 5} ,

we have min(Lr) ≥ 53.

Let us recall that, when the univariate degree 3r is lower than 2n − 1, we necessarily
have 3r ∈ Er. Consequently, we will search for ` such that 3r−` ∈ Er−` implies that ωr ∈ Er.
This can be done by exhibiting a sequence of operations, composed of Cover and Mult3,
which generates ωr from 3r−`. These functions a priori need to be iterated ` times but,
since x ∈ Cover(x), it is possible to ignore some calls to Cover.

It is possible to encode the existence of such a sequence of operations as a MILP problem
that is then solved using PySCIPOpt [GAB+20a, GAB+20b], an off-the-shelf solver. This
encoding works as follows.

Integers are represented via their binary representation over n bits. We use two sets of
intermediate variables for each round r, namely (ar

i )0≤i<n and (br
i )0≤i<n, corresponding

to the integers ar and br which are such that

br = Cover(ar) and ar+1 = Mult3 (br) .

The relation br = Cover(ar) is easily encoded as a set of MILP equations since it corresponds
to br

i ≤ ar
i for all i ∈ {0, ..., n− 1}. In order to ensure that ar+1 = 3br, we use a bitwise

description of the multiplication by 3 that can be found for instance in [BFL+21]. By setting
ar−` = 3r−` and ar = ωr, we have that the existence of a solution to all the previously
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described equations is equivalent to the fact that ar is in (Mult3 ◦Cover)`({3r−`}), meaning
that it is indeed in Er.

This technique is rather slow, and it cannot be applied to large values of r. Indeed,
the experiments were ran on a cluster with Intel Xeon Gold 5218 processor and 192GB of
RAM, for which we were limited to one week of computation. However, it plays a crucial
role in our proof of Theorem 4.10.

Table 1 provides the values of all r ≤ 16265 corresponding to the length of a palindromic
sequence for which it has been checked with our MILP-based algorithm that ωr ∈ Er. The
next palindromic sequence is for r = 16266 and is out of reach using our MILP solver.

Table 1: Lengths r of palindromic sequences for which it has been proved with a MILP
algorithm that ωr ∈ Er, using that 3r−` ∈ Er−`.

r 7 12 53 359 665
2kr − αbr 211 − 5 219 − 5 284 − 7 2569 − 5 21054 − 7

` 2 3 4 6 7

Similarly, Table 2 covers the first values of r for which there is no ` satisfying one of
the situations of Prop. 4.8.

Table 2: ` such that 3r−` ∈ Er−` implies ωr ∈ Er.

r 19 24 53k 359 + 53k(k = 1, 3, 5)
2kr − αbr

230 − 7 238 − 7 2kr − 7 2kr − 5
` 4 3 5(k = 3, 5) - 6(k = 2, 4, 6) 9(k = 1) - 7(k = 3, 5)

The first value of r for which the cost becomes too high to obtain a result from the
solver is r = 465. Thus, if R = {665λ+ 53µ, 0 ≤ λ ≤ 23, 0 ≤ µ ≤ 5}, then, up to 16265,
the only rounds for which we cannot definitively prove the presence of maximum-weight
exponents are the following ones (in red in Figure 5):

F =
(
(359 +R) ∪ (665 +R) ∪ (718 +R)

)
\V , where V = {359, 412, 518, 624, 665} .

0 19 247 12 53 359106 159 212 265 318 412 465

466 665518 624571 718 665λ+ 53µ,
1 ≤ λ ≤ 24, 0 ≤ µ ≤ 6

359 + 665λ+ 53µ,
0 ≤ λ ≤ 23, 0 ≤ µ ≤ 5

16225 16265

MIMC3, n = 129

82

MIMC3, n = 255

161

MIMC3, n = 769

486

MIMC3, n = 1024

647

Legend: Rounds for which we are able to construct an exponent of Er.

semiconvergents of log2(3) (rounds with a palindromic sequence) : MILP solver

rounds such that ∃ ` ≤ 22 satisfying Proposition 4.8

rounds such that ∃ ` ≤ 22 but not satisfying Proposition 4.8 : MILP solver

rounds for which min(Lr) = 53 : MILP solver

Rounds likely to be covered by having a proof of Observation 4.7 for ` > 22.

rounds for which min(Lr) ≥ 53 : no result with MILP

Figure 5: Rounds for which we are able to exhibit a maximum-weight exponent.
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The last relevant point we need is to check that the rounds belonging to F do not raise
any problem to build a recurrence on elements of R = {4 ≤ r ≤ 16265 s.t. r 6∈ F}. The
following observation has been checked by computer, by looping through all ` ∈ Lr.

Observation 4.9. For any r ∈ R, there exists ` ∈ Lr such that r − ` belongs to R.

4.4 Combining Both Steps
As a consequence, we are now able to construct, by induction, maximum-weight

exponents for all rounds until 464, and for almost all rounds until 16265.

Theorem 4.10. Let R be the set {4, ..., 16265}\F , where F =
(
(359 +R) ∪ (665 +R) ∪

(718 +R)
)
\V with

R = {665λ+ 53µ, 0 ≤ λ ≤ 23, 0 ≤ µ ≤ 5},
V = {359, 412, 518, 624, 665} .

Then ωr ∈ Er for all r ∈ R.

Proof. We prove the result by induction on r. Let (Hr) be the following hypothesis:

(Hr) : ∀4 ≤ i < r, i ∈ R, ωi = 2ki − αbi
∈ Ei

• For r = 5:
(H5) : ∀4 ≤ i < 5, i ∈ R, ωi ∈ Ei

is satisfied since:
2k4 − αb4 = 26 − 7 = 57 ∈ E4 .

• Induction step. We assume that (Hr) is satisfied, then we will show that (Hr+1)
is also satisfied. If (s1, . . . , sr) is a palindrome, or if there is no ` that satisfies the
conditions of Prop 4.8 then ωr ∈ Er as summarized in Table 1 and Table 2.
Otherwise, according to Proposition 4.3, we know that there exists ` ∈ Lr. Moreover,
we know from Observation 4.9 that there is always a round r− ` ∈ R so that we can
use Prop. 4.8, and prove that we have ωr ∈ Er since ωr−` ∈ Er−`.

Corollary 4.11. Let r ∈ R be an integer, then the algebraic degree after r rounds of
MIMC3 satisfies:

Br
3 = 2× dkr/2− 1e ,

where kr = br log2 3c.

Proof. Proposition 3.4 proves that 2× dkr/2− 1e is an upper bound on the degree, and
Theorem 4.10 exhibits some exponents that reach the degree at each round when r ∈ R.

Figure 6 compares the exact value of Br
3 given in Corollary 4.11, with the bound given

in [EGL+20].
By observing that dkr/2 − 1e ≤ dkr−1/2 − 1e + 1, we deduce that, between two

consecutive rounds, the degree increases by 2 or remains stable, in which case we have a
plateau. More precisely, there is a plateau in the growth of the algebraic degree between
rounds r and r + 1, i.e. Br

3 = Br+1
3 , when kr is odd and kr+1 is even. This implies that

two consecutive plateaus correspond to 3 switches in the parity of (kr)r>0. From Prop. 4.2,
we know that ∑̀

i=1
sr+i ∈ {2`− 1− k`, 2`− k`} . (7)
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Figure 6: Comparison of the exact value of Br
3 given in Corollary 4.11 with previous work.

We deduce that
∑4

i=1 sr+i ≤ 2 and
∑8

i=1 sr+i ≥ 4, which implies that, if there is a plateau
between rounds r and (r + 1), the next plateau starts at round (r + 4), (r + 5) or (r + 6).
By using (7) for 2 ≤ ` ≤ 7, we deduce that there are exactly three possible patterns for a
subsequence of (sr)r>0 starting by 1 and having Hamming weight 3, namely

sr+1 . . . sr+5 = 10101 ,
sr+1 . . . sr+6 = 101001 ,
sr+1 . . . sr+6 = 100101 .

Although Corollary 4.11 does not allow to cover all the rounds, the number of rounds
of MIMC3 we are interested in is fully covered (' 80 when n = 129), as shown in Figure 5.
For the hash functions, as we will see in Subsection 6.2, we need to cover 486 and 687
rounds. In these cases, we have the exact value of Br

3 for all rounds needed, except for
r ∈ {465, 571}. Recalling that (Br

3)r≥1 is a non decreasing sequence (Prop. 2.4) and that
Br

3 is upper bounded by 2× dkr/2− 1e (Prop. 3.4), we have:

734 = B464
3 ≤ B465

3 ≤ 736 ,
902 = B570

3 ≤ B571
3 ≤ 904 .

5 Generalization to Other Permutations
In this section, we discuss the algebraic degree of MIMC9,c[r] (Sec. 5.1) and more gen-

erally, of MIMCd,c[r], with d = 2j + 1 (Sec. 5.2). Interestingly, this analysis also enlightens
the influence of the choice of the round constants c on the degree of MIMC3,c[r]. Sec. 5.3
focuses on the decryption function and studies the degree of the inverse MIMC3,c[r]−1.

5.1 Degree of MIMC9 and Influence of the Round Constants on the
Degree of MIMC3

The value of Br
3 determined in the previous sections corresponds to the maximal

algebraic degree of MIMC3,c[r] over all possible choices for the round constants c. However,
as shown in Prop. 2.2, the exponents in Er are of the form dj, j � i with i ∈ Er−1.
Therefore, it may happen that a monomial with a given exponent dj originates from several
values i ∈ Er−1. In this case, its coefficient is a sum of terms depending on the round
constants, which may vanish.
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An interesting approach when analyzing the influence of the round constants on the
degree of MIMC3 consists in comparing the algebraic degree of the transformation describing
MIMC9 and the one describing two rounds of MIMC3. Indeed, using x9, as round function,
is equivalent to using x3 with all constants ci, i odd, equal to zero. In Figure 7, we can thus
see that the maximal algebraic degree at round r for MIMC9 does not always correspond
to the maximal algebraic degree at round 2r for MIMC3.

1 2 3 4 5 6 7 8
Rounds
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8

10
12
14
16
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20
22

De
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ee
MiMC9[r]
MiMC3[2r]

Figure 7: Comparison of algebraic degree for rounds r of MIMC9 and for rounds 2r of
MIMC3 (n = 23).

For instance, if we consider the polynomial representing MIMC3[4], its maximal algebraic
degree is 4, while after 2 rounds of MIMC9, it is 3. Consequently, the degree of MIMC3,c at
round 4 may drop from 4 to 3, because the coefficients of the maximum-weight exponents
only depend on the constants with odd indices:

27 : c18
1 + c2

3 30 : c17
1 51 : c10

1 54 : c9
1 + c3 57 : c8

1 75 : c2
1 78 : c1

More generally, the coefficients of monomials with exponents not divisible by 9 always
admit as a factor a linear combination of constants with odd indices.

We have already shown in Subsection 3.1 that for MIMC3, the exponents equal to 5
and 7 modulo 8 are missing. For MIMC9, we can similarly prove Lemma 5.1.

Lemma 5.1. Let Er be the set of exponents in the univariate form of MIMC9[r], as defined
in Prop. 2.2. Then, any i ∈ Er satisfies

i mod 8 ∈ {0, 1} .

Proof. We prove the result by induction on r. First, it holds at round 2, since E2 =
{0, 9, 72, 81}.

Then let us assume that the property holds for Er, i.e., any i ∈ Er satisfies i mod 8 ∈
{0, 1}. It follows that, for any j ∈ Cover(Er), j mod 8 ∈ {0, 1}. Since 9j mod 8 ∈ {0, 1}
for any j mod 8 ∈ {0, 1}, we deduce that any i ∈ Er+1 is such that i mod 8 ∈ {0, 1}.

5.2 Other Quadratic Functions
The mappings x3 and x9 are specific cases of Gold functions [Gol68], i.e. of xd, with d

of the form 2j + 1. Let us investigate the general case for such permutations.

Proposition 5.2. [McE87] The mapping xd with d = 2j + 1 is a permutation in F2n if
and only if n/gcd(j, n) is odd.

We can generalize Lemma 5.1 to any permutation xd, where d = 2j + 1.

Proposition 5.3. Let Er be the set of exponents in the univariate form of MIMCd[r],
where d = 2j + 1. Then, any i ∈ Er satisfies

i mod 2j ∈ {0, 1} .
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Proof. We prove it by induction on r. First, it holds at round 2, since

E2 = {0, 2j + 1, 22j + 2j , 22j + 2j+1 + 1} .

Then, let us assume that the property holds for Er, i.e., any i ∈ Er can be written
i = a2j + ε with ε ∈ {0, 1}. Let i′ � i. Then, i′ = ai2j + ε′ with a′ � a and ε′ ≤ ε.
Moreover,

di′ = (2j + 1)(a′2j + ε′) = 2j(a′2j + ε′ + 1) + ε′

≡ ε′ mod 2j .

Then, it follows that any ` = di′ ∈ Er+1 is such that ` mod 2j ∈ {0, 1}.

Proposition 5.3 shows that the proportion of exponents which may appear in the
univariate form of MIMC2j+1 decreases when j increases.

Corollary 5.4. The maximal algebraic degree after r rounds of MIMCd[r], with d = 2j +1,
satisfies:

Br
d ≤ br log2 dc − j + 1 .

Proof. Any exponent i ∈ Er is such that wt(i) ≤ br log2 dc. Moreover, from Prop. 5.3 any
i ∈ Er satisfies i mod 2j ∈ {0, 1}, i.e., i = [∗ ∗ ∗ ∗ ∗ 00 . . . 00︸ ︷︷ ︸

j−1

∗]. The weight of the exponents,

and consequently the degree, is at most br log2 dc − j + 1.

Knowing an explicit formula for the Hamming weight of multiples of (2j + 1), we could
improve this bound on the degree using the following one:

Br
2j+1 ≤ max {wt((2j + 1)2j`), wt((2j + 1)(2j`+ 1)) : ` = 0, . . . , ((2j + 1)r−1 − 1)/2j } .

5.3 On the Algebraic Degree of MIMC−1
3

We are now interested in the algebraic degree of the inverse transformation. MIMC−1
3 is

obtained by reversing the order of the round constants and by replacing the round function
by F−1(x) = xs where

s = 2n+1 − 1
3 =

(n−1)/2∑
i=0

22i

(see e.g. [Nyb94, Prop. 5]).
In Figure 8 we observe two significant facts, on which we will focus:

1. Whatever the extension degree is, there is a plateau between the first two rounds
(see Section 5.3.1).

2. The degree grows rapidly up to n− 2 and then there is a large plateau that increases
with the size of the field on the last rounds (see Section 5.3.2).

5.3.1 A Plateau Between Rounds 1 and 2

Given that Proposition 2.5 does not apply because d 6= 2k − 1 and d2 > 2n − 1, and
that the algebraic degree is already high in the first round, we would more expect an
explosion of the degree in the second round than a plateau. In this subsection we will see
that such an event is due to the particular shape of the exponent s = (2n+1 − 1)/3.



24 On the Algebraic Degree of Iterated Power Functions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rounds

2
4
6
8

10
12
14
16
18
20
22
24

De
gr

ee
n = 11
n = 13
n = 15
n = 17
n = 19
n = 21
n = 23
n = 25

Figure 8: Algebraic degree of MIMC−1
3

Proposition 5.5. Let j � s. Then for all j such that wt(j) ≥ 2, we have:

wt(js mod 2n − 1) ∈


[wt(j)− 1, (n− 1)/2] if wt(j) ≡ 2 mod 3 ,

[wt(j), (n− 1)/2] if wt(j) ≡ 0 mod 3 ,
[wt(j), (n+ 1)/2] if wt(j) ≡ 1 mod 3 .

Proof. In this proof, we use in particular that for any triple of even integers i1 < i2 < i3:

s(2i1 + 2i2 + 2i3) = 2i1 +
(i2−2)/2∑
`=i1/2

22`+1 +
(i3−2)/2∑
`=i2/2

22` mod 2n − 1 . (8)

Indeed, we can check that

3×

2i1 +
(i2−2)/2∑
`=i1/2

22`+1 +
(i3−2)/2∑
`=i2/2

22`

 = 2i1 +
(i2−2)/2∑
`=i1/2

22`+1 +
(i3−2)/2∑
`=i2/2

22`

+ 2i1+1 +
i2/2∑

`=(i1+2)/2

22` +
(i3−2)/2∑
`=i2/2

22`+1

= 2i1 + 2i1+1 + 2i1+1 (2i2−i1 − 1
)

+
(
2i3 − 2i2

)
= 2i1 + 2i2 + 2i3 .

We will investigate three different cases, depending on the value of wt(j) mod 3.

(a) First, let us take an integer j such that wt(j) ≡ 2 mod 3. We let wt(j) = 2 + 3k and
j =

∑3k+1
m=0 2im , where the im are even since j � s, and 2 ≤ i1 < . . . < i3k+1 ≤ n− 1.

Then let us show that:

sj =
(i0−2)/2∑

`=0
22` + 2i1 +

k∑
m=1

(i3m−1−2)/2∑
`=i3m−2/2

22`+1 +
(i3m−2)/2∑
`=i3m−1/2

22` + 2i3m+1


+

(n−3)/2∑
`=i3k+1/2

22`+1 mod 2n − 1 , (9)

We prove it by induction on k.
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• For k = 0:

let j = 2i0 + 2i1 where 2 ≤ i0 < i1 < n, we have wt(j) = 2. Then,

s(2i0 + 2i1) =
(n−1)/2∑

`=0
22`+i0 +

(n−1)/2∑
`=0

22`+i1

=
i1/2−1∑
`=i0/2

22` +
(n−1+i0)/2∑

`=i1/2

22`+1 +
(n−1+i1)/2∑

`=(n+1+i0)/2

22`

=
i1/2−1∑
`=i0/2

22` +
(n−3)/2∑
`=i1/2

22`+1 +
i0/2∑
`=0

22` +
i1/2−1∑
`=i0/2

22`+1

=
i0/2−1∑

`=0
22` + 2i1 +

(n−3)/2∑
`=i1/2

22`+1 mod (2n − 1) ,

implying that wt(sj mod 2n − 1) = (n+ i0 − i1 + 1)/2.

• Induction step. Let us assume that the property holds for k, i.e., for any
j0 =

∑3k+1
m=0 2im such that wt(j0) = 2 + 3k, sj0 satisfies (9). Then, let j =

j0 + 2i3k+2 + 2i3k+3 + 2i3k+4 , wt(j) = 2 + 3(k + 1) and:

sj = sj0 + s(2i3k+2 + 2i3k+3 + 2i3k+4)

= sj0 +

2i3k+2 +
(i3k+3−2)/2∑
`=i3k+2/2

22`+1 +
(i3k+4−2)/2∑
`=i3k+3/2

22`


=

(i0−2)/2∑
`=0

22` + 2i1 +
k∑

m=1

(i3m−1−2)/2∑
`=i3m−2/2

22`+1 +
(i3m−2)/2∑
`=i3m−1/2

22` + 2i3m+1


+

(i3k+2−2)/2∑
`=i3k+1/2

22`+1 +
i3k+3/2∑

`=i3k+2/2

22` +
(i3k+4−2)/2∑
`=i3k+3/2

22` +
(n−3)/2∑

`=i3k+3/2

22`+1

=
(i0−2)/2∑

`=0
22` + 2i1 +

k∑
m=1

(i3m−1−2)/2∑
`=i3m−2/2

22`+1 +
(i3m−2)/2∑
`=i3m−1/2

22` + 2i3m+1


+

(i3k+2−2)/2∑
`=i3k+1/2

22`+1 +
(i3k+3−2)/2∑
`=i3k+2/2

22` + 2i3k+4 +
(n−3)/2∑

`=i3k+4/2

22`+1 .

Then we get:

sj =
(i0−2)/2∑

`=0
22` + 2i1 +

k+1∑
m=1

(i3m−1−2)/2∑
`=i3m−2/2

22`+1 +
(i3m−2)/2∑
`=i3m−1/2

22` + 2i3m+1


+

(n−3)/2∑
`=i3k+4/2

22`+1 mod 2n − 1 .
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It follows from (9) that, when wt(j) = 2 + 3k, the Hamming weight of sj is:

wt(sj mod 2n − 1) = i0
2 + 1 +

k∑
m=1

(
i3m−1 − i3m−2

2 + i3m − i3m−1

2 + 1
)

+ n− 1− i3k+1

2

= 1
2

(
n+ 2k + 1−

k∑
m=0

(i3m+2 − i3m+1)
)
.

Obviously, i3m+1 − i3m ≥ 2, implying that

wt(sj mod 2n − 1) ≤ (n− 1)/2 .

Moreover, the largest value for
∑k

m=0(i3m+2 − i3m+1) is obtained when all other
distances between two consecutive elements among i0, . . . , i3k+1 are minimized, i.e.,
equal to 2, leading to

∑k
m=0(i3m+2 − i3m+1) ≤ (n− 1)− 4k. We then deduce that

wt(sj mod 2n − 1) ≥ 3k + 1 = wt(j)− 1 .

(b) Let us now consider j such that wt(j) mod 3 = 0. We let wt(j) = 3k, and j =∑3k−1
m=0 2im , where the im are even, and 2 ≤ i1 < . . . < i3k−1 ≤ n− 1. Then, we will

show by induction on k that

sj =
k−1∑
m=0

2i3m +
(i3m+1−2)/2∑

`=i3m/2

22`+1 +
(i3m+2−2)/2∑
`=i3m+1/2

22`

 mod 2n − 1 . (10)

• For k = 1: let j = 2i0 + 2i1 + 2i2 where i1 and i2 are two even integers such
that 2 ≤ i0 < i1 < i2 < n. Then, we know from (8) that

sj = 2i0 +
(i1−2)/2∑

`=i0

22`+1 +
(i2−2)/2∑
`=i1/2

22` mod 2n − 1 .

• Induction step. Let us assume that the property holds for k, that is: for any
j0 =

∑3k−1
m=0 2im , sj0 satisfies (10). Then, for j = j0 + 2i3k + 2i3k+1 + 2i3k+2 , we

deduce from (8) that

sj = sj0 + s
(
2i3k + 2i3k+1 + 2i3k+2

)
= sj0 + 2i3k +

(i3k+1−2)/2∑
`=i3k/2

22`+1 +
(i3k+2−2)/2∑
`=i3k+1/2

22`

=
k∑

m=0

2i3m +
(i3m+1−2)/2∑

`=i3m/2

22`+1 +
(i3m+2−2)/2∑
`=i3m+1/2

22`

 mod 2n − 1 .

Therefore, if wt(j) = 3k, we have

wt(sj mod 2n − 1) = 1
2

(
2k +

k−1∑
m=0

(i3m+2 − i3m)
)
∈ [wt(j), (n− 1)/2] .

Obviously, i3m+2 − i3m ≥ 4, implying that

wt(sj mod 2n − 1) ≥ 3k = wt(j) .
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Moreover, the largest value for
∑k−1

m=0(i3m+2 − i3m) is obtained when all other
distances between two consecutive elements among i0, . . . , i3k−1 are minimized, i.e.,
equal to 2, leading to

∑k−1
m=0(i3m+2 − i3m) ≤ (n− 1)− 2k. We then deduce that

wt(sj mod 2n − 1) ≤ (n− 1)/2 .

(c) Finally, let us consider j such that wt(j) mod 3 = 1. We let wt(j) = 1 + 3k, and
j =

∑3k
m=0 2im , where the im are even, and 2 ≤ i0 < . . . < i3k ≤ n− 1. Now, we will

prove by induction on k that

sj =
(i0−2)/2∑

`=0
22`+1 +

k−1∑
m=0

(i3m+1−2)/2∑
`=i3m/2

22` + 2i3m+2 +
(i3m+3−2)/2∑
`=i3m+2/2

22`+1


+

(n−1)/2∑
`=i3k/2

22` mod 2n − 1 . (11)

• For k = 1: let j = 2i0 + 2i1 + 2i2 + 2i3 with i0, i1, i2, i3 even such that
2 ≤ i0 < i1 < i2 < i3 < n. Then, we deduce from (8) that

sj = 2i0 +
(i1−2)/2∑
`=i0/2

22`+1 +
(i2−2)/2∑
`=i1/2

22` +
(n−1)/2∑

`=0
22`+i3

= 2i0 +
(i1−2)/2∑
`=i0/2

22`+1 +
(i2−2)/2∑
`=i1/2

22` +
(n−1)/2∑
`=i3/2

22` +
(i3−2)/2∑

`=0
22`+1

=
(i0−2)/2∑

`=0
22`+1 +

i1/2∑
`=i0/2

22` +
(i2−2)/2∑
`=i1/2

22` +
(i3−2)/2∑
`=i1/2

22`+1 +
(n−1)/2∑
`=i3/2

22`

=
(i0−2)/2∑

`=0
22`+1 +

(i1−2)/2∑
`=i0/2

22` + 2i2 +
(i3−2)/2∑
`=i2/2

22`+1 +
(n−1)/2∑
`=i3/2

22` mod 2n − 1 .

• Induction step. Let us assume that the property holds for k, i.e., for any
j0 =

∑3k
m=0 2im , sj0 satisfies (11). Then, for j = j0 + 2i3k+1 + 2i3k+2 + 2i3k+3 ,

we have:

sj = sj0 + 2i3k+1 +
(i3k+2−2)/2∑
`=i3k+1/2

22`+1 +
(i3k+3−2)/2∑
`=i3k+2/2

22`

=
(i0−2)/2∑

`=0
22`+1 +

k−1∑
m=0

(i3m+1−2)/2∑
`=i3m/2

22` + 2i3m+2 +
(i3m+3−2)/2∑
`=i3m+2/2

22`+1


+

(n−1)/2∑
`=i3k/2

22` + 2i3k+1 +
(i3k+2−2)/2∑
`=i3k+1/2

22`+1 +
(i3k+3−2)/2∑
`=i3k+2/2

22`

=
(i0−2)/2∑

`=0
22`+1 +

k∑
m=0

(i3m+1−2)/2∑
`=i3m/2

22` + 2i3m+2 +
(i3m+3−2)/2∑
`=i3m+2/2

22`+1


+

(n−1)/2∑
`=i3k+3/2

22` mod 2n − 1 .
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Then, if wt(j) = 3k + 1, we have

wt(sj mod 2n − 1) = 1
2

(
n+ 1 + 2k + i1 +

k−1∑
m=1

(i3m+1 − i3m−1)− i3k−1

)

= 1
2

(
n+ 1 + 2k −

k∑
m=1

(i3m−1 − i3m−2)
)
.

Obviously, i3m−1 − i3m−2 ≥ 2, implying that

wt(sj mod 2n − 1) ≤ (n+ 1)/2 .

Moreover, the largest value for
∑k

m=1(i3m−1 − i3m−2) is obtained when all other
distances between two consecutive elements among i0, . . . , i3k are minimized, i.e.,
equal to 2, leading to

∑k
m=1(i3m−1 − i3m−2) ≤ (n− 1)− 4k. We then deduce that

wt(sj mod 2n − 1) ≥ 3k + 1 = wt(j) .

As an immediate consequence, we obtain the following corollary.

Corollary 5.6. There is a plateau on the first two rounds of MIMC−1
3 , i.e.:

B1
s = B2

s = n+ 1
2 .

Since there is a plateau between the first and second round for both MIMC3 and
MIMC−1

3 , we may wonder whether this corresponds to a more general phenomenon, since
in Section 2.3 we also proved that B1

d = B2
d, when d = 2k − 1. However, there is not

necessarily a plateau for MIMC−1
d . Indeed, in F211 , we have 15 = 24 − 1, so according to

Prop. 2.5 we have B1
15 = B2

15. But for MIMC−1
15 , the inverse of 15 is 273, so the algebraic

degree of the first round is wt(273) = 3, while it is 5 after two rounds (for example
wt(273× 273 mod 211 − 1) = 5).

5.3.2 Influence of the Encryption Degree

Studying the algebraic degree of MIMC−1
3 over iterations is much more difficult than

for MIMC3 since the underlying round function xs has a much higher degree. However, the
following result from [BC13] shows how the encryption degree influences the decryption
degree.

Proposition 5.7. [BC13] For any i ∈ [1, n− 1] if the degree of the encryption function is
strictly less than (n− 1)/i, the degree of the decryption function is strictly less than n− i.

Based on this result, we can exhibit a lower bound on the number of rounds needed by
the decryption function to reach degree (n− i) (for some round constants).

Corollary 5.8. Let rn−i denote the smallest value of r such that Br
s ≥ n− i for 1 ≤ i ≤

(n− 1)/4. Then

rn−i ≥
⌈

1
log2 3

(
2
⌈

1
2

⌈
n− 1
i

⌉⌉
+ 1
)⌉

.

Most notably,

rn−2 ≥
⌈

1
log2 3

(
2
⌈
n− 1

4

⌉
+ 1
)⌉

.
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Proof. From Proposition 5.7, we know that, if Br
s ≥ n − i, then Br

3 ≥ (n − 1)/i. Since
i ≤ (n− 1)/4, Br

3 ≥ 4, and then r ≥ 4, implying that Proposition 3.4 applies. We then
deduce that

2×
⌈
br log2 3c

2 − 1
⌉
≥ n− 1

i
.

It follows that

br log2(3)c − 1
2 ≥

⌈
br log2 3c

2 − 1
⌉
≥
⌈

1
2

⌈
n− 1
i

⌉⌉
.

Therefore,

r ≥
⌈

1
log2 3

(
2
⌈

1
2

⌈
n− 1
i

⌉⌉
+ 1
)⌉

.

As an illustration, for n = 25, Corollary 5.8 applied with 1 ≤ i ≤ 6, leads to the upper
bound depicted in Fig. 9.
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Figure 9: Bounds on the algebraic degree of MIMC−1
3 for n = 25.

6 Higher-Order Differential Attacks
In this section, we focus on attacks based on some algebraic properties of the cipher,

most notably on higher-order differential attacks exploiting the algebraic degree of the
primitive. Indeed, a distinguisher4 can be exhibited using that

⊕
x∈V F (x) = 0 for any

affine subspace V ⊂ Fn
2 with dimV ≥ dega(F ) + 1. Since almost all permutations of Fn

2
have algebraic degree (n− 1) (see e.g. [Wel69, Das02, KP02]), an iterated cipher needs to
have enough rounds to reach the maximal algebraic degree in order to be indistinguishable
from a random permutation.

6.1 Secret-Key Zero-Sum Distinguisher
It has been shown in [EGL+20, Prop. 2] that the maximal algebraic degree for MIMC3

and for its inverse MIMC−1
3 can be reach only when r ≥ dlog3(2n−1 +1)e. Prop. 3.4 enables

us to slightly improve this bound.
4A distinguisher is any property that should not be expected from an ideal object, here a permutation

picked uniformly at random from the set of all permutations of Fn
2 . The existence of a distinguisher is an

undesirable property for a cryptographic primitive.
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Proposition 6.1. For any r < dlog3 2ne, the algebraic degree of MIMC3 is at most (n− 3)
and the algebraic degree of MIMC−1

3 is at most (n− 2).

Proof. From Prop 3.4, if the degree of r rounds of MIMC3 is (n − 1) for some round
constants, then ⌈

kr

2 − 1
⌉
≥ n− 1

2 ,

which implies that kr ≥ n, i.e., log2 3r ≥ n. It follows that, for r < dlog3 2ne, degaMIMC3[r] ≤
(n − 2). Using that the upper bound in Prop. 3.4 is always even, we derive that
degaMIMC3[r] ≤ (n − 3). Moreover, as already observed in [BC13, EGL+20], a per-
mutation of Fn

2 has degree (n − 1) if and only if its inverse has degree (n − 1). Thus,
degaMIMC−1

3 [r] ≤ (n− 2).

Therefore, the number of rounds covered by a zero-sum distinguisher against MIMC3 or
MIMC−1

3 is slightly higher than predicted in [EGL+20]; and for all values of r covered by
Corollary 4.11, which includes the parameters studied in [EGL+20], i.e. n ∈ {127, 129, 255},
we derive that this is the highest number of rounds which can be covered by such a distin-
guisher. Moreover, this distinguisher against MIMC3 has data complexity at most 2n−2,
instead of 2n−1. As noted in [EGL+20], such a zero-sum distinguisher for (r − 1) rounds
of MIMC−1

3 can be extented to a key-recovery attack over r rounds.
Another observation is that, in many cases, the data complexity of the distinguisher

can be reduced to 2n−4 by removing the last round, as stated in the following proposition.

Proposition 6.2. Let R = dlog3 2ne. For any r < R− 1, the algebraic degree of MIMC3
is at most (n− 5), unless kR = kR−1 is even and kR−2 is odd (which equivalently means
that there is a plateau between rounds (R− 2) and (R− 1)).

Proof. Recall that a plateau between rounds i and (i + 1) corresponds to the situation
where ki−1 is odd and ki even, i.e. bi−1bi = 10 (see Section 4.4, the discussion after
Cor. 4.11). As stated in the previous proposition, there is no plateau between rounds
(R− 1) and R, implying that bR−1bR 6= 10. Therefore, two situations may occur.

(i) bR−1bR = 00. In this case, there is a plateau between rounds (R− 2) and (R− 1) if
and only if bR−2 = 1.

(ii) bR−1bR ∈ {01, 11}. The only possibility corresponding to a plateau between rounds
(R− 2) and (R− 1) is then bR−2bR−1bR = 101, which is impossible because it would
imply the existence of two consecutive switches in (br)r>0, i.e. sR−1sR = 11, while
we known from Prop. 4.2 that

sR−1sR ∈ {3− k2, 4− k2} = {0, 1} .

Therefore, Case (i) is the only situation where we may have BR−2
3 = n− 3. In all other

cases, BR−2
3 ≤ n− 5.

As an example, for n = 127, R = 81, and we can check from Table 3 that we are in a
case where BR−2

3 = BR−1
3 = n− 3. While [EGL+20] exhibits a distinguisher with data

complexity 2125 for 78 rounds, we show that it actually covers 80 rounds. For n = 129,
R = 82, so we have a distinguisher of data complexity 2127 for 81 rounds (instead of 80
in [EGL+20]), and of data complexity 2125 for 80 rounds.

For n = 129, we compare our results with those of Eichlseder et al. [EGL+20] in
Table 4, where we use the same notation: “KR” for Key-Recovery, “KK” for Known-Key
distinguisher, and SK for Secret-Key distinguisher. Overall, our careful study of the
algebraic degree allows us to improve their attacks.
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Table 3: Comparison for MIMC3 of the bound given in [EGL+20], and our results Br
3 .

r 77 78 79 80 81 82
blog2(3r + 1)c 122 123 125 126 128 129

Br
3 120 122 124 124 126 128

Table 4: Complexity of attacks on MIMC3.

Type n Rounds Time Data Source

SK

129 80 2128xor 2128
[EGL+20]

n dlog3(2n−1 − 1)e − 1 2n−1xor 2n−1

129 81 2128xor 2128
New

n dlog3 2ne − 1 2n−1xor 2n−1

129 81 (MIMC3) 2127xor 2127
New

n dlog3 2ne − 1 (MIMC3) 2n−2xor 2n−2

129 80 (MIMC3) 2125xor 2125
New

n dlog3 2ne − 2 (MIMC3) 2n−2 or 2n−4xor 2n−2 or 2n−4

KK

129 160 - 2128
[EGL+20]

n 2 · dlog3(2n−1 − 1)e − 2 - 2n−1

129 162 - 2128
New

n 2 · dlog3 2ne − 2 - 2n−1

KR

129 82 2122.64 2128

[EGL+20]
n dn · log3 2e 2n−1−(log2dn log3 2e)

2n−1
or 2n−(log2dn log3 2e)

129 82 2121.64 2128
New

n dn · log3 2e 2n−1−(log2dn log3 2e) 2n−1

6.2 Known-Key Zero-Sum Distinguisher
Using a subspace of dimension n − 1, the number of rounds we can distinguish is

R− 1 for both MIMC3, and MIMC−1
3 . As a consequence, there is a known-key zero-sum

distinguisher as defined in [AM09] on almost twice the number of rounds, starting from
the middle of the primitive.

Such a known-key distinguisher can be applied to the hash function proposed in [AGR+16],
based on the use of MIMC3 within the sponge framework, as depicted in Figure 10, where
r is the rate and c the capacity.

⊕

m0

c bits

r bits
MIMC3

⊕

m1

MIMC3

⊕

m2

MIMC3

. . .

. . .

z0

MIMC3

. . .

. . .

z1

MIMC3

z255

Figure 10: Hash function in sponge framework.

While there is a 0-sum distinguisher on 2R − 2 rounds when the dimension of the
subspace V is n− 1, we are also interested in reducing the size of the subspace, in order to
decrease the data complexity.

First, let us consider the hash function using MIMC3 with an extension degree n = 1025,
which corresponds to 647 rounds. In this case, the last plateau for MIMC3 is between
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rounds R− 4 and R− 3, where the degree is equal to n− 7. Furthermore, for MIMC−1
3 , we

know from Corollary 5.8 that rn−2 ≥ 324, where rn−2 is the first round where the degree
reaches n− 2. It follows that, if we operate on a subspace V of dimension n− 2, we would
reduce by a quarter the number of rounds for which we can set up a distinguisher, as seen
in Figure 11.

x fR−1(y, 0)
d ≤ n− 3

yf−(R−1)(y, 0)
d ≤ n− 2

z dim(V) = n− 1 2R− 2 rounds

x fR−1(y, 0)
d ≤ n− 3

yf−323(y, 0)
d ≤ n− 3

z dim(V) = n− 2 ∼ 3
2R rounds

x fR−2(y, 0)
d ≤ n− 5

yf−216(y, 0)
d ≤ n− 4

z dim(V) = n− 3 ∼ 4
3R rounds

Figure 11: 0-sum with hash function (with n = 1025).

7 Conclusion
Symmetric primitives designed over a large field are inherently different from the

“traditional” ones that are defined over (F2)n. Due to its simplicity, MiMC is an interesting
target to investigate the security level offered by such algorithms. Yet, despite this
simplicity, tightly quantifying its security against higher-order differentials required us to
develop new mathematical tools to track the evolution of the exponents that appear in the
univariate representation of the encryption function as the round function is iterated. In
the end, we have managed to evaluate the exact algebraic degree of up to more than 16000
rounds of this block cipher. Overall, our results contribute to a better understanding of
the behaviour of symmetric primitives defined over large finite fields.

MiMC is an even more interesting target as we still have a number of questions to
answer. Solving Observation 4.7 for any t and then being able to explain more formally
the exact degree for all rounds is one of them. Future work could also be to extend the
study to other permutations, in particular to better understand what happens for the
inverse. Going further, it would be interesting to generalize the proposed result for the
case in which the round function is instantiated via a generic round function of univariate
degree du over F2n and algebraic degree da over Fn

2 . Besides, as the algebraic degree is
defined over binary field, it would also be relevant to extend the study of MiMC to prime
characteristics.
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