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Abstract. Recently, number-theoretic assumptions including DDH, DCR
and QR have been used to build powerful tools for secure computation,
in the form of homomorphic secret-sharing (HSS), which leads to se-
cure two-party computation protocols with succinct communication, and
pseudorandom correlation functions (PCFs), which allow non-interactive
generation of a large quantity of correlated randomness. In this work, we
present a group-theoretic framework for these classes of constructions,
which unifies their approach to computing distributed discrete logarithms
in various groups. We cast existing constructions in our framework, and
also present new constructions, including one based on class groups of
imaginary quadratic fields. This leads to the first construction of two-
party homomorphic secret sharing for branching programs from class
group assumptions.
Using our framework, we also obtain pseudorandom correlation func-
tions for generating oblivious transfer and vector-OLE correlations from
number-theoretic assumptions. These have a trustless, public-key setup
when instantiating our framework using class groups. Previously, such
constructions either needed a trusted setup in the form of an RSA modu-
lus with unknown factorisation, or relied on multi-key fully homomorphic
encryption from the learning with errors assumption.
We also show how to upgrade our constructions to achieve active security
using appropriate zero-knowledge proofs. In the random oracle model,
this leads to a one-round, actively secure protocol for setting up the PCF,
as well as a 3-round, actively secure HSS-based protocol for secure two-
party computation of branching programs with succinct communication.
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1 Introduction

Homomorphic secret sharing (HSS) [BGI16] can be seen as a relaxed form of
fully-homomorphic encryption (FHE), where two non-colluding servers evaluate
a function on private inputs without interaction. At the end of the computation,
the servers each obtain a secret share, and these can be combined to obtain
the result. At the core of existing HSS constructions is a procedure for dis-
tributed discrete log, where two parties are given group elements g0, g1 such that
g1 = g0 · gx for some fixed base g, and want to convert these multiplicative
shares into additive shares x0, x1, where x1 = x0 + x over the integers. The
method from [BGI16], which is based on the decisional Diffie-Hellman (DDH)
assumption, allows doing this conversion without interaction, however, there is
an inherent correctness error. This results in significant extra work to ensure
that the magnitude of the error is small. Moreover, the error cannot be made
negligible. This limitation carries over to the final HSS construction, which has
a non-negligible probability that the result of the computation is incorrect.

Recently, it was shown that the non-negligible correctness error of the DDH
construction can be overcome, when switching to the Paillier [Pai99] or Damg̊ard-
Jurik [DJ01] cryptosystems based on the decisional composite residuosity (DCR)
assumption. With these encryption schemes, which work over Z∗N2 for an RSA
modulus N , discrete logarithms can be computed in a distributed manner with
a very simple and perfectly correct algorithm [OSY21, RS21]. This avoids the
challenges of the DDH setting, by exploiting the fact that the messages in these
schemes lie in a subgroup where solving discrete log is easy.

In [OSY21], the same distributed discrete log technique was used for several
other applications in secure computation. In particular, they constructed pseu-
dorandom correlation functions based on the Paillier and quadratic residuosity
assumptions. A pseudorandom correlation function (PCF) is a way of generat-
ing two short, correlated keys, such that when evaluating the function on each
of the keys, the two outputs are correlated in some secret manner. This gen-
eralizes the notion of a pseudorandom correlation generator [BCG+19], which
only supports a bounded number of outputs. Examples of useful correlations
for PCFs and PCGs are random oblivious transfer correlations, or secret-shared
multiplication triples, which can be used in GMW-style multi-party computation
protocols [GMW87] with very lightweight online computation.

An appealing feature of the PCFs from [OSY21] is that the PCF keys can
be generated in a public-key manner, where after publishing just a single, short
message, each party can locally derive their PCF key and compute the correlated
randomness. However, a major drawback is that to achieve this public-key setup,
the parties first need to have a trusted setup in the form of a public RSA modulus
with unknown factorisation.
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1.1 Our Contributions

It may seem from the previous work in [OSY21, RS21] that their efficient ap-
proach to distributed discrete log depends on very specific properties of Paillier,
or more generally Damg̊ard-Jurik encryption.

However, we show that this is not the case: in Section 3 we present a general
framework, where we demonstrate that the approach from previous works can
be phrased in terms of abstract group-theoretic properties. Naturally, the known
methods based on Paillier and Damg̊ard-Jurik become special cases of our frame-
work, but we also show instantiations under different assumptions in Section 4.

Below, we describe the main applications of our framework to secure two-
party computation, and the results obtained from our new instantiations.

Homomorphic secret sharing. We show in Section 5 that any instantiation
of our framework that supports superpolynomially large plaintexts can be used
to build homomorphic secret sharing for the class of polynomial size branch-
ing programs. This construction follows the same blueprint as previous works
that obtain HSS for branching programs [BGI16, BKS19, OSY21, RS21]. Using
this, two new instantiations of our framework imply two new constructions of
HSS based on a flavour of the decisional Diffie-Hellman assumption for short
exponents.

Firstly, we obtain HSS from a variant of the Joye-Libert cryptosystem [JL13,
BHJL17], modified to work over a modulus that is a product of many small,
distinct primes; compared with the analogous constructions based on Paillier,
this has the advantage that ciphertexts are only a single element of ZN , and
we can be more flexible in our choice of plaintext space, which is limited to
ZNs otherwise. For a plaintext space modulo Q, we need to choose N such that
p− 1, q− 1 are divisible by Q, so when Q is large we should clearly increase p, q
to compensate, however, for reasonable sizes of Q the resulting ciphertext size
should still be smaller than Paillier, which is an element of ZN2 .

Secondly, we obtain HSS from the DDH assumption in class groups of imag-
inary quadratic fields, based on the CL cryptosystem [CL15]. Class groups have
recently seen many cryptographic applications, since they offer a way to generate
a group of unknown order, without relying on any trusted setup to create the
group parameters. Using class groups in HSS, we avoid the need for a setup with
an RSA modulus where no party knows the factorization, instead only relying on
a CRS that can be sampled with public randomness. For security, we rely on the
DDH assumption with short exponents, where the short exponents are used to
ensure that the secret key fits in the message space of the scheme, which allows
us to easily encrypt functions of the secret key without introducing a circular
security assumption.

Public-key pseudorandom correlation functions with trustless setup.
Our starting point here is the PCFs from Paillier and quadratic residuosity
from [OSY21], which give PCFs for generating vector-OLE and OT correlations,
respectively.
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PCFs, by definition, involve a setup procedure where a trusted dealer dis-
tributes a pair of short keys to the two parties. In [OSY21], it was shown that
given a 1-round protocol for vector-OLE, where each party sends one parallel
message, the PCF setup procedure can be replaced with a simple public-key
setup, where each party publishes one message, which is then used to derive
a PCF key. To realize the 1-round vector-OLE protocol, they give a dedicated
construction based on distributed discrete log from Paillier, however, this still
relies on a trusted setup in the form of an RSA modulus with unknown factori-
sation. We show in Section 6 that this construction can be generalised to work
under any instantiation of our framework; with our class groups instantiation,
we then obtain vector-OLE with a trustless setup. Put together with the PCFs
from [OSY21], this leads to a public-key PCF with trustless setup for vector-
OLE based on the combination of class group assumptions and DCR, or one for
OT by combining class groups and quadratic residuosity.

Active security. Given a public-key PCF, where after exchanging public keys,
two parties can compute as much correlated randomness as they need, it is nat-
ural to ask, can this type of protocol be made actively secure? Although there
are many ways of generically compiling passively secure protocols into active
ones [GMW86, IPS08], we want to achieve something reasonably practical, in
particular, to avoid using generic zero-knowledge techniques that require ex-
pressing group operations as circuits or similar. We show in Section 7 how to
upgrade our PCFs to achieve active security, while preserving their public-nature
by using Fiat-Shamir based NIZKs in the random oracle model. We do this via
a careful combination of sigma protocols, which all make black-box use of the
group, so avoid the complications of generic techniques. One challenge is that
to build the public-key PCF, we need one party to prove that their input to the
vector-OLE protocol corresponds to a secret key for an RSA modulus used in the
PCF. As an essential tool, we use an integer commitment scheme which we show
can be built from class groups and a trustless set-up. Thus, even our actively
secure PCF does not need a trusted dealer. See the next section for details on
the assumption required for this.

Finally, we also show how to add active security to our HSS construction in
Section 8. In the random oracle model, this gives a 3-round protocol for actively
secure two-party computation of branching programs, which makes black-box
use of the operations needed by our group-theoretic framework. Here, as well as
proving that ciphertexts used to the secret-share HSS inputs are well-formed,
we also need range proofs to ensure that the inputs are bounded in size.

A comparison to [OSY21] and [RS21]. As summarised above, previous work
focuses its analysis on Paillier and Goldwasser-Micali [OSY21], and Damg̊ard-
Jurik [RS21]. Both [OSY21] and [RS21] describe how to solve distributed discrete
log in the setting they study and use the techniques to build HSS for branching
programs. In [OSY21], the authors also explain how to build public-key PCFs for
OT and VOLE using the distributed discrete log techniques. All the construc-
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tions presented in [OSY21] and [RS21] rely on a trusted setup for the generation
of a public RSA modulo of unknown factorisation.

The main contribution of this work is to generalise the techniques of [OSY21]
and [RS21] to an abstract algebraic framework. We characterise the assumptions
that the framework needs to satisfy to solve distributed discrete log, build HSS
for branching programs and public-key PCFs for OT and VOLE. We present
also new instantiations of the framework in addition to Paillier, Goldwasser-
Micali and Damg̊ard-Jurik, namely variants of the Joye-Libert cryptosystem
and class groups. The latter allows us to build HSS and public-key PCFs that
do not need trusted setups. Finally, while [OSY21] and [RS21] limit their study
to passive security only, this work explains how to upgrade the constructions
to active security obtaining implementable solutions that make black-box use of
the underlying group.

1.2 An Overview of the Framework

In a nutshell, our framework consists of a large, finite group G, where G = F×H.
In the subgroup F , which is cyclic with generator f , discrete log is easy, and
the order of F is public (whereas this is not the case for H). In the distributed
discrete logarithm problem, two parties are given group elements g0, g1 ∈ G, with
the condition that g0/g1 = fm for some message m. The goal is for the parties
to convert this into shares m0,m1, where m0 +m1 = m modulo the order of F .
The crucial ingredient we need for distributed discrete log is a function we call a
coset labelling function, which, for each coset C of F in G, maps all elements in
C to a specific element in C. Existence of a coset labelling function turns out to
be enough to solve distributed discrete log assuming that the two parties start
from elements in the same coset, and it further turns out that this is sufficient
to implement all our constructions, as long as some appropriate computational
assumptions hold in G.

Instantiations. This framework easily encompasses previous constructions where
distributed discrete logs are computed with Paillier, Damg̊ard-Jurik, or Goldwasser-
Micali ciphertexts. We also show that a natural variant of the Joye-Libert cryp-
tosystem can be used (although it remains open to find a coset labelling function
for the original Joye-Libert scheme, with plaintexts modulo 2k). Finally, we give
an instantiation based on class groups over imaginary quadratic fields. Here,
we essentially apply the framework of the CL cryptosystem [CL15] for linearly
homomorphic encryption, and combine it with the observation that the coset
labelling function can be obtained via a special surjective map, which was pre-
viously used in the NICE cryptosystem [PT00] and its cryptanalysis [CJLN09].

Trustless Setup and the DXDH Assumption. For all applications of our frame-
work, we rely on the standard DDH assumption in the group G. In settings
where we need a trustless setup, we sometimes use a new assumption we call the
decisional cross-group Diffie-Hellman, or DXDH, assumption. This states that
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for group elements g, h ← G sampled with random coins ρg, ρh, and random
exponents r, s,

(ρg, ρh, g, h, g
r, hr) ∼= (ρg, ρh, g, h, g

r, gs)

This assumption arises in settings where we have a CRS with two group
elements g, h, and we want the CRS to be public-coin. Having a public-coin
CRS implies a trustless setup, since in practice the parties can derive randomness
using e.g. a random oracle, and use this to sample the group elements. Note that
in a standard cyclic DDH group (such as with elliptic curves), DXDH and DDH
are equivalent because g, h always generate the same group, and furthermore,
given a group element g it is easy to find some random coins that ‘explain’ it.
With class groups, however, this is not the case, since we are not aware of any
invertible sampling algorithm, nor any method for sampling g and h such that
they lie in the same subgroup.

Thus, when aiming for a trustless setup, we need DXDH. An additional
complication of this setting is that the assumption makes it harder to use a CRS
in security proofs: there is no way to introduce a trapdoor in the CRS by picking
h = gt in the simulation, as we do not know how to explain the random coins
used to sample h (without leaking t).

We note that recently, [CKLR21] presented zero-knowledge proofs built us-
ing integer commitments from class groups, which require a CRS (g, h) and the
assumption that (g, h) is indistinguishable from (g, gs). Note that this assump-
tion is incompatible with a trustless setup: if the CRS contains the random
coins used to sample g and h, then the assumption doesn’t hold as it is hard
for the simulator to come up with the random coins needed to explain sampling
h = gs.1 However, in Section 7 we show that the same commitment scheme does
permit a trustless setup under the DXDH assumption, and we use this in our
zero-knowledge proofs to obtain active security.

Recap of the framework. We now summarise the description of our frame-
work. Our setting is an finite, Abelian group

G ∼= F ×H where F = 〈f〉.

The group G needs to satisfy these properties:

1. The discrete log function over F is efficiently computable.
2. There exists an efficiently computable coset labelling function π.
3. There exists an efficiently computable function δ (the lifting function) such

that π
(
δ(x)

)
= x for every input x.

In order to build HSS for branching programs and public-key PCFs for OT and
VOLE, the group needs to satisfy additional computational assumption which
are summarised in Table 1.

1 The authors of [CKLR21] have acknowledged. They claim to have found a solution
and are going to update their work.
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Construction Assumptions and Model

HSS for branching programs DDH, small exponent (DXDH, weak hidden order + RO)

Public-Key PCF for VOLE DCR, DXDH, DDH (weak hidden order, QR) + RO

Public-Key PCF for OT QR, DXDH, DDH (weak hidden order) + RO

Table 1. Computational assumptions needed by our constructions. Elements written
in between brackets are needed only for active security.

2 Notation and Preliminaries

Let λ denote the security parameter. Our constructions are restricted to the
two-party setting and we denote them P0 and P1. For any a, b ∈ Z with a < b,
we represent the set of integers {a, a+ 1, . . . , b} by [a, b]. We use [b] to represent
[0, b − 1]. We assume that by reducing an element modulo t ∈ N, we obtain a
value in [t].

Given a deterministic algorithm Alg, we denote its evaluation on an input x
and the assignment of the result to a variable y by y ← Alg(x). If Alg is instead

probabilistic, we write y
R← Alg(x). The operation assumes that the random bits

used by the algorithm are sampled uniformly. When we want to use a specific
random string r, we write instead y ← Alg(x; r). Finally, if the element y is

uniformly sampled from a set X , we write y
R← X .

We denote vectorial elements using the bold font, the i-th entry of a vector
v is denoted by vi or by v[i]. The cyclic subgroup generated by a group element
g is represented by 〈g〉. Finally, we denote secret-shared elements y using the
y-in-a-box notation, i.e. [y]. It will be clear from the context if that denotes a
secret-sharing or the set {0, 1, . . . , y − 1}.

2.1 Homomorphic Secret-Sharing

A homomorphic secret-sharing scheme (HSS) [BGI16, BGI17, BKS19] is a con-
struction that allows a set of parties to non-interactively apply functions on
secret-shared data obtaining secret-shared outputs. The set of supported func-
tions is usually restricted to a class P. Furthermore, the secret-sharing schemes
used for inputs and outputs might differ and not be linear. To some extent, HSS
can be considered a distributed version of homomorphic encryption, in which,
instead of preserving the privacy of the inputs through encryption, we do it by
means of secret-sharing schemes. We formalise the definition below.

Definition 1 (Homomorphic Secret-Sharing). A 2-party, (public key) ho-
momorphic secret-sharing (HSS) scheme for a class of circuits P over a ring R
with input space I ⊆ R is a triple of PPT algorithms (Setup, Input,Eval) with
the following syntax.

– Setup(1lλ)
R→
(
pk, (ek0, ek1)

)
: On input the security parameter 1lλ, the proce-

dure outputs an HSS public key pk and a pair of evaluation keys (ek0, ek1),
one for each party.
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– Input(pk, x)
R→ (I0, I1): On input the HSS public key pk and a value x ∈ I,

the procedure outputs the input information (I0, I1), where Ii is addressed to

party Pi. When I0 = I1 =: I, we simply write Input(pk, x)
R→ I.

– Eval
(
i, eki, (I

1
i , I

2
i , . . . , I

n
i ), P

)
→ zi: On input an index i ∈ {0, 1}, the i-th

evaluation key eki, Pi’s information regarding n input values and an n-input
program P ∈ P, the procedure outputs a value zi ∈ R corresponding to Pi’s
additive share of the output.

Essentially, the setup algorithm is used to generate and distribute the key
material necessary to use the construction. Using the HSS public-key pk, the
parties are able to encode their inputs to the computation without leaking any
information about the values. Finally, by applying the evaluation algorithm on
the encoded inputs, the parties are able to obtain an additive secret-sharing of the
result. It is possible to reconstruct the output after exchanging the corresponding
shares.

We say that the HSS scheme is correct if, by evaluating any program P ∈ P
on encodings of x1, . . . , xn ∈ I, the parties obtain an additive secret-sharing of
P (x1, . . . , xn). The idea is formally defined below.

Definition 2 (Correctness of HSS Schemes). Let (Setup, Input,Eval) be a
2-party public key HSS scheme for the circuit class P over the ring R. Let I ⊆ R
be the input space. We say that the scheme is correct if, for every n-input program
P ∈ P and inputs x1, x2, . . . , xn ∈ I, the following probability is negligible in the
security parameter λ.

P

z0 + z1 6= P (x1, x2, . . . , xn)

∣∣∣∣∣∣∣∣
(
pk, (ek0, ek1)

) R← Setup(1lλ)

∀j ∈ [n] : (Ij0, I
j
1)

R← Input(pk, xj)

∀i ∈ {0, 1} : zi ← Eval
(
i, eki, (I

1
i , I

2
i , . . . , I

n
i ), P

)


In order for the HSS scheme to be secure, the input encodings should leak no
information about their underlying value, even if one of the parties is corrupt.
We formally model this by saying that no PPT adversary A can distinguish an
encoding of x0 from one of x1, not even if x0 and x1 were chosen by A after
seeing the key material of a corrupted party.

Definition 3 (Security of HSS Schemes). Let (Setup, Input,Eval) be a 2-
party public key HSS scheme for the circuit class P over the ring R. Let I ⊆ R
be the input space. We say that the scheme is secure if, for every i ∈ {0, 1}, no
PPT adversary A can win the game GHSS-Seci,A (λ) (see Fig. 1) with non-negligible
advantage in the security parameter λ.

Note that, since the reconstruction is additive, it is implicit that the shares
zi leak no information about the key eki, as they can be simulated given the
output of the function and the other key eki−1.

Observe that a homomorphic secret-sharing scheme naturally induces a semi-
honest 2-round MPC protocol with setup for circuits in P. In order to have
as little communication complexity as possible, we are interested in designing
protocols where the size of the input encodings is small.
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The Game GHSS-Seci,A (λ)

1. b
R← {0, 1}

2.
(
pk, (ek0, ek1)

) R← Setup(1lλ)

3. (x0, x1, state)
R← A(1lλ, pk, eki)

4. (I0, I1)
R← Input(pk, xb)

5. The adversary wins if b = A(state, Ii) and x0, x1 ∈ I.

Fig. 1. The HSS security game

2.2 Pseudorandom Correlation Functions

A pseudorandom correlation function (PCF) [BCG+20, OSY21] is a construction
that allows a set of parties to generate large amounts of distributed correlated
material with little communication. Specifically, in the 2-party case, a PCF spec-
ifies how to generate 2 small keys, one for each player. After the keys have been
dealt, the parties can locally expand them, obtaining large quantities of cor-
related randomness. The expansion, which is formally called evaluation, takes
place in the same fashion as a PRF. In particular, the parties evaluate their keys
along with public nonces, obtaining different batches of correlated randomness
every time. Notice that the amount of material that can be generated in this
way is not necessarily polynomially bounded. Indeed, the nonce space can be
exponentially large.

Pseudorandom correlation functions are usually tailored to specific types of
correlation. Examples of this kind are OT tuples, in which the receiver obtains a
random bit b and a string y ∈ {0, 1}λ, whereas the sender obtains z := y⊕ b ·x.
Here, the value of x ∈ {0, 1}λ is known to the sender and is fixed ahead of
time. In particular, all samples from the OT correlation will use the same x. In
other words, x acts a some kind of secret upon which all the correlation samples
depend. In general, each party could own a different correlation secret. In a PCF,
all the samples use the same correlation secrets and the latter are distributed to
the parties as part of the PCF keys.

On the importance of having small keys. We would like our PCFs to have small
keys. Usually, it is not hard to design multiparty computation protocols that gen-
erate and distribute the PCF keys with linear communication in the key size.
When these protocols are composed with the non-interactive expansion, we ob-
tain secure constructions that generate large quantities of correlated randomness
with little communication and no need for trusted dealers.

Unfortunately, having small keys is not possible for any correlation [BCG+19].
In order to have no issues, we have to work with reverse-samplable correlation
functions. These are particular types of correlation in which the outputs of the
honest parties can be simulated given the outputs of the corrupted players and
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their secrets. Moreover, the outputs of the corrupted parties leak no information
about the secrets of the honest players. We formalise the definition below.

Definition 4 (Reverse-Samplable 2-party Correlation Function). A 2-
party correlation function is a pair of PPT algorithms (Secret, C) having the
following syntax.

– Secret(1lλ, i)
R→ mki. On input the security parameter and the index of a

party i ∈ {0, 1}, the algorithm outputs a random correlation secret mki for
Pi.

– C(1lλ,mk0,mk1)
R→ (R0, R1). On input the security parameter and the corre-

lation secret mk0 and mk1 of the parties, the correlation function outputs a
pair of correlated values (R0, R1), one for each party.

We say that (Secret, C) is reverse-samplable if there exists a PPT algorithm
RSample such that, for every i ∈ {0, 1} and correlation secrets mk0, mk1 and mk′i
in the image of Secret, no PPT adversary can distinguish between the output of
C(1lλ,mk0,mk1) and(R0, R1)

∣∣∣∣∣∣∣∣∣∣

mk′1−i ← mk1−i

(R′0, R
′
1)

R← C(1lλ,mk′0,mk′1)

R1−i ← R′1−i

Ri
R← RSample(1lλ, i, R1−i,mk0,mk1)


The following definition formalises the syntax of PCFs.

Definition 5 (Pseudorandom correlation function). A 2-party PCF for
the reverse-samplable correlation function (Secret, C) is a pair of PPT algorithms
(Gen,Eval) with the following syntax.

– Gen(1lλ)
R→ (k0, k1). On input the security parameter, the algorithm outputs

a pair of PCF keys (k0, k1), one for each party.
– Eval(i, ki, x) → Ri. On input the index i ∈ {0, 1} of a party, the Pi’s PCF

key ki and a nonce x in the nonce space X , the algorithm outputs the a value
Ri, corresponding to the i-th output of C.

Informally speaking, we say that a PCF is correct when no PPT adversary
can distinguish between samples generated by expanding the keys and values
output by the correlation function C. Concerning security, we require that the
keys of corrupted parties leak no information about the outputs of the honest
parties. This idea is formalised by saying that an adversary provided with the
keys of the corrupted players cannot distinguish between the real outputs of the
honest parties and reverse-sampled ones [OSY21].

Based on how the nonces are chosen, we can classify PCFs into two main
classes [BCG+20]: weak PCFs, in which the nonces are sample at random, for
instance using a random oracle, and strong PCFs, in which the parties can
adaptively choose them. In this paper, we will work only with weak PCFs.
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Public-key PCFs. In general, the MPC protocols used to generate and distribute
the PCF keys require multiple rounds of interactions. In some particular cases,
however, one round is enough. These particular constructions are called public-
key PCFs [OSY21]. The name refers to the fact that the only message sent by
each party acts as a public key, whereas the randomness used for its generation
behaves as its private counterpart.

Formally speaking a public-key PCF can be regarded as a one-round protocol
implementing the functionality that generates the correlated material of the
honest parties by reverse-sampling the outputs of the corrupted players, which
are provided by the adversary. During the initialisation, the adversary is also
allowed to choose the correlation secrets of the corrupted parties, whereas those
of the honest player are generated by the functionality.

In this paper, we will focus on two types of 2-party correlation, both of
which are reverse-samplable. The first one are OT tuples, which were described
in the previous paragraph. The second type are vector-OLE tuples, where P0

is provided with a random pair (z0, a) in a modular ring ZN and P1 obtains
z1 = z0 +a ·x mod N . Here, x ∈ ZN denotes the correlation secret of party P1.

3 A Group-Theoretic Framework

We will assume we have a probabilistic polynomial time algorithm Gen that takes
1lλ as input where λ is a security parameter. When running Gen, we get output

par
R← Gen(1lλ), where par = (G,F,H, f, t, `, aux).

Here, G is a finite Abelian group with subgroups F,H such that G = F × H,
f is a generator of F and t is the order of F . We assume we can compute the
group operation and inverses in time polynomial in λ. The natural number ` will
be used in the following: when we select a random exponent r and compute gr

where g ∈ G, r will usually be chosen uniformly between 0 and `2. Finally, we
say that Gen is public-coin if the random coins used by Gen appear in the string
aux.

We also assume a probabilistic polynomial time algorithm D for sampling

random elements in G. We will use the notation (g, ρ)
R← D(1lλ, par), where

g ∈ G is the sampled element and ρ contains the random coins used in the
sampling (i.e., the sampling of g is always public-coin). We do not require that
g is uniform in G, but we do require f is in the subgroup generated by g, except
perhaps with negligible probability.

We assume that discrete log base f is easy, that is, given fa for any a ∈ Zt,
a can be computed in polynomial time in λ.

In the following sections, we will specify a number of computational problems
that we need to assume are hard to solve, given par and various elements sampled

2 We will always choose ` large enough so that gr is statistically indistinguishable from
uniform in 〈g〉. This is possible, even if |H| is sometimes not known by anyone, since
an upper bound is always known.
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by D. Loosely speaking, the most basic one is that the order of the subgroup
H is hard to compute, and that the DDH assumption holds in the subgroup
generated by g where g is sampled by D. More details will be given in Section
3.1.

The main problem we want to solve in the context of the framework is the
following, which we call Non-Interactive Discrete Log Sharing (NIDLS). This is
defined as follows:

Definition 6. The NIDLS problem involves two parties, A and B. A gets as
input α ∈ G, while B gets β ∈ G. It is promised that αβ−1 ∈ F , so that
αβ−1 = fm for some m ∈ Zt. A and B now do only local computation and A
outputs a number a, while B outputs b. The goal is that a+ b ≡ m mod t.

It will be convenient to introduce the following notation: for g ∈ G, we denote
by Cg be the coset of F in G that contains g. As we explain in a moment, the
NIDLS problem can be solved using the following tool:

Definition 7. A coset labelling function for F in G is an efficiently computable
function φ : G 7→ G with the following property: for any g ∈ G we have φ(g) ∈ Cg
and furthermore, for any h ∈ Cg we have φ(h) = φ(g).

In other words, for every coset Cg, φ defines a fixed element c ∈ Cg and c
can be efficiently computed given any element in Cg.

Given a coset labelling function the NIDLS problem can be solved using the
following protocol:

1. A computes φ(α)−1 ·α which is in F since α and φ(α) are in the same coset.
Using that discrete log in F is easy, A computes a such that φ(α)−1 ·α = fa,
and outputs a.

2. B computes φ(β) ·β−1 which is in F since β and φ(β) are in the same coset.
Using that discrete log in F is easy, B computes b such that φ(β) ·β−1 = f b,
and outputs b.

This works because the property of φ guarantees that φ(α) = φ(β). Therefore

fa · f b = φ(α)−1 · α · φ(β) · β−1 = α · β−1 = fm,

from which it follows immediately that a+ b ≡ m mod t.

It turns out that if F is small, then a coset labelling function always exists:

Lemma 1. Let G = F ×H be groups as described above, where the order t of
F is polynomial. Then a coset labelling function for F in G always exists.

Proof. We define the desired function φ as follows: on input g, compute a list
of all elements in Cg by multiplying g by all powers of f . This is feasible since
t is polynomial. Sort the elements in lexicographical order and output the first
element. As the content of the list is the same no matter which element in the
coset we start from, this function has the desired property.
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There is also a different approach to constructing a coset labelling function
which, as we shall see, sometimes works for superpolynomial size F .

Namely, assume that for every G that Gen can produce, there exists an effi-
ciently computable and surjective homomorphism π : G 7→ G′ (for some group
G′), where ker(π) = F . This implies that for each coset of F in G, π maps
all elements of the coset to a single element in G′, and that distinct cosets are
mapped to distinct elements.

Note that π(g) is actually a unique “label” for the coset Cg, the only problem
is that it is in G′ and not in G.

To get around this, we assume that outputs from π can be “lifted” determin-
istically to G such that we land in the coset we came from. That is, we assume
there exists an efficiently computable function δ : G′ 7→ G such that for any
x ∈ G′ we have that δ(x) is in the coset of F in G that is mapped to x by π.
Put slightly differently, what we want is that π(δ(x)) = x for all x ∈ G′.

Now, observe that δ(π(g)) only depends on which coset g belongs to, since
π(g) already has this property. Therefore, the following lemma is immediate:

Lemma 2. Let G = F×H, G′ be groups as described above and π, δ be functions
as described above, with π(δ(x)) = x for all x ∈ G′. Then φ defined by φ(g) =
δ(π(g)) is a coset labelling function for F in G.

3.1 Assumptions

In this section we list the computational assumptions we need in order to prove
our constructions secure.

Definition 8 (Weak Hidden Order Assumption). We say that the weak
hidden order assumption holds in the NIDLS framework if for any PPT adver-
sary A:

Pr[A(par, g, ρ) = x and gx = 1] = negl(λ)

when par := (G,F,H, f, t, `, aux)
R← Gen(1lλ) and (g, ρ)

R← D(1lλ, par).

Notice that in the standard hidden order assumption [Tuc20], the adversary
is let free to choose any g 6= 1. We rely instead on a weaker assumption in which
g is sampled according to D.

Definition 9 (DDH Assumption). We say that the DDH assumption holds
in the NIDLS framework if for any PPT adversary A the following quantity is
negligible:

|Pr[A(par, ρ, g, gx, gy, gxy) = 1]− Pr[A(par, ρ, g, gx, gy, gz) = 1]| = negl(λ)

when par := (G,F,H, f, t, `, aux)
R← Gen(1lλ), (g, ρ)

R← D(1lλ, par), (x, y, z)
R← [`]3.
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We introduce a new variant of the DDH assumption that allows us to infer
the security of our protocols that use two generators g, C which are generated
with a trustless setup i.e., the adversary is allowed to see the random coins used
for their generation. In some settings, this assumption is equivalent to DDH but
this does not cover all our instantiations of the framework3.

Definition 10 (Decisional Cross-Group DH Assumption (DXDH)). We
say that the DXDH assumption holds in the NIDLS framework if for any PPT
adversary A:

|Pr[A(par, g, ρ0, C, ρ1, g
r, Cr) = 1]− Pr[A(par, g, ρ0, C, ρ1, C

s, Cr) = 1]| = negl(λ)

when par := (G,F,H, f, t, `, aux)
R← Gen(1lλ), (g, ρ0)

R← D(1lλ, par), (C, ρ1)
R←

D(1lλ, par), C 6= g and (r, s)
R← [`]2.

Finally, in our HSS constructions, we would like to have ElGamal-style secret
keys bounded by `sk < t, which may be significantly smaller than `. This allows
to encrypt the private key under its public counterpart without worrying about
wrap-arounds. In order for security to hold in these conditions, we rely on the
small exponent assumption defined below.

Definition 11 (Small Exponent Assumption). We say that the small-exponent
assumption with length `sk(λ) holds in the NIDLS framework if for any PPT ad-
versary A:

|Pr[A(par, `sk, g, ρ, g
x) = 1]− Pr[A(par, `sk, g, ρ, g

y) = 1]| = negl(λ)

when par := (G,F,H, f, t, `, aux)
R← Gen(1lλ), (g, ρ)

R← D(1lλ, par), x
R← [`] and

y
R← [`sk].

4 Instantiations of the Framework

In this section, we give a number of concrete instantiations of the framework we
just discussed. Some were already known, and some are new.

4.1 Paillier and Damg̊ard-Jurik

This example was already known from [OSY21] who presented a NIDLS protocol
based on Paillier encryption and independent work from [RS21] who did it from
Damg̊ard-Jurik encryption.

These instantiations are closely related and we cover them in one go as fol-
lows: we let Gen(1lλ) output an RSA modulus n = pq of bit length λ, where

3 For equivalence, it is needed that g and C are random generators of the same sub-
group and that D is invertible, i.e., that given any group element h in the output
domain, one can efficiently compute random coins that would cause D to output h.
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p′ = (p − 1)/2 and q′ = (q − 1)/2 are also prime and where gcd(n, φ(n)) = 1.
We set G = Z∗ns , for some constant natural number s ≥ 2 and it now holds that
G = F × H where F is the subgroup of order ns−1, and H is the subgroup of
order (p−1)(q−1). Discrete log in F is easy in this case (see [DJ01] for details).
This generator is not public-coin, as the prime factors of n must remain secret.

To get a coset labelling function for this example, we use Lemma 2: we set
G′ = Z∗n and π(g) = g mod n. Since n divides ns, it is clear that π is a surjective
homomorphism from G to G′. Therefore its kernel has order |G|/|G′| = ns−1.
Note that all non-trivial elements in F must have orders relatively prime to
φ(n) = |G′| and hence the homomorphism into G′ must send all these elements
to 1. It follows that F is contained in the kernel and so is in fact equal to the
kernel because |F | = ns−1. We define the function δ : G′ 7→ G by δ(x) = x, that
is, δ just returns its input, but now understood as a number modulo ns (instead
of n).

With these definitions, it is clear that π(δ(x)) = x, so by Lemma 2, φ(g) =
δ(π(g)) is a coset labelling function.

The sampling algorithm D will output a random g ∈ Z∗ns , such that the
Jacobi symbol of g modulo n is 1. Note that because |F | = ns−1 contains only
large prime factors, a random g will contain F in the subgroup it generates
except with negligible probability. Similarly, reducing modulo n, we see that
g mod n has order divisible by p′q′ except with negligible probability since p′, q′

are prime.
As for the assumptions, computing the order is trivially equivalent to fac-

toring n. The DDH assumption was introduced in [DJ03] and used there for
an “El-Gamal style” variant of Paillier encryption. In this setting, we can claim
that if you can break the DXDH assumption, you can also break DDH. This
is because g (or C) sampled as above have order ns−1p′q′ or 2ns−1p′q′ except
with negligible probability. Whether 2 divides the order cannot be efficiently
determined (by the standard quadratic residuosity assumption). Further, the
sampling algorithm is clearly invertible. All this means that, given an element
gx from a DDH challenge, we can claim it was instead sampled by D and let it
play the role of C in the DXDH setting.

Finally, the small exponent assumption is reasonable in a setting where dis-
crete log and DDH are hard, as we do assume here, as long as the domain from
which the exponent is chosen is exponentially large. Also, this type of assump-
tion has been used several times before, for instance in [BCG+17] to optimize
an HSS construction.

4.2 Joye-Libert Variants

Small order F . In this example, the generator outputs an RSA modulus n = pq
where 2` is the maximal 2-power that divides p − 1, and q − 1. It also outputs
an element f ∈ Z∗n of order 2` modulo both p and q (and so it also has order
2` modulo n). Let p′ = (p − 1)/2`, q′ = (q − 1)/2`, where we assume that p′, q′

are prime. Then we let F = 〈f〉, we let H ≤ Z∗n be the subgroup of order p′q′,
and we set G = F ×H. The group G is actually not all of Z∗n, but this is of no
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consequence in the following. Discrete log in F is easy by the Pohlig-Hellman
algorithm.

For this variant, as long as 2` is polynomial, we can use Lemma 1 to get
a coset labelling function. Doing it for larger values of 2` is an open problem.
When ` = 1, we can set f = −1 and we get a setting closely related to the
Goldwasser-Micali cryptosystem, as observed in [OSY21].

Large order F . We now construct a different variant of the Joye-Libert case
where we are able to accommodate an exponentially large order subgroup F .
Once again, the generator outputs an RSA modulus n = pq. This time, both
p − 1 and q − 1 are divisible by the product of the first ` primes q`, that is
q` =

∏`
i=1 pi where pi is the i’th prime.

We let f ∈ Z∗n be an element of order q` modulo both p and q. Let p′ =
(p − 1)/q`, q

′ = (q − 1)/q`. As before, we let F = 〈f〉, we let H ≤ Z∗n be the
subgroup of order p′q′, and we set G = F ×H.

It is not hard to see that since the i’th prime is approximately i ln i, we can
arrange for q` to be exponentially large, while each prime in the product is only
polynomial.

We now show that if all primes in the product q` are polynomial size, we can
solve the NIDLS problem in this setting, basically by using Lemma 1 for each pi
and then assembling a complete solution using the Chinese remainder theorem
(CRT).

Some notation: we have F = F1 × ... × F`, where Fi is of order pi. So it
follows from Lemma 1 that we have a coset labelling function φi for the group
Gi = Fi ×H. Also, if we let ui = q`/pi, then fi = fui is a generator of Fi. Now
observe that if α, β is an instance of the NIDLS problem in G = F × H, then
αui , βui is an instance of the NIDLS problem in Gi = Fi × H. This is simply
because α · β−1 = fm implies αui · (βui)−1 = (fui)m = fm mod pi

i . Using this
notation, the protocol works as follows:

1. For each i = 1...`, A uses φi to compute a solution ai to the NIDLS problem
in Gi. Finally, using CRT, A computes and outputs a ∈ Zt such that a mod
pi = ai for all i.

2. For each i = 1...`,B uses φi to compute a solution bi to the NIDLS problem in
Gi. Finally, using CRT, B computes and outputs b ∈ Zt such that b mod pi =
bi for all i.

This works because (a + b) mod pi = (ai + bi) mod pi by definition of a, b, and
since ai, bi solves the NIDLS problem in Gi we further have

(a+ b) mod pi = (ai + bi) mod pi = m mod pi.

Since this holds for all i, CRT implies that a+ b mod q` = m.

For this instantiation, the sampling algorithm D will choose a random r ∈ Z∗n
and output g = f · rq` mod n. Note that rq` mod n has order p′q′ except with
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negligible probability, in particular, the order is prime to q` so g has order q`p
′q′,

and hence f is in the group generated by g.
The assumptions for this instantiation can be motivated similarly to what was

done for Paillier above, as also here we rely on factoring to hide the order of the
group. For this to be reasonable, we need, of course, that q` is much smaller than
n so that enough uncertainty remains about p, q even given q`. The exception
is that in this case, D is not invertible, so we cannot claim that DDH implies
DXDH. The assumptions are also closely related to what Joye and Libert [JL13]
assumed for their cryptosystem, but one should note that our assumptions are
stronger because we need to make an element of order exactly 2` (or q`) public,
while they just needed an element of order divisible by 2`. When 2` is small,
such an element can be guessed with good probability while it is not clear how
to efficiently compute an element of order exactly 2` given only n.

4.3 Class Groups

We explain here how to instantiate our framework on top of the CL frame-
work [CL15] (see also [Tuc20] for an excellent introduction to class groups).
Basically, we take the CL framework, and combine this with the observation
that a coset-labelling function can be obtained from a surjective homomorphism
used previously in the NICE cryptosystem [PT00, CJLN09].

Let Gen(1lλ) output two primes p and q such that pq ≡ 3 (mod 4) and (p/q) =
−1. This generator is public-coin, p and q will be public. We set ∆K = −pq and
∆q = −pq3. We set G = Cl(∆q), the class group of the quadratic order O∆q of
discriminant ∆q and G′ = Cl(∆K) the class group of the maximal order O∆K .
The size of pq is chosen such that computing the class number |G′| is intractable.

Let f ∈ G be the class of the ideal q2Z + (−q +
√
∆q)/2Z then f has order

q and the discrete logarithm problem in F , generated by f , is easy.
If q has λ bits then q is prime to |G′| except with negligible probability by

the Cohen-Lenstra heuristics. Then G ' F ×H where H is a subgroup of order
|G′|.

We denote by I(O∆q , q) (resp. I(O∆K , q)) the subgroup of fractional ideals
generated by O∆q -ideals prime to q (resp. of O∆K -ideals prime to q). Then, the
map ϕq : I(O∆q , q) → I(O∆K , q), a 7→ aO∆K is an isomorphism. The reverse
map is ϕ−1q : I(O∆K , q) → I(O∆q , q), a 7→ a ∩ O∆q . Both maps are efficiently
computable knowing q. The map ϕq induces a surjective homomorphism from
G to G′. This will be the surjection π of the framework. The kernel of π is F .

We then define the function δ : G′ 7→ G by δ(x) = [ϕ−1q (a)] where a is an
ideal in the class of x prime to q (it can also be found efficiently).

We then have π(δ(x)) = x by construction, so by Lemma 2, φ(g) = δ(π(g))
is a coset labelling function.

As sampling algorithm D we use the one introduced in [CL15], and also
described in [Tuc20], section 3.1.2. It outputs g of large order such that f is
guaranteed to be in the subgroup generated by g. Very briefly, it works by
selecting a small prime r such that ∆K is a square modulo r. From this r, we
can construct an element in G′ by considering the ideal that lies “above r” and
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the class of this ideal squared. We then lift this element to G as explained above,
to get a group element h. Finally, we output g = f · ht.

With this sampling algorithm, the DDH assumption is the same that has been
used before in the CL framework, sometimes known as the DDH-CL assumption.
The DXDH assumption in this setting is not implied by DDH, since elements
sampled from different randomness do not necessarily generate the same group.
Nevertheless, we can argue that the assumption is reasonable: to break it, one
needs to decide, for given g, C if a pair of group elements is of form gr, Cr.
The natural approach to this is to use index calculus type methods to find a
relation of form ga = Cb which, for a pair of the form mentioned would imply
(gr)a = (Cr)b. However, once such an attack succeeds one would also be in a
position to find orders of elements and hence break the (much more standard)
hidden order assumption.

5 HSS Constructions

In this section, we explain how any instantiation of the framework can be used
to build a cryptosystem and a homomorphic secret-sharing scheme (HSS) for
restricted multiplication straight-line programs (RMS). Note that given the
NIDLS-ElGamal encryption and a distributed DDLOG procedure, construct-
ing an HSS follows in a more or less direct way by following the blueprint of the
HSS in [OSY21]. However, since upcoming sections build on top of the HSS we
provide the full description of the HSS anyway to make the paper self-contained.

5.1 NIDLS ElGamal

Our HSS construction is based on an ElGamal-style encryption scheme instanti-
ated over our group-theoretic framework. We refer to the construction by NIDLS
ElGamal, the cryptosystem is formally described in Fig. 2. Correctness of the
construction follows immediately as for standard ElGamal.

CPA Security. Similarly to [CL15], the security of NIDLS ElGamal is implied
by the DDH assumption, which states that random tuples (g, gx, gy, gxy) are
indistinguishable from (g, gx, gy, gz). Since D outputs elements g for which f ∈
〈g〉, we can use gz to hide fx.

Generating encryptions of the secret key. Note that in addition to the stan-
dard algorithms (Gen,Enc,Dec), we have included an additional algorithm SkEnc
which encrypts the message “in the wrong place”. It turns out that this results
in a valid encryption of the value s ·x mod t i.e., an encryption of the secret key
s times the input value x. In particular

c1 · c−s0 = hr · (gr · f−x)−s = (grs · g−rs) · fsx

This will be useful in our HSS construction.
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ElGamal Cryptosystem

EG.Gen(1λ):

1. Sample par := (G,F,H, f, t, `, aux)
R← Gen(1lλ)

2. Sample a random (g, ρ)
R← D(1lλ, par)

3. Sample a random s
R← [`], and let h = gs

4. Output pk = (par, g, ρ, h) and sk = s.

EG.Enc(pk, x):

1. Sample a random r
R← [`]

2. Output ct = (gr, hr · fx)

EG.Dec(sk, ct = (c0, c1)):

1. Output x = DLogf (c1 · c−s0 )

EG.SkEnc(pk, x):

1. Sample a random r
R← [`]

2. Output ct = (gr · f−x, hr)

Fig. 2. A description of the ElGamal cryptosystem in the NIDLS framework.

We prove that encryptions performed using EG.SkEnc(pk, x) preserve the
privacy of x. Observe that we do not need to rely on any circular security as-
sumption.

Lemma 3. If the DDH assumption holds in the NIDLS framework, no PPT
adversary A can win the game Gs-EGA (λ) with non-negligible advantage in the
security parameter.

Proof. Let A be a PPT adversary. Consider the following hybrids.

Hybrid 0. The initial stage corresponds to the game Gs-EGA (λ). In other
words, after receiving the public key pk and selecting a value x ∈ Zt, the adver-

sary is provided with (gr · f−b·x, hr) with a random r
R← [`].

Hybrid 1. This hybrid is identical to the previous one except for the fact
that we substitute gr with gu for a uniformly sampled u ∈ [`]. By the DDH
assumption, this hybrid is indistinguishable from Hybrid 2. Since f ∈ 〈g〉 (we
recall that g is sampled using D) and the distribution of gr · f−b·x is statistically
close to the uniform distribution over 〈g〉, no adversary can distinguish between
the case b = 0 and the case b = 1. As a consequence, the advantage of A in
Gs-EGA (λ) must be negligible.
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The Game Gs-EGA (λ)

1. b
R← {0, 1}

2. (pk, s)
R← EG.Gen(1lλ)

3. (x, state)
R← A(1lλ, pk)

4. The adversary wins if b = A
(
state,EG.SkEnc(pk, b · x)

)
.

Fig. 3. The s-ElGamal game

5.2 Public-Key HSS

We now present a homomorphic secret-sharing scheme (HSS) for RMS programs
based on the NIDLS framework. The main advantage of our NIDLS-based HSS
compared to the Paillier-based HSS of [OSY21] is that we remove any need for
trusted setups when instantiating the NIDLS over class groups, while previous
constructions had to rely on a trusted dealer for the generation of an RSA
modulus.

RMS programs. Restricted multiplications straight-line (RMS) programs are
arithmetic circuits over Z that never compute multiplications between two in-
termediate value of the computation: at least one of the two factors must be an
input. Intermediate values of the computation are often referred to as memory
values. This class includes also branching programs, which likewise contains NC1.

Definition 12 (RMS Programs). An RMS program consists of a bound B ∈
N, a modulo nout ∈ N and a polynomial-sized circuit in which the only gate types
allowed are the following.

– ConvertInput(Ix) → Mx. Load the value of the input wire Ix to the memory
wire Mx.

– Add(Mx,My) → Mz. Add the values of the memory wires Mx and My and
assign the result to the memory wire Mz.

– Mult(Ix,My) → Mz. Multiply the value of the input wire Ix by the value of
the memory wire My. Assign the result to the memory wire Mz.

– Output(Mz)→ z. Output the value of the memory wire Mz reducing it modulo
nout.

The circuit accepts only integral inputs. Whenever the absolute value |x| of any
wire exceeds the bound B, the output of the execution is ⊥.

The public-key HSS scheme. We are now ready to present our construction,
which is formally described in Fig. 4. We discuss the main ideas.

Our HSS scheme allows two parties to non-interactively apply an RMS pro-
gram C on secret-shared inputs, obtaining additively secret-shared outputs. The
scheme relies on a setup procedure4 that provides the parties with a PRF key

4 Following the blueprint of [OSY21], it is possible to substitute the setup with a
one-round protocol.
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k, a NIDLS ElGamal public key pk, and a subtractive secret-sharing over the
integers of the private counterpart s = s1 − s0. We assume that the length lensk
of the private key is sufficiently small, so that s < t. If this condition is not
satisfied, we need to proceed as in [OSY21], splitting the private key into small
blocks and providing the parties with an encryption of each of them.

Input wires and memory wires. During the evaluation of the circuit C, each input
wire Ix is associated with two NIDLS ElGamal ciphertexts: an encryption of the
value of the wire x and an encryption of the product between x and the ElGamal
secret key s. Such ciphertexts are produced and broadcast by the party providing
the input. Remember that one does not need to know s in order to encrypt x · s.
Indeed, the algorithm SkEnc described in Section 5.1 can be used instead. Each
memory wire Mx is instead associated with two subtractive secret-sharings over
the integers: a secret-sharing of the value of the wire x and a secret-sharing of
x′ := x · s.

Linear operations. Performing additions between memory values is straightfor-
ward due to the linearity of subtractive secret-sharing, i.e. to add Mx and My, it
is sufficient to compute [z]← [x]+[y] and [z′]← [x′]+[y′] = [x·s]+[y ·s]. Observe
that additions allow us to model also multiplications by public constants in Z.

Multiplications between input wires and memory wires. Multiplications between
input wires and memory wires require more interesting techniques based on
DDLOG. Let ctx = (c0, c1) be the ElGamal encryption of x, the value of the
input wire Ix. Moreover, let [y] and [y′ = y · s] be the subtractive secret-sharings
associated with the memory wire My. In particular, the parties P0 and P1 own
integers y0, y

′
0 and y1, y

′
1 such that y1 = y0 + y and y′1 = y′0 + y · s. Now, observe

that cy01 · c
−y′0
0 and cy11 · c

−y′1
0 are a divisive secret-sharing of fxy. Indeed,

cy11 · c
−y′1
0 = cy0+y1 · c−(y

′
0+y·s)

0 = (c1 · c−s0 )y · cy01 · c
−y′0
0 = fxy · cy01 · c

−y′0
0 .

By applying DDLOG on the respective divisive shares, the parties are therefore
able to obtain a secret-sharing of the product x · y over Zt (we recall that t :=
ord(f)). By repeating the procedure for the other ciphertext associated with the
input wire Ix, namely the encryption of x · s, the parties can non-interactively
obtain also a secret-sharing of x · y · s. Observe that the additive secret-sharings
over Zt can be easily converted into subtractive ones by simply changing the
signs of the shares of P0. In order to be sure that the shares are random over
Zt, we rerandomise them using the PRF key k. As a consequence, as long as
|x · y · s| � t, with overwhelming probability, the difference of the shares does
not wrap around t, so the parties actually obtain a subtractive secret-sharing
over Z.

Input conversions and outputs. It remains to explain how to perform the input
conversions and how to retrieve the outputs. Both operations are now rather
straightforward. In order to convert an input to a memory element, it is indeed
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HSS Scheme

Setup(1lλ):

1. Let par := (G,F,H, f, t, `, aux)
R← Gen(1lλ) and `sk be the parameter for

the small-exponent assumption.

2. (g, ρ)
R← D(1lλ, par)

3. s0, s1
R← [`sk]

4. pk← gs1 · g−s0
5. k

R← {0, 1}λ
6. Output

(
par, g, ρ, `sk, pk, k, (s0, s1)

)
.

Input(pk, x):

1. ctx
R← EG.Enc(pk, x)

2. ctxs
R← EG.SkEnc(pk, x)

3. Output Ix ← (ctx, ctxs).

Eval
(
i, si, (I

1, I2, . . . , In), P
)
:

Party Pi evaluates the RMS program P gate by gate as follows.
– Mx ← ConvertInput(Ix):

Compute Mx ← Mult
(
Ix,M1 := (i, si)

)
.

– Mz ← Add(Mx,My):
Compute zi ← xi + yi and z′i ← x′i + y′i and set Mz ← (zi, z

′
i).

– Mz ← Mult(Ix,My):
Let ctx = (c0, c1) and ctxs = (d0, d1). Let id be the label of the gate.

1. zi ← (−1)1−i · DDLog
(
cyi1 · c

−y′i
0

)
+ Fk(id, 0) mod t

2. z′i ← (−1)1−i · DDLog
(
dyi1 · d

−y′i
0

)
+ Fk(id, 1) mod t

3. Mz ← (zi, z
′
i)

– Output(Mz):
1. Output (−1)1−i · zi mod nout

Fig. 4. The HSS scheme for RMS programs based on the NIDLS framework.

sufficient to multiply it by a memory value containing 1. The latter corresponds
to a subtractive secret-sharing of 1, e.g. y1 = 1 and y0 = 0 and a subtractive
secret-sharing of s, which was provided to the parties by the initial setup. Out-
putting the value of a memory wire Mz is even simpler, the parties just broadcast
their share of z reducing it modulo nout. By subtracting the two messages modulo
nout, the players can obtain the final result of the computation.

On the bound on the values of the wires. The correctness of the HSS scheme
described above relies on the assumption that |x · y · s| � t for every multi-
plication. If this condition is not satisfied, there is a non-negligible probability
that the secret-sharing over Zt obtained as result cannot be converted into an
integer secret-sharing of the same value. Observe, anyway, that denoting by B
the bound of the RMS circuit, |x · y · s| ≤ B · 2lensk , so, in order to circumvent
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the problem, we can choose the parameters of the NIDLS framework so that
B · 2lensk · 2λ < t.

Theorem 1. If the DDH assumption and the small exponent assumption hold
in the NIDLS framework and F is a secure PRF outputting values in Zt, the
construction in Fig. 4 is a correct and secure HSS scheme for RMS circuits with
bound B < t/2lensk+λ. The ring where the computation takes place is R = Znout .
Assuming nout < B, the input space is I = R.

Proof. It is straightforward to see that our construction follows the syntax of
HSS schemes. We start by proving that it also satisfied correctness.

Correctness. Let P be the RMS circuit we are evaluating and let x1, x2, . . . , xn ∈
R be the inputs. We assume that the bound B of the program is smaller than
t/2lensk+λ.

We introduce some notation: for every memory wire M in P , we denote
by val(M) the value that M assumes in P (x1, x2, . . . , xn) where additions and
multiplications are performed over the integers (i.e. we perform no modulo nout
reductions). We prove that during the HSS evaluation, every memory wire M
is associated with a subtractive secret-sharing over the integers of val(M) and a
subtractive secret-sharing over the integers of val(M) · s. Once we have proven
that, correctness is straightforward. Indeed, since modulo reductions commute
with integer additions and multiplications, by reducing the shares of an output
wire modulo nout and flipping the sign of P0’s value, we obtain an additive
secret-sharing of the result over Znout .

Initially, the only memory wire with an assigned value is the one used for
input conversions. Each party Pi associates it with a pair (yi, y

′
i) = (i, si), which

indeed corresponds to subtractive secret-sharing of 1 and s (the setup outputs
s0 and s1 such that s1 − s0 = s).

The correctness of additions is straightforward: if Mx is associated with [x]
and [s ·x] and My is associated with [y] and [s ·y], by the linearity of subtractive
secret-sharing over the integers, the sum of the two wires is associated with
[x] + [y] = [x+ y] and [s · x] + [s · y] = [s · (x+ y)].

It remains to prove the correctness of multiplications. Let (c0, c1) = (gr, fx ·
pkr) be an ElGamal ciphertext encrypting x. Let My be a memory wire and
assume that P0 and P1 own pairs (y0, y

′
0) and (y1, y

′
1) respectively where y1 =

y0 + y and y′1 = y′0 + y · s. As we pointed out above, we have that

cy11 · c
−y′1
0 = cy0+y1 · c−(y

′
0+y·s)

0 = (c1 · c−s0 )y · cy01 · c
−y′0
0 = fxy · cy01 · c

−y′0
0 .

So, by applying DDLog on cy11 · c
−y′1
0 and cy01 · c

−y′0
0 , the parties obtain an additive

secret-sharing of x · y over Zt (see Section 3). Since the sign of P0’s DDLOG
output is flipped, it is immediate to see that z1 − z0 ≡ x · y mod t. By repeating
the argument with an encryption of x · s, we conclude, in a similar way, that
z′1 − z′0 ≡ x · y · s mod t. Now, by the PRF security, substituting Fk(id, 0) and
Fk(id, 1) with uniformly random values in Zt does not affect the correctness of
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the HSS scheme (if that was the case, we could break the PRF security). In such
hybrid, the outputs of the multiplication are truly random 2-party subtractive
secret-sharing of x ·y and x ·y ·s over Zt. The probability that z1−z0 and z′1−z′0
wrap around t is therefore negligible. Indeed, since |x · y| ≤ |x · y · s| ≤ B · 2lensk ,
a wrap-around can occur only if

z0, z
′
0 ∈ [−t/2,−t/2 +B · 2lensk ] ∪ [t/2−B · 2lensk , t/2].

The probability of these events is smaller than 2B · 2lensk/t < 2 · 2−λ, so it is
negligible.

Security. Let A be a PPT adversary. We prove security through a sequence of
indistinguishable hybrids.

Hybrid 0. The initial stage corresponds to the HSS security game. So, the
adversary is initially provided with the ElGamal public key, a share si of the
private key and a PRF key. After specifying two inputs x0 and x1, the adversary
obtains the ElGamal encryptions of xb and xb · s for some b ∈ {0, 1}.

Hybrid 1. This hybrid is identical to the previous one except for s1−i that is
now uniformly sampled in [`] instead of [`sk]. By the small exponent assumption,
this hybrid is indistinguishable from Hybrid 0.

Hybrid 2. In this hybrid, we substitute pk with a gs for s uniformly sampled
in [`]. This hybrid is indistinguishable from Hybrid 1, due to the statistical
closeness between the distribution of pk in the two cases.

Hybrid 3. In this hybrid, we substitute the encryption of xb with an encryp-
tion of 0. By the IND-CPA security of NIDLS ElGamal, Hybrid 2 and Hybrid 3
are indistinguishable.

Hybrid 4. In this hybrid, we substitute the encryption of xb · s with an
encryption of 0. By Lemma 3, this hybrid is indistinguishable from Hybrid 3.

Observe that the view of the adversary is now independent of b, so the ad-
vantage of A is 0. As a consequence, the advantage of A in the HSS security
game must be negligible.

5.3 Implementing the Setup Using One Round.

The HSS scheme described in Fig. 4 relies on a setup producing a NIDLS ElGa-
mal public key and a subtractive secret-sharing over the integers of the private
counterpart. One of the main goals of this work is to improve upon the results of
[OSY21] by removing the need for trusted dealers. In this section, we therefore
explain how the parties can setup the HSS material in one round. The protocol,
which is formally described in Fig. 5, relies on a CRS providing the parties with
the parameters of the NIDLS framework and a PRF key k. When the framework
is instantiated over class groups, the generation of the CRS does not need any
trusted dealer. Indeed, the parties just need to produce public, random coins
and input them into the algorithm producing the CRS. In the random oracle
model, this procedure can be performed non-interactively. In [OSY21], the HSS
scheme was based on Paillier. Since the associated group is described by an RSA
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Function FHSS-Setup

1. Compute
(
par, g, ρ, `sk, pk, k, (s0, s1)

) R← Setup(1lλ)
2. Output (par, g, ρ, `sk, pk, si, k) to every party Pi.

Protocol ΠHSS-Setup

CRS:

1. Let par := (G,F,H, f, t, `, aux)
R← Gen(1lλ) and `sk be the parameter for the

small-exponent assumption.

2. (g, ρ)
R← D(1lλ, par)

3. k
R← {0, 1}λ

4. Output (par, `sk, g, ρ, k)

Procedure:

1. Every party Pi samples si
R← [`sk]

2. Every party Pi sends pki ← gsi to P1−i
3. Every party Pi outputs pk← pk1/pk0, si and k.

Fig. 5. The HSS setup functionality and a one-round protocol implementing it.

modulo N where ϕ(N) needs to remain secret, designing an efficient setup for
the HSS scheme without relying on trusted dealers is a challenging task in that
case.

Our setup protocol is very simple. Each party just generates a NIDLS El-
Gamal key pair, publishing the public counterpart. The parties then output the
quotient between the two public keys and their respective secret key.

Theorem 2. The protocol ΠHSS-Setup implements the functionality FHSS-Setup

against a semi-honest adversary with perfect security.

Proof. Suppose that Pi is corrupted. The simulator receives (par, g, ρ, `sk, pk, si, k)
from the functionality. It can then simulate the CRS by providing the adversary
with (par, `sk, g, ρ, k). The view of Pi is perfectly simulated by sending si and
pk · gsi if i = 0 or gsi/pk if i = 1. Observe that the output of P1−i is consistent
with the elements sent to the adversary.

6 Public-Key PCFs and One-Round VOLE Protocol
without Trusted Setup

In [OSY21], the authors designed a one-round VOLE protocol based on the
Paillier cryptosystem and the NIDLS problem on the underlying group. A VOLE
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Function FVOLE

Initialisation: The functionality waits for a value t ∈ N from the adversary.
Evaluation: On input x ∈ Zt from P0 and a ∈ Zmt from P1, the functionality
sends m to the adversary.

– If both parties are honest, FVOLE samples y0
R← Zmt and sets y1 ← a · x−y0.

Then, it outputs yi to Pi for every i ∈ {0, 1}.
– If Pi is corrupt, FVOLE waits for yi ∈ Zmt from the adversary and sets y1−i ←

a · x− yi. Then, it outputs y1−i to P1−i.

Function FNIKE

If both parties are honest, sample k
R← {0, 1}λ and output it to all the parties.

If one party is corrupted, wait for k ∈ {0, 1}λ from the adversary and output it
to the other party.

Fig. 6. The NIKE and vector-OLE functionalities

protocol involves two parties, the input of the first one is a element in a ring
R, the input of the second party is a R-vector a. The output of the protocol
consists of an additive secret-sharing of the product x · a.

We now present a version of such protocol in the NIDLS framework (see
Fig. 7). By generalising the techniques to a more abstract setting, we are able to
leverage the properties of the various instantiations. In the case of class groups,
that allows us to not rely on any trusted setup. In order to achieve this goal,
we had to slightly modify the CRS used by the protocol. In [OSY21], the latter
consisted of a pair of group elements (g, C) where C = gr for some unknown r.
In order to avoid trusted setups, we now need to provide the parties with the
randomness used for the generation of the CRS. Unfortunately, in class groups,
such randomness would leak the value of r to the adversary, compromising se-
curity. In order to circumvent the problem, in this work, g and C are sampled
independently using D(1lλ), so with high probability C 6∈ 〈g〉. We prove security
by relying on the DXDH assumption.

The construction makes use of a non-interactive key exchange functionality
FNIKE (see Fig. 6). The latter provides the parties with a random PRF key k ∈
{0, 1}λ. When one of the parties is corrupt, the functionality lets the adversary
choose k, forwarding it to the honest party. It is possible to implement FNIKE in
one round using NIKE constructions such as Diffie-Hellman.

Correctness. To understand why the protocol works, observe that

Dri1 · Eai = gr0·r
i
1 · fx·ai · Cr0·ai = fx·ai ·Ar0i .
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Protocol ΠVOLE

Inputs: The first party P0 has input x ∈ Zt. The other party P1 has input a ∈ Zmt
for some m ∈ N.
Setup Setup(1lλ):

1. par := (G,F,H, f, t, `, aux)
R← Gen(1lλ)

2. (g, ρ0)
R← D(1lλ, par)

3. (C, ρ1)
R← D(1lλ, par)

4. If g = C, go to step 3.
5. Output (par, g, ρ0, C, ρ1)

Procedure:

1. The parties call FNIKE to obtain a key k ∈ {0, 1}λ.

2. ∀i ∈ [m] : P1 sends Ai ← gr
i
1 · Cai where ri1

R← [`].

3. P0 sends (D,E)← (gr0 , fx · Cr0) where r0
R← [`].

4. P1 outputs y1 where y1[i]← DDLogpar(D
ri1 · Eai) + Fk(i) for every i ∈ [m].

5. P0 outputs y0 where y0[i]← DDLogpar(A
r0
i )− Fk(i)

Fig. 7. A one-round VOLE protocol based on the NIDLS framework.

In other words, for every index i, the elements Dri1 · Eai and A−r0i are a multi-
plicative secret-sharing of fx·ai . Using DDLog for every i ∈ [m], the parties are
therefore able to obtain an additive secret-sharing of x ·a without any additional
interaction.

Security. At first glance, it might seem that the security of the protocol follows
from the fact that the Ai’s are Pedersen commitments with respect to (g, C).
However, note that the element C is not guaranteed to be in the cyclic group
generated by g. As a consequence, Ai does not hide the input ai with information-
theoretic security and we need instead to rely on a computational assumption.
The same happens also in step 3, where C plays the role of the public key in an
NIDLS ElGamal encryption. However, again, C is not guaranteed to belong to
〈g〉. Therefore, we need to argue for security in a different way. To solve both
issues, we use the DXDH assumption (see Definition 10).

Observe that under the DXDH assumption, gr looks like Cs even when the
randomness used for the generation of the CRS is known. As a consequence,
no adversary can distinguish Ai = gr

i
1 · Cai from Cs · Cai . The latter contains

no information about ai. The privacy of x is instead preserved as (D,E) =
(gr0 , fx · Cr0) is indistinguishable, under our assumption, from (Cs, fx · Cr).
Since the distribution D outputs an element C such that f ∈ 〈C〉, the pair
(Cs, fx · Cr) hides all the information about x. The proof of the next theorem
is omitted, as it easily follows from the arguments sketched above.
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Theorem 3. If the DXDH assumption holds and F is a secure PRF outputting
pseudorandom elements in Zt, the protocol ΠVOLE UC implements the function-
ality FVOLE against a semi-honest adversary in the FNIKE-hybrid model.

6.1 Public-Key PCFs without Trusted Setup.

In [OSY21], Orlandi et al. present PCFs for vector-OLE and OT based on Paillier
and the Goldwasser-Micali cryptosystem respectively (see Fig. 8 and Fig. 9).
The interesting property of both constructions is that, thanks to the one-round
VOLE protocol of [OSY21], the PCF keys can be set up using only one round
of interaction and low-communication in the output size. For this reason, the
authors introduced the notion of public-key PCF to refer to them.

On the downside, as we mentioned in the previous subsection, the one-round
VOLE protocol of [OSY21] needs a trusted setup. The issue is immediately
inherited by the public-key PCFs. Now, by plugging our new VOLE protocol,
we obtain public-key PCFs with no need for trusted setups. We describe the
resulting protocols in the following paragraphs.

Paillier, Goldwasser-Micali and the NIDLS operation. In both Paillier and the
Goldwasser-Micali cryptosystem, the decryption is performed by raising the ci-
phertext to the private key and computing an (easy) discrete logarithm, i.e.
DLogf (ctd) where f = 1 + N for Paillier (t := ord(f) = N) and f = −1 for
Goldwasser-Micali (t := ord(f) = 2).

Now, suppose the parties have a subtractive secret-sharing of d · x over Z
where x is a random element known to P1 and the secret key d is known to
P0. We can assume that the players obtain this information as part of their
PCF keys. Given a random ciphertext ct = Enc(pk,m), the players can locally
obtain a divisive secret-sharing of fm·x by simply raising the ciphertext ct to
their respective shares of d · x. Specifically, if y1 − y0 = d · x, we have that

cty1 = cty0+d·x = cty0 · fm·x.

This divisive secret-sharing can be non-interactively converted into additive
shares of m · x over Zt using the NIDLS techniques (see Section 3). Observe
that P0 also knows m as the knowledge of the private key allows it to decrypt
ct.

PCFs for Vector-OLE and OT. Thanks to the technique described above, ob-
taining a PCF for vector-OLE becomes easy. Indeed, the parties can just sample
a new ciphertext for each entry of the vector and locally apply the operations
described above. In this way, P0 will obtain a vector a and an additive share of
a · x. The other player will obtain the other share. In order to obtain a random-
looking secret-sharing, the parties rerandomise the shares using a PRF.

The PCF for OT uses similar techniques, repeating the operations λ times for
each PCF sample. Specifically, let x be the random λ-bit string belonging to the
OT sender. At the beginning, the parties are provided with a subtractive secret-
sharing of d ·xi for every i ∈ [λ] as part of their PCF key. In order to generate an

29



OT tuple, the players sample a random Goldwasser-Micali ciphertext and apply
the techniques described in the previous paragraph using the secret-sharing of
d · xi for every i ∈ [λ]. In this way, P0 obtains a random bit b and a binary
share of b · x. The other player obtains the other share. Once again, the parties
rerandomise the secret-sharing using a PRF.

Setting up the PCF Keys using One Round. The keys of the PCFs described
above consist of an RSA modulo N , a PRF key and a subtractive secret-sharing
of d ·x where d is the private key corresponding to N and is known to P0, and x
is a random element known to P1. For the vector-OLE PCF, x is uniform over
ZN , in the case of the OT PCF, x is a binary vector in {0, 1}λ. While we can
use FNIKE to sample the PRF key, we can allow P0 to generate the RSA modulo
N and the corresponding private key, whereas P1 can sample x. The parties can
then obtain the subtractive secret-sharing y1 − y0 = d · x by inputting d and x
into the one-round vector-OLE protocol ΠVOLE. The RSA modulo N is finally
sent by P0 to P1 in the only round of interaction, in parallel with the execution
of ΠVOLE.

Observe that in the vector-OLE PCF, P1 does not know the exact set from
which x needs to be sampled. Indeed, the party will learn N only after receiving
the message from P0. Since x must be determined before the reception of this
message, P1 samples x over a set 2λ times larger than an upper bound on N .
We denote such upper bound by 2lenN .

We also notice that the secret-sharings output by ΠVOLE are over Zt, while
what we desire is a subtractive secret-sharing over Z. We fix the problem by
choosing t := ord(f) such that t > 2λ · 22lenN · 2λ+lenN in the vector-OLE case,
and t > 2λ · 2lenN for the OT PCF. Since in both cases, t is 2λ times bigger than
|d ·x|, the probability that the difference y1−y0 wraps around t is negligible after
rerandomisation. Hence, ΠVOLE actually provides the parties with a subtractive
secret-sharing over the integers.

On the need for the hardness of factoring. The security of both our public-key
PCFs still relies on the hardness of factoring. This requirement is inherited from
the original PCFs of [OSY21]. At first, it may seem possible to generalise the two
constructions to the NIDLS framework, potentially obtaining public-key PCFs
based on class groups only. Unfortunately, this turns out to be false.

Indeed, in the public-key PCFs for VOLE and OT, we need to non-interactively
sample random ciphertexts without leaking any information about the plaintext
to P1. For Paillier, this is not a problem as any element in Z×N2 is a valid encryp-
tion. For Goldwasser-Micali instead, it is sufficient to sample a random element
in ZN with Jacobi symbol 1. Now, if we try to move the constructions to class
groups, we need to use the ElGamal cryptosystem. By modifying the PCF keys
and using techniques as in the HSS scheme (see Section 5), it is still possible for
the parties to non-interactively obtain an additive secret-sharing of a · x given
the encryption of a random a. The issue is that the only known way to sample
such encryption is to directly encrypt a (not every pair of elements in the class
group is an ElGamal ciphertext). That would leak the value of a to P1.
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PK-PCF for VOLE

Let F and F′ be PRFs outputting pseudorandom elements in ZN and Zt respec-
tively. Let lenN denote the length of the Paillier modulo and let t, the order of
the group used by FVOLE, be greater than 2λ · 22lenN · 2λ+lenN .

Crs: Output k
R← {0, 1}λ.

Generation Protocol:

1. The parties call FNIKE to obtain a key K ∈ {0, 1}λ.

2. P0 computes (N, d)
R← Paillier.Gen(1lλ)a.

3. P1 samples x
R← [2λ+lenN ]

4. The parties call FVOLE with inputs d (from P0) and x (from P1). As a result,
they receive v0 and v1 such that v1 + v0 = x · d mod t.

5. P0 sends N to P1.
6. P0 outputs k0 ← (N,K, y0 := −v0 + F′k(0), d).
7. P1 outputs k1 ← (N,K, y1 := v1 + F′k(0), x).

Evaluation:
For a random nonce ct ∈ Z×

N2 :

1. P0 computes a← Paillier.Dec(d, ct).
2. Each Pi computes zi ← (−1)1−i · DDLogPaillier(ctyi) + FK(ct).
3. P0 outputs (a, z0), P1 outputs (x, z1).

a The secret key d satisfies d ≡ 0 mod ϕ(N) and d ≡ 1 mod N .

Fig. 8. Public-key PCF for vector-OLE

7 Actively Secure Public-Key PCFs

In addition to requiring a trusted setup, the public key PCFs in [OSY21] achieve
security in the semi-honest setting only. In this section, we explain how to up-
grade the constructions described in Section 6 to active security, while preserv-
ing, at the same time, their round-complexity properties, namely that the parties
need to speak only once. When the NIDLS framework is instantiated over class
groups, the constructions do not need any trusted setup.

The particular interaction pattern limits the techniques we can rely on. For
instance, we cannot perform checks that verify the correctness of the outputs,
as that would require an additional round of interaction after the outputs are
derived. For this reason, we develop NIZKs for our framework which might be of
independent interest. We start presenting some building blocks (commitments
in Section 7.1 and ZK proofs in Section 7.2). Then, we describe actively secure
public-key PCFs for vector-OLE (Section 7.3) and OT (Section 7.4).
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PK-PCF for OT

Let F and F′ be PRFs outputting pseudorandom elements in {0, 1} and Zλt re-
spectively. Let GM be the Goldwasser-Micali cryptosystem. Assume that t, the
order of the group used by FVOLE, is greater than 2λ · 2lenN .

Crs: Output k
R← {0, 1}λ.

Generation Protocol:

1. The parties call FNIKE to obtain a key K ∈ {0, 1}λ.

2. P0 computes (N, d)
R← GM.Gen(1lλ).

3. P1 samples x
R← {0, 1}λ

4. The parties call FVOLE with inputs d (from P0) and x (from P1). As a result,
they receive v0 and v1 such that v1 + v0 = x · d mod t.

5. P1 sends N to P0.
6. P0 outputs k0 ← (N,K,y0 := −v0 + F′k(0), d).
7. P1 outputs k1 ← (N,K,y1 := v1 + F′k(0),x).

Evaluation:
For a random nonce ct ∈ JN a:

1. P0 computes b← GM.Dec(d, ct).
2. For each i ∈ [λ], each Pj computes zj,i ← DDLogGM(ctyj,i)⊕ FK(ct, i).
3. P0 outputs (b,z0), P1 outputs (x,z1).

a JN denotes the set of elements in ZN having Jacobi symbol equal to 1.

Fig. 9. Public-key PCF for oblivious transfer

7.1 An Integer Commitment Scheme in the NIDLS Framework

Our NIZKs follow a commit-and-prove approach. Notice that in order to achieve
active security, party P0 has to prove that its input to the one-round vector-OLE
protocol is the private key associated with the RSA modulo N . For this reason,
we need to prove particular number-theoretic relations for which commitment
schemes based on modular rings such as Zt are not really suited.

Recall that, in the NIDLS framework, determining the order of the group
from its parameters is assumed to be hard. This property crucially allows us
to design integer commitment schemes. This fact was already noticed for class
groups by Couteau et al. [CKLR21]. In this work, we adopt a generalisation of
their construction to the NIDLS framework (see Fig. 10), basing however its
security on the DXDH assumption. As we discuss at the end of this section, de-
spite the claims in [CKLR21], their construction is not compatible with trustless
setup.
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Integer commitment scheme

Crs:

1. par′ := (G,F,H, f, t, `, aux)
R← Gen(1lλ)

2. (g, ρ0)
R← D(1lλ, par)

3. (C, ρ1)
R← D(1lλ, par)

4. If C = g, go to step 3.
5. Output par := (par′, g, ρ0, C, ρ1)

Commitment: Commit(par, x)

1. r
R← [`]

2. Output the commitment X ← Cx · gr and the opening information r.

Verification: Verify(par, X, x, r)

1. If X = Cx · gr output 1 otherwise output 0.

Fig. 10. Integer commitment scheme in the NIDLS framework.

Theorem 4. If the DXDH assumption and the weak hidden order assumption
hold, the construction in Fig. 10 is a hiding and binding integer commitment
scheme. Moreover, the scheme is linearly homomorphic.

Proof. It is straightforward to see that the construction is correct and linearly
homomorphic.

Binding. The proof for binding is made interesting by the fact that C is not
(necessarily) an element in the group generated by g. Suppose that we have an
adversary that breaks binding e.g., after being provided with the parameters,
the adversary returns (x, r) and (y, s) with x 6= y such that Cxgr = Cygs, and
therefore Cx−y = gs−r. Let α := x − y 6= 0 and β = s − r. Since the order of
the group is unknown we cannot invert these elements. Instead, we resort to the
DXDH assumption, which implies the following claim:

Claim. Assume there exists an adversary A that, on input (g, C), returns (α, β)

with Cα = gβ and α 6= 0. Then, with overwhelming probability over u, v
R← [`],

it holds that:

(gu)α = (gv)β (1)

Proof (of claim). The reduction is given a DXDH tuple (g, C, gu, T ) where T is

either Cu or gv for random u, v
R← [`], and feeds (g, C) to A. Now the reduction

concludes that T = Cu when

(T )α = (gv)β (2)
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or T = gv otherwise. Note that if T = Cu then Equation 2 is trivially true. Thus
if (gu)α 6= (gv)β the reduction correctly distinguished between DXDH tuple and
non-DXDH tuples.

We now go back to the proof of the binding property and argue that un-
der the weak hidden order assumption, no adversary can output α, β such
that Equation 1 holds for random (u, v). We first rewrite (gu)α = (gv)β as
u · α ≡ v · β mod ord(g). We argue the following:

Claim. Let α, β be such that

u · α ≡ v · β mod ord(g)

with overwhelming probability for uniform u, v
R← [`]. Then ord(g)|α.

Proof (of claim). For the sake of contradiction assume that this is not the case,
e.g., ord(g) - α. Then there is a non-negligible probability that u · α 6≡ v ·
β mod ord(g). Indeed, let p be a prime that divides ord(g) but not α, it must
hold that u ≡ v · β · α−1 mod p. This happens with probability 1/p < 1/2, so it
must be that α is a multiple of ord(g).

We have reached a contradiction. Indeed, under the weak hidden order as-
sumption, no adversary can output α such that gα = 1.

Hiding. We show that no adversary can distinguish a commitment to x0 from
a commitment to x1. Indeed by the DXDH assumption, (g, C, gr, Cr) with r
uniform in [`], is indistinguishable from (g, C,Cs, Cr) with s again uniform in
[`]. Thus Cxb ·gr is indistinguishable from Cxb ·Cs. From the way ` is chosen, Cs

is statistically close to the uniform distribution over 〈C〉. So, as commitments
to both x0, x1 are indistinguishable from random elements in 〈C〉, no adversary
can distinguish between a commitment to x0 and a commitment to x1.

In [CKLR21], the authors proved the security of this commitment scheme in
the class group setting by relying on the subgroup indistinguishability assump-
tion. The latter states that no PPT adversary can distinguish between a pair of
random elements (g, C) both sampled according to D and a pair (g, gs) where s
is uniform over [`]. Despite what the authors claim, this assumption is not suffi-
cient to prove security when we do not rely on a trusted dealer for the generation
of the CRS. Indeed, in order to remove trusted setups, we need to provide the
parties with the random coins used for the generation of the CRS. That pre-
vents us from substituting C with gs in the security proofs. The reason is that
the distribution D is, surprisingly, not invertible over class groups. Specifically,
given C ∈ Supp(D), it is hard to find a bit string r such that D(1lλ; r) = C.

7.2 Zero-Knowledge Proofs in the NIDLS Framework

We describe how to build useful ZK-proofs in the NIDLS framework such as:
range proofs, multiplication proofs, proofs of knowledge of openings and proofs
of commitment to the plaintext. In particular, we build sigma protocols that use
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the NIDLS framework in a black-box way, independently of its instantiation.
Thus, our proofs do not need to express operations in the NIDLS framework as
circuits. Since these tools are all based on fairly standard techniques, we will
only give a brief overview and direct the reader to Appendix A for more details.

Proof of knowledge of openings. Πcom allows to convince a verifier holding a
commitment X that the prover knows integers x and r such that X = Cx · gr.

Compared to standard Σ-protocols for proving knowledge of a (Pedersen)
commitment in a prime order group, we need two major changes: First, all the
computation between scalars is done over the integers (since the order of the
group is unknown) and therefore, the random strings chosen in the first round
must be larger than an upper bound on the witness (x, r). Second, we can only
use binary challenges: this is due to the fact that, again, the order of the group
is unknown and therefore, we cannot invert the challenge when extracting the
witness in the special soundness property. Thus, we need to repeat the proofs
λ times. Note that for most of our instantiations there usually are ways around
this issue, mostly relying on instantiation-dependent assumptions (such as the
strong root problem and the low order assumption for class groups). However,
those do not carry over to our general framework.

Multiplication proofs. Πmult allows to convince a verifier with commitments X,Y
and Z, that the prover knows x, y, z ∈ Z and r1, r2, r3 ∈ Z such that X = Cx ·gr1 ,
Y = Cy · gr2 , Z = Cz · gr3 and z = x · y. We construct Πmult by adapting the
protocol of [DF02] to our framework, similarly to what we did for Πcom.

Range proofs. Πrange allows to convince a verifier holding a commitment X and a
bound B ∈ N that the prover knows x, r ∈ Z such that x ∈ [0, B] and X = Cx·gr.
Our protocol is based on a technique by Groth [Gro05], who observed that

x ∈ [0, B] ⇐⇒ ∃x1, x2, x3 ∈ Z s.t. 1 + 4x · (B − x) = x21 + x22 + x23.

The protocol can be therefore constructed exploiting multiplication proofs just
introduced and the linearity of the commitment.

We remark that in [CKLR21], the authors designed a range proof for our
commitment scheme in the class group setting. Their solution never relies on
binary challenges, so its efficiency is better by a factor of λ. However, their
construction is only proven secure when the CRS is generated by a trusted
dealer. This is due to the issue described at the end of Section 7.1.

Proof of commitment to the plaintext. Πplain can be used to convince a verifier
holding group elements D,E,X that the prover knows x, r, s ∈ Z such that
X = Cx · gs, D = gr and E = fx · Cr. The protocol uses standard techniques
adapted to our framework as sketched for Πcom.

7.3 Actively Secure Public-Key PCF for Vector-OLE

In the semi-honest public-key PCF for vector-OLE (Fig. 8 and Fig. 7), the only
message sent by party P0 consists of an RSA modulo N and a pair of groups

35



elements D,E where D = gr0 and E = fd ·Cr0 . Here, the exponent d represents
the Paillier private key associated with the RSA modulo N , whereas g and C
are groups elements described in the CRS. We recall that d is the only element
in [0, N · ϕ(N)− 1] satisfying d ≡ 0 mod ϕ(N) and d ≡ 1 mod N .

The only message sent by party P1 is instead A := Cx · gr1 . In order for the
construction to be correct, the value of x needs to be smaller than 2λ · 2lenN .

An active adversary can always deviate from the protocol and send mal-
formed material. For this reason, it is fundamental that our NIZKs prove the
well-formedness of the messages of the parties. In the case of P1, the task is
rather simple. Using the Fiat-Shamir heuristic, we can indeed convert Πrange

into the NIZK we are looking for. Proving the well-formedness of P0’s message
is however more challenging.

Proving the well-formedness of P0’s message. As usual we first design a
public coin honest-verifier zero-knowledge proof and then convert it into a NIZK
by applying the Fiat-Shamir heuristic. Our protocol makes use of a public-coin
HVZK Πsemiprime for proving that the RSA modulo N is the product of two
distinct primes p and q. Moreover, Πsemiprime proves that gcd

(
N,ϕ(N)

)
= 1.

Such protocol can be found e.g., in [GRSB19]. The main idea of our protocol
is as follows: the prover commits to d, the primes p and q and integers k1 and
k2 satisfying d = k1 ·ϕ(N) and d = k2 ·N + 1. We denote the five commitments
by Z,X1, X2, Y1 and Y2 respectively. The parties run Πsemiprime to verify that
N is semiprime. By relying on Πmult, the prover also shows that X1 and X2

are commitments to a factorisation of N . Furthermore, using Πrange, the verifier
checks that the value committed in X1 belongs to [2, N − 1] (this is done by
showing that C−2 ·X1 is a commitment to a value in [0, N − 3]). In this way, it
is sure that the prover committed to a proper factorisation and not just N · 1.
Now, the verifier is also certain that W := CN ·X−11 ·X−12 ·C is a commitment
to N − p − q + 1 = ϕ(N). Next, using Πrange, the prover shows that the value
committed in Y1 belongs to [0, N − 1]. Using Πcom, it also proves the knowledge
of opening for Y2. The verifier also checks that Y1 is a commitment to d/ϕ(N).
This is done by running Πmult on Y1, W and Z. If the check passes, the verifier
is also sure that the value committed in Z belongs to [0, N · ϕ(N) − 1]. In the
end, the prover shows that Y2 is a commitment to (d − 1)/N by proving that
Z ·C−1 · Y −N2 opens to 0. Finally, the prover uses Πplain to convince the verifier
that the values hidden in Z and in (D,E) coincide. The formal description of
the protocol can be found in Fig. 11.

Theorem 5. Let Πsemiprime be a honest-verifier zero-knowledge public-coin proof
proving that N is the product of two distinct primes and gcd

(
N,ϕ(N)

)
= 1.

If the commitment scheme in Fig. 10 is hiding and binding, the construction
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Proof of encryption of Paillier private key ΠPaillier

Crs:

1. par′ := (G,F,H, f, t, `, aux)
R← Gen(1lλ)

2. (g, ρ0)
R← D(1lλ, par)

3. (C, ρ1)
R← D(1lλ, par)

4. If C = g, go to step 3.
5. Output par := (par′, g, ρ0, C, ρ1)

Protocol:

1. The prover computes k1 ← d/ϕ(N) and k2 ← (d− 1)/N .

2. The prover samples s1, s2, s3, s4
R← [`] and s

R← [2λ ·N · `].
3. The prover sends Z ← Cd · gs, X1 ← Cp · gs1 , X2 ← Cq · gs2 , Y1 ← Ck1 · gs3

and Y2 ← Ck2 · gs4 .
4. The parties run Πsemiprime with input N and witness (p, q).
5. The parties set B ← N − 1.
6. The parties runΠmult with inputX1, X2, C

N . The witness is (p, q,N, s1, s2, 0).
7. The parties run Πrange with input C−2 ·X1 and bound B − 2. The witness is

(p− 2, s1).
8. The parties run Πrange with input Y1 and bound B. The witness is (k1, s3).
9. The parties run Πcom with input Y2. The witness is (k2, s4).

10. The parties set W ← CN ·X−1
1 ·X−1

2 · C.
11. The parties run Πmult with input Y1,W,Z. The witness is

(k1, ϕ(N), d, s3,−s1 − s2, s).
12. The prover sends v ← s− s4 ·N .
13. The parties run Πplain with input Z,D,E and witness (d, r, s).
14. The verifier accepts if all the above proofs succeed and Z · C−1 · Y −N2 = gv.

Fig. 11. Honest-verifier zero-knowledge proof of encryption of the Paillier private key

ΠPaillier in Fig. 11 is a complete, special-sound public-coin proof for the relation

RPaillier :=


(D,E,N), (d, p, q, r)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N = p · q, where p, q are positive primes

gcd
(
N,ϕ(N)

)
= 1

D = gr, E = fd · Cr

d ≡ 0 mod ϕ(N)

d ≡ 1 mod N

0 ≤ d < N · ϕ(N)


Moreover, when r ∈ [`], the proof is honest-verifier zero-knowledge.

Proof. Completeness. Completeness of the protocol follows by inspection. Note
in particular that all subprotocols (Πsemiprime, Πrange, Πcom, Πplain) are complete
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and that the input to Πmult is a valid instance e.g.,

W = CN ·X−11 ·X−12 · C = CN−p−q+1 · g−s1−s2 = Cϕ(N) · g−s1−s2 .

Thus the verifier can reject only if Z · C−1 · Y −N2 6= gv but

Z · C−1 · Y −N2 = Cd · gs · C−1 · C−k2·N · g−N ·s4 = Cd−1−k2·N · gs−N ·s4 = gv.

Special Soundness. By the special soundness of Πrange, the extractor is able to

retrieve p′ ∈ [0, N−3], k1 ∈ [0, N−1] and s′1, s3 ∈ Z such that C−2 ·X1 = Cp
′ ·gs′1

and Y1 = Ck1 · gs3 . Moreover, by the special soundness of Πcom, the extractor is
also able to extract k2, s4 ∈ Z such that Y2 = Ck2 · gs4 .

By the special soundness of Πmult, the extractor is also able to obtain values
p, q,N ′ ∈ Z and s′0, s1, s2 ∈ Z such that N ′ = p · q, X1 = Cp · gs1 , X2 = Cq · gs2
and CN = CN

′ · gs′0 . By the binding properties of the commitment scheme in
Fig. 10, it must be N = N ′. We conclude that N = p · q. Since X1 = Cp

′+2 · gs′1 ,
by the binding properties of the commitment scheme, we have that p = p′+2 and
so p ∈ [2, N−1]. In this way, we are certain that p ·q is a proper factorisation. By
the soundness of Πsemiprime, we know that N is a product of two distinct primes.
Therefore, p and q must be prime.

Again, by the special soundness of Πmult, the extractor is also able to obtain
values k′1, ϕ

′, d′ ∈ Z and s′3, s
′
5, s
′ ∈ Z such that d′ = k1 · ϕ′, Y1 = Ck

′
1 · gs′3 ,

W = Cϕ
′ · gs′5 and Z = Cd

′ · gs′ . By the binding properties of the commitment
scheme in Fig. 10, it must be that k1 = k′1. Moreover, we know that

W = CN ·X−11 ·X
−1
2 ·C = CN ·C−p · g−s1 ·C−q · g−s2 ·C = CN−p−q+1 · g−s1−s2 .

So, again, by the binding properties of the commitment scheme, we have that
ϕ(N) = N − p − q + 1 = ϕ′. We understand also that d′ ≡ 0 mod ϕ(N) and
0 ≤ d′ < N · ϕ(N).

Observe that

gv = Z · C−1 · Y −N2 = Cd
′
· gs

′
· C−1 · C−N ·k2 · g−N ·s4 = Cd

′−N ·k2−1 · gs−N ·s4 .

By the binding properties of the commitment scheme, it must be that d′ −N ·
k2 − 1 = 0, so d′ ≡ 1 mod N .

Finally, by the special soundness of Πplain, the extractor is able to retrieve
d, r, s ∈ Z such that Z = Cd · gs, D = gr, E = fd · Cr. Once again, by the
binding properties of the commitment scheme in Fig. 10, it must be that d = d′.

Honest-Verifier Zero-Knowledge. Suppose that r ∈ [`]. We proceed by a series
of hybrids.

Hybrid 1. In this hybrid, the simulator generates the transcripts inΠsemiprime,
Πrange, Πcom, Πmult and Πplain using the corresponding honest verifier simula-
tors. Since p, q ∈ [0, B], d ∈ [0, N · ϕ(N) − 1] and r ∈ [`], by the honest-verifier
zero-knowledge of Πsemiprime, Πrange, Πcom, Πmult and Πplain, no adversary can
distinguish Hybrid 1 from the real protocol.
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Hybrid 2. In this hybrid, the simulator samples v uniformly over [2λ ·N · `]
and sets Z ← C ·Y N2 ·gv. The only difference between this hybrid and the previous
one is the distribution of v. The statistical distance is however dominated by 2−λ,
which is negligible. So, no adversary is able to distinguish between Hybrid 1 and
Hybrid 2.

Hybrid 3. In this hybrid, the simulator sends X1 ← gs1 , X2 ← gs2 , Y1 ← gs3

and Y4 ← gs4 instead of Cp · gs1 , Cq · gs2 , Ck1 · gs3 and Ck2 · gs4 . The rest
of the transcript is generated as in Hybrid 2. By the hiding properties of the
commitment scheme in Fig. 10, no adversary can distinguish between Hybrid 2
and Hybrid 3.

Observe that now the transcript can be generated without knowing the wit-
ness.

Deploying the NIZKs to obtain active security. We can finally present
our active public key PCF for vector-OLE. The construction, called ΠActive

VOLE , is
described in Fig. 12.

We prove that the pk-PCF protocol implements the random vector-OLE
functionality Fr-VOLE (see Fig. 13) in the UC model. Fr-VOLE is a functionality
that, during the initialisation, samples a random RSA modulo N and a value
x ∈ ZN , which outputs to P1. Upon any request for a vector-OLE tuple, the
functionality samples a random a ∈ ZN and computes a subtractive secret-
sharing of z1− z0 = a · x over ZN . Then, Fr-VOLE outputs (a, z0) to P0 and z1 to
P1. If one of the parties is corrupted, the functionality let the adversary choose
the outputs of the corrupt player, then it samples the outputs of the honest
party at random conditioned on z1 = z0 +a ·x. Moreover, if P0 is corrupted, the
functionality lets the adversary select the RSA modulo N . When P1 is corrupt,
instead, Fr-VOLE lets the adversary choose x after providing it with N .

The resources. The protocol ΠActive
VOLE relies on the non-interactive key-exchange

functionality FNIKE (see Fig. 6) and a ZK functionality FNIDLS-ZK (see Fig. 14).
The former provides the parties with a random PRF key k ∈ {0, 1}λ. When one
of the parties is corrupt, the functionality lets the adversary choose k, forwarding
it to the honest party. It is possible to implement FNIKE in one round using NIKE
constructions such as Diffie-Hellman, augmenting them with NIZKs to achieve
security against an active adversary.

The functionality FNIDLS-ZK is instead used to prove statements for a fixed set
of NP relations. We can assume that this set includes range proofs and RPaillier.
Upon initialisation, FNIDLS-ZK outputs the parameters of the NIDLS framework,
including the random coins used for their generation. When FNIDLS-ZK is provided
with a statement x for one of the supported NP relations, the functionality waits
for the prover to provide the corresponding witness w. If the verification fails,
FNIDLS-ZK outputs 0 to both parties, otherwise, it outputs 1. The functionality
FNIDLS-ZK is also equipped with a different predicate for each supported NP-
relation. Such predicate makes sure that the witness satisfies the properties for
zero-knowledge. If that is not the case, the w is leaked to the adversary.
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Active PK-PCF for VOLE ΠActive
VOLE

Let F be a PRF. Let lenN denote the length of the Paillier modulo and let t, the
order of the NIDLS group, be greater than 2λ · 22lenN · 2λ+lenN .
Initialisation:

1. The parties initialise FNIDLS-ZK obtaining par := (par′, g, ρ0, C, ρ1).
2. The parties call FNIKE to obtain a PRF key k.

3. P0 computes (N, d)
R← Paillier.Gen(1lλ) where N = p · q.

4. P1 samples x
R← [B] where B := 2λ+lenN .

5. P0 samples r0
R← [`] and sets D ← gr0 , E ← fd · Cr0 .

6. P0 sends N,D,E.

7. P1 samples r1
R← [`] and computes A← Cx · gr1

8. P1 sends A.
9. The parties call FNIDLS-ZK with input (Paillier, D,E,N). P0 inputs also

(p, q, r0). The parties abort if the functionality outputs 0 or if N > 2lenN .
10. The parties call FNIDLS-ZK with input (range, A,B). P1 inputs also (x, r1). The

parties abort if the functionality outputs 0.
11. The parties query (A,D,E,N) to the random oracle and obtain a random

u ∈ Zt as a reply.
12. P0 computes v0 ← DDLogpar(A

r0)− u mod t
13. P1 computes v1 ← DDLogpar(D

r1 · Ex) + u mod t
14. P0 stores k0 ← (N, k, y0 := −v0, d).
15. P1 stores k1 ← (N, k, y1 := v1, x mod N).

Evaluation: Query the label id to the oracle. Let ct ∈ Z×
N2 be the response:

1. P0 computes a← Paillier.Dec(d, ct) mod N .
2. Each Pi computes zi ← (−1)1−i · DDLogPaillier(ctyi) + Fk(ct) mod N .
3. P0 outputs (a, z0), P1 outputs (x mod N, z1).

Fig. 12. Active public-key PCF for vector-OLE

Note that Fiat-Shamir NIZKs, including the ones we designed, do not imple-
ment the functionality FNIDLS-ZK in the UC model. Indeed, in order to extract
the witness w, we need to rewind the adversary and this operation is incompat-
ible with UC. Using Fiat-Shamir NIZKs to implement FNIDLS-ZK is, however, a
common practice, which is considered secure. Moreover, the resulting protocols
can be proven secure in weaker models that allow sequential composability only.
Finally, using standard techniques [DP92], it is still possible to adapt our NIZKs
so that they implement FNIDLS-ZK in the UC model.

Theorem 6. Let lenN (λ) be the length of the RSA modulo and assume that
t > 22λ+3lenN . Let F be a secure PRF outputting pseudorandom elements in
[2λ+lenN ]. If the DXDH assumption holds, the protocol ΠActive

VOLE UC-implements
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Function Fr-VOLE

Initialisation:

– If both parties are honest, generate (N, p, q)
R← Paillier.Gen(1lλ) and sample

x
R← ZN .

– If P0 is corrupt, wait for N from the adversary and sample x
R← ZN . If the

adversary sends ⊥, abort.

– If P1 is corrupt, generate (N, p, q)
R← Paillier.Gen(1lλ), send N to the adversary

to the adversary and wait for x ∈ ZN as a reply. If the adversary sends ⊥,
abort.

Evaluation: On input a fresh label id from an honest party Pi.

– If both parties are honest, the functionality samples a, z0
R← ZN and sets

z1 ← a · x− z0. Then, it sets R0 ← (a, z0) and R1 ← (x, z1). Fr-VOLE outputs
Ri to Pi and stores (id, 1− i, R1−i).

– If i = 1 and P0 is corrupted, the functionality waits for a, z0 ∈ ZN from the
adversary and sets z1 ← a · x− z0. Then, it outputs (x, z1) to Pi.

– If i = 0 and P1 is corrupted, the functionality waits for z1 ∈ ZN from the

adversary, samples a
R← ZN and computes z0 ← a · x − z1. Then, it outputs

(a, z0) to Pi.

If id is not fresh, retrieve the triple (id, i, Ri) and output Ri to Pi.

Fig. 13. The random vector-OLE functionality

the functionality Fr-VOLE against an active adversary in the (FNIDLS-ZK,FNIKE)-
hybrid model with random oracle.

Proof. We start by proving the correctness of the protocol.

Claim. If the protocol does not abort, we have that y1 = y0 + d · x. Here, the
operations are computed over the integers and the terms y0, y1, d and x are
computed as in the protocol using the witnesses input into FNIDLS-ZK.

Proof of the claim. Notice that

Dr1 · Ex = (gr0)r1 · (fd · Cr0)x = fx·d · (Cx · gr1)r0 = fx·d ·Ar0 .

We conclude that v0 + v1 = x · d mod t and so y1 = y0 + d · x mod t. Now,
observe that, due to the rerandomisation with the random oracle, y0 is uniformly
distributed over Zt. Since t > 2λ · 22lenN · 2λ+lenN ≥ 2λ ·d ·x, the probability that
y0 ∈ [t− d · x, t] is smaller than 2−λ, which is negligible. So, with overwhelming
probability, there are no wrap-arounds and y1 = y0 + d ·x even if the operations
are performed over the integers. Notice that it is fundamental that the query to
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Function FNIDLS-ZK

Let U be a finite set of NP relations. Let PL be a predicate corresponding to the
relation RL ∈ U .
Initialisation:

1. par′ := (G,F,H, f, t, `, aux)
R← Gen(1lλ)

2. (g, ρ0)
R← D(1lλ, par)

3. (C, ρ1)
R← D(1lλ, par)

4. If C = g, go to step 3.
5. Output par := (par′, g, ρ0, C, ρ1) to all the parties.

Verify:
On input an NP relation RL ∈ U and a statement st from both parties and a
witness w from only one of the parties, FNIDLS-ZK checks whether (st, w) ∈ RL. If
that is the case, FNIDLS-ZK outputs 1 to all the parties, otherwise it outputs 0. If
PL(par, w) = 0, the functionality leaks w to the adversary.

Fig. 14. The NIDLS ZK functionality

the oracle includes A,D,E and N , so the adversary cannot pick the messages of
the corrupted parties as a function of the random oracle output, as this could
allow them to cause wrap-arounds and compromise the correctness of the result.

Claim. If the protocol does not abort, we have that z1 = z0 + a · x mod N for
every execution of Evaluation.

Proof of the claim. Even if N is not the product of two safe-primes, the NIDLS
techniques are still working. Specifically, since N = p · q and p 6= q (indeed,
gcd(N,ϕ(N)) = 1), the order of Z×N2 is still N · ϕ(N). Moreover, 1 + N has
still order N and we can efficiently compute y from c := (1 +N)y = 1 + yN as
y = (c − 1)/N . It is also still possible to compute canonical representatives of
〈1+N〉-cosets. Indeed, take r ∈ Z×N2 and rewrite it as r0+r1·N where r0, r1 ∈ ZN .
Notice that r ∈ Z×N2 , implies that r0 ∈ Z×N . We have that r0 = (1+N)y ·r mod N
for every y ∈ ZN . Moreover, r = r0 · (1 +N)y for y = r1/r0 mod N .

Now, let ct = (1 +N)a · rN for some r ∈ Z×N2 . We have that

cty1 = cty0+x·d = cty0 · (1 +N)a·x·d · rN ·d·x =

= cty0 · (1 +N)a·x·(1+k2·N) · rN ·k1·ϕ(N)·x = cty0 · (1 +N)a·x.

So, after applying DDLog, the parties obtain z0 and z1 that satisfy z1 − z0 =
a · x mod N .
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All the parties are honest. Consider the following series of indistinguishable
hybrids.

Hybrid 1. In this hybrid, the simulator sets z1 ← z0 +a ·x mod N for every
execution of Evaluation. By the previous claim, this hybrid is indistinguishable
from the real protocol.

Hybrid 2. Consider the hybrid in which the simulator sets A← gr1 instead
of A ← Cx · gr1 . This hybrid is indistinguishable from the previous one by the
hiding properties of the commitment scheme in Fig. 10.

Hybrid 3. In this hybrid, instead of generating E as in the protocol, the
simulator sets E ← fd · gr′0 where r′0 is uniform over [`] and independent of r0.
Observe that this stage is indistinguishable from the previous one by the DXDH
assumption.

Hybrid 4. In this hybrid, the simulator sets E ← fs ·gr′0 where s is uniformly
sampled over [t]. Observe that this stage is indistinguishable from the previous
one as gr

′
0 is close to uniform over g and f ∈ 〈g〉.

Hybrid 5. In this hybrid, the simulator samples z0 uniformly over ZN .
Since 2λ+lenN ≥ 2λ ·N and by the security of the PRF F, the adversary cannot
distinguish between this hybrid and the previous one.

Hybrid 6. In this hybrid, instead of sampling x uniformly over [2λ · 2lenN ],
the simulator samples it uniformly over ZN . Observe that this stage is uncondi-
tionally indistinguishable from the previous one. Indeed, the statistical distance
is dominated by 2−λ, which is negligible.

Hybrid 7. In this hybrid, the simulator lets the functionality Fr-VOLE gen-
erate the outputs and the RSA modulo. Specifically, the simulator receives N
from the functionality. Moreover, it replies to all random oracle queries by send-
ing random Paillier encryptions of 0. This hybrid is indistinguishable from the
previous one by the IND-CPA security of Paillier. Notice that in both situations,
a is uniformly distributed over ZN .

P0 is corrupted. Consider the following series of indistinguishable hybrids.

Hybrid 1. In this hybrid, the simulator simulates the resources FNIDLS-ZK,FNIKE,
the random oracle and the messages sent by P1 as in the protocol. If the proce-
dure does not abort, the simulator computes y0 using the witnesses provided by
P0. Then, it sets y1 ← y0 + d · x (the addition is performed over Z). The rest of
the operations is performed as in the protocol. This hybrid is indistinguishable
from the real protocol by the first claim showed in this proof.

Hybrid 2. In this hybrid, the simulator performs the same operations as in
Hybrid 1. However, instead of generating A as in the protocol, the simulator sets
A ← gr1 . Observe that this stage is indistinguishable from the previous one by
the hiding properties of the commitment scheme in Fig. 10.

Hybrid 3. In this hybrid, the simulator performs the same operations as in
Hybrid 2. However, instead of sampling x uniformly over [2λ ·2lenN ], it samples it
uniformly over ZN . Observe that this stage is unconditionally indistinguishable
from the previous one. Indeed, the statistical distance is dominated by 2−λ,
which is negligible.
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Hybrid 4. In this hybrid, the simulator behaves as in the previous stage, but
lets the functionality Fr-VOLE generate the outputs. Specifically, the simulator
forwards the RSA modulo N received from P0 to the functionality. Then, it
retrieves a and z0 and forwards them to the functionality. This hybrid is perfectly
indistinguishable from the previous one.

P1 is corrupted. Consider the following series of indistinguishable hybrids.
Hybrid 1. In this hybrid, the simulator simulates the resources FNIDLS-ZK,

FNIKE, the random oracle and the messages sent by P1 as in the protocol. If
the procedure does not abort, the simulator computes y1 using the witnesses
provided by P1. Then, it sets y0 ← y1 − d · x (the subtraction is performed over
Z). The rest of the operations is performed as in the protocol. This hybrid is
indistinguishable from the real protocol by the first claim showed in this proof.

Hybrid 2. In this hybrid, the simulator performs the same operations as in
Hybrid 1. However, instead of generating E as in the protocol, the simulator sets
E ← fd · gr′0 where r′0 is uniform over [`] and independent of r0. Observe that
this stage is indistinguishable from the previous one by the DXDH assumption.

Hybrid 3. In this hybrid, the simulator performs the same operations as in
Hybrid 2. However, the simulator sets E ← fs ·gr′0 where s is uniformly sampled
over [t]. Observe that this stage is indistinguishable from the previous one as gr

′
0

is close to uniform over g and f ∈ 〈g〉.
Hybrid 4. In this hybrid, the simulator computes z1 using the witnesses

provided by P1 to FNIDLS-ZK. Then, it sets z0 ← z1 − a · x. This hybrid is indis-
tinguishable from the previous one, by the second claim showed in this proof.

Hybrid 5. In this hybrid, the simulator behaves as in the previous stage,
but lets the functionality Fr-VOLE generate the outputs and the RSA modulo.
Specifically, the simulator obtains N from the functionality, receives x from the
adversary and sends x mod N to the functionality. Then, it computes the output
z1 and forwards it to the Fr-VOLE. Moreover, the simulator replies to all oracle
queries with random encryptions of 0. This hybrid is indistinguishable from the
previous one by the IND-CPA security security of Paillier. Notice that in both
situations, a is uniformly distributed over ZN .

7.4 Actively secure public-key PCF for oblivious transfer

We build this protocol in a way similar to the actively secure public-key PCF
for vector-OLE in Section 7.3. Similarly to the vector-OLE case, in the semi-
honest public-key PCF for OT, party P0 sends an RSA modulo N = p · q and
a pair of group elements (D,E) where D = gr0 and E = fd · Cr0 . Here, d
denotes the Goldwasser-Micali private key associated with N . Specifically, d =
ϕ(N)/4 = (p−1)/2 · (q−1)/2, since p and q are odd, d is always an integer. The
Goldwasser-Micali cryptosystem requires also that −1 is a quadratic non-residue
of Z×N with Jacobi symbol equal to 1. That happens if and only if p and q are
both congruent to 3 modulo 4.

The message sent by P1 consists instead of λ group elements A1, . . . , Aλ
where Ai = Cxi · gri1 for a bit xi ∈ {0, 1}.

44



In order to upgrade the public-key PCF for OT to active security, we need to
design NIZKs that prove the well-formedness of the messages of the parties. As
in the vector-OLE case, the task is simple for the messages of party P1. Indeed,
in order to prove that Ai is a commitment to a bit xi, it is sufficient to prove
that Ai is also a commitment to x2i (x = 0 and x = 1 are the only integers for
which x2 = x). We can achieve this by applying the Fiat-Shamir heuristic on
Πmult. Proving the well-formedness of P0’s message is a bit more challenging.

Proving the well-formedness of P0’s message. We follow the same ap-
proach as in the vector-OLE case: first, we design a public-coin honest-verifier
zero-knowledge proof and then we convert it into a NIZK using the Fiat-Shamir
heuristic. Our solution is described in Fig. 15.

The prover starts by committing to p′ = (p−3)/4 and q′ = (q−3)/4. Let the
resulting commitments be X1 and X2. Using Πsemiprime as in the vector-OLE case,
the verifier check that N is the product of two primes and gcd

(
N,ϕ(N)

)
= 1.

The parties define W1 and W2 to be X4
1 ·C3 and X4

2 ·C3. Notice that if the
prover is honest, these are commitments to the primes p and q. Using Πmult,
the prover shows that W1 and W2 are indeed commitments to a factorisation
of N . Moreover, using Πrange and Πcom, the verifier checks that p′ belongs to
[0, N/4− 1] and that the prover knows an opening for X2. As a consequence, it
is certain that 3 ≤ 4p′ + 3 < N − 1, hence, W1 and W2 are a commitment to a
proper factorisation of N , which must be p · q. This also proves that p and q are
congruent to 3 modulo 4.

In the end, the parties define W to be C(N−5)/4 ·X−11 ·X−12 . Notice that N
is congruent to 1 modulo 4, so (N − 5)/4 is an integer. Moreover, by the linear
properties of the scheme, W is commitment to

N − 5

4
− p′ − q′ =

N − 4p′ − 4q′ − 5

4
=
N − p+ 3− q + 3− 5

4
=
ϕ(N)

4
= d.

Using Πplain on W , the verifier checks that the value hidden in (D,E) is d.

Theorem 7. Let Πsemiprime be a honest-verifier zero-knowledge public-coin proof
proving that N is the product of two primes and gcd

(
N,ϕ(N)

)
= 1. If the com-

mitment scheme in Fig. 10 is hiding and binding, the construction ΠGM in Fig. 15
is a complete, special-sound public-coin proof for the relation

RGM :=


(D,E,N), (d, p, q, r)

∣∣∣∣∣∣∣∣∣∣∣∣

N = p · q, where p, q are positive primes

gcd
(
N,ϕ(N)

)
= 1

D = gr, E = fd · Cr

d = ϕ(N)/4

p, q ≡ 3 mod 4


Moreover, if r ∈ [`], the proof is honest-verifier zero-knowledge.
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Proof of encryption of the GM private key ΠGM

Crs:

1. par′ := (G,F,H, f, t, `, aux)
R← Gen(1lλ)

2. (g, ρ0)
R← D(1lλ, par)

3. (C, ρ1)
R← D(1lλ, par)

4. If C = g, go to step 3.
5. Output par := (par′, g, ρ0, C, ρ1)

Protocol:

1. The prover computes p′ ← (p− 3)/4 and q′ ← (q − 3)/4.

2. The prover samples s1, s2
R← [`].

3. The prover sends X1 ← Cp
′
· gs1 and X2 ← Cq

′
· gs2 .

4. The parties run Πsemiprime with input N and witness (p, q).
5. The parties set W ← C(N−5)/4 ·X−1

1 ·X
−1
2 , W1 ← X4

1 ·C3 and W2 ← X4
2 ·C3.

6. The parties run Πmult with input W1,W2, C
N . The witness is

(p, q,N, 4s1, 4s2, 0).
7. The parties run Πrange with input X1 and bound B = N/4− 1. The witness

is (p′, s1).
8. The parties run Πcom with input X2. The witness is (q′, s2).
9. The parties run Πplain with input W,D,E and witness (ϕ(N)/4, r,−2s1−2s2).

10. The verifier accepts if all the above proofs succeed.

Fig. 15. Honest-verifier zero-knowledge proof of encryption of the GM private key

Proof. Completeness. By the completeness of Πrange, Πcom, Πplain and Πmult, the
verifier always accepts when dealing with a honest prover. Indeed,

C
N−5

4 ·X−11 ·X−12 = C
N−5

4 · C−p
′
· g−s1 · C−q

′
· g−s2 = C

N−5
4 −p

′−q′ · g−s1−s2

and

(N − 5)/4− p′ − q′ = (N − 4p′ − 4q′ − 5)/4 = (N − p− q + 1)/4 = ϕ(N)/4.

Special Soundness. By the special soundness of Πmult, the extractor is able to
retrieve p, q ∈ Z and s′1, s

′
2, s
′
3 ∈ Z such that W1 = C3 · X4

1 = Cp · gs′1 and
W2 = C3 ·X4

2 = Cq · gs′2 .
By the special soundness of Πrange and Πcom, the extractor is also able to

obtain values p′ ∈ [0, N/4 − 1] and q′, s1, s2 ∈ Z such that X1 = Cp
′ · gs1 and

X2 = Cq
′ · gs2 . Observe that

Cp · gs
′
1 = C3 ·X4

1 = C4p′+3 · g4s1 , Cq · gs
′
2 = C3 ·X4

2 = C4q′+3 · g4s2 .

By the binding properties of the commitment scheme in Fig. 10, it must be that
p = 4p′ + 3 and q = 4q′ + 3. Moreover, since p′ ∈ [0, N/4 − 1], we know that
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p ∈ [3, N − 1] and so N = p · q is a proper factorisation. By the soundness of
Πsemiprime, we know that N is a product of two distinct primes. Therefore, p and
q must be prime. Moreover, p and q are both congruent to 3 modulo 4.

Finally, by the special soundness of Πplain, the extractor is able to retrieve
d, s ∈ Z such that W = Cd · gs, D = gr, E = fd · Cr. As we observed when we
analysed completeness,

C
N−5

4 ·X−11 ·X−12 = C
ϕ(N)

4 · g−s1−s2 .

Once again, by the binding properties of the commitment scheme in Fig. 10, it
must be that d = ϕ(N)/4.

Honest-Verifier Zero-Knowledge. Suppose that r ∈ [`]. We proceed by a series
of hybrids.

Hybrid 1. In this hybrid, the simulator generates the transcripts inΠsemiprime,
Πrange, Πcom, Πmult and Πplain using the corresponding honest verifier simulators.
Since p′ ∈ [0, B], d ∈ [0, N ] and r ∈ [`], by the honest-verifier zero-knowledge of
Πsemiprime, Πrange, Πcom, Πmult and Πplain, no adversary can distinguish Hybrid 1
from the real protocol.

Hybrid 2. In this hybrid, the simulator sends X1 ← gs1 and X2 ← gs2 ,
instead of Cp

′ · gs1 and Cq
′ · gs2 . The rest of the transcript is generated as in

Hybrid 1. By the hiding properties of the commitment scheme in Fig. 10, no
adversary can distinguish between Hybrid 1 and Hybrid 2.

Observe that now the transcript can be generated without knowing the wit-
ness.

Deploying the NIZKs to obtain active security. We are now ready to
present our actively secure public-key PCF for oblivious transfer. The construc-
tion, called ΠActive

OT is described in Fig. 17.
We prove that our pk-PCF implements the OT functionality FOT (see Fig. 16)

in the UC model. FOT is a functionality that, during the initialisation samples
a random x ∈ {0, 1}λ and outputs it to P1. Upon any request for an OT tuple,
FOT samples a random bit b ∈ {0, 1} and generates a random secret-sharing
z0 ⊕ z1 = b · x. Then, FOT outputs (b, z0) to P0 and z1 to P1. If one of the
parties is corrupt, the functionality lets the adversary choose the outputs for the
corrupted player, then, it samples the outputs of the honest party at random
conditioned on z0⊕z1 = b ·x. Moreover, if P1 is corrupt, FOT lets the adversary
choose x during the initialisation.

As in the vector-OLE case, we use FNIKE and FNIDLS-ZK as resources. Again,
we notice that our NIZKs do not implement FNIDLS-ZK in the UC model. However,
using them is still considered secure.

Theorem 8. Let lenN (λ) be the length of the RSA modulo and assume that
t > 2λ+lenN . Let F be a secure PRF outputting pseudorandom elements in Z2. If
the DXDH assumption holds in the NIDLS framework, the protocol ΠActive

OT UC
implements the functionality FOT against an active adversary in the (FNIDLS-ZK,
FNIKE)-hybrid model with random oracle.
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Function FOT

Initialisation:

– If P1 is honest, sample x
R← {0, 1}λ.

– If P1 is corrupt, wait for x ∈ {0, 1}λ from the adversary.
– If the adversary sends ⊥, abort.

Evaluation: On input a fresh label id from an honest party Pi.

– If both parties are honest, the functionality samples b
R← {0, 1} and z1

R←
{0, 1}λ and sets z0 ← z1⊕ b ·x. Then, it sets R0 ← (b,z0) and R1 ← (x,z1).
FOT outputs Ri to Pi and stores (id, 1− i, R1−i).

– If i = 1 and P0 is corrupted, the functionality waits for b ∈ {0, 1} and
z0 ∈ {0, 1}λ from the adversary and sets z1 ← z0 ⊕ b · x. Then, it outputs
(x,z1) to Pi.

– If i = 0 and P1 is corrupted, the functionality waits for z1 ∈ {0, 1}λ from the
adversary, samples b ∈ {0, 1} and computes z0 ← z1⊕ b ·x. Then, it outputs
(b,z0) to Pi.

If id is not fresh, retrieve the triple (id, i, Ri) and output Ri to Pi.

Fig. 16. The OT functionality

Proof. We start by proving the correctness of the protocol.

Claim. If the protocol does not abort, we have that y1 = y0 + d · x. Here, the
operations are computed over the integers and the terms y0,y1, d and x are
computes as in the protocol using the witnesses input into FNIDLS-ZK.

Proof of the claim. Notice that

Dri1 · Exi = (gr0)r
i
1 · (fd · Cr0)xi = fxi·d · (Cxi · gr

i
1)r0 = fxi·d ·Ar0i .

We conclude that v0 + v1 = x · d mod t and so y1 = y0 + d · x mod t. Now,
observe that y0 is uniformly distributed over Zλt due to the random oracle reran-
domisation. Since t > 2λ · 2lenN ≥ 2λ ·d ·xi, the probability that y0,i ∈ [t−d, t] is
smaller than 2−λ, which is negligible. So, with overwhelming probability, there
are no wrap-arounds and y1 = y0 + d · x even if the operations are performed
over the integers. Notice that it is fundamental that the query to the oracle in-
cludes (Ai)i∈[λ], D,E and N , so the adversary cannot pick the messages of the
corrupted parties as a function of the random oracle output, as this could allow
them to cause wrap-arounds and compromise the correctness of the result.

Claim. If the protocol does not abort, we have that z0 = z1 ⊕ b · x for every
execution of Evaluation.

48



Active PK-PCF for OT ΠActive
OT

Let F be a PRF. Let lenN denote the length of the GM modulo and let t, the
order of the NIDLS group, be greater than 2λ · 2lenN .
Initialisation:

1. The parties initialise FNIDLS-ZK obtaining par := (par′, g, ρ0, C, ρ1).
2. The parties call FNIKE to obtain a PRF key k.

3. P0 computes (N, d)
R← GM.Gen(1lλ) where N = p · q.

4. P1 samples x
R← {0, 1}λ.

5. P0 samples r0
R← [`] and sets D ← gr0 , E ← fd · Cr0 .

6. P0 sends N,D,E.

7. P1 samples ri1
R← [`] and computes Ai ← Cxi · gr

i
1 for every i ∈ [λ].

8. P1 sends (Ai)i∈[λ].
9. The parties call FNIDLS-ZK with input (GM, D,E,N). P0 inputs also

(d, p, q, r0). The parties abort if the functionality outputs 0.
10. For every i ∈ [λ], the parties call FNIDLS-ZK with input (mult, Ai, Ai, Ai) to

prove that x2i = xi. P1 also inputs (xi, r
i
1). If the functionality outputs 0, the

parties abort.
11. The parties query (N,D,E,A1, . . . , Aλ) to the random oracle and they obtain

λ random elements u1, . . . , uλ ∈ Zt.
12. P0 computes v0,i ← DDLogpar(A

r0
i )− ui mod t for every i ∈ [λ]

13. P1 computes v1,i ← DDLogpar(D
ri1 · Ex) + ui mod t for every i ∈ [λ].

14. P0 outputs k0 ← (N, k,y0 := −v0, d/4).
15. P1 outputs k1 ← (N, k,y1 := v1,x).

Evaluation: Query the label id to the oracle. Let ct ∈ JN be the response:

1. P0 computes b← GM.Dec(d, ct).
2. For every i ∈ [λ], each Pj computes zj,i ← DDLogGM(ctyj,i)⊕Fk(ct, i) mod 2.
3. P0 outputs (b,z0), P1 outputs (x,z1).

Fig. 17. Active public-key PCF for OT
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Proof of the claim. Even if N is not the product of two safe-primes, the NIDLS
techniques are still working. Specifically, since N = p · q, p 6= q and (p − 1)/2
and (q − 1)/2 are odd, −1 is still a non square element with Jacobi symbol 1.
Moreover, JN is still isomorphic to 〈−1〉 × SQ where SQ is the subgroup of
squares of Z×N .

Now, let ct = (−1)b · r2 for some r ∈ Z×N . We recall that d = ϕ(N)/4 is odd
and r2d = 1 for every element in Z×N , so we have that

cty
i
1 = cty

i
0+xi·d = cty

i
0 · (−1)b·xi·d · r2·d·xi = cty

i
0 · (−1)b·xi .

So, after applying DDLog, the parties obtain z0,i and z1,i that satisfy z0,i⊕z1,i =
b · xi.

All the parties are honest. Consider the following series of indistinguishable
hybrids.

Hybrid 1. In this hybrid, the simulator sets z0 ← z1 ⊕ b · x for every
execution of Evaluation. By the previous claim, this hybrid is indistinguishable
from the real protocol.

Hybrid 2. Consider the hybrid in which the simulator sets Ai ← gr
i
1 instead

of Ai ← Cxi · gri1 for every i ∈ [λ]. This hybrid is indistinguishable from the
previous one by the hiding properties of the commitment scheme in Fig. 10.

Hybrid 3. In this hybrid, instead of generating E as in the protocol, the
simulator sets E ← fd · gr′0 where r′0 is uniform over [`] and independent of r0.
Observe that this stage is indistinguishable from the previous one by the DXDH
assumption.

Hybrid 4. In this hybrid, the simulator sets E ← fr
′ · gr′0 where r′ is

uniformly sampled over [t]. Observe that this stage is indistinguishable from the
previous one as gr

′
0 is close to uniform over g and f ∈ 〈g〉.

Hybrid 5. In this hybrid, the simulator samples z1 uniformly over {0, 1}λ.
By the security of the PRF F, the adversary cannot distinguish between this
hybrid and the previous one.

Hybrid 6. In this hybrid, the simulator lets the functionality FOT generate
the outputs. Moreover, it replies to all random oracle queries by sending random
GM encryptions of 0. This hybrid is indistinguishable from the previous one
by the IND-CPA security of GM. Notice that in both situations, b is uniformly
distributed over {0, 1}.

P0 is corrupted. Consider the following series of indistinguishable hybrids.
Hybrid 1. In this hybrid, the simulator simulates the resources FNIDLS-ZK,

FNIKE, the random oracle and the messages sent by P1 as in the protocol. If the
procedure does not abort, the simulator computes y0 and d using the witnesses
provided by P0. Then, it sets y1 ← y0 + d · x (the addition is performed over
Z). The rest of the operations are performed as in the protocol. This hybrid is
indistinguishable from the real protocol by the first claim showed in this proof.

Hybrid 2. In this hybrid, the simulator performs the same operations as in
Hybrid 1. However, instead of generating Ai as in the protocol, the simulator
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sets Ai ← gr
i
1 for every i ∈ [λ]. Observe that this stage is indistinguishable from

the previous one by the hiding properties of the commitment scheme in Fig. 10.

Hybrid 3. In this hybrid, the simulator behaves as in the previous stage,
but let the functionality FOT generate the outputs. Specifically, the simulator
retrieves b and z0 using the witnesses provided by P0. Then, it forwards them
to the functionality. This hybrid is perfectly indistinguishable from the previous
one by the second claim shown in this proof.

P1 is corrupted. Consider the following series of indistinguishable hybrids.

Hybrid 1. In this hybrid, the simulator simulates the resources FNIDLS-ZK,FNIKE,
the random oracle and the messages sent by P1 as in the protocol. If the proce-
dure does not abort, the simulator computes y1 using the witnesses provided by
P1. Then, it sets y0 ← y1−d·x (the subtraction is performed over Z). The rest of
the operations are performed as in the protocol. This hybrid is indistinguishable
from the real protocol by the first claim showed in this proof.

Hybrid 2. In this hybrid, the simulator performs the same operations as in
Hybrid 1. However, instead of generating E as in the protocol, the simulator sets
E ← fd · gr′0 where r′0 is uniform over [`] and independent of r0. Observe that
this stage is indistinguishable from the previous one by the DXDH assumption.

Hybrid 3. In this hybrid, the simulator performs the same operations as
in Hybrid 2. However, the simulator sets E ← fr

′ · gr′0 where r′ is uniformly
sampled over [t]. Observe that this stage is indistinguishable from the previous
one as gr

′
0 is close to uniform over g and f ∈ 〈g〉.

Hybrid 4. In this hybrid, the simulator behaves as in the previous stage,
but lets the functionality FOT generate the outputs. Specifically, the simulator
receives x from the adversary and forwards it to the functionality. Then, it
computes the output z1 using the witnesses provided by P1 and sends it to
the functionality. The simulator also replies to all random oracle queries with a
random GM encryption of 0. This hybrid is indistinguishable from the previous
one by the IND-CPA security of GM. Notice that in both cases, b is uniformly
distributed over {0, 1}.

8 Active HSS Protocol

In this section, we explain how to design efficient 2-round MPC protocols for
RMS programs with security against active adversaries. The functionality cor-
responding to our construction is described in Fig. 18. Our solution is based on
the semi-honest HSS scheme we described in Section 5 and relies on a one-round
setup procedure. When the NIDLS framework is instantiated over class groups,
the construction does not need any trusted setup.

Limited to the context of RMS programs for 2 parties, our solution achieves
higher efficiency compared to other 2-round MPC protocols. We point out, for
instance, that assuming B ≥ 2λ, the communication complexity of the scheme
is independent of the size of the circuit it is evaluated.
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Function FRMS

Initialisation: On input Init from both parties the functionality activates.
Input: On input (Input, i, x) with x ∈ Znout from Pi and (Input, i) from P1−i, the
functionality assigns the value x to Ix.
Evaluation: On input

(
Eval, (I1, . . . , In), P

)
from each party, where P is a B-

bounded RMS program with n inputs, the functionality retrieves the value xi
assigned to Ii for every i ∈ [1, n]. Then, it computes z ← P (x1, . . . , xn) a provides
it to the adversary. If the adversary replies with Abort, the functionality aborts,
otherwise it outputs z to the honest parties.
Abort: On input Abort from the adversary, the functionality aborts.

Fig. 18. The RMS functionality

The challenges posed by an active adversary. The HSS scheme described in
Section 5 induces a semi-honest 2-round MPC protocol with setup. When dealing
with an active adversary, the scheme can fail in two points: the input phase and
the output reconstruction. A corrupted party can indeed send malformed input
messages or add additive errors to the shares of the outputs. We now explain
how we solved these problems.

Verifying the well-formedness of the input messages. We address the first issue
using NIZKs. In particular, we need to prove that every input message is of
the form D = gr, E = fx · hr, D = gr · f−x, E = hr. Since the HSS scheme
is correct only when the inputs are bounded, we also need to prove that x ∈
[−B,B] for some bound B ∈ N. It is possible to design efficient solutions for
this problem using standard techniques. Specifically, we consider the public-coin
honest-verifier zero-knowledge protocol Πinput in which the prover commits to x
using the scheme in Fig. 10 and proves that x ∈ [−B,B] (this is done by running
Πrange on X ·CB with bound 2B, where X denotes the commitment). Moreover,
the prover and the verifier run also a procedure similar to Πplain to prove that
D = gr, E = fx · hr, D = gr · f−x, E = hr where x is the value committed
beforehand. For more details, we refer to Appendix A.5.

Authenticating the output shares. To detect additive errors in the output shares,
we introduce information theoretical MACs. The latter are used to authenticate
the secret-sharings associated with the memory wires. Since we want to perform
the output reconstruction with only one round of interaction, we adopt BeDOZa-
style MACs [BDOZ11]. Specifically, each party Pi holds a random MAC key
αi ∈ [nout]. For each memory wire of value z, in addition to its integer share zi,
each party Pi holds values M0,i(z),M1,i(z) ∈ Z such that

Mi,i(z) = Mi,1−i(z) + αi · z.

The operations in the above formula are all intended over Z.
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When Pi sends its share of the output zi mod nout, the player attaches also
M1−i,i mod nout. The other party checks that

M1−i,1−i(z) = M1−i,i(z) + α1−i · (z1 − z0) mod nout.

Since Pi will know no information about the MAC key α1−i, the probability that
Pi successfully fools P1−i by sending a tampered share is limited. Specifically,
when nout is prime, the probability is smaller than 1/nout. In order to make the
latter negligible, we assume that nout is a prime larger than 2λ. If nout does not
satisfy these properties, it is still possible to adapt our MACs so that we can
verify the authenticity of the shares in one round (If nout is small, we just apply
λ of these MACs, as in [NNOB12]. If nout is not prime, as in [CDE+18], we
choose the MAC keys at random in Z2λ·nout

and we embed z in Z2λ·nout
for the

verification).

Authenticating the computations. The MACs we applied on the HSS scheme have
useful linear properties. In particular, by locally adding the MACs authenticating
two memory wires Mx and My, we obtain MACs over their addition without any
interaction. Indeed,

Mi,i(x) +Mi,i(y) =
(
Mi,1−i(x) +Mi,1−i(y)

)
+ αi · (x+ y).

Authenticating the outputs of multiplication gates without interaction is a
more challenging task, but the fact that we are dealing with RMS programs
simplifies the problem. Indeed, we know that one of the factors is an input, so
we have ElGamal ciphertexts ctx and ctxs encrypting its value x and x · s. The
main observation in Section 5 was that, given subtractive secret-sharings over
the integers of y and y · s, the NIDLS techniques permit obtaining subtractive
secret-sharings of x · y and x · y · s over Z without any interaction.

We observe that in an authenticated memory wire My, the MACs Mi,i(y)
and Mi,1−i(y) are exactly a subtractive secret-sharing of αi · y over Z. Suppose
now that the parties have also a subtractive secret-sharing of αi · y · s over Z for
every i ∈ {0, 1}. In other words, each party Pi holds M ′i,i(y),M ′1−i,i(y) ∈ Z such
that

M ′i,i(y) = M ′i,1−i(y) + αi · y · s.

By applying the NIDLS techniques on these secret-sharings and on ctx and ctxs,
the parties obtain a subtractive secret-sharing of αi · (x · y) and αi · (x · y) · s for
every i ∈ {0, 1} without any interaction. This is exactly what we want.

Notice also that the values M ′i,i(y),M ′1−i,i(y) enjoy the same linear properties
as the BeDOZa-style MACs. Specifically, if we have two memory wires Mx and
My that are equipped with secret-sharings of αi · x · s and αi · y · s respectively,
we can equip their addition with analogous secret-sharings. Indeed,

M ′i,i(x) +M ′i,i(y) =
(
M ′i,1−i(x) +M ′i,1−i(y)

)
+ αi · (x+ y) · s.

To summarise, during the evaluation of an RMS program, each memory wire
My will be associated with subtractive secret-sharings of its value y, of y · s, of
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αi · y and of αi · y · s. So, each party Pi will hold a tuple(
yi, y

′
i,M0,i(y),M1,i(y),M ′0,i(y),M ′1,i(y)

)
such that

y1 − y0 = y, y′1 − y′0 = y · s,
Mi,i(y) = Mi,1−i(y) + αi · y, M ′i,i(y) = M ′i,1−i(y) + αi · y · s.

In order for the construction to be correct, we require t to be 2λ times larger
than αi · y · s. If this condition is not satisfied, we might not be able to convert
the secret-sharings over Zt output by the multiplication gates into subtractive
secret-sharings over Z. So, if we denote the bound of the RMS programs by B,
we need t to be greater than 2λ · nout ·B · `sk.

Designing a one-round setup procedure. The semi-honest HSS scheme described
in Section 5 already needed a setup phase that generated the ElGamal public
key and provided the parties with a subtractive secret-sharing of the private
counterpart. We also showed that it is possible for the parties to set up the
parameters using only one-round of interaction. In the protocol, each party Pi
sampled si at random in [`sk] and sent hi := gsi to the other player. The public
key was set to be h := h1/h0.

In the actively secure HSS protocol, the setup needs to perform some addi-
tional work. Indeed, we need to provide the parties with the material associated
with the initial memory wire M1, the one used to load the inputs into mem-
ory cells. The value associated with M1 is 1, the material associated with it is
subtractive secret-sharings of 1, s, αi and αi · s. Dealing the first three terms is
rather straightforward: the parties already know a subtractive secret-sharing of
s = s1 − s0, whereas subtractive secret-sharings of 1 and αi are trivially 1 and
0 and αi and 0. Deriving the last term is slightly more challenging.

In the solution we designed, each party Pi samples si ∈ [`sk] and sends
hi := gsi as in the semi-honest case. However, Pi also sends Ai := fαi · gri for
some ri uniformly sampled over [`]. After proving the well-formedness of these
messages using NIZKs, the parties derive the ElGamal public key h := h1/h0.
The parties are now able to compute a subtractive-secret-sharing of αi · s for
every i ∈ {0, 1}. Indeed, we have that

A
s1−i
i = fαi·s1−i · gri·s1−i = hri1−i.

Notice that the term on the left-hand side is known to P1−i, whereas hri1−i is
known to Pi. Using the NIDLS techniques, the parties are able to convert this
divisive secret-sharing of fαi·s1−i into a subtractive secret-sharing of αi · s1−i.
At this point, it is sufficient that party Pi add αi · si to its share.

On the NIZKs used in the setup procedure. The correctness of the HSS scheme
requires the MAC key αi and the share of the secret si to be bounded in size. In
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particular, the NIZK used in the setup procedure need to prove that Pi knows
si ∈ [`sk], αi ∈ [nout] and ri ∈ Z such that hi = gsi and Ai = fαi · gri .

We observe that gsi can be regarded as a commitment to si using the scheme
in Fig. 10. The peculiarities are that the role of C and g has been switched and
the randomness is set to 0. Party Pi can therefore use Πrange to prove that
si ∈ [`sk].

Proving the well-formedness of Ai is slightly more complex, but we can still
design efficient solutions. For instance, Pi can commit to αi and prove that its
value belongs to [0, nout − 1] using Πrange. Then, using procedures analogous to
those used in Πplain, it can show that the value hidden in Ai coincides with the
committed one. For more details on this protocol, we refer to Appendix A.6.

Active HSS Scheme ΠRMS – One-Round Setup

Setup:
1. The parties initialise FNIDLS-ZK to obtain par := (par′, g, ρ0, C, ρ1).

2. Each party Pi samples si ← [`sk] and αi
R← [nout].

3. Each party Pi sends hi ← gsi and Ai ← fαi · gri where ri
R← [`].

4. For every i ∈ {0, 1}, the parties call FNIDLS-ZK with public input
(range, Ai, B = nout − 1). The witness, provided by Pi, is (αi, ri). If
FNIDLS-ZK outputs 0, the parties abort.

5. For every i ∈ {0, 1}, the parties call FNIDLS-ZK with public input
(range, hi, B = `sk − 1) inverting the role of C and g. The witness, pro-
vided by Pi, is (si, 0). If FNIDLS-ZK outputs 0, the parties abort.

6. Each party Pi computes h← h1/h0 and sets pk← (par′, g, ρ, h).
7. The parties call the random oracle with input (h0, h1, A0, A1) to obtain

elements v0, v1 ∈ Zt. Each party Pi computes

α′i,i ← (−1)i ·
(
DDLogpar(h

ri
1−i)− αi · si

)
+ vi mod t,

α′1−i,i ← (−1)i · DDLogpar(A
si
1−i) + v1−i mod t.

Fig. 19. The active HSS scheme for RMS programs – one-round setup

Theorem 9. Assume that the parties are connected by an authenticated and
private channel. Let nout be a prime greater than 2λ and assume that t > 2λ ·
B · `sk · nout. If the DDH assumption and the small exponent assumption hold,
the protocol ΠRMS in Fig. 19 and Fig. 20 UC-implements the RMS functionality
FRMS in the FNIDLS-ZK-hybrid model with random oracle. Moreover, if FNIDLS-ZK

is implemented using only one round, the initialisation, the input procedure and
the evaluations in ΠRMS require only one round.

Proof. Observe that the simulator knows the view of the corrupted parties
thanks to FNIDLS-ZK. Indeed, if the protocol does not abort, the adversary pro-
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Active HSS Scheme ΠRMS – Two-Round MPC

Input:
The i-th party can input a value x ∈ [−nout/2, nout/2] as follows:

1. Pi sends ctx ← EG.Enc(pk, x; r) where r
R← [`].

2. Pi sends ctxs ← EG.SkEnc(pk, x; r) where r
R← [`].

3. The parties call FNIDLS-ZK with public input (input, ctx, ctxs, B = nout/2).
The witness is (x, r, r). If FSetup outputs 0, the parties abort.

4. The parties set Ix ← (ctx, ctxs).

Evaluation: The parties evaluate a RMS program P gate by gate as follows.
– Mx ← ConvertInput(Ix):

The parties define a memory wire M1. P0 assigns (0, s0, α0, 0, α
′
0,0, α

′
1,0)

to M1. P1 assigns (1, s1, 0, α1, α
′
1,0, α

′
1,1). The parties compute Mx ←

Mult(Ix,M1).

– Mz ← Add(Mx,My):
Each party Pi computes zi ← xi + yi, z

′
i ← x′i + y′i and, ∀j ∈ {0, 1},

Mj,i(z)←Mj,i(x) +Mj,i(y), M ′j,i(z)←M ′j,i(x) +M ′j,i(y).

Then, Pi assigns
(
zi, z

′
i,M0,i(z),M1,i(z),M

′
0,i(z),M

′
1,i(z)

)
to Mz.

– Mz ← Mult(Ix,My):
Let ctx = (c0, c1) and ctxs = (d0, d1). Let id be the label of the gate.
Each party Pi computes the following operations
1. The parties queries the random oracle with

(h0, h1, A0, A1, P, I
1, . . . , In, id) obtaining random u0, u1, u2, u3 ∈ Zt.

2. zi ← (−1)1−i · DDLog
(
cyi1 · c

−y′i
0

)
+ u0 mod t

3. z′i ← (−1)1−i · DDLog
(
dyi1 · d

−y′i
0

)
+ u1 mod t

4. ∀j ∈ {0, 1} : Mj,i(z) ← (−1)j−i · DDLog
(
c
Mj,i(y)

1 · c−M
′
j,i(y)

0

)
+

u2 mod t

5. ∀j ∈ {0, 1} : M ′j,i(z) ← (−1)j−i · DDLog
(
d
Mj,i(y)

1 · d−M
′
j,i(y)

0

)
+

u3 mod t
Then, Pi assigns

(
zi, z

′
i,M0,i(z),M1,i(z),M

′
0,i(z),M

′
1,i(z)

)
to Mz.

– Output(Mz): Each party Pi performs the following operations:
1. It sends zi mod nout and M1−i,i(z) mod nout.
2. It receives z1−i mod nout and Mi,1−i(z) mod nout.
3. It sets z ← z1 − z0 mod nout

4. If Mi,i(z) = Mi,1−i(z) + αi · z mod nout, it outputs z, otherwise it
aborts.

Fig. 20. The active HSS scheme for RMS programs – two-round MPC operations
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vides all the witnesses needed for the simulation. Consider the following sequence
of hybrids.

Hybrid 1. Suppose that Pi is honest. In this hybrid, the simulator sets
α′i,i ← α′i,1−i + αi · (s1 − s0) and α′1−i,i ← α′1−i,1−i − α1−i · (s1 − s0). This
hybrid is unconditionally indistinguishable from the real protocol. Indeed, for
every j ∈ {0, 1}

A
s1−j
j = fαj ·s1−j · grj ·s1−j = fαj ·s1−j · hrj1−j .

So, after applying DDLog on A
s1−j
j and h

rj
1−j , the parties obtain an additive

secret-sharing over Zt of αj · s1−j . After adjusting the signs, Pj adds αj · sj to
its value, obtaining a subtractive secret-sharing of αj · (s1 − s0).

The property is satisfied over Zt, however, we would like to obtain a sub-
tractive secret-sharing over Z. Observe that the shares are uniform over Zt due
to the rerandomisation with the random oracle. Since t > 2λ · B · ` · nout >
2λ · |αj · (s1 − s0)|, the probability that the difference between the shares wraps
around t is smaller than 2−λ, so, it is negligible. Therefore, with overwhelming
probability, α′j,j is equal to α′j,1−j + αj · (s1 − s0) even over Z. Notice that it
is fundamental that the query to the random oracle includes the messages sent
in the setup, so the adversary cannot pick its setup message as a function of
the random oracle output, as this could allow them to cause wrap-arounds and
compromise the correctness of the result.

Hybrid 2. Suppose that Pi is honest. In this hybrid, the simulator sets
Ai ← gri instead ofAi ← fx·gri . It simulates the following execution of FNIDLS-ZK

by sending 1 to the adversary. This hybrid is indistinguishable from the previous
one. Indeed, gri is statistically close to uniform over 〈g〉 and f ∈ 〈g〉.

Hybrid 3. Consider any evaluation of a B-bounded RMS program P with
n inputs. Let x1, . . . , xn be the values of the input wires. Notice that, for the
corrupted parties, these elements are provided to FNIDLS-ZK by the adversary, so
the simulator knows them. Consider the j-th output gate Mz of P for any j and
let z be the j-th entry of P (x1, . . . , xn). In this hybrid, if both parties are honest,
the simulator sets z1 ← z0 + z and, for every i ∈ {0, 1}, Mi,i(z) ← Mi,1−i(z) +
αi,i · z. If instead Pj is corrupted, the simulator selects z1−j ,M1−j,1−j(z) and
M ′j,1−j(z) so that z1−z0 = z and Mi,i(z) = Mi,1−i(z)+αi,i ·z for every i ∈ {0, 1}.

This hybrid is unconditionally indistinguishable from Hybrid 2. In order to
understand why, let us denote the value of the memory wire My in P (x1, . . . , xn)
by y. For every My, we have the following Z-linear relations

y1 − y0 = y, y′1 − y′0 = y · (s1 − s0),

Mi,i(y)−Mi,1−i(y) = αi · y, M ′i,i(y)−M ′i,1−i(y) = αi · y · (s1 − s0).

This condition is clearly true for the memory value M1, whose value is 1. It
is straightforward to see that if the property described above holds for memory
wires Mx and My, the condition is also satisfied by their addition.

For multiplications, notice that, for every (c0, c1) = (gr, fx · hx), (d0, d1) =
(gr ·f−x, hr) and v0, v1, v

′
0, v
′
1 such that v′1−v′0 = (s1−s0) ·v where v := v1−v0,
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we have

cv11 · c
−v′1
0 = cv0+v1 · c−v

′
0−(s1−s0)·v

0 =

= cv01 · c
−v′0
0 · fx·v · hr·v · g−r·v·(s1−s0) =

= fx·v · cv01 · c
−v′0
0 ,

dv11 · d
−v′1
0 = dv0+v1 · d−v

′
0−(s1−s0)·v

0 =

= dv01 · d
−v′0
0 · hr·v · g−r·v·(s1−s0) · fx·v·(s1−s0) =

= fx·v·(s1−s0) · dv01 · d
−v′0
0 .

So, by applying DDLog on cv11 ·c
−v′1
0 and cv01 ·c

−v′0
0 and on dv11 ·d

−v′1
0 and dv01 ·d

−v′0
0 ,

the parties obtain an additive secret-sharing over Zt of x · v and x · v · (s1 − s0),
respectively.

So, we conclude that the output wire Mz of the multiplication between Ix
and My is associated with elements satisfying

z1 − z0 = x · y, z′1 − z′0 = x · y · (s1 − s0),

Mi,i(z)−Mi,1−i(z) = αi · y · x, M ′i,i(z)−M ′i,1−i(z) = αi · y · x · (s1 − s0).

The operations described above hold over Zt, so they equalities may not hold
over Z when the shares are particularly close to t (i.e. when the operations wrap
around t). Notice however that, due to the rerandomisation using the random
oracle, the shares of the subtractive secret-sharings are all uniform over Zt. Since
t > 2λ ·B · ` ·nout > 2λ · |x · y ·αi · (s1− s0)|, the probability that a wrap-around
occurs is negligible, so, the equalities above hold also over the integers. Notice
that it is fundamental that the query to the random oracle includes the RMS
program and the input messages, so the adversary cannot pick its message as a
function of the random oracle output, as this could allow them to cause wrap-
arounds and compromise the correctness of the result.

Hybrid 4. Let Pi be a honest party. In this hybrid, the simulator samples
si uniformly over [`] and sets hi ← gs. This hybrid is indistinguishable from the
previous one by the small exponent assumption.

Hybrid 5. In this hybrid, the simulator sets ctx
R← EG.Enc(pk, 0), for every

input provided by honest parties. The subsequent verification of FNIDLS-ZK is
simulated by simply sending 1 to the adversary. This hybrid is indistinguishable
from the previous one by the IND-CPA security of ElGamal. Suppose that P1

is a honest party. In the reduction, after receiving an ElGamal public key h′

and a ciphertext ct = (c0, c1), we set h1 ← h′ and we wait for the adversary
to provide s0 to FNIDLS-ZK. Then, we set ctx ← (c0, c1 · c−s00 ). Notice that if
(c0, c1) = (gr, fx ·h′r), we have that c−s00 = h−r0 and so, c1 ·c−s00 = fx ·hr1 ·h−r0 =
fx · hr. A similar reduction can be done when P0 is honest (we need to ask for
the encryption of −x instead of x).

Hybrid 6. In this hybrid, the simulator sets ctxs ← (gr, gs) where r, s
R←

[`], for every input provided by honest parties. The subsequent verification of
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FNIDLS-ZK is simulated by simply sending 1 to the adversary. This hybrid is
indistinguishable from the previous one by the DDH assumption. Suppose that
P1 is a honest party. In the reduction, after receiving a triple (ga, gb, gc) where
c = a · b or c is random, we set h1 ← ga and we wait for the adversary to provide
s0 to FNIDLS-ZK. Then, we set ctxs ← (gb ·f−x, gc ·(gb)−s0). Notice that if c = a·b,
we have that gc · (gb)−s0 = (ga · g−s0)b = (h1/h0)b. If c is random, gc · (gb)−s0
is statistically close to uniform over 〈g〉 and independent of b. Since f ∈ 〈g〉 and
gb is also statistically close to uniform over 〈g〉, no adversary can distinguish
between (gb · f−x, gs) and (gr, gs). A similar reduction can be done when P0 is
honest.

Hybrid 7. Let Pi be a corrupted party. In this hybrid, the simulator lets the
functionality generate the outputs. Moreover, for every output wire Mz, the sim-
ulator computes zi mod nout and M1−i,i(z) mod nout. If, in the only round of the
evaluation, the adversary sends different values, the simulator makes the protocol
abort. Observe that the view of the adversary is independent of α1−i. Suppose
that the adversary sends z′i instead of zi mod nout, so ε := z′i − zi 6= 0 mod nout.
In order to make the final check of the honest party pass, the adversary needs
to send M1−i,i(z) − α1−i · ε instead of M1−i,i(z). Notice however, that α1−i · ε
is uniformly distributed over Znout from the adversary’s perspective. Therefore,
the probability that the check succeeds is 1/nout < 2−λ, which is negligible.

If the adversary sends zi mod nout along with a wrong MAC, the protocol
aborts with probability 1. We have proven that the interaction between the
functionality and the simulator in Hybrid 7 is indistinguishable from the real
protocol.
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A Sigma protocols in the NIDLS framework

In this appendix, we present public-coin honest-verifier zero-knowledge proto-
cols that can be used in our actively secure constructions. All the solutions
we describe work in the NIDLS framework without introducing instantiation-
dependent assumptions. For this reason, we had to rely on binary challenges,
which have the disadvantage of increasing the complexity by a factor of λ. We
highlight anyway, that, when tackling specific NIDLS instantiations, the proto-
cols described below can usually be substituted with more efficient constructions,
for instance using integral challenges.

A.1 Proof of knowledge of opening

In Fig. 21, we present a sigma protocol that, given a commitment X, proves the
knowledge of x, r ∈ Z such that X = Cx · gr. Sigma protocols for this kind of
relations are well known in cryptography: the prover starts by sending a random
commitment Y := Cy · gµ, the verifier replies with a random challenge e ∈ Z,
which the prover replies with z := y+e ·x and u := µ+e · r. The verifier accepts
if Y ·Xe = Cz · gu.

To adapt this to the NIDLS framework some modifications are necessary.
First of all, since the order of C and g are unknown, the values z and u sent
by the prover in the last round are integers. So, we obtain honest-verifier zero-
knowledge (HVZK) only if y and µ have sufficiently high entropy to hide the
witness (x, r). For this reason, given bounds B and ` on |x| and |r|, we sample y
uniformly over [2λ ·B] and µ uniformly over [2λ ·`]. Notice that we achieve HVZK
only if |x| < B and |r| < `. When we use this protocol in our constructions, it is
fundamental to choose sufficiently large B and `r, so that the protocol leaks no
information about the statements of honest parties.

The other difference with respect to the sigma protocol described above is
that we use binary challenges, i.e. e ∈ {0, 1}. In order to achieve proper sound-
ness, we therefore need to repeat the protocol λ times in parallel5. That blows
up the complexity by a factor of λ. The reason why we need binary challenges
is the fact that we want constructions that are secure independently on the
instantiation of the NIDLS framework. Specifically, when we deal with integral
challenges, it is possible to prove that the adversary knows e′, x′, u′ ∈ Z such that
Xe′ = Cx

′ · gu′ . In NIDLS instantiations, the order of C and g is unknown, so, if
e′ 6= 1, it is impossible for us to divide x′ and u′ by e′ and obtain x and u such
that X = Cx ·gu. Although there usually are ways around this issue, these often
rely on instantiation-dependent assumptions (such as the strong root problem
and the low order assumption for class groups).

Theorem 10. The construction Πcom in Fig. 21 is a complete and 2-special
sound proof for the relation

Rcom := {X, (x, r)|X = Cx · gr}.
5 We can do this because we care only about HVZK.
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Commitment ZK Proof Πcom

Crs:

1. par′ := (G,F,H, f, t, `, aux)
R← Gen(1lλ)

2. (g, ρ0)
R← D(1lλ, par)

3. (C, ρ1)
R← D(1lλ, par)

4. If C = g, go to step 3.
5. Output par := (par′, g, ρ0, C, ρ1)

Statement: X ∈ G
Witness: x, r ∈ Z such that X = Cx · gr.
Protocol:

1. The prover samples yi
R← [2λ ·B], µi

R← [2λ · `r] for every i ∈ [λ].
2. The prover sends Yi := Cyi · gµi for every i ∈ [λ].

3. The verifier sends e
R← {0, 1}λ.

4. The prover sends zi ← yi + ei · x and ui ← µi + ei · r for every i ∈ [λ].
5. The verifier accepts if Yi ·Xei = Czi · gui for every i ∈ [λ].

Fig. 21. Proof of knowledge of opening

If the witness (x, r) satisfies x ∈ [−B,B] and r ∈ [−`r, `r], the proof is also
honest-verifier zero-knowledge.

Proof. Completeness. It is straightforward to see that if X = Cx · gr,

Yi ·Xei = Cyi · gµi · Cei·x · gei·r = Cyi+ei·x · gµi+ei·r = Czi · gui .

Special Soundness. Suppose that we have two accepting transcripts with coin-
ciding first round messages and different challenges e and e′. Let (z,u) and
(z′,u′) be the corresponding last round messages. We know that there exists
an i ∈ [λ] such that ei = 1 and e′i = 0, or ei = 0 and e′i = 1. Without loss of
generality, we assume the first one (in the other case, we just switch the role of
two transcripts).

We know that

Yi ·X = Czi · gui , and Yi = Cz
′
i · gu

′
i .

We conclude that X = Czi−z
′
i · gui−u′i .

Honest-Verifier Zero-Knowledge. Assume that X = Cx · gr for some values x ∈
[−B,B] and r ∈ [−`r, `r]. The simulator samples a random challenge e ∈ {0, 1}λ

and values zi
R← [2λ ·B] and ui

R← [2λ · `r] for every i ∈ [λ]. Finally, it computes
Yi ← Czi · gui/Xei for every i ∈ [λ].
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The only difference between the transcript in the protocol and in the simu-
lation is the distribution of z and u. The total statistical distance between the
two cases is however upper bounded by 2λ/2λ, which is negligible. So the dis-
tributions are indistinguishable. Notice that e is distributed as in the protocol,
whereas, in both cases, Yi is the only value for which Yi ·Xei = Czi · gui .

A.2 Multiplication proof

The protocol Πmult described in Fig. 22 is used to convince a verifier holding
commitments X,Y and Z, that the prover knows x, y, z ∈ Z and r1, r2, r3 ∈ Z
such that X = Cx · gr1 , Y = Cy · gr2 , Z = Cz · gr3 and z = x · y. Our sigma
protocol Πmult uses the same techniques as [DF02]. Specifically, after proving the
knowledge of (x, r1) using the protocol from Appendix A.1, the prover sends a
commitment U := Cω · gµ and W := Xω · gν where ω, µ and ν are random. The
verifier sends then a challenge e, which the prover replies with w := ω + e · y,
u := µ+ e · r2 and v := ν+ e · (r3−y · r1). The verifier accepts if U ·Y e = Cw · gu
and W · Ze = Xw · gv. Indeed, notice that, if the prover is honest,

W · Ze = Xω · gν · Cx·y·e · gr3·e = Xω · gν · (Xy·e · g−r1·y·e) · gr3·e = Xw · gv.

Once again, we rely on binary challenges and repeat the proof λ times in parallel,
so that achieve security independently of the NIDLS instantiation. As before,
that blows up the complexity by a factor of λ. Moreover, since the order of C
and g may be unknown, we sample random ω, µ and ν that are 2λ times bigger
than |y|, |r2| and |r3− y · r1| respectively. When the witnesses do not satisfy the
expected bounds, the protocol is not guaranteed to satisfy HVZK.

Finally, we notice that if X = Y , the prover does not need to use the proof
described in the previous paragraph to prove the knowledge of (x, r). So, proving
squarings is slightly more efficient than proving multiplications.

Theorem 11. The construction Πmult described in Fig. 22 is a complete and
special-sound proof for the relation

Rmult :=


(X,Y, Z)

(x, y, z, r1, r2, r3)

∣∣∣∣∣∣∣∣∣
z = x · y
X = Cx · gr1

Y = Cy · gr2

Z = Cz · gr3


Moreover, if x, y ∈ [−B,B], r1, r2 ∈ [`r, `r] and r3 ∈ [−`′r, `′r], Πmult is also
honest-verifier zero-knowledge.

Proof. Completeness. We know that by the completeness of Πcom, the verifier
does not reject after the first 3 rounds. Moreover, we have

Ui · Y ei = Cωi · gµi · Cei·y · gei·r2 = Cωi+ei·y · gµi+ei·r2 = Cwi · gui
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Multiplication ZK Proof Πmult

Crs:

1. par′ := (G,F,H, f, t, `, aux)
R← Gen(1lλ)

2. (g, ρ0)
R← D(1lλ, par)

3. (C, ρ1)
R← D(1lλ, par)

4. If C = g, go to step 3.
5. Output par := (par′, g, ρ0, C, ρ1)

Statement: X,Y, Z ∈ G
Witness: x, y, z ∈ Z and r1, r2, r3 ∈ Z such that X = Cx · gr1 , Y = Cy · gr2 and
Z = Cz · gr3 .
Protocol:

1. If X 6= Y , use Πcom with input X and witness (x, r1), to prove the knowledge
of x and r1.

2. The prover samples ωi
R← [2λ ·B], µi

R← [2λ · `r] and νi
R← [2λ ·max(`′r, B · `r)]

for every i ∈ [λ].
3. The prover sends Ui := Cωi · gµi and Wi = Xωi · gνi for every i ∈ [λ].

4. The verifier sends e
R← {0, 1}λ.

5. The prover sends wi ← ωi+ei·y and ui ← µi+ei·r2 and vi ← νi+ei·(r3−y·r1)
for every i ∈ [λ].

6. The verifier accepts if Ui · Y ei = Cwi · gui and Wi ·Zei = Xwi · gvi for every
i ∈ [λ].

Fig. 22. Honest-verifier zero-knowledge proof for multiplications

and

Wi · Zei = Xωi · gνi · Cei·z · gei·r3 =

= Xωi · gνi ·Xei·y · g−ei·y·r1 · gei·r3 =

= Xωi+ei·y · gνi+ei·(r3−y·r1) = Xwi · gvi .

So the verifier never rejects when the parties are all honest.

Special Soundness. If X 6= Y , by the special soundness of Πcom, we can extract
x and r1 such that X = Cx · gr1 . In order to do that, we need two accept-
ing transcripts with coinciding first round message and different second-round
challenges.

Now, suppose we have two additional accepting transcripts with coinciding
messages in the first 3 rounds and different challenges e and e′ in the fourth
round. Let (w,u,v) and (w′,u′,v′) be the corresponding last round messages.
We know that there exists an i ∈ [λ] such that ei = 1 and e′i = 0, or ei = 0 and

65



e′i = 1. Without loss of generality, we assume the first one (in the other case, we
just switch the role of two transcripts).

We have that

Ui = Cw
′
i · gu

′
i and Ui · Y = Cwi · gui ,

so Y = Cwi−w
′
i · gui−u′i . Moreover, Wi = Xw′i · gv′i and Wi · Z = Xwi · gvi , so

Z = Xwi−w′i · gvi−v
′
i = Cx·(wi−w

′
i) · gr1·(wi−w

′
i) · gvi−v

′
i .

The extractor can therefore set y := wi − w′i, z := x · y or z := y2 if X = Y ,
r2 := ui − u′i and r3 := r2 + r1 · y and output the witness (x, y, z, r1, r2, r3).

Honest-Verifier Zero-Knowledge. Suppose that x, y ∈ [−B,B], r1, r2 ∈ [−`r, `r]
and r3 ∈ [−`′r, `′r].

Hybrid 1. By the honest-verifier zero-knowledge of Πcom, we can consider
the hybrid in which we substitute the messages in the first three rounds with
simulated ones. Clearly, the adversary cannot distinguish between Hybrid 1 and
the real protocol.

Hybrid 2. Now, consider the case in which the simulator takes a random

challenge e
R← {0, 1}λ and samples wi

R← [2λ · B], ui
R← [2λ · `r] and vi

R←
[2λ ·max(`′r, B · `r)] for every i ∈ [λ]. The simulator then sets Ui ← Cwi ·gui/Y ei
and Wi ← Xwi · gvi/Zei for every i ∈ [λ].

The only difference between Hybrid 1 and Hybrid 2 is the distribution of
wi, ui and vi. In all three cases, the statistical distance is upper bounded by
2 · 2−λ, which is negligible. Hence, no adversary can distinguish between Hybrid
1 and Hybrid 2. Notice that in this stage, the transcript is generated without
using the witness.

A.3 Range proof

The protocol Πrange described in Fig. 23, we present a public-coin honest-verifier
zero-knowledge range proof. Specifically, given a commitment X and a bound
B ∈ N, the protocol proves the knowledge of x ∈ [0, B] and r ∈ Z such that
X = Cx ·gr. Our solution is based on the following observation by Groth [Gro05].

Lemma 4. Let B ∈ N be a positive integer, a value x ∈ Z belongs to [0, B] if
and only if there exist integers x1, x2, x3 ∈ Z such that

1 + 4x · (B − x) =
3∑
i=1

x2i .

Moreover, if that is the case, xi ∈ [−2B, 2B] for every i ∈ {1, 2, 3}.

Moreover, the elements x1, x2 and x3 are efficiently computable. So, in order
to prove that x ∈ [0, B], the prover just needs to commit to x1, x2, x3 and
x21, x

2
2, x

2
3, x

2. Using multiplication proofs (or better, squaring proofs), it shows
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Range Proof Πrange

Crs:

1. par′ := (G,F,H, f, t, `, aux)
R← Gen(1lλ)

2. (g, ρ0)
R← D(1lλ, par)

3. (C, ρ1)
R← D(1lλ, par)

4. If C = g, go to step 3.
5. Output par := (par′, g, ρ0, C, ρ1)

Statement: X ∈ G and B ∈ N
Witness: x ∈ [0, B] and r ∈ Z such that X = Cx · gr.
Protocol:

1. Compute x1, x2, x3 ∈ [0, 2B] such that 1 + 4x · (B − x) = x21 + x22 + x23.

2. The prover samples r1, r2, r3, s, s2, s3
R← [`] and s1

R← [2λ ·max(`, B · `r)].
3. The prover sends S ← Cx

2

· gs and Xi ← Cxi · gri and Si ← Cx
2
i · gsi for

i = 1, 2, 3.
4. Use Πmult to prove that S is a commitment to x2 and Si is a commitment to

x2i for i = 1, 2, 3.
5. The prover sends w ← 4s− 4B · r + s1 + s2 + s3.
6. The verifier accepts if S1 · S2 · S3 · S4 ·X−4B = C · gw.

Fig. 23. Honest-verifier zero-knowledge range proof

the correctness of these commitments. Finally, using the linear properties of the
scheme, it derives a commitment to x21 + x22 + x23 + 4x2 − 4B · x and proves that
it opens to 1.

Our solution is honest-verifier zero-knowledge as long as the witness r belongs
to [−`r, `r] for some public bound `r ∈ N. When we use this protocol in our
constructions, it is fundamental to choose a sufficiently large `r, so that the
protocol leaks no information about the statements of honest parties.

Theorem 12. If the commitment scheme in Fig. 10 is hiding and binding, the
construction Πrange described in Fig. 23 is a complete and special-sound proof
for the relation

Rrange :=
{

(X,B), (x, r)
∣∣x ∈ [0, B], X = Cx · gr

}
.

Moreover, if r ∈ [−`r, `r], Πrange is honest-verifier zero-knowledge.

Proof. Completeness. Since x ∈ [0, B], it is possible for the prover to compute
in polynomial time integers x1, x2, x3 ∈ [0, 2B] such that 1 + 4x · (B − x) =
x21 + x22 + x23. By the completeness of Πmult, the verifier does not reject in Πmul.
Moreover, we have that

S1 · S2 · S3 · S4 ·X−4B = Cx
2
1+x

2
2+x

2
3+4x2−4B·x · gs1+s2+s3+4s−4B·r = C · gw.
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Special Soundness. By the special soundness of Πmult, the extractor is able to
obtain integers x, x1, x2, x3 and r, r1, r2, r3, s1, s2, s3 such that

X = Cx · gr, X1 = Cx1 · gr1 , X2 = Cx2 · gr2 , X3 = Cx3 · gr3 ,

S = Cx
2

· gs, S1 = Cx
2
1 · gs1 , S2 = Cx

2
2 · gs2 , S3 = Cx

2
3 · gs3 .

Now, if we consider any of the accepting transcripts obtained by the extractor,
we have that S1 · S2 · S3 · S4 ·X−4B = C · gw, hence

Cx
2
1+x

2
2+x

2
3+4x2−4B·x · gs1+s2+s3+4s−4B·r = C · gw.

If x21 + x22 + x23 + 4x2− 4B · x 6= 1, we would know how to open the commitment
C · gw to two different values. That contradicts the binding properties of the
commitment scheme, hence

x21 + x22 + x23 = 1 + 4x · (B − x).

By lemma 4, we conclude that x ∈ [0, B].

Honest-Verifier Zero Knowledge. Assume that r ∈ [−`r, `r]. We proceed by a
series of indistinguishable hybrids.

Hybrid 1. In this hybrid, we generate the transcript used in Πmult using
the correspondent simulator. By the honest-verifier zero-knowledge of Πmult, no
adversary can distinguish between the real transcript from the one in Hybrid 1.

Hybrid 2. In this hybrid, the simulator samples w
R← [2λ · max(`, B · `r)].

Then, it sets S1 ← X4B ·C ·gw/(S2 ·S3 ·S4). The rest of the transcript is generated
as in Hybrid 1. The only difference between this hybrid and the previous one
is the distribution of w. The statistical distance between the two cases is how-
ever dominated by 10 · 2−λ which is negligible. So, no adversary can distinguish
between Hybrid 1 and Hybrid 2.

Hybrid 3. In this hybrid, the simulator sets S := gs, S2 := gs2 , S3 := gs3 ,
X1 ← gr1 , X2 ← gr2 , X3 ← gr3 . The rest of the transcript is generated as in
Hybrid 2. Observe that no PPT adversary can distinguish between Hybrid 2 and
Hybrid 3, by the hiding properties of the commitment scheme.

Observe that the transcript in Hybrid 3 can be generated without using the
witness.

A.4 Proof of commitment to the plaintext

The protocol Πplain described in Fig. 24 allows, given a commitment X and a pair
of elements (D,E) in the NIDLS group, to prove that X is a commitment to the
plaintext in (D,E). Specifically, the protocol proves the knowledge of x, r, s ∈ Z
such that X = Cx · gs, D = gr and E = fx · Cr.

Sigma protocols that proves this kind of relations are rather common: the
prover starts by sending Y := Cy · gµ, U := gν and V := fy ·Cν where y, µ and
ν are random. The verifier chooses a challenge e ∈ Z, which the prover answers
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Plaintext Commitment Proof Πplain

Crs:

1. par′ := (G,F,H, f, t, `, aux)
R← Gen(1lλ)

2. (g, ρ0)
R← D(1lλ, par)

3. (C, ρ1)
R← D(1lλ, par)

4. If C = g, go to step 3.
5. Output par := (par′, g, ρ0, C, ρ1)

Statement: D,E,X ∈ G
Witness: x ∈ Z and r, s ∈ Z such that X = Cx · gs, D = gr and E = fx · Cr.
Protocol:

1. The prover samples yi
R← [2λ · B], µi

R← [2λ · `r]and νi
R← [2λ · `′r] for every

i ∈ [λ].
2. The prover sends Yi ← Cyi · gµi , Ui ← gνi and Vi ← fyi · Cνi for every

i ∈ [λ].

3. The verifier sends e
R← {0, 1}λ.

4. The prover sends zi ← yi + ei · x, ui ← µi + ei · s and vi ← νi + ei · r for
every i ∈ [λ].

5. The verifier accepts if Yi ·Xei = Czi ·gui , Ui ·Dei = gvi and Vi ·Eei = fzi ·Cvi
for every i ∈ [λ].

Fig. 24. Honest-verifier zero-knowledge plaintext commitment proof

with z := y + e · x, u := µ + e · s and v := ν + e · r. The verifier accepts if
Y ·Xe = Cz · gu, U ·De = gv and V · Ee = fz · Cv.

Our solution, which we denote by Πplain, differs from the one described above
in the use of binary challenges, as we want to achieve security independently of
the NIDLS instantiation. Since usually we do not know the order of C and g,
we also need to sample random y, µ and ν that are 2λ times bigger than |x|, |s|
and |r| respectively. When the witnesses do not satisfy the expected bounds, the
protocol is not guaranteed to satisfy HVZK.

The construction is honest-verifier zero-knowledge as long as x ∈ [−B,B],
r ∈ [−`r, `r] and s ∈ [−`′r, `′r] for some public bounds B, `r and `′r. When we use
this protocol in our constructions, it is fundamental to choose sufficiently large
B, `r and `′r, so that the protocol leaks no information about the statements of
honest parties.

Theorem 13. The construction Πplain described in Fig. 24 is a complete and
2-special sound proof for the relation

Rplain :=
{

(D,E,X), (x, r, s)
∣∣X = Cx · gs, D = gr, E = fx · Cr

}
.

69



Moreover, if x ∈ [−B,B], s ∈ [−`r, `r] and r ∈ [−`′r, `′r], Πplain is honest-verifier
zero-knowledge.

Proof. Completeness. The verifier never rejects when the prover is honest. In-
deed,

Yi ·Xei = Cyi · gµi · Cei·x · gei·s = Czi · gui ,
Ui ·Dei = gνi · gei·r = gvi ,

Vi · Eei = fyi · Cνi · fei·x · Cei·r = fzi · Cvi .

Special Soundness. Suppose that the extractor is provided with two accepting
transcripts coinciding until the second last round and having different challenges
e and e′. Let (z,u,v) and (z′,u′,v′) be the corresponding last round messages.
We know that there exists an i ∈ [λ] such that ei = 1 and e′i = 0, or ei = 0 and
e′i = 1. Without loss of generality, we assume the first one (in the other case, we
just switch the role of two transcripts).

We know that

Yi = Cz
′
i · gu

′
i , Ui = gv

′
i , Vi = fz

′
i · Cv

′
i ,

Yi ·X = Czi · gui , Ui ·D = gvi , Vi · E = fzi · Cvi .

So, X = Czi−z
′
i · gui−u′i , D = gvi−v

′
i and E = fzi−z

′
i · Cvi−v′i .

Honest-Verifier Zero-Knowledge. Assume that x ∈ [−B,B], s ∈ [−`r, `r] and

r ∈ [−`′r, `′r]. Consider the simulator that takes a random challenge e
R← {0, 1}λ

and samples zi
R← [2λ · B], ui

R← [2λ · `r] and vi
R← [2λ · `′r] for every i ∈ [λ].

Then, it sets Yi ← Czi · gui ·X−ei , Ui ← gvi ·D−ei and Vi ← fzi ·Cvi ·E−ei for
every i ∈ [λ]. Notice that this hybrid is indistinguishable from the real protocol.
Indeed, the only difference between the two transcripts is the distributions of zi,
ui and vi. In all of the three cases, however, the statistical distance is bounded
by 2−λ, which is negligible. So, no adversary can distinguish between protocol
and simulation. Observe that the simulated transcript can be generated without
knowing the witness.

A.5 Proof of well-formed inputs

In Fig. 25, we present a sigma protocol proving the well-formedness of the
input messages in the HSS scheme of Section 8. Specifically, given a tuple
(h,D,E,D,E) of elements in the NIDLS group and B ∈ N, the construction
proves the knowledge of x ∈ [−B,B] and r, r ∈ Z such that D = gr, D = gr ·f−x,
E = fx · hr and E = hr. The protocol is honest-verifier zero-knowledge as long
as r, r ∈ [−`, `].
Theorem 14. The construction Πinput described in Fig. 25 is a complete and
special sound proof for the relation

Rinput :=

(h,D,E,D,E,B), (x, r, r)

∣∣∣∣∣∣∣
x ∈ [−B,B],

D = gr, E = fx · hr,
D = gr · f−x, E = hr

 .
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Proof of well-formed input Πinput

Crs:

1. par′ := (G,F,H, f, t, `, aux)
R← Gen(1lλ)

2. (g, ρ0)
R← D(1lλ, par)

3. (C, ρ1)
R← D(1lλ, par)

4. If C = g, go to step 3.
5. Output par := (par′, g, ρ0, C, ρ1)

Statement: h,D,E,D,E ∈ G, B ∈ N
Witness: x ∈ [−B,B] and r, r ∈ Z such that D = gr, D = gr · f−x, E = fx · hr
and E = hr.
Protocol:

1. The prover samples s
R← [`] and sends X ← Cx · gs.

2. The parties run Πrange with input X · CB and bound 2B. The witness is
(x+B, s).

3. The prover samples yi
R← [2λ ·B], µi, νi, νi

R← [2λ · `] for every i ∈ [λ].
4. The prover sends, for every i ∈ [λ],

Yi ← Cyi · gµi , Ui ← gνi , Vi ← fyi · hνi ,

U i ← gνi · f−x, V i ← hνi .

5. The verifier sends e
R← {0, 1}λ.

6. The prover sends zi ← yi + ei · x, ui ← µi + ei · s, vi ← νi + ei · r and
vi ← νi + ei · r for every i ∈ [λ].

7. The verifier accepts if, for every i ∈ [λ],

Yi ·Xei = Czi · gui , Ui ·Dei = gvi , Vi · Eei = fzi · hvi ,

U i ·D
ei = gvi · f−zi , V i · E

ei = hvi

Fig. 25. Honest-verifier zero-knowledge proof of well-formed inputs
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Moreover, if r, r ∈ [−`, `], Πinput is honest-verifier zero-knowledge.

Proof. Completeness. The verifier never rejects when the prover is honest. In-
deed, by the completeness of Πrange, the verifier can reject only at the end.
Moreover,

Yi ·Xei = Cyi · gµi · Cei·x · gei·s = Czi · gui ,
Ui ·Dei = gνi · gei·r = gvi ,

Vi · Eei = fyi · hνi · fei·x · hei·r = fzi · hvi ,
U i ·D

ei
= f−yi · gνi · f−ei·x · gei·r = f−zi · gvi ,

V i · E
ei

= hνi · hei·r = hvi .

Special Soundness. By the special soundness of Πrange, the extractor is able to
retrieve x ∈ [−B,B] and s ∈ Z such that X · CB = Cx+B · gs.

Now, suppose that the extractor is provided with two accepting transcripts
coinciding until the second last round and having different challenges e and e′.
Let (z,u,v,v) and (z′,u′,v′,v′) be the corresponding last round messages. We
know that there exists an i ∈ [λ] such that ei = 1 and e′i = 0, or ei = 0 and
e′i = 1. Without loss of generality, we assume the first one (in the other case, we
just switch the role of two transcripts).

We know that

Yi = Cz
′
i · gu

′
i , Yi ·X = Czi · gui ,

Ui = gv
′
i , Vi = fz

′
i · hv

′
i , Ui ·D = gvi , Vi · E = fzi · hvi

U i = f−z
′
i · gv

′
i , V i = hv

′
i , U i ·D = f−zi · gvi , V i · E = hvi .

So,

X = Czi−z
′
i · gui−u

′
i , D = gvi−v

′
i , E = fzi−z

′
i · hvi−v

′
i ,

D = f−(zi−z
′
i) · gvi−v

′
i , E = hvi−v

′
i .

Since X = Cx · gs, by the binding properties of the commitment scheme in
Fig. 10, it must be that zi − z′i = x.

Honest-Verifier Zero-Knowledge. Assume that r, r ∈ [−`, `]. Consider the fol-
lowing series of hybrids.

Hybrid 1. In this hybrid, we generate the transcript in Πrange using the
corresponding simulator. By the honest-verifier zero-knowledge of Πrange, no ad-
versary can distinguish between this hybrid and the real protocol.

Hybrid 2. In this hybrid, the simulator takes a random challenge e
R← {0, 1}λ

and samples zi
R← [2λ ·B] and ui, vi, vi

R← [2λ · `] for every i ∈ [λ]. Then, it sets,
for every i ∈ [λ],

Yi ← Czi · gui ·X−ei , Ui ← gvi ·D−ei , Vi ← fzi · hvi · E−ei ,

U i ← f−zi · gvi ·D−ei , V i ← hvi · E−ei .
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Proof of small MAC key ΠMAC

Crs:

1. par′ := (G,F,H, f, t, `, aux)
R← Gen(1lλ)

2. (g, ρ0)
R← D(1lλ, par)

3. (C, ρ1)
R← D(1lλ, par)

4. If C = g, go to step 3.
5. Output par := (par′, g, ρ0, C, ρ1)

Statement: A ∈ G, B ∈ N
Witness: x ∈ [0, B] and r ∈ Z such that A = fx · gr.
Protocol:

1. The prover samples s
R← [`] and sends X ← Cx · gs.

2. The parties run Πrange with input X and bound B. The witness is (x, s).

3. The prover samples yi
R← [2λ ·B], µi, νi

R← [2λ · `] for every i ∈ [λ].
4. The prover sends Yi ← Cyi · gµi and Vi ← fyi · gνi for every i ∈ [λ].

5. The verifier sends e
R← {0, 1}λ.

6. The prover sends zi ← yi + ei · x, ui ← µi + ei · s and vi ← νi + ei · r for
every i ∈ [λ].

7. The verifier accepts if Yi ·Xei = Czi · gui and Vi · Aei = fzi · gvi for every
i ∈ [λ].

Fig. 26. Honest-verifier zero-knowledge proof of small MACs

Notice that this hybrid is indistinguishable from Hybrid 1. Indeed, the only
difference between the two transcripts is the distributions of zi, ui, vi and vi. In
all of the three cases, however, the statistical distance is bounded by 2−λ, which
is negligible.

Hybrid 3. In this hybrid, the simulator sends X ← gs instead of Cx ·gs. This
hybrid is indistinguishable from the previous one by the hiding properties of the
commitment scheme in Fig. 10. Observe that, now, the simulated transcript can
be generated without knowing the witness.

A.6 Proof of well-formed MAC keys

In Fig. 26, we present a sigma protocol proving the well-formedness of the mes-
sages encoding the MAC key in the active HSS scheme of Section 8. Specifically,
given a group element A and a bound B ∈ N, the construction proves the knowl-
edge of x ∈ [0, B] and r ∈ Z such that A = fx ·gr. The protocol is honest-verifier
zero-knowledge as long as r ∈ [−`, `].
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Theorem 15. The construction ΠMAC described in Fig. 26 is a complete and
special sound proof for the relation

RMAC := {(A,B), (x, r)|x ∈ [0, B], A = fx · gr} .

Moreover, if r ∈ [−`, `], ΠMAC is honest-verifier zero-knowledge.

Proof. Completeness. The verifier never rejects when the prover is honest. In-
deed, by the completeness of Πrange, the verifier can reject only at the end.
Moreover,

Yi ·Xei = Cyi · gµi · Cei·x · gei·s = Czi · gui ,
Vi ·Aei = fyi · gνi · fei·x · gei·r = fzi · gvi .

Special Soundness. By the special soundness of Πrange, the extractor is able to
retrieve x ∈ [0, B] and s ∈ Z such that X = Cx · gs.

Now, suppose that the extractor is provided with two accepting transcripts
coinciding until the second last round and having different challenges e and e′.
Let (z,u,v) and (z′,u′,v′) be the corresponding last round messages. We know
that there exists an i ∈ [λ] such that ei = 1 and e′i = 0, or ei = 0 and e′i = 1.
Without loss of generality, we assume the first one (in the other case, we just
switch the role of two transcripts).

We know that

Yi = Cz
′
i · gu

′
i , Yi ·X = Czi · gui , Vi = fz

′
i · gv

′
i , Vi ·A = fzi · gvi .

So, X = Cz−i−z
′
i ·gui−u′i and A = fzi−z

′
i ·gvi−v′i . Since X = Cx·gs, by the binding

properties of the commitment scheme in Fig. 10, it must be that zi − z′i = x.

Honest-Verifier Zero-Knowledge. Assume that r ∈ [−`, `]. Consider the following
series of hybrids.

Hybrid 1. In this hybrid, we generate the transcript in Πrange using the
corresponding simulator. By the honest-verifier zero-knowledge of Πrange, no ad-
versary can distinguish between this hybrid and the real protocol.

Hybrid 2. In this hybrid, the simulator takes a random challenge e
R← {0, 1}λ

and samples zi
R← [2λ · B] and ui, vi

R← [2λ · `] for every i ∈ [λ]. Then, it sets
Yi ← Czi · gui ·X−ei and Vi ← fzi · gvi for every i ∈ [λ]. Notice that this hybrid
is indistinguishable from Hybrid 1. Indeed, the only difference between the two
transcripts is the distributions of zi, ui and vi. In all of the three cases, however,
the statistical distance is bounded by 2−λ, which is negligible.

Hybrid 3. In this hybrid, the simulator sends X ← gs instead of Cx ·gs. This
hybrid is indistinguishable from the previous one by the hiding properties of the
commitment scheme in Fig. 10. Observe that, now, the simulated transcript can
be generated without knowing the witness.

74


	An Algebraic Framework for  Silent Preprocessing with Trustless Setup and Active Security
	Introduction
	Our Contributions
	An Overview of the Framework

	Notation and Preliminaries
	Homomorphic Secret-Sharing
	Pseudorandom Correlation Functions

	A Group-Theoretic Framework
	Assumptions

	Instantiations of the Framework
	Paillier and Damgård-Jurik
	Joye-Libert Variants
	Class Groups

	HSS Constructions
	NIDLS ElGamal
	Public-Key HSS
	Implementing the Setup Using One Round.

	Public-Key PCFs and One-Round VOLE Protocol without Trusted Setup
	Public-Key PCFs without Trusted Setup.

	Actively Secure Public-Key PCFs
	An Integer Commitment Scheme in the NIDLS Framework
	Zero-Knowledge Proofs in the NIDLS Framework
	Actively Secure Public-Key PCF for Vector-OLE
	Actively secure public-key PCF for oblivious transfer

	Active HSS Protocol
	Sigma protocols in the NIDLS framework
	Proof of knowledge of opening
	Multiplication proof
	Range proof
	Proof of commitment to the plaintext
	Proof of well-formed inputs
	Proof of well-formed MAC keys



