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Abstract. Base64 encoding has been a popular method to encode bi-
nary data into printable ASCII characters. It is commonly used in several
serialization protocols, web, and logging applications, while it is often-
times the preferred method for human-readable database fields. However,
while convenient and with a better compression rate than hex-encoding,
the large number of base64 variants in related standards and proposed
padding-mode optionality have been proven problematic in terms of se-
curity and cross-platform compatibility. This paper addresses a potential
attack vector in the base64 decoding phase, where multiple different en-
codings can successfully decode into the same data, effectively breaking
string uniqueness guarantees. The latter might result to log mismatches,
denial of service attacks and duplicated database entries, among the
others. Apart from documenting why canonicity can be broken by a
malleable encoder, we also present an unexpected result, where most
of today’s base64 decoder libraries are not 100% compatible in their
default settings. Some surprising results include the non-compatible be-
havior of major Rust base64 crates and between popular Javascript and
NodeJS base64 implementations. Finally, we propose ways and test vec-
tors for mitigating these issues until a more permanent solution is widely
adopted.
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1 Introduction

1.1 Base64 encoding description

Base64 encoding offers a way to represent binary data in readable format using
printable ASCII characters. Such representation is particularly common for ex-
changing binary data over emails and web pages, and is the recommended way
by the developer community to add binary data into JSON data structures [15].
For instance, base64 encoded data (e.g. images) can be embedded inline in text
documents [5]. Note that this encoding is not an encryption scheme, which is a
common misconception in the developer community [6].

Essentially, base64 encoding divides a group of 24-bit binary data into four
6-bit chunks, where each chunk is mapped to a printable ASCII character, as
shown in Table 1. However, as the encoded binary data might not always be a
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multiple of 24, special padding characters (=) is usually used, resulting in a total
of 64 + 1 unique characters used in base64 representations.

Base64 is encountered in several application-specific variations [11,7,8,4,1],
with RFC4648 [9] commonly referenced as its standard. However, this plethora
of available variations exacerbates the problems we discuss later in this paper.

Similarly to base64, base58 [12] was introduced to further improve read-
ability by removing similarly-looking characters (e.g. zero “0” with capital “o”,
lowercase “L” with capital “i” etc.) as well as a few alphanumeric characters.
However, the removal of 6 characters slightly reduced compression, while due
to the fact that the 58 is not a power of 2, parsing is considered to be about
2% slower. The primary application of base58 is binary-to-text address encoding
in Bitcoin [13], but still base64 is the preferred method for compressed human
readable string representation of bytes in most other applications, when better
than hexadecimal (base16) compression is required.

However, as we realized in practice, base64 decoder implementations are in-
consistent across various systems, programming languages and software libraries.
Another major reason causing confusion is the extensive use of expressions like
‘one MAY ignore the pad character’ and similar “optionality” features in the re-
lated standardization documents [9]. Unfortunately, this is an observed pattern
in the majority of RFCs across multiple domains and along with non-existent
public test vectors covering exploitable edge cases, many serious security and
incompatibility issues have been recently reported in cryptography related stan-
dards [3]. In this paper, we identify such inconsistencies in some of the most
popular base64 implementations, highlight potential real-world attacks due to
implementation incompatibilities and canonicity misconceptions; and finally pro-
pose appropriate mitigations and test vectors to compare library behaviors.

Table 1. Base64 mapping table

Binary
Data

Char Binary
Data

Char Binary
Data

Char Binary
Data

Char

000000 A 010000 Q 100000 g 110000 w
000001 B 010001 R 100001 h 110001 x
000010 C 010010 S 100010 i 110010 y
000011 D 010011 T 100011 j 110011 z
000100 E 010100 U 100100 k 110100 0
000101 F 010101 V 100101 l 110101 1
000110 G 010110 W 100110 m 110110 2
000111 H 010111 X 100111 n 110111 3
001000 I 011000 Y 101000 o 111000 4
001001 J 011001 Z 101001 p 111001 5
001010 K 011010 a 101010 q 111010 6
001011 L 011011 b 101011 r 111011 7
001100 M 011100 c 101100 s 111100 8
001101 N 011101 d 101101 t 111101 9
001110 O 011110 e 101110 u 111110 +
001111 P 011111 f 101111 v 111111 /
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1.2 Related works

We now review a number of related works on base64. Concurrently with our
work, a recent whitepaper from SANS Institute [6] highlights several potential
security issues associated with using base64. These issues include developer mis-
conceptions that base64 offers cryptographic encryption rather than encoding,
exposed passwords in web-based base64 authentication, embedding Javascript
in URLs and cross-site scripting. Another potential problem with base64 is that
it can potentially facilitate data leakage from an organization (since base64 data
format might not be immediately detected), or even harming intellectual rights,
e.g. by prepending spaces in binary data which would result in a totally different
base64 encoding. Also in an interesting twist, although base64 itself is not an
encryption scheme, [19] considered using base64 encodings in conjunction with
Caesar cipher for securing video files. Also, [17] discusses how to expose naive
attempts to use base64 encodings as an encryption method.

Works more broadly related to base64 encoding include base64 implementa-
tion in PHP [18], a variation of base64 for encoding URLs [16], using base64 as a
compression method when used along with encryption algorithms such as AES
to improve their efficiency [14] and in X.509 digital certificates and cryptographic
keys PEM formats [10].

2 Inconsistencies and Attacks

In the previous section we discussed how the absence of canonicity in base64 de-
coding results in inconsistent implementations. Briefly, although correct base64
encoding implementations will always produce consistent and unique string re-
sults, it is possible for multiple base64 decoders to either ignore padding bits
completely or even omit checking whether padding was applied correctly. It is
also highlighted that apart from the “=” padding symbol(s) at the end of (some)
base64 strings, because each base64 character represents 6-bits of information,
any binary input whose length is not a multiple of 6, is padded with zero bits,
until it gets 6-bit aligned. For instance, the 32-bit hex value 0x433356c1 nor-
mally encodes into QzNWwQ==; note that 32 is not divided by 6 and a correct
encoder adds 4 zero bits at the end of the binary to make it 6-bit aligned.

However, a base64 decoder decodes into actual bytes (8-bit aligned). An
observed issue in our experiments is that padding truncation happens blindly in
some implementations and they do not check if the padding bits were all zeros.
For instance, the following strings:

QzNWwQ== (010000 110011 001101 010110 110000 010000 in binary)
QzNWwc== (010000 110011 001101 010110 110000 011100 in binary)

will be successfully decoded to the same data if the last 4 zero padding bits check
gets omitted. Obviously, in the above example QzNWwc== is padded incorrectly
as the last 4 bits of the last 6 bit chunk should be zero.

In Table 2 we show a number of tests we performed for a variety of pro-
gramming or scripting languages and systems. We specifically used the binary
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Table 2. Base64 decodings on test vectors

Test vector SGVsbG8= SGVsbG9= SGVsbG9 SGVsbA== SGVsbA= SGVsbA SGVsbA====

PHP Hello Hello Hello Hell Hell Hell Hell

PHP
(strict)

Hello Hello Hello Hell - Hell -

Go Hello Hello illegal
base64 data

Hell illegal
base64 data

illegal
base64 data

illegal
base64 data

Haskell
(base64-
bytestring)

Hello non-
canonical
encoding
detected

bytestring is
unpadded or
has invalid
padding

Hell bytestring is
unpadded or
has invalid
padding

bytestring is
unpadded or
has invalid
padding

bytestring is
unpadded or
has invalid
padding

Ruby Hello Hello Hello Hell Hell Hell -

JS Hello Hello Hello Hell exception Hell exception

nodejs Hello Hello Hello Hell Hell Hell Hell

C# Hello Hello Invalid
length

Hell Invalid
length

Invalid
length

not a valid
Base-64
string

OCaml Hello Hello Wrong
padding

Hell Wrong
padding

Wrong
padding

Too much
input

Perl Hello Hello Hello Hell Hell Hell Hell

R Hello Hello Hello Hell Hell Hell Hell

OpenSSL Hello Hello - Hell - - -

MySQL Hello Hello NULL Hell Hell Hell -

Windows
PS

Hello Hello Invalid
length

Hell Invalid
length

Invalid
length

not a valid
Base-64
string

Unix Hello Hello invalid input Hell invalid input invalid input invalid input

Python Hello Hello incorrect
padding

Hell incorrect
padding

incorrect
padding

Hell

Rust
(crate
base64
0.1.0)

Hello Hello Hello Hell Hell Hell Hell

Rust
(crate
base64
0.13.0)

Hello Invalid Last
Symbol

Invalid Last
Symbol

Hell Hell Hell Invalid byte

Rust
(crate
base64ct
1.3.3)

Hello Invalid En-
coding

Invalid En-
coding

Hell Invalid En-
coding

Invalid En-
coding

Invalid En-
coding

representations of the words ‘Hello’ and ‘Hell’ as test vectors, as they normally
require different number of padding “=” symbols and we could cover different
padding handling combinations, including incorrectly non-zeroized padding bits
and omitted or exceeded “=” symbols.

From this Table, we show that it is possible to slightly alter the base64-
encoded data and still achieve the same decoded output. This can be an impor-
tant attack vector in some languages used in back-end web development such
as PHP, and our tests show that default base64 decoding logic does not han-
dle any padding inconsistencies. In the opposite, some languages and libraries
are quite resistant and reject most malleable-ized base64 encoded inputs. For
instance, Haskell and Rust’s base64ct crate v.1.3.3 decoding implementations
throw appropriate errors in all of our malleable-ized test vectors. We also note
as interesting observations the different behavior between NodeJS and JS, as
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well as the different behavior among different libraries or even different version
updates of the same library, as highlighted in the case of Rust.

As a result, a “malicious” base64 implementation could potentially encode
the same data in a different way and alter some of the last characters of the origi-
nal base64 output, without the application realizing the difference. For instance,
one could potentially use a malicious base64 encoder in web-based ticketing ap-
plications, and buy multiple tickets for free if the database uses base64 string
for unique ticketIDs [2]. In fact, many developers prefer human-readable unique
IDs (for monitoring and logging purposes) and base64 is usually the preferred
method, unfortunately under the assumption that base64 is always canonical. In
short, in databases where their base64-encoded userIDs are exposed, an attacker
(or internal actor) can potentially read a userID and insert multiple copies of
the same user by just slightly altering padding bits, and thus bypassing the log-
ical database’s primary key uniqueness rules. In an another example, suppose
there is a custom digital certificate repository, where certificates are validated for
uniqueness based on their base64-encoded binary string, and because commu-
nity utilizes PEM formats [10], one could alter the certification’s base64 string
representation. Using such attacks, one can re-register the same certificate. An-
other possible attack is intentionally bypassing checks against logs: altering a
keyword’s base64 encoding would no longer match that keyword against that
log, effectively bypassing any idempotency checks.

No canonicity in base64 decoding implies another denial of service attack
vector: one could replace a “=” padding character with many “=” (as shown in
one of the test vectors of Table 2), possibly making a huge (e.g. several Gigabyte)
base64 string being accepted, which would still decode into the same just a few
bits data. If the size-check happens on the decoded output, the service might
store an inappropriate amount of data.

Similarly, base64 non-canonicity might affect other serialization standards
and proposals as well. An example is canonical JSON, where it is a common
practice that binary data is encoded to base64 first. That would imply that
malicious users could send two or more different JSONs representing the exact
same object/data ad thus bypassing some of the rules, such as JSON hash for
the same object being inconsistent. Along the same lines, if one is interested in
non-malleable signatures (i.e., in some blockchains), ideally a provably canonical
serialization engine should be used. All in all, the community should be better
educated to design systems secure against malicious encoders when canonicity
is an important feature.

To sum up, our test vectors show that many programming languages and sys-
tems are particularly susceptible to decoding malleability attacks. Another inter-
esting finding is Python’s default relaxed behavior of completely ignoring invalid
base64 characters during decoding (e.g., both SGVsbA==== and SGVsb<A=>===

decode into Hell, since > and < are not part of base64 character set); a fea-
ture which if not properly addressed in Python applications, could cause further
malleability issues. It is actually interesting that many implementations have an
api for strict decoding, which unfortunately does not refer to canonicity, but
rather it only checks for non-base64 characters. On the other hand, as previously
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discussed, some languages and libraries (e.g. Haskell and Rust’s base64ct crate)
are particularly sensitive, and thus indicate a more secure implementation.

3 Mitigation proposals

From the previous section we saw that base64 decoding malleability, where many
different base64-encoded strings can decode into the same binary data, is an at-
tack vector that has not been addressed properly so far by the community, thus
highlighting the importance of canonicity or at least cross-platform compatibil-
ity. Therefore, in general, developers should never assume that there is an unique
match between a binary input and its base64 representation, as multiple base64
encoded strings may represent the same value, and should never rely on a unique
“1-1” property to secure their system. For instance, a database administrator
should not use base64-encoded strings as primary keys, especially when those
strings are received from external users. Still developers should prefer utilizing a
more “malleability-resistant” library if it exists (e.g. prefer base64ct over base64
library in Rust).

Also, we observe the most popular RFC4648 standard for base64 leaves a
large room for different implementation variations [9]. For instance, it defines
the use of padding as optional (paragraph 3.2), providing the option to ignore
the padding character or the excess padding during decoding (paragraph 3.3),
and giving decoders the option to accept or reject inputs if the pad bits have not
been properly set to zero (paragraph 3.5). Not mandating a specific behavior
while providing such a wide range of implementation choices is problematic and
we consider it as a bad practice [3]. Therefore, we recommend RFC standards
to follow a stricter set of rules (or if optionality is really required, we should
encourage standardizing different modes as well), while also including a set of
failed test vectors and potential edge cases.

Another potential mitigation method, specifically when a canonical imple-
mentation is not available, would be to perform an additional check: re-encode
the received decoded binary data, then check byte equivalence with the original
input base64; if they do not match, then this indicates a malleability scenario.
However, this additional cycle might be particularly costly in certain scenarios.

In a nutshell, a more permanent mitigation strategy would be to encourage
(or enforce) strict and canonical checking in decoding implementations, by vali-
dating padding bits as well. Although this might have a slight negative impact
on efficiency, the security benefits would be much more important by addressing
the root of the problem.

4 Conclusions

In this paper we performed a short survey on various base64 decoding implemen-
tations, and showed how different programming languages and systems have col-
liding decoded outputs for different base64 encoded strings, or detect anomalies
and throw exceptions, thus minimizing the attack surface. We should highlight
that similar types of potential malleability attacks might exist in other data
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representation methods as well, e.g. when representing hexadecimal values with
uppercase, lowercase or a mix of uppercase and lowercase letters.

We also believe that RFC standards should be written in a strict and precise
format, without leaving room for “options” and avoiding words like “may or
optionally” [9]. Our suggestion is to use different identifiers for separate standard
if these various different ways of implementation need to be maintained.

Finally, we hope our paper will raise awareness of the associated security
implications in the short term, as well as serve as a pathway towards perma-
nently addressing those issues in the long term, by enforcing correct validation
of padding bits across all languages and systems.
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A Test vector generation

Example library invocations for base64 decoders.

Ruby
require "base64"

Base64.decode64("SGVsbG8=")

NodeJS
Buffer.from("SGVsbG8=", "base64").toString()

C#
Convert.FromBase64String ("SGVsbG8=");

Php
print base64 decode("SGVsbG8=")

Haskell
Prelude Data.ByteString.Base64> decode "SGVsbG8="

Rust
let encoded = "SGVsbG8=";

let decoded = Base64::decode vec(&encoded).unwrap();

Windows Powershell
[System.Text.Encoding]::ASCII.GetString ([System.Convert]::FromBase64String

("SGVsbG8="))

Unix
echo ’SGVsbG8=’ | base64 --decode
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