
Linear Private Set Union from Multi-Query Reverse Private
Membership Test

Cong Zhang1,2, Yu Chen3,4,5(B), Weiran Liu6, Min Zhang3,4,5, and Dongdai Lin1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of
Sciences, Beijing 100093, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China
{zhangcong,ddlin}@iie.ac.cn

3 School of Cyber Science and Technology, Shandong University, Qingdao 266237, China
4 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

5 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong
University, Qingdao 266237, China

yuchen.prc@gmail.com, zm_min@mail.sdu.edu.cn
6 Alibaba Group

weiran.lwr@alibaba-inc.com

Abstract. Private set union (PSU) protocol enables two parties, each holding a set, to com-
pute the union of their sets without revealing anything else to either party. So far, there are
two known approaches for constructing PSU protocols. The first mainly depends on additively
homomorphic encryption (AHE), which is generally inefficient since it needs to perform a non-
constant number of homomorphic computations on each item. The second is mainly based on
oblivious transfer and symmetric-key operations, which is recently proposed by Kolesnikov et
al. (ASIACRYPT 2019). It features good practical performance, which is several orders of mag-
nitude faster than the first one. However, neither of these two approaches is optimal in the sense
that their computation and communication complexity are not both O(n), where n is the size
of the set. Therefore, the problem of constructing the optimal PSU protocol remains open.
In this work, we resolve this open problem by proposing a generic framework of PSU from obliv-
ious transfer and a newly introduced protocol called multi-query reverse private membership
test (mq-RPMT). We present two generic constructions of mq-RPMT. The first is based on
symmetric-key encryption and general 2PC techniques. The second is based on re-randomizable
public-key encryption. Both constructions lead to PSU with linear computation and communi-
cation complexity.
We implement our two PSU protocols and compare them with the state-of-the-art PSU. Exper-
iments show that our PKE-based protocol has the lowest communication of all schemes, which
is 3.7 − 14.8× lower depending on set size. The running time of our PSU scheme is 1.2 − 12×
faster than that of state-of-the-art depending on network environments.

1 Introduction

Private set union (PSU) enables two parties, each holding a private set of elements, to compute
the union of the two sets while revealing nothing more than the union itself. PSU and its variants
have numerous applications [LV04, HLS+16, RMY20, BS05, KS05, KRTW19, GMR+21, JSZ+22].
An important PSU application is IP blacklist and vulnerability data aggregation [HLS+16, RMY20].
Consider two organizations (i.e. the maintainers of the IP blacklists) want to compute their IP blacklist
joint list, which will help minimize vulnerabilities in their infrastructure. However, it is not secure to
let the organizations simply exchange their blacklists because each individual IP blacklist is generated
according to the detection strategy formulated by the maintainer and cannot be leaked. Note that a
curious organization may infer the detection strategy of another organization from the IP address in
the intersection. Therefore, it is important to hide the intersection, which is exactly the functionality
of PSU.

Another killer application of PSU is to construct Private-ID protocol [BKM+20, GMR+21]. The
Private-ID protocol enables two parties, each holding a private set of items, to privately compute
a set of random universal identifiers (UID) corresponding to the records in the union of their sets,
where each party additionally learns which UIDs correspond to which items in its set but not if they



belong to the intersection or not. The main use of Private ID is to realize data alignment, that is,
both parties can sort their private data according to these universal identifiers. They can then proceed
item-by-item, doing any desired private computation. Garimella et al. [GMR+21] gave a modular way
to construct Private ID from Obivious PRF (OPRF) and PSU. Their experiments showed that the
bottleneck of their Private ID is the underlining PSU instantiations.

In addition, PSU applications also include information security risk assessment [LV04], joint graph
computation [BS05], distributed network monitoring [KS05], building block for private DB supporting
full join [KRTW19] etc.

Over the last decade, there has been a significant amount of work on private set operation, espe-
cially private set intersection (PSI) [FNP04, PSZ14, KKRT16, PRTY19, CM20, PRTY20]. We refer the
reader to [PSZ18] for an overview of different PSI paradigms. State-of-the-art semi-honest PSI proto-
cols in the two-party setting [KKRT16, PRTY19, CM20, RS21, GPR+21] all mainly rely on symmetric-
key operations, except for a few base OT operations in OT extension protocol [IKNP03, KK13]. Let
n denote the size of input set, the communication complexity of these OT-based PSI protocols has
been improved from initial nonlinear O(n log n) [PSZ14, PSSZ15, KKRT16] to linear complexity O(n)
[PRTY19, FNO19, GN19, CM20, RS21, GPR+21].

1.1 Motivation

In contrast to the affairs of PSI, the efficiency of the state-of-the-art PSU is less satisfactory. Roughly,
there are two known approaches for constructing PSU protocols. The first is mainly based on public-
key techniques. Existing constructions along this approach [KS05, Fri07, HN10, SM18] have to perform
a non-constant number of additively homomorphic encryption (AHE) operations on each set element,
rendering the overall protocols inefficient. The other is mainly based on symmetric-key techniques
in combination with OT [KRTW19, GMR+21, JSZ+22], which is several orders of magnitude faster
than AHE-based constructions. However, neither of the two approaches is optimal in the sense that
their computation and communication complexity are not both O(n), where n is the size of the set.
We note that [DC17] is the work closest to optimal bound, but its communication and computation
complexity additionally depend on the statistical security parameter λ. This leaves the following open
problem:

Can we construct PSU protocols with linear computation and communication complexity?

1.2 Our Contribution

In this paper, we answer this question affirmatively in the semi-honest setting. Our contribution can
be summarized as follows:

1. We revisit the PSU protocol [KRTW19] (KRTW protocol for short hereafter) in depth. Roughly,
KRTW protocol is built upon two building blocks, namely oblivious transfer (OT) and reverse
private membership test (RPMT). We figure out the root causing KRTW protocol non-optimal is
that RPMT has linear communication complexity and super-linear computation complexity, and
it has to be carried out n times independently, where n is the size of sender’s private set.

2. To achieve linear complexity, we propose a new framework for constructing PSU protocols. The
core building block is a newly introduced protocol called multi-query RPMT (mq-RPMT). We
identify and overcome several technical difficulties for building optimal mq-RPMT, and give two
realizations of mq-RPMT. Both the two concrete mq-RPMT protocols achieve linear communica-
tion and computation complexity.

3. We further abstract a new primitive called membership encryption (ME), which broadens the scope
of the candidate encryption scheme, unifies our two constructions, and halves the communication
complexity of our SKE-based construction on receiver side.

4. Combining OT and the above mq-RPMT, we eventually obtain SKE-based and PKE-based PSU
protocols with optimal complexity for the first time. Experiments show that our PKE-based proto-
col has the lowest communication of all schemes, which is 3.7−14.8× lower depending on set size.
The running time of our PSU scheme is 1.2 − 12× faster than that of state-of-the-art depending
on network environments. In addition to our scheme, we also use Silent OT [BCG+19, YWL+20]
to optimize the scheme of [GMR+21, JSZ+22], and provide different parameter selection of Ferret
OT [YWL+20].
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Figure 1 depicts the technical overview of our new PSU framework. We elaborate the details in
the next subsection.
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Fig. 1: Technical overview of our new PSU framework. The new primitives and functionalities are marked with
rectangles.

1.3 Overview of Our Techniques

We provide the high-level technical overview for our new framework of PSU protocol.

KRTW protocol revisit. Our starting point is the recent PSU protocol of Kolesnikov et al.
[KRTW19]. The core of KRTW protocol is a subprotocol called reverse private membership test
(RPMT), which can test whether a sender’s element y belongs to the receiver’s input set X, and let
the receiver obtain the result. After that, both parties execute OT protocol to let the receiver obtain
{y} ∪X. The computation cost of original RPMT [KRTW19] is O(n log2 n) and the communication
cost is O(n). For the purpose of computing the set union, the parties need to execute RPMT n times
independently, which results in O(n2) communication and O(n2 log2 n) computation. The complexity
can be further reduced to O(n log n) and O(n log n log log n) separately via hash to bin technology,
but it is still super-linear. The bottleneck of the KRTW protocol is exactly RPMT.
Zoom in on the original RPMT. The original RPMT protocol employs an oblivious PRF (OPRF)
functionality Foprf and a private equality test (PEQT) functionality Fpeqt. In OPRF, the sender
learns a random PRF key k and the receiver learns the PRF output Fk(y1), . . . , Fk(yn) on its inputs
y1, . . . , yn ∈ Y . In PEQT, the functionality receives two strings from the receiver and the sender
respectively and tells the receiver whether the two strings are equal. Their RPMT uses an indication
string s to indicate the membership of X.

More precisely, their RPMT protocol executes as follows with sender S’s input y and receiver
R’s input X = {x1, . . . , xn}: S and R execute the OPRF protocol first. The receiver R receives a
PRF key k. The sender S inputs y, and receives q∗ = Fk(y). Next, R chooses a random indication
string s. Then, R computes and sends the interpolation polynomial P which passes through points
{(xi, s ⊕ Fk(xi))}i∈[n] to the sender. After receiving P , S computes s∗ := q∗ ⊕ P (y). Now, S and R
invoke the Fpeqt-functionality with input s∗ and s separately. Finally, R receives output from Fpeqt.

If y ∈ X, i.e., there exists an xi such that y = xi, then we have s∗ = q∗⊕P (y) = Fk(xi)⊕P (xi) = s.
If y /∈ X, then q∗ = Fk(y) is pseudorandom, which implies that s∗ = q∗⊕P (y) ̸= s with overwhelming
probability.

To identify the root of the inefficiency of the original RPMT protocol, we first try to interpret it at
an abstract level. Our first key observation is that the polynomial actually plays the role of oblivious
key-value store (OKVS). Our second key observation is that the usage of OPRF is three-fold. Firstly,
R uses an OPRF to derive n pseudorandom one-time pads, then encrypts the same indication string
into n ciphertexts under these one-time pads. Secondly, S utilizes OPRF to decrypt a ciphertext
obliviously. Finally, OPRF provides OKVS with randomness to ensure the correctness of the protocol.
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Based on the above new interpretation, we are ready to describe our new mq-RPMT protocol in
an incremental way over the original RPMT protocol.

Enhanced oblivious key-value store. One reason that accounts for the super-linear complexity of
the original RPMT protocol is that the polynomial related operations are costly. More precisely, the
complexity of polynomial interpolation is O(n log2 n), and the amortized complexity of polynomial
evaluation is O(log2 n). According to our first observation, polynomial essentially plays the role of
OKVS. This greatly increases the space of the concrete mapping schemes that can be used. A drop-in
replacement of polynomial with more efficient OKVS candidates can reduce the computation com-
plexity immediately. However, as we observed before, an additional randomness property should be
satisfied now, since we do not use OPRF to provide randomness anymore. To achieve this goal, we
enhance OKVS in two aspects: efficiency and security. (See Section 2.5 for the details.)

Oblivious decryption-then-matching. Another reason that accounts for the super-linear complex-
ity is that the original RPMT protocol is one-time in nature. To see this, note that in the original
RPMT protocol S learns the purported indication string. This design lets S learn more information
than needed, and is exactly the reason that hinders multi-query. For example, if there are two distinct
elements belonging to R’s set, then S will obtain the same indication string. This will let S know that
the two elements belong to the intersection, which violates security.

Based on the above discussion, the rough idea of making RPMT support multi-query is to encode
the ciphertext of indication string in OKVS instead of the indication string itself. In this way, S will
obtain some ciphertexts (i.e. the value of OKVS(y)), andR has the corresponding key. We need to letR
decrypt these ciphertexts, and match the results with the indication string. A naive attempt is to have
S directly send the ciphertexts to R, and in the sequel, R tries to decrypt and match. However, this
rough idea is problematic since it is insecure even against a semi-honest receiver. Consider R records
the correspondence between xi and OKVS(xi). In this way, R is able to learn S’s private input y by
simple look-up when y ∈ X, rather than merely the fact that y ∈ X. We overcome this difficulty in two
steps. The first step is to re-factor the functionality of OPRF to encryption and oblivious decryption
functionality. Let R encrypt the indication string locally. Then R computes the corresponding OKVS
and sends it to S. To ensure the overall protocol still constitutes an RPMT protocol, the second step
is to merge the oblivious decryption functionality and PEQT into a new functionality, namely, vector
oblivious decryption-then-matching (VODM) functionality. In this functionality, the sender inputs a
vector of ciphertexts and the receiver inputs a key and a plaintext. The functionality decrypts these
ciphertexts with the key and matches the results with the plaintext input by the receiver. If it matches,
the receiver outputs 1, and outputs 0 otherwise.

Putting all the pieces together, we can build mq-RPMT protocol from OKVS, encryption, and
VODM functionality in a modular way. (See Section 3 for the technical details).

Two generic constructions of mq-RPMT. Our first generic construction chooses probabilistic
SKE as the encryption scheme, and resorts to general 2PC to implement the VODM functionality.
See Section 4.1 for details. Our second generic construction chooses re-randomizable PKE as the
encryption scheme and uses re-randomization technique to implement VODM functionality, without
resorting to generic 2PC.

Our idea is to let S re-randomize all the ciphertexts and then send the results to R. In this way,
R fulfills the decryption-then-matching functionality in an oblivious manner for all yi ∈ X. We note
that this method will leak some information of y /∈ X, however, as observed by KRTW, this leakage
does not cause any harm to the PSU, since the PSU protocol releases that value anyway.

Looking ahead, one may doubt our PKE-based scheme is inefficient. We note that our PKE-
based scheme can still be very efficient because we use PKE techniques in an entirely different way
compared to prior PKE-based protocol [KS05, Fri07, DC17]. We only need to perform the encryption,
rerandomization, and decryption operations per item, while they need to carry out many ciphertext
homomorphism operations per item. See Section 4.2 for details.

Optimization with membership encryption. In the above framework, the underlying encryption
schemes must be probabilistic to make the security proof go through. As a consequence, this incurs
considerable overhead on communication costs due to ciphertext expansion. Observe that the VODM
functionality reveals only one-bit information for every ciphertext. A second thought indicates that
a full-fledged encryption scheme might be overkill for our construction of mq-RPMT protocol, and
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a new type of encryption scheme suffices. We propose the new encryption scheme as membership
encryption (ME).

We sketch the definition of ME in the symmetric key setting as below. Let X be a string set.
The encryption algorithm takes a key k and an element xi ∈ X as inputs, outputs a ciphertext c.
The decryption algorithm takes a key k and a ciphertext c as inputs, outputs a bit to indicate if
the encrypted element belongs to X. For the correctness, we require that for any xi ∈ X and any
c← Enc(k, xi), we have Dec(k, c) = 1. The security requirement is multi-element pseudorandomness,
namely, {Enc(k, xi)}xi∈X are computationally indistinguishable to Cn, i.e. the uniform distribution
over ciphertext space. The consistency requirement is that a random ciphertext decrypts to “0” with
overwhelming probability.

Membership encryption distills the right functionality we need for an encryption scheme in mq-
RPMT protocol. It not only encompasses the constructions from randomized SKE and PKE in a
unified manner, but also admits new construction from deterministic SKE, which enjoys compact
ciphertext. As we elaborate in Section 4.3, this new construction helps to halve the communication
complexity on the receiver side.

1.4 Related Work

We survey existing PSU protocols with security against semi-honest adversaries. Hereafter, unless
otherwise declared, we calculate the efficiency by assuming a balanced setting, namely the sets of
both sender and receiver are of size n.

Kissner and Song [KS05] proposed the first PSU protocol based on polynomial representations and
additively homomorphic encryption (AHE). The polynomial representation of a set is to represent a
set by a polynomial f , in which each set item is the root of the polynomial. The main observation
of them is that when the set of two parties is represented by polynomials f and g, the root of fg
is exactly the union items. Two parties compute the AHE of fg. Before decryption, they execute a
reduction step to reduce the degree of roots. Then they decrypt the resulting polynomial and compute
the roots to obtain the union. The communication and computation complexity of the protocol are
both quadratic to the set size n, and the efficiency is very low due to the use of expensive AHE.

Frikken [Fri07] first uses polynomial representation to represent the receiver’s set X as a poly-
nomial f , then encrypt f via AHE, and let the receiver send the resulting polynomial encryption
Enc(f) to the sender. Using additive homomorphic property, the sender computes the encryption of
(yEnc(f(y)),Enc(f(y))) for all y ∈ Y and sends back to the receiver. The receiver decrypts these
ciphertexts. As we can see, y ∈ X if and only if f(y) = 0, receiver obtains two ciphertexts of 0, which
contain no information about y. For y /∈ X, f(y) ̸= 0, the receiver decrypts (yEnc(f(y)),Enc(f(y)))
and computes y := yf(y) · (f(y))−1. The communication of this PSU protocol is linear with input size
O(n), however, the computation cost is expensive due to the multi-point evaluation on the encrypted
polynomial, which is O(n log log n).

Davidson and Cid [DC17] proposed a linear communication PSU based on Bloom Filter (BF) and
AHE. The receiver first computes the BF of its input set X with λ hash functions and XORs the all-1
string with BF. Then he encrypts this reversed BF with an AHE and sends it to the sender. For each
item y in the sender’s set, the sender computes λ positions of BF with the same hash functions, and
then adds the ciphertexts of corresponding positions. Let c denote the sum of these ciphertexts, the
sender computes (c, yc) and sends it back to the receiver. The receiver decrypts these ciphertexts. Note
that for y ∈ X, all the λ positions of BF is 0, the receiver obtains (0, 0). For y /∈ X, the ciphertext c
is not an encryption of 0, the receiver could obtain the corresponding y. The communication of this
PSU protocol is also linear with input size O(n). However, the computation cost is O(λ) public-key
operations per item. The total computation is O(λn), which leads to low efficiency.

Garimella et al. [GMR+21] recently proposed a new PSU protocol based on oblivious switching.
The main construction of them is a permuted characteristic functionality Fpc. In this functionality, the
sender inputs the set X = {x1, . . . , xn} and gets a permutation π over [n] as the output. The receiver
inputs the set Y and gets a vector e ∈ {0, 1}n, where ei = 1 if xπ(i) ∈ Y and ei = 0 otherwise. After
that, both parties invoke n instances of OT to let the receiver obliviously retrieve items outside Y . Their
core construction of Fpc needs an oblivious switching network (OSN) subprotocol [MS13]. However,
this OSN protocol also leads to a super-linear O(n log n) communication. In their construction, the

5



receiver has to compute a degree-3n interpolation polynomial. By using the hash to bin technology,
the computational complexity is O(n log n).

Jia et al. [JSZ+22] proposed two shuffle-based PSU protocols. The core primitive of their construc-
tion is also the oblivious switching network (OSN) subprotocol [MS13] (they called Permute + Share
subprotocol), thus the performance of their protocols are similar to that of [GMR+21].

Other PSU protocols focus on multi-party settings [KS05, HKK+11, BA12, SCK12], malicious
settings [Fri07, HN10, SCK12] and computation with untrusted third party’s help [Bf12, CPPT14,
SM18]. All of the above constructions rely heavily on expensive AHE or zero-knowledge proof, which
are out of the scope of our consideration.

Table 1 provides an asymptotic comparison of our design with the previous PSU works. We note
that although the complexity of our SKE-based scheme is also related to t, where t is the number of
AND gates in an SKE decryption circuit, we emphasize that t is a constant which is independent of n,
that is, t remains the same no matter how n changes. In this sense, the complexity of our SKE-based
scheme is strictly linear in n, though in practice t is larger than log n. We leave the construction of a
linear SKE-based PSU with a concrete complexity smaller than log n to future work.

Protocol Communication Computation

[KS05] O(κ3n2) O(n2) pub

[Fri07] O(κn) O(n log logn) pub

[DC17] O(κλn) O(λn) pub

[KRTW19] O(κn logn) O(n logn log log n) sym

[GMR+21] O(κn logn) O(n logn) sym

[JSZ+22] O(κn logn) O(n logn) sym

Our SKE-based O((κ+ t)n) O(tn) sym

Our PKE-based O(κn) O(n) pub

Table 1: Asymptotic communication and computation costs of two-party PSU protocols in the semi-honest
setting.
Pub: public-key operations; sym: symmetric cryptographic operations. n is the size of the parties’ input sets.
κ and λ are computational and statistical security parameter respectively (typically κ = 128 and λ=40). t is
the number of AND gates in an SKE decryption circuit. We ignore the pub-key cost of κ base OTs.

2 Preliminaries

2.1 Notation

We denote the parties as receiver R and sender S, and their respective input sets as X and Y with
|X| = nx and |Y | = ny. In the balanced setting, we often just assume that n = nx = ny. We use κ and
λ to denote the computational and statistical security parameters, respectively. We use [n] to denote
the set {1, 2, . . . , n}. For a bit string v we let vi denote the ith bit. We use F2σ to denote finite field
composed of all σ-long bit strings. We say that a function f is negligible in κ if it vanishes faster than
the inverse of any polynomial in κ, and write it as f(κ) = negl(κ). We use the abbreviation PPT to

denote probabilistic polynomial-time. By a
R←− A, we denote that a is randomly selected from the set

A, a ← A(x) denotes that a is the output of the randomized algorithm A on input x, and a := b
denotes that a is assigned by b.

2.2 Security Model

This work, similar to most protocols for private set operation, operates in the semi-honest model,
where adversaries may try to learn as much information as possible from a given protocol execution
but are not able to deviate from the protocol steps. This is in contrast to malicious adversaries which
are able to deviate arbitrarily from the protocol. PSU protocols for the malicious setting exist, e.g.,
[KS05, Fri07, HN10, BA12, SCK12], but they are less efficient than protocols for the semi-honest
setting.

6



Semi-honest security. We use the standard security definition for two-party computation [Gol04]
in this work.

Definition 1. Let viewΠ
S (X,Y ) and viewΠ

R(X,Y ) be the views of S and R in the protocol, and let
output(X,Y ) be the output of both parties in protocol. A protocol Π is said to securely compute func-
tionality f in the semi-honest model if for every PPT adversary A there exists a PPT simulator SimS
and SimR such that for all inputs X and Y ,

{viewΠ
S (X,Y ), output(X,Y )} ≈c {SimS(X, f(X,Y )), f(X,Y )}

{viewΠ
R(X,Y ), output(X,Y )} ≈c {SimR(Y, f(X,Y )), f(X,Y )}

2.3 Encryption Schemes

Our construction requires some encryption schemes. We use the standard definition of symmetric-
key encryption (SKE) and re-randomizable public-key encryption (ReRand-PKE) schemes. For our
purpose, we require a case-tailored security notion called single-message multi-ciphertext pseudoran-
domness. We give these definitions in Appendix A.

2.4 Oblivious Transfer

Oblivious transfer (OT) [Rab05] is an important cryptographic primitive used in various multiparty
computation protocols.

We define the functionality of 1-out-of-2 OT in Figure 2.

Parameters: Sender S, Receiver R, message length κ
Functionality:

– Wait for input b ∈ {0, 1} from the receiver R.
– Wait for input (x0, x1) from the sender S.
– Give xb to the receiver R.

Fig. 2: 1-out-of-2 Oblivious Transfer Functionality Fot

2.5 Oblivious Key-Value Stores

A key-value store [PRTY20, GPR+21] is simply a data structure that maps a set of keys to corre-
sponding values. The definition is as follows:

Definition 2 (Key-Value Store). A key-value store is parameterized by a set K of keys, a set V of
values, and a set of function H, and consists of two algorithms:

– EncodeH({(x1, y1), . . . , (xn, yn)}): on input key-value pairs {(xi, yi)}i∈[n] ⊆ K × V, outputs an
object D (or, with statistically small probability, an error ⊥).

– DecodeH(D,x) : on input D and a key x, outputs a value y ∈ V.

Correctness. For all A ⊆ K × V with distinct keys:

(x, y) ∈ A and ⊥̸= D ← EncodeH(A) =⇒ DecodeH(D,x) = y

Obliviousness. For all distinct {x0
1, . . . , x

0
n} and all distinct {x1

1, . . . , x
1
n}, if EncodeH does not output

⊥ for {x0
1, . . . , x

0
n} or {x1

1, . . . , x
1
n}, then the distribution of {D|yi ← V, i ∈ [n],EncodeH((x0

1, y1), . . . , (x
0
n, yn))}

is computationally indistinguishable to {D|yi ← V, i ∈ [n],EncodeH((x1
1, y1), . . . , (x

1
n, yn))}.

A key-value store is an oblivious key-value store (OKVS) if it satisfies the obliviousness property.
Intuitively, obliviousness means that when value is randomly selected, the distribution of D is

independent from key’s set. In addition, our application requires OKVS to meet the Randomness
property defined below to argue the correctness of our scheme.
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Randomness. For anyA = {(x1, y1), . . . , (xn, yn)} and x∗ /∈ {x1, . . . , xn}, the output of DecodeH(D,x∗)
is statistically indistinguishable to that of uniform distribution over V, where D ← EncodeH(A).

The efficiency of an OKVS scheme can be measured by following three parameters:

– Rate: Let ratio n/m be the rate of key-value store, where m is the size of object D. Note that
the optimal rate is 1.

– Encoding complexity: The computational cost of the EncodeH algorithm, as a function of the
number n of key-value pairs.

– Decoding complexity: The computational cost of the DecodeH algorithm.

We investigated the existing schemes and found that the main candidates for OKVS are: Poly-
nomial, Garbled Bloom Filter (GBF) [DCW13] and Garbled Cuckoo Table (GCT) [PRTY20, RS21,
GPR+21] etc. We give the general introduction and detailed comparisons of above OKVS in Appendix
B.1.

Before instantiation, 3H-GCT recently proposed by Garimella et al. [GPR+21] could be a good
candidate, which has linear encoding complexity O(n) and a rate of 0.81. However, we find that the
original 3H-GCT did not meet the Randomness we defined before because it was set to 0 in some
positions of D. To solve this problem, a natural idea is to set random values in these positions like
[RS21] does. We call this modified 3H-GCT as 3H-GCT++ and give the formal description in Figure
3. We give a proof that our 3H-GCT++ satisfies obliviousness and randomness in Appendix B.2.

2.6 Private Set Union

PSU is a special case of secure two-party computation. The ideal functionality for PSU is given in
Figure 4.

3 Multi-Query Reverse Private Membership Test

3.1 Definition

We propose mq-RPMT and give the formal definition of mq-RPMT functionality in Figure 5. For
generality we set |Y | = ny and |X| = nx in our definition.

We define the vector oblivious decryption-then-matching Fvodm corresponding to encryption scheme
E=(Setup,KeyGen,Enc,Dec) in Figure 6, as a component of mq-RPMT.

3.2 Framework of Multi-Query RPMT

Now we describe our framework of mq-RPMT protocol. As we said in Section 1.3, the cryptographic
primitives we use are a single-message multi-ciphertext pseudorandomness encryption scheme E =
(Setup,KeyGen,Enc,Dec), an OKVS scheme (EncodeH ,DecodeH) and the Fvodm functionality.

Let Y = {y1, . . . , yny} and X = {x1, . . . , xnx} be the input of mq-RPMT sender S and receiver
R. First, the receiver R picks an indication string s7. Then R chooses a random key k used in
encryption scheme E to encrypt s for nx times, and obtains (s1, . . . , snx). Next, R computes an
OKVS D := EncodeH((x1, s1), . . . , (xnx , snx)) and sends D to S. After receiving D, S computes
s∗i = DecodeH(D, yi) for i ∈ [ny]. Now S and R invoke the VODM functionality Fvodm. S acts as
sender with input S = {s∗1, . . . , s∗ny

} and R acts as receiver with input (k, s). As a result, S receives
nothing and R receives b ∈ {0, 1}ny , satisfying bi = 1 if and only if s∗i decrypts to s. Now, we give our
framework of mq-RPMT protocol in Figure 7.

Correctness. For all i ∈ [ny], if yi ∈ X, there is an xj ∈ X, j ∈ [nx] s.t. yi = xj . In this case,
s∗i = DecodeH(D,h(xj)) = sj . Since sj = Enc(k, s), we have Dec(k, sj) = s, which means bi = 1. In
the case yi /∈ X, if hash functions collide, that is, h(yi) = h(x) for some yi /∈ X, the correctness will
be violated. By setting σ = λ + log nxny, a union bound shows probability of collision is negligible
2−λ. When no collision occurs, from the randomness of OKVS, s∗i = DecodeH(D,h(yi)) is a random
ciphertext, resulting in s∗i is not the encryption of s with overwhelming probability. The union bound
guarantees that for all yi /∈ X, the probability that there exists an s∗i s.t. Dec(k, s∗i ) = s is negligible.

7 In fact, our indication string s could be any fixed value, e.g. s = 0, while s in KRTW must be selected
randomly.
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Parameters:

– Computational security parameter κ and statistical security parameter λ.
– Input length n.
– A finite group G.
– Random fuctions h1, h2, h3 : {0, 1}∗ → [m′] and r : {0, 1}∗ → {0, 1}d+λ.
– Parameters m′ = 1.3n and d = 0.5 logn, as shown in [GPR+21], where d upper bound the size of

2-core of a (m′, n)-Cuckoo graph.
– Output length m = m′ + d+ λ.

EncodeH({(x1, y1), . . . , (xn, yn)}):

1. Define l(x) ∈ {0, 1}m
′
to be all zeroes except 1s at positions h1(x), h2(x), h3(x). Here we assume the

weight of l(x) is 3. Let row(x) := l(x)||r(x),

M (0) =

 l(x1)
...
l(xn)

 ∈ {0, 1}n×m′
,M (1) =

 r(x1)
...
r(xn)

 ∈ {0, 1}n×(d+λ)

and let

M = M (0)||M (1) =

 row(x1)
...
row(xn)

 ∈ {0, 1}n×m.

2. Initialize empty vectors DL ∈ Gm′
and DR ∈ Gd+λ, let D = DL||DR.

3. Initialize stack P .
4. While there is a node j ∈ [m′] such that the set {xi /∈ P |j ∈ {h1(xi), h2(xi), h3(xi)}} is a singleton:

Let xi be the element of that singleton, and push xi onto P .
5. Let S = {xi|xi /∈ P}, and let R ⊂ [n] index the rows of M in S, i.e. R = {i|M (0)

i,h1(xi)
= M

(0)

i,h2(xi)
=

M
(0)

i,h3(xi)
= 1 ∧ xi ∈ S}. Let d̃ := |R| and abort if d̃ > d.

6. Let M̃ (1) ∈ {0, 1}d̃×(d+λ) be the submatrix of M (1) obtained by taking the row indexed by R. Abort if
M̃ (1) does not contain an invertible d̃×d̃ matrix. Otherwise let M̃∗ be one such matrix and C ⊂ [d+λ]
index the corresponding columns of M̃ (1).

7. Let C′ := {j|i ∈ R,M
(0)
i,j = 1} ∪ ([d + λ] \ C +m′) and for i ∈ C′ assign Di ← G. For i ∈ R, define

y′
i := yi − (MDT )i where Di is assumed to be zero if unssigned.

8. Using Gaussian elimination solve the system M̃∗(Dm′+C1
, . . . , Dm′+C

d̃
)T = (y′

R1
, . . . , y′

R
d̃
)T .

9. While P not empty:

(a) pop xi from P .
(b) DL is undefined in at least one of the positions h1(xi), h2(xi), h3(xi). Set the undefined position(s)

so that ⟨row(xi), D⟩ = yi.

10. Set any empty position in D with a random value from G.
11. Output D.

DecodeH(D,x):

1. Return ⟨row(x), D⟩.

Fig. 3: 3H-GCT++ algorithm

Parameters: Sender S, Receiver R, set sizes ny and nx.
Functionality:

– Wait for input X = {x1, . . . , xnx} ⊂ {0, 1}∗ from the receiver R.
– Wait for input Y = {y1, . . . , yny} ⊂ {0, 1}∗ from the sender S.
– Give output X ∪ Y to the receiver R.

Fig. 4: Private Set Union Functionality Fpsu
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Parameters: Sender S, Receiver R, set sizes ny and nx

Functionality:

– Wait for input Y = {y1, . . . , yny} ⊂ {0, 1}∗ from the sender S.
– Wait for input X = {x1, . . . , xnx} ⊂ {0, 1}∗ from the receiver R.
– Set bi = 1 if and only if yi ∈ X and bi = 0 otherwise for i ∈ [ny]. Give output b ∈ {0, 1}ny to the

receiver R.

Fig. 5: Multi-Query Reverse Private Membership Test Functionality Fmq-rpmt

Parameters: Sender S, Receiver R, set sizes n, an encryption scheme E = (Setup,KeyGen,Enc,Dec).
Functionality:

– Wait for input k and s from the receiver R.
– Wait for input {s∗1, . . . , s∗n} ⊂ {0, 1}∗ from the sender S.
– For i ∈ [n]:

Compute s′i = Dec(k, s∗i ). If s
′
i = s, let bi = 1, otherwise bi = 0.

– Give output b ∈ {0, 1}n to the receiver R.

Fig. 6: Vector Oblivious Decryption-then-Matching Functionality Fvodm

Parameters:

– Two parties: sender S and receiver R.
– A single-message multi-ciphertext pseudorandomness encryption scheme
E = (Setup,KeyGen,Enc,Dec).

– Ideal Fvodm primitives specified in Figure 6.
– An OKVS scheme (EncodeH ,DecodeH).
– A collision-resistant hash function h(x) : {0, 1}∗ → {0, 1}σ.

Input of S: Y = {y1, . . . , yny} ⊂ {0, 1}∗
Input of R: X = {x1, . . . , xnx} ⊂ {0, 1}∗
Protocol:

1. R selects a random indication string s ∈ F2σ . R also runs pp← Setup(1κ) and KeyGen(pp) to obtain
a key k (public or symmetric key depend on concrete scheme). Then, R runs Enc(k, s) for nx times
to obtain (s1, . . . , snx).

2. R computes an OKVS
D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)).

3. R sends D to S.
4. S computes s∗i := DecodeH(D,h(yi)) for i ∈ [ny].
5. S and R invoke the VODM functionality Fvodm. S acts as sender with input S = {s∗1, . . . , s∗ny

} and
R acts as receiver with input k, s. As a result, S receives nothing and R receives b ∈ {0, 1}ny .

Fig. 7: General Construction of mq-RPMT Protocol Πmq-rpmt

We now prove the security properties of our mq-RPMT.

Theorem 1. Assume the encryption scheme E = (Setup,KeyGen,Enc,Dec) satisfies single-message
multi-ciphertext pseudorandomness. The protocol in Figure 7 securely computes Fmq-rpmt against semi-
honest adversaries in the Fvodm-hybrid model.

Proof Due to space limitation, we only sketch here the simulators for the two cases of corrupt S and
corrupt R, the full proof (via hybrid arguments) is deferred to Appendix C.

Corrupt sender: To simulate OKVS in Step 3, the simulator computes a random OKVS D by selecting
nx random key-value pairs. Then, the simulator sets s∗i := DecodeH(D,h(yi)) and invokes underlying
VODM simulator with inputs (s∗1, . . . , s

∗
ny
).
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Briefly, this simulation is indistinguishable for the following reasons: the single-message multi-
ciphertext pseudorandomness of the encryption ensures that value (ciphertext) is indistinguishable
from random, and then by the obliviousness of OKVS, D is distributed uniformly.

Corrupt receiver: The simulator for a corrupt R first obtains b from the ideal mq-RPMT functionality.
The only message that needs to be simulated is the VODM functionality in Step 5. The simulator just
executes Step 1 honestly and invokes the underlying VODM simulator with inputs (k, s, b).

□

4 Generic Constructions of Multi-Query RPMT

In this section, we give two generic constructions of mq-RPMT protocol. In the first construction, we
use SKE as the encryption scheme and generic 2PC to implement VODM. The advantage is that this
scheme only uses OT and symmetric operations. In the second construction, we use PKE and a re-
randomization method to implement the encryption scheme and a leaky version of VODM respectively,
which leads to a leaky version of mq-RPMT. However, as observed by KRTW, this leaky version can
still be used to construct a secure PSU. Both schemes achieve linear computation and communication
complexity.

4.1 Construction from SKE and 2PC

As we noted before, a single-message multi-ciphertext pseudorandom SKE and 2PC are sufficient for
constructing mq-RPMT. The correctness and security can be directly derived from the general con-
struction in Section 3.2. It is straightforward to show that PRF-based SKE satisfies the single-message
multi-ciphertext pseudorandomness property. We give proof in the Appendix D for completeness.

We use the general 2PC as the implementation of VODM. Formally,

Theorem 2. Taking the PRF-based SKE as the encryption scheme in Figure 7. Assuming that the
2PC implementing VODM is semi-honest secure, then the protocol in Figure 7 securely computes
Fmq-rpmt against semi-honest adversaries.

This theorem immediately follows from Lemma 1 and Theorem 1.

4.2 Construction from Re-randomizable PKE

Now we consider a specialized way to construct Fvodm. Our main idea is that since the receiver cannot
know the randomness used in each ciphertext, as long as the encryption scheme satisfies the property
of rerandomization, the sender can re-randomize all ciphertexts and send the new ciphertexts to the
receiver so that the receiver can not obtain additional information by comparing randomness. Note
that another problem arises here. The property of re-randomization can only guarantee that for y ∈ X,
the receiver is not allowed to learn which one is the sender’s element. For y /∈ X, the ciphertext s∗i
obtained by the sender is related to y, so the plaintext obtained by the receiver is also related to y,
which will reveal the information of y. However, as observed by KRTW, in the case of y /∈ X, we
want (in the overall PSU protocol) the receiver to learn y anyway. Fully secure mq-RPMT is actually
overkill for PSU, a relaxed version suffices. We define the leaky VODM functionality in Figure 8.

Since the SKE scheme is hard to re-randomize, we consider the use of public-key encryption (PKE)
which is easier to re-randomize. We describe our PKE-based leaky VODM protocol in Figure 9.

We now state and prove the security of the above leaky VODM protocol.

Theorem 3. Assume the security of the ReRand-PKE scheme. The protocol in Figure 9 securely
computes Flvodm against semi-honest adversaries.

Proof Because the sender does not receive messages in the protocol, we just need to simulate the
view of the receiver. We exhibit simulator SimR for simulating corrupt R.
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Parameters: Sender S, Receiver R, set sizes n, an encryption scheme E = (Setup,KeyGen,Enc,Dec).
Functionality:

– Wait for input k and s from the receiver R.
– Wait for input {s∗1, . . . , s∗n} ⊂ {0, 1}∗ from the sender S.
– For i ∈ [n]:

Compute s′i = Dec(k, s∗i ), if s
′
i = s, let bi = 1 otherwise bi = 0.

– Give output b ∈ {0, 1}n and {s′i|bi = 0} to the receiver R.

Fig. 8: Leaky VODM Functionality Flvodm

Parameters:

– Two parties: sender S and receiver R.
– A re-randomizable PKE scheme

(Setup,KeyGen,Enc,Dec,ReRand).

Input of S: (pk, S∗ = {s∗1, . . . , s∗n})
Input of R: ((pk, sk), s)
Protocol:

1. S selects random r′1, . . . , r
′
n and computes s̄i := ReRand(pk, s∗i ; r

′
i) for i ∈ [n].

2. S sends s̄1, . . . , s̄n to R.
3. R sets bi = 1 if and only if Dec(sk, s̄i) = s for i ∈ [n].

Fig. 9: PKE-based Leaky VODM Protocol Πlvodm

Corrupt receiver: SimR(pk, sk, s, b, {s′i|bi = 0}) simulates the view of corrupt semi-honest receiver.
Note that the only messages that need to be simulated by the simulator are ciphertexts {s̄i}i∈[n].

SimR computes s̄i := Enc(pk, s; ri) if bi = 1 and s̄i := Enc(pk, s′i; ri) if bi = 0 for i ∈ [n]. SimR
appends {s̄i}i∈[n] to the view.

The indistinguishability of ReRand-PKE scheme guarantees the view output by SimR is indistin-
guishable from the real one. □

Note that the mq-RPMT constructed with the above leaky VODM is also a leaky version. We
don’t give a specific description of this leaky mq-RPMT. Instead, we use leaky VODM to construct
PSU protocol directly and prove its security in Appendix E.

4.3 Unification with Membership Encryption

We have presented two generic constructions of mq-RPMT protocols from probabilistic SKE and
probabilistic PKE respectively. It is intriguing to study if there is a unified way to encompass the two
different constructions.

We retrospect the high level idea underlying our mq-RPMT protocol. If privacy is not a concern,
reverse membership test can be simply done by having the receiver first create a membership relation
R for his set Y , namely R(y) = 1 iff y ∈ Y , then having the sender send his elements to the receiver in
clear. To make the reverse membership test private, the receiver can “encrypt” his membership relation
and send the “encoding” of resulting ciphertexts to the sender. After receiving the “encoding”, the
sender is able to retrieve the membership encryptions corresponding to his elements. In the sequel, the
receiver can fulfill the reverse private membership test by decrypting the ciphertexts in an oblivious
manner.

Based on the above discussion, we realize that the right encryption scheme needed in our mq-
RPMT protocol is an abstract new notion called membership encryption (ME). Roughly speaking,
ME for set X encrypts an element x into a ciphertext, which decrypts to “1” if x ∈ X. We formalize
the syntax and security notion of ME in the private-key setting as below.
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Definition 3 (Membership Encryption). Membership encryption for set X consists of four poly-
nomial time algorithms satisfying the following properties.

– Setup(1κ): on input a security parameter κ, outputs public parameters pp, which include the ci-
phertext space C.

– KeyGen(pp,X): on input public parameters pp and X ⊆ {0, 1}∗, outputs a key k.
– Enc(k, x): on input a key k and an element x ∈ X, outputs a ciphertext c ∈ C. For uttermost

generality, the behavior of Enc on x /∈ X is unspecified. Looking ahead, such treatment suffices for
the construction of mq-RPMT protocol.

– Dec(k, c): on input a key k and a ciphertext c ∈ C, outputs “1” indicating c is an encryption of
an element x in X and “0” if not.

Correctness. For any x ∈ X, ∀k ← KeyGen(pp,X), Dec(k, c = Enc(k, x)) = 1.
Consistency. For any x /∈ X, Pr[Dec(k, c) = 0] = 1−ϵ(κ), where pp← Setup(1κ), k ← KeyGen(pp,X),

c
R←− C. Here, ϵ is the consistency error, which must be negligible in κ.

Multi-element pseudorandomness. For any n distinct elements x1, . . . , xn ∈ X, {Enc(k, xi)}i∈[n] ≈c

UCn .

The ME notion naturally extends to the public-key setting by letting the KeyGen algorithm generate
a keypair (pk, sk), in which pk is used to encrypt and sk is used to decrypt. We omit the details for
its straightforwardness.

We then study the generic construction of ME. Note that the essence of ME is to encrypt element’s
membership relation, rather than the element itself. The membership relation can be created by
establishing a mapping H from elements to the set under test. Basically, there are two extreme cases
of mapping. The first is to select a single indication string s as the characteristic of the set, then
map all elements to s, i.e., H : xi → s, which we refer to as lossy mapping. The second is to select n
indication strings si as the characteristic of the set, then map elements to distinct indication strings,
i.e., H : xi → si, which we refer to as injective mapping. With the above understanding in head, we
present various constructions of ME by mixing encryption schemes and membership mapping.

ME from probabilistic SKE and lossy mapping. The construction is as below.

– Setup(1κ): runs SKE.Setup(1κ) to generate pp.
– KeyGen(pp,X): runs SKE.KeyGen(pp) to sample kske, picks a random element s ∈ M , where M

is the message space of SKE, sets H be a mapping that maps all elements in X to s, outputs
k = (kske,H)

– Enc(k, x): parses k = (kske,H), outputs c← SKE.Enc(kske,H(x)).
– Dec(k, c): parses k = (kske,H), outputs “1” iff SKE.Dec(kske, c) = s.

ME from probabilistic PKE and lossy mapping. The construction is as below.

– Setup(1κ): runs PKE.Setup(1κ) to generate pp.
– KeyGen(pp,X): runs PKE.KeyGen(pp) to generate (pkpke, skske), picks a random element s ∈ M ,

where M is the message space of PKE, sets H be a mapping that maps all elements in X to s,
outputs pk = pkpke and sk = (skpke,H)

– Enc(pk, x): parses pk = pkpke, outputs c← PKE.Enc(pkpke,H(x)).
– Dec(sk, c): parses sk = (skpke,H), outputs ‘1’ iff PKE.Dec(skpke, c) = s.

Theorem 4. If SKE (resp. PKE) satisfies single-message multi-ciphertext pseudorandomness, then
the above ME construction satisfies multi-element pseudorandomness with consistency error 1/|M |.

The above ME constructions are exactly the backbones of our generic constructions of mq-RPMT
protocol presented in Section 4.1 and 4.2. Since ME requires multi-element pseudorandomness, the use
of lossy mapping inherently stipulates that the accompanying encryption schemes are probabilistic.
Therefore, in this case the ciphertext expansion is unavoidable. For example, in PRF-based probabilis-
tic SKE, the length of ciphertext is twice that of plaintext. In the design of our mq-RPMT protocol,
the value in OKVS is exactly ciphertext. As a consequence, ciphertext expansion incurs overhead to
the size of OKVS and thus also the communication cost on the receiver side. For this reason, reducing
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the ciphertext expansion factor will immediately improve the performance of the overall mq-RPMT
protocol.

An important observation is that if we switch to injective mapping, then ME can be built from
deterministic encryption schemes satisfying multi-message multi-ciphertext pseudorandomness. The
constructions are similar as above except the decryption algorithm outputs ‘1’ iff the decryption
result falls into the prior-fixed indication string set S = {si}i∈[n]. In instantiation, we take H : xi → i
as the membership mapping, which renders efficient membership decryption by testing whether the
decryption is less than n.

Formally, we have the following theorem:

Theorem 5. If SKE (resp. PKE) satisfies multi-message multi-ciphertext pseudorandomness, then
the ME construction satisfies multi-element pseudorandomness with consistency error n/|M |.

If we instantiate the ME from the PRP-based deterministic SKE and injective mapping, the
ciphertext expansion factor is optimal. Therefore, a drop-in replacement to the ME from PRF-based
probabilistic SKE and lossy mapping will reduce the size of OKVS in the mq-RPMT protocol by half.

Due to space constraints, we put the description that how to construct mq-RPMT using the
language of ME in the Appendix F.

5 Our PSU Protocol

In this section, we describe our PSU construction achieving linear complexity and prove its semi-honest
security.

5.1 Generic Construction of PSU Protocols

With mq-RPMT and OT, we can simply combine them to construct a PSU protocol. We give the
formal description in Figure 10.

Parameters:

– Two parties: sender S and receiver R.
– Ideal Fmq-rpmt and Fot primitives specified in Figure 5, and Figure 2, respectively.

Input of S: Y = {y1, . . . , yny} ⊂ {0, 1}∗
Input of R: X = {x1, . . . , xnx} ⊂ {0, 1}∗
Protocol:

1. S and R invoke the mq-RPMT functionality Fmq-rpmt first. The sender S acts as the sender in mq-
RPMT with input Y and receives nothing. The receiver R acts as the receiver in mq-RPMT with
input X and receives b ∈ {0, 1}ny .

2. R initialize set Z := {}.
3. For i ∈ [ny]:

(a) S and R invoke the OT functionality Fot.
(b) S acts as sender with input (yi,⊥).
(c) R acts as receiver with input bi.
(d) R receives zi from OT and sets Z = Z ∪ {zi}.

4. R outputs X ∪ Z.

Fig. 10: Private Set Union Protocol Πpsu

We now state and prove the security properties of the above PSU protocol.

Theorem 6. The protocol in Figure 10 securely computes Fpsu against semi-honest adversaries in the
(Fmq-rpmt,Fot)-hybrid model.
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Proof We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt Sender: SimS(Y = {y1, . . . , yny}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. SimS invokes mq-RPMT simulator SimS
mq-rpmt(Y ) and appends the output to the view.

2. For i ∈ [ny], SimS invokes OT simulator SimS
ot(yi,⊥) and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. This is obtained
by the underlying simulators’ indistinguishability directly.
Corrupt Receiver: SimR(X = {x1, . . . , xnx}, X∪Y ) simulates the view of corrupt semi-honest receiver.
It executes as follows:

1. SimR defines the set Z := X∪Y \X, i.e. the set of elements that Y “brings to the union”. Next, it
uses ⊥ to pad Z to ny elements and permutates these elements randomly. Let Z = {z1, . . . , zny}.

2. SimR sets bi = 1 if and only if zi ∈ X for i ∈ [ny]. Then, it invokes mq-RPMT simulator

SimR
mq-rpmt(X, b) and appends the output to the view.

3. For i ∈ [ny], SimR invokes OT simulator SimR
ot(bi, zi) and appends the output to the view.

Now we argue that the view output by SimR is indistinguishable from the real one. In the simulation,
the way R obtains the elements in Z = X \ Y is identical to the real execution. By the underlying
simulators’ indistinguishability, the simulated view is computationally indistinguishable from the real.
□

5.2 Instantiation of PSU

For our SKE-based construction, we can use a PRP as we mentioned in Section 4.3 to instantiate SKE,
which can achieve an optimal ciphertext expansion factor. Since we need to perform the 2PC decryp-
tion computation, we use the LowMC [ARS+15] as our PRP instantiation to minimize the circuit size.
As for generic 2PC, there are two classical methods, e.g. garbled circuit [Yao86] or GMW [GMW87].
The former has a constant number of rounds, while the latter has a lower communication. Since the
communication has a greater impact on our scheme, we consider instantiating 2PC by GMW.

For our PKE-based construction, we use the well-known ECC ElGamal [Gam85] scheme as our
ReRand-PKE.

5.3 Communication Cost

Now we analyze the communication cost of our two PSU constructions. For the SKE-based construc-
tion, we use our ME optimization in Section 4.3.

Let’s first analyze the size of decryption circuit in our SKE-based construction: the circuit needs
to compute decryption of every {s∗i }i∈[ny] and compare the result with nx. If Dec(k, s

∗
i ) < nx, it sets

bi = 1 and bi = 0 otherwise. The total number of decryption computations is ny. To compare whether
a σ long string is less than nx, we only need to compute whether the OR of its first σ− log nx bits are
1, which requires σ − log nx − 1 AND gates (since a ∨ b = ā ∧ b̄). The total number of AND gates is
ny(t+ σ − log nx) = O(tny), where t is the number of AND gates in a PRP decryption circuit.

Now we are ready to calculate the communication of PSU protocol. Note that the communication
of our protocol consists of OKVS, VODM protocol and OT protocol. We analyze their complexity
respectively. We use the symbol Φ to represent the communication complexity, and its subscripts
represent different components.

– OKVS in both constructions: as we showed in Section 2.5, we use 3H-GCT++ as our OKVS
scheme:

Φokvs(nx) = (1.3nx + d+ λ)|c|

, where |c| is the size of ciphertext, |c| = λ + log nxny and 4κ for SKE-based and PKE-based
scheme respectively.
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– Oblivious decryption:
• In SKE-based construction: we use Φske

vod(ny, nx) to denote the communication of computing
oblivious decryption circuit. As we said in Section 5.2, we use GMW as our 2PC instantiation,
the communication consists of input sharing, multiplication gate computation and output re-
construction. In the input sharing phase, the communication is κ+nyσ bits, and in the output
reconstruction phase, it is ny bits. Using Beaver triple [Bea91], 4ny(t + σ − log nx) bits are
needed in multiplication phase. So we have Φske

vod(ny, nx) = κ+ nyσ + 4ny(t+ σ − log nx) + ny

• In PKE based construction: the communication of leaky VODM functionality, denoted by
Φpke
lvodm(ny, nx) = 4nyκ

– OT in both constructions:

Φot(ny) = ny(κ+ σ).

Let Φske
psu(ny, nx) denote communication of SKE-based construction and let Φpke

psu (ny, nx) denote
communication of PKE-based construction. The overall communication cost of our PSU protocol is:

Φske
psu(ny, nx) = Φokvs(nx) + Φske

vod(ny, nx) + Φot(ny)

Φpke
psu (ny, nx) = Φokvs(nx) + Φpke

lvodm(ny, nx) + Φot(ny)

5.4 Discussion: Difference between PSI and PSU

Although PSI and PSU are quite similar, as discussed in [KRTW19], the techniques they use are
different, and building PSU is more challenging than building PSI.

Since the output of PSI is the elements of the receiver’s own set, it is only necessary to test whether
each element belongs to the sender’s set (i.e., PMT), and the difficulty of PSU is how to retrieve the
elements outside the intersection (i.e., RPMT + OT) without disclosing the intersection. In PSI, PMT
can be easily obtained by OPRF: the sender obtains a PRF key k while the receiver obtains Fk(y)
on his input y, then the sender computes and sends {Fk(x)}x∈X to the receiver. The receiver tests
whether Fk(y) ∈ {Fk(X)}x∈X to determine whether y ∈ X. As a result, OPRF is enough for PSI, and
all the state-of-the-art PSI protocols [KKRT16, CM20, RS21] follow this paradigm and mainly focus
on designing efficient OPRF protocols.

However, the conversion from PMT to RPMT is not trivial, as discussed in [KRTW19], this
seemingly simple functionality adjustment (PMT → RPMT) doesn’t seem to be fixable by a small
tweak of PMT. Although OPRF is enough for PSI, this is not the case for PSU. In the state-of-the-
art PSU [JSZ+22, GMR+21], OPRF is only one component, and the design of PSU protocol usually
requires the use of a variety of different components, e.g., oblivious switch network functionality, and
combine them in a clever method.

5.5 Discussion: the Relationship with Existing PSI/PSU-Related Primitives

Here we also discuss the relationship with existing PSI/PSU-related primitives.

OKVS. Garimella et al. [GPR+21] proposed the notion of Oblivious Key-Value Store (OKVS), which
is useful in both PSI and PSU. The OKVS is a data structure in which a sender has a set of key-
value mapping ({xi, yi}) with (pseudo)random yi’s, and she wishes to hand that mapping over to a
receiver, allowing the receiver to evaluate the mapping on any input but without revealing the keys
xi. Correctness of the data structure must ensure that if the other party evaluates the OKVS on some
q = xj then the result is yj . Obliviousness here is that the receiver cannot tell what keys xi’s are
encoded from a given OKVS. The most compact OKVS that one can think of is a polynomial. The
recent excellent works on OKVS [PRTY20, GPR+21] make it very efficient to encode a large number
of key-value pairs, for example, using 3H-GCT, it takes only about 4.9s to encode 220 key-value pairs.
OTSA. Zhao and Chow [ZC15] proposed a primitives called oblivious transfer for a sparse array
(OTSA), which can be used to construct a variant of PSI, i.e. threshold private set intersection
(t-PSI). In fact, the OTSA is strictly stronger than OKVS. The OTSA is actually a protocol for
obliviously decoding OKVS, that is, the input of receiver is a set Ir, the input of sender is OKVS
D := Encode({(sj , ej)}j∈[ns]), the output of the receiver is {Decode(D, rj)}j∈[nr]. The main differences
between OKVS and OTSA are:
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– OTSA enforces the receiver to decode D on limited elements of queries, i.e. Ir, whereas OKVS is
simply a data structure that is sent in the clear to the receiver, thus, no limit on the elements of
decoding is set.

– In OTSA, the receiver does not know the correspondence between rj and Decode(D, rj) (i.e.
sender indices privacy), while in OKVS, the receiver directly knows the relationship between rj
and Decode(D, rj).

These limitations have a significant impact on their performance, for example, the experiment in
[ZC15] showed that their most efficient OTSA protocol takes about 400s for input size n = 210. It is
enough for our construction to use simpler and more efficient OKVS instead of OTSA.
OVDM. In our PSU construction, we proposed a new primitive called oblivious vector decryption-
then-matching (OVDM), which is also a protocol aiming to decrypt a vector of ciphertexts obliviously
and then match the decrypted ciphertext to a given string. The significant differences between OVDM
and OTSA are:

– OTSA is the protocol for decoding an OKVS, while OVDM is the protocol for decrypting an
encryption scheme.

– OTSA allows the party providing the decoding material (i.e. Ir) to obtain the decoding result
(since the decoding algorithm is written as Decode(D, rj), D can be regarded as a ”key” in some
sense), while OVDM allows the party providing the key to obtain the decryption result.

– The output of OVDM is only 1 bit information of plaintext, i.e. whether the plaintext is equal to
a string input by the receiver.

– The order of the decryption results output by OVDM is the same as the order of the ciphertext
input by the sender, while OTSA does not preserve this order (i.e. sender indices privacy).

Due to the above differences, the ideas for constructing OTSA and OVDM are different. Our
OVDM is more efficient than OTSA because we only need PKE to meet the Re-rand property, while
OTSA requires more complex homomorphic PKE.

One may wonder whether the construction of OVDM depends on the particular OKVS construc-
tion. We clarify that OVDM and OKVS are two different notions of different usages. We use the
combination of OKVS and OVDM to construct mqRPMT, as shown in Section 3. Any OKVS in-
stantiation that meets Randomness can be used for our mqRPMT construction. The only connection
between OKVS and OVDM is that they share the same encryption scheme, that is, the value encoded
by OKVS is the ciphertext of the encryption scheme, and the sender takes the ciphertext decoded from
OKVS as her OVDM input. Since decryption is required, the construction of OVDM is related to the
selection of encryption schemes (therefore, we classify our schemes as SKE-based and PKE-based).

6 Implementation and Performance

Recall that we have presented two variants of our protocol. In this section, we will refer to them as:

– SKE-PSU: PSU protocol with SKE-based mq-RPMT, where SKE and VODM are instantiated
with PRP and GMW [GMW87] respectively.

– PKE-PSU: PSU protocol with PKE-based mq-RPMT, where ReRand-PKE is instantiated with
ECC ElGamal encryption scheme.

The OKVS instantiation of both schemes uses the 3H-GCT++ in Figure 3. We focus on the case
where ny = nx = n, i.e., both parties have equal-size sets.

6.1 Theoretical Analysis of Communication

In Table 2, we show the theoretical communication complexity of our protocol compared with the
Frikken protocol [Fri07], the DC protocol [DC17], the KRTW protocol [KRTW19], the GMRSS pro-
tocol [GMR+21] and the JSZDG protocol [JSZ+22] (note that [JSZ+22] proposed two protocols, i.e.
JSZDG-R and JSZDG-S, which focus on balanced and unbanlanced setting, respectively) in the semi-
honest setting. This measures how much communication the protocols require on an idealized network
where we don’t care about protocol metadata, realistic encodings, byte alignment, etc. In practice,
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Protocol Communication
n = ny = nx

214 218 222

Frikken [Fri07] N + 2nxN + 4nyN 12288n 12288n 12288n
DC [DC17] 2λnxN + 4nyN 172032n 172032n 172032n
KRTW [KRTW19] βu(2ρ+ λ+ (u+ 2)σ) + βu(κ+ σ) 14977n 16927n 18956n
GMRSS [GMR+21] 1.27nyρ+ 3nxσ + (1.27ny logny + ny)(κ+ σ) 5417n 6687n 7947n
JSZDG-R [JSZ+22] ρ(κ+ 2.18nx) + 4nyl2 + (1.09nx lognx + ny)(κ+ σ) 5757n 6931n 8105n
JSZDG-S [JSZ+22] ρ(κ+ 2.18ny) + 1.09ny(ul2 + σ) + 2.18ny logny(κ+ σ) 10640n 13140n 15658n

SKE-PSU (1.3nx + d+ λ)σ + κ+ nyσ + 4ny(t+ σ − lognx) + ny(κ+ σ) 3768n 3810n 3853n

PKE-PSU 4κ(1.3nx + d+ λ) + 4κny + ny(κ+ σ) 1373n 1381n 1389n

Table 2: Theoretical communication costs of PSU protocols (in bits), calculated using computational security
κ= 128 and statistical security λ= 40. Ignore costs of base OTs which are independent of input size. N is the
size of the public key in Pallier encryption scheme (2048 is used here). β and u are the number of bins and
maximum bin size respectively. ρ is the width of OT extension matrix (depends on n and protocol).

data is split up into multiples of bytes (or CPU words), and different data is encoded with headers,
etc. Empirical measurements of such real-world costs are given later in Table 3.

For set sizes in the range 214 to 222, our PKE-PSU variant has the least communication of any of the
protocols we consider: up to an 8.8× improvement of Frikken, 125× improvement of DC, 10.9−13.6×
improvement of KRTW, 3.9−5.7× improvement of GMRSS, and 4.2−11.3× improvement of JSZDG.
It means that our scheme has great advantages in low bandwidth scenarios.

For our SKE-based protocol, as mentioned in Section 5.2, we use LowMC [ARS+15] to minimize
the number of AND gates. Though the communication of our SKE-PSU protocol is about 3× heigher
than PKE-PSU, it is still lower than all previous schemes.

6.2 Experimental Setup

We run our experiments on a single Intel Core i9-9900K with 3.6GHz and 128GB RAM. We simulate
the network connection using Linux tc command. To better meet the potential deployment require-
ments, we use Netty8 to maintain the communication channel. And we use Protocol Buffers9 for data
(de-)serialization. Refer to Appendix G.1 for details of Netty and Protocol Buffers.

6.3 Implementation Details

Existing PSU implementations are under different MPC frameworks and different experimental set-
tings. For example, the [KRTW19] implementation is under 128-bit element length while the [GMR+21]
implementation is under 64-bit element length. Also, the [KRTW19, JSZ+22] implementation supports
multi-thread execution, while the [GMR+21] implementation does not. Further, the [GMR+21] and
[JSZ+22] implementation heavily relies on 1-out-of-2 Oblivious Transfer (OT). Introducing recent
silent OT technique may further reduce its communication cost [BCG+19, YWL+20]. However, ex-
isting efficient silent OT implementation [YWL+20] is available in emp-toolkit [WMK16]. Combining
these implementations rely on relatively heavy source code modification works.

After carefully studying existing open-source codes, we fully re-implement state-of-the-art PSU
protocols [KRTW19, GMR+21, JSZ+22] and their underlying basic protocols using Java, including
base OT [NP01], OT extension [ALSZ13], silent OT [YWL+20], the specific OPRF variant [KKRT16],
and GCT data structures.

We choose Java as our primary programming language for the following reasons. First, recent
advances in MPC make this attractive data security technique from theory into practical usage. In-
troducing big data frameworks into MPC would further increase its efficiency and integrate MPC
with existing data pipelines [BKC+22]. Current widely adopted big data analytical engines, for ex-
ample, Hadoop and Spark, are built upon Java or JVM-based programming languages. We hope our
implementation can help developers from the big data community leverage and deploy MPC in a
more scaling manner. Second, one may think that Java is much slower than C/C++. It is shown

8 https://netty.io/
9 https://developers.google.com/protocol-buffers
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that although there is some performance gap, most basic operations in Java and C/C++ have similar
performances10.

For operations that have a huge efficiency gap between Java and C/C++, we use the Java Native
Interface (JNI) technique to invoke C/C++ libraries. The details can be found in Appendix G.2.

We note that our implementations support multi-thread executions for all the PSU schemes, includ-
ing [GMR+21], achieved by using Java ‘Stream.parallel()’. In our experiments, we limit the number of
threads during the protocol execution by setting the JVM parameter ‘java.util.concurrent.ForkJoinPool.
common.parallelism’, and submit all parallel executions into that common thread pool. In the single-
thread setting, we let all procedures run in the main thread instead of simply setting the number
of threads to be one under the multi-thread setting, thus avoiding additional costs for creating and
destroying sub-threads. Our performance reports show that we obtained improved performance results
for the [GMR+21] PSU scheme.

Although most operations in Java and C/C++ have similar performances, there are some opera-
tions in which Java operates much slower than C/C++. For example, our JSZDG performance results
(See Table 3) are about 3 times slower than the report shown in the original work [JSZ+22]. We
carefully analyze our implementation and find that the gap is from its underlying batch OPRF pro-
posed by Chase and Miao [CM20]. Briefly speaking, this batched OPRF needs to map each element
into a long pseudo-random byte array via a PRF and then convert that to be an integer array as
coordinates in the random encoding matrix. In C/C++, the transformation can be done by simply
changing the pointer type from uint8 t* to uint32 t* with almost no additional cost. However, such
an operation is not supported in Java due to the memory protection mechanism. One has to explicitly
convert byte[] to int[], involving dramatic costs. In addition, the type conversion operation cost is,
unfortunately, lower than JNI invoking. Introducing JNI in this operation leads to even more costs.
How to efficiently implement the batch OPRF proposed by Chase and Miao [CM20] in memory-safe
programming language as in C/C++ remains an open problem in the implementation. We emphasize
that designing a unified framework for all PSU protocols while compatible with widely adopted big
data analytical engines under C/C++ would further lead to better performance results. We hope that
our implementation can be a starting point. Our complete implementation is available on GitHub:
http://github.com/alibaba-edu/mpc4j.

6.4 Experimental Details

The SKE-PSU protocol is instantiated with the LowMC encryption scheme [ARS+15] where the block
size and the key length are both 128 bits, and the number of Sboxes is m = 10 (i.e., the SboxLayer
is a 10-folded parallel application of the basic 3-bit Sbox on the first 30 bits of the state, and for the
remaining 88 bits, the SboxLayer is the identity). The concrete parameters in LowMC are from the
Mobile PSI implementations provided by Kales et al. [KRS+19]11. We use the improved inverse of the
SBoxLayer provided by Liu et al. [LIM21] and follow the SBoxLayer implementation idea by Kales
et al. [KRS+19] to implement the (non-2PC) decryption procedure. The underlying OKVSs for our
PSU protocols are instantiated with our 3H-GCT++ in Figure 3.

Since both [GMR+21] and [JSZ+22] protocols rely heavily on OSN [MS13] and involve a large
number of OT. We further introduce Silent OT [BCG+19, YWL+20] in the GMRSS and JSZDG
schemes. See details in Appendix G.3.

In SKE-PSU, we assume a commonly used setting where Boolean multiplication triples are pre-
computed offline and stored locally in a temporary file. This follows real scenarios where Boolean
multiplication triples are pre-generated by parties themselves or with the help of a Trusted-Third
Party under the Trusted Dealer model. For completeness, we give the costs of triple generation in
Appendix G.4.

In PKE-PSU, the ReRand-PKE is instantiated with the ECC ElGamal encryption scheme un-
der the curve SecP256K1. We found an interesting point in the implementation of PKE-PSU: In
elliptic-curve-based cryptography, point compression is a standard trick, which can roughly reduce

10 Our tests show that on Macbook Pro 2019, Java needs 0.095us for one AES operation, while C/C++ under
AES instruction needs 0.071us. This is because Java would automatically use AES instruction if it detects
that the current operating system supports it.

11 https://github.com/contact-discovery/mobile_psi_cpp/blob/master/droidCrypto/lowmc/lowmc_

128_128_20.c
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Comm. (MB) Running time (s)

R S LAN 1Gbps 100Mbps 10Mbps

T = 1 T = 8 T = 1 T = 8 T = 1 T = 8 T = 1 T = 8
n Protocol

setup online setup online
total

setup online setup online setup online setup online setup online setup online setup online setup online

KRTW 0.02 4.17 0.01 29.63 33.8 0.07 3.5 0.03 1.07 0.49 16.13 0.37 14.06 0.83 27.36 0.72 24.66 0.81 55.9 0.73 55.32

GMRSS 0.02 5.89 0.02 7.96 13.85 0.1 1.01 0.04 0.42 0.66 1.96 0.46 1.28 1 3.53 0.91 2.97 1.06 14.44 0.93 13.97

JSZDG-R 0.01 4.65 0.01 5.63 10.28 0.07 1.81 0.02 0.52 0.27 2.65 0.23 1.34 0.49 4.19 0.41 2.66 0.45 12.08 0.37 10.63

SKE-PSU 0.01 3.16 0 3.36 6.52 0.03 0.65 0.02 0.29 0.12 6.76 0.11 6.48 0.21 12.66 0.19 12.09 0.2 15.62 0.19 15.59

PKE-PSU 0.01 1.16 0 1.59 2.75 4.6 2.37 4.58 1.07 4.78 2.63 4.75 1.34 4.92 3.02 4.9 1.77 4.99 4.43 4.91 3.79

214

PKE-PSU* 0.01 2.16 0 2.9 5.05 4.6 1.96 4.6 0.59 4.75 2.36 4.76 1 4.95 2.76 4.91 1.54 4.92 5.72 4.93 5.31

KRTW 0.02 17.64 0.01 122.05 139.69 0.07 12.57 0.03 3.76 0.46 26.27 0.39 20.96 0.82 40.09 0.73 36.3 0.81 163.48 0.75 161.63

GMRSS 0.02 25.95 0.02 34.11 60.06 0.11 4.79 0.04 1.95 0.64 6.61 0.48 4.25 1.11 12.67 0.92 9.78 1.04 60.75 0.94 57.5

JSZDG-R 0.01 20.75 0.01 24.74 45.49 0.07 7.5 0.02 2.25 0.3 9.29 0.2 4.45 0.44 13.78 0.4 8.58 0.47 49.41 0.42 44.58

SKE-PSU 0.01 12.61 0 13.41 26.03 0.04 2.66 0.02 1.15 0.13 8.66 0.11 7.32 0.2 15.84 0.19 14.39 0.2 31.79 0.19 30.98

PKE-PSU 0.01 4.62 0 6.37 10.99 4.62 9.75 4.59 4.39 4.82 10.21 4.76 5.22 4.9 10.94 4.91 5.83 5.01 16.38 4.92 13.61

216

PKE-PSU* 0.01 8.63 0 11.57 20.19 4.57 7.96 4.6 2.58 4.76 8.68 4.77 3.37 4.93 9.94 4.91 4.65 4.94 21.46 4.93 19.67

KRTW 0.02 69.29 0.01 562.76 632.05 0.08 63.02 0.03 17.67 0.52 85.56 0.39 45.31 0.76 111.14 0.71 113.83 0.84 660.33 0.74 664.93

GMRSS 0.02 113.7 0.02 145.11 258.81 0.13 20.74 0.03 9.8 0.58 28.62 0.55 16.63 1.09 49.68 0.93 38.82 1.03 251.84 0.97 243.63

JSZDG-R 0.01 92.67 0.01 107.89 200.56 0.07 41.15 0.03 10.71 0.25 43.17 0.21 16.84 0.42 64.06 0.4 33.8 0.53 221.27 0.39 191.2

SKE-PSU 0.01 50.34 0 53.51 103.85 0.04 10.78 0.02 4.88 0.12 17.83 0.1 12.32 0.2 28.38 0.18 22.54 0.21 98.96 0.19 95.72

PKE-PSU 0.01 18.5 0 25.45 43.95 4.6 41.5 4.59 19.82 4.79 42.37 4.75 20.97 4.92 44.8 4.91 23.38 4.92 66.68 4.9 54.39

218

PKE-PSU* 0.01 34.5 0 46.26 80.76 4.61 34.63 4.58 12.26 4.78 37.1 4.75 13.99 4.92 40.62 4.92 18.45 4.91 85.31 4.92 79.22

KRTW 0.02 300.14 0.01 2305.8 2605.95 0.11 245.37 0.04 67.97 0.52 281.96 0.38 120.35 0.82 363.95 0.74 361.12 0.84 2643.84 0.75 2638.05

GMRSS 0.02 493.2 0.02 615.9 1109.1 0.11 100.48 0.04 48.53 0.62 119.98 0.51 75.76 1.11 207.83 0.95 164.25 1.09 1074.33 0.95 1030.3

JSZDG-R 0.01 405.53 0.01 467.26 872.79 0.08 173.07 0.04 54.41 0.48 184.63 0.2 73.28 0.47 266.51 0.73 146.13 0.47 941.5 0.72 825.16

SKE-PSU 0.01 200.88 0 213.55 414.43 0.05 44.73 0.03 22.78 0.13 59.65 0.11 35.71 0.2 86.11 0.2 65.18 0.21 378.57 0.4 369.24

PKE-PSU 0.01 74 0 101.8 175.8 4.65 168.79 4.6 79.95 4.78 169.18 4.79 86.49 4.97 179.58 4.94 96.32 4.97 269.32 4.87 216.19

220

PKE-PSU* 0.01 138 0 185 323 4.64 144.24 4.58 50.56 4.75 146.41 4.74 60.5 4.9 161.26 5 76.33 4.99 345 4.9 313.37

Table 3: Communication cost (in MB) and running time (in seconds) comparing our protocols to KRTW
GMRSS, and JSZDG-R. The LAN network has 10 Gbps bandwidth and 0.2 ms RTT latency. Communication
cost of S/R indicates the outgoing communication from S/R to the other party. The best protocol within a
setting is marked in blue.

the representation of an EC point by half. The cost of this trick is that one has to perform point de-
compression in the future, which is typically considered to be cheap. Somewhat surprisingly, it turns
out that point decompression is very costly. According to existing implementations provided in MCL
and OpenSSL libraries, point decompression is as expensive as point exponentiation. Due to this fact,
we prefer to use standard point representation for better efficiency when bandwidth is not of first
priority. In the implementation, we use PKE-PSU* to represent the version that does not perform
point compression.

The simulated network settings include typical LAN (10Gbps bandwidth and 0.02ms RTT latency)
and WAN (including 1Gbps with 40ms latency, 100Mbps and 10Mbps bandwidth with 80ms latency).
In our KRTW implementation, we follow the pipelining optimization shown in [KRTW19] with 28

pipelining size when the receiver sends polynomials to the sender. In our PKE-PSU, we also leverage
the pipelining optimization with the same 28 pipelining size when the sender sends ReRand outputs
to the receiver.

We divide all protocols into two phases: the one-time setup phase and the online phase. As the
name suggests, the one-time setup phase does necessary operations before actual protocol execution,
including key distribution, base OT execution, and the one-time setup phase for Ferret OT [YWL+20].
The online phase does subsequent protocol executions. Note that in our PKE-PSU, the receiver can
send the public key to the sender in the one-time setup phase, and all fixed-point precomputations re-
lated to the public key can also be done in that phase. We emphasize that fixed-point precomputations
only need to be performed once, regardless of the number of subsequent protocol executions.

Since the JSZDG-S scheme [JSZ+22] focus on unbalanced setting and its perfomance is about
2× worse than the JSZDG-R scheme, we only compare our schemes with JSZDG-R here. Detailed
comparisons for set sizes 214, 216, 218, 220 and controlled network configurations are shown in Table
3. To be more intuitive, we show the variation of the running time with the bandwidth in different
setting in Figure 11.
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Fig. 11: Decline of running time (in seconds) on increasing network bandwidth for our protocols compared with
KRTW, GMRSS and JSZDG-R. Both x and y-axis are in log scale. The four figures on the left correspond to
T = 1 and the right correspond to T = 8. The corresponding set sizes from the first row to the last row are
n = 214, 216, 218, 220 respectively.

6.5 Performance Evaluation

Communication improvement. As shown in Table 3, our PKE-PSU protocol has the lowest com-
munication among all protocols, which is 12.3 − 14.8× lower than KRTW, 5.1 − 6.3× lower than
GMRSS and 3.7 − 5× lower than JSZDG-R. The communication of PKE-PSU∗ is about 2× higher
than that of PKE-PSU, which is due to the absence of point compression. The communication of
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our SKE-PSU is about 2.5× higher than that of PKE-PSU. Nevertheless, all our schemes have lower
communication than that of KRTW, GMRSS and JSZDG-R schemes. Since the communication costs
of all our protocols are linear with the parties’ set sizes, while the communication costs of the other
protocols are not. The larger the parties’ set sizes are, the larger the communication cost ratios are.
Computation improvement. As shown in Table 3 and Figure 11, our SKE-PSU performs best when
the set size and the bandwidth are large. For example, for n = 220 with T = 1 thread in LAN setting,
SKE-PSU requires 44.73 seconds, achieving a 5.5× improvement over KRTW, a 2.2× improvement
over GMRSS, and a factor of 3.9× improvement over JSZDG-R.

Our PKE-PSU and PKE-PSU∗ could be seen as a trade-off between communication and compu-
tation. Both schemes perform better in lower bandwidth. Our PKE-PSU scheme is the fastest one
under 10Mbps, which is due to its lowest communication, e.g., for n = 220, PKE-PSU requires 216.19
seconds with T = 8 threads, while KRTW requires 2638.05 seconds, a 12.2× improvement, GMRSS
requires 1030.3 seconds, a 4.8× improvement, and JSZDG-R requires 825.16 seconds, a 3.8× improve-
ment. Our PKE-PSU* performs better in medium bandwidth (100Mbps and 1Gbps). For example,
for n = 218 with T = 8 threads in 100Mbps, PKE-PSU* requires 18.45 seconds, while KRTW re-
quires 113.83 seconds, a 6.2× improvement, GMRSS requires 38.82 seconds, a 2.1× improvement,
and JSZDG-R requires 33.8 seconds, a 1.8× improvement. We also noticed that the performance of
PKE-PSU* improved significantly (about 3× speedup) in the case of multithreading because of its
heavy computation cost.

6.6 Applications

We further gave the experiment results of two PSU applications introduced in Section 1, namely IP
blacklist aggregation and Private ID. Due to space limitations, the detailed experiment is shown in
Appendix H.
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Appendix

A Encryption Schemes

A.1 Symmetric-key Encryption

A symmetric-key encryption (SKE) scheme is a tuple of four algorithms:

– Setup(1κ): on input the security parameter κ outputs public parameters pp, which include the
description of the message and ciphertext space M,C.

– KeyGen(pp): on input public parameters pp, outputs a key k.
– Enc(k,m): on input a key k and a plaintext m ∈M , outputs a ciphertext c ∈ C.
– Dec(k, c): on input a key k and a ciphertext c ∈ C, outputs a message m ∈M or an error symbol
⊥.

Correctness. For any pp← Setup(1κ), any k ← KeyGen(pp), any m ∈M , and any c← Enc(k,m), it
holds that Dec(sk, c) = m.
Security. For our purpose, we require a case-tailored security notion called single-message multi-
ciphertext pseudorandomness. Formally, a SKE scheme is single-message multi-ciphertext pseudoran-
dom if for any PPT A = (A1,A2):

AdvA(1
κ) = Pr

β = β′ :

pp← Setup(1κ);
k ← KeyGen(pp);
(m, state)← A1(pp);

β
R←− {0, 1};

for i ∈ [n] : c∗i,0 ← Enc(k,m), c∗i,1
R←− C;

β′ ← A2(pp, state, {c∗i,β}i∈[n])

−
1

2

is negligible in κ.

Remark 1. The single-message multi-ciphertext pseudorandomness is a mild security notion that is
satisfied by most IND-CPA secure SKE schemes, for instance, the classical PRF-based SKE.

A.2 Re-randomizable PKE

A re-randomizable PKE (ReRand-PKE) scheme is a tuple of five algorithms:

– Setup(1κ): on input the security parameter κ outputs public parameters pp, which include the
description of the message and ciphertext space M,C.

– KeyGen(pp): on input public parameter pp, outputs a keypair (pk, sk).
– Enc(pk,m): on input a public key pk and a message m ∈M , outputs a ciphertext c ∈ C.
– Dec(sk, c): on input a secret key sk and a ciphertext c ∈ C, outputs a message m ∈M or an error

symbol ⊥.
– ReRand(pk, c): on input a public key pk and a ciphertext c ∈ C, outputs another ciphertext c′ ∈ C.

Correctness. For any pp← Setup(1κ), any (pk, sk)← KeyGen(pp), any m ∈M , any c← Enc(pk,m),
and any c′ ← ReRand(pk, c), it holds that Dec(sk, c) = Dec(sk, c′) = m.
Indistinguishability. For any pp ← Setup(1κ), any (pk, sk) ← KeyGen(pp), and any m ∈ M , the
distribution c0 ← Enc(pk,m) and the distribution c1 ← ReRand(pk, c0) are identical.
Security. For our purpose, we require a case-tailored security notion called single-message multi-
ciphertext pseudorandomness. Formally, a PKE scheme is single-message multi-ciphertext pseudoran-
dom if for any PPT A = (A1,A2):

AdvA(1
κ) = Pr

β = β′ :

pp← Setup(1κ);
(pk, sk)← KeyGen(pp);
(m, state)← A1(pp, pk);

β
R←− {0, 1};

for i ∈ [n] : c∗i,0 ← Enc(pk,m), c∗i,1
R←− C;

β′ ← A2(pp, state, {c∗i,β}i∈[n])

−
1

2

is negligible in κ.
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Remark 2. We remark that single-plaintext multi-ciphertext pseudorandomness is a very mild prop-
erty for PKE. This is because most natural IND-CPA secure PKE constructions satisfy single-message
single-ciphertext pseudorandomness, which further implies single-plaintext multi-ciphertexts pseudo-
randomness via a standard hybrid argument.

It is straightforward to verify that the DDH-based ElGamal PKE [Gam85] and Regev’s LWE-based
PKE [Reg05] are re-randomizable PKE schemes satisfying the above correctness, indistinguishability,
and single-plaintext multi-ciphertext pseudorandomness.

B Oblivious Key-Value Store Scheme

B.1 Instantiation of OKVSs

We recall some instantiations of OKVS and analyze their parameters.

Polynomial. Polynomial can be seen as a natural OKVS: to insert n key-value pairs {(xi, yi)}i∈[n],
one computes P as the polynomial which passes through points {(xi, yi)}i∈[n].

The advantage of polynomial is that its rate reaches optimal 1, which induces the lowest communi-
cation in the protocol. However, its encoding and decoding are less efficient. Using the optimization of
[PRTY19], the encoding and decoding complexity are respectively O(n log2 n) and O(log n). Another
disadvantage of polynomial is that it only satisfies correctness and obliviousness, not randomness
because polynomial generation is a deterministic algorithm.
Garbled Bloom Filter. Garbled Bloom Filter (GBF) was introduced in [DCW13] in the context of
PSI protocols. The values are taken from F2σ . A GBF is an m-long array D associated with k random
functions h1, . . . , hk : {0, 1}∗ → [m]. Let D[j] denote the jth component of array D. To insert a key-
value pair (x, y) in a GBF, one chooses random D[hi(x)] for i ∈ [k] conditioned on y = ⊕i∈[k]D[hi(x)].

In [DCW13], they showed that if the GBF has size m = O(λn) then the generation of GBF
succeeds with probability 1− 2−λ. Therefore, the rate of GBF is O(1/λ). The encoding complexity is
O(λn) and decoding requires λ XOR at most.
Garbled Cuckoo Table. Garbled Cuckoo Table (GCT) was introduced in [PRTY20] as an optimiza-
tion of GBF. The idea of GCT is similar to GBF, and the difference is that GCT uses only two hash
functions instead of λ. However, two hash functions will cause a non-negligible probability of failure.
To solve this problem, they introduce some additional positions and use a new random function to
map the key to these positions. They use cuckoo graph to analyze the probability of success, and
finally they achieve a better rate, which is about 0.42.

However, as Rindal and Schoppmann [RS21] pointed out, the original GCT scheme [PRTY20] does
not meet the obliviousness properties we defined before. The main reason is that the original GCT
needs to solve a linear equation to satisfy the key-value constraint. However, the free variable in the
equation is set to zero, which means keys are no longer randomly shared in some positions like GBF.
As a result, the GCT has some zeros depending on the key’s set. They made a little modification
to make GCT (they called XoPaXoS) meet this property. The main idea is to first assign random
values to the free variables, and then solve the remaining full rank equations. Recently, Garimella et
al. [GPR+21] improved original GCT to 3H-GCT, the rate is increased to 0.81 by using three hash
functions. However, the original 3H-GCT still assigns zero to the free variables in linear equation. We
use similar modifications to make 3H-GCT meet Obliviousness and Randomness, as we described in
Figure 3.

We summarize the parameters and properties of the above schemes in Table 4.

B.2 Property Proof

The correctness is obvious. Now we prove the Obliviousness and Randomness of our 3H-GCT++.

Theorem 7. 3H-GCT++ in Figure 3 satisfies the Obliviousness and Randomness.

Proof. Obliviousness: As we described before, 3H-GCT++ is generated by additive secret sharing of
values at the random position mapped by hash function, and selecting random value at the point not
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scheme rate encoding decoding obliviousness randomness

Polynomial 1 O(n log2 n) O(logn)
√

×
GBF [DCW13] O(1/λ) O(λn) O(λ)

√ √

2H-GCT [PRTY20] 0.42− o(1) O(λn) O(λ) × ×
XoPaXoS [RS21] 0.42− o(1) O(λn) O(λ)

√ √

3H-GCT [GPR+21] 0.81− o(1) O(λn) O(λ) × ×
3H-GCT++ in Figure 3 0.81− o(1) O(λn) O(λ)

√ √

Table 4: A comparison between the different OKVS schemes. n is the number of key-value pairs, λ is a
statistical security parameter (e.g.,λ = 40).

mapped. Since the value are uniform distribution, we have that {(D1, . . . , Dm)|Di ← G, i ∈ [m]} ≡
{(D1, . . . , Dm)|y ← G, Di ← G, i ∈ [m− 1], Dm := y −

∑
i∈[m−1] Di}, which implies Obliviousness.

Randomness: Let X = {x1, . . . , xn} denote the key’s set. For any x∗ /∈ X, let row(x∗) defined as
before. There are three cases:

Case 1: ∃xi ∈ X such that row(xi) = row(x∗). By the parameter of GCT scheme [PRTY20,
GPR+21], this probability is 2−λ.

Case 2: Let o(xi) ⊂ [m] be the set of positions that are 1s of row(xi), i ∈ [n] and let O :=
∪i∈[n]o(xi). In this case, o(x∗) ⊂ O, that is, all the 1 positions of row(x∗) have been mapped when
generating D. Now we can divide o(x∗) into several groups according to which key is mapped to that
location. If there is a location i mapped by both different keys, then the location i can be randomly
put into one of the groups. Since the different positions of a key mapped to corresponds to an additive
secret sharing of the corresponding value, the sum of each group should be a uniformly random element
in G. Therefore DecodeH(D,x∗) is a uniformly random string.

Case 3: ∃j ∈ [m] such that j ∈ o(x∗) ∧ j /∈ O, that is, there are some positions of row(x∗) were
not mapped when generating D. By the generation of GCT, those positions not mapped are assigned
with a random value. Therefore DecodeH(D,x∗) is a uniformly random string.

In summary, with probability 1− 2−λ, DecodeH(D,x∗) is a uniformly random string.

C Proof of Theorem 1

Below we give the details of the proof of Theorem 1.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt sender: SimS(Y = {y1, . . . , yny}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. SimS selects nx random key-value pairs (xi, si)i∈[nx], where xi and si are random item and cipher-
text respectively. Then SimS computes OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)) and
appends it to the view.

2. SimS computes s∗i = DecodeH(D,h(yi)) for i ∈ [ny]. Then, it invokes VODM simulator SimS
vodm(s

∗
1, . . . , s

∗
ny
)

and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. We formally prove
this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2, T3 where T0

is real view of S, and T3 is the output of SimS .

– Hybrid0. The first hybrid is the real interaction described in Figure 7. Here, an honest R uses
input X, honestly interacts with the corrupt S. Let T0 denote the real view of S.

– Hybrid1. Let T1 be the same as T0, except that (s1, . . . , snx) are replaced by nx random ciphertexts.
This hybrid is computationally indistinguishable from T0 by the single-message multi-ciphertext
pseudorandomness of the encryption scheme.
Specifically, if there is a distinguisher D can distinguish T0 and T1 with non-negligible probability,
then we can construct a PPT adversary A to break the single-message multi-ciphertext pseudoran-
domness of encryption scheme. A works as follows: when A receives pp from challenger, A selects
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a random s as challenge message. Then A receives ciphertexts {c∗i }i∈[nx] from challenger. Now A
executes as an honest receiver with the corrupt S except step 2. In this step, A computes OKVS as
D := EncodeH({h(xi), c

∗
i }i∈[nx]). Now A invokes D with the sender’s view in the above interaction

and outputs D’s output. Note that if {c∗i }i∈[nx] are the encryption of s, the view of corrupt sender
is exactly the real view, which corresponds to T0. If {c∗i }i∈[nx] are random ciphertexts, the view
corresponds to T1. Therefore, A can break the security of the encryption scheme with the same
advantages as D.

– Hybrid2. Let T2 be the same as T1, except that the inputs of the receiver R are replaced by nx

random items. Note that the selection of value in OKVS has been replaced with random ciphertexts
in T1. By the obliviousness property of OKVS, T1 and T2 are statistically indistinguishable.

– Hybrid3. Let T3 be the same as T2, except that the VODM execution is replaced by simulator
SimS

vodm. The security of VODM functionality guarantees the view is indistinguishable from real
execution.

Corrupt receiver: SimR(X = {x1, . . . , xnx}, b) simulates the view of corrupt semi-honest receiver. It
executes as follows:

1. SimR selects a random s← {0, 1}σ and generates a random encryption key k as the semi-honest
receiver does in the real protocol. Then, it invokes VODM simulator SimR

vodm(k, s, b) and appends
the output to the view.

The view output by SimR is indistinguishable from the real one by the underlying simulators’ indis-
tinguishability.

D SKE-based Multi-Query RPMT

Now we show that PRF-based SKE satisfies the single-message multi-ciphertext pseudorandomness
property.

Let F := {fk : {0, 1}κ → {0, 1}κ}k∈K be a PRF family. The PRF-based SKE scheme is as follows:

– Setup(1κ): on input the security parameter κ outputs public parameters pp, which include the
description of the message and ciphertext space M = {0, 1}κ, C = {0, 1}2κ.

– KeyGen(pp): on input public parameter pp, outputs a key k
R←− K.

– Enc(k,m): on input a key k and a plaintext m ∈ M , chooses r
R←− {0, 1}κ, outputs a ciphertext

c = (r, fk(r)⊕m).
– Dec(k, c): on input a key k and a ciphertext c = (r, c2), outputs m = fk(r)⊕ c2.

Next, we prove the single-message multi-ciphertext pseudorandomness of the above PRF-based
SKE scheme.

Lemma 1. The PRF-based SKE satisfies the single-message multi-ciphertext pseudorandomness prop-
erty defined in Section A.1.

Proof. If there is a PPT adversary A = (A1,A2) can break the single-message multi-ciphertext pseu-
dorandomness of SKE scheme, then we can construct a PPT adversary B to break the security of PRF.
In particular, B runs Setup to obtain pp, then it invokes A1(pp) to obtain (m, state). Now, B selects

ri
R←− {0, 1}κ and queries the oracle with ri to obtain f(ri) for i ∈ [n]. Then, B sets ci = (ri, f(ri)⊕m)

and invokes A2(pp, state, {ci}i∈[n]) to obtain a bit β′. Finally, B outputs β′.
If f is PRF: {ci}i∈[n] are exactly the n times encryption of m, which correspond to β = 0.
If f is random function: f(r) is also a random string on {0, 1}κ, which means ci is a random

distribution in ciphertext space, corresponding to β = 1.Therefore, B distinguishes PRF with the
same probability as A in single-message multi-ciphertext pseudorandomness experiment.

E PSU Construction from Leaky VODM

We give the PSU protocol from leaky VODM in Figure 12.
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Parameters:

– Two parties: sender S and receiver R.
– A ReRand-PKE scheme

(Setup,KeyGen,Enc,Dec,ReRand).
– An OKVS scheme (EncodeH ,DecodeH).
– A collision-resistant hash function h(x) : {0, 1}∗ → {0, 1}σ.

Input of S: Y = {y1, . . . , yny} ⊂ {0, 1}∗
Input of R: X = {x1, . . . , xnx} ⊂ {0, 1}∗
Protocol:

1. R selects a random indication string s ∈ F2σ . R also generates a random key pair pp ←
Setup, (pk, sk) ← KeyGen(pp), a randomness set R = {r1, . . . , rnx} and computes si := Enc(pk, s; ri)
for i ∈ [nx].

2. R computes an OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)).
3. R sends D and pk to S.
4. S computes s∗i := DecodeH(D,h(yi)) for i ∈ [ny].
5. S and R invoke the leaky VODM functionality Flvodm. The sender S acts as sender in leaky VODM

with input {s∗i }i∈[ny] and receives nothing. The receiver R acts as receiver in leaky VODM with input
(pk, sk, s) and receives b ∈ {0, 1}ny and {s′i|bi = 0}.

6. R initialize set Z := {}.
7. For i ∈ [ny]:

(a) S and R invoke the OT functionality Fot

(b) S acts as sender with input (yi,⊥).
(c) R acts as receiver with input bi.
(d) R obtains the OT output zi and sets Z = Z ∪ {zi}

8. R outputs X ∪ Z.

Fig. 12: PSU from leaky VODM Πpsu

Theorem 8. Assume the Re-Rand PKE scheme E = (Setup,KeyGen,Enc,Dec) satisfies single-message
multi-ciphertext pseudorandomness. The protocol in Figure 12 securely computes Fpsu against semi-
honest adversaries in the (Flvodm,Fot)-hybrid model.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt Sender: SimS(Y = {y1, . . . , yny}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. SimS selects nx random key-value pairs (xi, si)i∈[nx], where xi and si are random item and ci-
phertext respectively. Then the simulator SimS generates pp ← Setup, (pk, sk) ← KeyGen(pp),
computes D = EncodeH((h(x1), s1), . . . , (h(xnx), snx)) and appends (pk,D) to the view.

2. SimS computes s∗i = DecodeH(D,h(yi)) for i ∈ [ny]. Then, it invokes leaky VODM simulator

SimS
lvodm(s

∗
1, . . . , s

∗
ny
) and appends the output to the view.

3. For i ∈ [ny], SimS invokes OT simulator SimS
ot(yi,⊥) and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. We formally prove
this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2, T3 where T0

is real view of S, and T3 is the output of SimS .

– Hybrid0. The first hybrid is the real interaction described in Figure 12. Here, an honest R uses
input X, honestly interacts with the corrupt S. Let T0 denote the real view of S.

– Hybrid1. Let T1 be the same as T0, except that (s1, . . . , snx) are replaced by nx random ciphertexts.
This hybrid is computationally indistinguishable from T0 by the single-message multi-ciphertext
pseudorandomness of the encryption scheme.
Specifically, if there is a distinguisher D can distinguish T0 and T1 with non-negligible probability,
then we can construct a PPT adversary A to break the single-message multi-ciphertext pseudoran-
domness of encryption scheme. A works as follows: when A receives pp from challenger, A selects
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a random s as challenge message. Then A receives ciphertexts {c∗i }i∈[nx] from challenger. Now A
executes as an honest receiver with the corrupt S except step 2. In this step, A computes OKVS as
D := EncodeH({h(xi), c

∗
i }i∈[nx]). Now A invokes D with the sender’s view in the above interaction

and outputs D’s output. Note that if {c∗i }i∈[nx] are the encryption of s, the view of corrupt sender
is exactly the real view, which corresponds to T0. If {c∗i }i∈[nx] are random ciphertexts, the view
corresponds to T1. Therefore, A can break the security of the encryption scheme with the same
advantages as D.

– Hybrid2. Let T2 be the same as T1, except that the inputs of the receiver R are replaced by nx

random items. Note that the selection of value in OKVS has been replaced with random ciphertexts
in T1. By the obliviousness property of OKVS, T1 and T2 are statistically indistinguishable.

– Hybrid3. Let T3 be the same as T2, except that the leaky VODM and OT execution is replaced by
simulator SimS

lvodm and SimS
ot. The security of leaky VODM and OT functionality guarantee the

view is indistinguishable from real execution.

Corrupt Receiver: SimR(X = {x1, . . . , xnx}, X ∪Y ) simulates the view of corrupt receiver. It executes
as follows:

1. SimR executes first two steps as an honest receiver and obtains s, (pk, sk), D.
2. SimR define the set Z := X ∪Y \X, i.e. the set of elements that Y “brings to the union”. Next, it

uses ⊥ to pads Z to ny elements and permutates these elements randomly. Let Z = {z1, . . . , zny}.
3. SimR sets bi = 1 if and only if zi ∈ X for i ∈ [ny]. For zi /∈ X, SimR computes s′i :=

Dec(sk,DecodeH(D,h(zi))) Then, it invokes leaky vectro ODM simulator SimR
lvodm(s, b, {s′i|bi = 0})

and appends the output to the view.
4. For i ∈ [ny], SimR invokes OT simulator SimR

ot(bi, zi) and appends the output to the view.

Now we argue that the view output by SimR is indistinguishable from the real one. In the simulation,
the way R obtains the elements in Z = X \ Y is identical to the real execution. By the underlying
simulators’ indistinguishability, the simulated view is computationally indistinguishable from the real
one.

F Multi-Query RPMT Based on Membership Encryption

We describe how to construct mq-RPMT using the language of Membership Encryption (ME). As we
mentioned in Section 4.3, this will help us reduce the communication by half when sending OKVS.
We first define the vector oblivious decryption (VOD) functionality in Figure 13.

Parameters: Sender S, Receiver R, set sizes n, a ME scheme E = (Setup,KeyGen,Enc,Dec).
Functionality:

– Wait for input k from the receiver R.
– Wait for input {s∗1, . . . , s∗n} ⊂ {0, 1}∗ from the sender S.
– For i ∈ [n]:

Compute bi = Dec(k, s∗i ).
– Give output b ∈ {0, 1}n to the receiver R.

Fig. 13: Vector Oblivious Decryption Functionality Fvod

Now, we use the language of ME to describe how to construct mq-RPMT. The formal protocol is
described in Figure 14.

Correctness. For all i ∈ [ny], if yi ∈ X, there is an xj ∈ X, j ∈ [nx] s.t. yi = xj . In this case,
s∗i = DecodeH(D,h(xj)) = sj . Since sj = Enc(k, xj), we have Dec(k, sj) = 1. In the case yi /∈ X,
if hash functions collide, that is, h(yi) = h(x) for some yi /∈ X, the correctness will be violated.
By setting σ = λ+ log nxny, a union bound shows probability of collision is negligible 2−λ. When no
collision occurs, from the randomness of OKVS, s∗i = DecodeH(D,h(yi)) is a random ciphertext, result
in Dec(k, s∗i ) = 0 with overwhelming probability. The union bound guarantees that for all yi /∈ X, the
probability that there exists an s∗i s.t. Dec(k, s∗i ) = 1 is negligible.
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We now state and prove the security properties of the above mq-RPMT protocol.

Theorem 9. Assume E = (Setup,KeyGen,Enc,Dec) is a membership encryption scheme as we defined
in section 4.3. The protocol in Figure 14 securely computes Fmq-rpmt against semi-honest adversaries
in the Fvod-hybrid model.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt sender: SimS(Y = {y1, . . . , yny}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. SimS selects nx random key-value pairs (xi, si)i∈[nx], where xi and si are random item and cipher-
text respectively. Then SimS computes OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)) and
appends it to the view.

2. SimS computes s∗i = DecodeH(D,h(yi)) for i ∈ [ny]. Then, it invokes VOD simulator SimS
vod(s

∗
1, . . . , s

∗
ny
)

and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. We formally prove
this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2, T3 where T0

is real view of S, and T3 is the output of SimS .

– Hybrid0. The first hybrid is the real interaction described in Figure 14. Here, an honest R uses
input X, honestly interacts with the corrupt S. Let T0 denote the real view of S.

– Hybrid1. Let T1 be the same as T0, except that (s1, . . . , snx) are replaced by nx random ciphertexts.
This hybrid is computationally indistinguishable from T0 by the multi-elements pseudorandomness
of the membership encryption scheme.
Specifically, if there is a distinguisher D can distinguish T0 and T1 with non-negligible probability,
then we can construct a PPT adversary A to break the multi-elements pseudorandomness of
membership encryption scheme. A works as follows: when A receives ciphertexts {c∗i }i∈[nx] from
challenger, A executes as an honest receiver with the corrupt S except step 2. In this step, A
computes OKVS as D := EncodeH({h(xi), c

∗
i }i∈[nx]). Now A invokes D with the sender’s view

in the above interaction and outputs D’s output. Note that if {c∗i }i∈[nx] are the encryption of
xi, the view of corrupt sender is exactly the real view, which corresponds to T0. If {c∗i }i∈[nx]

are random ciphertexts, the view corresponds to T1. Therefore, A can break the multi-elements
pseudorandomness of the membership encryption scheme with the same advantages as D.

– Hybrid2. Let T2 be the same as T1, except that the inputs of the receiver R are replaced by nx

random items. Note that the selection of value in OKVS has been replaced with random ciphertexts
in T1. By the obliviousness property of OKVS, T1 and T2 are statistically indistinguishable.

– Hybrid3. Let T3 be the same as T2, except that the VOD execution is replaced by simulator SimS
vod.

The security of VOD functionality guarantees the view is indistinguishable from real execution.

Corrupt receiver: SimR(X = {x1, . . . , xnx}, b) simulates the view of corrupt semi-honest receiver. It
executes as follows:

1. SimR generates a random encryption key k as the semi-honest receiver does in the real protocol.
Then, it invokes VOD simulator SimR

vod(k, b) and appends the output to the view.

The view output by SimR is indistinguishable from the real one by the underlying simulators’ indis-
tinguishability.

G Implementation Detail

G.1 Detail for Netty and Protocol Buffers

Netty is an asynchronous event-driven network application framework for the rapid development of
maintainable high-performance protocols that are widely used for real applications. We design a unified
data package format. Each data package contains a 256-bit length header and the actual payload bytes.
The header is defined as follows:
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Parameters:

– Two parties: sender S and receiver R.
– Ideal Fvod primitives specified in Figure 13.
– A ME scheme (Setup,KeyGen,Enc,Dec).
– An OKVS scheme (EncodeH ,DecodeH)
– A collision-resistant hash function h(x) : {0, 1}∗ → {0, 1}σ.

Input of S: Y = {y1, . . . , yny} ⊂ {0, 1}∗
Input of R: X = {x1, . . . , xnx} ⊂ {0, 1}∗
Protocol:

1. R uses a ME scheme to generate a random key: pp ← Setup(X, 1κ), k ← KeyGen(pp) and computes
si := Enc(k, xi) for i ∈ [nx].

2. R computes an OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)).
3. R sends D to the sender S.
4. S computes s∗i := DecodeH(D,h(yi)) for i ∈ [ny].
5. S and R invoke the vector oblivious decryption functionality Fvod. S acts as sender with input

S = {s∗1, . . . , s∗ny
} and R acts as receiver with input k. As a result, S receives nothing and R receives

b ∈ {0, 1}ny .

Fig. 14: ME-based Multi-Query Reverse Private Membership Test Protocol Πmq-rpmt

– Task ID: 64-bit long.
– Protocol ID: 32-bit integer.
– Step ID: 32-bit integer.
– Extra Info: 64-bit long12.
– Sender ID: 32-bit integer.
– Receiver ID: 32-bit integer.
– Payload: List¡byte[]¿ supporting arbitrary size.

Protocol Buffers is Google’s language-neutral, platform-neutral, extensible mechanism for serializing
structured data and are fully compatible with Netty. Note that Protocol Buffers introduce lengths of
each byte array in Payload Bytes in its serialization. Therefore, the actual communication costs are
higher than the theoretical communication costs. The results reported in our setting would reflect the
actual costs when deploying protocols in real situations. The detailed protocol buffer definition is as
follows:

1 ‘ ‘ ‘ protobuf
2 syntax = ” proto3 ” ;
3 message DataPacketProto {
4 // the package conta ins head and
5 // payload , s e p a r a t e l y de f ined by
6 //DataPacketSpecProto and PacketProto .
7 HeaderProto headerProto = 1 ;
8 PayloadProto payloadProto = 2 ;
9 // head d e f i n i t i o n

10 message HeaderProto {
11 // ta s k ID
12 i n t64 taskId = 1 ;
13 // p ro t o co l ID
14 i n t32 ptoId = 2 ;
15 // s t ep ID
16 i n t32 s t ep Id = 3 ;
17 // ex t ra in format ion
18 i n t64 ex t r a In f o = 4 ;

12 Extra information for each step. For example, the current number of AND operations in SKE-2PC LowMC.
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19 // sender ID
20 i n t32 sender Id = 5 ;
21 // r e c e i v e r ID
22 i n t32 r e c e i v e r I d = 6 ;
23 }
24 // payload d e f i n i t i o n
25 message PacketProto {
26 // repea ted means the pay load
27 // conta ins an array o f by t e [ ]
28 repeated bytes payloadBytes = 1 ;
29 }
30 }
31 ’ ’ ’

G.2 JNI Technique

As mentioned in Section 6.2, we use the Java Native Interface (JNI) technique to invoke C/C++
libraries for speeding up performances. These include:

– Bit matrix transpose (used in OT extension and SKE-PSU). We follow the ideas provided by Mis-
chasan13 and adjust the implementation given in EMP-toolkit14 to implement bit matrix transpose
operations. The bit matrix is represented in the big-endian byte ordering, thus compatible with
Java.

– Polynomial operations (used in KRTW and GMRSS). We tried the pure-Java Rings polynomial
implementation15 but found that its efficiency is not acceptable. We instead use the NTL library16

with GMP library and GF2X library17 for speeding up the performance. We adjust the polynomial
representation to make the results returned from NTL compatible with Rings.

– ECC operations (used in base OT and PKE-PSU). We compared the ECC operation performances
via different libraries, including the pure-Java Bouncy Castle18, the C/C++ Relic19, and the
C/C++ MCL20. We found that (at least in our experiment platform) MCL library performs
best, especially for the fixed-point multiplication operation. However, the ECC addition operation
in Bouncy Castle is faster than MCL in our platforms. Therefore, we adjust the ECC point
representation returned from MCL to make it compatible with the ECC point representation in
Bouncy Castle to directly use Bouncy Castle to do the addition operations in Java.

– Switching Network programming (used in GMRSS and JSZDG). We used the code base open-
sourced by Garimella et al. [GMR+21]21 as a starting point. We replaced the switching node
representation from ‘int’ to ‘int8 t’ to reduce the memory cost.

G.3 Performance of GMRSS and JSZDG Using Silent OT

We denote GMRSS, JSZDG-R and JSZDG-S schemes with Silent OT by GMRSS*, JSZDG-R*
and JSZDG-S*, respectively. The challenge is that current Silent OT implementations only provide
Learning-Parity-with-Noise (LPN) parameters for large COT output sizes but not for small COT
output sizes. For example, the Ferret OT [YWL+20] only provides LPN parameters that can output
10 million COTs. We follow a similar strategy introduced in [YWL+20] to find LPN parameters to
output 214, 216, 218, 220, 222 COTs in the regular-index setting, while all known attacks (e.g., Gaussian

13 https://mischasan.wordpress.com/2011/10/03/the-full-sse2-bit-matrix-transpose-routine/
14 https://github.com/emp-toolkit/emp-tool/blob/master/emp-tool/utils/block.h
15 (https://rings.readthedocs.io/
16 https://libntl.org/
17 https://gitlab.inria.fr/gf2x/gf2x
18 (https://www.bouncycastle.org/java.html
19 https://github.com/relic-toolkit/relic
20 https://github.com/herumi/mcl
21 https://github.com/osu-crypto/PSI-analytics/blob/master/psi_analytics_eurocrypt19/common/

benes.cpp
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elimination, low-weight parity-check and information set decoding) requires at least 2128 arithmetic
operations. The parameters are shown in Table 5. We refer readers to see [YWL+20] for details on
setting these parameters in Ferret OT.

# of COTs One-time Setup Iteration
k0 n0 t0 k n t

214 1152 8792 581 1408 25167 1475
216 2304 12832 409 4352 78354 1411
218 2432 27451 872 15232 289584 1526
220 4864 71040 1131 55680 1119616 1536
222 12160 237343 1508 218880 4431616 1536
224 43776 882063 1533 860160 17658880 1536

Table 5: Extended Parameters in Ferret OT [YWL+20]

We report the performance of these schemes in Table 6. Taking n = 220 and T = 1 as an example,
we show the variation of the running time with the bandwidth of three schemes and their silent OT
version in Figure 15. As shown in Table 6, we find that the communication of silent OT version is
about 60% of the original schemes, while the running time is slower in the high bandwidth setting.
This is due to the characteristics of silent OT, that is, the computational complexity is higher, but the
communication is lower than the IKNP OT extension. As shown in Figure 15, two lines meet between
10Mbps and 100Mbps in all three schemes. Therefore, we could consider substituting the IKNP OT
extension with silent OT in these schemes as a trade-off between communication and computation.

n Protocol

Comm. (MB) Running time (s)

R S
total

LAN 1Gbps 100Mbps 10Mbps

setup online setup online
T = 1 T = 8 T = 1 T = 8 T = 1 T = 8 T = 1 T = 8

setup online setup online setup online setup online setup online setup online setup online setup online

214

GMRSS 0.02 5.89 0.02 7.96 13.85 0.1 1.01 0.04 0.42 0.66 1.96 0.46 1.28 1 3.53 0.91 2.97 1.06 14.44 0.93 13.97

GMRSS* 0.24 1.82 0.22 8.11 9.93 0.18 1.47 0.09 0.77 1.14 2.36 0.99 1.73 2.11 3.86 1.73 3.19 2.49 11.64 2.03 11.17

JSZDG R 0.01 4.65 0.01 5.63 10.28 0.07 1.81 0.02 0.52 0.27 2.65 0.23 1.34 0.49 4.19 0.41 2.66 0.45 12.08 0.37 10.63

JSZDG R* 0.19 0.98 0.21 5.78 6.75 0.15 1.96 0.07 0.76 0.85 3.38 0.72 1.51 1.3 4.39 1.22 2.83 1.67 9.64 1.5 8.1

JSZDG S 0.01 9.41 0.01 10.64 20.04 0.07 2.17 0.03 0.69 0.37 3.5 0.31 1.85 0.64 5.53 0.55 4.15 0.62 21.7 0.57 20.27

JSZDG S* 0.26 5.88 00.26 7.11 12.99 0.16 2.7 0.08 1.19 0.91 3.71 0.84 2.19 1.7 5.6 1.4 4.08 1.94 15.82 1.79 14.85

216

GMRSS 0.02 25.95 0.02 34.11 60.06 0.11 4.79 0.04 1.95 0.64 6.61 0.48 4.25 1.11 12.67 0.92 9.78 1.04 60.75 0.94 57.5

GMRSS* 0.38 6.66 0.37 33.45 40.11 0.25 5.93 0.13 3.06 1.36 8.56 1.02 5.24 2.11 12.07 1.79 9.39 2.57 45.6 2.38 42.34

JSZDG R 0.01 20.75 0.01 24.74 45.49 0.07 7.5 0.02 2.25 0.3 9.29 0.2 4.45 0.44 13.78 0.4 8.58 0.47 49.41 0.42 44.58

JSZDG R* 0.33 3.18 0.34 24.29 27.47 0.23 9.74 0.12 3.64 0.93 11.54 0.68 5.58 1.4 14.69 1.31 8.48 1.97 37.21 1.82 30.8

JSZDG S 0.01 42.02 0.01 47.43 89.45 0.07 9.4 0.02 3.49 0.39 12.03 0.33 6.72 0.63 20.45 0.57 14.65 0.66 92.22 0.53 86.25

JSZDG S* 0.53 24.72 0.53 30.12 54.84 0.44 13.19 0.18 6.24 1.02 15.04 0.96 8.57 1.83 21.63 1.58 14.11 2.44 66.34 2.64 60.4

218

GMRSS 0.02 113.7 0.02 145.11 258.81 0.13 20.74 0.03 9.8 0.58 28.62 0.55 16.63 1.09 49.68 0.93 38.82 1.03 251.84 0.97 243.63

GMRSS* 0.72 26.04 0.6 140.99 167.03 0.53 30.33 0.38 15.55 1.61 38.04 1.33 21.73 2.55 50.81 2.44 36.67 3.66 184.55 3 172.48

JSZDG R 0.01 92.67 0.01 107.89 200.56 0.07 41.15 0.03 10.71 0.25 43.17 0.21 16.84 0.42 64.06 0.4 33.8 0.53 221.27 0.39 191.2

JSZDG R* 0.72 13.04 0.56 104.56 117.59 0.49 58.53 0.34 18.6 1.21 62.7 1.19 23.36 1.91 73.96 1.81 33.14 2.83 169.16 2.52 130.23

JSZDG S 0.01 185.73 0.01 212.56 398.29 0.08 47.88 0.03 17.2 0.44 56.28 0.31 28.3 0.63 90.87 0.56 63.01 0.59 417.5 0.58 379.63

JSZDG S* 1.02 106.34 1.01 133.17 239.5 1 77.03 0.62 31.07 1.97 73.65 1.86 38 3.03 104.8 2.34 60.38 4.04 293.68 3.69 258.33

220

GMRSS 0.02 493.2 0.02 615.9 1109.1 0.11 100.48 0.04 48.53 0.62 119.98 0.51 75.76 1.11 207.83 0.95 164.25 1.09 1074.33 0.95 1030.3

GMRSS* 1.19 103.22 0.77 598.21 701.43 1.23 144.79 0.72 71.89 2.19 162.16 1.85 92.65 3.07 212.15 2.76 149.52 4.6 779.92 4.1 718.97

JSZDG R 0.01 405.53 0.01 467.26 872.79 0.08 173.07 0.04 54.41 0.48 184.63 0.2 73.28 0.47 266.51 0.73 146.13 0.47 941.5 0.72 825.16

JSZDG R* 1.14 51.3 0.68 452.75 504.05 0.89 273.25 0.82 85.62 1.64 281.78 1.73 97.24 2.27 325.41 2.22 139.31 3.75 737.4 3.54 550.06

JSZDG S 0.01 813.5 0.01 929.78 1743.29 0.08 217.9 0.05 89.18 0.33 249.1 0.28 129.09 0.66 393.02 0.56 269.69 0.67 1820.49 0.56 1653.72

JSZDG S* 1.41 460.14 1.4 576.42 1036.56 1.68 369.11 1.35 145.83 2.98 330.48 2.21 167.1 3.4 474.78 3.37 255.16 5.52 1276.32 4.98 1111.8

Table 6: Communication cost (in MB) and running time (in seconds) comparing GMRSS, JSZDG protocols
and their silent OT version. The LAN network has 10 Gbps bandwidth and 0.2 ms RTT latency. The 100Mbps
and 10Mbps network have 80ms RTT latency, while the 1Gbps network has 40ms RTT. Communication cost
of S/R indicates the outgoing communication from S/R to the other party.
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Fig. 15: Decline of running time (in seconds) on increasing network bandwidth for GMRSS, JSZDG-R and
JSZDG-S compared with their silent OT version. Both x and y-axis are in log scale. The set size n = 220 and
the number of threads T = 1.

G.4 The Costs of Triple Generation of SKE-PSU

Here we report the costs of triple generation in our SKE-PSU. We use Ferret OT [YWL+20] and the
techniques introduced in [ALSZ13]. Note that when the set size is relatively large, the total number
of needed Boolean triples can be larger than 224, requiring more than 224 OTs, while the maximum
number of OTs supported for our Ferret OT parameter is 224. Our strategy is to generate Boolean
triples (OTs) on-the-fly if the total number of needed Boolean triples is beyond 224. In this way, the
computation and communication costs of Boolean triple generation are included in Tables 7.

n
Comm. (MB) Running time (s)

R S total
LAN 1Gbps 100Mbps 10Mbps

T = 1 T = 8 T = 1 T = 8 T = 1 T = 8 T = 1 T = 8

214 3.16 3.16 6.32 51.51 29.4 53.8 31.01 56.05 32.21 60.06 32.22

216 5.1 5.1 10.2 163.73 93.81 167.17 95.9 169.78 98.92 175.54 108.09

218 11 11 22 574.85 320 581.07 330.29 583.54 329.78 600.64 353.61

220 34.21 34.21 68.42 2214.98 1210.69 2230.5 1233.36 2236.57 1262.55 2274.38 1302.01

Table 7: Communication cost (in MB) and running time (in seconds) of triple generation stage in SKE-PSU.
The LAN network has 10 Gbps bandwidth and 0.2 ms RTT latency. The 100Mbps and 10Mbps network
have 80ms RTT latency, while the 1Gbps network has 40ms RTT. Communication cost of S/R indicates the
outgoing communication from S/R to the other party.

As showed in Table 7, the communication cost in the triple generation stage is small. And thus
the running time under different bandwidth is almost the same. When increases from T = 1 to 8, the
running time of triple generation improves about 1.8×.

H Experiment Results of PSU Applications

H.1 IP Blacklist Aggregation

IP blacklist aggregation [HLS+16, RMY20] is a direct application of PSU, in which the input sets
of both parties are their respective IP blacklists, and the output is the union blacklist. Next, we run
PSU to fulfill the IP blacklist aggregation task, demonstrating its the concrete efficiency in a realistic
scenario.

The input IP blacklist comes from the public BlackIP project22. This project provides two black
IP sets, namely blackip (with 3, 176, 636 IPv4 addresses) and oldip (with 2, 514, 551 IPv4 addresses).
We assume S maintains the blackip set and R maintains the oldip set. Note that an IPv4 address is
represented as a 32-bit length binary string, while the input sets we tested in Section 6 contain 128-bit
length binary strings. The experiment results are shown in Table 8.

22 https://github.com/maravento/blackip
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Comm. (MB) Running time (s)
Protocols

R S Total LAN WAN

KRTW 1082.03 9613.29 10695.32 232.99 1406.25

GMRSS 1541.4 1846.69 3388.09 207.86 490.24

JSZDG-R 1044.6 713.38 1757.98 145.55 324.84

SKE-PSU 594.91 632.3 1227.21 74.23 170.62

PKE-PSU 212.06 254.23 466.29 197.42 229.76

PKE-PSU* 405.95 453.75 859.7 125.06 179.51

Table 8: Communication cost (in MB) and running time (in seconds) comparing our protocols to KRTW
GMRSS, and JSZDG-R in the applications of IP blacklist aggregation. The input size of R and S are 2514551
and 3176636 respectively. The LAN network has 10 Gbps bandwidth and 0.2 ms RTT latency and the WAN
network has 100 Mbps bandwidth and 80 ms RTT latency. Communication cost of S/R indicates the outgoing
communication from S/R to the other party. The number of thread T = 8. The best protocol in this setting
is marked in blue.

In this application, the input set size of both partis are larger than 220. Nevertheless, we find
that the experimental results are consistent with the experiment in Section 6: our PKE-PSU has
the lowest communication, and our SKE-PSU performs best in running time. In addition, all of our
PSU protocols have a better communication cost ratio. The main reason is that the communication
complexity of our protocols is linear O(n), while other protocols are O(n log n).

H.2 Private ID

Private ID (PID) [BKM+20, GMR+21] is also an important PSU application. The definition of Private
ID functionality Fpid is given in Figure 16. Garimella et al. [GMR+21] proposed a framework of
constructing PID protocol from OPRF and PSU. Their main idea is as follows, the parties execute
two OPRF instances symmetrically. In the first instance, Alice learns kA and Bob learns FkA

(yi) for
each of his items yi; in the second instance, Bob learns kB and Alice learns FkB

(xi) for each of her
items xi. The identifiers are defined as R(x) := FkA

(x)⊕ FkB
(x). The parties compute the identifiers

of the items in their set and finally they execute a PSU protocol to obtain the whole identifier set.
We give this basic23 PID protocol in Figure 17.

Parameters: Two parties: Alice and Bob. Number of items n for the Alice and Bob; length of identifiers
l.
Functionality:

– Wait for input X = {x1, . . . , xn} ⊂ {0, 1}∗ from Alice.
– Wait for input Y = {y1, . . . , yn} ⊂ {0, 1}∗ from Bob.

– For every z ∈ X ∪ Y , choose a random identifier R(z)
R←− {0, 1}l.

– Define R∗ := {R(z)|z ∈ X ∪ Y }.
– Give output (R∗, R(x1), . . . , R(xn)) to Alice.
– Give output (R∗, R(y1), . . . , R(yn)) to Bob.

Fig. 16: Private ID Functionality Fpid.

The bottleneck of the above PID protocol is exactly the underlining PSU protocol. As shown in the
experiment of [GMR+21], about 90% of the PID running-times is on the PSU. Therefore, we believe
that replacing it with our PSU, the resulting PID protocol will be more efficient. The experiment
results are shown in Table 9. The notions of SKE-PID, PKE-PID, PKE-PID* denote that the PSU
protocol is replaced by SKE-PSU, PKE-PSU and PKE-PSU* in the PID protocol 17.

23 For better efficiency, [GMR+21] further introduces a “sloppy OPRF” technique to generate identifiers.
Roughly speaking, the sender inputs a set X and learns a key k, the receiver inputs a set Y and learns
values {zi}i∈[n]. For every yi ∈ Y , if yi ∈ X, then zi = Fk(yi), but such equality does not hold for other zi.
See [GMR+21] for more details
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Parameters:

– Two parties: Alice and Bob.
– Ideal Foprf and Fpsu primitives.

Input of Alice: X = {x1, . . . , xn} ⊂ {0, 1}∗.
Input of Bob: Y = {y1, . . . , yn} ⊂ {0, 1}∗.
Protocol:

1. (OPRF) Alice and Bob invoke the OPRF functionality Foprf . Alice acts as the sender and Bob acts as
the receiver with input Y . As a result, Alice receives a PRF key kA and Bob receives {FkA(y)|y ∈ Y }.

2. Alice and Bob invoke another OPRF functionality Foprf . Bob acts as the sender and Alice acts as the
receiver with input X. As a result, Bob receives a PRF key kB and Alice receives {FkB (x)|x ∈ X}.

3. (Identifiers computation) For i ∈ [n], Alice computes RA(xi) := FkA(xi)⊕ FkB (xi).
4. For i ∈ [n], Bob computes RB(yi) := FkA(yi)⊕ FkB (yi).
5. (Union) Alice and Bob invoke the PSU functionality Fpsu with input {RA(x)|x ∈ X} and
{RB(y)|y ∈ Y } respectively. As a result, they obtain output R∗ and output the (R∗, {RA(xi)}i∈[n])
and (R∗, {RB(yi)}i∈[n]) respectively.

Fig. 17: Basic Private ID Protocol Πpid

Comm. (MB) Running time (s)
n Protocols

Alice Bob Total LAN WAN

GMRSS-PID 9.31 11.58 20.89 0.7 4.11

SKE-PID 6.58 6.98 13.56 0.58 14.3

PKE-PID 4.58 5.21 9.79 1.37 3.13
214

PKE-PID* 5.58 6.51 12.09 0.86 3.07

GMRSS-PID 39.49 48.41 87.9 3.18 13.34

SKE-PID 26.14 27.71 53.85 3.06 19.25

PKE-PID 18.15 20.67 38.81 5.65 10.2
216

PKE-PID* 22.15 25.87 48.02 3.81 9.02

GMRSS-PID 174.82 209.46 384.28 14.97 53.78

SKE-PID 111.31 117.86 229.17 11.6 42.77

PKE-PID 79.47 89.8 169.27 25.58 40.27
218

PKE-PID* 95.47 110.6 206.07 17.17 35.17

GMRSS-PID 733.61 869.21 1602.82 75.09 222.9

SKE-PID 440.68 466.86 907.54 51.43 133.2

PKE-PID 313.81 355.11 668.92 106.13 158.38
220

PKE-PID* 377.81 438.32 816.12 74.67 135.72

Table 9: Communication cost (in MB) and running time (in seconds) comparing our PIDs with GMRSS-PID.
The LAN network has 10 Gbps bandwidth and 0.2 ms RTT latency and the WAN network has 100 Mbps
bandwidth and 80 ms RTT latency. Communication cost of Alice/Bob indicates the outgoing communication
from Alice/Bob to the other party. The number of thread T = 8. The best protocol within a setting is marked
in blue.

As shown in Table 9, the experimental results of PID protocols are consistent with those of PSU:
our PKE-PID has the lowest communication among all protocols; the SKE-PID performs best in the
LAN setting; the PKE-PID* performs better in the WAN setting due to the loewer communication
cost.
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A Artifact Appendix

A.1 Abstract
We introduce our open-source project mpc4j, an efficient and
easy-to-use Secure Multi-Party Computation (MPC) library
mainly written in Java. Package psu in mpc4j-s2pc-pso of
mpc4j contains the implementations, along with configura-
tions needed to replicate our experiments from Section 6. In
particular, our artifact supports running and comparing Pri-
vate Set Union (PSU) protocols with element set sizes up
to 220 on machines having 128GB memory. We also pro-
vide guidelines for installing dependencies and compiling
native libraries needed by mpc4j on different platforms, in-
cluding x86_64 MacBook, MacBook with M1 chip, Ubuntu
20.04, and CentOS 8. The project is licensed under Apache
License 2.0. The source code is available online at https://
github.com/alibaba-edu/mpc4j. The stable version for
the artifact evaluation is available at https://github.com/
alibaba-edu/mpc4j/releases/tag/v1.0.4.

In this artifact appendix, we first introduce the minimal
hardware and software requirements to get performance re-
ports shown in our paper using mpc4j. Then, we introduce how
to install and run mpc4j on different platforms. We note that
there are some performance gaps between different platforms,
and having complete comparisons for different protocols is
very challenging. Aside from that, mpc4j still tries to provide
a library for having relatively unified comparisons. We wel-
come suggestions and performance reports on other platforms
with future reproducibility.

A.2 Description & Requirements
We introduce our open-source project mpc4j (Multi-Party
Computation for Java), an efficient and easy-to-use Secure

Multi-Party Computation (MPC) library mainly written in
Java. mpc4j aims to provide an academic library for re-
searchers to study and develop MPC and related protocols in
a unified manner. As mpc4j tries to provide state-of-the-art
MPC implementations, researchers could leverage the library
to have quick and unified comparisons between the proposed
and existing protocols.

Package psu in mpc4j-s2pc-pso of mpc4j contains the im-
plementations, along with configurations needed to replicate
our experiments from Section 6. Existing Private Set Union
(PSU) implementations are under different MPC frameworks
and different experimental settings. After carefully studying
existing open-source codes, we fully re-implement exisiting
PSU protocols and their underlying basic protocols using Java.
Evaluators can test PSU protocols on mpc4j by simply using
different configuration files. All experiment results shown in
Section 6 of our paper are obtained by running mpc4j.

Evaluators can compile and run mpc4j on different 64-bit
platforms. We provide guidelines for installing dependencies
and compiling native libraries needed by mpc4j on different
platforms, including x86_64 MacBook, MacBook with M1
chip, Ubuntu 20.04, and CentOS 8. Note that successfully
running all PSU experiments with large element size (i.e.,
n = 220) requires 128GB RAM. We run our experiments on a
single Intel Core i9-9900K with 3.6GHz and 128GB RAM.
We note that there are some performance gaps between dif-
ferent platforms. We welcome suggestions and performance
reports on other platforms with future reproducibility.

In the full version of our paper, we further provide exper-
iment results on two PSU applications, namely IP blacklist
aggregation and Private ID. The related source code has been
merged into version v1.0.51.

1https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.
5

https://github.com/alibaba-edu/mpc4j
https://github.com/alibaba-edu/mpc4j
https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.4
https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.4
https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.5
https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.5


A.2.1 How to access

mpc4j is available online on GitHub at https://github.
com/alibaba-edu/mpc4j. Evaluators can visit the sta-
ble version v1.0.4 (https://github.com/alibaba-edu/
mpc4j/releases/tag/v1.0.4) to reproduce the experi-
ment results shown in the paper.

A.2.2 Hardware dependencies

mpc4j currently support 64-bit macOS, Ubuntu, and CentOS
systems. Evaluators may meet errors when compiling mpc4j
on a 32-bit or less system. The reason is that mpc4j uses some
64-bit Single instruction, multiple data (SIMD) operations.

A.2.3 Software dependencies

mpc4j leverages native C/C++ codes to speed up crypto-
graphic operations. The native codes and Java codes are inter-
acted by the Java Native Interface (JNI) technique.

We separate native C/C++ codes into two modules, namely
mpc4j-native-tool and mpc4j-native-fhe. mpc4j-native-tool con-
tains native codes for basic cryptographic operations, while
mpc4j-native-fhe contains native codes for Fully Homomor-
phic Encryption (FHE) using SEAL2. All basic cryptographic
operations in mpc4j-native-tool have alternative pure-Java im-
plementations in mpc4j with the same functionalities and the
same data representations. Note that if evaluators only run
mpc4j for PSU, there is no need to install SEAL and compile
mpc4j-native-fhe. mpc4j-native-tool relies on the following
C/C++ libraries:

• GMP (https://gmplib.org/): An efficient library for
operations with arbitrary precision integers, rationals,
and floating-point numbers.

• NTL (https://libntl.org/): A high-performance,
portable C++ library providing data structures and algo-
rithms for manipulating signed, arbitrary length integers
and for vectors, matrices, and polynomials over the in-
tegers and over finite fields, developed by Victor Shoup
(https://shoup.net/). Note that one can further intro-
duce GF2X (https://gitlab.inria.fr/gf2x/gf2x)
for more efficient operations in a Galois Field. However,
since the installation procedure for GF2X is rather com-
plicated, we use NTL by default.

• MCL (https://github.com/herumi/mcl): A
portable and fast pairing-based cryptography library.
MCL also includes fast Elliptic Curve implementations,
especially the optimized implementation for the elliptic
curve secp256k1.

• libsodium (https://doc.libsodium.org): A modern,
easy-to-use software library for encryption, decryption,

2https://github.com/microsoft/SEAL

signatures, password hashing, and more. libsodium in-
cludes efficient implementations for the elliptic curve
Curve25519 with APIs for X25519 and Ed25519.

• OpenSSL (https://www.openssl.org/): a robust,
commercial-grade, full-featured toolkit for general-
purpose cryptography and secure communication.
OpenSSL includes many efficient cryptographic primi-
tive implementations.

A.3 Set-up
A.3.1 Installation

Installing mpc4j-native-tool might be a bit complicated for
ones who are not that familiar with Unix-like systems, since
the procedures differ across platforms. The documentation
(README.md) in package mpc4j-native-tool provides instruc-
tions for installing mpc4j-native-tool on macOS (x86_64 /
aarch64), Ubuntu, and CentOS, respectively.

A.3.2 Basic Test

We develop mpc4j using Intellij IDEA (https:
//www.jetbrains.com/idea/) and CLion (https:
//www.jetbrains.com/clion/). After successfully com-
piling mpc4j-native-tool (Please see readme.md in these
modules for more details on how to compile them), evaluators
only need the community version of Intellij IDEA to run all
basic tests.

Evaluators need to configure IDEA with the following pro-
cedures so that IDEA can link to the complied mpc4j-native-
tool native libraries.

1. Open “Run->Edit Configurations...”

2. Open “Edit Configuration templates...”

3. Select “JUnit”.

4. Add the following command into “VM Options”: -
Djava.library.path=/YOUR_ABS_NATIVE_LIB_PATH.

After that, evaluators can run tests of any submodule
by pressing the green arrows showing on the left of the
source code in test packages. See Section Demonstration of
readme.md in mpc4j on details for running the tests.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): In our paper, we claimed that we fully re-implement
state-of-the-art PSU protocols and their underlying basic
protocols using Java. This can be verified by running
basic tests in psu (See Section A.3.2 for details), or run-
ning experiments with different configuration files (See
Section A.4.2 for details).
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(C2): In our paper, we claimed that although there is some
performance gap, most basic operations in Java and
C/C++ have similar performances. This can be verified
by running all efficient tests in mpc4j-common-tool (test
classes with names end with “EfficiencyTest”). For ex-
ample, try running “PrpEfficiencyTest” in the package
edu.alibaba.mpc4j.common.tool.crypto.prp of the sub-
module mpc4j-common-tool, evaluators can see the per-
formance comparisons between using AES provided by
Java and by AES-NI invoked with JNI.

A.4.2 Experiments

(E1): [Generate jar file] [5 human-minutes + 5 compute-
minutes]: Generate mpc4j-s2pc-pso-1.0.4-jar-with-
dependencies.jar containing the main function entry.
How to: On the charms bar of IDEA, evaluators can
find a button with name “Maven”. Press that botton,
double-click “mpc4j -> Lifecycle -> package”, IDEA
would automatically compile and generate mpc4j-s2pc-
pso-1.0.4-jar-with-dependencies.jar containing the main
function entry.
Preparation: Evaluators need to successfully running
basic tests before generating the jar file.
Execution: Just double-click “mpc4j -> Lifecycle ->
package”.
Results: The generated file would be located in
“mpc4j/mpc4j-s2pc-pso/target”.

(E2): [(optimal) Config network settings] [5 human-minutes
+ 1 compute-minute]: Config network settings using tc.
How to: Open a terminal, and execute the following
command: “tc qdisc add dev lo root netem rate 10Mbit
latency 80ms”. Then, the local network is configured as
10Mbit bandwidth with 80ms latency. Evaluators can
try other network settings with other parameters, e.g.,
100Mbit/80ms, 1Gbit/40ms, 10Gbit/0.02ms.
Preparation: None
Results: Execute “sudo tc qdisc show dev lo” to see if
the network is configured correctly.

(E3): [Run experiments] [10 human-minutes + 5 compute-
hour]: Run experiments using different configuration
files.
How to: Open two terminals, one for the PSU
server and one for the PSU client. Switch to the
dictionary where mpc4j-s2pc-pso-1.0.4-jar-with-
dependencies.jar located (Evaluators can also
copy the generated jar file to other dictionar-
ies). For the server’s terminal, execute “java -
Djava.library.path=/YOUR_ABS_NATIVE_LIB_PATH
-Djava.util.concurrent.ForkJoinPool.common.parallelism=8
-jar mpc4j-s2pc-pso-1.0.4-jar-with-dependencies.jar
CONFIG_SERVER_FILE.txt”. For
the client’s terminal, execute “java -
Djava.library.path=/YOUR_ABS_NATIVE_LIB_PATH

-Djava.util.concurrent.ForkJoinPool.common.parallelism=8
-jar mpc4j-s2pc-pso-1.0.4-jar-with-dependencies.jar
CONFIG_CLIENT_FILE.txt”. The corresponding
server/client configuration files are in “mpc4j-s2pc-
pso/conf/psu”. Note that evaluators must first run server
and then run client.
Preparation: None.
Note: It would take a long time to run if the network
has limited bandwidth, long latency, and/or a large set
size. See the performance results of our paper to esti-
mate the total running time. Evaluators may find that the
setup of SKE-PSU time is quite different from the result
presented in Table 3 of our paper. This is because in
the paper, we assume Boolean multiplication triples are
pre-computed offline and stored locally in a temporary
file. Therefore, the setup phase only contains loading
Boolean multiplication triples into the memory. In our
artifact, we dynamically generate Boolean multiplication
triples in the setup phase using silent Oblivious Transfer
techniques. In the full version of the paper, we provide
the triple generation costs for SKE-PSU, which would be
similar to the costs in the setup phase evaluators obtained
using the artifact.
Results: Java would run the experiments and generate
the performance reports under the current dictionary.

A.5 Notes on Reusability
Evaluators can check and modify server/client configuration
files to change IP addresses, port numbers, the element byte
length used for PSU. We also provide other configuration
examples (marked with #) for specific PSU protocols.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/
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