
SNARGs for P from Sub-exponential DDH and QR

James Hulett* Ruta Jawale∗ Dakshita Khurana∗ Akshayaram Srinivasan†

Abstract

We obtain publicly verifiable Succinct Non-Interactive Arguments (SNARGs) for arbitrary
deterministic computations and bounded space non-deterministic computation from standard
group-based assumptions, without relying on pairings. In particular, assuming the sub-exponential
hardness of both the Decisional Diffie-Hellman (DDH) and Quadratic Residuosity (QR) as-
sumptions, we obtain the following results, where n denotes the length of the instance:

1. A SNARG for any language that can be decided in non-deterministic time T and space S
with communication complexity and verifier runtime (n+ S) · T o(1).

2. A SNARG for any language that can be decided in deterministic time T with communi-
cation complexity and verifier runtime n · T o(1).

*University of Illinois, Urbana-Champaign. Email: {jhulett2,jawale2,dakshita}@illinois.edu
†Tata Institute of Fundamental Research. Email: akshayaram.srinivasan@tifr.res.in

1

Contents

1 Introduction 3
1.1 Our Results . 4
1.2 Other Prior Work . 5

2 Technical Overview 5
2.1 Succinct Interactive Arguments for Bounded Space from Succinct Arguments for

Batch NP . 5
2.2 Obtaining a SNARG . 9
2.3 SNARGs for Bounded Space Non-Deterministic Computation 12

3 Preliminaries 14
3.1 Correlation Intractable Hash Functions . 14
3.2 Somewhere Extractable (SE) Commitments . 15

4 Fiat-Shamir for Arguments 16
4.1 Round-by-Round Soundness . 17
4.2 FS-Compatible Arguments . 18
4.3 The Fiat-Shamir Paradigm . 19
4.4 From FS-Compatible Arguments to SNARGs . 19

5 FS-compatible Arguments for Bounded Space Computations 22
5.1 FS-Compatible Batch NP Arguments . 22
5.2 Bounded-Space Protocol Construction . 24
5.3 Non-trivial predicate for Bounded-Space Protocol . 24
5.4 FS-Compatibility for Bounded-Space Protocol . 27
5.5 Proof of FS-Compatibility. 27
5.6 Complexity of Πkγ . 34

6 FS-compatible Arguments for Non-Deterministic Bounded Space 35
6.1 Background. 36
6.2 Interactive Arguments for Bounded Space Non-Deterministic Computation. 37
6.3 Non-Trivial Predicate . 39
6.4 FS-Compatibility w.r.t. Predicate Φ . 40
6.5 SNARGs for P and beyond . 41

References 46

A Somewhere Extractable Commitments with Non-trivial Local Openings 46

B Proof Sketch of (Imported) Theorem 5.2 48

C Proof of Lemma 5.4 49

D SNARGs for P 51

2

1 Introduction

We consider the problem of constructing succinct, publicly verifiable arguments to certify the cor-
rectness of computation. By succinct, we refer to the setting where the running time of verifier is
much smaller than the time required to perform the computation.

The problem of constructing such proof systems has received widespread attention over the
last three decades. These are typically called succinct non-interactive arguments (SNARGs), where
argument refers to any proof system whose soundness holds against polynomial-time provers (un-
der cryptographic assumptions) and the non-interactive setting refers to a single message of com-
munication sent by the prover to the verifier. As in prior work, our work focuses on constructions
in the CRS model, where participants have access to a common reference string.

Until recently, a significant amount of prior work on SNARGs focused on constructions proven
secure under non-falsifiable assumptions or shown secure only in idealized models (such as the
Random Oracle Model). Indeed, Gentry and Wichs [GW11] showed that if such an argument sys-
tem satisfied a strong form of soundness called as adaptive soundness, then such non-falsifiable
assumptions are necessary for SNARGs for NP. There has been recent exciting progress on con-
structing SNARGs for classes that are subsets of NP under falsifiable standard cryptographic as-
sumptions, and in particular the LWE (Learning with Errors assumption), by instantiating the
Fiat-Shamir paradigm, discussed next.

The Fiat-Shamir Paradigm. The Fiat-Shamir paradigm is a transformation that converts any
public-coin interactive argument (P,V) for a language L to a non-interactive argument (P ′,V ′)
for L. The CRS consists of randomly chosen hash functions h1, . . . , h` from a hash familyH, where
` is the number of rounds in (P,V). To compute a non-interactive argument for x ∈ L, the prover
P ′(x) generates a transcript corresponding to (P,V)(x), by emulating P(x) and replacing each
random verifier message by a hash of the transcript so far. The verifier V ′(x) accepts if and only if
V(x) accepts this transcript and all verifier challenges are computed correctly as the output of the
hash function on the transcript so far. This paradigm is sound when applied to constant round
protocols in the Random Oracle Model (ROM) [BR93, PS96]. At the same time there are counterex-
amples that demonstrate its insecurity in the plain model [Bar01, GK03, CGH04a, BBH+19].

The recent work of Canetti et al. [CCH+19] and subsequent work of Peikert and Shiehian [PS19]
proved the soundness of the Fiat-Shamir paradigm, assuming standard hardness of the Learning
With Errors (LWE) problem, when applied to a specific zero-knowledge protocol. This gave the
first NIZK argument from LWE. This work also obtained a SNARG for all bounded depth com-
putations, assuming the existence of an FHE scheme with optimal circular security – which ap-
pears to be an extremely strong assumption. Subsequently, [JKKZ21] gave an instantiation of the
Fiat-Shamir paradigm applied to special classes of succinct proofs, which resulted in SNARGs for
bounded depth computations from sub-exponential LWE [JKKZ21]. Even more recently, Choud-
huri et al. [CJJ21b] gave a construction of SNARGs for the complexity class P from polynomial
LWE, using which Kalai et al. [KVZ21] gave a construction of SNARGs for bounded-space nonde-
terministic computation under sub-exponential LWE. The LWE assumption is a structured crypto-
graphic assumption that is known to imply among several other interesting cryptographic prim-
itives, compact (leveled) homomorphic encryption. In fact, all aforementioned constructions of
SNARGs implicitly make use of homomorphic encryption.

On the other hand, foundational group-based assumptions such as Decisional Diffie-Hellman

3

and Quadratic Residuosity are not known to imply homomorphic encryption, and yet their (sub-
exponential) variants have surprisingly, via the Fiat-Shamir paradigm, been shown to imply non-
interactive zero-knowledge [BKM20, JJ21] as well as non-trivial SNARGs for batched NP state-
ments [CJJ21a]. This motivates the following question:

Do there exist SNARGs for P (and beyond) from standard group-based assumptions like DDH and QR?

1.1 Our Results

We address the above question and obtain the following positive results.

• We build a SNARG for the class of all non-deterministic computations requiring time T (n)
and space S(n) (denoted by NTISP(T (n);S(n))) where the prover runs in time poly(T (n))
given a witness for the computation and the verifier runs in time (n+ S(n)) · T (n)o(1) where
n is the instance length.

• Plugging the SNARG above into a compiler from [KVZ21], we obtain a SNARG for the class
P where the prover runs in time poly(T (n)) and the verifier runs in time n · T (n)o(1).

Our construction for NTISP is obtained in three steps.

1. We develop a new folding technique for interactive succinct arguments, where we recursively
break down a time-T computation into smaller subcomputations, each of time T/k (for
an appropriate choice of k) and have the prover send batch proofs of the validity of each
subcomputation. This can be viewed as a computational analogue of the RRR interactive
proof [RRR16].

2. We instantiate our protocol using batch interactive arguments for NP1 that are “FS-compatible”,
which were in particular developed in [CJJ21a] based on the hardness of QR. Here, FS-
compatible refers to the fact that these interactive batch NP arguments can be soundly con-
verted into SNARGs via the Fiat-Shamir paradigm. In addition, we show that our interactive
argument for NTISP is FS-compatible as long as the underlying batch NP argument is FS-
compatible.

3. We then soundly convert the above succinct interactive argument to a SNARG by making
use of correlation-intractable hash functions for low-depth threshold circuits constructed in
[JJ21], based on sub-exponential hardness of DDH.

Finally, we note that the works of [BFJ+20, GJJM20, LVW20] observed that in addition to in-
teractive proofs, the Fiat-Shamir paradigm can be soundly instantiated for special types of argu-
ments. They observed that this is possible for arguments that have an unconditionally sound mode,
and where the prover cannot detect whether the argument is unconditionally or computationally
sound. These ideas were then extended to the setting of succinct arguments in [CJJ21a, CJJ21b]. As
a contribution that may be of independent interest, we abstract out a notion of Fiat-Shamir com-
patibility of argument systems, which captures these broad requirements (including those used
in [BFJ+20, GJJM20, LVW20, CJJ21a, CJJ21b]) that interactive arguments satisfy in order to soundly
instantiate Fiat-Shamir from standard assumptions using known techniques.

1Batch arguments for NP allow a verifier to verify the correctness of k NP instances with circuit complexity smaller
than k times the size of the NP verification circuit.

4

1.2 Other Prior Work

The works of [Mic94, Gro10, Lip12, DFH12, GGPR13, BCI+13, BCCT13, BCC+14] obtain SNARGs
for non-deterministic computations, with security either in the Random Oracle Model [BR93] or
from non-falsifiable “knowledge assumptions.” The schemes of [CHJV15, KLW15, BGL+15, CH16,
ACC+16, CCC+16, PR17] rely on assumptions related to obfuscation, which are both stronger in
flavor and less widely studied than the ones used in this work. More recently, [KPY19] constructed
a SNARG (for deterministic computations) based on a (new) efficiently falsifiable decisional as-
sumption on groups with bilinear maps. Later, a line of work [CCH+19, JKKZ21, CJJ21a, CJJ21b,
KVZ21] instantiated the Fiat-Shamir paradigm to finally result in SNARGs for P from the learning
with errors (LWE) assumption. Very recently, the work of Gonzalez and Zacharias [GZ21] con-
structed SNARGs from pairing-based assumptions. On the other hand, in this work, we obtain
SNARGs from assumptions that hold in pairing-free groups.

Another line of work [KRR13, KRR14, KP16, BHK17, BKK+18, BK20] built privately verifiable
schemes for deterministic computations and a sub-class of non-deterministic computations, based
on standard assumptions (specifically, the hardness of LWE or φ-hiding). These schemes, however,
are not publicly verifiable. The CRS is generated together with a secret key which is needed in
order to verify the proofs.

In the interactive setting, publicly verifiable schemes exist, even for non-deterministic compu-
tations, under standard cryptographic assumptions [Kil92, BKP18, PRV12]. In fact some publicly
verifiable interactive proof systems for restricted classes of computations exist even uncondition-
ally, in particular for bounded depth [GKR15] and bounded space computations [RRR16].

2 Technical Overview

We start with a high-level overview of our recursively-built interactive argument. To begin with,
we will only focus on languages that can be decided in deterministic time T and space S. The
prover will run in time poly(T), and the size of our proofs will grow (linearly) in S.

2.1 Succinct Interactive Arguments for Bounded Space from Succinct Arguments for
Batch NP

In what follows, we describe a form of interactive arguments for bounded space computations
that can be soundly compressed via the Fiat-Shamir transform. We discuss why these ideas may
seem to necessitate the use of LWE, and then describe how our folding technique helps get around
the need for the LWE assumption while achieving T o(1) verification time.

Consider a deterministic computation that takes T steps: the prover and verifier agree on a
(deterministic) Turing Machine M, an input y ∈ {0, 1}n, and two configurations u, v ∈ {0, 1}S
(a configuration includes the machine’s internal state, the contents of all memory tapes, and the
position of the heads). The prover’s claim is that after running the machineM on input y, starting
at configuration u and proceeding for T steps, the resulting configuration is v. This is denoted by

(M, y) : u
T−→ v.

To prove correctness of this T -step computation, the prover will send (k− 1) alleged intermediate
configurations

(s1, s2, . . . , sk−1)

5

and will set s0 := u, sk := v, where for every i ∈ [1, k], si is the alleged configuration of the
machineM after T/k steps when starting at configuration si−1.

Now the prover will attempt to prove correctness of all these intermediate configurations: a
naı̈ve way to achieve this is to run k executions of the base protocol, one for every i ∈ [k]. But the
trick to achieving succinctness will be to prove correctness of all configurations simultaneously
in verification time that is significantly smaller than running the base protocol k times, while also
not blowing up the prover’s complexity by a factor of k. To enable this, the prover and verifier can
rely on an appropriate succinct interactive argument for batch NP to establish that all responses
would have been accepted by the verifier.

In a succinct argument for batch NP, a prover tries to convince a verifier that (x1, . . . , xk) ∈
L⊗k, in such a way that the proof size and communication complexity are smaller than the trivial
solution where the prover simply sends all witnesses (w1, . . . , wk) to the verifier, and the verifier
computes

∧
i∈[k]RL(xi, wi). In particular, [CJJ21a] recently obtained SNARGs for batching k NP

instances (from QR and sub-exponential DDH) where the communication complexity is Õ(|C| +
k log |C|) · poly(λ), and verifier runtime is Õ(kn+ |C|) · poly(λ), where λ is the security parameter,
|C| denotes the size of the verification circuit and n denotes the size of each instance. In our
setting, |C| ≈ (T/k), which means that verification time for the SNARG will be Õ(k+T/k). Setting
k = O(

√
T), we would obtain communication complexity (and verification runtime) that grows

(approx.) with O(
√
T) and this is the best that one can hope for in this case [CJJ21a]. However, in

this work, we would like to achieve an overhead of T o(1).

A Recursive Construction. The argument described above incurred an overhead of T/k because
the verification circuit for each subcomputation had size T/k. However, what if we substituted
this verification circuit with the (relatively efficient) verifier for a succinct interactive argument for
T/k-time computations?

Specifically, assume there exists a public-coin interactive argument for verifying computations
of size T/k. As before, suppose a prover wants to convince a verifier that

(M, y) : u
T−→ v.

The prover sends (k − 1) intermediate configurations, as before, and then prepares the first mes-
sages of all k interactive arguments, where the ith interactive argument attests to the correctness

of (M, y) : si−1
T/k−−→ si. Instead of sending these messages in the clear, the prover sends to the

verifier a succinct commitment to all k first messages. Here, following [CJJ21a, CJJ21b, KVZ21], one
could use a keyed computationally binding succinct commitment whose key is placed in the CRS. In
fact, looking ahead, we will require a commitment that that is binding to a (hidden) part of the in-
put string [HW15], and in fact the bound parts of the input should be extractable given a trapdoor.
We will call such commitments somewhere-extractable (SE) commitments. In more detail, these
commitments have a key generation algorithm Gen(1λ, i) that on input an index i ∈ [k] outputs
a commitment key ck together with an extraction trapdoor td, and an extraction algorithm that
given td and any commitment string c outputs the unique ith committed block (out of a total of k
blocks). Moreover, the commitment key hides the index i in a CPA-sense.

Next, the verifier sends a single (public coin) message that serves as a challenge for all k ar-
guments. Subsequently, the prover prepares a third message for all arguments, and commits to
these messages, after which the verifier again generates a single (public coin) message that serves

6

as its fourth message for all k arguments. The prover and verifier proceed until all rounds of all
k arguments are committed, and then the prover (as before) must prove to the verifier that all
committed transcripts would be accepted.

At this point, one solution is for the prover and verifier to engage in a batch NP argument (as
before), where the prover must convince the verifier that for every i ∈ [k], there is an opening
to the commitment that would cause the verifier to accept. In what follows, we will rely on the
fact that the batch NP SNARG can actually be obtained in two steps: first, build an interactive
argument for batch NP, and next compress rounds of interaction via Fiat-Shamir. Indeed, the
batch SNARG from [CJJ21a] that we will use is obtained by first building an interactive argument
and then compressing it by soundly instantiating the Fiat-Shamir paradigm. From this point on,
unless otherwise specified, we will make use of the [CJJ21a] interactive batch NP argument, and
later separately use the fact that it can be soundly compressed via Fiat-Shamir based on sub-
exponential DDH (a property referred to as FS-compatibility). This modified interactive argument
〈P,V〉 for T -time computations is described in Figure 1, and it relies on a protocol for T/k-time
computations.

Batch NP and the Need for Local Openings. Unfortunately, the protocol described in Figure
1 is not succinct. In particular, each batch NP statement involves verifying an opening of the SE
commitment, and therefore the verification complexity of batch NP grows with the complexity of
verifying commitment openings. For this to be small, the SE commitment must satisfy an impor-
tant property: namely, that it is possible to succinctly decommit to a part of the committed input in
such a way that the size of the opening and complexity of verifying openings depend only on the
part being opened, and do not grow with the size of input to the commitment. Unfortunately, such
commitments are only known from the learning with errors (LWE) assumption2; and therefore we
take a different route.

Coincidentally, in the interactive arguments for batch NP due to [CJJ21a], the first step requires
the prover to commit to witnesses (w1, . . . , wk) corresponding to each of the k instances (x1, . . . , xk).
This is done via an SE commitment in such a way that when the commitment key is binding
at index i ∈ [k], the extraction algorithm outputs the ith committed witness wi. Moreover, this
commitment does not need to have local openings; somewhere extractability suffices3. Finally,
the [CJJ21a] protocol is actually an argument of knowledge for one of the instances: implicit in their
proof is the fact that when the SE commitment keys (in the CRS) are binding on index i, no efficient
prover can commit to wi that is a non-witness for xi and produce an accepting transcript (except
with negligible probability).

This gives us a way out: in the Batch NP phase of our protocol, instead of proving that there
exists an opening to the commitment, we omit sending commitments (since we already committed to
all Tk transcripts), and simply prove that for each of the transitions si−1 → si, there exists a prover
strategy corresponding to verifier coins sent in the emulation phase, that would cause the verifier
to accept. That is, the prover demonstrates membership of instances (x̃1, . . . , x̃k) in the language
L̃, where for any i ∈ [k],

x̃i = (si−1, si, y,M, β)

2In Appendix A, we show that one can in fact construct a commitment with somewhat succinct local openings
from DDH or QR. However, these are significantly less succinct than their LWE-based counterparts, and using these
commitments would lead to marginally worse parameters than one can get with the methods described next.

3We remark that [CJJ21a] also require some additional linear homomorphism properties from the commitment, but
these are not necessary for our discussion.

7

Emulation Phase.

1. P computes and sends (k − 1) intermediate configurations (s1, . . . , sk−1) to V, where si
is the configuration of machineM after T/k steps when starting at configuration si−1.

2. P prepares the first messages {m(i)
1 }i∈[k] for k interactive arguments, where the ith inter-

active argument attests to the correctness of (M, x) : si−1
T/k−−→ si. Next, P computes an

SE commitment c(1) to these first messages, and sends the commitment string c(1) to V.

3. V generates a single (public coin) message for (a single copy of) the interactive argument
for T/k-sized computation. All k arguments will share the same verifier message.

4. More generally, for every round j ∈ [ρ] of the underlying interactive argument,

• P computes the jth round messages for all k interactive arguments where the ith

interactive argument attests to the correctness of (M, x) : si−1
T/k−−→ si. Next, P

computes an SE commitment c(j) to all these first messages, and sends the commit-
ment string c(j) to V.

• V generates a single (public coin) message for the underlying interactive argument
for T/k-sized computation. All k arguments will share the same verifier message.

Batch NP Phase. P proves to V that there exists an opening of the commitment c =
(c(1), . . . , c(ρ)) where for i ∈ [k] the ith opened value is an interactive argument such that:

1. The commitment verifier would accept the opening and

2. The verifier for the T/k interactive argument would accept the ith argument.

Figure 1: Recursively Defined Interactive Argument for Bounded Space Deterministic Computa-
tion

and L̃ is the language of all such x̃ such that there exist prover messages that when combined with
the verifier messages β create an accepting transcript. We note that an honest prover, by the end
of the emulation phase in Figure 1, will already be committed to witnesses for this language.

Thus our final protocol has an emulation phase that is identical to Figure 1, but the batch NP
phase is modified as described in Figure 2.

It may appear that the language L̃ will contain nearly all strings: since the protocol for T/k-
sized computations is an argument, so there will exist prover messages even for instances not in
the language. However, this would only be a problem if we relied on soundness of the batch NP
protocol: on the other hand, we are able to use the fact that the [CJJ21a] protocol is an argument of
knowledge for the ith statement when the SE commitment key is binding at index i. In particular,
this means that if the SE commitment was binding at index i, then it is possible to efficiently extract
a witness, i.e., an accepting transcript for the ith subcomputation si−1 → si.

Now if the prover managed to break soundness of our protocol, this would imply that there

8

Updated Batch NP Phase

• P and V define instances

(x̃1, . . . x̃k) where x̃i = (si−1, si, y,M, β)

where β denote all verifier messages from the emulation phase.

• P additionally defines witnesses
(w̃1, . . . w̃k)

where for every i ∈ [k], w̃i contains the prover messages for the ith subcomputation for
size T

k .

• Finally, define language

L̃ = {(s, s′, y,M, β) : ∃ prover messages π s.t.

(π, β) is accepting transcript for (M, y) : s
T/k−−→ s′.}

• P and V execute a batch NP argument to prove that for every i ∈ [k], x̃i ∈ L̃, where
they replace the first round of Batch NP (where prover SE-commits to witnesses) with
the transcript of the emulation phase.

Figure 2: Updated Batch NP Phase for Bounded Space Deterministic Computation

exists an index j ∈ [k] such that the machineM on input y does not transition from configuration
sj−1 to sj . But, if j = i, where i is the index where the SE commitment is binding, then one
can in fact extract an accepting transcript for the jth incorrect subcomputation sj−1 → sj . This
can therefore be used to build a prover that contradicts soundness of the protocol for T/k-sized
computations. Moreover, hiding of the index i ensures that j = i occurs with non-negligible
probability.

Finally, we point out that in the base case, i.e., for unit-time computations, the verifier simply
checks the statement on its own (this takes one time-step).

The recursive protocol described so far satisfies succinctness for an appropriate choice of k
(that we discuss later) but requires multiple rounds, since each round of recursion adds a few
rounds of interaction. The goal of this work is to build a non-interactive argument, which we
achieve by compressing this interactive argument to a SNARG based on correlation-intractable
hash functions for low-depth threshold circuits. We discuss this in detail below.

2.2 Obtaining a SNARG

We now discuss why this argument can be compressed by relying on the same CI hash functions
as used in [CJJ21a], leading to a sound SNARG.

9

Fiat-Shamir Compatible Batch NP. To soundly compress their batch NP interactive argument
into a SNARG, the work of [CJJ21a] (building on a line of recent works including [CCH+19, PS19,
BKM20, BFJ+20, GJJM20, LVW20, JKKZ21, JJ21]) relies on a special type of hash function, called
a correlation intractable hash function. The prover generates verifier messages for the interactive
protocol locally by applying this hash function to its partial transcripts, in effect eliminating the
need to interact with a verifier. At a high level, a hash familyH is correlation intractable (CI) for a
relationR(x, y) if it is computationally hard, given a random hash key k, to find any input x such
that (x,H(k, x)) ∈ R.

Given a CI hash function, the key observation is that if the BAD verifier challenge for the in-
teractive argument, which allows a prover to cheat, can be computed by an efficient function, then
replacing the verifier message by the output of a CI hash function results in a verifier message
that does not allow a prover to cheat, except with negligible probability. But this paradigm is only
applicable to protocols where the circuits computing BAD verifier challenges are supported by
constructions of CI hash functions exist based on standard assumptions. In particular, CI hash
functions from (sub-exponential) DDH are known for functions that are computable by constant
(and in fact, O(log log λ)) depth threshold circuits. Recall that the [CJJ21a] batch NP interactive ar-
gument has a first message that contains SE commitments to all witnesses; [CJJ21a] show that the
SE commitment they use (which they construct based on the QR assumption) allows for extraction
in constant depth. Moreover, given the witness, all other computations can also be performed by
constant depth threshold circuits. Therefore, their interactive arguments can be compressed based
on the (sub-exponential) DDH assumption. [CJJ21a] call this the strong FS-compatible property.
We will now prove that our interactive arguments for bounded space, also inherit this property.

Fiat-Shamir Compatible Bounded Space Arguments. To begin, we assume that all cryptographic
primitives (SE commitments, CI hash functions) satisfy T -security, meaning that no poly(T)-size
adversary can break the primitive with advantage better than negl(T).

Our interactive argument begins with P sending (k − 1) intermediate configurations to V.
Observe that it is possible to verify (in time≤ T) whether or not a given intermediate configuration
is correct4. Of course, the verifier should not be verifying intermediate configurations directly (as
this will make verification inefficient).

As discussed above, a cheating prover must output at least one pair of consecutive intermedi-
ate configurations si, si+1 such thatM does not transition from si to si+1 in T/k steps. Moreover,
by T -index hiding of the SE commitment, if the SE commitment is set to be binding at a random
index i′, the probability (over the randomness of i′) that the prover cheats on the i′th underlying
T/k interactive argument must be (negligibly) close to 1/k. Finally, because the SE commitment is
extractable, in this mode, it becomes possible for a reduction to extract an accepting transcript of
the underlying T/k argument corresponding to a false statement.

Peeling off the recursion just a little, we observe that the (T/k) interactive argument itself
begins with the prover sending (k− 1) intermediate configurations, each corresponding to (T/k2)
steps of the Turing Machine M. Again, one pair of consecutive configurations s′j , s

′
j+1 must be

such thatM does not transition from s′j to s′j+1 in (T/k2) steps. Moreover, by index hiding of the
SE commitment used in the (T/k) argument, if the (T/k) commitment is set to be binding at a
uniformly random index j′, the probability that the prover cheats on the j′th underlying (T/k2)

argument in addition to cheating on the i′th (T/k) argument must be (negligibly) close to (1/k2).
4This becomes somewhat non-trivial in the non-deterministic setting, which we discuss in an upcoming subsection.

10

We can recurse logk T times all the way to the base case, where the base argument is simply a unit-
time computation where the verifier checks the statement on its own. Moreover, letting π denote
the unit-time protocol obtained by peeling all layers of the recursion, we can establish that with
probability (close to) (1/klogk T) = 1/T , π corresponds to a false statement. The rest of our analysis
will be conditioned on this event.

Assuming that the base statement π (that the prover is statistically bound to) at the end of
the first message is false, we must now understand the distribution of BAD verifier challenges in
subsequent messages of the argument system. Note that the very next message will consist of the
batch NP phase of the interactive argument for k-size computations, encrypted under (logk T − 1)
layers of SE commitments. This phase starts with commitments to k witnesses (in this case, the
witnesses are empty transcripts), each one proving the correctness of one of the unit-size subcom-
putations. The false statement from the emulation phase immediately determines which one of
the batch statements is incorrect. As long as the SE commitment is binding at this index, the BAD
function at this lowest layer of recursion will correspond to the set of verifier challenges in the cor-
responding batch NP argument that allow the prover to cheat within that argument. This means
that the BAD function can be computed by peeling off layers of the commitment (i.e. performing
logk T sequential extractions), and then computing the BAD function for the batch NP argument
(which we know is efficiently computable by a constant-depth circuit).

Next, going back up one step, we have the protocol corresponding to k2-sized computations. It
will again be the case that assuming the SE commitment binds at the right index, the BAD function
at this layer of recursion will correspond to the set of verifier challenges in the corresponding
batch NP argument that allow the prover to cheat within that argument. This means that the
BAD function can be computed by peeling off logk T − 1 layers of the commitment, and then
computing the BAD function for the batch NP argument (which we know is efficiently computable
by a constant-depth threshold circuit).

More generally, the BAD function of our protocol corresponds to extracting from upto logk T
layers of commitments, and feeding the result as input to the BAD function circuit of the interactive
argument for batch NP.

Communication Complexity and Verifier Runtime. Considering now the efficiency of the ver-
ifier, we note that in the emulation phase, the verifier simply has to read prover messages and
generate random strings. Thus, for our overview, it suffices to focus on the batch NP phase, as the
time taken there will dominate that of the emulation phase. If we were to use a trivial batch NP
protocol that simply provided all k witnesses and asked the verifier to check them all, this would
mean that the run time of the T verifier would increase by a factor of k over the run time of the T/k
verifier. Unrolling the recursion, unfortunately, we would obtain a T -time verifier. Luckily, we are
not constrained to use only a trivial batch NP protocol; by being more efficient, we can improve
upon the above analysis. Indeed, applying the batch NP interactive argument from [CJJ21a] de-
scribed above, we can improve the k multiplicative overhead to a polynomial in λ multiplicative
overhead, where λ is the security parameter of our batch NP scheme.5

By choosing k and λ such that λ << k, we can ensure that the difference in verifier efficiency
over the logk T levels between the unit protocol and the T protocol is λc·logk T for some constant c,
which can be set to T o(1) by a careful choice of parameters. Since the verifier run time is an upper

5For simplicity of exposition, we are here ignoring some additional additive overhead as well as polylogarithmic
multiplicative factors.

11

bound on the communication complexity of the protocol (as our verifier needs to at a minimum
read all the messages), this gives us the same bound on the size of the proof.

This completes an overview of our SNARGs for deterministic bounded space computation. In
what follows, we will discuss how to extend these ideas to the non-deterministic setting.

2.3 SNARGs for Bounded Space Non-Deterministic Computation

When the machineM is non-deterministic it is a-priori no longer clear how to argue or even define
“correctness” of intermediate configurations. It may be tempting to consider defining correctness
of intermediate configurations with respect to both the instance and the witness. However, the
witness used can potentially change every time the prover is queried, and is therefore not well
defined. It may also in general be too large to be sent as part of the SNARG.

However, inspired by [BKK+18], we observe that if the non-deterministic Turing Machine
reads each bit of the witness only once, then it becomes possible to get around this barrier. Similar
to [BKK+18], we consider the class NTISP(T (n), S(n)) of all languages recognizable by nonde-
terministic Turing Machines in time O(T (n)) and space O(S(n)). Recall that a non-deterministic
Turing Machine allows each step of the computation to non-deterministically transition to a new
state. This, in a sense, corresponds to the setting where each bit of the witness is read at most
once (and if the machine wishes to remember previous non-deterministic choices it must explic-
itly write them down on its worktape). Thus an alternative way to describe this class is as the class
of languages L with a corresponding witness relation RL, recognizable by a layered circuit Cn,m
parameterized by n = |x| and m = m(n) = |w|, that on input a pair (x,w) outputs 1 if and only
if RL(x,w) = 1. Each layer of gates in this circuit has input wires that directly read the instance,
or directly read the witness, or are the output wires of gates in the previous layer. Moreover, each
bit of the witness is read by at most one layer. This circuit has depth D = O(T (n)) and width
W = O(S(n)), where W may be smaller than n and m.

The SNARG Construction. The construction remains largely similar to the one in the determin-
istic setting. The only (syntactical) difference is that Step 1 in the recursively defined interactive
argument from Figure 1 is modified to send wire assignments (W1, . . .Wk−1) to (k− 1) intermedi-
ate layers of the circuit, each at a depth interval of D/k from the base layer. Next, for every i ∈ [k],
the prover runs (parallel) interactive arguments proving that there is an assignment to witness
wires such that configuration Wi transitions to Wi+1 in depth D/k.

Analysis. As discussed above, unlike the deterministic setting, it appears difficult define a no-
tion of “correctness” of these intermediate wire assignments. Instead, inspired by [BKK+18], we
define the notion of an accepting layer.

The output layer consists only of the output wire, and thus the only valid assignment for this
layer is the symbol 1. For each layer i, we partition the wires that are input to gates in layer i into
three sets: intermediate wires, instance wires, and witness wires. Intermediate wires for layer i are
all wires connecting gates in layer (i− 1) to gates in layer i; instance wires for layer i are all wires
that directly read the instance x and are input to gates in layer i; and witness wires for layer i are
all wires that directly read the witness and are input to gates in layer i. We define AccD(x) = 1. The
set AccD−1(x) contains all possible assignments to intermediate wires connecting a gate in layer
(D−1) to a gate in layer D, such that when the instance wires for layer D are set consistently with

12

x, there exists some assignment to the witness wires for layer D, such that the transition function
applied to these wires results in output 1.

For each layer i < (D−1), the set Acci(x) is defined recursively in a similar manner. That is, for
i < (D− 1), Acci(x) is the set of all possible assignments to intermediate wires connecting gates in
layer i to gates in layer i+ 1, such that when the instance wires for layer i are set consistently with
x, there exists an assignment to the witness wires for layer i + 1, such that the transition function
applied to these wires outputs intermediate wires connecting layer i+ 1 to layer (i+ 2) that lie in
the set Acci+1(x). We note that the lowest i for which this definition is meaningful is i = 1, since
there are no intermediate wires before the first layer.

By this definition, for x 6∈ RL, the set Acc1(x) is empty. This implies that for any set of claimed
intermediate configurations (W1, . . . ,Wk−1) sent by P (and forWk = 1), there must exist an i ∈ [k−
1] such that Wi+1 ∈ Acci+1(x) but Wi 6∈ Acci(x). This means that there is no set of assignments to
witness wires that would lead to a correct transition from Wi to Wi+1. This means that the prover
must be cheating in the ith interactive argument for T/k-time (non-deterministic) computation.

Moreover, as observed in [BKK+18], for any width W and depth D non-deterministic compu-
tation, it is possible to decide whether a set of wire assignments are in Acci(x), for any i ∈ [D] in
time poly(D, 2W). This is done via a straightforward dynamic programming approach. We will
set parameters so that the SE commitment is index-hiding against poly(T, 2S)-size adversaries.
This, together with the previous claim implies that if the SE commitment is set to be binding at a
random index i′, the probability that the prover cheats on the i′th underlying T/k interactive ar-
gument must be (negligibly) close to 1/k. Moreover, because the SE commitment is extractable, in
this mode, it becomes possible for a reduction to extract an accepting transcript of the underlying
T/k argument for a false statement.

At this point, it becomes possible to apply the same recursive argument as in the deterministic
setting to argue that with probability (negligibly) close to 1/klogk T = 1/T , the base argument
corresponds to a false statement. Conditioned on this event, it becomes possible to analyze the
batch NP phase in a manner similar to the analysis in the deterministic setting.

SNARGs for P. We rely on the recent work of [KVZ21] to compile our SNARGs for non-deterministic
bounded-space computations to SNARGs for P.

To this end, we observe that for any languageL ∈ NTISP(T, S), it holds thatL⊗k ∈ NTISP(kT, S+
T), where L⊗k is the language of k instances from L. This implies SNARGs for batch NP with im-
proved parameters than the [CJJ21a] SNARGs, from sub-exponential DDH and QR. In particular,
this implies SNARGs for batching k instances that have a description of size n, and proving that
the batched instances are in L⊗k where L ∈ NTISP(T, S), with communication complexity and
verifier runtime ko(1)(n + poly(T + S)). By plugging this into a compiler of [KVZ21] from Batch
SNARGs to SNARGs for P, we obtain SNARGs for T -time deterministic computations with over-
head T o(1) from sub-exponential DDH and QR. We point out that the [KVZ21] compiler as stated
also requires SE commitments that allows for committing to T values with local openings of size
polylog(T). However, we show that for our setting of parameters, it suffices to have a weaker local
opening property, where openings are of size T o(1). We build such commitments from any (sub-
exponentially index-hiding) SE commitment without local openings, therefore obtaining our final
results also from sub-exponential DDH and QR.

13

FS-compatible Arguments. In the body of our paper, we abstract out some general properties
of our interactive arguments, and define a class of FS-compatible interactive arguments that can
be soundly compressed using the Fiat-Shamir paradigm based on our technique. We show that
any interactive batch NP argument that is an “FS-compatible argument” can also be converted
into a proof, (intuitively) as long as its first message essentially contains a succinct commitment
to witnesses for all the NP statements. We define FS-compatible interactive arguments to be those
that satisfy a variant of round-by-round soundness [CCH+19] w.r.t. a predicate. This predicate is
computed as a function of the first message of the interactive argument6 and a trapdoor associ-
ated with the CRS. Intuitively, we will say that an interactive argument is FS-compatible w.r.t. a
predicate φ if transcripts that satisfy the predicate, also satisfy round-by-round soundness with
sparse and efficiently computable BAD verifier challenges. Moreover, in order to ensure that these
arguments can be soundly converted into SNARGs based on CI hash functions, we will require
that the predicate be “non-trivial”. That is, any adversary that produces accepting transcripts for
false statements with non-negligible probability should also produce accepting transcripts that
satisfy the predicate and correspond to false statements, with non-trivial probability. We show the
non-triviality of our predicate using the index hiding property of the underlying SE commitments.

Roadmap. A formalization of the FS-compatible property and a proof that such arguments can
be converted to SNARGs can be found in Section 4. Next, in Sections 5 and 6 we formalize our
constructions of SNARGs for deterministic and non-deterministic bounded-space computations,
respectively. We also combine the latter with recent work [KVZ21] to obtain SNARGs for P in
Section 6.5.

3 Preliminaries

In what follows, when we say we assume (T1, T2)-hardness of an efficiently falsifiable assumption,
we mean that there exists a negligible function µ(·) such that no poly(T1)-size adversary can falsify
the assumption with probability better than µ(T2).

3.1 Correlation Intractable Hash Functions

In this section, we recall the notion of a CI hash family. We start by recalling the notion of a hash
function family.

Definition 3.1. A hash familyH is associated with two algorithms (H.Gen,H.Hash), and a param-
eter n = n(λ), such that:

• H.Gen is a PPT algorithm that takes as input a security parameter 1λ and outputs a key k.

• H.Hash is a polynomial time computable (deterministic) algorithm that takes as input a key
k ∈ H.Gen(1λ) and an element x ∈ {0, 1}n(λ) and outputs an element y.

We consider hash families H such that for every λ ∈ N, every key k ∈ H.Gen(1λ) and every
x ∈ {0, 1}n(λ), the output y = H.Hash(k, x) is in {0, 1}λ.

6More generally, this can be computed as a function of the entire transcript.

14

Definition 3.2 (Correlation Intractable). [CGH04b, CCH+19] Fix any T1 = T1(λ) ≥ poly(λ) and
T2 = T2(λ) ≥ poly(λ). A hash family H = (H.Gen,H.Hash) is said to be (T1, T2) correlation in-
tractable (CI) for a family R = {Rλ}λ∈N of efficiently enumerable relations if the following two
properties hold:

• For every λ ∈ N, every R ∈ Rλ, and every k ∈ H.Gen(1λ), the functions R and H.Hash(k, ·)
have the same domain and the same co-domain.

• For every poly(T1)-size A = {Aλ}λ∈N there exists a negligible function µ such that for every
λ ∈ N and every R ∈ Rλ,

Pr
k←H.Gen(1λ)
x←A(k)

[(x,H.Hash(k, x)) ∈ R] = µ(T2(λ)).

We will use the following theorems from prior work.

Theorem 3.3. [JJ21] Fix any T = T (λ) ≥ 2λ
ε for some 0 < ε < 1. Assuming the (T, T)-hardness of

DDH, there exists a constant c > 0 such that for any B = B(λ) = poly(λ), depth L ≤ O(log log λ) and
any family R = {Rλ}λ∈N of relations that are enumerable by threshold circuits of size B(λ) and depth
L, there exists a (T, T) correlation intractable (CI) hash family H = (H.Gen,H.Hash) computable in time
(B(λ) · λ · L)c, forR (Definition 3.2).

3.2 Somewhere Extractable (SE) Commitments

Definition 3.4 (SE Commitments). A somewhere extractable (SE) commitment consists of PPT
algorithms (Gen,Com,Open,Verify,Extract) along with an alphabet Σ = {0, 1}`blk and a fixed poly-
nomial p = p(·) satisfying the following:

• (ck, ek) ← Gen(1λ, L, `blk, i): Takes as input an integer L ≤ 2λ, block length `blk and integer
i ∈ {0, . . . , L−1} and outputs a public commitment key ck along with an extraction trapdoor
ek.

• h ← Com(ck, x): is a deterministic polynomial time algorithm that takes as input x =

(x[0], . . . , x[L− 1]) ∈ ΣL and outputs h ∈ {0, 1}`com .

• π ← Open(ck, x, i): Given the commitment key ck, x ∈ ΣL and an index i ∈ {0, . . . , L − 1},
outputs proof π ∈ {0, 1}`open .

• b ← Verify(ck, y, i, u, π): Given a commitment key ck and y ∈ {0, 1}`com , an index i ∈
{0, . . . , L− 1}, opened value u ∈ Σ and a proof π ∈ {0, 1}`open , outputs a decision b ∈ {0, 1}.

• u ← Extract(ek, y): Given the extraction trapdoor ek and a commitment y ∈ {0, 1}`com , out-
puts an extracted value u ∈ Σ.

We require the following properties:

• Correctness: For any integers L ≤ 2λ and i ∈ {0, . . . , L− 1}, any ck← Gen(1λ, L, i), x ∈ ΣL,
π ← Open(ck, x, j): we have Verify(ck,Com(ck, x), j, x[j], π) = 1.

• Index Hiding: We consider the following game between an attacker A and a challenger:

15

– The attacker A(1T1) outputs an integer L and two indices i0, i1 ∈ {0, . . . , L− 1}.
– The challenger chooses a bit b← {0, 1} and sets ck← Gen(1λ, L, ib).

– The attacker A gets ck and outputs a bit b′.

We say that an SE commitment satisfies (T1, T2) index-hiding if for every poly(T1)-size at-
tacker A there exists a negligible function µ(·) such that:∣∣∣Pr[A = 1|b = 0]− Pr[A = 1|b = 1]

∣∣∣ = µ(T2)

in the above game.

• Somewhere Extractable: We say that a commitment is somewhere extractable if there is a
negligible function µ such that for every L(λ) ≤ 2λ and i ∈ {0, . . . L− 1},

Pr
(ck,ek)←Gen(1λ,L,i)

[
∃y∈{0,1}`com , u∈Σ, π∈{0,1}`open

s.t. Verify(ck,y,i,u,π)=1 ∧ Extract(ek,y)6=u

]
= µ(T2)

Definition 3.5 (SE Commitments with Local Opening). A somewhere extractable (SE) commit-
ment satisfying Definition 3.4 satisfies the local opening property iff `open < L`blk.

Theorem 3.6 (SE Commitments from QR [CJJ21a]). Fix any T1 = T1(λ) ≥ poly(λ) and T2 = T2(λ) ≥
poly(λ). Assuming (T1, T2) hardness of QR, there exists an SE commitment satisfying Definition 3.4
where the extraction algorithm can be implemented by a threshold circuit of constant depth, and which
satisfies (T1, T2)-index hiding. Furthermore, this satisfies the following properties: `com = `blkλ, `open =
`blkL, |ck| = `blkLλ, |ek| = `blkλ, the running time of Gen and Verify is `blkLλ and the running time of
Extract is `blkpoly(λ).

In Appendix A, we also build SE commitments from DDH or QR, and show how to generically
obtain a non-trivial local opening property by stacking such commitments in a Merkle tree of
appropriate arity. These are then plugged into the [KVZ21] compiler, together with SNARGs for
batch NP from this work, to obtain SNARGs for P.

4 Fiat-Shamir for Arguments

In this section, we define a class of (multi-round) interactive arguments to which the Fiat-Shamir
paradigm can be soundly applied, based on an (appropriate) correlation-intractable hash function.
In particular, we will define a few properties that a multi-mode interactive argument should sat-
isfy, in order to be converted to a non-interactive one by applying our technique. We begin with a
natural definition of multi-mode interactive arguments:

Definition 4.1 (N -Mode Protocols). Let N(λ) ≥ λ be a function. We say that Π = (Setup,P,V) is
an N -mode protocol for a language L if the following property holds:

• Syntax: Setup is a randomized algorithm that obtains input a security parameter λ and some
i ∈ [N(λ)]. Setup outputs common reference string CRS and auxiliary information aux such
that aux contains i.

Next, we define a notion of a predicate, that applies to the first prover message, the instance
and a trapdoor in the CRS.

16

Definition 4.2 (Predicate). φ is a predicate for anN -mode (Definition 4.1) protocol Π = (Setup,P,V)
if φ has the following property:

• Syntax: For any i ∈ [N(λ)], φ takes as input instance x, the first prover message α1, and
some auxiliary information aux computed by Setup(1λ, i). φ outputs a binary value in {0, 1}.

Definition 4.3 ((T ′, N)-Non-Trivial Predicate). Let Π = (Setup,P,V) be anN -mode (Definition 4.1)
public-coin interactive proof system for a language L. We say that a predicate φ for Π (Defini-
tion 4.2) is time-T ′ non-trivial for Π if the following properties hold:

• Syntax: For any λ ∈ Z+, any instance x, any i ∈ [N(λ)], any (CRS, aux) ∈ Support(Setup(1λ, i)),
and any (partial) transcript τ = (α1, β1, . . . , αj) for some j ∈ [ρ(λ)], we define φ(x, τ, aux) =
φ(x, α1, aux).

• Non-Triviality: There exists a polynomial p(·) such that for λ ∈ Z+, and any poly(T ′)-time
adversary A, if there exists a polynomial q(·) such that:

Pr
i←[N],

(CRS,aux)←Setup(1λ,i),
(x,α1)←A(CRS)

[x 6∈ L ∧ x 6= ⊥] ≥ 1

q(λ)

then
Pr

i←[N],

(CRS,aux)←Setup(1λ,i),
(x,α1)←A(CRS)

[φ(x, α1, aux) = 1|x 6∈ L ∧ x 6= ⊥] ≥ 1

p(N(λ))
.

• Efficiency: φ can be evaluated in poly(T ′) time.

4.1 Round-by-Round Soundness

We now define a notion of round-by-round soundness for interactive arguments w.r.t. a predi-
cate φ. The definition below is a generalization of the definition in [CCH+19] to the setting of
interactive arguments.

Unlike [CCH+19], we don’t define State on the empty transcript, instead only starting to define
it once the first prover message has been sent. The key difference from [CCH+19] is that we
define the State function on the first prover message to reject when the predicate φ(x, α1, aux) = 1,
instead of defining it to reject when x 6∈ L. In particular, if we apply the definition below with the
predicate φ(x, α1, aux) = x 6∈ L (and modify the syntax of Setup appropriately), we will recover
the definition in [CCH+19, JKKZ21].

Definition 4.4 (b-Round-by-Round Soundness w.r.t. φ). [CCH+19] Let Π = (Setup,P,V) be a
public-coin N -mode (Definition 4.1) interactive proof system for a language L. We say that Π is
b-round-by-round sound with respect to predicate φ (Definition 4.2), if there exists State such
that, denoting the size of every verifier message by λ, for any i ∈ [N(λ)], any (CRS, aux) ∈
Support(Setup(1λ, i)), the following properties hold:

1. Syntax: State is a deterministic function that takes as input the CRS, an instance x, a tran-
script prefix τ , and auxiliary information aux computed by Setup. State outputs either accept
or reject.

17

For every x, every non-empty transcript τ = (α1, β1, . . . , αj , βj), and any next prover mes-
sage αj+1, we have

State(CRS, x, τ, aux) = State(CRS, x, τ‖αj+1, aux).

2. End Functionality: For every x and every first prover message α1, State(CRS, x, α1, aux) =
reject iff φ(x, α1, aux) = 1. For every complete transcript τ , if V(CRS, x, τ) = 1, State(CRS, x, τ,
aux) = accept.

3. Sparsity: For every x and every transcript prefix τ = (α1, β1, . . . , αj−1, βj−1, αj), if φ(x, α1,
aux) = 1 and State(CRS, x, τ, aux) = reject, it holds that

Pr
β←{0,1}λ

[State(CRS, x, τ‖β, aux) = accept] ≤ b(λ) · 2−λ. (1)

4.2 FS-Compatible Arguments

In the following definition, we formalize the requirements from round-by-round sound arguments
w.r.t. φ that allow them to be compressed by the Fiat-Shamir paradigm via our approach.

Definition 4.5 (FS-Compatible Multi-mode Argument with Respect to φ). For some ρ,N : Z+ →
Z+, let Π = (Setup,P,V) be a ρ-round N -mode (Definition 4.1) public-coin interactive argument
system where Setup is a randomized algorithm that obtains input a security parameter λ and some
i ∈ [N(λ)]. For any B, b, d : Z+ → Z+, we say that Π is (B, b, d) FS-compatible with respect to
predicate φ (Definition 4.2) if the following properties hold:

1. Completeness: For any λ ∈ Z+, i ∈ {1, 2, . . . , N(λ)}, and x ∈ L, we have

Pr
CRS←Setup(1λ,i)

[〈P,V〉(CRS, x) = accept] = 1.

2. b-Round-by-round soundness w.r.t. φ: Π is b-round-by-round sound with respect to φ (Def-
inition 4.4); let State be the corresponding state function.

3. d-depth B-efficient BAD w.r.t. φ: For any λ ∈ Z+, any i ∈ [N(λ)], any (CRS, aux) ∈
Support(Setup(1λ, i)), there exists a (non-uniform) randomized function BADaux that satis-
fies the following guarantees:

• Syntax: BADaux is hardwired with aux and takes as input the CRS, instance x, a partial
transcript τ = (α1, β1, . . . , αi); and potentially additional uniform randomness r.

• BAD w.r.t. φ: For every x and every τ , (α1, β1, . . . , αj−1, βj−1, αj) s.t. State(CRS, x, τ,
aux) = reject and φ(x, α1, aux) = 1, BADaux(CRS, x, τ) enumerates the set BCRS,φ,aux,τ ,
where

BCRS,φ,aux,τ := {β : State(CRS, x, τ‖β, aux) = accept}.
If BCRS,aux = ∅, BADaux(CRS, x, τ) outputs ⊥. By Equation (1), |BCRS,aux| ≤ b(λ).

• d-Depth, B-Efficient computation: BADaux can be evaluated by a d(λ)-depth (non-
uniform) threshold circuit of size B = B(λ).

In what follows, we first recall the Fiat-Shamir paradigm as applied to interactive arguments,
and then prove that arguments satisfying Definition 4.5 with respect to a non-trivial predicate
(Definition 4.3) can be soundly compressed to obtain a SNARG via this paradigm.

18

4.3 The Fiat-Shamir Paradigm

Let Π = (Setup,P,V) be any public-coin interactive argument for a language L. Let n = n(λ)
denote the communication complexity of Π. LetH = (H.Gen,H.Hash) be hash family such that, for
every security parameter λ ∈ N and every k ∈ H.Gen(1λ),H.Hash(k, ·) is a function with a domain
{0, 1}n(λ) and co-domain {0, 1}λ. We will also allow inputs to H.Hash(k, ·) that are shorter than n,
by padding all inputs with 0’s until the total length is n. We define the non-interactive protocol
ΠHFS = (P ′,V ′), obtained by applying the Fiat-Shamir transform to Π w.r.t. the hash family H, in
Figure 3.

The Non-Interactive Argument ΠHFS.

Fix an input length |x| and let λ = λ(|x|).

• The common reference string CRS consists of two parts, CRS1,CRS2 where CRS1 ←
Setup(1λ, i) for i $←− [N], and CRS2 contains one key k ← H.Gen(1λ).

• The prover P ′ takes as input (CRS, x) and does the following:

1. Set i = 1 and τ0 = ∅.
2. Compute αi ← P(x, τi−1) and βi = H.Hash(k, τi−1|αi).

3. Set τi = (τi−1|αi|βi).

4. If i = ` then output τi. Otherwise, set i = i+ 1 and go to Item 2.

• The verifier V ′ takes as input (CRS, x, τ) and does the following:

1. Parse CRS = (CRS1,CRS2) and τ = (α1, β1, . . . , α`, β`).

2. Accept if and only if V(CRS1, x, τ) = 1 and for every i ∈ [`] it holds that βi =
H.Hash(CRS2, τi−1|αi), where τi−1 = (α1, β1, . . . , αi−1, βi−1).

Figure 3: The Non-Interactive Argument ΠHFS

4.4 From FS-Compatible Arguments to SNARGs

Definition 4.6 ((T ′, N)-Sound Non-interactive Arguments). For any T ′ = T ′(λ) and N = N(λ),
we say that a N -mode protocol (Definition 4.1) Π = (Setup,P,V) is a non-interactive argument for
a language L if the following properties hold:

• Completeness: For any λ ∈ Z+, any i ∈ [N(λ)], and x ∈ L, we have that

Pr
CRS←Setup(1λ,i)

τ←P(1λ,CRS)

[V(CRS, x, τ) = accept] = 1.

19

• N -Mode Indistinguishability of CRS: There exists a negligible function µ(·) such that for
any i1, i2 ∈ [N(λ)], and any poly(T ′)-time adversary Awe have that∣∣∣∣ Pr

CRS←Setup(1λ,i1)
[A(CRS) = 1]− Pr

CRS←Setup(1λ,i2)
[A(CRS) = 1]

∣∣∣∣ = µ(N(λ)).

• Adaptive Soundness: There exists a negligible function µ(·) such that for any λ ∈ Z+, any
i ∈ [N(λ)], and any non-uniform poly(T ′)-time adversary Awe have that

Pr
CRS←Setup(1λ,i)

(x,τ)←A(1λ,CRS)

[x 6∈ L ∧ V(CRS, x, τ) = 1] ≤ µ(N(λ)).

Theorem 4.7 (FS-Compatible). Suppose that there exist N,T ′, B, b, d (all functions of λ) where N,T ′ ≥
λ. Let Π = (Setup,P,V) be a ρ(λ)-round N(λ)-mode (Definition 4.1) protocol for a language L decidable
in (deterministic) time poly(T ′). Let Π have prover runtime TP and verifier runtime TV. Let H be a hash
function. If Π andH are such that:

• Π is (B, b, d)-FS-compatible according to Definition 4.5 with respect to a (T ′, N) nontrivial predicate
φ (Definition 4.3).

• H is (T ′, N) CI (Definition 3.2) for all relations sampleable by d-depth threshold circuits of size B,
and is computable in time p(B) for some fixed polynomial p(·).

Then ΠHFS (according to Figure 3) is a (T ′, N)-sound non-interactive argument system for L (Defini-
tion 4.6). ΠHFS has ρ(λ) · p(B(λ)) + TP prover runtime and ρ(λ) · p(B(λ)) + TV verifier runtime.

Proof. The completeness of ΠHFS follows directly from that of Π. Moreover, prover runtime in the
non-interactive protocol equals the runtime TP of the interactive prover, plus the time needed to
hash ρmessages, where each hash computation takes time p(B(λ)). Therefore total prover runtime
equals ρ(λ) · p(B(λ)) + TP. Verifier runtime in the non-interactive protocol equals the runtime TV
of the interactive verifier, plus the time needed to hash ρ messages, where each hash computation
takes time p(B(λ)). Therefore total verifier runtime equals ρ(λ) · p(B(λ)) + TV.

Next, we prove that if Π is adaptively sound then ΠHFS is adaptively sound.
In what follows, unless specified otherwise, all probabilities are over the randomness of sampling:

i
$←− [N], (CRS, aux)← Setup(1λ, i), k ← H.Gen(1λ), (x, τ)← AFS(1λ,CRS‖k)

Suppose for the sake of contradiction that there existed some poly(T ′)-time adversary AFS, some
polynomial q(·) and infinitely many λ ∈ Z+,7

Pr[x 6∈ L ∧ VHFS(CRS‖k, x, τ) = 1] ≥ 1

q(N(λ))
(2)

We claim that there exists a polynomial p(·) such that:

Pr[x 6∈ L ∧ VHFS(CRS‖k, x, τ) = 1 ∧ φ(x, α1, i, aux) = 1] ≥ 1

p(N(λ))
(3)

7Note that for the purposes of this proof, we will use CRS to denote the CRS of the interactive protocol; the CRS for
the non-interactive protocol will contain both CRS and the CI hash key k.

20

where α1 denotes the first prover message in τ .
Suppose this claim is not true, then there exists a negligible function µ(·) such that:

Pr[x 6∈ L ∧ VHFS(CRS‖k, x, τ) = 1 ∧ φ(x, α1, aux) = 1] = µ(N(λ)) (4)

We consider a poly(T ′)-time adversaryANT defined as follows: ANT(1λ,CRS) samples k ← H.Gen(1λ)
and then obtains (x, τ) ← AFS(1λ,CRS‖k). If VHFS(CRS‖k, x, τ) = 1 and x 6∈ L, A outputs (x, α1)
where α1 is the first message of τ . OtherwiseANT outputs⊥. Equations (2) and (4) together imply
that:

Pr
i

$←−[N]

(CRS,aux)←Setup(1λ,i)

(x,α1)←ANT(1λ,CRS)

[φ(x, α1, aux) = 1|x 6∈ L ∧ x 6= ⊥] ≤ µ(N(λ)) · q(λ) = negl(N(λ)) (5)

which contradicts the non-triviality of φ according to Definition 4.5. Therefore, equation (3) should
be true.

Let E0(k,CRS, aux, x, τ) =
(
x /∈ L ∧ VHFS(CRS, x, τ) = 1 ∧ φ(x, α1, aux) = 1

)
. We then obtain

that
Pr[E0(k,CRS, aux, x, τ) = 1] ≥ 1

p(N(λ))
. (6)

Let State be the function given by Definition 4.5. For the sake of argument, fix any k ∈
Support(H.Gen(1λ)), any i ∈ [N(|x|)], any (CRS, aux) ∈ Support(Setup(1|x|, i)), and any pair of
instance and transcript (x, τ) ∈ Support(AFS(1λ,CRS‖k)) such that E0(k,CRS, aux, x, τ) = 1. Since
φ(x, α1, aux) = 1, State(CRS, x, α1, aux) = reject Since VHFS(CRS, x, τ) = 1, then State(CRS, x, τ, aux) =
accept. Thus, letting τ = (α1, β1, . . . , αρ, βρ) and τ` = (α1, β1, . . . , α`, β`) for all ` ∈ [ρ], there must
exist an index j = j(λ) ∈ [ρ(λ)] such that State(CRS, x, τj−1‖αj , aux) = reject but State(CRS, x, τj , aux)
= accept. Let BCRS,aux be the set defined in Definition 4.5 for instance x and transcript τj−1‖αj . By
definition, βj ∈ BCRS,aux and since VHFS(CRS, x, τ) = 1, we must have that H.Hash(k, x‖τj−1‖αj) =
βj . We will now mathematically summarize the result of this argument. Let

E1(j, k,CRS, aux, x, τ) =
(
φ(x, α1, aux) = 1 ∧H.Hash(k, x‖τj−1‖αj) ∈ BCRS,φ,aux,τj−1

)
.

We have that

Pr[∃j ∈ [ρ] s.t. E1(j, k,CRS, aux, x, τ) = 1]

≥ Pr[E0(k,CRS, aux, x, τ) = 1] ≥ 1

p(N(λ))
.

When we sample the index j independently and uniformly at random, we have that

Pr
i

$←−[N], j
$←−[ρ]

(CRS,aux)←Setup(1λ,i)

k←H.Gen(1λ)

(x,τ)←AFS(1λ,CRS‖k)

[E1(j, k,CRS, aux, x, τ) = 1] ≥ 1

ρ(λ)
· 1

p(N(λ))
. (7)

We will now construct an adversary ACI that breaks the correlation-intractability of H (Defini-
tion 3.2). Define relationR to be the relation sampled by the circuit BADaux for Π, this circuit exists

21

Algorithm ACI = {ACI,λ}λ∈N which does the following:

• Sample (CRS, aux)← Setup(1λ, [N]).

• Obtain key k (generated as k ← H.Gen(1λ) whereH is φ-CI w.r.t. relationR).

• Compute (x, τ)← AFS(1λ,CRS‖k).

• Parse τ = (α1, β1, . . . , αρ, βρ) and sample j $←− [ρ(λ)].

• Output (x, τj−1‖αj) where τj−1 = (α1, β1, . . . , αj−1, βj−1).

Figure 4: Algorithm ACI that breaks the correlation intractable property ofH.

by Definition 4.5 and on any x outputs one out of a set of b(λ) strings. Moreover, for any x such
that φ(x, α1, aux) = 1, BADaux (w.h.p.) outputs a uniformly random element in the set BCRS,φ,aux.

For ACI as defined in Figure 4, we can see from Equation 7 and our above argument that there
exists a polynomial p′(·) such that

Pr
BCRS,aux←ACI(1

λ)

k←H.Gen(1λ)

(x,τj−1‖αj)←ACI(1
λ,k)

[E1(j, k,CRS, aux, x, τ) = 1]

≥ Pr
i

$←−[N],j
$←−[ρ(λ)]

(CRS,aux)←Setup(1λ,i)

k←H.Gen(1λ)

(x,τ)←AFS(1λ,CRS‖k)

[E1(j, k,CRS, aux, x, τ) = 1] ≥ 1

ρ(λ) · p(N(λ))
≥ 1

p′(N(λ))
.

By definition of event E1, we have thatACI will satisfy bothH.Hash(k, x‖τj−1‖αj) ∈ BCRS,φ,aux,τj−1

and φ(x, α1, aux) = 1 with non-negligible (in N) probability. This implies (by definition of the
relation R above) that H.Hash(k, x‖τj−1‖αj) ∈ R with non-negligible (in N) probability. Thus,
ACI contradicts the (λ,N) correlation intractability ofH, as desired.

Therefore, ΠHFS is adaptively and computationally sound.

5 FS-compatible Arguments for Bounded Space Computations

In this section, we describe and prove FS-compatibility of our interactive arguments for bounded
space computation. Before providing a formal theorem, in the following subsection, we define
an FS-Compatible Batch NP argument with respect to a batch predicate and SE commitment. We
will bootstrap interactive arguments for batch NP satisfying this definition to obtain interactive
arguments for bounded space computation.

5.1 FS-Compatible Batch NP Arguments

Let ΠBNP = (SetupBNP,PBNP,VBNP) be a public-coin argument system for Rk for some circuit
satisfiability relation R such that SetupBNP(1λ, i) runs (ck, ek) ← C.Gen(1λ, k, i) for some SE com-

22

mitment scheme C and puts ck in CRS and (i, ek) in aux. Then we define a predicate φBNP such
that

φBNP((x1, . . . , xk), α1, aux) =
(

(xi, C.Extract(ek, α1)) 6∈ R
)
.

Definition 5.1 (FS-compatible Batch NP w.r.t. C and φBNP). Let ΠBNP = (SetupBNP,PBNP,VBNP)
be a public-coin argument system for Rk = Rn,m,s,F for C-SAT relation R = Rn,m,s,F represented
as

Rn,m,s,F = RC = {(x, ω) : C(x, ω) = 1} where

x is a vector in Fn, ω is a vector in Fm, and |C| = s. We say that ΠBNP is FS-compatible Batch NP
with respect to a somewhere extractable commitment scheme C = (Gen,Com,Open,Verify,Extract)
(Definition 3.4) if there exist T ′, b, d (all functions of λ) such that we have the following properties:

• Syntax: SetupBNP(1λ, i) runs (ck, ek)← C.Gen(1λ, k, i) and puts ck in CRS and (i, ek) in aux.

• FS-compatible w.r.t. φBNP: ΠBNP is (T ′, b, d) FS-compatible according to Definition 4.5 with
respect to the predicate φBNP.

• Completeness: For any λ ∈ Z+, any i ∈ [N(λ)], and any ((x1, w1), . . . , (xk, wk)) ∈ Rk,

Pr
(CRS,aux)←SetupBNP(1λ,i)

[〈PBNP(w1, . . . , wk),VBNP〉(CRS, (x1, . . . , xk)) = 1] = 1

where the first message of PBNP(w1, . . . , wk) is C.Com(ck, (w1, . . . , wk)).

• Complexity: For any λ ∈ Z+, any i ∈ [k(λ)], any (ck, ek) ∈ Support(C.Gen(1λ, k, i)), ΠBNP has
communication complexity Õ

(
s+ k log s

)
· polyλ, verifier runtime of Õ

(
kn+ s

)
· polyλ, and

prover runtime of poly(k · s) where s = |C| and n = |x|.

Theorem 5.2 (FS-compatible Batch NP w.r.t. C [CJJ21a]). Assuming the hardness of QR, for any
n = n(λ),m = m(λ), s = s(λ), k = k(λ), and field F where |F| ≤ 2λ there exists an FS-compatible Batch
NP w.r.t. C and φBNP (Definition 5.1), where C satisfies Definition 3.4, for Rkn,m,s,F where Rn,m,s,F is any
C-SAT relation.

We sketch the proof of this theorem in Appendix B. In our proofs, we will additionally require
the following property from the state function of the batch NP.

Definition 5.3 (Accepting State). Let State be a state function as in Definition 4.4. We say that State
has the accepting state property if for all CRS, all x, all partial transcripts τ = (α1, β1, . . . , αj), and
all aux such that State(CRS, x, τ, aux) = accept, we have that State(CRS, x, τ‖βj , aux) = accept for
all βj .

Note that not all valid state functions will satisfy this additional property. However, if a pro-
tocol has a valid state function, it will also have a (possibly different) valid state function that
satisfies the accepting state property. We formalize this in the following lemma, which we prove
in Appendix C.

Lemma 5.4. Let Π be any protocol, and suppose that Π is (B, b, d) FS-Compatible with respect to some
predicate φ (Definition 4.5) using the state function State. Then there exists a state function State′ satis-
fying the accepting state property (Definition 5.3) such that Π is (B, b, d) FS-Compatible with respect to φ
using State′ as the state function.

23

5.2 Bounded-Space Protocol Construction

For any T ∈ N, consider a language LT that contains the set of all strings (M, s0, sT , y) whereM
is the description of a Turing machine, s0 is the initial state, sT is the final state and y is an input
such that runningM on y with the start state to be s0 for T time steps results in the final state sT .
We construct an interactive FS-compatible argument for the language LT .

For any k, γ ≥ 1 where kγ = T , for every ` ∈ [γ], we construct an argument for k`-time, S-space
computations in Figure 6 in terms of an interactive argument for k`−1-time, S-space computations.

• Let Π0 = (Setup,P,V) denote a trivial protocol (Figure 5) for unit-time computations where
the verifier given a machineM, instance x and states s0, s1, outputs 1 ifM(x, s0) transitions
to state s1 in one time step. Setup(1λ) outputs (⊥,⊥).

• Let Πk`−1 = (Setup,P,V) be a ρ-round public-coin protocol for (k`−1)-time computations
with ν-length prover messages whose verifier V = (V1, . . . ,Vρ) where r(i) ← Vi(1

λ, |x|) for
i ∈ [ρ− 1] and {0, 1} ← Vρ(x, τ) for transcript τ .

• Let C = (Gen,Com,Open,Verify,Extract) be an SE commitment satisfying Definition 3.4.

• Let ΠBNP be a batch NP protocol for circuit satisfiability satisfying Definition 5.1.

Unit Time Interactive Protocol
P and V obtain an instance x(0), which P wishes to prove is in the language

L(0) ,
{

(M, y, s0, s1) : s1 ←M(y, s0, 1)
}
.

That is,Mwith initial state s0 reaches state s1 in one time step on input y.

1. P sends dummy message α to V.

2. V sends dummy message β to P.

3. V computes s′1 ←M(y, s0). V accepts iff s′1 = s1.

Figure 5: Unit Time Interactive Protocol (Setup,P,V)

5.3 Non-trivial predicate for Bounded-Space Protocol

We start with the description of the predicate φ for the protocol Πkγ . Let ΠT = (Setup,P,V) be
the protocol defined by Figure 6, where T = kγ . The predicate φ equals φγ , where φ` is defined
recursively for every x, α, aux and ` ∈ [γ].

• φ0(x, α, aux) = 1 ⇐⇒ x 6∈ L(0).

• φ`(x, α, aux) for ` ∈ [1, γ]: Parse aux = (aux′, ek, (i1, . . . , i`)) and α = ((s0, . . . , sk), C
(1)).

Define instances (x′1, . . . , x
′
k) as in Figure 6, where x′j = (M, sj−1, sj , y) for j ∈ [k].

Set φ`(x, α, aux) = (x′i` 6∈ Lk`−1) ∧ φ`−1(x′i` , C.Extract(ek, C
(1)), aux′).

24

Interactive Argument for k`-Time S-Space Computation

Common Input: An instance x = (M, s0, sT , y) of the language Lk` .

Setup(1λ, i, k) does the following.
• Parse i as a tuple (i1, i2, . . . , i`) ∈ [k]`.
• Obtain (ck, ek)← C.Gen(1λ, i`, k) and (CRS′, aux′) = Πk`−1 .Setup(1λ, (i1, . . . , i`−1), k).
• Output CRS = (CRS′, ck), aux = (aux′, ek, (i1, . . . , i`)).

Initial Processing.
• P send s = (s0, . . . , sk) for initial state s0 and {sj ,M

(
y, s0, 1

T ·j/k)}j∈[k], to V.
• P,V define k instances (x′1, . . . , x

′
k) for language Lk`−1 where {x′j = (M, sj−1, sj , y)}j∈[k].

Emulation Phase.
• For every r ∈ [1, ρ], let ν denote the maximum message size of Πk`−1 .P. P computes k

parallel executions of Πk`−1 .P’s rth round message, Πk`−1 .Pr:

π(r) =

 π(r)[1] · · · π(r)[ν]

,

 π
(r)
1 , Πk`−1 .Pr(CRS

′, x′1,Lk`−1 , {β(1), . . . , β(r−1)})
· · ·

π
(r)
k , Πk`−1 .Pr(CRS

′, x′k,Lk`−1 , {β(1), . . . , β(r−1)})

 .
P sends C(r) = (C(r)[1], . . . , C(r)[ν]) where C(r)[j] , C.Com(ck, π(r)[j]) for j ∈ [ν].
• V sends Πk`−1 .V’s rth round message computed as β(r) ← Πk`−1 .Vr(1

λ).

Batch NP Phase.
• P and V define the instances (x′′1, . . . , x

′′
k) and P defines the witnesses (ω′′1 , . . . , ω

′′
k) as:

For j ∈ [k], x′′j = (x′j , {β(r)}r∈[ρ]), ω′′j = {π(r)
j }r∈[ρ].

• Define language L′′ ,
{

(x, {βr}r∈[ρ]) : ∃{πr}r∈[ρ] s.t. Πk`−1 .V(CRS′, x, {πr, βr}r∈[ρ]) = 1
}

.

• P and V execute ΠBNP on input ck, instances (x′′1, . . . , x
′′
k) and witnesses (ω′′1 , . . . , ω

′′
k) where

the first round message of P in ΠBNP is ignored and replaced by {C(r)}r∈[ρ] as sent in the
emulation phase.

• If ΠBNP.V accepts, then V accepts.

Figure 6: Bounded Space Computation Protocol Πk` w.r.t. ΠBNP and C

Theorem 5.5 (Non-trivial predicate). For every T = T (λ), T ′ = T ′(λ), assuming the (T ′, T)-index
hiding property of SE commitments, φ is a (T ′, T)-non-trivial predicate for the protocol ΠT .

Proof. We set k, γ such that kγ = T (as above) and prove the non-triviality of predicate φ by
induction on ` ∈ [γ]. We define A to be an admissible adversary if there exists a polynomial q′(·)

25

such that:
Pr

i←[k]γ ,

(CRS,aux)←Setup(1λ,i),
(x,α1)←A(CRS)

[x 6∈ L ∧ x 6= ⊥] ≥ 1

q′(T)
.

The base case where ` = 0 follows directly from the definition of φ0. For any ` ∈ [γ], our induction
hypothesis assumes that for every non-uniform poly(T ′)-time admissible adversary A,

Pr
i=(i1,...,i`−1)←[k]γ ,

(CRS,aux)←Setup(1λ,i),
(x,α)←A(CRS)

[φ`−1(x, α, aux) = 1|x 6∈ Lk`−1 ∧ x 6= ⊥] ≥ 1

k`−1
− negl(T) (8)

Our inductive step will show that for every non-uniform poly(T ′)-time admissible adversary A,

Pr
i=(i1,...,i`)←[k]γ ,

(CRS,aux)←Setup(1λ,i),
(x,α)←A(CRS)

[φ`(x, α, aux) = 1|x 6∈ Lk` ∧ x 6= ⊥] ≥ 1

k`
− negl(T) (9)

Recall that by definition φ`(x, α, aux) = (x′i` 6∈ Lk`−1) ∧ φ`−1(x′i` , C.Extract(ek, C
(1)), aux′). The

LHS of Equation (9) can be written as (without explicitly writing the random variables over which
the probability is defined):

Pr[x′i` 6∈ Lk`−1 |x 6∈ Lk` ∧ x 6= ⊥] · Pr[φ`−1(x′i` , C.Extract(ek, C
(1)), aux′) = 1|x′i` 6∈ Lk`−1]

Since φ`−1 is non-trivial (by induction hypothesis), we have that

Pr[φγ−1(x′i` , C.Extract(ek, C
(1)), aux′) = 1|x′i` 6∈ Lk`−1] ≥ 1

k`−1
− negl(T)

To complete the proof, we show that:

Pr[x′i` 6∈ Lk`−1 |x 6∈ Lk` ∧ x 6= ⊥] ≥ 1

k
− negl(T)

Suppose the above probability is at most 1/k−1/q(T) for some polynomial q(T), we give a reduc-
tion that breaks the (λ, T) index hiding property of the SE commitment.

The reduction interacts with the external challenger and provides a uniform index i` ← [k]
to the challenger. It obtains ck from the challenger, that is binding at either index 1 or i`. The
reduction samples i1, . . . , i`−1, i`+1, . . . , iγ uniformly from [k]γ−1, samples the related keys ckj ←
C.Gen(1λ, j, k) for j ∈ {1, . . . , ` − 1, ` + 1, . . . , γ}, sets CRS = (ck1, . . . , ck`−1, ck, ck`, . . . , ckγ) and
runs A(CRS) to obtain (x, α). The reduction checks if x ∈ Lk` and if it is the case, then it outputs a
random bit to the challenger. If x 6∈ Lk` , the reduction outputs 1 if x′i` ∈ Lk`−1 and 0 otherwise.

Note that when the commitment key ck is generated as binding at index 1, then conditioned
on x 6∈ Lk` , the probability that x′i` 6∈ Lk`−1 is 1/k since i` is uniformly distributed with respect to
the adversary’s view. On the other hand, if ck is generated as binding at index i` then conditioned
on x 6∈ Lk` , the probability that x′j` 6∈ Lk`−1 is at most 1/k − 1/q(T) (by assumption).

Let ε be the probability that A outputs x ∈ Lk` . Since A is admissible, we have that ε <
1 − 1/q′(T) for some polynomial q′(·). Thus, the probability that the reduction outputs 1 when
ck is generated as binding at index 1 at least ε · 1/2 + (1 − ε)(1/k). On the other hand, if ck
is generated as binding at index i`, then the probability that the reduction outputs 1 is at most
ε · 1/2 + (1− ε)(1/k− 1/q(T)). Thus, the reduction breaks (λ, T)-index hiding of SE commitments
with advantage (1− ε)1/q(T) ≥ 1/q(T)q′(T) (which is a contradiction).

26

5.4 FS-Compatibility for Bounded-Space Protocol

Theorem 5.6 (FS-Compatibility w.r.t. Predicate φ). Let C be a somewhere extractable commitment
(Definition 3.4) with security parameter λ whose extraction algorithm Extract has depth dExtract and
size BExtract. Suppose there exist BBNP, bBNP, dBNP, k (all functions of λ) such that ΠBNP is a k-mode
(BBNP, bBNP, dBNP)-FS-compatible batch NP argument with respect to C and φBNP.

Then for any T = T (λ) ≥ λ and k = k(λ), Π (Fig. 6) is a T -mode (B, b, d)-FS-compatible argument
(Definition 4.5) with respect to the predicate φ, where

B = logk T ·BExtract +BBNP, b = bBNP, d = logk T · dExtract + dBNP.

Furthermore, Π has communication complexity and verifier complexity |Πkγ .V| = (kS + |y|) · (λ ·
log(kS + |y|))O(γ) and prover complexity poly(kγ) for a fixed polynomial poly(·).

5.5 Proof of FS-Compatibility.

We prove Theorem 5.6 by demonstrating the completeness, round-by-round soundness, and FS-
compatibility of Πkγ below, after which we compute efficiency. For the rest of this proof, we let C be
a somewhere extractable commitment (Definition 3.4) with security parameter λ whose extraction
algorithm Extract has depth dExtract and sizeBExtract. We also assume there existBBNP, bBNP, dBNP, k
(all functions of λ) such that ΠBNP is a k-mode (BBNP, bBNP, dBNP)-FS-compatible batch NP argu-
ment with respect to C and φBNP.

Completeness: It is easy to see that the unit time protocol satisfies perfect completeness, since
the verifier accepts iff s1 =M(y, s0). Assume that for any ` > 1 the protocol Πk`−1 satisfies perfect
completeness. We will prove that the protocol Πk` satisfies perfect completeness. By assumption
on the completeness of Πk`−1 , at the end of the emulation phase, P and V obtain a commitment to
k accepting transcripts of Πk`−1 . In other words, they obtain instances x′′ = (x′′1, . . . , x

′′
k) and the

prover obtains witnesses ω′′ = (ω′′1 , . . . , ω
′′
k) of the language L′′. Then, by completeness of ΠBNP,

we have that VBNP accepts with probability 1 at the end of the batch NP phase.

Round-by-Round Soundness: State Function. We define the state function State` in Figures 7
and 8. These are defined in terms of State′BNP, which is the state function of ΠBNP guaranteed
by Lemma 5.4, and hence satisfies the accepting state property (Definition 5.3) as well as all the
properties of round-by-round soundness (Definition 4.4).

In order to aid us in proving that State` satisfies our requirements, we will first prove the
following two propositions.

Intuitively, the first proposition demonstrates that the batch NP predicate is true (that is, the
extracting from the commitment would yield a non-witness for the corresponding batch NP state-
ment) whenever the predicate φ` is true and the State function of Π` rejects. In particular, this will
mean that we can use that the batch NP predicate is true when we need to prove that the bad
challenge function of State` is sparse.

Proposition 5.7. Fix any security parameter λ ∈ Z+, any ` ∈ [γ] , any indices i1, . . . , i` ∈ [k],
any common reference string and auxiliary information (CRS, aux) ∈ Support(Setup`(1

λ, (i1, . . . , i`))),
any instance x, and any τ = (α1, β1, . . . , αζ−1, βζ−1, αζ) for ζ > ρ′, where ρ′ denotes the number
of rounds for protocol Πk`−1 . Parse aux = (aux′, ek, (i1, i2, . . . , i`)) and CRS = (CRS′, ck). Parse

27

α1 = (s0, s1, . . . , sk, C
(1)). Redefine αρ′+1 = C(1)‖α2‖ . . . ‖αρ′ and define (x′′1, . . . , x

′′
k) according to

Figure 6. If State`(CRS, x, τ, aux) = reject for State` defined in Figure 8 and φ`(x, α1, aux) = 1, then
φBNP((x′′1, . . . , x

′′
k), αρ′+1, (i`, ek)) = 1.

Proof. Let τ̃ = (α1, β1, . . . , αρ′ , βρ′), π(1) ← C.Extract(ek, C(1)), π(ι) ← C.Extract(ek, αι) for ι ∈ [2, ρ′],
τ̃ ′ = (π(1), β1, . . . , π

(ρ′), βρ′), and xi` = (M, y, si`−1, si`). Let ω′′i` = (π(1), π(2), . . . , π(ρ′)) and R′′ be
the relation corresponding to L′′ defined in Figure 6.

Since State` runs State′BNP on any partial transcript ending in the Batch NP phase (that is
for all partial transcripts τ∗ of τ such that τ∗ = (α1, β1, . . . , αζ∗) for ζ∗ > ρ′), we have that
State′BNP(ck, (x′′1, . . . , x

′′
k), (αρ′+1, βρ′+1, . . . , αζ−1, βζ−1, αζ), (i`, ek)) = reject. By the accepting state

property of State′BNP, this implies that State′BNP(ck, (x′′1, . . . , x
′′
k), αρ′+1, (i`, ek)) = reject. Once

again, since State` runs State′BNP on any partial transcript ending in the Batch NP phase, we have
that State`(CRS, x, τ̃‖αρ′+1, aux) = reject.

By the syntax of state functions, State`(CRS, x, τ̃‖αρ′+1, aux) = State`(CRS, x, τ̃ , aux). Hence,
State`(CRS, x, τ̃ , aux) = reject. By definition of State` (Fig. 8) observe that State`(CRS, x, τ̃ , aux) =
State`−1(CRS′, xi` , τ̃

′, aux′). Hence we must have State`−1(CRS′, xi` , τ̃
′, aux′) = reject. By end func-

tionality, we must have that Πk`−1 .V(CRS′, xi` , τ̃
′) = 0. By our protocol’s invocation of the Batch

NP protocol ΠBNP, we will have that (x′′i` , ω
′′
i`

) 6∈ R′′. By definition of our Batch NP predicate φBNP,
φBNP((x′′1, . . . , x

′′
k), α

′
ρ+1, (i`, ek)) = 1.

The next proposition intuitively demonstrates that when the state function for Πk` rejects and
the predicate for Πk` is true, then depending on where the partial transcript ends (i.e. in the
emulation phase or batch NP phase), the state function of the underlying protocol Πk`−1 or the
batch NP protocol ΠBNP must also reject. Note that this holds by definition if our transcript τ ends
with a verifier message, but needs a few steps to prove if τ ends with a prover message.

Proposition 5.8. Fix any security parameter λ ∈ Z+, any ` ∈ [γ], any indices i1, . . . , i` ∈ [k], any com-
mon reference string and auxiliary information (CRS, aux) ∈ Support(Setup`(1

λ, (i1, . . . , i`))), any in-
stance x, and any partial transcript τ ending on a prover message for Πk` such that State`(CRS, x, τ, aux) =
reject for State` defined in Figure 8 and φ`(x, α1, aux) = 1. Let ρ′ denote the number of rounds for protocol
Πk`−1 . Parse aux = (aux′, ek, (i1, i2, . . . , i`)) and CRS = (CRS′, ck). Parse α1 = (s0, s1, . . . , sk, C

(1)).
Then the following is true:

• If τ = (α1, β1, . . . , αζ) for some ζ ≤ ρ′, let π(1) ← C.Extract(ek, C(1)) and π(ι) ← C.Extract(ek, αι)
for ι ∈ [2, ζ]. Let τ ′ = (π(1), β1, . . . , π

(ζ)) and xi` = (M, y, si`−1, si`). Then we have that
State`−1(CRS′, xi` , τ

′, aux′) = reject.

• If τ = (α1, β1, . . . , αζ) for some ζ > ρ′, redefine αρ′+1 = C(1)‖α2‖ . . . ‖αρ′ . Futhermore, let
τ ′ = (αρ′+1, βρ′+1, . . . , αζ) and define (x′′1, . . . , x

′′
k) according to Figure 6. Then we have that

State′BNP(ck, (x′′1, . . . , x
′′
k), τ

′, (i`, ek)) = reject.

Proof. Fix any epoch ` ∈ [γ], any security parameter λ ∈ Z+, any indices i1, . . . , i` ∈ [k], any
common reference string and auxiliary information (CRS, aux) ∈ Support(Setup`(1

λ, (i1, . . . , i`))),
any instance x, and any partial non-empty transcript τ ending on a prover message for the Πk`

protocol such that State`(CRS, x, τ, aux) = reject for State` defined in Figure 8 and φ`(x, α1, aux) =
1. Let ρ′ denote the number of rounds for protocol Πk`−1 . Parse aux = (aux′, ek, (i1, i2, . . . , i`)) and
CRS = (CRS′, ck). Parse α1 = (s0, s1, . . . , sk, C

(1)). We have four cases: either the transcript τ ends
on the first emulation message, or at a different point in the Emulation phase, on the first batch
NP message, or at a different message in the Batch NP phase.

28

• If τ = (α1), let π(1) ← C.Extract(ek, C(1)). Let τ ′ = (π(1)) and xi` = (M, y, si`−1, si`).

By the definition of φ`, since φ`(x, α1, aux) = 1, we have that φ`−1(xi` , π
(1), aux′) = 1. By the

end functionality property, we have State`−1(CRS′, xi` , τ
′, aux′) = reject.

• If τ = (α1, β1, . . . , αζ) for some ζ ≤ ρ′, let π(1) ← C.Extract(ek, C(1)) and π(ι) ← C.Extract(ek, αι)
for ι ∈ [2, ζ]. Let τ ′ = (π(1), β1, . . . , π

(ζ)) and xi` = (M, y, si`−1, si`). Furthermore, let
τ̃ = (α1, β1, . . . , αζ−1, βζ−1) and τ̃ ′ = (π(1), β1, . . . , βζ−1).

By the syntax property of state functions, State`(CRS, x, τ, aux) = State`(CRS, x, τ̃ , aux) and
State`−1(CRS′, xi` , τ̃

′‖π(ζ), aux′) = State`−1(CRS′, xi` , τ̃
′, aux′). We refer to the definition of

State` in Figure 8 to see that State`(CRS, x, τ̃ , aux) = State`−1(CRS′, xi` , τ̃
′, aux′). Since τ̃ ′‖π(ζ) =

τ ′ and State`(CRS, x, τ, aux) = reject, we have that State`−1(CRS′, xi` , τ
′, aux′) = reject.

• If τ = (α1, β1, . . . , αζ) for ζ = ρ′ + 1, then redefine αρ′+1 = C(1)‖α2‖ . . . ‖αρ′ and let τ ′ =
(αρ′+1). Define (x′′1, . . . , x

′′
k) according to Figure 6. By Proposition 5.7, we have that the

predicate φBNP((x′′1, . . . , x
′′
k), αρ′+1, (i`, ek)) = 1. By the end functionality property of state

functions, we have that State′BNP(ck, (x′′1, . . . , x
′′
k), τ

′, (i`, ek)) = reject.

• If τ = (α1, β1, . . . , αζ) for some ζ > ρ′+1, let αρ′+1 = C(1)‖α2‖ . . . ‖αρ′ and τ ′ = (αρ′+1, βρ′+1,
. . . , αζ). Define (x′′1, . . . , x

′′
k) according to Figure 6. Furthermore, let τ̃ = (α1, β1, . . . , αζ−1,

βζ−1) and τ̃ ′ = (αρ′+1, βρ′+1, . . . , βζ−1).

By the syntax property of state functions, State`(CRS, x, τ, aux) = State`(CRS, x, τ̃ , aux) and
State′BNP(CRS′, (x′′1, . . . , x

′′
k), τ̃

′‖αζ , aux′) = State′BNP(CRS′, (x′′1, . . . , x
′′
k), τ̃

′, aux′). By the defi-
nition of State` (Figure 8), State`(CRS, x, τ̃ , aux) = State′BNP(CRS′, (x′′1, . . . , x

′′
k), τ̃

′, aux′). Since
τ̃ ′‖αζ = τ ′ and State`(CRS, x, τ, aux) = reject, State′BNP(CRS′, (x′′1, . . . , x

′′
k), τ

′, aux′) = reject.

This completes the proof.

bBNP-Round-by-round soundness w.r.t. φ`: We will show that for all `, Πk` is bBNP-round-by-
round sound with respect to φ` (Definition 4.4). First, we show that this is true for ` = 0:

State0(CRS, x, τ, aux) for Π1:

• Check if x ∈ L(0). Output accept if so and reject otherwise.

Figure 7: Unit-Time State function State0.

Lemma 5.9. Π1 is 0-round-by-round sound with respect to φ0, with State0 (Figure 7) as the corresponding
state function.

Proof. Note that for Π1, State0, φ0, and V0 all simply check if x ∈ L(0), ignoring the dummy
prover and verifier messages. This immediately gives us that State0 satisfies the syntax and end
functionality properties of Definition 4.4. As for sparsity, note that State0 ignores τ , so there can
be no CRS, x, τ , β, and aux such that State0(CRS, x, τ, aux) = reject but State0(CRS, x, τ‖β, aux) =
accept. In particular, this means that the probability of sampling a β that makes this happen is
zero as desired.

29

State`(CRS, x, τ, aux) for Πk` (for ` > 0):

• Notation. Let φ` denote the predicate of protocol Πk` . Let State`−1 denote the state
function of the ρ′-round protocol Πk`−1 . State′BNP denotes the state function of ΠBNP as
guaranteed by Lemma 5.4. Parse aux = (aux′, ek, (i1, i2, . . . , i`)) and CRS = (CRS′, ck).
Letting α1 be the first prover message in τ , parse α1 = (s0, s1, . . . , sk, C

(1)).

• (Almost empty transcript). If τ = α1, output reject if φ`(x, α1, aux) = 1 and accept
otherwise.

• (Partial Transcript Ending in Prover Message). If τ = (α1, β1, . . . , αζ) for some ζ > 1,
output State`(CRS, x, (α1, β1, . . . , αζ−1, βζ−1), aux).

• (Emulation Phase). If τ = (α1, β1, . . . , αζ , βζ) for some ζ ≤ ρ′,

– Let π(1) ← C.Extract(ek, C(1)) and π(ι) ← C.Extract(ek, αι) for ι ∈ [2, ζ].

– Output State`−1(CRS′, xi` , τ
′, aux′) where τ ′ = (π(1), β1, . . . , π

(ζ), βζ) and xi` =
(M, y, si`−1, si`).

• (Batch NP Phase). If τ = (α1, β1, . . . , αζ , βζ) for some ζ > ρ′,

– Let τ ′ = (C(1)‖α2‖ . . . ‖αρ′ , βρ′+1, . . . , αζ , βζ) and define (x′′1, . . . , x
′′
k) according to

Figure 6.

– Output State′BNP(ck, (x′′1, . . . , x
′′
k), τ

′, (i`, ek)).

Figure 8: State function State.

Note that because 0 ≤ bBNP(λ), this lemma in particular tells us that Π1 is also bBNP-round-
by-round sound. Combining this repeatedly with the following lemma will give us our desired
result.

Lemma 5.10. Let ` > 0, and suppose that Πk`−1 is bBNP-round-by-round sound with respect to φ`−1 with
State`−1 (Figure 7 if ` = 1 or 8 otherwise) as the state function. Then Πk` is bBNP-round-by-round sound
with respect to φ` with State` (Figure 8) as the state function, according to Definition 4.4.

Proof. We will prove that State` as defined satisfies each of the properties from Defintion 4.4 below:

• Syntax: This follows directly from the definition of State`. Note that State`−1 and State′BNP

are both deterministic (as they also satisfy the syntax property), which means State` as de-
fined is also deterministic.

• End Functionality: Note that we have defined State`(CRS, x, α1, aux) to be reject if and only
if φ`(x, α1, aux) = 1 as required. Additionally, for a complete transcript τ , State`(CRS, x, τ,
aux) = accept if and only if State′BNP(ck, (x′′1, . . . , x

′′
k), τ

′′, (i`, ek)) does. But τ ′′ will be a com-
plete transcript for ΠBNP (as τ is a complete transcript for Πk`), so by the round-by-round
soundness of ΠBNP, we have that this happens if and only if VBNP accepts. Finally, we note
that V` accepts if and only if VBNP does, and hence we have the proper end functionality.

30

• Sparsity: We consider two cases for what τ could be. First, suppose τ = (α1, β1, . . . , αζ)
for some ζ ≤ ρ′, where ρ′ is the number of rounds in Πk`−1 . Suppose additionally that we
are given CRS, x, and aux such that State`(CRS, x, τ, aux) = reject and φ`(x, α1, aux) = 1.
As in Proposition 5.8, we parse CRS = (CRS′, ck), aux = (aux′, ek, (i1, . . . , i`)), and α1 =
(s0, . . . , sk, C

(1)). Furthermore letting π(1) ← C.Extract(ek, C(1)), π(ι) ← C.Extract(ek, αι) for
ι > 1, τ ′ = (π(1), β1, . . . , π

(ζ)), and xi` = (M, y, si`−1, si`), Proposition 5.8 gives us that
State`−1(CRS′, xi` , τ

′, aux′) = reject. Combining this with the fact that φ`−1(xi` , π
(1), aux′) = 1

whenever φ`(x, α1, aux) = 1,8 we have by the sparsity of State`−1 with respect to φ`−1 that

Pr
β

[State`−1(CRS′, xi` , τ
′‖β, aux′) = 1] ≤ bBNP(λ) · 2−λ

Noting that State`(CRS, x, τ‖β, aux) is defined to be State`−1(CRS′, xi` , τ
′‖β, aux) immedi-

ately gives us that
Pr
β

[State`(CRS, x, τ, aux) = 1] ≤ bBNP(λ) · 2−λ

as desired.

The other case to consider is if τ = (α1, β1, . . . , αζ) for some ζ > ρ′. As before, suppose that
we are given CRS, x, and aux such that State`(CRS, x, τ, aux) = reject and φ`(x, α1, aux) =
1, and parse CRS = (CRS′, ck), aux = (aux′, ek, (i1, . . . , i`)), and α1 = (s0, . . . , sk, C

(1)). If
we then redefine αρ′+1 = C(1)‖α2‖ . . . ‖αρ′ , define τ ′ = (αρ′+1, βρ′+1, . . . , αζ), and define
(x′′1, . . . , x

′′
k) as in Figure 6, Proposition 5.8 tells us that State′BNP(ck, (x′′1, . . . , x

′′
k), τ

′, (i`, ek)) =
reject. Additionally, Proposition 5.7 gives us that φBNP((x′′1, . . . , x

′′
k), αρ′+1, (i`, ek)) = 1. Thus,

by the sparsity of State′BNP, we have

Pr
β

[State′BNP(ck, (x′′1, . . . , x
′′
k), τ

′‖β, (i`, ek)) = accept] ≤ bBNP(λ) · 2−λ

Noting that State`(CRS, x, τ‖β, aux) = State′BNP(ck, (x′′1, . . . , x
′′
k), τ

′‖β, (i`, ek)) by definition,
we get

Pr
β

[State`(CRS, x, τ‖β, aux) = accept] ≤ bBNP(λ) · 2−λ

as desired.

This completes the proof of the lemma.

Bad challenge function BAD with respect to φ. We define the bad challenge function BAD`,· in
Figures 9 and 10, in terms of BADBNP which is the bad challenge function of ΠBNP as guaranteed by
Lemma 5.4. In what follows, We will show that for all `, Πk` is (γdExtract +dBNP)-depth (γBExtract +
BBNP)-efficient BAD with respect to φ` (Definition 4.4).
First, we show that Πk0 has a unit depth BAD function with a unit-sized circuit, with respect to φ0.

Lemma 5.11 (Base case). Π1 has a unit-depth BAD function with unit-sized circuits with respect to φ0.
Furthermore, Π1 has bad challenge function BAD0,⊥ as defined in Figure 9.

Proof. As defined in Figure 5, the verifier accepts iff x ∈ L(0). As such, there will be no bad
challenges. Since the function BAD0,⊥ simply outputs ⊥, the circuit representing this will have
depth 1 and size 1.

8This holds because φ`−1(xi` , π
(1), aux′) = 1 is one of the conditions needed in the definition of φ` in order for

φ`(x, α1, aux) = 1.

31

BAD0,aux(CRS, x, τ) for Π1 (Figure 5):

• Notation. Parse aux = ⊥, τ = (α1), and CRS = ⊥.

• Output ⊥.

Figure 9: Bad challenge function BAD.

BAD`,aux(CRS, x, τ) for Πk` (where ` > 0):

• Notation. Let ρ′ denote the number of rounds for protocol Πk`−1 . Parse aux =
(aux′, ek, (i1, i2, . . . , i`)) and CRS = (CRS′, ck). Letting α1 be the first prover message
in τ , parse α1 = (s0, s1, . . . , sk, C

(1)).

• (Emulation Phase). If τ = (α1, β1, . . . , αζ) for some ζ ≤ ρ′,

– Let π(1) ← C.Extract(ek, C(1)) and π(ι) ← C.Extract(ek, αι) for ι ∈ [2, ζ].

– Output BAD`−1,aux′(CRS
′, xi` , τ

′) where τ ′ = (π(1), β1, . . . , π
(ζ)) and xi` =

(M, y, si`−1, si`).

• (Batch NP Phase). If τ = (α1, β1, . . . , αζ) for some ζ > ρ′,

– Let α′ρ′+1 = C(1)‖α2‖ . . . ‖αρ′ and τ ′ = (α′ρ′+1, βρ′+1, . . . , αζ). Define (x′′1, . . . , x
′′
k)

according to Figure 6.

– Output BADBNP,ek(ck, (x
′′
1, . . . , x

′′
k), τ

′) where BADBNP,ek denotes the bad challenge
function of ΠBNP hardwired with ek.

Figure 10: Bad challenge function BAD.

We will now show that for all ` ∈ [γ], Πk` is (γdExtract+dBNP)-depth (γBExtract+BBNP)-efficient
BAD with respect to φ` (Definition 4.4) through use of Propositions 5.7 and 5.8.

Lemma 5.12 (Induction step). For any ` ∈ [γ], suppose that Πk`−1 is d`−1-depth B`−1-efficient BAD
with respect to φ`−1 where the bad challenge function BAD`−1,· is defined in Figure 10. Then BAD`,· as
defined in Figure 10 is a bad challenge function for Πk` w.r.t. φ`. Moreover, on input a partial transcript
τ that ends in the emulation phase BAD`,· can be computed by a circuit of size (BExtract + B`−1) and
(dExtract + d`−1) depth; and on input a partial transcript τ that ends in the emulation phase BAD`,· can be
computed by a circuit of size BBNP and depth dBNP.

Proof. For any ` ∈ [γ], we will prove that BAD`,· is the bad challenge for Πk` satisfying the proper-
ties in the lemma. Note that we follow notation from BAD`,· and define Setup` to be Πk` .Setup (see
Figure 6).

• Syntax: This follows from the definition of BAD`,· for ` ∈ [0, γ] (Figures 9 and 10). Fix any
` ∈ [0, γ]. We hardwire BAD`,· with aux from Setup`, the setup algorithm for the Πk` protocol.
We provide inputs CRS from Setup`, the instance x for Πk` , a partial transcript τ for Πk` .

32

• BAD`,· with respect to φ`: We will first prove that Figure 10 is the correct bad challenge
function with respect to φ`. Fix any epoch ` ∈ [γ], security parameter λ ∈ Z+, any in-
dices i1, . . . , i` ∈ [k], any common reference string and auxiliary information (CRS, aux) ∈
Support(Setup`(1

λ, (i1, . . . , i`))), any instance x, and any partial non-empty transcript τ for
the Πk` protocol such that State`(CRS, x, τ, aux) = reject and φ`(x, α1, aux) = 1,

Let ρ′ denote the number of rounds in protocol Πk`−1 . The set of bad challenges for Πk` is
the set B`,CRS,aux defined as

B`,CRS,aux := {β : State`(CRS, x, τ‖β, aux) = accept}.

We have two cases depending on whether the transcript τ ends in the Emulation phase or in
the Batch NP phase.

– Suppose τ = (α1, β1, . . . , αζ−1, βζ−1, αζ) where ζ ≤ ρ′.
Through fixing the instance x and transcript τ , we have fixed an instance xi` = (M, y,
si`−1, si`). By the correctness of extraction and the structure of our protocol Πk` (Fig-
ure 6), BAD`,aux correctly extracts τ ′ which is the partial transcript for the ith` parallel
run of Πk`−1

9. By Proposition 5.8, we have that State`−1(CRS′, xi` , τ
′, aux′) = reject. By

definition of our predicate φ`, φ`(x, α1, aux) = 1 implies φ`−1(xi` , π
(1), aux′) = 1.

By definition of BAD`,aux (Figure 10), BAD`,aux(CRS, x, τ) = BAD`−1,aux′(CRS
′, xi` , τ

′).
The assumption in our lemma (Lemma 5.12) asserts that BAD`−1,aux′(CRS

′, xi` , τ
′) enu-

merates the set B`−1,CRS′,aux′ defined as

B`−1,CRS′,aux′ := {β : State`−1(CRS′, xi` , τ
′‖β, aux′) = accept}.

By definition of State` (Fig. 8), State`(CRS, x, τ‖β, aux) = State`−1(CRS′, xi` , τ
′‖β, aux′).

Hence, we have that B`,CRS,aux = B`−1,CRS′,aux′ . Thus, BAD`,aux(CRS, x, τ) enumerates
the set B`,CRS,aux.

– Suppose τ = (α1, β1, . . . , αζ−1, βζ−1, αζ) where ζ > ρ′.
By construction, (ck, ek) ∈ Support(SetupBNP(1λ, i`)). Fixing an instance x and tran-
script τ fixes the Batch NP instance (x′′1, . . . , x

′′
k) (Figure 6). Therefore, BAD`,aux cor-

rectly computes τ ′ as the partial transcript for the Batch NP protocol ΠBNP. By Propo-
sition 5.8, StateBNP(ck, (x′′1, . . . , x

′′
k), τ

′, (i`, ek)) = reject. Thus, applying Proposition 5.7,
φBNP((x′′1, . . . , x

′′
k), α

′
ρ′+1, (i`, ek)) = 1.

By definition of BAD`,aux (Figure 10), we have that BAD`,aux(CRS, x, τ) = BADBNP,ek(ck,
(x′′1, . . . , x

′′
k), τ

′). We rely on the properties of BADBNP,· (see Lemma 5.4) asserting that
BADBNP,ek(ck, (x

′′
1, . . . , x

′′
k), τ

′) enumerates the set BBNP,ck,ek defined as

BBNP,ck,ek := {β : State′BNP(ck, (x′′1, . . . , x
′′
k), τ

′‖β, (i`, ek)) = accept}.

By definition of State` (Fig. 8), we have that State`(CRS, x, τ‖β, aux) = State′BNP(ck,
(x′′1, . . . , x

′′
k), τ

′‖β, (i`, ek)). Hence, we have that B`,CRS,aux = BBNP,ck,ek. As such, we
have that BAD`,aux(CRS, x, τ) enumerates the set B`,CRS,aux.

9Here we assume that the commitment scheme is perfectly extractable. Note that this can be relaxed to statistical
extractability, where only 1−negl(λ) fraction of extraction keys satisfy perfect correctness, since it suffices to ignore any
CRS that contains an extraction key that does not satisfy perfect correctness.

33

• Low depth, Efficient BAD: We will now prove that Figure 10 defines a low depth and effi-
cient function. Note that by the structure of BAD`,· either we are in the emulation phase or
in the batch NP phase.

– In the emulation phase, BAD`,· sequentially runs one run of the C.Extract extraction al-
gorithm (we parallelize the separate extractions for the whole transcript) and one run of
the BAD`−1,· algorithm. By our assumption in the theorem, we have that C has a thresh-
old circuit which runs Extract in depth dExtract and size BExtract. By our assumption in
the lemma, we have that BAD`−1,· has a threshold circuit which runs in depth d`−1 and
sizeB`−1. As such, in this branch, we have depth dExtract +d`−1 and sizeBExtract +B`−1.

– In the batch NP phase, BAD`,· sequentially runs one run of the BAD′BNP,· algorithm. By
our assumption in the theorem, we have that BAD′BNP,· has a threshold circuit which
runs in depth dBNP and size BBNP. As such, in this branch, we have depth dBNP and
size BBNP.

This completes the proof of the lemma.

By Lemma 5.11 and Lemma 5.12, we have that Πkγ is (γdExtract+dBNP)-depth (γBExtract+BBNP)-
efficient BAD with respect to φ = φγ .

5.6 Complexity of Πkγ

Prover Runtime. Fix any ` ∈ [2, γ]. The prover’s running time in the emulation phase of Πk`

equals k times the prover’s running time in the protocol Πk`−1 , and the time required to commit
to each round of prover messages in Πk`−1 . The latter of these terms is included in the prover’s
running time in the batch NP phase of Πk` (Definition 5.1) since our protocol ignores and replaces
the Batch NP first message, αρ′+1, with the prover’s emulation phase messages (See Figure 6).

As such, we now account for the prover’s running time in the Batch NP phase of Πk` which
comes to (k · |Πk`−1 .V|)c (Definition 5.1) for a fixed constant c > 0 where |Πk`−1 .V| denotes the
size of the verification circuit in Πk`−1 . Therefore, the running time of the prover for Πk` is k ·
TP,`−1 + (k · |Πk`−1 .V|)c where TP,`−1 denotes the running time of the prover for Πk`−1 . Unrolling
the recursion, we get

|Πk` | ≤ kc
′γ = T c

′

for some constant c′ > 0.

Verifier Runtime. Note that the verifier sends uniform challenges during the emulation phase,
and only performs verification at the end of the batch NP phase. Therefore, the verifier’s compu-
tation costs are subsumed by those at the end of the batch NP phase. From Definition 5.1 , there
exists a constant c > 0 such that the circuit size of the verifier in the Batch-NP phase of Πk` for
any ` ∈ [2, γ] is at most Õ(

∑
i∈[k] |x′′i | + |Πk`−1 .V|) · λc (where Õ hides multiplicative log factors,

|Πk`−1 .V| denotes the size of verification circuit in Πk`−1 , and x′′1, . . . x
′′
k are defined in Figure 6) . We

note that
∑

i∈[k] |x′′i | is the sum of sizes of the k instances where we don’t repeat common factors,
this is upper bounded by kS + |y| + |Πk`−1 .V| where we additionally upperbound the size of the
verifier’s messages by |Πk`−1 .V|. Thus, the cost of the Batch-NP phase is Õ(kS+ |y|+ |Πk`−1 .V|) ·λc.
Moreover, the verification circuit for Π1 has size O(S).

34

Unrolling the recursion, we get

|Πkγ .V| = (kS + |y|) · (λ · log(kS + |y|))O(γ)

where the constant in the exponent is a function of γ.

Communication complexity. The communication complexity is upper bounded by verifier run-
time, and is therefore at most

(kS + |y|) · (λ · log(kS + |y|))O(γ).

Corollary 5.13. Assuming the subexponential hardness of QR, for any time-T space-S deterministic com-
putation, there is a T -mode (B, b, d)-FS-compatible argument (Definition 4.5) w.r.t. a (λ, T) non-trivial
predicate φ, where each verifier message is of size λ, and where verifier runtime and communication com-
plexity are bounded by

(
T

c√
log log log T · (S + n)

)
, c is a constant > 0, n denotes the size of the input and

λ = T
1

log log log T , where B = T
c√

log log log T , b = poly(λ), d = O(
√

log log log T).

Proof. We set λ such that λγ = k, this implies that T = kγ = λγ
2
, and thus log T = γ2 log λ. Then

we set γ =
√

log log log T . This implies that λ = T
1
γ2 = T

1
log log log T .

Note that log(kS + |y|) ≤ 2 log T (because T ≥ k, T ≥ S, T ≥ |y|). Because λ = T
1

log log log T , we
have log T < log2 λ. Substituting, this implies that there is a constant c > 0 such that

|ΠT .V| ≤ (kS + |y|) · (kc)

which implies that there is a constant c > 0 such that

|ΠT .V| ≤ T
c√

log log log T · (S + |y|)

Finally, we note that λ = T
1

log log log T , which completes our proof.

The following Corollary follows from Corollary 5.13, Theorem 4.7 and Theorem 3.3.

Corollary 5.14. Assuming the subexponential hardness of QR and subexponential hardness of DDH, there
exists a SNARG for any time-T space-S deterministic computation with verifier runtime and communica-
tion complexity

(
T

c√
log log log T · (S + n)

)
and prover runtime poly(T, S), where n denotes the size of the

input, and c is a constant > 0.

6 FS-compatible Arguments for Non-Deterministic Bounded Space

We now describe our interactive arguments for NTISP(T (n), S(n)), which is the class of all lan-
guages recognizable by non-deterministic Turing Machines in time T (n) and space S(n). Such a
Turing Machine allows each step of the computation to non-deterministically transition to a new
state. Thus, in a sense, this corresponds to the setting where each bit of the witness is read at most
once10. An alternative way to describe this class is as the class of languages L with a correspond-
ing witness relation RL, recognizable by a deterministic Turing Machines with access to an input

10If a non-deterministic Turing Machine wishes to remember what non-deterministic choices it made, it has to write
them down to its work tape.

35

tape and a read-only, read-once witness tape, in addition to a work tape where onlyO(S(n)) space
is used, and that runs in O(T (n)) time.

First, we introduce some notation and provide some background on NTISP computations. The
following subsection closely mirrors [BKK+18].

6.1 Background.

Fix any L ∈ NTISP(T (n), S(n)). Denote by RL its corresponding NP relation, and denote by
M = ML a T (n)-time S(n)-space (non-deterministic) Turing machine for deciding L. M can
alternately be defined as a two-input Turing machine, that takes as input a pair (x,w) and outputs
1 if and only if (x,w) ∈ RL.

Corresponding Layered Circuit CMn,m. Any such Turing machine M can be converted into a lay-
ered circuit, denoted by CMn,m, which takes as input a pair (x,w), where n = |x| and |w| = m =
m(n) (where m(n) is an upper bound on the length of a witness corresponding to a length n in-
stance), and outputs 1 if and only if M(x,w) = 1.

Moreover, CMn,m is a layered circuit, with W = O(S(n)) denoting the maximum of the number
of gates and number of wires in each layer, and depth D = O(T (n)), such that an incoming wire
to a gate in layer i + 1 is either an input wire (i.e. a wire that reads the input), a witness wire (i.e.
a wire that is attached to a trivial witness gate with fan-in and fan-out 1 whose output equals its
input, and whose input wire reads the witness), or the output wire of a gate in layer i. Moreover,
any witness gate has fan-out 1 (this corresponds to read-once access to the witness tape), and any
layer of the circuit reads at most one (unique) bit from the witness tape. In addition, there is a
deterministic Turing machineM ′ of spaceO(log T) that on input n outputs the (description of the)
circuit CMn,m.

Notation for CMn,m. We introduce some detailed notation for the wires of CMn,m.
We call all wires that are inputs to gates in layer i, the wires for layer i. The set of wires for

layer i is denoted by qi, and a set of assignments to these wires is denoted by si. The jth wire (from
the left) in layer i is denoted by qij and an assignment to this wire is denoted by sij .

We partition wires for layer i into 3 sets, denoted by Instancei,Witnessi, Intermediatei, where
Instancei is the set of all wires for layer i that read the instance x, Witnessi is the set of all wires
for layer i that read the witness w, and Intermediatei is the set of remaining wires for layer i which
are output wires of gates in layer (i − 1). We will denote by sD = CMn,m(x, ω, s1, D) the set of
assignments to intermediate and input wires at depth D, when s1 denotes the assignments to
intermediate and input wires in the first layer of C.

Because any witness gate has fan-out 1, and any layer of the circuit reads at most one bit from
the witness tape, we can further partition the witness into substrings, each of which are read by
witness wires in different layers of the circuit.

To help us in our analysis, we will now define the sets Accix for all layers i of CMn,m.

Defining the set Accix. We will now recursively define the sets of allowed wire values for which
CMn,m outputs 1, corresponding to M accepting x. Gate D has a single output wire, so AccD+1

x = 1.
For any layer i ∈ {D,D − 1, . . . , 1}, we define the set Accix recursively, as follows:

36

• AccDx is the set of all possible assignments {sDj }j:(qDj ∈IntermediateD) to intermediate wires, such

that when the assignment {sDj }j:(qDj ∈InstanceD) to the wires in InstanceD are set consistently

with x, there exists an assignment to the witness wires {sDj }j:(qDj ∈WitnessD) such that for this
assignment,

δD(sD = {aD1 , aD2 , . . . aD2W }) = 1,

where δD denotes the transition function corresponding to the set of gates at theDth layer. In
other words, we require that the output of the Dth layer (and hence the output of the circuit)
is 1.

• For i ∈ [D − 1], Accix is defined as the set of all possible assignments {sij}j:(qij∈Intermediatei) to

intermediate wires such that when the assignment {sij}j:(qij∈Instancei) to wires in Instancei are

set consistently with x, there exists an assignment to the witness wires {sij}j:(qij∈Witnessi) such
that for this assignment,

δi(s
i = {ai1, ai2, . . . ai2W }) ∈ Acci+1

x

where δi denotes the transition function corresponding to the set of gates at the ith layer.

Next, we prove the following claim.

Claim 6.1. There exists a deterministic (inefficient) Turing MachineY that takes as input a triplet (M,x, s, k),
runs in time T (|x|) · 2O(S(|x|)) and decides whether s ∈ Acckx for k ∈ [D(|x|)].

Proof. The Turing MachineY on input (x, s, k) does the following: By backward induction, starting
from i = D(|x|) until i = k, it computes a table consisting of all intermediate wires in Accix. Note
that given the table of all intermediate wires in Acci+1

x it takes roughly 2O(W) time to compute the
table of all intermediate wires in Accix. Thus, it takes roughly D(|x|) · 2O(W (|x|)) = T (|x|) · 2O(S(|x|))

trials to compute all such tables. Once Y computes the table of all intermediate wires in Acckx, all
that remains is to check whether s belongs to this table, which can be done in time bounded by
the size of this table. The Turing Machine Y is formally described in Figure 11.

6.2 Interactive Arguments for Bounded Space Non-Deterministic Computation.

For any ` ≥ 1, we construct an interactive argument that proves correctness of wire assignments
to layered circuits Cn,m where n = |x| and m = |w| that are of the form described above (i.e.
corresponding to computations of a Turing Machine M). We will assume that Cn,m has depth
D = k` and width W , and describe an interactive argument in terms of an interactive argument
for k`−1-depth, W -width circuits. We will prove in subsequent sections that this protocol is FS-
compatible.

• Let Π0 = (Setup,P,V) denote a trivial protocol for unit-depth circuits where the prover
sends a dummy message followed by a dummy verifier message, and the verifier given a
circuit Cn,1 with a single layer, instance x s.t. |x| = n and states s0, s1, outputs 1 iff s1 =
Cn,1(x, 0, s0, 1) or s1 = Cn,1(x, 1, s0, 1). Setup(1λ) outputs (⊥,⊥).

• Let Πk`−1 = (Setup,P,V) be a ρ-round public-coin protocol for (k`−1)-time computations
with `-length prover messages whose verifier V = (V1, . . . ,Vρ) where r(i) ← Vi(1

λ, |x|) for
i ∈ [ρ− 1] and {0, 1} ← Vρ(x, τ).

37

Description of Turing Machine Y

1. Obtain inputs (M,x, s, k).

2. Set AccD+1
x = {1}.

3. Set i = D.

4. While i ≥ k, compute Accix as follows:

• List all possible assignments to intermediate wires {aij}j:qij∈Intermediatei for gates in
layer i, such that:
When instance wires {aij}j:(qij∈Instancei) are set consistently with x, there exists

an assignment to the witness wires {aij}j:(qij∈Witnessi) such that for this assign-

ment, {ai+1
j }j:(qi+1

j ∈Intermediatei+1) ∈ Acci+1
x , where δi(s

i = {ai1, ai2, . . . ai2W }) =

{ai+1
j }j:(qi+1

j ∈Intermediatei+1).

• Set i = i− 1 and repeat Step 3.

5. Output 1 if s ∈ Acckx, else output 0.

Figure 11: Description of Turing Machine Y .

• Let C = (Gen,Com,Open,Verify,Extract) be an SE commitment satisfying Definition 3.4.

• Let ΠBNP be a batch NP protocol for circuit satisfiability.

For any D ∈ N, consider language LD defined by the NP relation RLD where RLD(x,w) = 1
iff x = (M ′, n, sn, sD, y) where M ′ outputs a description of a circuit C such that sn is a set of wire
assignments to the intermediate and input wires in the nth layer of the circuit, y andw respectively
define assignments to all input and witness wires in the circuit, and sD is a set of consistent wire
assignments to intermediate and input wires of the circuit at layer D + n.

Our argument is identical to the one in Figure 6, except for the following (syntactic) changes
to the inputs of both players, and to the initial processing.

Inputs. The common input for P and V is an instance x = (M ′, s0, sT , y) of the language Lk` . P
also obtains a witness ω, such that (x, ω) ∈ RLD .

Initial Processing.

• P sends s = (s0, . . . , sk) for {si , C (y, ω, s0, iD/k)}i∈[k] to V.

• P and V define instances (x1, . . . , xk) where {xi , (M ′, (i−1)D
k , si−1, si, y)}i∈[k] of the lan-

guage Lk`−1 .

38

• P partitions ω into witnesses ω1, . . . , ωk where for all i ∈ [k], ωi is used to generate assign-
ments to witness wires in layers (i−1)D

k through iD
k .

6.3 Non-Trivial Predicate

Let ΠT = (Setup,P,V) be the protocol defined by Figure 6, where D = kγ , and with modifications
from the previous section.

The predicate φ equals φγ , where φ` is defined recursively for every x, α, aux and ` ∈ [γ].

• φ0(x, α, aux) = 1 ⇐⇒ x 6∈ L(0).

• φ`(x, α, aux) for ` ∈ [1, γ]: Parse aux = (aux′, ek, (i1, . . . , i`)) and α = ((s0, . . . , sk), C
(1)).

Define instances (x′1, . . . , x
′
k) as in Figure 6, where x′j = (M, sj−1, sj , y) for j ∈ [k]. Set

φ`(x, α, aux) = (x′i` 6∈ Lk`−1) ∧ φ`−1(x′i` , C.Extract(ek, C
(1)), aux′).

Theorem 6.2 (Non-trivial predicate). Assuming the (T · 2S , T)-index hiding property of SE commit-
ments, φ is a (T · 2S , T)-non-trivial predicate for the protocol ΠT where T = kγ .

Proof. We prove the non-triviality of predicate φγ using induction on ` ∈ [γ]. We define A to be an
admissible adversary if there exists a polynomial q(·) such that:

Pr
i←[k]γ ,

(CRS,aux)←Setup(1λ,i),
(x,α1)←A(CRS)

[x 6∈ L ∧ x 6= ⊥] ≥ 1

q(λ)
.

The base case where ` = 0 follows directly from the definition of φ0. For any ` ∈ [γ], our induction
hypothesis assumes that for every non-uniform poly(T · 2S)-time admissible adversary A,

Pr
i=(i1,...,i`−1)←[k]`−1,

(CRS,aux)←Setup(1λ,i),
(x,α)←A(CRS)

[φ`−1(x, α, aux) = 1|x 6∈ Lk`−1 ∧ x 6= ⊥] ≥ 1

k`−1
− negl(T) (10)

Our inductive step will show that for every non-uniform poly(T · 2S)-time admissible adversary
A,

Pr
i=(i1,...,i`)←[k]`,

(CRS,aux)←Setup(1λ,i),
(x,α)←A(CRS)

[φ`(x, α, aux) = 1|x 6∈ Lk` ∧ x 6= ⊥] ≥ 1

k`
− negl(T) (11)

Recall that by definition φ`(x, α, aux) = (x′i` 6∈ Lk`−1) ∧ φ`−1(x′i` , C.Extract(ek, C
(1)), aux′). The

LHS of Equation (11) can be written as (without explicitly writing the random variables over
which the probability is defined):

Pr[x′i` 6∈ Lk`−1 |x 6∈ Lk` ∧ x 6= ⊥] · Pr[φ`−1(x′i` , C.Extract(ek, C
(1)), aux′) = 1|x′i` 6∈ Lkγ−1]

Since φ`−1 is non-trivial (by induction hypothesis), we have that

Pr[φγ−1(x′i` , C.Extract(ek, C
(1)), aux′) = 1|xi` 6∈ Lkγ−1] ≥ 1

k`−1
− negl(T)

39

To complete the proof, we show that:

Pr[x′i` 6∈ Lk`−1 |x 6∈ Lk` ∧ x 6= ⊥] ≥ 1

k
− negl(T)

Suppose this the above probability is at most 1/k − 1/q(T) for some polynomial q(λ), we give a
reduction that breaks the (T · 2S , T) index hiding property of the SE commitment.

The reduction interacts with the external challenger and provides a uniform index i` ← [k] to
the challenger. It obtains ck from the challenger, that is binding at either index 1 or i`. The reduc-
tion samples i1, ..., i`−1 uniformly in [k]`−1, samples (CRS′, aux′)← Πk`−1 .Setup(1λ, (i1, . . . , i`−1), k),
sets CRS = (CRS′, ck) and runs A(CRS) to obtain (x, α). The reduction checks if x ∈ Lk` and if it
is the case, then it outputs a random bit to the challenger. If x 6∈ Lk` , the reduction outputs 1 if
x′i` ∈ Lk`−1 and 0 otherwise.

Note that when the commitment key ck is generated as binding at index 1, then conditioned
on x 6∈ Lk` , the probability that x′i` 6∈ Lk`−1 is 1/k since i` is uniformly distributed with respect to
the adversary’s view. On the other hand, if ck is generated as binding at index i` then conditioned
on x 6∈ Lk` , the probability that x′j` 6∈ Lk`−1 is at most 1/k − 1/q(λ) (by assumption).

Let ε be the probability that A outputs x ∈ Lk` . Since A is admissible, we have that ε <
1 − 1/q′(λ) for some polynomial q′(λ). Thus, the probability that the reduction outputs 1 when
ck is generated as binding at index 1 at least ε · 1/2 + (1 − ε)(1/k). On the other hand, if ck
is generated as binding at index i`, then the probability that the reduction outputs 1 is at most
ε · 1/2 + (1− ε)(1/k − 1/q(T)).

Finally, by Claim 6.1, the reduction runs in time poly(T · 2S). Thus the reduction breaks (T ·
2S , T)-index hiding of SE commitments with advantage (1 − ε)1/q(T) ≥ 1/q(T)q′(λ) (which is a
contradiction).

6.4 FS-Compatibility w.r.t. Predicate Φ

Theorem 6.3 (FS-Compatibility w.r.t. Predicate φ). Let C be a somewhere extractable commitment (Def-
inition 3.4) whose extraction circuit has depth dExtract and size BExtract. Let ΠBNP be a k-mode ρ-round
(BBNP, bBNP, dBNP)-FS-compatible batch NP with respect to C (Definition 5.1), for someBBNP, bBNP, dBNP, k
(all functions of λ).

Then for any T = T (λ) ≥ λ and k = k(λ), Π defined above is a T -mode (B, b, d)-FS-compatible
argument (Definition 4.5) with respect to the predicate φ defined above, where

B = logk T ·BExtract +BBNP, b = bBNP, d = logk T · dExtract + dBNP.

Furthermore, Π has communication complexity and verifier runtime |Πkγ .V| = (kS+|y|)·(λ·log(kS+
|y|))O(γ) and prover runtime poly(T) given the witness, for a fixed polynomial poly(·).

The proof of this theorem follows identically to that of Theorem 5.6. In particular, the proofs
of completeness, round-by-round soundness, FS-compatibility and efficiency follow identically to
that of Theorem 5.6. We obtain the following corollaries of this theorem.

Corollary 6.4. Assuming the (T ·2S , T)-hardness of QR, for any time-T space-S non-deterministic compu-
tation, there is a T -mode (B, b, d)-FS-compatible argument (Definition 4.5) w.r.t. a (T · 2S , T) non-trivial
predicate φ, where each verifier message is of size λ (which also denotes the security parameter), and where
verifier runtime and communication complexity are bounded by T

c√
log log log T · (S+ |y|), c is a constant> 0,

40

|y| denotes the size of the input and where λ = T
1

log log log T , where B = T
c√

log log log T , b = poly(λ), d =
O(
√

log log log T).

Proof. We set λ such that λγ = k, this implies that T = λγ
2
, and log T = γ2 log λ. We also set

γ2 = log log log T , This implies that λ = T
1
γ2 = T

1
log log log T , and log T < log2 λ. Substituting, this

implies that there is a constant c > 0 such that

|ΠT .V| ≤ (kS + |y|) · (kc)

which implies that there is a constant c > 0 such that

|ΠT .V| ≤ T
c√

log log log T · (S + |y|)

Finally, we note that λ = T
1

log log log T , which completes our proof.

The following Corollary follows from Corollary 6.4, Theorem 4.7 and Theorem 3.3, where we
set the security parameter λ = max(S1/ε, T

1
log log log T), where ε is the smaller of the subexponential

parameters for QR/DDH hardness. Then, (2λ
ε
, 2λ

ε
)-hardness of QR implies the conditions of the

corollary above. In addition, (2λ
ε
, 2λ

ε
)-hardness of DDH implies the conditions of Theorem 3.3.

Corollary 6.5. Assuming the subexponential hardness of QR and subexponential hardness of DDH, there
exists a SNARG for any time-T space-S non-deterministic computation with verifier runtime and com-
munication complexity T

c√
log log log T · (S + n) and prover runtime poly(T, S) given the witness, where n

denotes the size of the input, and c is a constant > 0.

We also obtain the following corollary about improved SNARGs for Batch NTISP, which fol-
lows from the observation that if L ∈ NTISP(T, S), then L⊗k ∈ NTISP(kT, S), where L⊗k is the
language containing k instances of L. This is because we can verify the k different instances by
verifying each one individually in time T , and reusing the same workspace for every instance.

Corollary 6.6. For every L ∈ NTISP(T, S) and every k ≥ S, assuming the sub-exponential hardness of
QR and DDH, there exists a SNARG for L⊗k where verifier runtime and communication complexity are
bounded by (kT)

c√
log log log kT · (S+n) and prover runtime is poly(k, T, S) given the NP witnesses where n

denotes the size of the claimed (potentially succinctly described) instance of L⊗k, and c > 0 is a constant.

6.5 SNARGs for P and beyond

Given the SNARG for batch-NTISP above, we can use methods from [KVZ21] to build a SNARG
for any language decidable in deterministic time T (and in fact, any language that has a no-
signaling PCP, just as in [KVZ21]). We instantiate what is essentially their approach with different
parameters, specifically, while they obtain polylog(T) overhead from sub-exponential LWE, we ob-
tain T o(1) overhead from sub-exponential DDH and QR. Thus, we obtain the following Corollary.

Corollary 6.7 (cf Corollary 6.6 in [KVZ21]). Let L be a language and T = T (n) be a function such that
poly(n) ≤ T (n) ≤ exp(n) and L ∈ DTIME(T). Then assuming the subexponential hardness of QR and

DDH, there exists a SNARG for L with prover time poly(T), verifier time n · poly
(
T

1√
log log log T

)
, and

communication complexity n · poly
(
T

1√
log log log T

)
.

A proof of this corollary, including a discussion of the [KVZ21] approach, is presented in Ap-
pendix D for completeness.

41

References

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin. Dele-
gating RAM computations with adaptive soundness and privacy. In TCC, pages 3–30,
2016.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–
115, 2001.

[BBH+19] James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma, and Ron D. Rothblum.
On the (in)security of kilian-based snargs. In Dennis Hofheinz and Alon Rosen, editors,
TCC, volume 11892 of Lecture Notes in Computer Science, pages 522–551. Springer, 2019.

[BCC+14] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Ru-
binstein, and Eran Tromer. The hunting of the SNARK. IACR Cryptology ePrint Archive,
2014:580, 2014.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In STOC, pages 111–120,
2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Suc-
cinct non-interactive arguments via linear interactive proofs. In TCC, pages 315–333,
2013.

[BFJ+20] Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana, and Amit
Sahai. Statistical ZAP arguments. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT, volume 12107 of Lecture Notes in Computer Science, pages 642–667. Springer,
2020.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct ran-
domized encodings and their applications. IACR Cryptology ePrint Archive, 2015:356,
2015.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation
and batch NP verification from standard computational assumptions. In STOC, pages
474–482, 2017.

[BK20] Zvika Brakerski and Yael Kalai. Witness indistinguishability for any single-round ar-
gument with applications to access control. In Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas, editors, PKC, volume 12111, pages 97–123. Springer,
2020.

[BKK+18] Saikrishna Badrinarayanan, Yael Tauman Kalai, Dakshita Khurana, Amit Sahai, and
Daniel Wichs. Succinct delegation for low-space non-deterministic computation. In
STOC, pages 709–721, 2018.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trapdoor
hash via correlation intractability for approximable relations. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO, volume 12172 of Lecture Notes in Computer
Science, pages 738–767. Springer, 2020.

42

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a
paradigm for keyless hash functions. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, STOC, pages 671–684. ACM, 2018.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,
Ravi S. Sandhu, and Victoria Ashby, editors, ACM Conference on Computer and Commu-
nications Security, pages 62–73. ACM, 1993.

[CCC+16] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai Lin,
and Hong-Sheng Zhou. Cryptography for parallel RAM from indistinguishability ob-
fuscation. In ITCS, pages 179–190. ACM, 2016.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, STOC, pages 1082–1090. ACM, 2019.

[CGH04a] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, re-
visited. J. ACM, 51(4):557–594, 2004.

[CGH04b] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, re-
visited. J. ACM, 51(4):557–594, 2004.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In ITCS, pages 169–178.
ACM, 2016.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In STOC, pages 429–
437. ACM, 2015.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch argu-
ments for NP from standard assumptions. IACR Cryptol. ePrint Arch., 2021:807, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Snargs for P from LWE.
IACR Cryptol. ePrint Arch., page 808, 2021.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation
with low communication. In Theory of Cryptography - 9th Theory of Cryptography Con-
ference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 54–74,
2012.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Os-
trovsky. Trapdoor hash functions and their applications. In Alexandra Boldyreva and
Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part III, volume 11694 of Lecture Notes in Computer Science, pages 3–32. Springer, 2019.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct nizks without pcps. In Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pages 626–645, 2013.

43

[GJJM20] Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Statistical zaps
and new oblivious transfer protocols. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, May 10-14, 2020, Proceedings, Part III, volume 12107, pages 668–699.
Springer, 2020.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir
paradigm. In FOCS, pages 102–, 2003.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. J. ACM, 62(4):27, 2015.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, volume 6477 of Lecture Notes in Computer Science, pages 321–340. Springer,
2010.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In STOC, pages 99–108, 2011.

[GZ21] Alonso González and Alexandros Zacharakis. Fully-succinct publicly verifiable delega-
tion from constant-size assumptions. In Kobbi Nissim and Brent Waters, editors, Theory
of Cryptography - 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-
11, 2021, Proceedings, Part I, volume 13042 of Lecture Notes in Computer Science, pages
529–557. Springer, 2021.

[HW15] Pavel Hubácek and Daniel Wichs. On the communication complexity of secure func-
tion evaluation with long output. In Tim Roughgarden, editor, Proceedings of the 2015
Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, Jan-
uary 11-13, 2015, pages 163–172. ACM, 2015.

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-
exponential DDH. In Anne Canteaut and François-Xavier Standaert, editors, Advances
in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings,
Part I, volume 12696 of Lecture Notes in Computer Science, pages 3–32. Springer, 2021.

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Zhang. Snargs for
bounded depth computations and PPAD hardness from sub-exponential LWE. In
Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages
708–721. ACM, 2021.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages
723–732. ACM, 1992.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfus-
cation for turing machines with unbounded memory. In STOC, pages 419–428. ACM,
2015.

44

[KP16] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In Theory of
Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October 31 -
November 3, 2016, Proceedings, Part II, pages 91–118, 2016.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations pub-
licly. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 1115–1124. ACM, 2019.

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space.
In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 565–574, 2013.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In STOC, pages 485–494. ACM, 2014.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statis-
tical soundness, post-quantum security, and snargs. Cryptology ePrint Archive, Report
2021/788, 2021. https://ia.cr/2021/788.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In TCC, pages 169–189, 2012.

[LVW20] Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Statistical ZAPR arguments
from bilinear maps. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part III, volume
12107 of Lecture Notes in Computer Science, pages 620–641. Springer, 2020.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th Annual Symposium on Foundations
of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 436–453,
1994. Full version in [Mic00].

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[PR17] Omer Paneth and Guy N. Rothblum. On zero-testable homomorphic encryption and
publicly verifiable non-interactive arguments. In TCC, pages 283–315, 2017.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In Theory of
Cryptography - 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy,
March 19-21, 2012. Proceedings, pages 422–439, 2012.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M.
Maurer, editor, EUROCRYPT, volume 1070 of Lecture Notes in Computer Science, pages
387–398. Springer, 1996.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, Ad-
vances in Cryptology - CRYPTO 2019, Proceedings, Part I, volume 11692 of Lecture Notes
in Computer Science, pages 89–114. Springer, 2019.

45

https://ia.cr/2021/788

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 49–62, 2016.

[Set20] Srinath T. V. Setty. Spartan: Efficient and general-purpose zksnarks without trusted
setup. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology
- CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes
in Computer Science, pages 704–737. Springer, 2020.

A Somewhere Extractable Commitments with Non-trivial Local Open-
ings

First, we provide a construction of somewhere-extractable commitments from the DDH assump-
tion.

Theorem A.1 (SE Commitments from DDH). Fix any T1 = T1(λ) ≥ poly(λ) and T2 = T2(λ) ≥
poly(λ). Assuming (T1, T2) hardness of DDH, there exists an SE commitment satisfying Definition
3.4 which satisfies (T1, T2) index hiding. Furthermore, this satisfies the following properties: `com =
`blkλ, `open = `blkL, |ck| = `blkLλ, |ek| = `blkλ, the running time of Gen and Verify is `blkLλ, and the
running time of Extract is `blkpoly(λ).

Proof. We prove this theorem by providing an instantiation of SE commitments over the binary
alphabet from the DDH assumption (which closely follows the construction of trapdoor hash
in [DGI+19]). It is easy to observe that this extends to an arbitrary alphabet of size 2`blk by sepa-
rately committing to each bit of the input.

Let G be a cyclic group of order p with generator g. Let us assume that the DDH assumption
holds in G. Let us consider the alphabet Σ = {0, 1}.

• Gen(1λ, 1L, 1, k): It does the following:

1. For each i ∈ L and b ∈ {0, 1}, sample a random element gi,0 from G.

2. Set H1 =

(
g1,0 . . . gL,0
g1,1 . . . gL,1

)
.

3. Sample a random s← Zp.

4. Set H2 =

(
gs1,0 . . . gsi,0 . . . gsL,0
gs1,1 . . . g · gsi,1 . . . gsL,1

)
.

5. Output ck = (H1, H2) and ek = s.

• Com(ck, x): This algorithm does the following:

1. Parses x as (x1, . . . , xL).

2. Parses H1 as
(
h1

1,0 . . . h1
L,0

h1
1,1 . . . h1

L,1

)
and H2 as

(
h2

1,0 . . . h2
L,0

h2
1,1 . . . h2

L,1

)
.

3. It computes h1 =
∏
j∈[L] h

1
j,xj

and h2 =
∏
j∈[L] h

2
j,xj

.

46

4. It outputs (h1, h2).

• Open(ck, x): It outputs x ∈ {0, 1}L.

• Verify(ck, y, x): It checks if Com(ck, x) = y and outputs 1 only in this case.

• Extract(ek, y): It does the following:

1. It parses y as (h1, h2) and ek as s.

2. If hs1 = h2 then it outputs 0. If hs1 · g = h2 then it outputs 1. Otherwise, it outputs ⊥.

The correctness is easy to verify.

Index Hiding. Fix any i ∈ [L]. The distribution of hk which is output of Gen(1λ, 1L, i) is given
by:

H1 =

(
g1,0 . . . gL,0
g1,1 . . . gL,1

)
and

H2 =

(
gs1,0 . . . gsi,0 . . . gsL,0
gs1,1 . . . g · gsi,1 . . . gsL,1

)
From the DDH assumption, the joint distribution of (H1, H2) is computationally indistinguish-

able to (H1, H
′
2) where

H2 =

(
gs1,0 . . . gsi,0 . . . gsL,0
gs1,1 . . . gsi,1 . . . gsL,1

)
and thus, index hiding follows.

Somewhere Extractability. If Verify outputs 1, then h1 =
∏
j∈[L] h

1
j,xj

and h2 =
∏
j∈[L] h

2
j,xj

. It
now follows from the construction that if xi = 0, then hs1 = h2 and if x1 = 1, then g · hs1 = h2 and
thus, somewhere extractability holds.

Somewhere Extractable Commitments with Non-trivial Local Openings. We now describe a
compiler that given any somewhere-extractable (SE) commitment (including ones from DDH and
QR described in this paper) outputs an SE commitment satisfying a non-trivial local opening prop-
erty. This compiler simply generates a Merkle tree of arity k and depth d (i.e. kd = L), and in this
tree a parent node is an SE commitment to its k children nodes.

Theorem A.2. Assume the existence of an SE commitment satisfying Definition 3.4, with (T1, T2) index
hiding, and where: `com = λ`blk, `open = L`blk, |ck| = Lλ`blk, |ek| = λ`blk, the running time of Gen and
Verify is Lλ`blk, and the running time of Extract is poly(λ, `blk).

Then there exists a constant c > 0 such that for any L and any d ≤ logL there exists an SE
commitment satisfying Definition 3.5 which satisfies (T1, T2) index hiding as long as T2 ≥ λd, and
where: `blk = 1, `com = λd, `open = d · L

1
dλd+1, |ck| = d · L

1
d · (λ)d+1, |ek| ≤ (λ)d+1, the running

time of SELO.KeyGen, SELO.Extract,SELO.Open, SELO.Verify is d · L
1
dλd+1+c and the running time of

SELO.Com is poly(L).

47

Proof. Let C = (C.KeyGen, C.Com, C.Open, C.Verify, C.Extract) denote an SE-commitment scheme
without local openings. Let d = logk L. An SE commitment with non-trivial local openings SELO
can be obtained from this commitment as follows:

• SELO.KeyGen(1λ, L, 1, i) : Let i1, . . . , id denote the k-ary representation of the index i, i.e. i1 =
1 + (i mod k), i2 = 1 + ((i/k) mod k), . . . , ij = 1 + ((i/kj−1) mod k), . . . , id = 1 + ((i/kd−1)
mod k).

For every ι ∈ [d], obtain {(ck(ι), ek(ι))← C.KeyGen(1λ, k, λι−1, iι)}. Output ck = {ck(ι)}ι∈[d] as
the commitment key and ek = {ek(ι)}ι∈[d] as the extraction key.

• SELO.Com(ck, x) : Let x(1)
1 , . . . , x

(1)
L denote each bit of x. For every ι ∈ [2, d], (recursively)

compute the nodes of a k-ary tree with leaves x(1)
1 , . . . , x

(1)
L , as

x
(ι)
j = C.Com

(
ck(ι), (x

(ι−1)
(j−1)k+1, x

(ι−1)
(j−1)k+2, . . . , x

(ι−1)
(j−1)k+k)

)
, for j ∈ [L/kι−1].

The output of the commitment is the root x(d)
1 of the k-ary tree. Note that block length

increases by a factor of λ at every level of the tree.

• SELO.Open(ck, x, i) : Output all nodes along the path from the root to the ith leaf. In addition,
output the (k − 1) siblings of all nodes along this path.

• SELO.Verify(ck, y, i, u, π) : Output 1 if and only if every parent node in the opening corre-
sponds to a commitment to its child nodes using the appropriate commitment key, and y
(i.e. the commitment) matches the root of the tree.

• SELO.Extract(ek, y) : Set y(d) = y. Then for each ι ∈ {d, d − 1, . . . , 1}, compute y(ι−1) as
C.Extract({ek(ι)

j }j∈[λ],ι∈[d], y
ι). That is, recursively extract d times to obtain the committed bit.

Then, for `blk = 1, we obtain `com = λd (since the tree contains d layers of commitments, with every
commitment in each layer a λ multiplicative factor larger than every commitment in the previous
one – the root is a single commitment of size λd). The length of the commitment keys is bounded
by dkλd+1, and the size of the extraction key is bounded by dλd+1. The size of local openings is
bounded by dkλd+1. In addition, SELO.KeyGen,SELO.Extract, SELO.Open and SELO.Verify run in
time bounded by (d · L

1
dλd+1+c), and that of SELO.Com is poly(L).

B Proof Sketch of (Imported) Theorem 5.2

In this section we prove that the Batch NP protocol of [CJJ21a] is a FS-compatible Batch NP for
R1CS with respect to a somewhere extractable commitment scheme C and batch NP predicate φBNP

defined above Definition 5.1. We accomplish this by noting that [CJJ21a] prove that their Batch
NP protocol has strong Fiat-Shamir compatibility which they define as round-by-round soundness,
efficient BAD challenge function, and low-depth BAD challenge function.

Our definition of b-round-by-round soundness w.r.t. φBNP requires a slight modification of
their proof. We modify the behavior of their StateBNP function to not operate on empty transcripts
and to operate on almost empty transcripts, transcripts with a single message from the prover, as
follows: If τ = α1, output reject if φBNP((x1, . . . , xk), α1, aux) = 1 and accept otherwise. This does

48

not modify proofs of syntax. With this modification, the first condition of end functionality will be
achieved. Since we did not modify the behavior of StateBNP on the complete transcript, the second
condition of end functionality will be achieved from [CJJ21a]’s proof.

The proof of sparsity requires more explanation. Since our modification changes the StateBNP

function’s behavior on the first message, we need to explain the sparsity on the transition from
the prover’s first message to the verifier’s first message. Everything after this point will fol-
low from [CJJ21a]’s proof. What we need to prove, is that if φBNP((x1, . . . , xk), α1, aux) = 1 and
StateBNP(CRS, (x1, . . . , xk), α1, aux) = reject, the likelihood that State(CRS, (x1, . . . , xk), α1|β, aux) =
accept of b(λ)/2λ over choices of next verifier message β.

Lemma B.1 ([CJJ21a, Set20]). ∀z ∈ {0, 1}s, F̃io(z) = 0 if and only ifRR1CS(x,w) = 1.

By definition of φBNP for R1CS, we have that φBNP((x1, . . . , xk), α1, aux) = 1 implies that for
aux = (i, ek), that RR1CS(xi, C.Extract(ek, α1)) 6= 1. We make use of Lemma B.1 to have that ∃z ∈
{0, 1}s s.t. F̃io(z) 6= 0.

Lemma B.2 ([CJJ21a, Set20]).

Pr
τ←F2

[
Qio(τ) = 0

∣∣∣∃x ∈ {0, 1}ss.t.F̃io(x) 6= 0
]
≤ s

|F|

Given that ∃z ∈ {0, 1}s s.t. F̃io(z) 6= 0, we want to know if the verifier’s next message β will
cause the StateBNP function to accept. By the state function’s definition, this happens if Q(β) = 0.
Hence we make use of Lemma B.2 to say that the likelihood this event happens will be s/|F|.

It follows from their proofs that their protocol satisfies the property of d-depthB-efficient BAD
w.r.t. φBNP. The main remaining differences is that [CJJ21a] makes use of promise languages L =
(LY ES ,LNO) where as we make use of a predicate φBNP. Hence whenever they use (x1, . . . , xk) ∈
LNO, we translate to φBNP(x, α1, aux) = 1.

We now show that a minor modification of the protocol will yield a FS-compatible Batch NP
for C-SAT. The modification is that the prover first sends a commitment to the C-SAT witness. The
verifier sends a dummy challenge. Then the prover sends a commitment to the remainder of the
R1CS witness. The verifier will send the first verifier challenge and the protocol continues from
here. The properties for FS-compatible Batch NP for C-SAT reduce cleanly to the corresponding
properties for FS-compatible Batch NP for R1CS.

C Proof of Lemma 5.4

Proof. We construct State′ from State by letting State′(CRS, x, τ, aux) = accept if State(CRS, x, τ ′, aux) =
accept for any non-empty prefix τ ′ of τ , and reject otherwise. Note that State′ does indeed have
the accepting state property. If State′(CRS, x, τ ′, aux) = accept, we know that there exists some
non-empty prefix τ ′ of τ such that State(CRS, x, τ ′, aux) = accept. But τ ′ is also a prefix of τ‖β for
any choice of β, and so State′(CRS, x, τ‖β, aux) = accept as well. It now remains to prove that Π
still satisfies all the properties of Definition 4.5 when we replace State by State′.

• Completeness: State plays no role in completeness, so this will trivially continue to hold
when we use State′.

49

• b-Round-by-round soundness with respect to φ: We consider each of the properties re-
quired in Definition 4.4 below.

– Syntax: By definition, we have that State′ takes the proper inputs and outputs, and is
deterministic since State is. Additionally, for any τ = (α1, β1, . . . , αj , βj) and any αj+1,
note that the only prefix of τ‖αj+1 that is not also a prefix of τ is τ‖αj+1 itself. Thus, we
have

State′(CRS, x, τ‖αj+1, aux) = State′(CRS, x, τ, aux) ∨ State(CRS, x, τ‖αj+1, aux)

But since State satisfies the syntax property, note that

State(CRS, x, τ‖αj+1, aux) = State(CRS, x, τ, aux)

This tells us that

State′(CRS, x, τ‖αj+1, aux) = State′(CRS, x, τ, aux) ∨ State(CRS, x, τ‖αj+1, aux)

= State′(CRS, x, τ, aux) ∨ State(CRS, x, τ, aux)

= State′(CRS, x, τ, aux)

where the last equality holds because τ is a prefix of itself, and hence State′(CRS, x, τ, aux) =
accept whenever State(CRS, x, τ, aux) = accept.

– End Functionality: Note that the only non-empty prefix of any transcript of the form
α1 is itself, and hence we have that State′(CRS, x, α1, aux) = State(CRS, x, α1, aux) by
definition. Thus, since State satisfies the end functionality requirement, we have that
State′(CRS, x, α1, aux) = reject iff φ(x, α1, aux) = 1. Additionally, for any complete
transcript τ , if V(CRS, x, τ) = 1, we have that State(CRS, x, τ, aux) = accept since
State satisfies the end functionality property. But τ is a prefix of itself, and hence
State′(CRS, x, τ, aux) = accept as well.

– Sparsity: Fix any partial transcript τ = (α1, β1, . . . , αj−1, βj−1, αj) such that φ(x, α1, aux) =
1 and State′(CRS, x, τ, aux) = reject. This means that State(CRS, x, τ ′, aux) = reject for all
non-empty prefixes τ ′ of τ . In particular, this means that State(CRS, x, τ, aux) = reject,
and so by the sparsity of State with respect to φ we have

Pr
β←{0,1}λ

[State(CRS, x, τ‖β, aux) = accept] ≤ b(λ) · 2−λ

Note that since State(CRS, x, τ ′, aux) = reject for all non-empty prefixes τ ′ of τ , we have
that State′(CRS, x, τ‖β, aux) = accept if and only if State(CRS, x, τ‖β, aux) = accept.
This immediately gives us that

Pr
β←{0,1}λ

[State′(CRS, x, τ‖β, aux) = accept] ≤ b(λ) · 2−λ

• d-depth B-efficient BAD w.r.t. φ: Here we will use exactly the same BAD function that is
guaranteed by Definition 4.5 when using State, and prove that it still satisfies all the required
properties when using State′ instead.

– Syntax: This property only depends on BAD and not on State, so will trivially continue
to hold when we replace State with State′.

50

– BAD w.r.t. φ: Let τ = (α1, β1, . . . , αj−1, βj−1, αj) denote any transcript such that we
have State′(CRS, x, τ, aux) = reject and φ(x, α1, aux) = 1. Since State′ is reject, we
know that in particular State(CRS, x, τ, aux) = reject (as τ is a prefix of itself), and hence
BAD(x, τ) enumerates the set BCRS,aux, or outputs ⊥ if BCRS,aux is empty. But now note
that because State′(CRS, x, τ, aux) = reject, we have that State(CRS, x, τ ′, aux) = reject
for every non-empty prefix τ ′ of τ . Since the only prefix of τ‖β that isn’t also a prefix of τ
is τ‖β itself, this tells us that State′(CRS, x, τ‖β, aux) = accept iff State(CRS, x, τ‖β, aux) =
accept. Thus, defining the set

B′CRS,aux := {β : State′(CRS, x, τ‖β, aux) = accept}

we have that B′CRS,aux = BCRS,aux, and hence we have that BAD(x, τ) enumerates the set
B′CRS,aux, or outputs ⊥ if B′CRS,aux is empty.

– Low depth, B-efficient computation: This property only depends on BAD and not on
State, so will trivially continue to hold when we replace State with State′.

D SNARGs for P

We begin by sketching the [KVZ21] approach, adapted to our setting. Their approach requires
three main ingredients: a computational non-signaling PCP verifiable by tests (Definitions 2.5
and A.2 in [KVZ21]), a multi-extractable commitment scheme (Definition 3.4 in [KVZ21]11), and a
SNARG for BatchNP (Definition 6.2 in [KVZ21]12). We give theorems to construct the first two of
these ingredients below; for the SNARG, we will use the one obtained in Corollary 6.6.

Theorem D.1 (Imported from [KRR14], [BHK17]). Let T = T (n) be a function such that poly(n) ≤
T (n) ≤ exp(n) and let L be a language in DTIME(T). Then there exists an adaptive T -computational
non-signaling PCP for L that can be verified via tests. The resulting PCP has length L(n) = poly(T (n))
and can be generated in time poly(T (n)). Letting λPCP be the security parameter, the PCP can be verified
using `(T) = λPCP ·polylog(T) queries, where the queries can be generated in poly(`(T)) time and verified
in n · poly(`(T)) time via tests; there are θ(T) = poly(T) many possible tests.

Corollary D.2. Assume the (T, T)-hardness of QR. Then there exists a multi-extractable commitment

scheme C satisfying (T, T)-index hiding with `com = ` ·λ
√

log logL
C , `open = ` ·

√
log logL ·L

1√
log logL , |ck| =

` ·
√

log logL ·L
1√

log logL ·λ
√

log logL+1
C , run time ` ·poly(L) for C.Com, run time ` ·

√
log logL ·L

1√
log logL ·

λ
√

log logL
C · poly(λC) for C.Open and C.Verify. where λC is the security parameter of the commitment, L is

the length of the committed string, and ` is the number of locations where extraction is possible.

Proof. Our starting point is the SE commitment from QR guaranteed by Theorem 3.6 for a block
size `blk = 1. This satisfies (T, T)-index hiding and has `com = λC , `open = L, |ck| = L · λC .

11In [KVZ21], this was called a multi-extractable somewhere statistically binding scheme. Here we will assume (and
achieve) perfect extraction rather than the statistical extraction in [KVZ21]; this simplifies the proof.

12The definition in [KVZ21] requires that the proof length for k NP instances of size n each is poly(λ, n, log k). We will

work instead with proof length (k ·poly(n, λ))
O

(
1√

log log log(k·poly(n,λ)

)
·poly(n, λ); the rest of the definition is unchanged.

51

We then plug this scheme into our somewhere extractable commitments with non-trivial local
openings (Theorem A.2) with d =

√
log logL to get an SE commitment with (T, T)-index hiding

and `com = λ
√

log logL
C , `open =

√
log logL · L

1√
log logL , |ck| =

√
log logL · L

1√
log logL · λ

√
log logL+1
C , run

time poly(L) for Com, run time
√

log logL · L
1√

log logL · λ
√

log logL
C · poly(λC) for Open and Verify.

Finally, we apply Lemma 3.5 from [KVZ21] to get a multi-extractable commitment scheme

satisfying (T, T)-index hiding with `com = ` · λ
√

log logL
C , `open = ` ·

√
log logL · L

1√
log logL , |ck| =

` ·
√

log logL ·L
1√

log logL ·λ
√

log logL+1
C , run time ` · poly(L) for Com, run time ` ·

√
log logL ·L

1√
log logL ·

λ
√

log logL
C · poly(λC) for Open and Verify.

The following theorem (cf Theorem 6.5 in [KVZ21]) says that if we instantiate Figure 12 with
appropriate primitives, we get a SNARG for L.

SNARG for L ∈ P

Fix any language L, and let TL = TL(n) be such that L ∈ DTIME(TL). Let PCP = (P,Q,V) be a
PCP system for L, C = (Gen,Com,Open,Verify,Extract) be a multi-extractable commitment scheme, and
ΠM = (Setup,P,V) be a SNARG for M⊗θ(TL) where M is the language described in Section 6.2 of
[KVZ21].

• SetupL takes as input unary representations of security parameters λPCP, λC , and λΠ for PCP, C,
and ΠM respectively. It samples

– A query set Q← PCP.Q(1λPCP)

– A hash key and trapdoor (ck, td)← C.Gen(1λC , L,Q) where L is the length of the PCP string

– CRSΠ ← ΠM.Setup(1λΠ)

SetupL then outputs CRS = (ck,CRSΠ) and aux = (Q, td)

• PL takes as input CRS = (ck,CRSΠ) and an instance x. It computes

– The PCP π ← PCPL.P(x)

– A commitment c← C.Com(ck, π)

– For each j ∈ [θ(TL)], the jth possible test ζj
– For each j ∈ [θ(TL)], a witness wj = (π|ζj , (C.Open(ck, π, i))i∈ζj)

– The proof σΠ = ΠM.P(CRSΠ, (ζj , x, ck, c)j∈[θ(TL)], (wj)j∈[θ(TL)])

PL then outputs a proof σ = (c, σΠ)

• VL takes as input CRS = (ck,CRSΠ), an instance x, and a proof σ = (c, σΠ). It runs
ΠL.V(CRSΠ, 〈(x, ck, c)〉, σΠ) and outputs the result.

Figure 12: SNARG for P, cf Figure 6 in [KVZ21]

Theorem D.3 ([KVZ21]). Fix any ε > 0. Suppose that PCP is an adaptive TL-computational non-
signaling PCP for L with λPCP = log(TL)1/ε, that C has (TL, TL)-index hiding, and that ΠM is adaptively
TL-sound13. Then Figure 12 describes a correct and sound SNARG for L.

13In [KVZ21], the requirement here was 2`com -soundness, where `com is the length of the output of C. However, this

52

In order to get SNARGs from LWE, [KVZ21] applied Theorem D.3 with a multi-extractable
commitment built from [HW15] and the BatchNP SNARG from [CJJ21b]. In order to get SNARGs
from DDH and QR, we will instead apply the theorem with the commitment from Corollary D.2
and the SNARG from Corollary 6.6.

Theorem D.4 (cf Corollary 6.6 in [KVZ21]). Let L be a language and TL = TL(n) be a function such
that poly(n) ≤ TL(n) ≤ exp(n) and L ∈ DTIME(TL). Then assuming the subexponential hardness of QR

and DDH, there exists a SNARG for L with prover time poly(TL), verifier time n · poly

(
T

1√
log log log TL

L

)
,

and communication complexity n · poly

(
T

1√
log log log TL

L

)
.

Proof. We will use the SNARG from Figure 12 instantiated with

• PCP as the adaptive TL-computational non-signaling PCP guaranteed by Theorem D.1 with
λPCP = log(TL)1/ε for some constant ε > 0

• C as the commitment scheme guaranteed by Corollary D.2 with λC = T
1

log log TL
L

• ΠM as the SNARG forM⊗θ(TL) guaranteed by Corollary 6.6

For notational simplicity, in what follows we will define `2(TL) = T

1√
log log TL

L and `3(TL) =

T

1√
log log log TL

L .
As a first step, we need to determine what values of T and S suffice to putM ∈ NTISP(T, S)

to determine what parameters we get out of Corollary 6.6. Note that verifying a single instance
ofM simply requires checking that openings in the witness verify and that the resulting values
satisfy the test. Since there are at most `(TL) queries in any given test, checking them all takes

`(TL) ·
(
`(TL) ·

√
log logL ·L

1√
log logL ·λ

√
log logL
C ·poly(λC)

)
= poly

(
`(TL), L

1√
log logL , λ

√
log logL
C

)
time.

Since λC = T
1

log log TL
L , `(TL) = λPCP · polylog(TL) = polylog(TL) and L = poly(TL), this simplifies

to poly(`2(TL)) time. The time to check that the test passes is at most the time it takes to verify
the PCP, which is n · poly(`(TL)) = n · polylog(TL). Putting these two together and noting that
`2(TL) >> log TL, we have thatM∈ NTISP (n · poly(`2(TL)), n · poly(`2(TL))).

Note that PL needs to do three things: generate the PCP π, commit to π using C, and generate
the proof for ΠL. By Theorem D.1, the first part of this takes time poly(TL). By Corollary D.2, the
second part takes `(TL) · poly(L) time. Since `(TL) = polylog(TL) and L = poly(TL), this becomes
poly(TL) time. Finally, by Corollary 6.6 with the parameters computed above, the third part takes
poly (θ(TL), n · poly(`2(TL))); since θ(TL) = poly(TL), this simplifies to just poly(TL) time. Putting
these all together, we have that PL runs in time poly(TL).

For the verifier time, note that VL needs only to run ΠL.V. Plugging in T = S = n ·poly(`2(TL))
and k = θ(TL) = poly(TL) into Corollary 6.6, we get that the time to run the verifier in ΠM is

(n · poly(TL))
c√

log log log(n·poly(TL)) · (n · poly (`2(TL)) + |y|). Note that y = 〈x, ck, c〉, and so has size

was only needed because the SNARG they were working with had non-adaptive soundness; since our SNARG achieves
adaptive soundness, the requirement drops to just TL as stated here.

53

n + |ck| + `com. Plugging in `(TL) = polylog(TL), L = poly(TL), and λC = T
1

log log TL
L to Corol-

lary D.2, we get |ck| and `com are both poly (`2(TL)). Thus, we have that (n · poly (`2(TL)) + |y|)
simplifies to n · (poly (`2(TL))). Noting additionally that n · poly(TL) = poly(TL), we have that

(n · poly(TL))
c√

log log log(n·poly(TL) simplifies to T
O

(
1√

log log log TL

)
L = poly (`3(TL)). Thus the total verifier

run time simplifies to n · poly (`3(TL), `2(TL)). Finally, since `3(TL) > `2(TL), we have that VL runs
in time n · poly (`3(TL)).

Finally, for communication complexity, we have to account for the commitment c and the L⊗TLPCP
proof σΠ. As in the previous paragraph, we have that `com = poly (`2(TL)). Corollary 6.6 gives us
the same bound of n · poly (`3(TL)) on the communication complexity of ΠM as it gave for the run
time of ΠM.V, so using the fact that `3(TL) > `2(TL) we get an overall bound of n·poly (`3(TL)).

54

	Introduction
	Our Results
	Other Prior Work

	Technical Overview
	Succinct Interactive Arguments for Bounded Space from Succinct Arguments for Batch NP
	Obtaining a SNARG
	SNARGs for Bounded Space Non-Deterministic Computation

	Preliminaries
	Correlation Intractable Hash Functions
	Somewhere Extractable (SE) Commitments

	Fiat-Shamir for Arguments
	Round-by-Round Soundness
	FS-Compatible Arguments
	The Fiat-Shamir Paradigm
	From FS-Compatible Arguments to SNARGs

	FS-compatible Arguments for Bounded Space Computations
	FS-Compatible Batch NP Arguments
	Bounded-Space Protocol Construction
	Non-trivial predicate for Bounded-Space Protocol
	FS-Compatibility for Bounded-Space Protocol
	Proof of FS-Compatibility.
	Complexity of k

	FS-compatible Arguments for Non-Deterministic Bounded Space
	Background.
	Interactive Arguments for Bounded Space Non-Deterministic Computation.
	Non-Trivial Predicate
	FS-Compatibility w.r.t. Predicate
	SNARGs for P and beyond

	References
	Somewhere Extractable Commitments with Non-trivial Local Openings
	Proof Sketch of (Imported) Theorem 5.2
	Proof of Lemma 5.4
	SNARGs for ¶

