
DO NOT RUG ON ME: ZERO-DIMENSIONAL SCAM DETECTION

A PREPRINT

Bruno Mazorra
Nokia Bell-labs

Universitat Pompeu Fabra
brunomazorra@gmail.com

Victor Adan
Universitat de Barcelona

victor8adan@gmail.com

Vanesa Daza
Universitat Pompeu Fabra
vanesa.daza@upf.edu

March 14, 2022

ABSTRACT

Uniswap, like other DEXs, has gained much attention this year because it is a non-custodial and
publicly verifiable exchange that allows users to trade digital assets without trusted third parties.
However, its simplicity and lack of regulation also makes it easy to execute initial coin offering scams
by listing non-valuable tokens. This method of performing scams is known as rug pull, a phenomenon
that already existed in traditional finance but has become more relevant in DeFi. Various projects
such as [34, 37] have contributed to detecting rug pulls in EVM compatible chains. However, the first
longitudinal and academic step to detecting and characterizing scam tokens on Uniswap was made in
[44]. The authors collected all the transactions related to the Uniswap V2 exchange and proposed a
machine learning algorithm to label tokens as scams. However, the algorithm is only valuable for
detecting scams accurately after they have been executed. This paper increases their data set by 20K
tokens and proposes a new methodology to label tokens as scams. After manually analyzing the data,
we devised a theoretical classification of different malicious maneuvers in Uniswap protocol. We
propose various machine-learning-based algorithms with new relevant features related to the token
propagation and smart contract heuristics to detect potential rug pulls before they occur. In general,
the models proposed achieved similar results. The best model obtained an accuracy of 0.9936, recall
of 0.9540, and precision of 0.9838 in distinguishing non-malicious tokens from scams prior to the
malicious maneuver.

1 Introduction

Blockchain technology has proven to be enormously disruptive and empowering in both the public and private sectors
of computing applications. Blockchains are permissionless and immutable digital ledgers that can be implemented
and audited without a trusted third party or central authority. At their basic level, they enable participants to record
transactions in a shared public ledger such that under the regular operation of the blockchain network, no transaction
can be changed once committed. In 2008 [26], the blockchain idea was combined with several other technologies to
create Bitcoin: a peer-to-peer electronic cash system protected through cryptographic mechanisms without needing a
central repository or authority. However, users and developers perceived that Bitcoin had a limited use case due to the
lack of complete programmability of the Bitcoin Virtual Machine. For this reason, many developers worked on the
launch of other chains such as Ethereum, a Turing-complete blockchain that has evolved to include a wide range of
decentralized applications. Often, a decentralised application (DApp) will use one or more "smart contracts" deployed
on top of the blockchain.
A smart contract is an executable code that runs on the blockchain to facilitate, execute and enforce the terms of
an agreement between untrusted parties. The most popular and exciting area where smart contracts have been
crucial is decentralized finance (DeFi), which makes financial products available on a publicly decentralized
blockchain network. DeFi could potentially offer a new pseudo-anonymous, non-custodial and permissionless financial
architecture that allows open audit [42]. However, the Turing-complete blockchain technology is not a silver bullet; the
pseudo-anonymous and permissionless nature of the blockchain allows attackers, scammers and money launderers to
act with impunity. In parallel to the work carried out in [44], in this paper we will focus on the thefts and scams in the



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

most popular tool of DeFi, the Decentralized exchanges (DEX), the DeFi version of market exchanges. The most
common way scammers and malicious agents execute a theft is through a rug pull. A rug pull of a project is a malicious
operation or set of operations in the cryptocurrency industry where the developers abandon the project and take the
investors’ funds as profits. As mentioned in [44], rug pulls are a popular maneuver that usually happens in DEXs,
particularly in Uniswap, where malicious agents develop an ERC-20 token1 and list it on a DEX and pair it with a
leading cryptocurrency like USD or Ether. Once some uninformed investors swap their leading coin for the token, the
developers then remove all the currencies from the liquidity pool, making the token untradable and with zero economic
value. In order to make the attack more profitable, the creators usually use different marketing tools such as a fake
website, telegram groups, and Discord chat rooms to cultivate confidence among potential investors.

Our contribution: In this paper, we expand the rug pull dataset of the paper [44] to 27,588 tokens. To do this, we
collected all Uniswap data until 03/09/2021 by directly interacting with the Ethereum blockchain. Then, we labelled
different tokens as scam, malicious and non-malicious tokens using various relevant features of the smart contract
and the liquidity pool state (see Sections 3.4 and 6). We manually observed different ways of executing the rug pull,
proposed a rug pull classification, and observed new complex forms of performing the theft. Moreover, we have
observed a further usage of the Uniswap protocol to send ETH 2 unnoticed for most common tracking protocols. Finally,
as we detail in Section 7, we propose new features of tokens, liquidity pools, and the transaction graphs; and a new
framework to predict the probability of a liquidity pool becoming a rug pull or a scam in the future.
In summary, in this work, we make the following contributions:

• We provide the most extensive labelled dataset of Uniswap rug pulls to date, including the source code, the
liquidity, the prices, the mint/burn, and transfer events. The dataset includes all tokens from 04/05/2020 to
03/09/2021. In total, we labelled 26957 tokens as scams/rug pulls and 631 tokens as non-malicious.

• We provide a theoretical classification of three different types of rug pulls: simple, sell, and trap-door rug pulls,
and provide tools to identify them.

• To the best of our knowledge, we are the first to design an accurate automated rug pull detection to predict
future rug pulls and scams using relevant features of the pool’s state and the token distribution among the users.
More specifically, we used the Herfindahl-Hirschman Index and clustering transaction coefficient as heuristics
to measure the distribution of the token among the investors.

• We prove that the use of lock contracts such as Unicrypt by other scam detectors [37, 34] provided misleading
data about the economic security of the token. More precisely, we show that 90% of tokens using locking
contracts tend to become a rug pull or a malicious token eventually.

• We define two methods that use Machine Learning models to discriminate between malicious and non-
malicious tokens in different scenarios. In the first scenario, tokens can be evaluated at any block prior to the
malicious maneuver. In the second scenario, all tokens are evaluated at a certain time after the creation of their
respective pools. Specifically, we use a new Machine Learning algorithm based on attention mechanisms for
tabular data called FT-Transformer[21]. Our best model obtains an accuracy of 0.9936, recall of 0.9540 and
precision of 0.9838 in distinguishing non-malicious tokens from scams in the first scenario and an accuracy of
0.992, recall of 0.784 and precision of 0.869 in the second scenario.

All these results can be replicated using the code and the pipeline in [47]. To use it, we highly recommend access to a
full or an archive Ethereum node.

Organization of the paper: In Section 2, we describe the state of the art of scam detection in smart-contract-based
blockchains. Section 3 gives an overview of DeFi and DEXs and the main features needed for our analysis. Section 4
introduces a classification of malicious Uniswap maneuvers, emphasizing the theoretical methodology behind different
rug pulls. In Section 5, we explain the methodology used to obtain all the data needed to train our models and obtain our
results. In Section 6, we explain the methodology used to label the tokens listed in the Uniswap protocol as malicious
and non-malicious and give an overview of the results obtained by applying this methodology. Finally, Section 7
explains the model used to detect future rug pulls in the early stages. We explain the two different methodologies used
and describe the accuracy, sensitivity, and F1-score of the models used.

1Ethereum Request for Comments 20
2ETH is the native cryptocurrency of the Ethereum network

2



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

2 Related work

Due to the role of smart contracts in Blockchain Technology, some studies have analyzed the security and the automatic
vulnerability detection of within such contracts. Some have focused on finding anomalies in the transaction graph
[22, 27, 29, 30] and clustering malicious addresses [31, 32, 35]. For example, paper [22] uses the transaction graph to
predict relevant market price changes and [35] uses the transaction graph and fingerprints in the gas price3 in order to
detect the addresses of the same user.
Other studies have focused on the vulnerabilities of smart contracts [16, 19, 28, 38], for example [19] is a static analysis
framework for smart contracts that detects potential vulnerabilities. In a similar direction, other research [5, 9, 13, 18,
48] digs into vulnerabilities of DeFi protocols when interacting with rational agents.
Regarding blockchain scams, many studies have investigated phishing scams [12, 43, 45, 46], Ponzi Schemes [7, 11,
23], and automated scam detection [6, 8, 36].
More related to our work, various studies or projects [34, 37, 44] have addressed the detection of rug pulls or frauds
working on top of DEX protocols. Two projects [34, 37] use the simple heuristics of holders, liquidity and an automatic
smart contract analysis, to give a risk score of the token. Both projects share two major problems: the lack of longitudinal
studies to check their results, and the failure to detect non-malicious tokens accurately. On the other hand, [44] provided
the only longitudinal and cross-sectional study to date. The study provides a good introduction and overview to different
rug pulls, as well as a dataset of more than 10K scam tokens listed in Uniswap. However, the major flaw of that paper is
that the algorithm is trained to classify tokens and detect rug pulls only after they have occurred; that is the machine
learning algorithm is trained in order to classify tokens, but is not able to detect future rug pulls.

3 Preliminaries

3.1 Ethereum and Smart Contracts

Ethereum is a blockchain with a quasi-Turing complete programming virtual machine, that compiles different program-
ming languages such as Solidity[14]. One relevant goal of Ethereum is to any party to develop arbitrary applications
and scripts that execute in blockchain through transactions, using the blockchain to synchronize their state in a manner
that is fully verifiable by any system participant. These scripts are usually refereed as smart contracts. Participants and
smart contracts in the Ethereum network transact with the base currency known as Ether. Ether, is the coin used to
transact and to pay the fees to the miners to transfer Ether or to interact with smart contracts. Accounts on the Ethereum
network can be linked to programs in a virtual machine-based language called the Ethereum Virtual Machine (EVM).
More specifically, smart contracts are programs which are deployed on the blockchain public ledger and are executed in
transactions, which, similarly to ACID-style database transactions [5], alter the state of the ledger atomically (that is,
either all the operations of the transaction are executed or all the operations are reverted). In the moment of deploying a
smart contract, a byte-code is sent in a transaction to the ledger, and this contract is assigned a unique address of 42
hexadecimal characters and its code is uploaded to the ledger. Once successfully created, a smart contract consists of a
contract address of 42 hexadecimal characters, a balance, a code defined in the contract creation, and a state. Different
users and parties can then change the state of a specific contract by sending transactions invoking particular functions to
a known contract address. If the transaction hold the constraints hard-coded in the smart contract, this transaction will
trigger a set of actions established in the smart contract code as a result, such as reading and modifying the contract
state, interacting and executing other contracts, or transferring Ether or tokens to other addresses. These actions can be
coded to produce events, a transaction log of the relevant information produced by the actions triggered. These events
are useful for developers and users to track the state of the smart contract.
The most popular and significant smart contracts of Ethereum are known as ERC-20 tokens, and emerged in 2015 as the
technical standard used for all smart contracts on the Ethereum blockchain for fungible token implementations. A token
is fungible if any token is exactly equal to any other token; no tokens have special rights or behavior associated with
them. This makes ERC-20 tokens useful for currency exchange, voting rights, staking, and more. ERC-20 defines a
common set of functions, of which only the signatures, but not the implementations, are specified. The table 1 lists the
common rules of ERC-20, including the global variables and functions.

In addition to the base ERC-20 functionality, many tokens provide other functionalities [28]. For instance, it is quite
common to find contracts that can freeze accounts, transfer ownership, pause contracts or make complex interactions
with other DeFi protocols. In this study, we focused on three functionalities that involve manipulation of tokens:
minting, pausable, and complex buy/sell operations in which tokens can be obtained from or exchanged to Ether. Token
minting corresponds to the creation of tokens, increasing the total supply of tokens and associating the newly minted
tokens to a specific address. Token burning is the reverse operation: tokens can be erased from an account and their

3https://ethereum.org/en/developers/docs/gas/

3



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

Requirements Type Signature
totalSupply()
balanceOf(address)
transfer(address,uint256)
approve(address,uint256)
allowance(address,address)

Method

transferFrom(address,address,uint256)
Event Transfer(address,address,uint256)

Required

Approval(address,address,uint256)
name()Optional symbol()Method
decimals()

Table 1: ERC-20 standard signatures.

total supply decreases. Token sale works in terms of operations that allow an account to buy tokens using Ether, or
obtain Ether by selling tokens.
In order to obtain those features, one can use compilers such as Slither [19], a static analysis framework designed to
provide human-readable information and insights of smart contracts wrote in Solidity programming language. Slither
allows the application of commonly used program analysis techniques like dataflow and taint tracking. Moreover,
Slither detects various important features and vulnerabilities, like minting, reentrancy vulnerability, and pausable smart
contracts.

3.2 Decentralized Exchanges

Decentralized Exchanges (DEXs) [42] are a category of Decentralized Finance (DeFi) protocol that allow the non-
custodial exchange of digital assets. All trades are executed on-chain and are, thus, publicly verifiable. The policy that
matches buyers and sellers (or traders and liquidity providers) is hard-coded in a smart contract. DEXs have different
mechanisms for price discovery: order book DEXs and automated market makers (AMM). While order book exchanges
have been broadly studied [33, 41] and used in traditional finance (TradFi), AMMs have been proven to be more useful
in blockchain environments due to their computational efficiency and simplicity [42]. In general, in an automated
market maker, each asset pair comprises a distinct pool or market. Liquidity providers supply liquidity by adding both
assets in proportion to the existing pool size. Traders exchange assets by adding one asset to the pool and removing the
other. The ratio of the two traded assets is the average price paid, is calculated according to a downward sloping, convex
relationship called constant function (CF). The convexity implies that the AMM is liquidity sensitive, that is, larger
orders have a larger price impact. DEXs and, in particular AMM, have become very popular in DeFi for several reasons:

1. they permit easy provision of liquidity for minor assets, that is, any assets can be listed in a DEX,
2. they allow any party to become a market maker,
3. they are censorship-resilient in highly volatile periods,
4. they can be audited by anyone.

However, these properties also have their drawbacks:

1. blockchain transactions are publicly visible in the mempool, which means that miners or users can front-run
trading transactions in DEXs [13, 48], consistently leading to a worse price for users,

2. every token can be listed to trade in AMM protocols making uninformed users to fall into different scams or
suboptimal performing projects [44].

With an AMM, the price of an asset is deterministic by the state (number of reserves) and the number of assets that users
are willing to trade. The most popular AMMs such as Uniswap4, Sushiswap5, Curve 6 and Balancer 7 use different
variations of the constant product formula, see Section 3.3.

4https://uniswap.org/whitepaper.pdf
5https://sushi.com/
6https://curve.fi/whitepaper
7https://balancer.fi/whitepaper.pdf

4



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

3.3 Uniswap

Uniswap, the most relevant decentralized exchange, was launched in November 2018 and, to date, more than 40,000
ERC-20 tokens are locked and tradable in the Uniswap protocol, adding a total value of 7 billion USD. In this section,
we will provide an overview of the Uniswap V2 protocol for more details see [1, 4].
Providing Liquidity: Each pair pool comprises a pair of tokens. Most frequently, as we will show in Section 5, one
of the currencies is wrapped Eth (Weth), the ERC-20 equivalent version of Ether. We will typically use Eth or Weth
as the numéraire and will denote it by E , and we will refer to the other ERC-20 tokens as token, denoted by C. A
party wishing to provide liquidity to a specific pool deposits both E and C into the pool. If the pair pool has no tokens
deposited yet, the deposit ratio can be arbitrarily chosen by the liquidity provider. Otherwise, the deposit ratio of Eth to
token is determined by the existing ratio in the pool, which implicitly defines the infinitesimal price of the token C with
respect to Eth E . A liquidity provider who makes such a deposit receives a proportional amount of a liquidity provider
token (LP-token). This third token is specific for each pool listed in Uniswap and represents the share of the liquidity
provided by the agent of the total liquidity pool. As the users swap tokens in the pool, the value of the liquidity pool
may rise or fall in value. Liquidity providers can redeem their liquidity tokens at any time and get their share of the
liquidity pool paid out in equal value of Eth and tokens. Providing liquidity is potentially profitable because each trade
incurs a transaction fee of 0.3% which is redeposited into the pool. However, providing liquidity also has its own risks,
leading in some situations to temporary losses [2].
Price formula: The pricing protocol for tokens listed on Uniswap is given by a constant product formula [4]. Suppose
that a trader wants to buy an amount of ∆y tokens, and the current reserves of the pair pool of Eth and tokens are x and
y respectively. Then the amount ∆x of Eth that they have to deposit is the unique solution to the following equation

(x + (1 − f)∆x)(y −∆y) = xy,
where f is the fee of the protocol, currently sett to f = 0.3%. After the trade, the reserves of the pair pool are updated in
the following way x← x +∆x, y ← y −∆y. Analogously, if a trader wants to sell tokens for Eth. The name constant
product market comes from the fact that when the fee is set to zero, any trade must change in a way that the reserves
lies in the curve xy = k for some positive real number k.
Uniswap Architecture: Uniswap V2 contracts are divided into two types of contracts, the core and the periphery. This
division allows the core contracts, which hold the assets and therefore have to be secure, to be audited more easily. All
the extra functionality required by traders can then be provided by periphery contracts. The most relevant periphery
contract is the UniswapV2Router8. This contract allows the user to easily interact with other core contracts in order to
quote prices, create pair pools, swap tokens and add/remove liquidity. Two of the most fundamental core contracts are
the UniswapV2Factory9 and UniswapV2Pair10. The UniswapV2Factory is responsible for creating new pool pairs and
recording all the pairs created. The UniswapV2Pair contract is responsible for recording the current state of the pool,
i.e. balance of Eth E (or any other token C′) and the token C, computing the price for trading and the number of tokens
needed to add liquidity. Moreover, the UniswapV2Pair contract has an ERC-20 structure and records the ownership of
the liquidity provided to the pool.
Uniswap Events: As we mentioned in 3.1, events track the state of different variables of a smart contract. The Uniswap
protocol contains five important events.

1. PairCreated: It is an event in the UniswapV2 Factory contract. This event emits each time a new pair is
created, and outputs the tuple (token0,token1,pair,
block_creation) of a new pool created.

2. Sync: It is an event in the UniswapV2 PairPool contract. This event emits each time the reserves
of the pool change. Every time the balance of the pool updates, the smart contract outputs the tuple
(reserves0,reserves1), that is the reserves of the token0 and token1 after the update.

3. Mint,Burn & Transfer: These are events in the UniswapV2 PairPool contract that tracks the state of the
ERC-20 LP-token.

Locking contracts: The locking contracts are protocols that run on top of the Uniswap protocol to provide a partial
solution to rug pulls. These protocols are not part of the main Uniswap protocol. In general, in the first phase of
developing a token or project, the liquidity provided to Uniswap is mostly added by the developers or creators of the
project. It is for this reason that initially, the distribution of the LP tokens is managed by a small number of addresses,
making potential investors less confident in the project. In order to provide some trust to new investors, the developers
lock the liquidity in a smart contract (Unicrypt is the most popular DEX LP lock) or burn the LP token, making it
unfeasible for the developer to remove the liquidity for some time or indefinitely.

8https://etherscan.io/address/0x7a250d5630b4cf539739df2c5dacb4c659f2488d
9https://etherscan.io/address/0x5c69bee701ef814a2b6a3edd4b1652cb9cc5aa6f

10https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Pair.sol

5



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

3.4 Token Propagation

We refer to Token propagation to the set of metrics and tools to study the token distribution and circulation of the token
during its activity period. As we mentioned previously, tokens are transferable. To send a token from an address A to an
address B, the sender A can either call the function transfer of the token’s smart contract or call other smart contracts
that inherit the functions approve and transferFrom. Either way, an ERC-20 token emits the event transfer that
contains the tuple (sender,receiver,amount). The first way of transferring tokens is usually cheaper and is used to
directly transfer the tokens from one external ownable account (EOA) to another. The most common approach is to
deposit or withdraw tokens from centralized exchanges. The second way tends to be used by different DeFi protocols
such as DEXs, lending protocols, or voting systems to allow smart contracts to exchange tokens on behalf of an EOA
address.

3.4.1 Token distribution

The set of transfers and transactions allows us to compute the balance of each address for any snapshot. In order to
study the distribution of the tokens, we propose using the Herfindahl-Hirschman Index (HHI).
In a nutshell, the HHI is a popular measure of market concentration and is used to calculate market competitiveness.
The closer a market is to a monopoly, the higher the market’s concentration (and the lower its competition). As we will
explain later, this measure will be useful in order to detect some potential rug pulls in Uniswap. Below, we provide a
mathematical definition of the HHI.

Definition 3.1 Let T be a token, A be the set of addresses and Bt ∶ A → R≥0 be the balance mapping in some time
frame t. The Herfindahl-Hirschman Index of the token T in time t is defined as

HHIt ∶=
∑a∈ABt(a)2
(∑a∈ABt(a))2

.

The HHI curve is defined as HHI ∶ [tinit, tend]→ [0,1].

In the cryptocurrency ecosystem, decentralization and the proper distribution of resources are important features. A
smoother distribution of power implies less risk of breakdowns or malfunctioning produced by some participants
misbehaving. In exchanges, a similar pattern occurs. In general, the more centralized the capital or funds, the higher the
risk of market manipulations or liquidity removal, implying loss of funds by retail investors.
From a game theory perspective, the more uniformly distributed the tokens and the liquidity, the less likely it is that
agents can manipulate the market or remove funds in a short time period. For this reason, the lower the HHI, the better
for the investors. Clearly, one of the problems of the HHI is that it is easy to manipulate and is sensitive to Sibyl attacks.
Since any adversary can create an arbitrary number of addresses and transfer an arbitrary amount of tokens among the
addresses on his control. However, these manipulations incur some costs for the malicious agent, reducing the net
profits of the attack.

0 2 4 6 8 10
0

0.5

1

1.5

Figure 1: Ideal Herfindahl-Hirschman curve

To mitigate some of the problems mentioned, we propose using deeper network analysis tools. Recent studies used
token transactions as a tool to forecast prices [39], detect price anomalies [22] and detect possible malicious activities
[12, 27, 30]. Each period will be considered as a set of blocks with a separation of approximately one day between
them.

6



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

3.4.2 Transaction graph analysis

The set of transactions and transfers provides insightful information, however this set can be better studied giving it the
natural graph structure, interpreting each address as a node and each transaction as a weighted edge.

Definition 3.2 (Transaction graph) Let G = (V,E,w) be a directed and weighted graph where V is the set of unique
addresses, E ⊆ V × V the transfers from one address to another, and w(tx) the amount transacted by the transfer tx.
Then, G = (G1,G2, . . . ,Gn), i = 1, . . . , n+1 is the time series for which Gi represents the transaction graph generated
during period i, i + 1.

This time series captures the relationship between the users at each period. This allows us to study the circulation of the
token between the different addresses.

Now, for each Gi = (Vi,Ei), we define the number of transactions Ntx = #Ei, the number of unique addresses
Naddr = #Vi and the volume transacted as ∑e∈E w(e). Finally, the average clustering coefficient is defined as
ACCi = 1

n ∑u∈Vi
cu where cu is the geometric average of the subgraph edge weights [29], computed as follows

cu =
1

deg(u)(deg(u) − 1) ∑vw∈E
(ŵuvŵvwŵwu)1/3

and ŵuv are normalized by the maximum weight in the network, that is
ŵuv = wuv/maxuv∈E(w(uv)).
The average clustering coefficient is a measure of network segregation that captures the connections of individual nodes
and their neighbors. In our scenario, this calculation allows us to quantify the interaction of each of the addresses with
their neighboring addresses in a given period of time.

Pool

add0

w0

add1

w1

add2

w2

add3

w3
add4w4

Figure 2: Transaction graph of centralized token, with average clustering coefficient 0.

In general, the lower the use case of the token, the lower the average cluster coefficient. The main reason behind this
heuristic is that low diameter and use case usually implies that the transaction graph is close to a star graph (figure
2) with Pool being the center node. Therefore, the average cluster coefficient is close to zero. However, users use
non-malicious tokens in a large range of protocols, causing the nodes of these protocols to have a non-trivial cluster
coefficient. Moreover, the daily average cluster coefficient is more expensive to bias due to the constant need to make
transaction between sybil nodes and the impossibility of using batchTransfer operations, a type of operation that
allows assets to be transfered to different addresses in one transaction.

4 Malicious Uniswap Maneuvers

As we have mentioned before, a rug pull is one of the most popular ways of scamming in decentralized exchanges
combined with a phishing attack. Different techniques are used to trick new investors into buying malicious tokens.
To understand the malicious tokens traded in UniswapV2, we introduce a comprehensive classification by manually

7



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

classifying both malicious and non-malicious tokens. While this classification will provide a clear overview of the
tokens in Uniswap, it depends on non-observable variables, such as intentionality and profits. Therefore, we will use a
weaker classification for our machine learning model. In this section, we will propose an ideal classification that will
provide insights into different rug pulls. Figure 3 provides an overview of the classification.

Malicious
Uniswap

Maneuvers

Rug Pulls Pump-and-
dump Schemes Money Laundering Others

Simple
rug pull

Sell rug
pulls

SC Trap
doors

Figure 3: Malicious Uniswap Maneuvers classification.

The terms scam and malicious token are not being used identically by all researchers. For example, papers such as
[44] use the terms scam and under-performing token indistinguishably, leading to inaccurate results and classifications.
In the current paper, we define a malicious token as one released by a developer or a group of developers with no
intrinsic value or use case. This definition is similar to that used in paper [23]. Clearly, this definition is ambiguous
unless value and use case are properly defined. In general, this is a complex issue to answer. For example, it is not
clear that cryptocurrencies such as Doge11 or Shiba 12 have any use case or intrinsic value, but they are among the
most popular meme-coins. In our framework, we say that a token has no intrinsic value or use case if the developer
knows that the trading price with respect to USD will eventually be zero. In other words, a tradable malicious token
in Uniswap induces a zero-sum game between the users and the developers, i.e. the incentives for the investors are
not aligned with those of the token creators. Therefore, the main difference between malicious and non-malicious
tokens is the developer’s intentionality towards the token. One of the main problems of these definitions is that it is
unfeasible to distinguish between scam tokens and under-performing or abandoned projects without accurate off-chain
data. However, in general, the two terms do coincide. For these reasons, in the following section, rather than trying to
identify whether a token is malicious or not, we will give a methodology for classifying and predict under-performing
and inactive tokens.

Simple rug pulls are the most common and easy to identify rug pulls. Essentially, simple rug pulls consist of three steps.
The developer creates an ERC-20 token C and interacts with UniswapV2 Factory to create a new trading pair with
wETH or any other relevant token, fixing the reserves to (x, y). Then, the investors execute the swap transaction on the
trading pair, exchanging ETH for C, and the reserves update to (x +∆x, y −∆y). Afterwards, the developer activates
the function removeLiquidity obtaining x +∆x Ether and y −∆y of C. Since the coin C has no intrinsic value, the
net profit of the attacker is x +∆x − fees.
Sell rug pulls are also prevalent. However, they are not easy to identify and compute the total gains of the attack. A
simplification of the attack would be as follows. The developer creates an ERC-20 token C, with total supply S, and a
new trading pair with a relevant token E . The developer adds a fraction f < S of the total supply of the C to the pool,
having complete control of the remaining coins S − f . Then, they wait for a sufficient number of investors to execute
the swap transaction on the trading pair. Afterwards, the developer swaps f coins C for E . While this kind of rug pull is
theoretically less profitable for the attacker, if combined with more features it can be even more profitable than the
first one. For example, in order to build confidence in investors, the attackers lock the liquidity in a smart contract or
burn it. This makes investors think that a simple rug pull cannot happen, and that therefore it is a potentially profitable
investment. In other words, the fact that the liquidity is locked makes the market volume increase. Moreover, if the
token is mintable, the attacker can recover all the funds, minting as many coins as needed to recover nearly all the
tokens E in the trading pool.

11https://dogecoin.com/
12https://www.shibatoken.com/

8



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

Smart Contract Trap door rug pull are the most difficult to identify and prevent. There are several reasons for this. The
first is that the EVM is Turing complete, and therefore it is highly complex to identify all vector attacks; the second is
that smart contracts do not exist in isolation, i.e., smart contracts can work on top of other smart contracts. This means
that the economic security of some smart contracts, depends on other smart contracts [5]. In the following section, we
will explain some of the most popular examples of these trap-doors.

• Mintable is a property shared by many tokens, including non-malicious ones such as USDT13. In general, we
say that a token is mintable if it has a function that allows it to increase the supply of the token with some
pre-defined conditions. Usually, mintable tokens give rights to mint new tokens to the developers to a fixed set
of addresses. While this functionality can be a useful feature in some contexts, it can also be used by malicious
users to subtract all the liquidity of the pull by minting as many tokens as needed.

• TransferFrom/Approve bad design is a property shared by some malicious tokens.
TransferFrom is the function that allows a smart contract to transfer assets on behalf of an externally owned
account. In the context of Uniswap, a proper design of this function allows tokens to be sold. In other words,
arbitrarily changing the transferFrom function makes the Uniswap Pool behave as a honeypot [38]. There
are different ways of making this smart contract, however the most popular example of this kind of scam is the
use of tokens that contain the line code require(from == owner ∥∥ to == owner ∥∥ from == UNI) in
the transferFrom function.

• Composability vulnerabilities are the least common ones and the hardest to find. In general, this type of rug
pull is not made by the developers but by malicious agents external to the project, who take advantage of the
bad design of the smart contract token interacting with Uniswap or other DEXs. Those that we have been
able to identify are the tokens with a price oracle vulnerability. Usually, we observed that these tokens have
Uniswap integrated in the source code of the smart contract in order to reward holders. However, these rewards
depend on the price. The higher the price, the higher the reward. The fundamental problem of this mechanism
is that the price is defined through an oracle that, as shown in [18], is easy to manipulate with enough funds or
using a flash loan.

In general, these rug pulls are not exclusive and in reality, different techniques are applied in order to execute a rug pull.
Moreover, these techniques are usually combined with phishing attacks and pump-and-dump schemes.
Money laundering: In traditional finance, money laundering is the processing of money obtained from illicit activities,
to make it appear that it originated from a legitimate source. In the Ethereum environment or cryptospace in general,
we will define money laundering as the process of sending some coins obtained from heists, honeypots or hacks from
an address addr1 to another address addr2 privately. That is, observers cannot link these two addresses through the
transaction graph. In Ethereum, the most common technique to obtain privacy is through Mixers [35]. The most popular
mixer is TornadoCash 14, which implements a smart contract that accepts transactions in Ether so that the amount can
later be withdrawn with no reference to the original transaction by means of using zero-knowledge proofs. Analyzing
rug pulls in the Uniswap protocol, we have found some users that use the Uniswap protocol to send Ether to other
address without being noticed by most common address clustering algorithms. The operation consists of three main
steps. First, the address addr2 creates an unsellable token C and lists it in Uniswap with an arbitrary amount of liquidity.
Then, the address addr1 changes the Ether for C in the Uniswap pool. Finally, the address addr2 removes all the
liquidity from the pool.
A good example of this is given by the user that controls the address 0x775744...16, in charge of creating more than
500 tokens in order to money launder, pump prices and obtain profits via executing trap door rug pulls.
Pump-and-dump schemes: In traditional finance, a pump-and-dump scheme is a malicious maneuver that manipulates
the market price of a stock, in which the executors first purchase a financial asset at a certain price. They then persuade
other speculative non-informed investors to purchase, within a short period of time thereby causing the price rise
artificially (pump), and executors sell their assets at profit. This typically leads to a rapid price drop (dump), leaving
the victims with a loss. In traditional markets, pump-and-dump schemes have generally been illegal around the globe.
However, in cryptocurrencies, the lack of regulations and the nature of cryptospace allow these maneuvers to happen
easily and avoid sanctions. While these maneuver have some intersection points with the rug pull maneuver, the
fundamental difference is that in pump-and-dump schemes the targeted asset is not necessarily malicious, while in rug
pulls it is.
Others: While malicious maneuvers are usually a combination of the ones mentioned before, all of them have a character-
istic in common, the victims are uninformed users. However, there are other maneuvers in EVM-compatible blockchains

13https://tether.to/
14https://tornado.cash/
16https://etherscan.io/address/0x775744a529f73a754164e4fE740e44C7c5aa5942

9



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

Figure 4: Transaction graph with depth=10, of scammer addr = 0x775744...15, where black nodes are addresses directly
connected, green nodes are transactions of type rug pull/money laundering and red nodes are centralized exchanges,
such as Binance, Coinbase and Huobi.

that try to attack weaknesses of maximal extractable value (MEV) bots. A good example of this is Salmonella17, a
bot that tries to trick sandwich traders [48]. Salmonella creates a token with an approve/transferFrom bad design.
Afterwards, it creates a swap transaction, that tricks MEV bots to sandwich it with a buy and sell operation. At the
moment the transactions are executed, by design of the Salmonella smart contract, the buy gets accepted, but the sell
transactions is reverted, leaving a lot of cash in the pool for the Salmonella developer.

5 Data Collection

To download all the data needed to do the labelling and the analysis, we used an Infura archive node 18 and the Etherscan
API 19. To obtain the state of the Uniswap exchange and the tokens, we used the events produced by their respective
smart contracts. Any node connected to Ethereum JSON-RPC API can observe these events and act accordingly. Events
can also be indexed, so that the event history is searchable later.

1. Tokens listed: We obtained the history of all tokens listed in the Uniswap V2 from its creation to 03/09/2021
asking for all events of the PairCreated type in the UniswapV2Factory contract.

2. Smart contract and features: After obtaining all listed tokens in Uniswap, with the help of Etherscan, we
downloaded the transactions in which they were created, their smart contract, their decimals, and their symbol.
In order to speed up these calls we used the multicall contract 20 to batch these calls to the blockchain in a single
call. Afterwards, we used Slither[19] to obtain different features of the smart contract, such as pausable and
mintable.

3. Events: From all the pools of Uniswap obtained in Tokens listed, we collected all events of type Sync, Mint,
Burn and Transfer for each of the PairPools obtained. Finally, we downloaded all Transfer events from
each of the tokens.

There are several attributes that we could not download via API such as transaction creation of a contract and full
market cap of a token, however, they are available on certain block explorers such as Etherscan. In these cases, we have
used scrapping techniques to obtain that information. For example, some of the data that we have not been able to find

17https://github.com/Defi-Cartel/salmonella
18https://infura.io/
19https://etherscan.io/apis
20https://etherscan.io/address/0xb1f8e55c7f64d203c1400b9d8555d050f94adf39

10



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

via the Etherscan API and Infura is: the hash of the transaction in which tokens were created and tokens that have had
some type of external audit.

6 Token labelling

In this section, we provide the set of tools and the methodology we used in order to label the tokens listed in the
Uniswap protocol as malicious and non-malicious, and provide the results obtained using this methodology. First, we
define the maximum drop and the recovery of token prices and liquidity time series. Then, we explain the distribution
of tokens that eventually became inactive or that became a rug pull. Finally, we explain which methodology we used to
accurate label tokens as non-malicious.

6.1 Ground truth labelling

One of the final goals of this study is to create an ML algorithm capable of detecting malicious tokens. To do this, we
have built a list of tokens tagged as malicious and non-malicious. In this case, the label of the malicious tokens has
been deduced from a series of calculations defined below:

Definition 6.1 Let X = {Xt ∣ t ∈ {0, ..., S}}, be the time series representing the price or liquidity in all the token
activity up to the last sync event S. The maximum drop is defined as

MD = ∣Xl −Xh

Xh
∣ ,

where Xh = max{Xτ ∣ τ ∈ {0, ..., S}}, h = argmax{Xτ ∣ τ ∈ {0, ..., S}} and Xl = min{Xτ ∣ τ ∈ {h, ..., S}}.

The maximum drop is usually known in the literature as maximum drawdown and is often used as a risk measure of
portfolios. Informally, the maximum drop is the largest drop from a peak to a trough. In our context, the maximum
drop measures fall in the price or liquidity of the Uniswap listed pools. In section 4, we have seen that the last step in a
simple rug pull is the removal of all liquidity from the pool. Therefore, by definition, in a simple rug pull, the MD of
the liquidity or time series of a rug pull tends to be approximately 1. However, the opposite implication is not true in
general. While the price maximum drawdown being close to 1 implies that the token is malicious, the MD of liquidity
being 1 does not necessarily imply some malicious behavior. For example, the developer could have moved the funds to
another pool or another DEX project. Moreover, it could be possible that the market maker just wants to retire their
funds and does not have any more interest in providing liquidity. In general, if the token has a use case and a market
value, other agents will have incentives to take over as market makers. For this reason, we introduce the recovery.

Definition 6.2 Let h, l ∈ [0, S] be the elements defined previously. Then, the recovery from Xτ to XS is computed as

RC = XS −Xl

Xh −Xl
.

Figure 5: Maximum drawdown and recovery of ETH price,

11



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

Informally, the recovery is the largest pump from the bottom. This measure makes it possible to check if the liquidity
position and the price of a token have recovered after the drop. Next we will show how the data splits, taking into
account the maximum drawdown and the recovery.

(a) Liquidity Fast Rug Pull (b) Price Fast Rug Pull

(c) Liquidity Rug Pull without Burn Events (d) Price Rug Pull without Burn Events

Figure 6: This Figure shows the price and liquidity time series of two different types of rug pulls. The two first pictures
are associated with a simple rug pull with token 0x896a07e3788983ec52eaf0F9C6F6E031464Ee2CC, while the second
pair of pictures are associated with a sell rug pull with token 0x0A7e4D70e10b63FeF9F8dD19FbA3818d15154d2Fa.

The figure 6a shows two examples of different rug pulls with no recovery and maximum drop of one in liquidity and
price respectively. Moreover, one can induce that the rug pull a) is a simple rug pull while the rug pull b) is a sell rug
pull.

6.1.1 Malicious Tokens Labelling

Various features were computed, taking into account two properties: fluctuations in price or liquidity, and activity. As
explained above, the maximum drop computes the greatest drop, either in liquidity or price, during the activity of the
tokens.

Most malicious tokens, at some point, lose all their liquidity or their price drops to zero. However, this does not
necessarily indicate malicious behavior, as it may be due to a simple fluctuation. Thus, we also compute the recovery. If
a token loses all its liquidity or its price drops to zero and these levels are never recovered, then the probability that the
falls are due to malicious intent increases.

In addition, to ensure that these fluctuations are not due to simple market movement, we compute the time elapsed since
the last movement of the pool or token transfer to 13/09/2021. If more than one month has passed between the last
movement or transaction of the token so far, we consider that the token is inactive. Finally, we obtain a list of inactive
tokens, which have drops in price or liquidity of almost one hundred percent and which do not recover. Our initial
list contained 46,499 tokens. We discarded those that did not have decimals defined in their contract (169). We then
selected those that had a pool connected to wETH (44,685) and downloaded their Sync, Mint, Burn and Transfer
events. The final list contains 37,891 tokens that have at least one pool connected with wETH and more than 5 Sync
events in all their activity. This last property is necessary to be able to compute the heuristics used to label the tokens.

12



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

86.4%

13.6%

Inactive
Active

(a) Tokens activity

78.2%

8.6%

13.2% Fast Rug Pull

No Burn LP Events
Others

(b) Inactive tokens overview

Figure 7: Pie charts of features activity (left) and maximum drop (right) for the final list of 37,891 tokens.

As explained above, we first checked if the tokens were inactive, i.e, if they had not registered Transfer or Sync
events for more than 30 days (86.4 % of the total). We also computed the maximum liquidity drop and saw that the
liquidity of 78.2 % of the inactive pools had been completely withdrawn at some point. Finally, we noticed that only
0.4% of pools that at some point had lost all their liquidity, recovered in all subsequent activity. This made a total of
24,870 tokens that could be tagged as malicious since they were inactive tokens, that had, at some point, lost all their
liquidity and had not recovered it again.

RC = 0 0 < RC < 0.1 0.1 ≤ RC ≤ 1
0%

20%

40%

60%

80%

100%

Recovery RC 6.2of Liquidity and Price

To
ke

ns
Pe

rc
en

ta
ge

Liquidity
Price

Figure 8: Price and Liquidity recover

On the other hand, as shown in Figure 8 8.6% of the inactive tokens, did not have any Burn LP events in all their activity
period. However, 79.2% of this 8.6% had seen a price drop of more than 90% at some point, and only 1.9% recovered
their value after the drop. This adds 2,087 tokens that can be identified as malicious since they are inactive, with price
MD of at least 90% and no revovey.

6.1.2 Non-Malicious Tokens Labelling

Unlike malicious tokens, non-malicious tokens cannot be chosen from a liquidity, price, and activity analysis. Given
a token, it may be considered malicious if there has been at least one rug pull at some point in its activity. However,
a token that has not had any rug pull cannot be considered non-malicious, since it could experience a rug pull later
on. Therefore, we take advantage of audits carried out by external companies (Certik, Quantstamp, Hacken...). It is
important to highlight that non-malicious tokens can have drops in price and liquidity, too. Nevertheless, none of them
simultaneously fulfil all the three properties that define malicious tokens, namely: inactivity, a sharp drop in price or a

13



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

sharp drop in liquidity, and no recovery. Thus, a list of 674 tokens labelled as non-malicious have been mined from
different sources 21. We have also discarded those that are so large that it becomes computational expensive to compute
its features, for example USDT or USDC. The final list contains 631 tokens labelled as non-malicious.

7 Scam Detection

We start from a list of tokens labelled as malicious or non-malicious, according to their features, therefore it can be
considered a binary classification problem. In this classification, we distinguish between the two types of tokens in
the moments prior to the malicious activity. This means that models are capable of detecting malicious tokens in the
activity prior to the rug pull. In this section, we present two methods: one considering all the activity of a token, and
the other considering just the first 24 hours. Also, we detail the different classifiers used in both methods and their
hyperparameter optimization. Finally, we present the results of each method.

7.1 Activity based Method

Our goal is to detect malicious tokens at an early stage, i.e., before users lose their capital. So far, we have characterized
two main types of rug pull: the ones that lose all liquidity at some point and the ones where the price drops to almost
zero. In this way, for each token labelled as malicious, we have randomly chosen several evaluation points prior to the
maximum drop. Non-malicious tokens have been evaluated throughout their activity. Then, for each evaluation point,
we have calculated the token features up to that block and used them to train two ML algorithms in order to find those
patterns related to malicious activity.

(a) Liquidity (b) Price

Figure 9: Evaluation points in liquidity (left) and price (right) chosen for token
0x896a07e3788983ec52eaf0F9C6F6E031464Ee2CC labeled as malicious.

In this method, we choose n evaluation blocks at random. For example, Figure 9 shows the price and liquidity of one
token labelled as malicious. In this token, liquidity suddenly drops to zero and does not recover again. Therefore, we
consider it to be a fast rug pull. The three vertical lines leading up to the crash represent the three evaluation points for
that particular token. This means that we have calculated the variables of that token up to those blocks. In this way, we
have proceeded with each of the labelled tokens. As explained in section 7.4, the final metrics have been computed
taking five evaluation points on non-malicious tokens and one on malicious tokens. All evaluations are prior to the
malicious act; this implies that this method can later be used as a tool to detect malicious tokens at any time. However,
there are subtleties that can skew the ML algorithms used. For example, tokens labelled as non-malicious tend to have a
much larger capitalization compared to malicious tokens, therefore the algorithm could end up differentiating between
"small" tokens and "large" tokens instead of malicious and non-malicious. Although this differentiation is not a bad
approach to this task, we think that there may be other situations that require different approaches. In the next method,
we evaluate all tokens at the same temporal evaluation points in order to identify these possible biases.

21https://coinmarketcap.com/view/defi/
https://www.coingecko.com/en/categories/decentralized-finance-defi
https://etherscan.io/tokens

14



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

7.2 24 Early Method

Rug pulls are profitable if their malicious act is done before they are discovered. Therefore, most rug pulls (93%) occur
in the first 24 hours after the pool is created. This encourages us to build a tool to detect malicious tokens at startup. For
each labelled token, we have computed its features in each of the 24 hours after its pool creation. Then, we create a
different dataset for each hour in which the tokens are evaluated.

Note that, in this case, we are training the models for each hour, therefore, we only have one evaluation point for each
dataset. This also implies that we will have a smaller dataset compared to the other method. In Section C, we present
the different metrics obtained for each of the hours. Also, we can measure the evolution of the predictive power of the
algorithm in the first hours of the token’s life. The fact that this method requires a certain history to be able to give a
prediction implies that the more history you obtain, the better the prediction. This intuition is confirmed in 7.4.

7.3 Machine Learning and Hyperparameter Optimization

Gradient Boosting Decision Tree (GBDT)[20] models offer high performance in classification tasks with tabular data
since they allow the definition of different cost functions, do not require preprocessing for categorical features, and
can handle missing data. Thus, it seems clear to apply a GBDT model to our problem. In particular, we have used the
XGBoost [10] algorithm.

On the other hand, algorithms with Transformer architecture [40] are obtaining high results in fields such as natural
language processing [15, 24], computer vision [17], etc. In this work, we have used a model based on attention
mechanisms called FT-Transformer [21] in order to test a tabular algorithm with Transformer architecture in our
problem.

Hyperparameters cannot be learned during the training process. Furthermore, they have a significant impact on the
performance of the model being trained. Thus, optimizing them is crucial for better efficiency, faster convergence,
and overall better results. In this work, we have used Optuna [3], a software framework designed primarily for
hyperparameter optimisation in ML algorithms.

Finally, in order to evaluate the impact of each variable, we have used the SHAP (SHapley Additive exPlanations)
Values [25]. SHAP uses game theory to explain the results obtained in ML algorithms. In particular, it uses the classical
Shapley values of game theory and their related extensions.

7.4 Results

The final list contains 27,588 labelled tokens, 631 labelled as non-malicious tokens and 26,957 labelled as malicious.
Within the malicious, 24,870 are fast rug pulls and 2,087 do not contain LP Burn events. We see that there are far fewer
non-malicious tokens than malicious ones. There are many techniques22 to deal with this problem, however, none of
them have been applied in order to make the results more understandable. Instead, our data augmentation technique
consists of choosing more evaluation points for non-malicious tokens than for malicious tokens. Now, given this dataset,
we want to increase the performance in predicting non-malicious tokens since it would be enough to label all of them as
malicious to achieve an accuracy of 97,7%. Therefore, we label the non-malicious tokens as 1 and the malicious tokens
as 0.

We have used the cross-validation method to validate both ML algorithms. Cross validation is a resampling method that
uses different parts of the data to test and train a model in different iterations. In particular, we have used the stratified
version, in which the partitions are selected so that the mean response value is approximately the same in all partitions.
In the case of binary classification, this means that each partition contains roughly the same proportions of the two
types of class labels. In the first method, we have five evaluation points on non-malicious tokens and one on malicious
tokens. Thus, in each of the iterations, the tokens of the training and validation set are separated in a stratified way with
all their corresponding evaluations. This implies that the same token will never have evaluations in the training and
validation set at the same time, and all folds will have roughly the same number of malicious tokens. Finally, we used
5-fold cross-validation, therefore all the results will be presented as the mean and standard deviation of all folds.

We have used xgboost23 Python library to apply the XGBoost model to each method. Specifically, in each of the five
folds, we have used the training partition to perform a hyperparameter’s optimization (see appendix B) to later predict

22https://imbalanced-learn.org/stable/references/index.html
23https://xgboost.readthedocs.io/en/stable/

15



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

the test of the corresponding fold. In the case of FT-Transformer, we have used the default parameters of rtdl24 Python
library, since training this model is too expensive to perform hyperparameter optimization.

7.4.1 Activity based Method Results

Both XGBoost and FT-Transformer get high metrics for accuracy, recall, precision, and F1-Score. However, XGBoost
outperforms FT-Transformer in all metrics. As we previously said, unlike XGBoost, FT-Transformer hyperparameters
have not been optimized due to the high computational complexity required to train the model.

XGBoost Mean Std

Accuracy 0.9936 0.0029
Recall 0.9540 0.0297
Precision 0.9838 0.0056
F1-score 0.9684 0.0151

(a) XGBoost metrics.

FT-Transformer Mean Std

Accuracy 0.9890 0.0036
Recall 0.9180 0.0363
Precision 0.9752 0.0109
F1-Score 0.9454 0.0187

(b) FT-Transformer metrics.

Table 2: Accuracy, recall, precision and f1 score obtained in a 5-fold cross-validation for first method.

To understand the impact of each feature in both models, we have computed the SHAP values. In this work we
only focus on XGBoost, however, the process would be the same for FT-Transformer. The SHAP values assign the
importance of each feature for each prediction. In general, the greater the impact of features on a prediction, the greater
the SHAP value in absolute value.

Figure 10: Impact of the variables in the XGBoost model applied to the first method. Mean of SHAP values on the left
and global impact of the features on the right. Images generated from the Python SHAP library.

In Figure 10 we show, on the left side, the feature importance in terms of SHAP value applied in the first method, and,
on the right, the impact on the final output. As previously said, most of malicious tokens die in the first 24 hours after
the pool is created; by contrast, non-malicious tokens have longer life. This explains why features such as number
of transactions or number of unique addresses have so much weight in the model. Another important feature is the
difference in blocks between the creation of the token and the pool. We notice that less block difference between token
and pool creation implies negative SHAP values, and negative SHAP values should correspond to malicious tokens.
This conclusion coincides with [44] since several of the malicious tokens take advantage of social trends by copying the
name of official tokens and take money from investors who get confused. This technique implies speed in the creation
of the token and the pool, since otherwise the trend may be lost.

7.4.2 24 Early Method Results

The results of the second method must be understood from another perspective, since the problem posed is not the same.
As we said, the difference with respect to the first method lies in the fact that, we evaluate all the tokens at a certain
time after the creation of their respective pools.

24https://yandex-research.github.io/rtdl/stable/index.html

16



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

(a) XGBoost (b) FT-Transformer

Figure 11: Evolution of recall, Precision and F1-score for the XBGoost and FT-Transformer model in the first 24 hours
after the creation of the token.

Figure 11 shows the evolution of the metrics for each of the ML algorithms used. XGBoost gets better metrics, except
precision in some cases. We also notice that the metrics of the first hour are lower than those of the last. This confirms
the intuition that our methods require a certain token history in order to work correctly and that models improve as this
history grows. Our algorithm obtains a very high accuracy (see C) even in the first hours. However, the precision, recall
and f1-score are lower than in Activity based Method. In the best of cases, i.e. 20 hours after the creation of the pool,
our best algorithm obtains a recall of 0.789. This could indicate that while malicious tokens are easily detectable in the
first few hours, non-malicious tokens require more time. On the other hand, the precision remains quite high compared
to the recall. This implies that, although the algorithms do not have a strong ability to detect non-malicious tokens, once
they predict that one of them is non-malicious, it is very likely to be the case.

7.4.3 Unicrypt Results

As explained in Section 3.3, Unicrypt is a protocol that runs on top of the Uniswap protocol with the purpose of
being a partial solution to rug pulls. In this work, we have empirically demonstrated that most of the tokens that use
Unicrypt are malicious. First, from our list of labelled tokens, 745 use Unicrypt, 725 are labelled as malicious and 20 as
non-malicious. Then, from the unlabelled tokens, we compute their features up to the present time and use the Activity
based Method with XGBoost algorithm to evaluate them. Based on these predictions, 2544 of non-labelled tokens using
Unicrypt, 2211 are predicted to be malicious and 333 non-malicious.

8 Conclusions

In summary, first, we increased the dataset provided in [44] by 18K scam tokens, finding new ways of actively executing
the rug pulls. We then, we provided a theoretical classification to understand the different ways of executing the scam,
and through the process of identifying rug pulls we found new token smart contract vulnerabilities (composability
attacks) and new ways of money laundering. Based on this theoretical foundation, we provided a methodology to
find rug pulls that had already been executed. Not surprisingly, we found that more than the 97,7% of the tokens
labelled were rug pulls. Finally, we defined two methods that use ML models to distinguish non-malicious tokens
from malicious ones. We also verify the high effectiveness of these models in both scenarios. This implies that new
malicious tokens can be detected prior to the malicious act, and, on the other hand, tokens supported by a strong
project can also be detected at an early stage. The software to replicate the numerical results obtain are provided in
https://github.com/T2Project/RugPullDetection.

9 Future Work

While our study has produced high precision and accuracy in detecting scams listed in Uniswap, it carries some
limitations. First, we believe that transferring learning techniques will not obtain the same quality results in DEXs

17



Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

of other chains such as PancakeSwap25 and QuickSwap26. Since the gasPrice is much lower, the economic cost of
simulating volume and transfers is almost negligible. Therefore, in order to obtain similar results in other chains we
should repeat the same longitudinal work and compute new features. In addition, as market trends may change, these
algorithms will have to be retrained in order to keep adding new information.
Second, even though our approach for studying the source code of the tokens with Slither [19] was efficient and reliable
for our purpose, it was not complete accurate, since it is a static analysis tool of the code and does not take into account
complex composability problems among other protocols. Therefore, to have more insights for a particular token we
suggest using stronger testing tools and formal verification tools, such as the ones provided in [5].
Third, even though the clustering coefficient proved to be useful, computing this feature is highly time consuming.
Therefore, we propose using other graph analysis, such as topology data analysis, to have a more efficient scam
detection algorithm and obtain even more reliable insights into the transaction graph.

References

[1] H Adams, N Zinsmeister, and D Robinson. “Uniswap v2 Core Whitepaper”. In: Retrieved October 12 (2020).
[2] Andreas A Aigner and Gurvinder Dhaliwal. “UNISWAP: Impermanent Loss and Risk Profile of a Liquidity

Provider”. In: arXiv preprint arXiv:2106.14404 (2021).
[3] Takuya Akiba et al. “Optuna: A next-generation hyperparameter optimization framework”. In: Proceedings of

the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 2019, pp. 2623–2631.
[4] Guillermo Angeris et al. “An analysis of Uniswap markets”. In: arXiv preprint arXiv:1911.03380 (2019).
[5] Kushal Babel et al. “Clockwork Finance: Automated Analysis of Economic Security in Smart Contracts”. In:

arXiv preprint arXiv:2109.04347 (2021).
[6] Emad Badawi et al. “An Automatic Detection and Analysis of the Bitcoin Generator Scam”. In: 2020 IEEE

European Symposium on Security and Privacy Workshops (EuroS PW). 2020, pp. 407–416. DOI: 10.1109/
EuroSPW51379.2020.00061.

[7] Massimo Bartoletti et al. “Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact”. In:
Future Generation Computer Systems 102 (2020), pp. 259–277.

[8] Lingyu Bian et al. “Image-Based Scam Detection Method Using an Attention Capsule Network”. In: IEEE
Access 9 (2021), pp. 33654–33665. DOI: 10.1109/ACCESS.2021.3059806.

[9] Giulio Caldarelli and Joshua Ellul. “The Blockchain Oracle Problem in Decentralized Finance—A Multivocal
Approach”. In: Applied Sciences 11.16 (2021), p. 7572.

[10] Tianqi Chen and Carlos Guestrin. “XGBoost”. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Aug. 2016). DOI: 10.1145/2939672.2939785. URL:
http://dx.doi.org/10.1145/2939672.2939785.

[11] Weili Chen et al. “Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum”. In: IEEE Access 7
(2019), pp. 37575–37586. DOI: 10.1109/ACCESS.2019.2905769.

[12] Weili Chen et al. “Phishing Scam Detection on Ethereum: Towards Financial Security for Blockchain Ecosystem”.
In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20. Ed. by
Christian Bessiere. Special Track on AI in FinTech. International Joint Conferences on Artificial Intelligence
Organization, July 2020, pp. 4506–4512.

[13] Philip Daian et al. “Flash boys 2.0: Frontrunning in decentralized exchanges, miner extractable value, and
consensus instability”. In: 2020 IEEE Symposium on Security and Privacy (SP). IEEE. 2020, pp. 910–927.

[14] Chris Dannen. Introducing Ethereum and solidity. Vol. 318. Springer, 2017.
[15] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019.

arXiv: 1810.04805 [cs.CL].
[16] Ardit Dika and Mariusz Nowostawski. “Security vulnerabilities in ethereum smart contracts”. In: 2018 IEEE

International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).
IEEE. 2018, pp. 955–962.

[17] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2021.
arXiv: 2010.11929 [cs.CV].

25https://pancakeswap.finance
26https://quickswap.exchange

18

https://doi.org/10.1109/EuroSPW51379.2020.00061
https://doi.org/10.1109/EuroSPW51379.2020.00061
https://doi.org/10.1109/ACCESS.2021.3059806
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/ACCESS.2019.2905769
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2010.11929


Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

[18] Shayan Eskandari et al. “SoK: Oracles from the Ground Truth to Market Manipulation”. In: arXiv preprint
arXiv:2106.00667 (2021).

[19] Josselin Feist, Gustavo Grieco, and Alex Groce. “Slither: a static analysis framework for smart contracts”. In:
2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB). IEEE. 2019, pp. 8–15.

[20] Jerome Friedman. “Greedy Function Approximation: A Gradient Boosting Machine”. In: The Annals of Statistics
29 (Nov. 2000). DOI: 10.1214/aos/1013203451.

[21] Yury Gorishniy et al. Revisiting Deep Learning Models for Tabular Data. 2021. arXiv: 2106.11959 [cs.LG].
[22] Yitao Li et al. “Dissecting ethereum blockchain analytics: What we learn from topology and geometry of the

ethereum graph?” In: Proceedings of the 2020 SIAM International Conference on Data Mining. SIAM. 2020,
pp. 523–531.

[23] Daniel Liebau and Patrick Schueffel. “Crypto-currencies and icos: Are they scams? an empirical study”. In: An
Empirical Study (January 23, 2019) (2019).

[24] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019. arXiv: 1907.11692
[cs.CL].

[25] Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. 2017. arXiv: 1705.07874
[cs.AI].

[26] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Tech. rep. Manubot, 2019.
[27] Dorcas Ofori-Boateng et al. Topological Anomaly Detection in Dynamic Multilayer Blockchain Networks. 2021.

arXiv: 2106.01806 [cs.CR].
[28] Gustavo A Oliva, Ahmed E Hassan, and Zhen Ming Jack Jiang. “An exploratory study of smart contracts in the

Ethereum blockchain platform”. In: Empirical Software Engineering 25.3 (2020), pp. 1864–1904.
[29] Jukka-Pekka Onnela et al. “Intensity and coherence of motifs in weighted complex networks”. In: Physical

Review E 71.6 (June 2005). ISSN: 1550-2376. DOI: 10.1103/physreve.71.065103. URL: http://dx.doi.
org/10.1103/PhysRevE.71.065103.

[30] Vatsal Patel, Lei Pan, and Sutharshan Rajasegarar. “Graph Deep Learning Based Anomaly Detection in Ethereum
Blockchain Network”. In: International Conference on Network and System Security. Springer. 2020, pp. 132–
148.

[31] Ross Phillips and Heidi Wilder. “Tracing Cryptocurrency Scams: Clustering Replicated Advance-Fee and
Phishing Websites”. In: 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). 2020,
pp. 1–8. DOI: 10.1109/ICBC48266.2020.9169433.

[32] Farimah Poursafaei, Ghaith Bany Hamad, and Zeljko Zilic. “Detecting Malicious Ethereum Entities via Applica-
tion of Machine Learning Classification”. In: 2020 2nd Conference on Blockchain Research Applications for In-
novative Networks and Services (BRAINS). 2020, pp. 120–127. DOI: 10.1109/BRAINS49436.2020.9223304.

[33] Mate Puljiz, Stjepan Begušic, and Zvonko Kostanjcar. “Market microstructure and order book dynamics in
cryptocurrency exchanges”. In: Crypto Valley Conference on Blockchain Technology. 2018.

[34] Rug pull detector. http://rugpulldetector.com/. Accessed: 2021-09-30.
[35] István András Seres et al. “Mixeth: efficient, trustless coin mixing service for ethereum”. In: International

Conference on Blockchain Economics, Security and Protocols (Tokenomics 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. 2019.

[36] Patel Nikunjkumar Sureshbhai, Pronaya Bhattacharya, and Sudeep Tanwar. “KaRuNa: A Blockchain-Based
Sentiment Analysis Framework for Fraud Cryptocurrency Schemes”. In: 2020 IEEE International Conference
on Communications Workshops (ICC Workshops). 2020, pp. 1–6. DOI: 10.1109/ICCWorkshops49005.2020.
9145151.

[37] Token Sniffer. https://tokensniffer.com/. Accessed: 2021-09-30.
[38] Christof Ferreira Torres, Mathis Steichen, et al. “The art of the scam: Demystifying honeypots in ethereum smart

contracts”. In: 28th {USENIX} security symposium ({USENIX} security 19). 2019, pp. 1591–1607.
[39] Ben Van Vliet. “An alternative model of Metcalfe’s Law for valuing Bitcoin”. In: Economics Letters 165 (2018),

pp. 70–72.
[40] Ashish Vaswani et al. Attention Is All You Need. 2017. arXiv: 1706.03762 [cs.CL].
[41] Will Warren and Amir Bandeali. “0x: An open protocol for decentralized exchange on the Ethereum blockchain”.

In: URl: https://github. com/0xProject/whitepaper (2017), pp. 04–18.
[42] Sam M Werner et al. “Sok: Decentralized finance (defi)”. In: arXiv preprint arXiv:2101.08778 (2021).
[43] Jiajing Wu et al. “Who Are the Phishers? Phishing Scam Detection on Ethereum via Network Embedding”. In:

IEEE Transactions on Systems, Man, and Cybernetics: Systems (2020), pp. 1–11. DOI: 10.1109/TSMC.2020.
3016821.

19

https://doi.org/10.1214/aos/1013203451
https://arxiv.org/abs/2106.11959
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/2106.01806
https://doi.org/10.1103/physreve.71.065103
http://dx.doi.org/10.1103/PhysRevE.71.065103
http://dx.doi.org/10.1103/PhysRevE.71.065103
https://doi.org/10.1109/ICBC48266.2020.9169433
https://doi.org/10.1109/BRAINS49436.2020.9223304
http://rugpulldetector.com/
https://doi.org/10.1109/ICCWorkshops49005.2020.9145151
https://doi.org/10.1109/ICCWorkshops49005.2020.9145151
https://tokensniffer.com/
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/TSMC.2020.3016821
https://doi.org/10.1109/TSMC.2020.3016821


Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

[44] Pengcheng Xia et al. “Demystifying Scam Tokens on Uniswap Decentralized Exchange”. In: arXiv preprint
arXiv:2109.00229 (2021).

[45] Pengcheng Xia et al. “Don’t Fish in Troubled Waters! Characterizing Coronavirus-themed Cryptocurrency
Scams”. In: 2020 APWG Symposium on Electronic Crime Research (eCrime). 2020, pp. 1–14. DOI: 10.1109/
eCrime51433.2020.9493255.

[46] Qi Yuan et al. “Detecting Phishing Scams on Ethereum Based on Transaction Records”. In: 2020 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS). 2020, pp. 1–5. DOI: 10.1109/ISCAS45731.2020.
9180815.

[47] Zero-dimensional Scam Detection. https://github.com/T2Project/RugPullDetection. Accessed:
2021-12-12.

[48] Liyi Zhou et al. “High-frequency trading on decentralized on-chain exchanges”. In: 2021 IEEE Symposium on
Security and Privacy (SP). IEEE. 2021, pp. 428–445.

A Table of features.

Group Name Description
liq_curve HHI applied to LP-tokens.HHI index tx_curve HHI applied to each token.

n_pool_syncs Total sync events.
weth Total weth.
price Price of token.Pool

liquidity Total liquidity.
lp_transfer Total number of LP-Token transfers.

mints Total number of mint events.LP-Token
burns Total number of burn events.

n_transfers Total number of transfers.
n_unique_addresses Total number of unique addresses.Token transfers

clus_coeff Clustering coefficient.
difference_token_pool Number of blocks between token and pool creation.

lock This feature is 1 if part of the liquidity is locked and 0 otherwise.
yield This features is 1 if there is yield farming involved and 0 otherwise.Token

burn This features is 1 if part of the liquidity has been burned and 0 otherwise.
Table 3: This table describes each feature used in XGBoost and FT-Transformer classifiers. Note that apart from Token
group, all features are defined as time series.

B Hyperparameters.

Model Parameter Type Distribution Range
max_depth Int Uniform [3, 10]
subsample Float Uniform [0.5, 1]

learning_rate Float Uniform [1e-5, 1]
gamma Float Log-Uniform [1e-8, 1e2]
lambda Float Log-Uniform [1e-8, 1e2]

XGBoost

alpha Float Log-Uniform [1e-8, 1e2]
Table 4: List of hyperparameters optimized using the optuna Python library.

20

https://doi.org/10.1109/eCrime51433.2020.9493255
https://doi.org/10.1109/eCrime51433.2020.9493255
https://doi.org/10.1109/ISCAS45731.2020.9180815
https://doi.org/10.1109/ISCAS45731.2020.9180815
https://github.com/T2Project/RugPullDetection


Do not rug on me: Zero-dimensional Scam Detection A PREPRINT

C Second Method Results.

XGBoost 24h
Hour Accuracy Sensitivity Precision F1_Score

1 0.990 0.714 0.810 0.758
2 0.991 0.747 0.838 0.789
3 0.991 0.755 0.837 0.793
4 0.992 0.762 0.856 0.806
5 0.992 0.773 0.849 0.809
6 0.992 0.771 0.860 0.813
7 0.992 0.763 0.851 0.804
8 0.991 0.758 0.841 0.797
9 0.991 0.762 0.845 0.801
10 0.992 0.779 0.845 0.810
11 0.992 0.773 0.849 0.808
12 0.992 0.786 0.852 0.816
13 0.992 0.778 0.859 0.815
14 0.992 0.786 0.854 0.817
15 0.992 0.776 0.851 0.811
16 0.992 0.773 0.848 0.808
17 0.992 0.779 0.852 0.813
18 0.992 0.784 0.864 0.821
19 0.992 0.782 0.858 0.818
20 0.992 0.789 0.853 0.819
21 0.992 0.779 0.863 0.818
22 0.992 0.784 0.867 0.823
23 0.992 0.784 0.869 0.824
24 0.992 0.787 0.860 0.821

FT-Transformer 24h
Hour Accuracy Sensitivity Precision F1_Score

1 0.989 0.682 0.791 0.729
2 0.988 0.702 0.778 0.734
3 0.990 0.707 0.824 0.755
4 0.987 0.707 0.751 0.724
5 0.990 0.683 0.840 0.749
6 0.989 0.706 0.805 0.749
7 0.990 0.717 0.812 0.760
8 0.990 0.710 0.821 0.759
9 0.990 0.722 0.815 0.763
10 0.990 0.712 0.828 0.762
11 0.990 0.717 0.811 0.759
12 0.989 0.722 0.795 0.755
13 0.989 0.718 0.775 0.745
14 0.989 0.746 0.789 0.764
15 0.990 0.750 0.793 0.770
16 0.990 0.734 0.812 0.767
17 0.991 0.757 0.820 0.784
18 0.991 0.746 0.826 0.782
19 0.991 0.765 0.829 0.792
20 0.990 0.720 0.838 0.765
21 0.991 0.760 0.834 0.793
22 0.991 0.747 0.834 0.786
23 0.991 0.746 0.843 0.786
24 0.991 0.758 0.819 0.785

21


	Introduction
	Related work
	Preliminaries
	Ethereum and Smart Contracts
	Decentralized Exchanges
	Uniswap
	Token Propagation
	Token distribution
	Transaction graph analysis


	Malicious Uniswap Maneuvers
	Data Collection
	Token labelling
	Ground truth labelling
	Malicious Tokens Labelling
	Non-Malicious Tokens Labelling


	Scam Detection
	Activity based Method
	24 Early Method
	Machine Learning and Hyperparameter Optimization
	Results
	Activity based Method Results
	24 Early Method Results
	Unicrypt Results


	Conclusions
	Future Work
	Table of features.
	Hyperparameters.
	Second Method Results.

