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Abstract

Pairing-based cryptographic protocols are typically vulnerable to small-
subgroup attacks in the absence of protective measures. Subgroup
membership testing is one of the feasible methods to address this
security weakness. However, it generally causes an expensive computa-
tional cost on many pairing-friendly curves. Recently, Scott proposed
efficient methods of subgroup membership testings for Gi, G2 and
Gt on the BLS family. In this paper, we generalize these methods
and show that the new techniques are applicable to a large class
of pairing-friendly curves. In particular, we also confirm that our
new methods lead to a significant speedup for subgroup membership
testings on many popular pairing-friendly curves at high security level.

Keywords: Pairing-based cryptography, Small-subgroup attacks, Group
membership testing, High security level.
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1 Introduction

Ever since the three party key agreement protocol was proposed by Joux [1],
pairings have found various interesting applications in the area of public key
cryptography [2-4]. Given an ordinary curve E over a prime field F,, a pairing
on F is a bilinear map of the form e : G; x Gy — Gp, where Gy, Gy and
Gr are three cyclic subgroups with large prime order r. In the asymmetric
case, the input groups G; and G, are two distinct subgroups of E(FF,), while
the output group Gr is a subgroup of ]F;k. The integer k is referred to as
the embedding degree of F with respect to r. The security of pairing-based
protocols relies on the difficulty of solving Discrete Logarithm Problems (DLP)
in the above three subgroups [5-7]. However, since the running environment
of a cryptographic protocol is possibly untrustworthy, powerful attackers may
force the system to offer a point with small order. It results in potential risks of
secret key exposures under small-subgroup attacks [8, 9]. Specially, we assume
that a pairing-based protocol is designed for using the group G (G € {Gq, G2})
to perform group operation, where G is contained in a large group G with
order h-r. If h has a non-trival small prime factor n and P is an element with
order n in the group G, an adversary may force the protocol to use P for the
public parameter. Since solving the DLP in (P) is easy, a participant would
leak partial information of his secret key a if the point [a]P is published. For
the worst case, the cofactor h could provide enough small prime factors such
that attackers can recover the full information of the secret key by using the
Pohlig-Hellman algorithm [10]. It should be noted that small-subgroup attacks
can be also mounted on Gr [11, 12]. One efficient way of reducing the chances
of such attacks is to increase the size of parameters such that the cofactor h
has no prime factors smaller than r [9]. In this case, we call G subgroup secure.
However, according to the construction of pairing-friendly curves, it is hard
for G; to be subgroup secure in most cases. In order to completely eliminate
the hidden dangers, clearing cofactors and subgroup membership testings are
the two feasible approaches until now.

1.1 Clearing cofactors

Clearing cofactors aim to multiply inputs by the corresponding cofactor h to
force them into the correct subgroup. If the result of the cofactor multiplica-
tion is exactly the identity element, then the protocol is aborted. In the case
of Gy, the cofactor h is small on many pairing-friendly curves. Thus, the cofac-
tor can be “cleared” at a low cost. Recently, fast cofactor multiplication for
G1 was proposed in [13], which may further reduce the computational cost. In
the case of Go, the cofactor h is typically large. In this situation, the cofac-
tor multiplication can be accelerated using the techniques from [14-17]. Even
though this method can resist small-subgroup attacks, it also causes other
problems. As pointed out by Hamburg [18], implementors must determine
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which points to execute “clearing cofactors” on. Moreover, cofactor multipli-
cation also changes system parameters. This would lead to additional troubles
for implementors [19].

1.2 Subgroup membership testing

The negative effects of clearing cofactors can be avoided by performing sub-
group membership testings. The essence of this method is to check whether a
candidate element has order r, i.e., raise it to the power of r and compare the
result with the identity element. Since r is a large prime, this operation is quite
costly and consequently affects the whole performance of pairing-based crypto-
graphic protocols. Recently, Scott [19] proposed a novel method for subgroup
membership testings for Gy, Gz and G on the Barreto-Lynn-Scott (BLS) [20]
family, which achieves the same effect as scalar multiplication/exponentiation
by r at the price of a relatively small overhead. Housni et al. [13] showed this
method was also suitable for the Barreto-Naehrig (BN) [21] family.

1.3 Our contributions

Motivated by the work of Scott [19], we propose more general membership
testing methods. We show that our new techniques are suitable for a large
class of pairing-friendly curves, including BN, BLS and Kachisa-Schaefer-
Scott (KSS) [22] families. We summarize our contributions as follows.

e We present a general method for Go membership testing on pairing-friendly
curves. It is shown that this method requires around logr/p(k) bit opera-
tions on many pairing-friendly curves. It is particularly interesting to see that
the number of bit operations can be further reduced to around logr/(2¢(k))
on some certain curves.

e Fast methods for G; and G membership testings are also proposed, which
require approximately logr/2 and logr/¢(k) bit operations, respectively.
For G; membership testing, our method mainly aims to ordinary elliptic
curves with j-invariant 0 or 1728.

e Finally, we implement the proposed techniques over different pairing-friendly
curves on a 64-bit computing platform within the RELIC [23] cryptographic
library. In particular, the new methods run in approximately 0.49 and 0.53
the time of the previous best ones for the Go and G membership testings
on the BN-P446 curve, respectively.

Outlines of this paper. The remainder of this paper is organized as follows.
Section 2 gives an overview of pairing subgroups, endomorphisms of elliptic
curves and small-subgroup attacks on pairing-friendly curves. Sections 3 and
4 describe efficient methods of membership testings for different pairing sub-
groups. In Section 5, we present implementation results. The conclusion is
given in Section 6.
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2 Preliminaries

In this section, we first recall elementary definitions of pairing subgroups Gy,
G2 and Gp. After that, we briefly introduce efficiently computable endomor-
phisms on ordinary elliptic curves. Finally, we discuss small-subgroup attacks
on several popular pairing-friendly curves.

2.1 Pairing subgroups

Let E be an ordinary elliptic curve over a prime field IF, and Og denote
the identity point of E. Let r be a large prime such that r || #E(F,). The
embedding degree k of E with respect to r is the smallest positive integer such
that r | ®x(p), where @ (+) is the k-th cyclotomic polynomial. When &k > 1, the
group E[r] is contained in E(F,x) [24]. The p-power Frobenius endomorphism
7 (x,y) = (2P, yP) on E satisfies the characteristic equation

™ —t-T+p=0, (1)
where the Frobenius trace t = p+ 1 — #E(F,). Define
Gy = E[r] nKer(m — [1]) = E(F,)[r], G2 = E[r] N Ker(r — [p])

and Gp C ]F;k to be the subgroup of r-th roots of unity. Denote by ¢ the
order of the automorphism group of E. If ¢ | k, then E admits a twist E’
over Fpe, where e = k/¢. Write ¢ as the twisting isomorphism from E’ to E.
Then E'(F,c)[r] is the preimage of G, under the map ¢ [25]. Therefore, it is
convenient to represent G, as E'(Fpe)[r]. The definitions of G, G2 and Gr
give rise to the following naive method for subgroup membership testings:

(1)P € Gy & P € E(F,) and [r]P = O,
(2)Q € Gy = E'(Fpe)[r] & Q € E'(Fpe) and [r]Q = Oy,
BaeGrea =1,

where Ops denotes the identity point of E’. Following Enge and Milan [26], we
call E as a curve with the lack of twists if the subgroup Gy can be only
represented as E[r]NKer(r —[p]). Since E[r]NKer(m —[p]) = E[r]NKer(P (7))
under the condition that r { ®4(1) [27, §.IX.7.4], [28, §.26.6.1], [29] membership
testing for Go on such a type of curves can be accomplished by checking that

Q € E(F,),[r]Q = Op and @4 (7)(Q) = OF.

In total, membership testing for each subgroup requires at least one scalar
multiplication/exponentiation by r. Since the prime r is very large, the naive
method is extremely slow in practice.
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2.2 Endomorphisms of ordinary elliptic curves

Consider an ordinary elliptic curve E; over [F,, with j-invariant 0 first. Then
the curve is defined by the equation y?> = 3 + b for some b € F; and
p = 1 mod 3 [30, Proposition 4.33]. Consequently, there is an endomorphism
7 (z,y) = (a-z,y) on Ey, where a is a primitive cube root of unity in F;.
This endomorphism corresponds to a scalar multiplication by A\; (resp. A2)
in G; (resp. Ga), where A\ and Ay are two distinct roots of the equation
A2 4+ X+ 1 = 0mod r. Likewise, given an ordinary curve Eo over F, with j-
invariant 1728, the curve is defined by the equation y?> = z® 4 az for some
a € Fy and p = 1 mod 4. There is an endomorphism 7 : (z,y) — (—z,8 - y)
on Ey, where 3 is a primitive fourth root of unity in . This efficiently com-
putable endomorphism is equivalent to a scalar multiplication by A1 (resp. A2)
in G; (resp. Ga), where A\ and Ay are two distinct roots of the equation
A2 +1 = 0 mod r. Using the Gallant-Lambert-Vanstone (GLV) method [31],
these efficiently computable endomorphisms allow fast elliptic curve scalar
multiplication. Throughout the paper, we call such efficiently computable
endomorphisms as GLV endomorphisms.

Another well known efficiently computable endomorphism is ¢ = ¢~ lomo¢
on E’ [32], which satisfies the characteristic equation

Y —t-p+p=0. (2)

It is clear that 1)’ = ¢~1 o7 o ¢ for all i € ZT. This means that the order of
1 is precisely k restricted in E'(F,e). Note that

™o ¢(Q) = [plo(Q) 3)

for all Q@ € Go. Acting the map ¢~! on both sides of Eq. (3), it yields that

Q) =¢""omod(Q) =9¢"" o [ple(Q) = [plQ = [t - 1]Q. (4)

This endomorphism was exploited to speed up scalar multiplication in G by
Galbraith and Scott [32]. Furthermore, it also leads to a high dimensional GLV
method on a large class of elliptic curves [33]. Fast implementation of this
method on ordinary curves with j-invariant 0 was studied in [34].

2.3 Small-subgroup attacks on pairing-friendly curves

The pairing subgroups G1, G2 and G are typically contained in larger groups
G1, G2 and Gr, respectively. Following Barreto et al. [9], the groups G, G and
Gr are defined as

G1 C G =E(F,), Gy C Gy =E'(Fpe), Gr C Gr = Ga, (),
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where Gg,(p) is the k-th cyclotomic subgroup of F;k, ie., Go,p = {a €

B |a®+®) = 1}, If E is a curve with the lack of twists, we define G as
GQ g g2 = Ker(@k(w)).

Explicit formula for computing #Ker(@k(ﬂ)) is given in [29, Proposition 2].
On this basis, the associated cofactors hi, hy and hr are defined as follows:

hi = #G1/r, ho = #Ga/r, hp = #Gr/r.

Note that group membership testings for G; are easy, where i € {1,2,T}.
Thus, according to the principle of small-subgroup attacks, a curve E could
be subgroup secure if the relevant cofactors hy, ho and hp contain no prime
factors smaller than r. In Table 1, we have collected several popular pairing-
friendly curves that can be parameterized by polynomials p(z), r(z) and t(z)
given a seed z. Note that the CP6-P782 and BW6-P761 curves can be used in
ZEXE [35] and Geppetto [36, 37] construction, respectively. The small factors
of hy, he and hr can be obtained using the ECM() function in Magma [38]. It
can be seen from Table 1 that small-subgroup attacks can be easily mounted
on cryptographic protocols constructed on these curves. Note that we have
been unable to obtain a small factor of the cofactor hr (c1336) of BN-P446
limited by our computational power. But it is not recommended for skipping
the G membership testing on the curve as the cofactor is composite.

Table 1 Subgroup security for a list of popular pairing-friendly curves. The symbol ¢,
denotes a composite number of size m bits.

family logp logr seed z h1 ha hr
CP6 782 377 2063425842564 951 49471946 1 1[35] c50-c357 cCi92-C1778 C77-Cl111
BW6 761 377 2063425819561 951 4947 49461 1(39] c56-c328 Co7-C288  C18-C1126

BN 446 446 2110 236 4 140) 1 13cs10 1336
BLS12 461 308 —277 4 250 4 233[41] 153 C25-Ca42  C39-C1495
KSS16 330 257 —2344227 2331920 oll 1 q[4]] crs co3-clo52  34-c2379
KSS18 348 256 2% 4222 _ 29 4 2[41] co3 C78-C7T10  C€131°C1595
BW13 310 267 —2224[42] €43 €83°C3368 C126°C3368
BW19 286 259 —145[42] c28 C50°€4861  C41°C5101

3 G2 Membership Testing

For efficiency, most of pairing-based protocols are instantiated with pairing-
friendly curves admitting a twist. Recently, a few curves with the lack of
twists also find their own applications in the cryptographic protocols that the
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implementation efficiency of one party mostly relies on the performance of
scalar multiplication in G;. For example, Clarisse et al. [42] found that the
BW13-P310 and BW19-P286 curves may be suitable for several cryptographic
schemes, such as Enhanced Privacy ID [43] and Direct Anonymous Attesta-
tion [44]. In this section, we investigate the problem of Gy membership testing
on both types of curves.

3.1 Pairing-friendly curves admitting a twist

Scott [19] proposed an efficient method for Gy membership testing on a curve
E admitting a twist £’ over Fpe. The main idea can be summarized as follows:

Q€ Go=E'(Fy)lr] & Q€ F'(Fye) and (Q) = [t — 1]Q

under the condition that ged(hi, he) = 1. The computational cost of this
method largely comes from the scalar multiplication by ¢ — 1. When checking
a candidate element using the above technique, one should be careful to select
the formulas of scalar multiplication. In particular, in the whole process of this
testing, it is not allowed to use any assumptions of Q € Gs. Therefore, the
technique proposed in [32] can not be applied as it only works for elements
in GQ.

In this subsection, we propose a more general method that requires around
logr/p(k) bit operations on many pairing-friendly curves. In addition, it does
not rely on the condition that ged(hy, ha) = 1 and thus has a wide applicability.
To illustrate it, we first recall the modular lattice defined in [32, Section 3]:

e(k)-1
Ly={(a0,a1," " Qp(r)-1) ez | Z a;-p' =0mod r}.
i=0

A basis of Ly is given by
{(7“,0, T 70)7 (_pa 1707 T a0)7 <_p270a 170 o 70)a B} (_p¢(k)_1a05 T ,0, 1)}

For a given vector (co,c1,- -+ ,Cuk)—1) € Ly and a random point R € Go, it is
obvious that

w(k)—1 ' p(k)—1 ‘
Z [Cz]W(R) = Z [Ci ';DZ]R = Og.
1=0 i=0

Furthermore, let @) € E’(FF,.) be a point whose order is unknown satisfying
that

_Z [ci]'(Q) = Op. (5)
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It is natural to ask whether the order of @ can be determined by Eq. (5). In
the following, we will show that Eq. (5) actually gives a multiple of the order
Q. Since the point @ also satisfies Eq. (2), it is equivalent to express Eq. (5) as

(bo +019)(Q) = Opr. (6)

where by and by are given by
p(k)—1 .
bo+bip =2 " " e mod (7 — 1+ p). (7)

Denote 1& as the dual of ¥. Then, the dual of by + b1 is by + blzﬁ and thus we
have

(bo + b190) (bo + 1) = b3 + b - by - (¥ + ) + b3 (i)
=b24+by-by-t+b}p.

Thus, acting the endomorphism by + bﬂ[} on the both sides of Eq. (6), we get
[b§ +bo - b1 -t + b3 - p|Q = Op.

Putting it all together, one can obtain a multiple of the order @ from Eq. (5).

On the other hand, since @ € E'(F,.), we conclude that the order of @ divides

ged(bZ +bg - by -t + b3 - p, he 7). Inspired by the above observation, we give the
following theorem.

Theorem 1 Let E be an ordinary elliptic curve over Fy and r a large prime such
that v || #E(Fp). Denote by t the trace of the Frobenius endomorphism 7. Let E' be

a twist of E over Fpe such that r || #E' (Fpe). Let (co,c1,- - s Co(k)—1) be a vector
in Ly, and bo, b1 the corresponding parameters given by Eq. (7). Assume that
ged (b +bo by -t + b7 -p,ho-7) =7 (8)
Given a non-identity point Q € E'(Fpe), then Q € Go = E'(Fpe)[r] if and only if
e(k)-1 )
> @' (@) =0p.
=0

Proof If Q € Go, then ¢¥(Q) = [p]@ (see Eq. (4)) and thus we conclude that

p(k)—1 ) w(k)—1 ,
Yool (@= > [eip'Q=0p.
i=0 i=0

Conversely, it follows from Eq. (2) that
¥*(Q) — (@) + [PlQ = Opr. (9)
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1t Y29  [)v (Q) = O, Egs. (7) and (9) imply that
[1]¥(Q) = —[bo] Q. (10)
Together with Egs. (9) and (10), it yields that

[b3 + bo - by -t + b3 - p|Q

=[b710°(Q) — [b7 - ](Q) + [b7 - P Q (11)
=Op.

Furthermore, since Q € E'(Fpe), we have the order of Q divides ged (b% +bo-b1-t+

b% -p,ha - r). By Eq. (8), we conclude that @ € Ga, which completes the proof of the
theorem. (]

Remark 1 From the proof of Theorem 1, it is interesting to observe that
b3 +bo-by-t+bi-p
=01 ((—bo/b1)* — t(~bo/b1) + D)

=Res(bg + byt > — ) + p)
:Res( Zi?il Cii/)i, 1/)2 —t +P),

where Res(f, g) represents the resultant of two polynomials f and g.

Define hYy = (b3 + bo - by -t + b3 - p)/r. It can be seen from Eq. (7) that
bg + by - p = 0 mod r, which implies that

hor=(b24bo-by-t+b-p)
E(bo-‘rbl)(bo-‘rbl-p)
= 0 mod r.

Thus hf € Z and Eq. (8) is equivalent to ged(he, ) = 1. A question raised
here is how to find out a short vector in L, such that ged(hg, hsy) = 1. In
fact, we can always select the target vector as (r,0,---,0), so by = r and
b1 = 0, meaning hf = r. Since Gy is the unique subgroup of E’(FF,.) with order
r, the condition ged(hg,hy) = 1 clearly holds. Indeed, this vector actually
corresponds to the naive method, which is inefficient in practical applications.
In Algorithm 1, we present a Magma code for finding out a short vector for
G2 membership testing. It proceeds as follows. Lines 1-7 construct the target
lattice; Lines 8-17 check whether there is such a shortest vector (for Euclidean
norm) meeting the condition that ged(hg, hh) = 1. If so, then Algorithm 1
returns this vector; otherwise, Lines 18-27 enumerate short vectors in a process
V until a target one is found or the process has been completed with returning
“NULL”. The latter case indicates there exists no valid short vector in V.
We emphasize that one must set an appropriate range of norm in the
ShortVectorsProcess () function such that the output of Algorithm 1 is not
“NULL”. Since we expect that the target short vector is “closed” to the short-
est ones, it is reasonable to set the lower bound as the norm of shortest vectors.
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However, there is no standard for the selection of the upper bound. In our set-
ting the value is selected as a small multiple v of the norm of shortest vectors.
The specific values of v on different pairing-friendly curves are presented in
Table 2.

Algorithm 1 Finding out a short vector for Gy membership testing

Input: The characteristic p, the trace ¢, the prime r, the embedding degree k,
the cofactor hy and the small multiple v
Output: a short vector C or NULL

1 u:=EulerPhi (k) ;

2 B:=RMatrixSpace(Integers(), u,u)!0;

3 B[1][1]:=r;

4 for i:=2 to u do

5 Bli] [1]:=-p~(i-1);B[i] [i]:=1;

6 end for;

7 L:=LatticeWithBasis(B);

8 S:=ShortestVectors(L);

9 R<x>:=PolynomialRing(Integers());

10 for i:=1 to @S do

11 C:=S[i];

12 b:=R!Eltseq(C);

13 h2d:=Resultant (b, x"2-t*x+p) div r;
14 if GCD(h2,h2d) eq 1 then

15 return C;

16 end if;

17 end for;

18 min:=Norm(ShortestVector (L)) ;max:=v*min;
19 V:=ShortVectorsProcess(L, min, max);

20 repeat

21 C:=NextVector (V) ;

22 if Norm(C) eq O then

23 return "NULL";

24 end if;

25 b:= R!Eltseq(C);

26 h2d:=Resultant (b, x"2-t*x+p) div r;
27 until GCD(h2,h2d) eq 1;

28 return C;

3.1.1 Comparison

We now reinterpret the previous method using Theorem 1. Since r | (p +
1 —t), the vector (¢t —1,—1,0,---,0) € Ly. In fact, the previous method
can be regarded as always selecting the short vector as (¢t — 1,—1,0,---,0).
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Table 2 The short vectors of G2 membership testing on a list of pairing-friendly curves
admitting a twist. On KSS16-P330, the value u is equal to (—z — 25)/70. On BW6-P761,
the previous method is not recommended as the bit length of ¢ is larger than that of r.

Curve v ged(hy,hs) Short vector Short vector

(The previous method [19]) (This method)
BW6-P761 1 1 - (252 (22 -2)+2, 251 (22 -2)-1)
CP6-P782 3 4 - (7222 -2)+2—-1, 5522 -2)+1)
BN-P446 1 1 (622,-1,0,0) (z+1,2,2,—22)
BLS12-P461 1 1 (2,—1,0,0) (2,—1,0,0)

(11u+4, —9u—3,3u+1, 3u+1,
KSS16-P330 2 4 n —13u —5,7u + 3,u, 11u + 4)
4

KSS18-P348 1 1 (=5 ,-1,0,0,0,0) (%,1,0,£,0,0)

For this vector, the corresponding parameters of by and b; are t — 1 and —1
respectively, so

ged (b2 +bg - by -t + 03 -p ho 1) =1 < ged(hy, hy) = 1.

Therefore, our method can be seen as an extension and generalization
of the previous one proposed by Scott. In https://github.com/eccdaiy39/
smt-magma/tree/main/vector, we provide the source code to look for target
short vectors on different pairing-friendly curves. The related data is summa-
rized in Table 2. For BW6-P761, BN-P446, BLS12-P461 and KSS18-P348, the
given vectors are exactly the shortest vector in Ly. In fact, the shortest vec-
tors on BN-P446 and KSS18-P348 were recommended in [45, Section IV] to
construct optimal ate pairings. For CP6-P782 and KSS16-P330, there exists
no shortest vector meeting the condition (8). Fortunately, we find out valid
short vectors that are very “closed” to the shortest ones on the two curves.
By the property of shortest vectors [45, Theorem 2], Gy membership testing
requires around logr/¢(k) bit operations on these curves. In Table 2, we also
list the short vectors of the previous method on these curves. It is clear that
our method is in effect identical to the previous one on BLS12-P446, and more
efficient than the previous one on BN-P446 and KSS18-P348.

3.1.2 Examples

In the following, we present two examples to illustrate the main mechanics
of the new method in detail. The first one is to show that the performance
benefits resulting from the new method. The second one aims to explain that
the new method is also suitable for curves with ged(hq, ha) # 1.


https://github.com/eccdaiy39/smt-magma/tree/main/vector
https://github.com/eccdaiy39/smt-magma/tree/main/vector
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Ezample 1 The BN family is parameterized by
r(z) = 3621 +362° + 1822 + 62 + 1,
t(z) = 62% + 1,
p(z) = 3621 + 362° + 2427 + 62 + 1.

In this family, one of shortest vectors in Ly is given by (z + 1,2, 2, —22). In the
following, we prove that this vector can be used for the Go membership testing on
all curves in the family with z # 5422 mod 21961. Firstly, according to the form of
the target vector and [9, Proposition 1] the parameters h) and hs can be expressed
as polynomials

hh(z) =51842'% 41036827 + 125282° 4 907227 + 47162° + 16202° + 4442+
1022° 4+ 1822 + 1,
ho(z) =362" + 362° + 3022 + 62 + 1.
Computing ged (h2(z), hy(2)) by the XGCD() function in Magma reveals that
A-ha(2) + A" - hiy(z) = B, (12)
where
A = —46621442° — 136961282° — 188965442" — 1662825625 — 94022162°

— 36961202% — 9102242% — 20641822 — 381022 — 1917,

A" =323762° + 6273622 + 496042 + 23878,
B =21961.
Since the parameter B is prime, Eq.(12) indicates that ged(ha(20), h5(20)) is equal
to 1 or B for any given seed zg. Then we have
ged(ha(20), ha(20)) = B < ged(ha(20), ha(20)) = 0 mod B. (13)
Since ged(ha(z), hh(2)) = z — 5422 over Fp, it follows that zg = 5422 mod B. In
conclusion,
ged(hg, hh) = 1 < 2 # 5422 mod 21961. (14)

The right side of (14) actually holds for many popular curves in the BN family, such
as

(1)BN-P254 : z = — (252 4+ 2% 4 1),

(2)BN-P382 : z = — (2% 4+ 278 4 207 4 964 4 948 4 1)

(3)BN-P446 : z =210 4 236 4 1.
Now we consider the procedure of Go membership testing on these curves. Let Q be
a point that purports to be an element of G2. By Theorem 1, the point @ is valid if
and only if

{Q € E'(F,2),
[z + 1Q + ¥([£]Q) + ¥*([1Q) = v*([2:]Q).

In total, our method requires approximately one scalar multiplication by z, three
point additions, one point doubling and three applications of the endomorphism 1.
The above computational cost is actually dominated by the scalar multiplication by
z. By the form of the polynomial r(z), we can see that log|z| ~ logr/p(k).

The previous leading work of the Go membership testing in the BN family was
proposed in [13], which requires approximately one scalar multiplication by 622
Clearly, our method is more efficient than the previous one.
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Remark 2 For the Go membership testing in the BN family, there also exist the
following two candidate short vectors:
Vi=2z2+1,—-2,2), Vo= (62+2,1,—-1,1).

Following the same technique as described in Example 1, we find that the vector
V1 requires z # 564 mod 3061, and V3 requires z # 4 mod 13 and z # 92 mod 97.
In particular, the vector V5 is recommended for the construction of Miller iteration,
which allows to perform G2 membership testing during pairing computation in some
certain protocols.

Ezample 2 The KSS16 family is parameterized by
28 4 482% 4625

") =" %ms0
22° + 412 + 35
t(z) = =,
(2) 35
p(2) = 2104229 4528 44825 415225 4-2402* 462522 + 2398243125
B 980 '

With parameters as above and from [25, Proposition 2], the cofactors h; and hg are
expressed as polynomials

hi(z) = 125/22% + 1252 + 625/2,

ho(z) = (232 + 8231 + 44230 4+ 15222 4 55022 + 2136227 4 8780226 + 2893622° +
83108224 + 23607222 + 754020222 + 2287480221 + 5986066220 + 1413906420 +
359327402'% + 97017000217 + 2379248702'¢ + 49853496821° + 10239556202 +
23534829202% 4+ 53830029782'% + 103574678802'' + 1739122765221 +
3181907589627 4+ 654425386602° + 11707793436027 + 1621049747002° +
2087627401682° + 338870825094z% + 5527451979602° + 6323586875002 +
414961135000z + 126854087873)/15059072.

Since the parameterization of the KSS16 family requires z = +25 mod 70, it is
easy to check that ged(h1, ha) always has a factor of 2. For this reason, the previous
fastest method for the Go membership does not work on all curves in this family. We
now investigate how to perform the G membership testing using the new method
on KSS16-P330. Using Algorithm 1, we obtain a short vector (cg,c1, - ,c7) as

(1lu+4,—9u —3,3u+1,3u+1,—13u — 5, Tu + 3, u, 11u + 4)

where u = (—z — 25)/70. By Theorem 1, a candidate point @) is a member of Gg if
and only if

Qe E/(Fp‘l)v
6 .
S0 (el = —(lerlQ).
To compute [¢;]Q for i =0,1,---,7, the following sequence is performed:

U@ — [u+1]Q — [2u+ 1]Q — [Bu+1]Q — [6u + 2]Q — [Tu + 3]Q —

[~9u — 3]Q — [11u +4]Q — [~13u — 5]Q.
The cost of computing (15) is one multiplication by wu, seven point additions
and one point doubling. On this basis, the points Z?:O ¥ ([e;]Q) and —1([er]Q)
can be computed at a cost of six point additions and seven applications of the
endomorphism 1.

Neglecting the cost of checking Q € E’(]Fp4), our method requires one multipli-
cation by wu, thirteen point additions, one point doubling and seven applications of

(15)
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the endomorphism . The most costly part is the scalar multiplication by u, which
is roughly log r/p(k) bits.

Remark 8 In Example 2, we do not give a general result of the Go membership testing
in the KSS16 family with seed z = —25 mod 70. For the selected vector, it is easy to
find two polynomials A, A" € Z[z] and an integer B such that A-ha(2)+A’h%(2) = B.
Unfortunately, the parameter B is too large and thus we have been unable to find
out all “bad” seeds in [0, B — 1] such that gcd(ho, hb) # 1.

3.2 Pairing-friendly curves with the lack of twists

Let E be an ordinary curve with the lack of twists. Recall from Section 2.1 that
QeGy=E[r]NKer(r —[p]) & Q € E(F,x),Q € E[r] and Q € G,

where Gy = Ker(®(m)). Since checking @ € Go only requires a few point
additions and applications of the endomorphism 7, the computational cost of
the testing comes largely from checking @ € EJr]. It is interesting to observe
that Theorem 1 can be generalized to accomplish this checking by substituting
the endomorphism by 7. We summarize the observation in the following
corollary.

Corollary 1 Let E be an ordinary elliptic curve over F;, with the lack of twists. Let r
be a large prime such that r || #E(Fp), t the trace of the Frobenius endomorphism 7,
and k the embedding degree of E with respect to r. Let (co,cq, - 7C¢(k)—1) € Ly,
and bg and by be integers such that

1

e(k)— i
bo + by = Zi:O cim" mod (772 —tm +p). (16)
Assume that
ged(bg + b - by -t + b3 -p hy - T) =1 (17)
(k)-1 )
Given a non-identity point Q of E(F,«), then Q € Gz if and only if [ci]7*(Q) =
1=0

Op and Q € Ga.

Proof The necessity is obvious and we now prove the sufficiency. It follows from
Eq.(1) that

Q) — [(Im(Q) + [PlQ = Og. (18)

Similar to the proof in Theorem 1, the condition Zf:(g%l [ci]m'(Q) = Op and
Eq. (18) indicate that the order of Q divides b3+ bg - by - t + b3 - p. Furthermore, since
Q € G2 and Q # Op, Eq.(17) implies that the order of @ is precisely r. Thus, we
conclude that @ € E[r] N G2 = G2, which completes the proof. |
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Corollary 1 induces an efficient method for the Gy membership testing on
pairing-friendly curves with the lack of twists. Likewise, this method requires
around log r /¢ (k) bit operations.

Let E be an ordinary curve over IF,, with j-invariant 0 or 1728. Recall from
Section 2.2 that there exists a GLV endomorphism 7 acting as multiplication by
an integer A on Ga. Denote d to be the order of 7. It is obvious that d € {3,4}.
If E is a curve with the lack of twists, then ged(k,6) = 1 [29, Section 1],
meaning ged(k,d) = 1. For any R € Go and positive integer 4, it is clear that

7 (R) =[(t —1)'|R € Gy, 7(R) = [NR € Ga.

Since Gs is cyclic, there exists an integer b such that

Furthermore, let @ € E(F,x) be a point whose order is unknown satisfying
that

(@) = [bl7(Q). (19)

Similar to the case of pairing-friendly curves admitting a twist, we expect to
obtain a multiple of the order @ from Eq. (19) by taking full advantage of the
properties of w and 7. Following this idea, we propose a new method to further
reduce the computational cost of Gy membership testing on this class of curves
under a mild condition. Our general understanding of the construction of this
method comes mostly from the following theorem.

Theorem 2 Let E be an ordinary elliptic curve over Fp with the lack of twists, and
j-tnvariant O or 1728. Let r be a large prime such that v || #E(Fp), t the trace of
the Frobenius endomorphism w, and k the embedding degree of E with respect to r.
Let 7 be a GLV endomorphism on E with order d, and act as multiplication by an
integer A on Ga. Let ¢ be a positive integer with ged(k,i) = 1, and denote m to be
the inverse of d - i modulo k. Assume that

gcd(de'm — .ty p,ho 1) =" (20)

where b= (t —1)*- A\~ mod r. Given a non-identity point Q € E(Fpr), then Q € G2
if and only if 7 (Q) = [b]7(Q) and Q € Ga.

Proof Recall that ged(k,d) = 1 on pairing-friendly curves with the lack of twists
according to the previous discussion. Under the assumption that ged(k,:) = 1, we
have ged(d - i,k) = 1 and so there exists an integer m that is the inverse of d - ¢
modulo k.

If Q € Ga, it is obvious that Q € Gy as G2 C Ga. Furthermore, from 7(Q) = [A\]Q
and 7(Q) = [t — 1]Q we have

(@) = [(t — 1)" mod r]Q = [b- NQ = [b]7(Q).
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Conversely, if 7°(Q) = [b]7(Q) we get
Q) = (@) = b,

as the order of 7 is d. Since d - i - m = 1 mod k, there exists an integer n such that
d-m-i—mn-k=1. This implies that

Furthermore, it follows from Eq. (1) that

m(Q) ~ [lI7(Q) + PQ = Op. (22)
Combining Egs. (21) and (22), it yields that

2™ — . p™ 4 plQ = Op. (23)

On the other hand, since Q € G2, Eq. (23) indicates that the order of @ divides
ged (bzd'm —t-b%™ 4 p. ko -r). From Eq. (20), we conclude that Q € E[r]NG2 = Ga,
which completes the proof. O

Let E be an ordinary curve over I, with j-invariant 0 or 1728. Recall from
Section 2.2 that there exists a GLV endomorphism 7 acting as multiplication
by an integer A on Gs. To minimize the computational cost, we expect that
the bit length of b is as small as possible. Since ¢ — 1 is a primitive k-th root
of unity modulo r, the optimal parameter b can be obtained by exhausting
i € {0,1,---k — 1} such that ged(k,7) = 1 under the assumption (20). We
fortunately find that Theorem 2 induces a fast method for G, membership
testing on BW13-P310 and BW19-P286.

In Table 3, we list important parameters of G membership testing on
BW13-P310 and BW19-P286. By Theorem 2, the computational cost of the
testing on the two curves is dominated by the multiplication by b. Since
deg (r(z)) = 2¢(k), it is interesting to see that log|b| = log|z| ~ logr/(2¢(k)).

Table 3 Parameters of G2 membership testing on BW13-P310 and BW19-P286.

Curve % m b
BW13-P310 1 9 —z
BW19-P286 1 13 —z

3.2.1 Example

In the following example, we show how to perform the G, membership testing
on BW13-P310.

Ezample 3 From Construction 6.6 in [46], a family of curves with &k = 13 and j-
invariant 0 can be parameterized by:

r(z) = Prg(2),
t(z) = —

1
p(z) = g(z + 1)2(z26 — 2B ) =7
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In order to reach the 128-bit security level, the seed z is recommended as z =
—2224 [40]. The curve is defined by the equation y2 =23 -17. By the form of the
polynomial r(z), we can see that

226—213+150m0dr.

Thus, there exists a GLV endomorphisms 7 with eigenvalue A = 213 — 1 restricted in
Ga. Let notations i, m and b be defined as in Theorem 2. Taking ¢ = 1, we have b =
—z,m =9 and ged (b5 —-b3™ +p, ho-r) = r, where hy = #E(Fp18)/(r-#E(Fp)).
By Theorem 2, the Go membership testing requires to check that
Qe E(Fpm),
{ Q) = [~217(Q),
Y2 (@) =-Q.

Note that Zzli1 7(Q) can be calculated by using the following formulas:

Ry =7(Q) +7°(Q), R2 = n*(R1), R3 = Ry + Ry,

12 ;
Ry =n"(R3),Rs = 7" (Ra), .~ 7'(Q) = Ry + Ry + Rs.
Neglecting the cost of checking Q € F (Fpls), our method requires one scalar mul-
tiplication by z, four point additions, five applications of the endomorphism 7 and

one application of the endomorphism 7.

4 Gy and Gy Membership Testings

In this section, we investigate the problems of membership testings for G; and
Gr.

4.1 The G, case

Let E be an ordinary curve with j-invariant 0 or 1728. Recall from Section 2.1
that a GLV endomorphism 7 corresponds to a scalar multiplication by A on
Gy, where

A2+ A+ 1=0mod r,if j(E) = 0; (24)
A +1=0mod r,if j(E) = 1728.
If £ is a curve in the BLS12 family, Scott [19] proved that
P e Gy =E(,)r] < PecEF,) and 7(P) = [\]P. (25)

This observation induces a fast method for the G; membership testing in the
BLS12 family, whose computational cost comes mostly from the multiplication
by A. Define h) as

hx = (26)

A2+ X+ 1)/r,if §(E) = 0;
(N2 +1)/r,if j(E) = 1728.

Recently, Housni et al. [13, Proposition 2] summarized that this method is
actually suitable for all curves satisfying that ged(hq, hy) = 1.
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Inspired by this method, we propose a general one that can be used in many
popular pairing-friendly curves with ged(hy,hy) # 1. To illustrate it clearly,
we start by defining the GLV lattice as

L, = {(ag,a1) € Z*|ag + a1 - A\ = 0 mod r}.

Then a general method for G; membership testing is derived from the following
theorem.

Theorem 3 Let E be an ordinary elliptic curve over Fp with j-invariant 0 or 1728,
and r a large prime such that r || #E(Fp). Let T be a GLV endomorphism on E,

and act as multiplication by an integer A on Gi. Let (ag,a1) € L+ such that
ged (a%—ao-al +a%,h1~7") =r,if j(E) = 0; @)
ged (af + ai, by - 7) = r,if j(E) = 1728.

Given a non-identity point P € E(Fp), then P € Gy if and only if [ag) P+ [a1]7(P) =
Og.

Proof We only give the proof for the case j(E) = 0 as the other case is analogous. If
P € Gy, then the order of P is r and 7(P) = [A\]P. Since ag+a1-A = 0 mod r we have
[ag]P + [a1]7(P) = [ap + a1 - A]P = Op.

Conversely, since P2 474+1=0we get
[ai]7*(P) + [ai]7(P) + [af] P = Op. (28)
By the conditions P € E(Fp) and [ag]P + [a1]7(P) = O, we obtain from Eq. (28)
that
[a% —agp-ay + a%]P =Og,
[hl . T]P = OE'

Since ged (a% —ap-a; + a% h1 ~r) = r, we conclude that P € G, which completes
the proof of the theorem. |

In Algorithm 2, we describe how to find out a short vector for G; mem-
bership testing in Magma code. Table 4 presents the specific values of v on
different pairing-friendly curves such that this function outputs valid short
vectors.

4.1.1 Comparison

In Table 4, we also collect the values of ged(hy,hy) and the short vectors
output by Algorithm 2 on different pairing-friendly curves. Since the previous
method works under the condition that ged(hy, hy) = 1, it not suitable for
KSS16-P330, KSS18-P348, BW13-P310 and BW19-P286. As a comparison, our
method do not rely on this condition. In fact, the previous method is equivalent
to the proposed one by fixing the short vector (ag,a1) as (A, —1). Thus, we
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Algorithm 2 Finding out a short vector for G; membership testing

Input: The prime r, the scalar A (lambda), the cofactor hy, the small multiple
v and the CM discriminant D (D = =3 if j(E) = 0, and D = —4 if j(E) =

1728)

Output: a short vector C or NULL

1 B:=RMatrixSpace(Integers(), 2,2)![r,0,-lambda,1];
2 L:=LatticeWithBasis(B);

3 S:=ShortestVectors(L);

4 for i:=1 to #S do

5 C:=S[i];

6 gcd:=GCD(C[1]1°2-(D mod 2)*C[1]*C[2]+C[2]"2, hilx*r);
7 if gcd eq r then

s return C;

9 end if;

10 end for;

11 min:=Norm(ShortestVector (L)) ;max:=v*min;

12 V:=ShortVectorsProcess(L, min, max);

13 repeat

14 C:=NextVector (V) ;

15 if Norm(C) eq O then

16 return "NULL";

17 end if;

18 until GCD(C[1]"2-(D mod 2)*C[1]*C[2]+C[2] "2,hl*r) eq r;
19 return C;

Table 4 The short vectors for G; membership testing on a list of pairing-friendly curves
with j-invariant 0 or 1728.

Curve v A ged(hi, hy) (ap,a1)
BW6-P761 1 2°—32%4323—z+41 1 (35122 -2)—1,152(22 —2) — 2)
BLS12-P461 1 22 1 (2%,1)

(z%424) 31244625 —172%4—625
KSS16-P330 1 2= 1250 (Segps, =i
KSS18-P348 1 23 +18 343 ((2)3,—18ag — 1)
BW13-P310 1 —213 22—z24+1 (=("+2)('+23—2-1),a0-2—1)
BW19-P286 1 —219 22—2+1 ((2—219 (=22 +1)(24+1),a0-2—1)

have generalized the previous method such that it can be applied into pairing-
friendly curves with ged(hi,hy) # 1. Analogous to Go membership testing,
there always exists a short vector (ag,a1) € £, meeting the condition (27).
As we have seen in Table 4, the selected short vectors guarantee that Gy
membership testing requires approximately logr/2 bit operations.
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Remark 4 The selected short vectors (ag, ay) listed in Table 4 satisfy that
ag —ag - a1 + a3 = r,if j(E) = 0;
ag + af = r,if j(E) = 1728.

By Theorem 3, the recommended short vectors are actually independent with the
selection of seeds.

4.1.2 Example

We now take the KSS16 family as an example to give a detailed description
for G; membership testing.

FEzample 4 Recall that the prime r in the KSS16 family is expressed as
r(z) = 2844820 1625 (2 424)2 472
N 61250 - 61250

Since z = £25 mod 70, we have z* = 25 mod 70, meaning (z* + 24)/7 € Z. With
parameters as above, it is straightforward to see that

((z* +24)/7)> + 1= 0mod r,

which implies that A = 4(z* + 24)/7. We select A = —(z* + 24)/7, then one of
shortest vectors in L is given by (ag, a1), where

ap = (312* + 625) /8750,
a1 = — (172" + 625)/8750.

It is easy to check that a% + a% = r, and subsequently deduce that
ged (a% + a%,hl . 7‘) =r

for any given seed z. By Theorem 3, the short vector (ag,a1) can be used for Gp
membership testing on all curves in the KSS16 family. Furthermore, we also find that
—17a9 — 3lay = 1. If 174 hy (eg. KSS16-P330) it would be convenient to substitute
ag and a1 by 17ag and 17a1, respectively. As a consequence, given a point @) that is
claimed to be a member of G1, we have

[ao]@ + 7([a1]Q) = Op & [17a0]Q + 7([17a1]Q) = Op
< 7([17a1]Q) — [Bla1]Q = Q-
Thus, the G; membership testing can be accomplished by checking that

Q € E(Fp),
{T([17a1]Q) —[Bla1]Q = Q.
After calculating the point R = [a1]Q, we can obtain [17]R and [31]R by performing
the following calculations:
R — [2]R — [4]R — [8]R — [16]R — [17]R — [32]R — [31]R.

Neglecting the cost of checking @ € E(Fp), our method requires one scalar multipli-
cation by aj, five point doublings, three point additions and one application of the
endomorphism 7. Clearly, the overhead of this testing comes mostly from the scalar
multiplication by aj, which is about logr/2 bits.
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4.2 The Gt case

The first efficient method for Gp membership testing was proposed by
Scott [11]. Recently, Scott [19] concluded that this method is actually suitable
for all pairing-friendly curves with ged(hy, hy) = 1, which is tailored to the
BN and BLS families. In detail, given a random element o € F;k, Scott proved
that

a € Gr & a € Gy, (p) and ot = af

under the condition that ged(hy,hr) = 1. Since the Frobenius map can be
computed efficiently, the computational cost of this method is dominated by
the exponentiation by ¢. Moreover, in the case that the embedding degree k is
divided by 6, once the candidate element « is proved to be a member of Gg, (),
the fixed exponentiation by ¢ can be further optimized by the techniques of
fast cyclotomic squaring [47, 48].

Inspired by the method for G, membership testing on pairing-friendly
curves admitting a twist, we propose a general and efficient method for G
membership testing that can be used for many pairing-friendly curves.

Theorem 4 Let (co,c1, + ,cyr)—1) be a vector in Ly and n = Zf:(g)fl ci-ph

Assume that gcd (77, Dy (p)) = r. Given a non-identity element o € F;k, then a € G
if and only if
e(k)—1 ;
a®*®) =1 and H aiP =1,
=0

Proof Since r | ®x(p) and 7 | 7, the necessity is straightforward. Conversely, if
a®+®) =1 and Hfz(lg)fl aP" = 1, then the order of a divides ged (n, ®x(p)). Since
ged (7], @k(p)) =r and a # 1, it is clear that the order of « is equal to r and thus
a € Gp, which completes the proof of the theorem. O

Theorem 4 proved that any vector (co,c1,- -+ ,Cpk)—1) in Ly can be used
for Gy membership testing if and only if ged(hr, %) = 1, where the parameter

/
(k)—1 ,
T= (Zj:o ci-p')/r.

7 is defined as
Magma code is presented in Algorithm 3 for finding out a short vector for
Gt membership testing . The specific values of v on different pairing-friendly
curves are presented in Table 5.

4.2.1 Comparison

Similar to G, membership testing, the previous method for Gy membership
testing can be viewed as fixing the short vector as (¢t — 1,—1,0,---,0). In
other words, we have extended the previous method by expanding the range
of choice of short vectors in £, under a mild condition. In Table 5, we also
collect the short vectors of our method (output by Algorithm 3) and of the
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Algorithm 3 Finding out a short vector for Gy membership testing

Input: The characteristic p, the prime r, the embedding degree k, the cofactor
hr and the small multiple v

Output: a short vector C' or NULL

1 u:=EulerPhi (k) ;

2 B:=RMatrixSpace(Integers(), u,u)!0;
3 B[1][1]:=r;

4 for i:=2 to u do

5 B[i] [1]:=-p~(i-1);B[i] [i]:=1;
6 end for;

7 L:=LatticeWithBasis(B);

s S:=ShortestVectors(L);

9 for i:=1 to @S do

10 C:=S[i];

11 b:=0;

12 for j:=1 to u do

13 b:=(b+C[j1*p~(G-1));

14 end for;

15 htd:=b div r;

16 if GCD(ht,htd) eq 1 then

17 return C;

18 end if;

19 end for;

20 min:=Norm(ShortestVector (L)) ;max:=v*min;
21 V:=ShortVectorsProcess(L, min, max);
22 repeat

23 C:=NextVector (V) ;

24 if Norm(C) eq O then

25 return "NULL";

26 end if;

27 b:=0;

28 for j:=1 to u do

2 b:=(b+C[j1*p~(G-1));
30 end for;

31 htd:=b div r;

32 until GCD(ht,htd) eq 1;

33 return C;

previous one on different pairing-friendly curves. It is clear that our method
for G membership testing requires around logr/¢(k) bit operations on these
curves. Moreover, by the comparison of the above two methods we have the
following observations.

e The two methods provide the same short vector on BLS12-P461.
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Table 5 The short vectors of G membership testing for a list of pairing-friendly curves.
On KSS16-P330, the value u is equal to (—z — 25)/70. On BW6-P761 and CP6-P782, the
previous method is not recommended as the bit length of ¢ is larger than that of r.

Curve v med(hihr) O e ) (o o
BW6-P761 1 1 - (2352 (22-2)+2, 51 (22 -2)-1)
CP6-P782 1 1 - (F(22-2)-1, 5 (22-2) +2)
BN-P446 1 1 (622,-1,0,0) (z+1,22,—22)
BLS12-P461 1 1 (2,—1,0,0) (2,-1,0,0)

(11u+4, —9u—3,3u+1, 3u+1,

KSS16-P330 2 4 - —13u — 5, Tu + 3, u, 11u + 4)
KSS18-P348 1 1 (25262 _1,0,0,0,0) (%,1,0,£,0,0)
BW13-P310 1 1 (—z%+2-1,0,...,0) (22,-2,1,0,...,0)
BW19-P286 1 1 (—2%°42,-1,0,...,0) (22, -2,1,0,---,0)

e Our method provides more shorter vectors than the previous one on BN-
P446, KSS18-P348, BW13-P310 and BW19-P286.

4.2.2 Example

We now take the BN family as an example to illustrate how to perform Gp
membership testing in detail.

Ezample 5 In the BN family, the cofactor hp is can be parameterized by a polynomial
ho(z) =46656212 4+ 1399682 + 241056210 + 27216027 + 2255042° + 13867227

16544825 1+ 231122° + 62642* + 11882 + 17422 + 62 + 1.

As mentioned before, one of shortest vectors in £y, for the Euclidean norm is given by
(z+1, 2z, 2,—2z). We now prove that this vector can be used for the G membership
testing on all curves in the BN family. For the selected short vector, the parameter
h/T is expressed as a polynomial

Ryp(z) = — 259227 — 51842 — 648027 — 475225 — 248425 — 75621 — 16223 — 622
—5z+ 1.
Using the XGCD() function in Magma, we find that there exist two polynomials
A, A’ € Z[z] such that
A-hp(z)+ A" hp(2) = 1.
Thus, we conclude that ged(hr, h'T) = 1 for any given seed z. Or equivalently, the

short vector (z + 1, z, 2z, —2z) can be used for Gr membership testing on all curves
in the BN family. By Theorem 4, a candidate element « € G if and only if

4 2
a-of =aP
aZ'H . (aZ)p . (Otzyo2 _ (a2z)p3.
This testing totally requires one exponentiation by z, four field multiplications, one

field squaring and five applications of the endomorphism 7. For many popular mem-
bers in the BN family, such as BN-P254, BN-P382 and BN-P446, the seed z has a
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low Hamming weight. Thus, it is efficient to perform the exponentiation by z using
the compression technique proposed in [48].

It is clear that our method reduces the computational cost compared to the
previous one [11], which require approximately one exponentiation by 622

5 Efficiency Analysis and Implementation
Results

In Table 6, we give the number of bit operations of Gy, Gy and Gy mem-
bership testings for different pairing-friendly curves. It should be noted that
CP6-P782 is not equipped with a GLV endomorphism. Therefore, the only
viable approach for the G; membership testing on this curve is to multiply a
candidate element by r so far.

Table 6 The number of bit operations of G1, G2 and G membership testings for
different pairing-friendly curves.

Curve [logr/2] [logr /e (k)] G1 G2 Gr
BW6-P761 189 189 190 190 190
CP6-P782 189 189 377 190 190
BN-P446 224 112 — 111 111
BLS12-P461 154 7 154 7 77
KSS16-P330 129 33 133 31 31
KSS18-P348 128 43 124 43 43
BW13-P310 134 23 134 12 23
BW19-P286 130 15 130 8 15

Table 7 Timings for subgroup membership testings on the BN-P446 and BW13-P310
curves. The results are given in clock cycles (x103).

Curve Method G1 Go Gr
BN-P446 Previous work [11, 13] — 722 882
BN-P446 This work — 352 471
BW13-P310 This work 293 1220 225

Magma implementation for subgroup membership testings on pairing-
friendly curves listed in Table 6 was provided in https://github.com/
eccdaiy39/smt-magma/tree/main/test. It can be used to verify the correct-
ness of the new methods even though perform poorly. In order to accurately
evaluate the performance improvements that are gained from the proposed
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techniques, we also present high speed software implementation on the BN-
P446 and BW13-P310 curves within the RELIC [23] cryptographic library.
The code is available at https://github.com/eccdaiy39/smt. We notice that
the previous leading works [11, 13] of the Go and G membership testings
on the BN-P446 curve were implemented in the same library. In Table 7, we
summarize the results of benchmarks on a 64-bit Intel Core i7-8550U@1.8GHz
processor running Ubuntu 18.04.1 LTS with TurboBoost and hyper-threading
features disabled. Timing results are obtained averaged over 10,000 executions.
As shown in Table 7, on the BN-P446 curve the new algorithm for the Gq
membership testing is about 105.1% faster than that from [13], while the G
membership testing is about 87.3% faster than that from [11]. As far as we
know, the problem of subgroup membership testings on the BW13-P310 curve
has not yet considered in the literature. Applying the new techniques, we find
that subgroup membership testings on this curve are also efficient.

6 Conclusion and Future Work

The threat of small-subgroup attacks are non-negligible in pairing-based proto-
cols. Subgroup membership testing is a useful countermeasure to defense such
attacks. In this paper, we revisited this problem and described efficient meth-
ods for G1, Gy and Gy membership testings, which were suitable for a large
class of ordinary pairing-friendly curves. Fast software implementation of sub-
group membership testings was presented to further confirm the performance
of the proposed algorithms. On the BN-P446 curve, our timing results are sig-
nificantly faster than those in the previous leading work. As future work we
could design new algorithms to find out short vectors for subgroup membership
testings, which are independent of the selection of seeds.
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