Shorter Signatures from MQ

William Wang

ww@priv.pub

Abstract. We describe a simple MPC protocol in the preprocessing
model for computing multivariate quadratic maps. This yields Mesquite,
a KKW-style signature scheme which, to our knowledge, produces the
shortest signatures of any based on the M(Q assumption. For example,
our compact parameter set targeting NIST security level I has an average
signature size of 8.8KB and runtimes on par with Picnic3 L1.

Keywords: multivariate cryptography, MPC-in-the-head, post-quantum digi-
tal signatures

1 Introduction

Traditionally, multivariate quadratic cryptography has relied on inverting spe-
cial classes of maps engineered to have a trapdoor. However, these are ad hoc
assumptions and recent attacks have reduced the security of well-known con-
structions [Beu2l; Beu22]. Another line of research focuses on the comparatively
well-studied MQ problem, which asks to invert a random multivariate quadratic
map. In particular, MQDSS [Sam+19] and MUDFISH [Beu20] are two signature
schemes based on this hardness assumption.

MPC-in-the-head, introduced by [Ish407], is a paradigm for obtaining zero-
knowledge proofs from multiparty computation (MPC). To prove knowledge for
some NP relation, the prover simulates an MPC protocol which verifies the wit-
ness. They commit to each party’s view, and the verifier challenges the prover to
open a subset of views. Correctness and zero-knowledge follow from the protocol’s
correctness and security guarantees against semi-honest parties. The soundness
error is determined by the prover’s ability to covertly inject inconsistent views.

To obtain shorter proofs, [KKW18] proposed using MPC protocols in the
preprocessing model, i.e. with trusted setup. This is converted into a proof via
“cut-and-choose” methods: for each committed execution, the verifier may choose
to open all views after preprocessing, or a subset after the full MPC protocol.
This idea was generalized in [Beu20] to arbitrary sigma protocols, including the
one used by MUDFISH. Our approach is similar, but fully adopts the KKW
construction.

1.1 Preliminaries

Commitment schemes. We use a non-interactive commitment scheme, denoted
Com. As described in [KKW18], we do not need additional randomness; a proof

of security is given in [Zav+20, §6.1]. In practice, we use a hash function H :
{0,1}* — {0,1}?%, where & is the security parameter.

Merkle and seed trees. The KKW construction employs tree-based strategies
to reduce signature size, which we briefly describe here. We use Merkle trees
to open a 7-sized subset of M commitments, which requires revealing at most
T log % nodes.

Seed trees are a similar construction which allow revealing all but a certain
subset of pseudorandomly generated seed values. The idea is to first assign a
seed value to the root of a binary tree. We then recursively expand each internal
node to its children with a hash function H : {0,1}* — {0, 1}?*. The leaves now
function as independent seed values, and to conceal a subset we reveal nodes
analogous to a Merkle tree.

Multivariate quadratics. A multivariate quadratic map F : Fy — 7" is a system
of m quadratic polynomials in n variables defined over some finite field F,. The
MQp,m,q problem is, for uniformly random F : Fy — F;* and s € Fy, to find s
given F and F(s). Without loss in hardness, we assume F has no constant term,
i.e. F(0) = 0. In this case, the polar form

G(a,y) = Flz +y) - Flx) = F(y)

is bilinear. We use the hardness analysis of MQ from [Sam+19, §2].

2 Proof of knowledge

Let F : Fy — F" be a multivariate quadratic map of m polynomials in n
variables, and G be its polar form. Notice the identity

F(s)—F(s—=r)=G(r,s —r) + F(r).

We describe an MPC protocol in the preprocessing model for evaluating
F(s). In the preprocessing phase, the parties are dealt additive secret shares u;
and v; for 7 and F(r) respectively, where r € Fy is uniform. During protocol
execution, the parties begin with s — r. They locally compute G(u;, s —) + v;,
which constitute shares of F(s)—F(s—r). These are recombined and the parties
add F(s—r) to obtain F(s). It is straightforward to show the protocol is correct
and secure against semi-honest corruption of all-but-one parties.

Using the KKW construction, we obtain a three-round proof which is sum-
marized below. To simulate an execution of the MPC protocol:

1. Given a seed value, generate an N-leaf seed tree.

2. For each i € [N], expand the i-th leaf to u; € Fy. This constitutes a secret

. N
sharing for r :=3"." | u;.

3. For each i € [N — 1], additionally expand the i-th leaf to v; € F}'. This
constitutes a secret sharing for F(r), where the final share is vy = F(r) —

N—1
Doic1 Vi

4. For each i € [N], commit to the i-th party’s view with

com; =

Com(i-th leaf) i€ [N—1]
Com(N-th leaf || vy) @ = N.

5. Commit to the online phase with
com® :=Com(s —r | G(ur,s—r)+v1 |- || Glun,s —r) +vn).
The proof of knowledge:

1. Given a seed value, the prover generates an M-leaf seed tree. For each j €
[M], they simulate an execution with the j-th leaf. They construct an M-
leaf Merkle tree whose j-th leaf is com™ from the j-th execution. The prover
hashes the com; values from each execution along with the Merkle tree’s
root, then sends this to the verifier.

2. The verifier challenges with a uniform 7-sized subset C' C [M] along with a
uniform party index p; € [N] for each j € C.
3. For each j € C, the prover sends from the j-th execution:
— the nodes required to reveal all but the p;-th leaf from the N-leaf seed
tree;
— comy_;
- 5=
— and vy if p; # N.
Additionally, they send the nodes required to reveal all but the C-th leaves
from the M-leaf seed tree and open the C-th leaves from the Merkle tree.
4. For each j € C, the verifier recomputes from the j-th execution:

— (comy, u;, v;)izp; using the partially reconstructed N-leaf seed tree;
— the p;-th party’s broadcast

F(s)—F(s—r)— Z[Q(ui,s —r)+ v,
i#D;

and subsequently com*.

Using the partially reconstructed M-leaf seed tree, they recompute the j-
th execution’s com; values for each j ¢ C. Finally, the verifier derives the
Merkle tree’s root, and checks that their results match the prover’s commit.

The soundness error is proven in [BN20, §3.2] to be

N)

R PN

Comparison with MUDFISH. We briefly describe MUDFISH [Beu20], a similar
MQ-based proof, from the perspective of MPC with preprocessing. The prover
first samples r € Fy and, for each ¢ € F,, secret sharings uj + uz . = cr and
v1 + vg,. = ¢F(r). Note that u;,v; are identical across all sharings.

During the online phase, the prover simulates ¢ two-party computations,
which are related in the sense that the first party’s broadcast is identical. The
verifier’s challenge is to reveal one of the second party’s views, and hence the
soundness error is 1/¢. The advantage of MUDFISH is that both prover and
verifier only need to evaluate G(-, s — r) once, improving runtime. The primary
disadvantage is that soundness error is bounded by the finite field’s size. With
our proof the soundness error is 1/N, and tuning it lower can significantly reduce
signature size. Furthermore, we achieve shorter signatures by virtue of revealing
nodes in a seed tree to open views, whereas MUDFISH must use a Merkle tree.

It is also possible to view the two as limiting cases of a more general protocol.
The idea is now to perform ¢ related N-party computations, where all-but-one
parties have fixed shares. Based on our analysis this yields larger signatures
without improving runtime, so we did not pursue the idea further.

3 Signature scheme

We present the signature scheme Mesquite, which is obtained via the Fiat-Shamir
transform. The key generation algorithm samples a multivariate quadratic map
J and vector s € Fy, then computes ¢ = F (s). We employ the standard practice
of expanding a seed into F with a pseudorandom generator. The public key is
the seed with ¢, and the private key additionally includes s. The maximum size
of a signature is

M
2k + 3K {Tlog —‘ + 7 (k[log N] 4+ 26+ (n+ m)logq)
T
bits, although in practice the average is smaller.

Multi-target attacks. To prevent multi-target attacks described in [DN19], the
signing algorithm must employ domain separation and counters to invoke the
hash function. Furthermore, a unique “salt” value must be used per signature
to key the hash function. The Picnic specification addresses this by generating
a new salt per signature. We use an alternative method which does not increase
signature size. The idea is for the salt to be derived from the public key and
message, in conjunction with deterministic signing (i.e. coins are derived from
the secret key and message).

Optimizing performance. Evaluating multivariate quadratics and their polar
forms is relatively expensive. Naively simulating an MPC execution as described
above is slow, but this can be optimized.

— The prover does not need to explicitly compute F(r), since

N N-1
oy = F(s) = F(s—r) —Zg(ui,s_r) — Z ;.

— We amortize the cost of evaluating the linear map G(-, s — r) by caching its
matrix representation. Concretely, each quadratic in F has the matrix form

filz) = x T Az + bZ-TJc,

and the corresponding map in G is g;(x,y) = x ' (A; + A,)y. Thus we store
the column vectors {(4; + A)(s — 1) }icpn)-

For each execution, the signer computes F(s —r) and G(-, s — r), then performs
N evaluations of G(-, s — r). To challenge the online phase, the verifier does the
same except with NV — 1 evaluations. To challenge the preprocessing phase, the
verifier only computes F (7).

Finally, for some applications storing the full representation of F in memory
is not feasible. We can instead evaluate F over all inputs in one pass of the
pseudorandom generator.

Parameter selection. We first fix m = n to maximize hardness of MQ. Unlike
MQDSS and MUDFISH, Mesquite does not rely on the finite field’s size for
soundness. The main tradeoff arises from memory representation. For a given
security level, n decreases as ¢ increases — but nloggq (the size of a vector)
will slightly increase. Hence smaller ¢ yields shorter signatures. On the other
hand, larger ¢ dramatically reduces the size of a multivariate quadratic map,
which requires ~ %ns log g bits. Concretely, we found Fy to yield faster runtimes
than Fy, even though multiplication requires more bitwise operations. It may
be worth considering even larger fields for specialized platforms (e.g. hardware
instructions).

We adapt the Fy parameters proposed in the MQDSS specification [Sam+19,
§8.2]. We propose “fast” and “compact” parameter sets at each security level,
where N = 8,16 respectively. Table 2 gives the values of M and 7, which are
chosen to nearly optimize signature size. Finally, the SHAKE extensible out-
put function doubles as a hash function and pseudorandom generator. We use
SHAKE128 for NIST security level I and SHAKE256 otherwise.

4 Implementation

We implemented Mesquite in Rust to benchmark performance; this is available at
https://priv.pub/mesquite. We used the standard library’s portable SIMD
module to represent elements of Fy. For SHAKE we used the tiny-keccak
crate!, which is comparable in performance with the extended Keccak Code

! https://github.com/debris/tiny-keccak

https://priv.pub/mesquite
https://github.com/debris/tiny-keccak

Table 1. Proposed parameters for the MQ problem targeting NIST security levels. We
reference the best known classical and quantum attacks estimated in [Sam+19, §2.2].

Classical attack | Quantum attack

Level | ¢ n=m |pk| gates gates depth
I |4 8 38B Q156 293 283
IIT |4 128 56B 2230 2129 2119
V |4 160 72B 2290 9158 Q147

Package’s generic64 implementation?. Note that Mesquite and other KKW-
style signatures stand to benefit most from faster hash functions (Haraka, Kanga-
rooTwelve [K6l416; Ber+18]) and specialized implementations (AVX, NEON),
compared to sacrificing-based MPC-in-the-head protocols [BN20].

We ran benchmarks on a Google Cloud c2-standard-4 instance (Intel Cas-
cade Lake, Xeon CPU @ 3.10GHz, 4 vCPUs, 16 GB memory). For comparison,
we also tested the optimized implementation® of Picnic3 [Zav+20]. This was
compiled with SIMD optimizations and the generic64 Keccak implementation.

Table 2. Proposed parameter sets for Mesquite targeting NIST security levels.
Mesquite runtimes were calculated with Rust’s test crate. Picnic3 runtimes were taken
over 1000 samples using provided scripts. The average signature sizes and standard de-
viations for each parameter set were taken over 1000 samples.

Level | Scheme N M 7 |Sign (ms) Verify (ms) Size (B)
Mesquite Fast 8 176 51 4.97 3.89 9492 £ 196
I Compact 16 232 37 9.90 7.86 8844 + 224
Picnic3 - 16 252 36 8.25 6.60 12455 + 229
Mesquite Fast 8 276 74 12.45 9.12 20984 + 357
11 Compact 16 354 55 21.55 15.77 19656 + 406
Picnic3 - 16 419 52 17.96 14.24 27403 £ 448
Mesquite Fast 8 372 98 31.88 23.70 36719 £+ 551
A% Compact 16 460 74 47.69 31.88 34573 £+ 589
Picnic3 - 16 601 68 29.78 21.94 48452 + 701

Our benchmarks show that runtimes are competitive with Picnic3, and we
believe there is room for improvement. For example, multivariate evaluations
account for a significant fraction of signing time, ranging from 40% for L1 Com-
pact to 75% for L5 Fast. Currently each one is done in sequence, as opposed to

2 https://github.com/XKCP/XKCP
3 https://github.com/IAIK/Picnic

https://github.com/XKCP/XKCP
https://github.com/IAIK/Picnic

batches. There are also more aggressive SIMD optimizations that we have not

explored.

References

[Ber+18]

[Beu20]

[Beu21]

[Beu22]

[BN20]

[DN19]

[Ish4-07]

[KKW18]

[Ko1+16]

[Sam+19]

[Zav+-20]

Guido Bertoni et al. “KangarooTwelve: Fast Hashing Based on Kec-
cak-p”. In: ACNS 18. Vol. 10892. July 2018, pp. 400-418.

Ward Beullens. “Sigma Protocols for MQ, PKP and SIS, and Fishy
Signature Schemes”. In: EUROCRYPT 2020, Part III. Vol. 12107.
May 2020, pp. 183-211.

Ward Beullens. “Improved Cryptanalysis of UOV and Rainbow”. In:
EUROCRYPT 2021, Part I. Vol. 12696. Oct. 2021, pp. 348-373.
Ward Beullens. Breaking Rainbow Takes a Weekend on a Laptop.
Cryptology ePrint Archive, Report 2022/214. https://eprint .
iacr.org/2022/214. 2022.

Carsten Baum and Ariel Nof. “Concretely-Efficient Zero-Knowledge
Arguments for Arithmetic Circuits and Their Application to Lattice-
Based Cryptography”. In: PKC 2020, Part I. Vol. 12110. May 2020,
pp- 495-526.

Itai Dinur and Niv Nadler. “Multi-target Attacks on the Picnic
Signature Scheme and Related Protocols”. In: EUROCRYPT 2019,
Part III. Vol. 11478. May 2019, pp. 699-727.

Yuval Ishai et al. “Zero-knowledge from secure multiparty computa-
tion”. In: 89th ACM STOC. June 2007, pp. 21-30.

Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. “Improved
Non-Interactive Zero Knowledge with Applications to Post-Quantum
Signatures”. In: ACM CCS 2018. Oct. 2018, pp. 525-537.

Stefan Kolbl et al. “Haraka v2 - Efficient Short-Input Hashing for
Post-Quantum Applications”. In: JACR Trans. Symm. Cryptol. 2016.2
(2016). https://tosc.iacr.org/index . php/ToSC/article/
view/563, pp. 1-29. 1SsN: 2519-173X.

Simona Samardjiska et al. M@QDSS. Tech. rep. available at https://
csrc.nist.gov/projects/post-quantum-cryptography/round-
2-submissions. National Institute of Standards and Technology,
2019.

Greg Zaverucha et al. Picnic. Tech. rep. available at https://csrc.
nist . gov/projects/post-quantum- cryptography/round-3-
submissions. National Institute of Standards and Technology, 2020.

https://eprint.iacr.org/2022/214
https://eprint.iacr.org/2022/214
https://tosc.iacr.org/index.php/ToSC/article/view/563
https://tosc.iacr.org/index.php/ToSC/article/view/563
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

	Shorter Signatures from MQ

