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ABSTRACT
This work extends the composable secure-emulation of Canetti et al.

[4] to dynamic settings. Our work builds on top of dynamic prob-

abilistic I/O automata, a recent framework introduced to model

dynamic probabilistic systems. Our extension is an important tool

towards the formal verification of protocols combining probabilis-

tic distributed systems and cryptography in dynamic settings (e.g.

blockchains, secure distributed computation, cybersecure distributed

protocols etc).

1 INTRODUCTION
Blockchains or distributed ledger technologies are a game changer

for distributed computing area. Blockchains are an evolved form of

the distributed computing concept of replicated state machine, in

which multiple agents see the evolution of a state machine in a con-

sistent form. At the core of both mechanisms there are distributed

computing fundamental elements (e.g. communication primitives

and semantics, consensus algorithms, and consistency models) and

also sophisticated cryptographic tools. Recently, [9] stated that

despite the tremendous interest related to distributed ledgers, no

formal abstraction of these objects has been proposed. In particular

it was stated that there is a need for the formalization of the dis-

tributed systems that are at the heart of most cryptocurrency imple-

mentations. Therefore, an extremely important aspect of blockchain

foundations is a proper model for the entities involved and their

potential behavior. The formalisation of blockchain systems has

to combine models of underlying distributed and cryptographic

building blocks under the same hood.

The formalisation of distributed systems has been pioneered by

Lynch and Tuttle [12]. They proposed the formalism of Input/Output
Automata to model deterministic distributed system. Later, this for-

malism is extended by Segala [14] to Probabilistic Input/Output
Automata in order to model randomized distributed systems. In or-

der to analyze cryptographic protocols Canetti & al. [3] extends this

framework to task-structured probabilistic Input/Output automata
(TPIOA). Task-structured probabilistic Input/Output automata are

Probabilistic Input/Output automata extended with tasks that are

equivalence classes on the set of actions. The task-structure allows

a generalisation of "off-line scheduling" where the non-determinism

of the system is resolved in advance by a task-scheduler, i. e. a se-
quence of tasks chosen in advance that trigger the actions among

the enabled ones. They also define the parallel composition for this

type of automata. Inspired by the literature in security area they

define the notion of implementation for TPIOA. Furthermore, they

provide compositional results for the implementation relation. Even

thought the formalism proposed in [3] has been already used in the

verification of various cryptographic protocols this formalism does

not capture the dynamicity in blockchains systems such as Bitcoin

or Ethereum where the set of participants dynamically changes.

Moreover, this formalism does not cover blockchain systems where

subchains can be created or destroyed at run time [13].

Interestingly, the model of dynamic behavior in distributed sys-

tems is an issue that has been addressed even before the born of

blockchain systems. The increase of dynamic behavior in various

distributed applications such as mobile agents and robots motivated

the Dynamic Input Output Automata formalism introduced by Attie

& Lynch in [1]. This formalism extends the Input/Output Automata
formalism with the ability to change their signature dynamically

(i.e. the set of actions in which the automaton can participate) and

to create other I/O automata or destroy existing I/O automata. The

formalism introduced in [1] does not cover the case of probabilistic

distributed systems neither cryptographical aspects and therefore

cannot be used in the verification of blockchains such as Algorand

[6].

In order to cope with dynamicity and probabilistic nature of re-

cent emergent systems (e.g. mobile probabilistic robots or probabilis-

tic peer-to-peer protocols) the authors of [7] proposed an extension

of the frameworks introduced in [3] and [1]. Their extension refined

the definition of probabilistic configuration automata in order to

cope with dynamic actions. The main result of this formalism is as

follows: the implementation of probabilistic configuration automata

is monotonic to automata creation and destruction. Although the

framework proposed by [7] covers dynamic probabilistic proto-

cols this framework cannot be used in order to model blockchain

technologies since it does not cover cryptographic aspects of these

protocols.

Our contribution. The current work builds on top of dynamic

probabilistic I/O automata described in detail in [7] and proposes

an extension of the composable secure-emulation of Canetti et al. [4]
to dynamic settings. Our framework, composable dynamic secure

emulation, enjoys the composability properties of secure-emulation

of [4] face to dynamic behavior of underlying probabilistic I/O

automata layer.

Paper organization. The paper is organized as follow. Section

2 recalls the key notions of the dynamic probabilistic I/O automata

framework defined in [7]. Section 3 introduces the notion of sched-

uler and external perception. Section 4 extends the approximate

implementation relation defined in [4] to dynamic settings. Fur-

thermore, in this section we present the main contribution of the

paper: the extension of the secure-emulation introduced in [2] to

distributed systems and distributed scheduling copying with dy-

namic creation of automata. Moreover, this relation is shown to be

composable.

2 BRACKGROUND ON PROBABILISTIC
DYNAMIC INPUT/OUTPUT AUTOMATA

This section recalls the formalism defined in [7] i. e. probabilis-

tic dynamic Input/Output Automata. The key components of this
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framework are: probabilistic signature input/output automata, the

notions of scheduler and implementation and the probabilistic con-

figuration automata.

2.1 Preliminaries on probability and measure
A measurable space is denoted by (𝑆, F𝑠 ), where 𝑆 is a set and F𝑠 is
a 𝜎-algebra over 𝑆 . A measure space is denoted by (𝑆, F𝑠 , 𝜂) where
𝜂 is a measure on (𝑆, F𝑠 ). The product measure space (𝑆1, F𝑠1

, 𝜂1) ⊗
(𝑆2, F𝑠2

, 𝜂2) is the measure space (𝑆1×𝑆2, F𝑠1
⊗F𝑠2

, 𝜂1 ⊗𝜂2), where
F𝑠1
⊗ F𝑠2

is the smallest 𝜎-algebra generated by sets of the form

{𝐴 × 𝐵 |𝐴 ∈ F𝑠1
, 𝐵 ∈ F𝑠2

} and 𝜂1 ⊗ 𝜂2 is the unique measure s. t. for

every 𝐶1 ∈ F𝑠1
,𝐶2 ∈ F𝑠2

, 𝜂1 ⊗ 𝜂2 (𝐶1 ×𝐶2) = 𝜂1 (𝐶1)𝜂2 (𝐶2).
A discrete probability measure on a set 𝑆 is a probability measure

𝜂 on (𝑆, 2𝑆 ), such that, for each 𝐶 ⊂ 𝑆, 𝜂 (𝐶) = ∑
𝑐∈𝐶 𝜂 ({𝑐}). We

define 𝐷𝑖𝑠𝑐 (𝑆) to be, the set of discrete probability measures on 𝑆 .

In the sequel, we often omit the set notation when we denote the

measure of a singleton set. For a discrete probability measure 𝜂 on

a set 𝑆 , 𝑠𝑢𝑝𝑝 (𝜂) denotes the support of 𝜂, that is, the set of elements

𝑠 ∈ 𝑆 such that 𝜂 (𝑠) ≠ 0. Given set 𝑆 and a subset 𝐶 ⊂ 𝑆 , the Dirac
measure 𝛿𝐶 is the discrete probability measure on 𝑆 that assigns

probability 1 to 𝐶 . For each element 𝑠 ∈ 𝑆 , we note 𝛿𝑠 for 𝛿 {𝑠 } .

2.2 Probabilistic signature input/output
automata (PSIOA)

A probabilistic signature input/output automata (PSIOA) is the

result of the generalization of probabilistic input/output automata

(PIOA) [14] and signature input/output automata (SIOA) [1]. A

PSIOA is thus an automaton that can randomly move from one

state to another in response to some actions. The set of possible
actions is the signature of the automaton and is partitioned into

input, output and internal actions.
We use the signature approach from [1]. We assume the exis-

tence of a countable set 𝐴𝑢𝑡𝑖𝑑𝑠 of unique probabilistic signature

input/output automata (PSIOA) identifiers, an underlying universal

set 𝐴𝑢𝑡𝑠 of PSIOA, and a mapping 𝑎𝑢𝑡 : 𝐴𝑢𝑡𝑖𝑑𝑠 → 𝐴𝑢𝑡𝑠 . 𝑎𝑢𝑡 (A)
is the PSIOA with identifier A. We use "the automaton A" to

mean "the PSIOA with identifier A". We use the letters A,B, pos-
sibly subscripted or primed, for PSIOA identifiers. The executable

actions of a PSIOA A are drawn from a signature 𝑠𝑖𝑔(A)(𝑞) =
(𝑖𝑛(A)(𝑞), 𝑜𝑢𝑡 (A)(𝑞), 𝑖𝑛𝑡 (A)(𝑞)), called the state signature, which
is a function of the current state 𝑞 of A, 𝑖𝑛(A)(𝑞), 𝑜𝑢𝑡 (A)(𝑞),
𝑖𝑛𝑡 (A) (𝑞) are pairwise disjoint sets of input, output, and internal

actions, respectively.We aslo define 𝑠𝑖𝑔(A) : 𝑞 ∈ 𝑄 ↦→ 𝑠𝑖𝑔(A)(𝑞) =
𝑖𝑛(A)(𝑞) ∪ 𝑜𝑢𝑡 (A)(𝑞) ∪ 𝑖𝑛𝑡 (A)(𝑞).

Definition 2.1 (PSIOA). A PSIOA A = (𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A ),
where:

• 𝑄A (a.k.a. 𝑠𝑡𝑎𝑡𝑒𝑠 (A)) is a countable set of states, (𝑄A , 2𝑄A )
is a measurable space called the state space,
• 𝑞A ∈ 𝑄A (a. k. a. 𝑠𝑡𝑎𝑟𝑡 (A)) is the unique start state.
• 𝑠𝑖𝑔(A) is the signature function thatmaps each state𝑞 ∈ 𝑄A
to a triplet 𝑠𝑖𝑔(A)(𝑞) = (𝑖𝑛(𝐴) (𝑞), 𝑜𝑢𝑡 (𝐴) (𝑞), 𝑖𝑛𝑡 (𝐴) (𝑞)) of
mutually disjoint countable set of actions, respectively called
input, output and internal actions.

• 𝐷A ⊂ 𝑄A×𝑎𝑐𝑡𝑠 (A)×𝐷𝑖𝑠𝑐 (𝑄A ) (𝐷A a. k. a. 𝑑𝑡𝑟𝑎𝑛𝑠 (A)) is
the set of probabilistic discrete transitions where ∀(𝑞, 𝑎, 𝜂) ∈
𝐷A : 𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞).

In additionA must satisfy the following conditions
1
: ∀𝑞 ∈ 𝑄A :

∀𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞), ∃!𝜂 (A,𝑞,𝑎) ∈ 𝐷𝑖𝑠𝑐 (𝑄A ) : (𝑞, 𝑎, 𝜂 (A,𝑞,𝑎) ) ∈ 𝐷A .

Notation. For every PSIOAA ≜ (𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A ), we note
𝑠𝑡𝑎𝑡𝑒𝑠 (A) ≜ 𝑄A , 𝑠𝑡𝑎𝑟𝑡 (A) ≜ 𝑞A ,𝑑𝑡𝑟𝑎𝑛𝑠 (A) ≜ 𝐷A . We also note

𝑠𝑡𝑒𝑝𝑠 (A) ≜ {(𝑞, 𝑎, 𝑞′) ∈ 𝑄A×𝑎𝑐𝑡𝑠 (A)×𝑄A |∃(𝑞, 𝑎, 𝜂) ∈ 𝐷A , 𝑞′ ∈
𝑠𝑢𝑝𝑝 (𝜂)}. Also we define 𝑎𝑐𝑡𝑠 (A) = ⋃

𝑞∈𝑄 𝑠𝑖𝑔(A)(𝑞), the "univer-
sal" set of all actions that A could possibly trigger. Moreover, for

every mapping 𝑚A with 𝑠𝑡𝑎𝑡𝑒𝑠 (A) as domain, we note

⌣
𝑚A =⋃

𝑞∈𝑄𝑚A (𝑞). Finally for every pair of mapping (𝑚1

A1

,𝑚2

A2

) with
𝑠𝑡𝑎𝑡𝑒𝑠 (A1) and 𝑠𝑡𝑎𝑡𝑒𝑠 (A2) as respective domain, we note𝑚1

A1

∪
𝑚2

A2

: (𝑞1, 𝑞2) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A1) × 𝑠𝑡𝑎𝑡𝑒𝑠 (A2) ↦→𝑚1

A1

(𝑞1) ∪𝑚2

A2

(𝑞2)

Definition 2.2 (fragment, execution and trace of PSIOA). An execu-
tion fragment of a PSIOA A = (𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A ) is a finite or
infinite sequence 𝛼 = 𝑞0𝑎1𝑞1𝑎2 ... of alternating states and actions,

such that:

(1) If 𝛼 is finite, it ends with a state.

(2) For every non-final state 𝑞𝑖 , (𝑞𝑖 , 𝑎𝑖 , 𝑞𝑖+1) ∈ 𝑠𝑡𝑒𝑝𝑠 (A)
We write 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼) for 𝑞0

(the first state of 𝛼), and if 𝛼 is finite,

wewrite 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼) for its last state. he length |𝛼 | of a finite execution
fragment 𝛼 is the number of transitions along 𝛼 . We use 𝐹𝑟𝑎𝑔𝑠 (A)
(resp., 𝐹𝑟𝑎𝑔𝑠∗ (A)) to denote the set of all (resp., all finite) execu-

tion fragments ofA. An execution ofA is an execution fragment 𝛼

with 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼) = 𝑞. 𝐸𝑥𝑒𝑐𝑠 (A) (resp., 𝐸𝑥𝑒𝑐𝑠∗ (A)) denotes the set
of all (resp., all finite) executions of A. The trace of an execution

fragment 𝛼 , written 𝑡𝑟𝑎𝑐𝑒 (𝛼), is the restriction of 𝛼 to the external

actions ofA. We say that 𝛽 is a trace ofA if there is 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (A)
with 𝛽 = 𝑡𝑟𝑎𝑐𝑒 (𝛼). A state 𝑞 ∈ 𝑄A is said reachable if it exists a
finite execution that ends with 𝑞. We note 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (A) the set of
reachable states ofA.We define a concatenation operator⌢ for exe-

cution fragments as follows. If 𝛼 = 𝑞0𝑎1𝑞1 ...𝑎𝑛𝑞𝑛 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A) and
𝛼 ′ = 𝑠0𝑏1𝑠1 ... ∈ 𝐹𝑟𝑎𝑔𝑠 (A), we define 𝛼⌢𝛼 ′ = 𝑞0𝑎1𝑞1 ...𝑎𝑛𝑠0𝑏1𝑠1 ...

only if 𝑠0 = 𝑞𝑛 , otherwise 𝛼⌢𝛼 ′ is undefined. Hence the nota-

tion 𝛼⌢𝑠0𝑏1𝑠1 ... implicitly means 𝑠0 = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼). We also note

𝛼⌢ (𝑏1, 𝑠1) to states 𝛼⌢𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼)𝑏1𝑠1
. Let 𝛼, 𝛼 ′ ∈ 𝐹𝑟𝑎𝑔𝑠 (A), then

𝛼 is a proper prefix of 𝛼 ′ iff ∃𝛼 ′′ ∈ 𝐹𝑟𝑎𝑔𝑠 (A) such that 𝛼 ′ = 𝛼⌢𝛼 ′′

with 𝛼 ≠ 𝛼 ′. In that case, we note 𝛼 < 𝛼 ′. We note 𝛼 ≤ 𝛼 ′ if 𝛼 < 𝛼 ′

or 𝛼 = 𝛼 ′ and say that 𝛼 is a prefix of 𝛼 ′.

2.3 Signatures compatibility and composition
Tha main aim of IO formalism is to compose several automata A =

{A1, ...,A𝑛} and provide guarantees by composing the guarantees

of the different elements of the system. Some syntaxic rules have

to be satisfied before defining the composition operation.

Definition 2.3 (Compatible signatures). Let 𝑆 be a set of signatures.
Then 𝑆 is compatible iff,∀𝑠𝑖𝑔, 𝑠𝑖𝑔′ ∈ 𝑆 , where 𝑠𝑖𝑔 = (𝑖𝑛, 𝑜𝑢𝑡, 𝑖𝑛𝑡), 𝑠𝑖𝑔′
= (𝑖𝑛′, 𝑜𝑢𝑡 ′, 𝑖𝑛𝑡 ′) and 𝑠𝑖𝑔 ≠ 𝑠𝑖𝑔′, we have: 1. (𝑖𝑛∪𝑜𝑢𝑡∪𝑖𝑛𝑡)∩𝑖𝑛𝑡 ′ = ∅,
and 2. 𝑜𝑢𝑡 ∩ 𝑜𝑢𝑡 ′ = ∅.
1
The condition could allow us to model DA as a partial function from𝑄A ×𝑎𝑐𝑡𝑠 (A)
to 𝐷𝑖𝑠𝑐 (𝑄A ) . However, we keep this presentation to stay as close as possible

to the usual notation of the literature. For the same reasons, we use both A ≜
(𝑄A , 𝑞A , 𝑠𝑖𝑔 (A), 𝐷A ) and A ≜ (𝑠𝑡𝑎𝑡𝑒𝑠 (A), 𝑠𝑡𝑎𝑟𝑡 (A), 𝑠𝑖𝑔 (A), 𝑑𝑡𝑟𝑎𝑛𝑠 (A))
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Definition 2.4 (Composition of Signatures). Let Σ = (𝑖𝑛, 𝑜𝑢𝑡, 𝑖𝑛𝑡)
and Σ′ = (𝑖𝑛′, 𝑜𝑢𝑡 ′, 𝑖𝑛𝑡 ′) be compatible signatures. Then we define

their composition Σ× Σ = (𝑖𝑛 ∪ 𝑖𝑛′ − (𝑜𝑢𝑡 ∪𝑜𝑢𝑡 ′), 𝑜𝑢𝑡 ∪𝑜𝑢𝑡 ′, 𝑖𝑛𝑡 ∪
𝑖𝑛𝑡 ′)2.

Signature composition is clearly commutative and associative.

Now we can define the compatibility of several automata at a state

with the compatibility of their attached signatures. First we define

compatibility at a state, and discrete transition for a set of automata

for a particular compatible state.

Definition 2.5 ( compatibility at a state). Let A = {A1, ...,A𝑛} be
a set of PSIOA. A state of A is an element 𝑞 = (𝑞1, ..., 𝑞𝑛) ∈ 𝑄A =

𝑄A1
×...×𝑄A𝑛

. We sayA1, ...,A𝑛 are (resp.A is) compatible at state
𝑞 if {𝑠𝑖𝑔(A1) (𝑞1), ..., 𝑠𝑖𝑔(A𝑛) (𝑞𝑛)} is a set of compatible signatures.

In this case we note 𝑠𝑖𝑔(A) (𝑞) = 𝑠𝑖𝑔(A1) (𝑞1) × ... × 𝑠𝑖𝑔(A𝑛) (𝑞𝑛)
as per definition 2.4 and we note 𝜂 (A,𝑞,𝑎) ∈ 𝐷𝑖𝑠𝑐 (𝑄A), s. t. ∀𝑎 ∈
𝑠𝑖𝑔(A) (𝑞), 𝜂 (A,𝑞,𝑎) = 𝜂1 ⊗ ...⊗𝜂𝑛 where ∀𝑗 ∈ [1, 𝑛], 𝜂 𝑗 = 𝜂 (A 𝑗 ,𝑞 𝑗 ,𝑎)
if 𝑎 ∈ 𝑠𝑖𝑔(A 𝑗 ) (𝑞 𝑗 ) and 𝜂 𝑗 = 𝛿𝑞 𝑗

otherwise.

2.4 Hiding and renaming
We present the classic hiding and renaming operators. The former

"hides" the output actions transforming them into internal actions.

Definition 2.6 (hiding on signature). Let 𝑠𝑖𝑔 = (𝑖𝑛, 𝑜𝑢𝑡, 𝑖𝑛𝑡) be a
signature and 𝑆 a set of actions. We note ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔, 𝑆) the signature
𝑠𝑖𝑔′ = (𝑖𝑛, 𝑜𝑢𝑡 \ 𝑆, 𝑖𝑛𝑡 ∪ (𝑜𝑢𝑡 ∩ 𝑆))

Definition 2.7 (hiding on PSIOA). LetA = (𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A )
be a PSIOA. Let ℎ a function mapping each state 𝑞 ∈ 𝑄 to a set of

output actions. We note ℎ𝑖𝑑𝑒 (A, ℎ) the PSIOA (𝑄,𝑞, 𝑠𝑖𝑔′(A), 𝐷),
where 𝑠𝑖𝑔′(A) : 𝑞 ∈ 𝑄 ↦→ ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(A)(𝑞), ℎ(𝑞)).

The next operation simply renames actions of an automaton.

Definition 2.8 (Action renaming for PSIOA). Let A be a PSIOA

and let 𝑟 be a partial function on 𝑠𝑡𝑎𝑡𝑒𝑠 (A) × 𝑎𝑐𝑡𝑠 (A), s. t. ∀𝑞 ∈
𝑠𝑡𝑎𝑡𝑒𝑠 (A), 𝑟 (𝑞) is an injective mapping with 𝑠𝑖𝑔(A)(𝑞) as domain.

Then 𝑟 (A) is the PSIOA (see appendix A, lemma A.1) given by:

(1) 𝑠𝑡𝑎𝑟𝑡 (𝑟 (A)) = 𝑠𝑡𝑎𝑟𝑡 (A).
(2) 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑟 (A)) = 𝑠𝑡𝑎𝑡𝑒𝑠 (A).
(3) ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A), 𝑠𝑖𝑔(𝑟 (A))(𝑞) = (𝑖𝑛(𝑟 (A))(𝑞) , 𝑜𝑢𝑡 (𝑟 (A))
(𝑞) , 𝑖𝑛𝑡 (𝑟 (A))(𝑞)) with (a) 𝑜𝑢𝑡 (𝑟 (A))(𝑞) = 𝑟 (𝑜𝑢𝑡 (A)(𝑞)),
(b) 𝑖𝑛(𝑟 (A))(𝑞) = 𝑟 (𝑖𝑛(A)(𝑞)), (c) 𝑖𝑛𝑡 (𝑟 (A))(𝑞) = 𝑟 (𝑖𝑛𝑡
(A)(𝑞)) .

(4) 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑟 (A)) = {(𝑞, 𝑟 (𝑎), 𝜂) | (𝑞, 𝑎, 𝜂) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A)} (we
note 𝜂 (𝑟 (A),𝑞,𝑟 (𝑎)) the element of 𝐷𝑖𝑠𝑐 (𝑠𝑡𝑎𝑡𝑒𝑠 (𝑟 (A)) which
is equal to 𝜂 (A,𝑞,𝑎) .

2.5 Probabilistic Configuration Automata
The framework proposed in [7] combines the notion of configura-

tion of [1] with the probabilistic setting of [14]. A configuration is

a set of automata attached with their current states.

Definition 2.9 (Configuration). A configuration is a pair (A, S)
where

• A = {A1, ...,A𝑛} is a finite set of PSIOA identifiers and

2
not to be confused with Cartesian product. We keep this notation to stay as close as

possible to the literature.

• S maps each A𝑘 ∈ A to an 𝑠𝑘 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A𝑘 ).
In distributed computing, configuration usually refers to the

union of states of all the automata of the system. Here, there is

a subtlety, since it captures a set of some automata (A) in their

current state (S), but the set of automata of the systems will not be

fixed in the time.

Definition 2.10 (Compatible configuration). A configuration (A, S),
with A = {A1, ...,A𝑛}, is compatible iff the set A is compatible at

state (S(A1), ..., S(A𝑛)) as per definition 2.5

Definition 2.11 (Intrinsic attributes of a configuration). Let 𝐶 =

(A, S) be a compatible configuration. Then we define

• 𝑎𝑢𝑡𝑠 (𝐶) = A represents the automata of the configuration,

• 𝑚𝑎𝑝 (𝐶) = S maps each automaton of the configuration with

its current state,

• 𝑠𝑖𝑔(𝐶) = (𝑖𝑛(𝐶), 𝑜𝑢𝑡 (𝐶), 𝑖𝑛𝑡 (𝐶)) = ( [(⋃A∈A 𝑖𝑛(A)(S(A)))
\ 𝑜𝑢𝑡 (𝐶)],⋃A∈A 𝑜𝑢𝑡 (A)(S(A)),⋃A∈A 𝑖𝑛𝑡 (A)(S(A))), is
called the intrinsic signature of the configuration,

Here we define a reduced configuration as a configuration de-

prived of the automata that are in the very particular state where

their current signatures are the empty set. This mechanism will be

used later to capture the idea of destruction of an automaton.

Definition 2.12 (Reduced configuration). 𝑟𝑒𝑑𝑢𝑐𝑒 (𝐶) = (A′, S′),
where A′ = {A|A ∈ A and 𝑠𝑖𝑔(A)(S(A)) ≠ ∅} and S′ is the
restriction of S to A′, noted S ↾ A′ in the remaining.

A configuration 𝐶 is a reduced configuration iff 𝐶 = 𝑟𝑒𝑑𝑢𝑐𝑒 (𝐶).

We will define some probabilistic transition from configurations

to others where some automata can be destroyed or created. To

define it properly, we start by defining "preserving transition" where

no automaton is neither created nor destroyed and then we define

above this definition the notion of configuration transition. These

distributions belong to the measurable set (𝑄𝑐𝑜𝑛𝑓 , 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓 ))
where 𝑄𝑐𝑜𝑛𝑓 denotes the (countable) set of configurations.

We start by defining preserving transition (𝐶, 𝑎, 𝜂𝑝 ) from a con-

figuration 𝐶 via an action 𝑎 with a transition 𝜂𝑝 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓 ). It
allows us to say what is the "static" probabilistic transition from a

configuration 𝐶 via an action 𝑎 if no creation or destruction occurs.

Definition 2.13 (preserving transition). Let A = {A1, ...,A𝑛} be a
finite set of automata Let 𝐶 = (A, S) be a compatible configuration

s. t. 𝑞 = 𝑈𝑆 (𝐶) and 𝑎 ∈ 𝑠𝑖𝑔(𝐶). Let 𝜂𝑝 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓 ).
We note 𝐶

𝑎
⇀ 𝜂𝑝 if 𝜂 (A,𝑞,𝑎) and 𝜂𝑝 verify the following:

• ∀(A′, S′) ∈ 𝑠𝑢𝑝𝑝 (𝜂𝑝 ), A′ = A
• ∀(A, S′) ∈ 𝑄𝑐𝑜𝑛𝑓 , ∀𝑞′ = (𝑞′1, ..., 𝑞

′
𝑛) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A), then (∀𝑖 ∈

[1, 𝑛], 𝑞′
𝑖
= S′(A𝑖 )) =⇒ 𝜂 (A,𝑞,𝑎) (𝑞′) = 𝜂𝑝 ((A, S′)).

Now we are ready to define our "dynamic" transition, that allows

a configuration to create or destroy some automata.

Definition 2.14 (Intrinsic transition ). Let (A, S) be arbitrary re-

duced compatible configuration, let 𝜂 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓 ), and let 𝜑 ⊆
𝐴𝑢𝑡𝑖𝑑𝑠 , 𝜑 ∩ A = ∅ and 𝜑 is finite. Then (A, S) 𝑎

=⇒𝜑 𝜂 if it exists

𝜂𝑝 , 𝜂𝑛𝑟 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓 ) s. t. (A, S)
𝑎
⇀ 𝜂𝑝 and

• (𝜑 is created with probability 1)

3



∀(A′′, S′′) ∈ 𝑠𝑢𝑝𝑝 (𝜂𝑛𝑟 ), A′′ = A ∪ 𝜑 .3
• (freshly created automata start at start state)∀𝐶 ′′ = (A′′, S′′)
∈ 𝑠𝑢𝑝𝑝 (𝜂𝑛𝑟 ), ∀A𝑖 ∈ 𝜑 \ A, S′′(A𝑖 ) = 𝑠𝑡𝑎𝑟𝑡 (A𝑖 )
• (The non-reduced transitionmatch the preserving transition)

∀(A′′, S′′) ∈ 𝑄𝑐𝑜𝑛𝑓 , s. t. A′′ = A ∪ 𝜑 and ∀A𝑖 ∈ 𝜑 \ A,
S′′(A𝑖 ) = 𝑠𝑡𝑎𝑟𝑡 (A𝑖 ), 𝜂𝑛𝑟 ((A′′, S′′)) = 𝜂𝑝 (A, S′′⌈A)) where
S′′⌈A) denotes the restriction of S′′ on A)
• (The reduced transition match the non-reduced transition )

∀𝑐 ′ ∈ 𝑄𝑐𝑜𝑛𝑓 , if 𝑐
′ = 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑐 ′), 𝜂𝑟 (𝑐 ′) = Σ (𝑐′′,𝑐′=𝑟𝑒𝑑𝑢𝑐𝑒 (𝑐′′))

𝜂𝑛𝑟 (𝑐 ′′), if 𝑐 ′ ≠ 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑐 ′), then 𝜂𝑟 (𝑐 ′) = 0

Here below we recall the definition of probabilistic configuration

automata [7] altogether with notations to represent corresponding

probability measures.

Definition 2.15 (𝜂
𝑓
↔ 𝜂 ′). Let 𝑄 and 𝑄 ′ be two countable sets.

Let (𝜂, 𝜂 ′) ∈ 𝐷𝑖𝑠𝑐 (𝑄) ×𝐷𝑖𝑠𝑐 (𝑄 ′). Let 𝑓 : 𝑄 → 𝑄 ′. We note 𝜂
𝑓
↔ 𝜂 ′

if the following is verified:

• the restriction
˜𝑓 of 𝑓 to 𝑠𝑢𝑝𝑝 (𝜂) is a bijection from 𝑠𝑢𝑝𝑝 (𝜂)

to 𝑠𝑢𝑝𝑝 (𝜂 ′)
• ∀𝑞 ∈ 𝑠𝑢𝑝𝑝 (𝜂), 𝜂 (𝑞) = 𝜂 ′(𝑓 (𝑞))

Now we are ready to define our probabilistic configuration au-

tomata. Such an automaton define a strong link with a dynamic

configuration.

Definition 2.16 (Probabilistic Configuration Automaton). A proba-

bilistic configuration automaton (PCA) 𝑋 consists of the following

components:

• 1. A probabilistic signature I/O automaton 𝑝𝑠𝑖𝑜𝑎(𝑋 ). For
brevity, we define 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ) = 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑝𝑠𝑖𝑜𝑎(𝑋 )), 𝑠𝑡𝑎𝑟𝑡 (𝑋 ) =
𝑠𝑡𝑎𝑟𝑡 (𝑝𝑠𝑖𝑜𝑎(𝑋 )), 𝑠𝑖𝑔(𝑋 ) = 𝑠𝑖𝑔(𝑝𝑠𝑖𝑜𝑎(𝑋 )) and likewise for all
other (sub)components and attributes of 𝑝𝑠𝑖𝑜𝑎(𝑋 ).
• 2. A configurationmapping 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 )with domain 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 )
and such that 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞𝑋 ) is a reduced compatible con-

figuration for all 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ).
• 3. For each 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ), a mapping 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 ) (𝑞𝑋 )
with domain 𝑠𝑖𝑔(𝑋 ) (𝑞𝑋 ) and such that ∀𝑎 ∈ 𝑠𝑖𝑔(𝑋 ) (𝑞𝑋 ),
𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 ) (𝑞𝑋 ) (𝑎) ⊆ 𝐴𝑢𝑡𝑖𝑑𝑠 with 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 ) (𝑞𝑋 ) (𝑎) fi-
nite.

• 4. A hidden-actions mapping ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋 ) with do-

main 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ) and such that ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋 ) (𝑞𝑋 ) ⊆
𝑜𝑢𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞𝑋 )).

and satisfies the following constraints

• 1. (start states preservation) If 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞𝑋 ) = (A, S), then
∀A𝑖 ∈ A, S(A𝑖 ) = 𝑞𝑖
• 2. (top/down simulation) If (𝑞𝑋 , 𝑎, 𝜂 (𝑋,𝑞𝑋 ,𝑎) ) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋 )

then it exists 𝜂 ′ ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓 ) s. t. 𝜂 (𝑋,𝑞𝑋 ,𝑎)
𝑓
←→ 𝜂 ′ with

i) 𝑓 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) and ii) 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞𝑋 )
𝑎
=⇒𝜑 𝜂 ′, where

𝜑 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 ) (𝑞𝑋 ) (𝑎)
• 3. (bottom/up simulation) If𝐶

𝑎
=⇒𝜑 𝜂

′
with 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ),

𝐶 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞𝑋 ), 𝑎 ∈ 𝑠𝑖𝑔(𝐶), 𝜑 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 ) (𝑥) (𝑎) and
3
The assumption of deterministic creation is not restrictive, nothing prevents from

flipping a coin at state 𝑠0 to reach 𝑠1 with probability 𝑝 or 𝑠2 with probability 1 − 𝑝
and only create a new automaton in state 𝑠2 with probability 1, while the action create

is not enabled in state 𝑠1 .

𝜂 ′ ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓 ), then (𝑞𝑋 , 𝑎, 𝜂 (𝑋,𝑞𝑋 ,𝑎) ) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋 ), and

𝜂 (𝑋,𝑞𝑋 ,𝑎)
𝑓
←→ 𝜂 ′ with 𝑓 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) .

• 4. (action hiding) for every 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ), 𝑠𝑖𝑔(𝑋 ) (𝑞𝑋 ) =
ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞𝑋 )), ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑞𝑋 )) .

This definition, proposed in a deterministic fashion in [1], cap-

tures dynamicity of the system. Each state is linked with a con-

figuration. The set of automata of the configuration can change

during an execution. A sub-automatonA is created from state 𝑞 by

the action 𝑎 if A ∈ 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 ) (𝑞) (𝑎). A sub-automaton A is de-

stroyed if the non-reduced attached configuration distribution lead

to a configuration where A is in a state 𝑞
𝜙

A s. t. 𝑠𝑖𝑔(A)(𝑞𝜙A ) = ∅.
Then the corresponding reduced configuration will not hold A.

The last constraint states that the signature of a state 𝑞𝑋 of 𝑋 must

be the same as the signature of its corresponding configuration

𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞𝑋 ), except for the possible effects of hiding operators,

so that some outputs of 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞𝑋 ) may be internal actions of

𝑋 in state 𝑞𝑋 .

Definition 2.17 (hiding on PCA). Let 𝑋 be a PCA. Let ℎ : 𝑞 ∈
𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ) ↦→ ℎ(𝑞) ⊂ 𝑜𝑢𝑡 (𝑋 ) (𝑞) a function mapping each state

𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ) to a set of output actions. We note ℎ𝑖𝑑𝑒 (𝑋,ℎ) the
PCA𝑋 ′ that differs from𝑋 only on 𝑠𝑖𝑔(𝑋 ′) andℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋 ′),
where ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ) = 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ′),
• 𝑠𝑖𝑔(𝑋 ′) (𝑞) = ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑋 ) (𝑞), ℎ(𝑞)) and
• ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋 ′) (𝑞) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋 ) (𝑞) ∪ ℎ(𝑞).

2.6 PSIOA and PCA composition
It is possible to extend definition of executions to a set A of PSIOA

(resp. PCA) in the obvious way, i. e. with alternating sequence of

compatible states (except potentially for last state) and actions of

A. Thus we can define reachable states of A in a natural manner,

before defining partially-compatible set of PSIOA (resp. PCA) as a

set PSIOA (resp. PCA) s. t. every reachable state is compatible. More

details can be found in [7]. This precautions allow us to formally

define our operation of composition. This is the central operation

of any IOA formalism.

Definition 2.18 (PSIOA partial-composition). If A = {A1, ...,A𝑛}
with A𝑖 = (𝑄A𝑖

, 𝑞A𝑖
, 𝑠𝑖𝑔(A𝑖 ), 𝐷A𝑖

), is a partially-compatible set

of PSIOA, then their partial-composition A1 | |...| |A𝑛 , is defined to

be A = (𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A ), where:
• 𝑄A = {𝑞 ∈ 𝑄A1

× ... ×𝑄A𝑛
|𝑞 is a reachable state of A}.

• 𝑞A = (𝑞A1
, ..., 𝑞A𝑛

)
• 𝑠𝑖𝑔(A) : 𝑞 = (𝑞1, ..., 𝑞𝑛) ∈ 𝑄A ↦→ 𝑠𝑖𝑔(A)(𝑞) = 𝑠𝑖𝑔(A1) (𝑞1)
×... × 𝑠𝑖𝑔(A𝑛) (𝑞𝑛) as per definition 2.4.

• 𝐷A ⊂ 𝑄A × 𝑎𝑐𝑡𝑠 (A) ×𝐷𝑖𝑠𝑐 (𝑄A ) is the set of triples of the
form (𝑞, 𝑎, 𝜂 (A,𝑞,𝑎) ) with 𝑞 ∈ 𝑄A and 𝑎 ∈ 𝑠𝑖𝑔(A) (𝑞)

If 𝑞 = (𝑞1, ..., 𝑞𝑛) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A), we note 𝑞 ↾ A𝑖 ≜ 𝑞𝑖 the projec-
tion on the 𝑖-th element of 𝑞.

Definition 2.19 (PCA partial-composition). If X = {𝑋1, ..., 𝑋𝑛}
with 𝑐𝑟𝑖 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋𝑖 ), is a partially-compatible set of PCA, then

their partial-composition 𝑋1 | |...| |𝑋𝑛 , is defined to be the PCA 𝑋 s.

t. 𝑝𝑠𝑖𝑜𝑎(𝑋 ) = 𝑝𝑠𝑖𝑜𝑎(𝑋1) | |...| |𝑝𝑠𝑖𝑜𝑎(𝑋𝑛) and ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ):
• 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞) = ⋃

𝑖∈[1,𝑛] 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑖 ) (𝑞 ↾ 𝑋𝑖 )
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• 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 ) (𝑞) (𝑎) = ⋃
𝑖∈[1,𝑛] 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋𝑖 ) (𝑞 ↾ 𝑋𝑖 ) (𝑎), ∀𝑎 ∈

𝑠𝑖𝑔(𝑋 ) (𝑞), with the convention 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋𝑖 ) (𝑞𝑖 ) (𝑎) = ∅ if
𝑎 ∉ 𝑠𝑖𝑔(𝑋𝑖 ) (𝑞𝑖 )
• ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑞) = ⋃

𝑖∈[1,𝑛] ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋𝑖 ) (𝑞 ↾ 𝑋𝑖 )

The set of PSIOA (resp. PCA) has been shown to be close under

partial composition in [7].

3 SCHEDULER AND EXTERNAL PERCEPTION
In this section we recall the definitions of scheduler and environ-

ment of the [7] framework.

An inherent non-determinism appears for composable (I/O) au-

tomata. Indeed, after composition (or even before), it is natural

to obtain a state with several enabled actions. The most common

case is the reception of two concurrent messages in flight from two

different processes. This non-determinism must be solved if we

want to define a probability measure on the automata executions

and be able to say that a situation is likely to occur or not. To solve

the non-determinism, we use a scheduler that chooses an enabled

action from a signature.

A scheduler is hence a function that takes an execution fragment

as input and outputs the probability distribution on the set of tran-

sitions that will be triggered. In the following we recall definition

in [7].

Definition 3.1 (scheduler). A scheduler of a PSIOAA is a function

𝜎 : 𝐹𝑟𝑎𝑔𝑠∗ (A) → 𝑆𝑢𝑏𝐷𝑖𝑠𝑐 (𝑑𝑡𝑟𝑎𝑛𝑠 (A)) such that (𝑞, 𝑎, 𝜂) ∈
𝑠𝑢𝑝𝑝 (𝜎 (𝛼)) implies𝑞 = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼). Here 𝑆𝑢𝑏𝐷𝑖𝑠𝑐 (𝑑𝑡𝑟𝑎𝑛𝑠 (A)) is the
set of discrete sub-probability distributions on 𝑑𝑡𝑟𝑎𝑛𝑠 (A). Loosely
speaking, 𝜎 decides (probabilistically) which transition to take after

each finite execution fragment 𝛼 . Since this decision is a discrete

sub-probability measure, it may be the case that 𝜎 chooses to halt

after 𝛼 with non-zero probability: 1 − 𝜎 (𝛼) (𝑑𝑡𝑟𝑎𝑛𝑠 (𝛼)) > 0. We

note 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (A) the set of schedulers of A.

It is possible to use a scheduler 𝜎 to generate a measure of prob-

ability 𝜖𝜎 on the measurable space (𝐸𝑥𝑒𝑐𝑠 (A), F𝐸𝑥𝑒𝑐𝑠 (A) ) where
F𝐸𝑥𝑒𝑐𝑠 (A) is the sigma-field generated by cones of execution frag-

ments, where each cone 𝐶𝛼′ is the set of execution fragments that

have 𝛼 ′ as a prefix, i. e.𝐶𝛼′ = {𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (A)|𝛼 ′ ≤ 𝛼}. More details

are available in [3] and [7].

Without restriction, a scheduler could become a too powerful

adversary for practical applications. Hence, it is common to only

consider a subset of schedulers, called a scheduler schema, like
"oblivious schedulers", "off-line schedulers", "fair schedulers", "task-

schedulers", ... .

Definition 3.2 (scheduler schema). A scheduler schema is a func-
tion that maps any PSIOA or PCA𝑊 to a subset of 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (𝑊 ).

In the following we recall the notion of implementation [7]. The

intuition behind this notion is the fact that any environment E that

would interact with bothA and B, would not be able to distinguish
A from B. The classic use-case is to formally show that a (poten-

tially very sophisticated) algorithm implements a specification.

Definition 3.3 (Environment). A probabilistic environment for

PSIOAA is a PSIOA E such thatA and E are partially-compatible.

We note 𝑒𝑛𝑣 (A) the set of environments of A.

Now we define insight function which is a function that cap-

tures the insights that could be obtained by an external observer to

attempt a distinction.

Definition 3.4 (insight function). An insight-function is a function

𝑓(.,.) parametrized by a pair (E,A) of PSIOA where E ∈ 𝑒𝑛𝑣 (A)
so that for every PSIOA E, it exists a measurable space (𝐺E , F𝐺E ),
s. t. for every PSIOAA where E ∈ 𝑒𝑛𝑣 (A), 𝑓(E,A) is a measurable

function from (𝐸𝑥𝑒𝑐𝑠 (E||A), F𝐸𝑥𝑒𝑐𝑠 (E | |A) ) to (𝐺E , F𝐺E ).

The point is that the arrival space (𝐺E , F𝐺E ) is the same for

two different functions 𝑓(E,A) and 𝑓(E,B) to enable a comparison.

Some examples of insight-functions are the trace function, the print

function introduced in [7] and the function 𝑎𝑐𝑐𝑒𝑝𝑡 introduced in

[3].

Since an insight-function 𝑓(.,.) is measurable, we can define the

image measure of 𝜖𝜎 under 𝑓(E,A) , i. e. the probability to obtain a

certain external perception under a certain scheduler 𝜎 .

Definition 3.5 (𝑓 -𝑑𝑖𝑠𝑡 ). Let 𝑓(.,.) be an insight-function. Let (E,A)
be a pair of PSIOA where E ∈ 𝑒𝑛𝑣 (A). Let 𝜎 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E||A).
We define 𝑓 -𝑑𝑖𝑠𝑡 (E,A) (𝜎), to be the image measure of 𝜖𝜎 under

𝑓(E,A) (the function that maps any 𝐶 ∈ F𝐺E to 𝜖𝜎 (𝑓 −1

(E,A) (𝐶)) ) .

Now we define the notion of balanced schedulers, that capture
the incapacity of an environment to distinguish two situations

under two so-called balanced schedulers. Several definitions of this

incapacity can be chosen.

Definition 3.6 (balanced schedulers). Let A and B be two PSIOA

(resp. PCA), let E ∈ 𝑒𝑛𝑣 (A)∩𝑒𝑛𝑣 (B), let (𝜎, 𝜎 ′) ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E||A)
×𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E||B). Let 𝜖 ∈ R≥0

. Let 𝑓(,) be an insight function. We

note 𝜎𝑆≤𝜖E,𝑓 𝜎
′
if ∀𝐼 ⊆ 𝑁,∀(𝜁𝑖 )𝑖∈𝐼 ∈ [

⋃
C∈𝑎𝑢𝑡𝑖𝑑𝑠,E∈𝑒𝑛𝑣 (C) 𝑟𝑎𝑛𝑔𝑒 (

𝑓(E,C) )]𝐼 , |
∑
𝑖∈𝐼 (𝑓 -𝑑𝑖𝑠𝑡 (E,B) (𝜎 ′) (𝜁𝑖 ) − 𝑓 -𝑑𝑖𝑠𝑡 (E,A) (𝜎) (𝜁𝑖 )) | ≤ 𝜖 .

We states a necessary and sufficient condition to obtain com-

posability of 𝑓 -implementation stated in lemma 4.13and 4.14. This

condition of stability by composition is an extension to approximate

implementation of the one introduced in [7].

Definition 3.7 (insight function stable by composition). Let 𝑓(.,.)
be an insight-function. We say that 𝑓(.,.) is stable by composition if

for every quadruplet of PSIOA (A1,A2,B, E), s. t. B is partially

compatible withA1 andA2, E ∈ 𝑒𝑛𝑣 (B||A1) ∩ 𝑒𝑛𝑣 (B||A2), ∀𝜖 ∈
R≥0

, ∀(𝜎, 𝜎 ′) ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E||B||A1) × 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E||B||A2),
𝜎𝑆≤𝜖E | |B,𝑓 𝜎

′
implies 𝜎𝑆≤𝜖E,𝑓 𝜎

′
.

This very modest property is naturally verified by standard in-

sight functions like 𝑡𝑟𝑎𝑐𝑒 , 𝑎𝑐𝑐𝑒𝑝𝑡 [3], or 𝑝𝑟𝑖𝑛𝑡 [7] and captures the

fact that the environment E has not a greater power of distinc-

tion than E||B, which should be verified by any reasonable insight

function.

4 POLYNOMIAL-BOUNDED PSIOA:
FORMALISE COMPUTATIONAL
INDISTINGUISHABILITY

In previous sections, we recall the key components of probabilistic

dynamic input/output automata introduced in [7] that provides

a semantic for probabilistic concurrent computation and allows

systems to dynamically create new protocol instances at run time
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(e.g. dynamic ITM [10] invocation mechanism in the UC framework

[2] or through the bang operator “!” in the IITM [11] framework).

In this section, we extend the approximate implementation relation

defined in [4] to dynamic settings, to express the idea that every

behavior of one family of dynamic automata is computationally

indistinguishable from some behavior of another dynamic automata

family.

We adopt a standard bit-representation where we note ⟨𝑞⟩, ⟨𝑎⟩,
⟨𝑡𝑟 ⟩, ⟨𝐶⟩ the respective bit-string representations of state 𝑞, action

𝑎, discrete transition 𝑡𝑟 and configuration 𝐶 .

4.1 𝑏-bounded PSIOA
In the following we extend the definition of bounded Task-PIOA [4]

to dynamic settings. We define bounded PSIOA and then bounded

PCA. The idea is to both limit the memory and the computational

power of the concerned PSIOA. Typically, we prohibit transitions

that would implicitly violate some computational hardness assump-

tions.

Definition 4.1 (PSIOA 𝑏-time-bounded). PSIOA A is said to be

𝑏-time-bounded, where 𝑏 ∈ R≥0
, provided that:

(1) Automaton parts: The length of the bit-string representation

of every action, state, transition is at most 𝑏.

(2) Decoding: There exist deterministic Turing machine𝑀𝑠𝑡𝑎𝑟𝑡 ,

𝑀𝑠𝑖𝑔 ,𝑀𝑡𝑟𝑎𝑛𝑠 ,𝑀𝑠𝑡𝑒𝑝 so that, (i) given the representation ⟨𝑞⟩
of a candidate state 𝑞,𝑀𝑠𝑡𝑎𝑟𝑡 decides whether 𝑞 is the unique

start state of A, (ii) given the representation ⟨𝑞⟩ of a state
𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A), given the representation ⟨𝑎⟩ of a candi-

date input action, (resp. output action, resp. internal action)

𝑀𝑠𝑖𝑔 decides whether 𝑎 ∈ 𝑖𝑛(A)(𝑞) (resp. 𝑎 ∈ 𝑜𝑢𝑡 (A)(𝑞),
resp. 𝑎 ∈ 𝑖𝑛𝑡 (A)(𝑞))4, (iii) given the representation ⟨𝑞⟩ of
a state 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A), the representation ⟨𝑎⟩ of an action

𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞) and the representation ⟨𝑡𝑟 ⟩ of 𝑡𝑟 = (𝑞, 𝑎, 𝜂),
𝑀𝑡𝑟𝑎𝑛𝑠 decides whether 𝑡𝑟 ∈ 𝐷A and (iv) given the rep-

resentation ⟨𝑡𝑟 ⟩ of 𝑡𝑟 = (𝑞, 𝑎, 𝜂) ∈ 𝐷A and the represen-

tation ⟨𝑞′⟩ of a candidate states, 𝑀𝑠𝑡𝑒𝑝 decides whether

(𝑞, 𝑎, 𝑞′) ∈ 𝑠𝑡𝑒𝑝𝑠 (A) (i. e. 𝑞′ ∈ 𝑠𝑢𝑝𝑝 (𝜂)). Moreover all this

machines run always in time at most 𝑏.

(3) Determining the next state: There is a probabilistic Turing

machine𝑀𝑠𝑡𝑎𝑡𝑒 that, given the representation ⟨𝑞⟩ of a state𝑞
ofA, and the representation ⟨𝑎⟩ of an action 𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞)
that is enabled in 𝑞, produces the representation ⟨𝑞′⟩ of the
next state 𝑞′ resulting from the unique transition ofA of the

form (𝑞, 𝑎, 𝜂). Moreover, Mstate always runs in time atmost𝑏.

Moreover, we require that every Turing machine mentioned

in this definition can be described using a bit string of length

at most 𝑏, according to some standard encoding of Turing

machines.

We naturally extend the last definition 4.1 to PCA.

Definition 4.2 (PCA 𝑏-time-bounded). PCA 𝑋 is said to be 𝑏-time-

bounded, where 𝑏 ∈ R≥0
, provided that:

• 𝑝𝑠𝑖𝑜𝑎(𝑋 ) is 𝑏-time-bounded as per definition 4.1

4
if 𝑎 ∈ 𝑠𝑖𝑔 (A) (𝑞) , 𝑎 is enabled by assumption E1 of action enabling

• for every 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ), for every 𝑎 ∈ 𝑠𝑖𝑔(𝑋 ) (𝑞) the length
of bit-string representation of 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞),ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋 ) (𝑞),
𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 ) (𝑞) (𝑎) are at most 𝑏.

• There is a deterministic Turingmachine𝑀𝑐𝑜𝑛𝑓 (resp.𝑀𝑐𝑟𝑒𝑎𝑡𝑒𝑑 ,

resp. 𝑀ℎ𝑖𝑑𝑑𝑒𝑛) that, given the representation ⟨𝑞⟩ of 𝑞 ∈
𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ), the representation ⟨𝑎⟩ of 𝑎 ∈ 𝑠𝑖𝑔(𝑋 ) (𝑞) (𝑎), out-
puts the representation ⟨𝐶⟩ (resp. ⟨𝜑⟩, resp. ⟨ℎ⟩) of 𝐶 =

𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞) (resp.𝜑 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 ) (𝑞) (𝑎), resp.ℎ = ℎ𝑖𝑑𝑑𝑒𝑛-

𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋 ) (𝑞)). The 3 machines run always in time 𝑏 and

can be described with a bit-string of length at most 𝑏 using

standard encoding of Turing machines.

4.2 Composition
As for bounded task-PIOA [4], the composition of two time-bounded

PSIOA (resp. PCA) is also time-bounded, with a bound that is a

linear combination of the bounds for the two components.

Lemma 4.3 (composition of bounded PSIOA is bounded). There
exists a constant 𝑐𝑐𝑜𝑚𝑝 such that the following holds. Suppose A1 is
a 𝑏1-time-bounded PSIOA (resp. PCA) and A2 is a 𝑏2-time-bounded
PSIOA (resp. PCA), where 𝑏1, 𝑏2 ≥ 1. ThenA1 | |A2 is a 𝑐𝑐𝑜𝑚𝑝 · (𝑏1 +
𝑏2)-bounded PSIOA (resp. PCA).

Proof. The proof is delegated to the appendix B (see lemma B.1

and B.2). □

4.3 Hiding
In order to be able to state time bounds when we apply the hiding

operator on a time-bounded PSIOA (resp. PCA) A, we define what

it means for a set of actions of A to be 𝑏-time recognizable.

Definition 4.4 (bounded-time recognizable set/function). Suppose
𝑆 ′ is a set of actions and 𝑏 ′ ∈ R≥0

. We say that 𝑆 is 𝑏 ′-time rec-
ognizable if there is a probabilistic Turing machine𝑀 ′ that, given
the representation ⟨𝑎⟩ of a candidate action 𝑎, decides if 𝑎 ∈ 𝑆 .
Furthermore, the machine𝑀 ′ runs in time less than 𝑏 ′ and can be

described by less than 𝑏 ′ bits, according to some standard encoding.

Let A be a bounded-PSIOA (resp. PCA). Suppose 𝑆 is a function

mapping each state 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) to a set of states 𝑆 (𝑞). We say

that 𝑆 is 𝑏 ′-time recognizable if ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A), 𝑆 (𝑞) is 𝑏 ′-time

recognizable.

Lemma 4.5 (hiding of bounded automata is bounded). There
exists a constant 𝑐ℎ𝑖𝑑𝑒 such that the following holds. Suppose A is
a 𝑏-time-bounded PSIOA (resp. PCA), where 𝑏 ∈ R≥0, 𝑏 ≥ 1. Let 𝑆
be a 𝑏 ′-time recognizable function with 𝑠𝑡𝑎𝑡𝑒𝑠 (A) as domain. Then
ℎ𝑖𝑑𝑒 (A, 𝑆) is a 𝑐ℎ𝑖𝑑𝑒 · (𝑏 + 𝑏 ′)-time-bounded PSIOA (resp. PCA).

Proof. The proof is delegated to the appendix B (see B.3). □

4.4 Scheduling
In previous section, we adapted the boundness of I/O automata from

[4] into dynamic setting. However, for the moment, there is no a

priori bound imposed on the number of transitions that a PSIOA or

a PCA may perform, which could lead to a potential unbounded

behaviour and so to a potentially too important computational

power.

Therefore [4] introduced a final restriction on runtime imposed

only for comparison of the behaviors of different PSIOA (resp. PCA)
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using implementation relations, by adding bounds on the number

of activations.

In this paper, we are slightly less restrictive than [4], since we

tolerate a broader set of schedulers instead of only accepting task-

schedulers [3] which generalizes fully off-line schedulers that de-

cide in advance an order of "tasks" to perform, where a task is an

equivalence class on actions. In addition of the obtained generality,

the advantages are as follows:

• We do not have to formalise the extension of task-structures

to dynamic setting with the attached issues mentioned in

[7].

• We can define a scheduler schema that is oblivious in the

sufficient sense to ensure the correctness of the studied em-

ulation candidate.

• We can define a creation-oblivious scheduler schema. This

property has been shown in [7] to be necessary to ensure

that the implementation relation is monotonic w.r.t. PSIOA

creation, i. e. if PCA 𝑋A and 𝑋B differ only in that 𝑋A dy-

namically creates and destroys PSIOA A instead of creating

and destroying PSIOA B as 𝑋B does, and if A implements

B (in the sense they cannot be distinguished by any external

observer), then 𝑋A implements 𝑋B . This property will al-

low us to obtain monotonicity w.r.t. PSIOA creation for the

relation of secure-emulation in a future work.

Definition 4.6 (bounded scheduler). Let 𝐾 be a PSIOA or a PCA,

let 𝑏 ∈ N. Let 𝜎 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (𝐾), we say that 𝜎 is 𝑏-time bounded

if ∀𝛼 ∈ 𝑒𝑥𝑒𝑐𝑠 (𝐾) with |𝛼 | > 𝑏, 𝑠𝑢𝑝𝑝 (𝜎 (𝛼)) = ∅, i. e. the scheduler
never execute more than 𝑏 actions of 𝐾 .

We could require that (*) the scheduler has to be a bounded

automaton, but this precision is at the discretion of the designers

of the solution. The results remains true if (*) is required or not.

4.5 Polynomially-bounded family of PSIOA
In this section we extend bounds to families of PSIOA and PCA.

Definition 4.7 (PSIOA family). A PSIOA (resp. PCA) family A, is

an indexed set, (A𝑘 )𝑘∈N, of PSIOA (resp. PCA). Two PSIOA (resp.

PCA) families A = (A𝑘 )𝑘∈N and B = (B𝑘 )𝑘∈N are said to be

compatible provided that, for every 𝑘 , A𝑘 and B𝑘 are compatible.

Two PSIOA (resp. PCA) families A = (A𝑘 )𝑘∈N and B = (B𝑘 )𝑘∈N
can be composed to yield C = (C𝑘 )𝑘∈N = A||B by defining C𝑘 =

A𝑘 | |B𝑘 for every 𝑘 ∈ N.

Definition 4.8 (Time-Bounded PSIOA Family). The PSIOA (resp.

PCA) family A = (A𝑘 )𝑘∈N is said to be 𝑏-time-bounded, where

𝑏 : N → R≥0
, provided that A𝑘 is 𝑏 (𝑘)-time bounded for every

𝑘 ∈ N. This definition allows different Turing machines to be used

for each 𝑘 ∈ N.

Definition 4.9 (scheduler family). A scheduler family 𝜎 is an in-

dexed set, (𝜎𝑘 )𝑘∈N of schedulers.

Definition 4.10 (bounded scheduler family). Let 𝜎 = (𝜎𝑘 )𝑘∈N be

a scheduler family. Then 𝜎 is said to be 𝑏-time-bounded, where

𝑏 : N→ R≥0
provided that 𝜎𝑘 is 𝑏 (𝑘)-time bounded for every 𝑘 .

4.6 Implementation
In this section, we adapt the approximate implementation to the

bounded setting following the same methodology as in [4].

First, we extend the notion of balanced schedulers to schedulers

family.

Definition 4.11 (balanced schedulers). Let A = (A𝑘 )𝑘∈N and

B = (B𝑘 )𝑘∈N be two PSIOA families or two PCA families, let

E = (E𝑘 )𝑘∈N ∈ 𝑒𝑛𝑣 (A) ∩ 𝑒𝑛𝑣 (B) (i. e. ∀𝑘 ∈ N, E𝑘 ∈ 𝑒𝑛𝑣 (A𝑘 ) ∩
𝑒𝑛𝑣 (B𝑘 )), let (𝜎 = (𝜎𝑘 )𝑘∈N, 𝜎 ′ = (𝜎 ′𝑘 )𝑘∈N) ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E||A) ×
𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E||B) (i. e. ∀𝑘 ∈ N, (𝜎𝑘 , 𝜎 ′𝑘 ) ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E𝑘 | |A𝑘 ) ×
𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E𝑘 | |B𝑘 )). Let 𝜖 = (𝜖𝑘 )𝑘∈N ∈ (R≤0)N. Let 𝑓(.,.) be an
insight function. We note 𝜎𝑆

≤𝜖
E,𝑓 𝜎

′
if ∀𝑘 ∈ N, 𝜎𝑘𝑆

≤𝜖𝑘
E𝑘 ,𝑓

𝜎 ′
𝑘
.

Strongly inspired by classic literature of cryptography, the choice

of 𝑓(.,.) in [4] is the function 𝑎𝑐𝑐𝑒𝑝𝑡 that, given an execution 𝛼 , out-

puts 1 if a special action 𝑎𝑐𝑐 appears in 𝑡𝑟𝑎𝑐𝑒 (𝛼) and 0 otherwise.

This function captures the idea that the environment distinguishes

the real world from the idealized one. This is at the discretion of

the user of the framework to chose a particular insight function.

But we let it as general as possible to be also able to use the in-

sight function 𝑝𝑟𝑖𝑛𝑡 (.,.) that is particularly well-suited to obtain

the monotonicity w.r.t PSIOA creation of implementation [7]. In

a future work we want to use the the insight function 𝑝𝑟𝑖𝑛𝑡 (.,.) to
extend this monotonicity result to secure emulation.

Now we are ready to extend approximate implementation of [4]

to both bounded and dynamic setting.

Definition 4.12 (approximate implementation). Let A and B be

two PSIOA (resp. PCA). Let 𝑆𝑐ℎ be a scheduler schema, 𝜖 ∈ R≤0
,

(𝑝, 𝑞1, 𝑞2) ∈ N3
and 𝑓(.,.) be an insight function.

We note A ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞2,𝜖
B if for every 𝑝-bounded E ∈ 𝑒𝑛𝑣 (A) ∩

𝑒𝑛𝑣 (B), for every𝑞1-bounded𝜎 ∈ 𝑆𝑐ℎ(E||A), it exists a𝑞2-bounded

𝜎 ′ ∈ 𝑆𝑐ℎ(E||B) s. t. 𝜎𝑆≤𝜖E,𝑓 𝜎
′
. We extend this definition to scheduler

families as follows.

Let A = (A𝑘 )𝑘∈N and B = (B𝑘 )𝑘∈N be two PSIOA families or

two PCA families, let 𝑆𝑐ℎ be a scheduler schema and (𝑝, 𝑞1, 𝑞2, 𝜖) ∈
(N→ N)3 × (N→ R≤0).

We note A ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞2,𝜖
B if ∀𝑘 ∈ N, A𝑘 ≤

𝑆𝑐ℎ,𝑓

𝑝 (𝑘),𝑞1 (𝑘),𝑞2 (𝑘),𝜖 (𝑘) B𝑘
Finally, we note A ≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 B if it exists (𝑝, 𝑞1, 𝑞2, 𝜖) ∈ (N →

N)3×(N→ R≤0) s. t.A ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞2,𝜖
B where 𝑝, 𝑞1, 𝑞2 are polynomial

functions and 𝜖 is a negligible function.

The properties of the underlying dynamic probabilistic I/O layer

allow to obtain the composability of the approximate implementa-

tion.

Lemma 4.13 (composability ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞2,𝜖
). Let 𝜖 ∈ R≥0 and 𝑝, 𝑝3,

𝑞1, 𝑞2 ∈ N be given. Let 𝑓 be an insight function stable by composi-

tion Let 𝑆𝑐ℎ be a a scheduler schema. LetA1,A2 andA3 be 3 PSIOA
(resp. PCA) satisfying:A3 has 𝑝3-bounded description and is partially
compatible with both A1 and A2. Then the following holds.

If A1 ≤𝑆𝑐ℎ,𝑓𝑐𝑐𝑜𝑚𝑝 (𝑝+𝑝3),𝑞1,𝑞2,𝜖
A2, where 𝑐𝑐𝑜𝑚𝑝 is the constant factor

associated with description bounds in parallel composition (see lemma
4.3 ), then A3 | |A1 ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞2,𝜖

A3 | |A2.
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Proof. Fix A1, A2 and A3 and all the constants as in the hy-

potheses. Consider any 𝑝-time-bounded environment E forA3 | |A1

andA3 | |A2. We must show that, for every 𝑞1-time-bounded sched-

uler 𝜎1 ∈ 𝑆𝑐ℎ(E||A3 | |A1), there is a 𝑞2-time-bounded scheduler

𝜎2 ∈ 𝑆𝑐ℎ(E||A3 | |A2) such that 𝜎𝑆≤𝜖𝜎 ′ To show this, fix 𝜎1 to

be any 𝑞1-time-bounded scheduler in 𝑆𝑐ℎ(E||A3 | |A1). The com-

position E||A3 is an environment for both A1 and A2. Moreover,

lemma 4.3 implies that E||A3 is 𝑐𝑐𝑜𝑚𝑝 · (𝑝+𝑝3)-time-bounded. Since

A1 ≤𝑆𝑐ℎ,𝑓𝑐𝑐𝑜𝑚𝑝 · (𝑏+𝑏3),𝑏1,𝑏2

A2, E||A3 is a 𝑐𝑐𝑜𝑚𝑝 (𝑏 +𝑏3)-time-bounded

environment forA1 andA2, and 𝜎1 is a𝑞1-time-bounded scheduler

for E||A3 | |A1 , we know that there is a 𝑞2-time-bounded sched-

uler 𝜎2 for E||A3 | |A2 such 𝜎1𝑆
≤𝜖
(E | |A3),𝑓 𝜎2. Finally, the stability by

composition of 𝑓 gives 𝜎1𝑆
≤𝜖
(E,𝑓 )𝜎2 which ends the proof. □

Let us note that both 𝑎𝑐𝑐𝑒𝑝𝑡 and 𝑝𝑟𝑖𝑛𝑡 (,) are insight functions
stable by composition. In the sequel we extend the previous result

to the implementation of automata family.

Lemma 4.14 (composability ≤𝑆𝑐ℎ,𝑓𝑝,𝑞
1

,𝑞
2

,𝜖 ). Let 𝜖 : N → R≥0 and

𝑝, 𝑝3, 𝑞1, 𝑞2 : N → N be given. Let 𝑆𝑐ℎ be a scheduler schema. Let
𝑓(.,.) be an insight function stable by composition. Let A, B and
C be 3 PSIOA (resp. PCA) families satisfying: C has 𝑝3-bounded
description and is partially compatible with bothA and B. Let 𝑐𝑐𝑜𝑚𝑝

be the constant factor associated with description bounds in parallel
composition (see lemma 4.3) Then the following holds.

If A ≤𝑆𝑐ℎ,𝑓
𝑐𝑐𝑜𝑚𝑝 (𝑝+𝑝3),𝑞1,𝑞2,𝜖

B, then C||A ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞2,𝜖
C||B.

Proof. The adaptation of lemma 4.13 to family is straightfor-

ward (see appendix B lemma B.5) □

Theorem 4.15 (composability ≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 ). Let 𝑆𝑐ℎ be a scheduler
schema. Let 𝑓(.,.) be an insight function stable by composition.

LetA
1
,A

2
andA

3
be PSIOAs (resp. PCA) families satisfying:A

3

has 𝑝3-bounded description where 𝑝3 is a polynomial and is partially
compatible with both A

1
and A

2
. Then the following holds.

If A
1
≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 A2

, then A
3
| |A

1
≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 A3

| |A
2
. Observe that,

by induction, Theorem generalizes to any constant number of substi-
tutions.

Proof. The adaptation of lemma 4.13 to polynomially-bounded

family is straightforward (see appendix B , theorem B.6) □

The implementation relationship is also transitive.

Theorem 4.16 (Implementation transitivity). Let 𝑆𝑐ℎ be a
scheduler schema. Let 𝜖12, 𝜖23𝜖13 ∈ R≤0, 𝑝, 𝑞1, 𝑞2, 𝑞3 ∈ N with 𝜖13 =

𝜖12+𝜖23, Let 𝑓(.,.) be an insight-function. LetA1,A2,A3 be PSIOA, s.t.

A1 ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞2,𝜖12

A2 andA2 ≤𝑆𝑐ℎ,𝑓𝑝,𝑞2,𝑞3,𝜖23

A3, thenA1 ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞3,𝜖13

A3.

Proof. See appendix B, theorem B.4 □

4.7 Structured dynamic I/O Automata
In this section we adapt the security layer of [4], on top of the foun-

dational layer introduced in previous sections. This layer follows

the general outline of simulation-based security. In this approach,

computational security is captured within the model itself.

First, we extend the PSIOA definition with an additional at-

tribute called the environment action mapping which is a func-

tion 𝐸𝐴𝑐𝑡A with domain 𝑠𝑡𝑎𝑡𝑒𝑠 (A) for every PSIOA A such that

∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A), 𝐸𝐴𝑐𝑡A (𝑞) ⊆ 𝑒𝑥𝑡 (A)(𝑞), that captures the idea
that some actions are intended to be accessible by the environment

while others by the adversary.

Definition 4.17 (Structured PSIOA). A structured PSIOA A =

((𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A ), 𝐸𝐴𝑐𝑡A ) where (𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A ) is
a PSIOA and 𝐸𝐴𝑐𝑡A is a mapping function with domain 𝑄A such

that ∀𝑞 ∈ 𝑄A , 𝐸𝐴𝑐𝑡A (𝑞) ⊆ 𝑒𝑥𝑡 (A)(𝑞).
The adversary actionmapping ofA is𝐴𝐴𝑐𝑡A : 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) ↦→

𝑒𝑥𝑡 (A)(𝑞) \ 𝐸𝐴𝑐𝑡A (𝑞).
For convenience, we also define: (i) 𝐸𝐼A : 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) ↦→

𝐸𝐴𝑐𝑡A (𝑞)∩𝑖𝑛(A)(𝑞) (environment inputs), (ii)𝐸𝑂A : 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) ↦→
𝐸𝐴𝑐𝑡A (𝑞) ∩ 𝑜𝑢𝑡 (A)(𝑞) (environment outputs), (iii) 𝐴𝐼A : 𝑞 ∈
𝑠𝑡𝑎𝑡𝑒𝑠 (A) ↦→ 𝐴𝐴𝑐𝑡A (𝑞) ∩ 𝑖𝑛(A)(𝑞) (adversary inputs) and (iv)

𝐴𝑂A : 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) ↦→ 𝐴𝐴𝑐𝑡A (𝑞) ∩ 𝑜𝑢𝑡 (A)(𝑞) (adversary out-

puts).

Let 𝑆A : 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) ↦→ 𝑆A (𝑞) ⊆ 𝑜𝑢𝑡 (A)(𝑞). We note

𝐸𝐴𝑐𝑡A \ 𝑆A : 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) ↦→ 𝐸𝐴𝑐𝑡A (𝑞) \ 𝑆A (𝑞)). We note

ℎ𝑖𝑑𝑒 ((A, 𝐸𝐴𝑐𝑡A ), 𝑆A ) = (ℎ𝑖𝑑𝑒 (A, 𝑆A ), 𝐸𝐴𝑐𝑡A \ 𝑆A )
When this is clear in the context, we slightly abuse the notation

and call a structured PSIOA a PSIOA.

Observe that nothing prevent us to require that (
⌣
𝐸𝐴𝑐𝑡A ,

⌣
𝐴𝐴𝑐𝑡A )

is a partition of 𝑎𝑐𝑡𝑠 (A) s. t. an action 𝑎 cannot be an environment

action in a state and become an adversary action in another state.

We state the compatibility conditions and the composabilty op-

eration for compatible structured PSIOA.

Definition 4.18 (Compatible structured PSIOA). Two structured

PSIOA (A1, 𝐸𝐴𝑐𝑡A1
) and (A2, 𝐸𝐴𝑐𝑡A2

) are partially-compatible at

state (𝑞1, 𝑞2) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A1)×𝑠𝑡𝑎𝑡𝑒𝑠 (A2) (resp. partially-compatible

structured PSIOA) if A1 and A2 are partially-compatible at state

(𝑞1, 𝑞2) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A1) × 𝑠𝑡𝑎𝑡𝑒𝑠 (A2) (resp. partially-compatible

PSIOA) and 𝑠𝑖𝑔(A1) (𝑞1)∩𝑠𝑖𝑔(A2) (𝑞2) = 𝐸𝐴𝑐𝑡A1
(𝑞1)∩𝐸𝐴𝑐𝑡A2

(𝑞2)
(resp.∀(𝑞1, 𝑞2) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A1 | |𝑠𝑡𝑎𝑡𝑒𝑠 (A2), 𝑠𝑖𝑔(A1) (𝑞1)∩𝑠𝑖𝑔(A2) (𝑞2)
= 𝐸𝐴𝑐𝑡A1

(𝑞1) ∩ 𝐸𝐴𝑐𝑡A2
(𝑞2)). That is, every shared action must be

an environment action of both structured PSIOA.

Definition 4.19 (Structured PSIOA composition). Given partially-

compatible structured PSIOA (A1, 𝐸𝐴𝑐𝑡A1
) and (A2, 𝐸𝐴𝑐𝑡A2

), their
partial-composition (A1, 𝐸𝐴𝑐𝑡A1

) | | (A2, 𝐸𝐴𝑐𝑡A2
) is the structured

PSIOA (A1 | |A2, 𝐸𝐴𝑐𝑡A1
∪ 𝐸𝐴𝑐𝑡A2

) where 𝐸𝐴𝑐𝑡A1
∪ 𝐸𝐴𝑐𝑡A2

:

(𝑞1, 𝑞2) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A1 | |A2) ↦→ 𝐸𝐴𝑐𝑡A1
(𝑞1) ∪ 𝐸𝐴𝑐𝑡A2

(𝑞2).

We can also extend the previous definition to PCA:

Definition 4.20 (Structured configuration). A structured config-

uration is a pair (A, S) where A is a family of structured PSIOA

and S is a mapping function with domain A such that for every

A ∈ A, S(A) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A). Furthermore, in addition of attributes

of definition 2.11, we note 𝐸𝐴𝑐𝑡 (𝐶) = ⋃
A∈A 𝐸𝐴𝑐𝑡A (S(A).

Definition 4.21 (Compatible structured configuration). A struc-

tured configuration (A, S) is compatible iff, for allA,B ∈ A,A ≠ B,
A,B are compatible at state (S(A), S(B))

Definition 4.22 (Structured PCA). A structured PCA 𝑋 is a PCA

s. t. (1) the attached PSIOA is replaced by a structured PSIOA,
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(2) 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) is a function that maps every 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ) to a

compatible structured configuration 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞) and (3) 𝑋 is as-

sociated with the mapping 𝐸𝐴𝑐𝑡𝑋 with domain 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ) s. t. ∀𝑞 ∈
𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ), 𝐸𝐴𝑐𝑡𝑋 (𝑞) = 𝐸𝐴𝑐𝑡𝑝𝑠𝑖𝑜𝑎 (𝑋 ) (𝑞) = 𝐸𝐴𝑐𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ) (𝑞)) \
ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋 ) (𝑞)

We can naturally define composition of partially-compatible

structured PCA which is the same than the one of definition 4.19.

Such a composition naturally yields to a structured PCA.

Lemma 4.23 (Closeness of structured PCA under composi-

tion). Let 𝑋1 and 𝑋2 be partially-compatible structured PCA. Then
𝑋1 | |𝑋2 is a structured PCA.

Proof. See appendix C, lemma C.1 □

4.8 Adversary for structured automata
In the following we extend the notion of adversary introduced in

[4] to adversary for structured PSIOA.

Definition 4.24 (Adversary for structured PSIOA). An adversary

𝐴𝑑𝑣 for a structured PSIOA (resp. PCA) (A, 𝐸𝐴𝐶𝑇A ) is a PSIOA
(resp. PCA) s. t.

• 𝐴𝑑𝑣 is partially-compatible with A
• For every 𝑞 = (𝑞A , 𝑞𝐴𝑑𝑣) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A||𝐴𝑑𝑣),
– 𝐼𝐴A (𝑞A ) ⊆ 𝑜𝑢𝑡 (𝐴𝑑𝑣) (𝑞𝐴𝑑𝑣)
– 𝐸𝐴𝑐𝑡A (𝑞A ) ∩ 𝑠𝑖𝑔(𝐴𝑑𝑣) (𝑞𝐴𝑑𝑣) = ∅

We extend the definition to automata family: An adversary

𝐴𝑑𝑣 for a structured PSIOA (resp. PCA) family (A, 𝐸𝐴𝐶𝑇A ) =

(A𝑘 , 𝐸𝐴𝐶𝑇A𝑘
)𝑘∈N is a family (𝐴𝑑𝑣𝑘 )𝑘∈N of PSIOA (resp. PCA) s.

t. ∀𝑘 ∈ N, 𝐴𝑑𝑣𝑘 is an adversary of A𝑘

Lemma 4.25. Suppose A and B are compatible structured PSIOA
(resp. PCA), and𝐴𝑑𝑣 is an adversary forA||B. Then𝐴𝑑𝑣 is an adver-
sary for A. Also, if A and B are compatible structured PSIOA (resp.
PCA) families, and 𝐴𝑑𝑣 is an adversary family for A||B. Then 𝐴𝑑𝑣
is an adversary family for B.

Proof. Suppose A and B are compatible structured PSIOA and

𝐴𝑑𝑣 is an adversary for A||B. We observe that the conditions of

definition 4.24 are satisfied.

(1) 𝐴𝑑𝑣 is compatible with A. This follows from the fact that

𝐴𝑑𝑣 is compatible with A||B.
(2) Let 𝑞′ = (𝑞A , 𝑞𝐴𝑑𝑣) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A||𝐴𝑑𝑣). Then it exists 𝑞 =

(𝑞A , 𝑞B , 𝑞𝐴𝑑𝑣) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A||B||𝐴𝑑𝑣). Since 𝐴𝑑𝑣 is an adver-

sary for A||B we know that:

• 𝐼𝐴A (𝑞A ) ∪ 𝐼𝐴B (𝑞B) ⊆ 𝑜𝑢𝑡 (𝐴𝑑𝑣) (𝑞𝐴𝑑𝑣), which means

that 𝐼𝐴A (𝑞A ) ⊆ 𝑜𝑢𝑡 (𝐴𝑑𝑣) (𝑞𝐴𝑑𝑣).
• 𝐸𝐴𝑐𝑡A (𝑞A ) ∪ 𝐸𝐴𝑐𝑡B (𝑞B) ∩ 𝑠𝑖𝑔(𝐴𝑑𝑣) (𝑞𝐴𝑑𝑣) = ∅, which
means that 𝐸𝐴𝑐𝑡A (𝑞A ) ∩ 𝑠𝑖𝑔(𝐴𝑑𝑣) (𝑞𝐴𝑑𝑣) = ∅.

The extension to structured PSIOA families and adversary families

is straightforward. □

4.9 Dynamic Secure-Emulation
The framework is finally expressive enough to define secure-emulation

[2] for distributed systems with (i) distributed scheduling and (ii)

with potentially dynamic creation of automata. This relation will

be shown to be (iii) composable, which is the main contribution of

this paper.

Definition 4.26 (Secure Emulation). . Suppose A and B be struc-

tured PSIOA (resp. PCA) families. Let 𝑆𝑐ℎ be a scheduler schema

and 𝑓(.,.) be an insight function.

We say that A secure-emulates B w.r.t. 𝑆𝑐ℎ and 𝑓 (denoted A
≤𝑆𝑐ℎ,𝑓
𝑆𝐸

B) if, for every adversary family 𝐴𝑑𝑣 for A with polynomi-

ally bounded description, there is an adversary family 𝑆𝑖𝑚 for B
with polynomially bounded description such that:

ℎ𝑖𝑑𝑒 (A||𝐴𝑑𝑣,𝐴𝐴𝑐𝑡A ) ≤
𝑆𝑐ℎ,𝑓
𝑛𝑒𝑔,𝑝𝑡 ℎ𝑖𝑑𝑒 (B||𝑆𝑖𝑚,𝐴𝐴𝑐𝑡B). Transitivity

of ≤𝑆𝑐ℎ,𝑓
𝑆𝐸

follows immediately from transitivity of ≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 .

Dummy Adversary. To prove composability of secure-emulation,

we use the well-known technique, introduced by Canetti [2], based

on dummy-adversary which plays the role of a forwarder between

a structured PSIOA (resp. PCA) A and another (potentially more

sophisticated) adversary of a 𝑔(A) where 𝑔 is an action-renaming

function.

Let A be a structured PSIOA family and, for each 𝑘 ∈ N, let
𝑔𝑘 be a partial function defined on 𝑠𝑡𝑎𝑡𝑒𝑠 (A) × 𝑎𝑐𝑡𝑠 (A) s. t. ∀𝑞 ∈
𝑠𝑡𝑎𝑡𝑒𝑠 (A), 𝑔𝑘 (𝑞) is a bijection from𝐴𝐴𝑐𝑡A𝑘

to a set of fresh action

names. We refer to 𝑔 = {𝑔𝑘 }𝑘∈N as a renaming of adversary actions

for A, and we write 𝑔(A) for the result of applying 𝑔𝑘 to A𝑘 for

every 𝑘 ∈ N.
Definition 4.27 (Dummy Adversary). Let A be a PSIOA (resp.

PCA) and 𝑔 be a bijection from 𝐴𝐴𝑐𝑡A to a set of fresh action

names. Then 𝐷𝑢𝑚𝑚𝑦 (A, 𝑔) is the PSIOA (resp. PCA) 𝐴𝑑𝑣 ′ defined
as follows:

• (States) Every state 𝑞 of 𝐴𝑑𝑣 ′ is described by its unique vari-

able 𝑞.𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∈
⌣

𝐴𝑂A ∪ 𝑓 (
⌣
𝐴𝐼A ) ∪ {⊥}

• (Start state) 𝑠𝑡𝑎𝑟𝑡 (𝐴𝑑𝑣 ′) .𝑝𝑒𝑛𝑑𝑖𝑛𝑔 = ⊥
• (Signature) ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐴𝑑𝑣 ′),
– 𝑖𝑛(𝐴𝑑𝑣 ′) (𝑞) =

⌣
𝑖𝑛(𝐴𝑑𝑣 ′) =

⌣
𝐴𝑂A ∪ 𝑔(

⌣
𝐴𝐼A )

– 𝑖𝑛𝑡 (𝐴𝑑𝑣 ′) (𝑞) = ∅
– ∗ 𝑜𝑢𝑡 (𝐴𝑑𝑣 ′) (𝑞) = {𝑎} if 𝑔(𝑎) = 𝑞.𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∈ 𝑓 (𝐴𝐼A )
∗ 𝑜𝑢𝑡 (𝐴𝑑𝑣 ′) (𝑞) = {𝑔(𝑎)} if 𝑎 = 𝑞.𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∈ 𝐴𝑂A
∗ 𝑜𝑢𝑡 (𝐴𝑑𝑣 ′) (𝑞) = ∅ if 𝑞.𝑝𝑒𝑛𝑑𝑖𝑛𝑔 = ⊥.

• (Transition) for every 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐴𝑑𝑣 ′), ∀𝑎 ∈ 𝑠𝑖𝑔(𝐴𝑑𝑣 ′) (𝑞),
𝑠𝑢𝑝𝑝 (𝜂 (𝐴𝑑𝑣′,𝑞,𝑎) ) = {𝑞′} s. t.
– if 𝑎 ∈ 𝑖𝑛(𝐴𝑑𝑣 ′) (𝑞), 𝑞′.𝑝𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑎

– if 𝑎 ∈ 𝑜𝑢𝑡 (𝐴𝑑𝑣 ′) (𝑞), 𝑞′.𝑝𝑒𝑛𝑑𝑖𝑛𝑔 = ⊥
We extend this definition for families: Let A be a structured

PSIOA (resp. PCA) family {A𝑘 }𝑘∈N. Let 𝑔 = {𝑔𝑘 }𝑘∈N be a family

of bijection from

⌣
𝐴𝐴𝑐𝑡A𝑘

to a set of fresh action names. Then

𝐷𝑢𝑚𝑚𝑦 (A, 𝑔) = {𝐷𝑢𝑚𝑚𝑦 (A𝑘 , 𝑔𝑘 )}𝑘∈N is a dummy adversary

family for A.

The following lemma 4.29 shows that dummy adversaries can be

transparently added between a structured PSIOA (resp. PCA) and an

adversary for that structured PSIOA. This fact is used in the proof of

composability of secure-emulation, with the classic decomposition

technique introduced by Canetti [2]. Additional work is required

compared to [4] since we have to deal with a more general defini-

tion that enables schedulers that are not task-schedules. However,

the approach follows the same methodology, i.e. when the sched-

uler 𝜎 instructs to trigger an action shared by 𝑔(A) and 𝐴𝑑𝑣 , the
corresponding balanced scheduler 𝜎 ′ successively orders to trigger
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the corresponding action (modulo a potential renaming) and the

attached forward by the dummy adversary. The proof of this lemma

4.29 introduces two natural constructions 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑒(A,𝑔,𝐴𝑑𝑣) and

𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑠(A,𝑔,𝐴𝑑𝑣) , to formalise the fact that the dummy adversary

forwards the actions betweenA and𝐴𝑑𝑣 . The following properties

should always be verified by reasonable pair made up of a scheduler

schema and an insight function.

Definition 4.28 (brave forwarding construction). A pair (𝑆𝑐ℎ, 𝑓 )
made up of a scheduler schema and an insight function is said brave
if: For every structured PSIOA (resp. PCA) family A = {A𝑘 }𝑘∈N,
for every family of bijections 𝑔 = {𝑔𝑘 }𝑘∈N from

⌣
𝐴𝐴𝑐𝑡A𝑘

to a set of

fresh action names, for every𝐴𝑑𝑣 = {𝐴𝑑𝑣𝑘 }𝑘∈N being an adversary

for both 𝑔(A) and 𝐻 = ℎ𝑖𝑑𝑒 (A||𝐷𝑢𝑚𝑚𝑦 (A, 𝑔), 𝐴𝐴𝑐𝑡A ), for every
environment E = (E𝑘 )𝑘∈N of both Φ = ℎ𝑖𝑑𝑒 (𝑔(A)||𝐴𝑑𝑣,𝐴𝐴𝑐𝑡A )
and Ψ = ℎ𝑖𝑑𝑒 (𝐻 | |𝐴𝑑𝑣,𝐴𝐴𝑐𝑡A ) and ∀𝑘 ∈ N:
• 𝑓(E𝑘 ,Φ𝑘 ) (𝛼) = 𝑓(E𝑘 ,𝑔𝑘 (A𝑘 ) | |𝐴𝑑𝑣𝑘 ) (𝛼), ∀𝛼 ∈ 𝑒𝑥𝑒𝑐𝑠

∗ (E𝑘 | |Φ𝑘 )
• 𝑓(E𝑘 ,Ψ𝑘 ) (𝛼

′) = 𝑓(E𝑘 ,𝐻𝑘 | |𝐴𝑑𝑣𝑘 ) (𝛼), ∀𝛼
′ ∈ 𝑒𝑥𝑒𝑐𝑠∗ (E𝑘 | |Ψ𝑘 )

• 𝑓(E𝑘 ,Φ𝑘 ) (𝛼) = 𝑓(E𝑘 ,Ψ𝑘 ) (𝛼
′), ∀𝛼 ∈ 𝑒𝑥𝑒𝑐𝑠∗ (E𝑘 | |Φ𝑘 ), ∀𝛼 ′ =

𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑒(A𝑘 ,𝑔𝑘 ,𝐴𝑑𝑣𝑘 ) (𝛼),
• ∀𝜎 ∈ 𝑆𝑐ℎ(E𝑘 | |Φ𝑘 ), 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑠(A𝑘 ,𝑔𝑘 ,𝐴𝑑𝑣𝑘 ) (𝜎) ∈ 𝑆𝑐ℎ(E𝑘 | |Ψ𝑘 )

Lemma 4.29 (Dummy adversary insertion). Let (𝑆𝑐ℎ, 𝑓 ) be a
brave pair made of a scheduler schema 𝑆𝑐ℎ and an insight function
𝑓 . Let A be a structured PSIOA (resp. PCA) family {A𝑘 }𝑘∈N. Let
𝑔 = {𝑔𝑘 }𝑘∈N be a family of bijection from

⌣
𝐴𝐴𝑐𝑡A𝑘

to a set of fresh
action names. Let 𝐴𝑑𝑣 = {𝐴𝑑𝑣𝑘 }𝑘∈N be an adversary for both 𝑔(A)
and ℎ𝑖𝑑𝑒 (A||𝐷𝑢𝑚𝑚𝑦 (A, 𝑔), 𝐴𝐴𝑐𝑡A ). Then,
𝑔(A)||𝐴𝑑𝑣 ≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 ℎ𝑖𝑑𝑒 (A||𝐷𝑢𝑚𝑚𝑦 (A, 𝑔), 𝐴𝐴𝑐𝑡A ) | |𝐴𝑑𝑣

Proof. See appendix D, lemma D.1. □

We can use previous lemma 4.29 to use the technique of reduction

to dummy adversary introduced by Canetti [2].

Theorem 4.30 (Composability of dynamic secure-emulation).

Let (𝑆𝑐ℎ, 𝑓 ) be a brave pair made of a scheduler schema 𝑆𝑐ℎ and an
insight function 𝑓 . Let 𝑏 ∈ N. Let A1,A2, ...,A𝑏 and B1,B2, ...,B𝑏
be pair- wise partially-compatible polynomial-time-bounded struc-
tured PSIOA (resp. PCA) families, with A𝑖 ≤𝑆𝑐ℎ,𝑓

𝑆𝐸
B𝑖 for every

𝑖 ∈ [1, 𝑏]. Then, we have Â ≤𝑆𝐸 B̂ with Â = A1 | |A2 | |...| |A𝑏

and B̂ = B1 | |B2 | |...| |B𝑏 .

Proof. Let 𝐴𝑑𝑣 be an adversary family for Â with polynomi-

ally bounded description. We need to construct an adversary fam-

ily 𝑆𝑖𝑚 for B̂ with polynomially bounded description such that:

ℎ𝑖𝑑𝑒 (Â | |𝐴𝑑𝑣,𝐴𝐴𝑐𝑡Â ) ≤
𝑆𝑐ℎ,𝑓
𝑛𝑒𝑔,𝑝𝑡 ℎ𝑖𝑑𝑒 (B̂ | |𝑆𝑖𝑚,𝐴𝐴𝑐𝑡 B̂).

For every (𝑖, 𝑘) ∈ [1, 𝑏] × N. We note 𝑔𝑖
𝑘
an arbitrary bijection

from 𝐴𝐴𝑐𝑡A𝑖
𝑘
to a set of fresh action names, i. e. 𝑔𝑖 = {𝑔𝑖

𝑘
}𝑘∈N is

a renaming of adversary actions for A𝑖
. These functions induce

a renaming for Â: 𝑔 = {𝑔𝑘 }𝑘∈N with ∀𝑘 ∈ N, 𝑔𝑘 = 𝑔1

𝑘
∪ ... ∪ 𝑔𝑏

𝑘
,

i. e. ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (Â
𝑘
), ∀𝑎 ∈ 𝐴𝐴𝑐𝑡Â (𝑞), 𝑔𝑘 (𝑎) = 𝑔𝑖

𝑘
(𝑎) iff 𝑎 ∈

𝐴𝐴𝑐𝑡A𝑖
𝑘
(𝑞 ↾ A𝑖

𝑘
). We recall that compatibility definition for struc-

tured PSIOA requires that shared actions of two automata cannot

be a adversary actions of their composition.

Let �𝐷𝑢𝑚 = 𝐷𝑢𝑚𝑚𝑦 (A1, 𝑔1) | |...𝐷𝑢𝑚𝑚𝑦 (A𝑏 , 𝑔𝑏 ). Let 𝑖 ∈ [1, 𝑏].
SinceA𝑖 ≤𝑆𝐸 B𝑖 , then∃𝐷𝑆𝑖𝑚𝑖

s. t.ℎ𝑖𝑑𝑒 (A𝑖 | |𝐷𝑢𝑚𝑚𝑦 (A𝑖 , 𝑔𝑖 ), 𝐴𝐴𝑐𝑡𝑖A )

≤𝑛𝑒𝑔,𝑝𝑡 ℎ𝑖𝑑𝑒 (B𝑖 | |𝐷𝑆𝑖𝑚𝑖 , 𝐴𝐴𝑐𝑡𝑖B).

We note �𝐷𝑆𝑖𝑚 = 𝐷𝑆𝑖𝑚1 | |...| |𝐷𝑆𝑖𝑚𝑏
.

We observe the following:

ℎ𝑖𝑑𝑒 (Â | |𝐴𝑑𝑣,𝐴𝐴𝑐𝑡Â ) ≡
𝑆𝑐ℎ,𝑓
𝑛𝑒𝑔,𝑝𝑡

ℎ𝑖𝑑𝑒 (𝑔(Â) | |𝑔(𝐴𝑑𝑣), 𝑔(𝐴𝐴𝑐𝑡Â )) ≤
𝑆𝑐ℎ,𝑓
𝑛𝑒𝑔,𝑝𝑡

ℎ𝑖𝑑𝑒 (Â | |�𝐷𝑢𝑚 | |𝑔(𝐴𝑑𝑣), 𝑔(𝐴𝐴𝑐𝑡Â ) ∪𝐴𝐴𝑐𝑡Â ) ≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡

ℎ𝑖𝑑𝑒 (B̂ | |�𝐷𝑆𝑖𝑚 | |𝑔(𝐴𝑑𝑣), 𝑔(𝐴𝐴𝑐𝑡Â ) ∪𝐴𝐴𝑐𝑡 B̂) ≡𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡

ℎ𝑖𝑑𝑒 (B̂ | |ℎ𝑖𝑑𝑒 (�𝐷𝑆𝑖𝑚 | |𝑔(𝐴𝑑𝑣), 𝑔(𝐴𝐴𝑐𝑡Â )), 𝐴𝐴𝑐𝑡 B̂)
Here, the first relation follows from the property of renaming,

the second from lemma 4.29, the third from theorem 4.15, and the

last from the properties of the hiding operator.

We define 𝑆𝑖𝑚 = ℎ𝑖𝑑𝑒 (�𝐷𝑆𝑖𝑚 | |𝑔(𝐴𝑑𝑣), 𝑔(𝐴𝐴𝑐𝑡Â ))
Hence we have shown that for every adversary family 𝐴𝑑𝑣 for

Â with polynomially bounded description it exists a polynomially

bounded adversary 𝑆𝑖𝑚 for B̂ such that:ℎ𝑖𝑑𝑒 (Â | |𝐴𝑑𝑣,𝐴𝐴𝑐𝑡Â ) ≤
𝑆𝑐ℎ,𝑓
𝑛𝑒𝑔,𝑝𝑡

ℎ𝑖𝑑𝑒 (B̂ | |𝑆𝑖𝑚,𝐴𝐴𝑐𝑡 B̂), which ends the proof.

□

5 CONCLUSION
In this paperwe extended the composable secure-emulation of Canetti
et al. [4] to dynamic settings on top of dynamic probabilistic I/O

automata. The purpose of our extension is to provide a complete

framework to model dynamic probabilistic systems using crypto-

graphic modules. It should be noted that the universal composition

[2] framework is the only framework used so far in order to model

blockchain algorithmic building blocks (e.g. [8]). However, as dis-

cussed earlier in our paper, this framework has as major limitation

the fact that it does not cover the dynamicity aspects under a dis-

tributed scheduling(see [5] for a detailed discussion related to the

difference between the centralized and distributed schedulers). Our

work is the first complete framework allowing to specify and prove

the correctness of secure probabilistic distributed dynamic systems

(e.g. blockchains) under distributed schedulers. The completeness

of our framework comes from its ability to cover the distributed

aspects of scheduling, the probabilistic nature of algorithms, the

dynamicity of the system and the simulation based cryptography.
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A RESULTS FOR FOUNDATIONAL LAYER
Lemma A.1 (PSIOA closeness under action-renaming). Let

A be a PSIOA and let 𝑎𝑟 be a partial function on 𝑠𝑡𝑎𝑡𝑒𝑠 (A)×𝑎𝑐𝑡𝑠 (A),
s. t. ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A), 𝑎𝑟 (𝑞) is an injective mapping with 𝑠𝑖𝑔(A)(𝑞)
as domain. Then 𝑎𝑟 (A) is a PSIOA.

Proof. We need to show (1) ∀(𝑞, 𝑎, 𝜂), (𝑞, 𝑎, 𝜂 ′) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A),
𝜂 = 𝜂 ′ and 𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞), (2) ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A),∀𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞),
∃𝜂 ∈ 𝐷𝑖𝑠𝑐 (𝑠𝑡𝑎𝑡𝑒𝑠 (A)), (𝑞, 𝑎, 𝜂) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A) and (3)∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) :

𝑖𝑛(A)(𝑞) ∩ 𝑜𝑢𝑡 (A)(𝑠) = 𝑖𝑛(A)(𝑞) ∩ 𝑖𝑛𝑡 (A)(𝑞) = 𝑜𝑢𝑡 (A)(𝑞) ∩
𝑖𝑛𝑡 (A)(𝑞) = ∅.
• Constraint 1: From definition 2.8, we have, for any 𝑞 ∈
𝑠𝑡𝑎𝑡𝑒𝑠 (𝑎𝑟 (A)): 𝑠𝑖𝑔(𝑎𝑟 (A))(𝑞) = 𝑜𝑢𝑡 (𝑎𝑟 (A))(𝑞)∪𝑖𝑛(𝑎𝑟 (A))
(𝑞) ∪ 𝑖𝑛𝑡 (𝑎𝑟 (A))(𝑞) = 𝑎𝑟 (𝑜𝑢𝑡 (A)(𝑞)) ∪ 𝑎𝑟 (𝑖𝑛(A)(𝑞)) ∪
𝑎𝑟 (𝑖𝑛𝑡 (A)(𝑞)) = 𝑎𝑟 (𝑠𝑖𝑔(A)(𝑞)). Since A is a PSIOA, we

have ∀(𝑞, 𝑎, 𝜂), (𝑞, 𝑎, 𝜂 ′) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A) : 𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞) and
𝜂 = 𝜂 ′. From definition 2.8, 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑎𝑟 (A)) = {(𝑞, 𝑎𝑟 (𝑎), 𝜂) |
(𝑞, 𝑎, 𝜂) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A)} Hence, if (𝑞, 𝑎𝑟 (𝑎), 𝜂), (𝑞, 𝑎𝑟 (𝑎), 𝜂 ′)
are arbitrary element of𝑑𝑡𝑟𝑎𝑛𝑠 (𝑎𝑟 (A)), then (𝑞, 𝑎, 𝜂), (𝑞, 𝑎, 𝜂 ′)
∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A), and so 𝜂 = 𝜂 ′ and 𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞). Hence
𝑎𝑟 (𝑎) ∈ 𝑎𝑟 (𝑠𝑖𝑔(A)(𝑞)). Since𝑎𝑟 (𝑠𝑖𝑔(A)(𝑞)) = 𝑠𝑖𝑔(𝑎𝑟 (A))(𝑞),
we conclude 𝑎𝑟 (𝑎) ∈ 𝑠𝑖𝑔(𝑎𝑟 (A))(𝑞). Hence, ∀(𝑞, 𝑎𝑟 (𝑎), 𝜂),
(𝑞, 𝑎𝑟 (𝑎), 𝜂 ′) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑎𝑟 (A)) : 𝑎𝑟 (𝑎) ∈ 𝑠𝑖𝑔(𝑎𝑟 (A))(𝑞)and
𝜂 = 𝜂 ′. Thus, Constraint 1 holds for 𝑎𝑟 (A).
• Constraint 2: From definition 2.8, 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑟𝑎(A)) = 𝑠𝑡𝑎𝑡𝑒𝑠 (A),
𝑑𝑡𝑟𝑎𝑛𝑠 (𝑟𝑎(A)) = (𝑞, 𝑟𝑎(𝑎), 𝜂) | (𝑞, 𝑎, 𝜂) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A), and for
all 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑟𝑎(A)), 𝑖𝑛(𝑟𝑎(A))(𝑞) = 𝑟𝑎(𝑖𝑛(A)(𝑞)). Let 𝑞

be any state of 𝑟𝑎(A), and let 𝑞 ∈ 𝑠𝑖𝑔(𝑟𝑎(A))(𝑞). Then
𝑏 = 𝑟𝑎(𝑎) for some 𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞). We have (𝑞, 𝑎, 𝜂) ∈
𝑑𝑡𝑟𝑎𝑛𝑠 (A) for some 𝜂, by Constraint 2 of action enabling

for A. Hence (𝑞, 𝑎, 𝜂) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑟𝑎(A)). Hence (𝑞,𝑏, 𝜂) ∈
𝑑𝑡𝑟𝑎𝑛𝑠 (𝑟𝑎(A)). Hence Constraint 2 holds for 𝑟𝑎(A).
• Constraint 3: A is a PSIOA and so satisfies Constraint 3.

From this and definition 2.8 and the requirement that 𝑟𝑎 be

injective, it is easy to see that 𝑟𝑎(A) also satisfies Constraint
3.

□

B RESULTS FOR BOUNDED PSIOA
Lemma B.1 (composition of bounded PSIOA is a bounded

PSIOA). There exists a constant 𝑐𝑐𝑜𝑚𝑝 such that the following holds.
SupposeA1 is a𝑏1-time-bounded PSIOA andA2 is a𝑏2-time-bounded
PSIOA, where 𝑏1, 𝑏2 ≥ 1. ThenA1 | |A2 is a 𝑐𝑐𝑜𝑚𝑝 · (𝑏1 +𝑏2)-bounded
PSIOA.

Proof. We describe how the different bounds of definition 4.1

combine when we compose A1 and A2.

(1) Automaton parts: Every action has a standard represen-

tation which is the same as its representation in A1 or

A2. The length of this representation is, therefore, at most

𝑚𝑎𝑥 (𝑏1, 𝑏2). Every state ofA1 | |A2 can be represented with

a 2 · (𝑏1 +𝑏2) + 2 ≤ 3 · (𝑏1 +𝑏2)-bit string, by following each

bit of the bit-string representations of the states of A1 and

A2 with a zero, and then concatenating the results, separat-

ing them with the string 11. Likewise, every transition of

A1 | |A2 can be represented as a 3 · (𝑏1 + 𝑏2)-bit string, by
combining the representations of transitions of one or both

of the component automata.

(2) Decoding: It is possible to decide whether a candidate state

𝑞 = (𝑞1, 𝑞2) is the start state of A1 | |A2 by checking if 𝑞1 is

the start state ofA1 and 𝑞2 is the start state ofA2. Given the

representation ⟨(𝑞1, 𝑞2)⟩ of a state (𝑞1, 𝑞2) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A1 | |A2),
it is possible to decide if a candidate input action is an ele-

ment of 𝑖𝑛(A1 | |A2) (𝑞1, 𝑞2) by checking if it is an element of

𝑖𝑛(A1) (𝑞1) or 𝑖𝑛(A2) (𝑞2) but not an element of 𝑖𝑛(A1) (𝑞1)
or 𝑖𝑛(A2) (𝑞2). Given the representation ⟨(𝑞1, 𝑞2)⟩ of a state
(𝑞1, 𝑞2) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A1 | |A2), it is possible to decide if a can-

didate action is an element of 𝑜𝑢𝑡 (A1 | |A2) (𝑞1, 𝑞2) (resp.
𝑖𝑛𝑡 (A1 | |A2) (𝑞1, 𝑞2)) by checking if it is either an element of

𝑜𝑢𝑡 (A1) (𝑞1) or 𝑜𝑢𝑡 (A2) (𝑞2) (resp. 𝑖𝑛𝑡 (A1) (𝑞1) or 𝑖𝑛𝑡 (A2)
(𝑞2)) All these verifications can be done in time 𝑂 (𝑏1 + 𝑏2).
Given the representations ⟨(𝑞1, 𝑞2)⟩ and ⟨𝑎⟩ of a state (𝑞1, 𝑞2)
∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A1 | |A2) and an action 𝑎 ∈ 𝑠𝑖𝑔(A1 | |A2) ((𝑞1, 𝑞2)),
it is possible to decide whether a candidate transition 𝑡𝑟 =

((𝑞1, 𝑞2), 𝑎, 𝜂1 ⊗ 𝜂2) is a transition of A1 | |A2 by checking

if 𝑡𝑟1 = (𝑞1, 𝑎, 𝜂1) is a transition of A1 or 𝑡𝑟2 = (𝑞2, 𝑎, 𝜂2)
is a transition of A2 after having extracted the bit-string

representation of 𝑞1, 𝑞2, 𝑡𝑟1, 𝑡𝑟2 with time 𝑂 (𝑏1 + 𝑏2).
(3) Determining the next state: Assume 𝑀𝑠𝑡𝑎𝑡𝑒1 and 𝑀𝑠𝑡𝑎𝑡𝑒2

are the probabilistic Turing machines described in last item

of definition 4.1 for A1 and A2 respectively. We define

𝑀𝑠𝑡𝑎𝑡𝑒 for A1 | |A2 as the probabilistic Turing machine that,

given state 𝑞 = (𝑞1, 𝑞2) of A1 | |A2 where 𝑞1 = 𝑞 ↾ A1 and

11
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𝑞2 = 𝑞 ↾ A2 and action 𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞), outputs the next

state of A1 | |A2 as 𝑞′ = (𝑞′
1
, 𝑞′

2
), where 𝑞′

1
is the next state

of A1 and 𝑞′
2
is the next state of A2. The state 𝑞

′
is com-

puted as follows: If 𝑎 ∈ 𝑠𝑖𝑔(A1) (𝑞1), then 𝑞′
1
is the output of

𝑀𝑠𝑡𝑎𝑡𝑒1 (𝑞1, 𝑎), while 𝑞′
1
= 𝑞1 otherwise. If 𝑎 ∈ 𝑠𝑖𝑔(A2) (𝑞2)

then 𝑞′
2
is the output of𝑀𝑠𝑡𝑎𝑡𝑒2 (𝑞2, 𝑎), while 𝑞′

2
= 𝑞2 other-

wise. 𝑀𝑠𝑡𝑎𝑡𝑒 always operates within time 𝑂 (𝑏1 + 𝑏2): this
time is sufficient to determine whether 𝑎 ∈ 𝑠𝑖𝑔(A1) (𝑞1)
and/or 𝑎 ∈ 𝑠𝑖𝑔(A2) (𝑞2), to extract the needed parts of 𝑞

to run 𝑀𝑠𝑡𝑎𝑡𝑒1 and/or 𝑀𝑠𝑡𝑎𝑡𝑒2. Using standard Turing ma-

chine encoding, each of the needed Turing machines can be

represented using 𝑂 (𝑏1 + 𝑏2) bits.
□

In the following we extend the previous result to the PCA com-

position.

Lemma B.2 (composition of bounded PCA is a bounded PCA).

There exists a constant 𝑐 ′𝑐𝑜𝑚𝑝 such that the following holds. Suppose
𝑋1 is a 𝑏1-time-bounded PCA and 𝑋2 is a 𝑏2-time-bounded PCA,
where 𝑏1, 𝑏2 ≥ 1. Then 𝑋1 | |𝑋2 is a 𝑐 ′𝑐𝑜𝑚𝑝 · (𝑏1 + 𝑏2)-bounded PCA.

Proof. • 𝑝𝑠𝑖𝑜𝑎(𝑋1 | |𝑋2) = 𝑝𝑠𝑖𝑜𝑎(𝑋1) | |𝑝𝑠𝑖𝑜𝑎(𝑋2) which im-

plies 𝑝𝑠𝑖𝑜𝑎(𝑋1 | |𝑋2) is a 𝑐 · (𝑏1 + 𝑏2)-bounded PSIOA.

• it is sufficient to reserve a special constant-sized sequence of

bits𝑏∗ for concatenation and hence,∀(𝑞1, 𝑞2) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋1 | |𝑋2),
∀𝑎 ∈ 𝑠𝑖𝑔(𝑋1 | |𝑋2) (𝑞1, 𝑞2), obtaining a length of 𝑂 (𝑏1 + 𝑏2)
bits for the representation of 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋1 | |𝑋2) (𝑞1, 𝑞2),ℎ𝑖𝑑𝑑𝑒𝑛-
𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋1 | |𝑋2) (𝑞1, 𝑞2), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋1 | |𝑋2) (𝑞1, 𝑞2) (𝑎).
• given the representation ⟨𝑞⟩ of𝑞 = (𝑞1, 𝑞2) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋1 | |𝑋2),
the representation ⟨𝑎⟩ of 𝑎 ∈ 𝑠𝑖𝑔(𝑋1 | |𝑋2) ((𝑞1, 𝑞2)) (𝑎), it
is sufficient to extract the representation ⟨𝑞1⟩ of 𝑞 ↾ A1,

extract the representation ⟨𝑞2⟩ of 𝑞 ↾ A2, check if 𝑎 ∈
𝑠𝑖𝑔(A1) (𝑞1) (via𝑀𝑠𝑖𝑔1 (⟨𝑞1⟩, ⟨𝑎⟩)), check if 𝑎 ∈ 𝑠𝑖𝑔(A2) (𝑞2)
(via𝑀𝑠𝑖𝑔2 (⟨𝑞2⟩, ⟨𝑎⟩)), compute ⟨𝐶1⟩ := 𝑀𝑐𝑜𝑛𝑓 1

(⟨𝑞1⟩), ⟨𝐶2⟩ :=

𝑀𝑐𝑜𝑛𝑓 2
(⟨𝑞2⟩), ⟨ℎ1⟩ := 𝑀ℎ𝑖𝑑𝑑𝑒𝑛1

(⟨𝑞1⟩), ⟨ℎ2⟩ := 𝑀ℎ𝑖𝑑𝑑𝑒𝑛2
(⟨𝑞2⟩),

⟨𝜑1⟩ := 𝑀𝑐𝑟𝑒𝑎𝑡𝑒𝑑1
(⟨𝑞1⟩, ⟨𝑎⟩), ⟨𝜑2⟩ := 𝑀𝑐𝑟𝑒𝑎𝑡𝑒𝑑2

(⟨𝑞2⟩, ⟨𝑎⟩)
and finally perform a concatenation operation (with 𝑏∗) on
respective pairs (⟨𝐶1⟩, ⟨𝐶2⟩), (⟨ℎ1⟩, ⟨ℎ2⟩), (⟨𝜑1⟩, ⟨𝜑2⟩). The
computations are performed in time 𝑂 (𝑏1 + 𝑏2). Using stan-

dard Turing machine encoding, each of the needed Turing

machines can be represented using 𝑂 (𝑏1 + 𝑏2) bits.
□

Lemma B.3 (hiding of bounded automata is bounded). There
exists a constant 𝑐ℎ𝑖𝑑𝑒 such that the following holds. Suppose A is
a 𝑏-time-bounded PSIOA (resp. PCA), where 𝑏 ∈ R≥0, 𝑏 ≥ 1. Let 𝑆
be a 𝑏 ′-time recognizable function with 𝑠𝑡𝑎𝑡𝑒𝑠 (A) as domain. Then
ℎ𝑖𝑑𝑒 (A, 𝑆) is a 𝑐ℎ𝑖𝑑𝑒 · (𝑏 + 𝑏 ′)-time-bounded PSIOA (resp. PCA).

Proof. All properties for B = ℎ𝑖𝑑𝑒 (A, 𝑆) are straightforward
to check, except for the output actions and the internal actions. Let

⟨𝑞⟩ be the bit-string representation of 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (B). Let ⟨𝑎⟩ be the
bit-string representation of a candidate action 𝑎.

1. Output actions: To checkwhether𝑎 is an element of𝑜𝑢𝑡 (B)(𝑞),
we use the fact that 𝑎 is an element of 𝑜𝑢𝑡 (B)(𝑞) if and only if 𝑎

is an element of 𝑜𝑢𝑡 (A)(𝑞) and is not in 𝑆 (𝑞). So, to determine

whether 𝑎 is an element of 𝑜𝑢𝑡 (B)(𝑞), we can use the procedure

for checking whether 𝑎 is an element of 𝑜𝑢𝑡 (A)(𝑞), followed by

checking whether a is in 𝑆 (𝑞).
2. Internal actions: To checkwhether𝑎 is an element of 𝑖𝑛𝑡 (B)(𝑞),

we use the fact that 𝑎 is an element of 𝑖𝑛𝑡 (B)(𝑞) if and only if 𝑎

is an element of 𝑖𝑛𝑡 (A)(𝑞) or is in 𝑆 (𝑞). So, to determine whether

𝑎 is an element of 𝑖𝑛𝑡 (B)(𝑞), we can use the procedure for check-

ing whether 𝑎 is an element of 𝑖𝑛𝑡 (A)(𝑞), followed by checking

whether a is in 𝑆 (𝑞).
3. IfA is a PCA,ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (B)(𝑞) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (A)(𝑞)∪

𝑆 (𝑞). By using a reserved special constant-sized sequence of bits

𝑏∗ for concatenation, it the bit-string representation of ℎ𝑖𝑑𝑑𝑒𝑛-

𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (B)(𝑞) can easily have a size of 𝑂 (𝑏 + 𝑏 ′) bits.
In all cases, the total time is proportional to 𝑏+𝑏 ′. Using standard

Turing machine encodings, each of the needed Turing machines

can be represented using a number of bits that is proportional to

𝑏 + 𝑏 ′. □

Theorem B.4 (Implementation transitivity). Let 𝑆𝑐ℎ be a
scheduler schema. Let 𝜖12, 𝜖23𝜖13 ∈ R≤0, 𝑝, 𝑞1, 𝑞2, 𝑞3 ∈ N with 𝜖13 =

𝜖12+𝜖23, Let 𝑓(.,.) be an insight-function. LetA1,A2,A3 be PSIOA, s.t.

A1 ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞2,𝜖12

A2 andA2 ≤𝑆𝑐ℎ,𝑓𝑝,𝑞2,𝑞3,𝜖23

A3, thenA1 ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞3,𝜖13

A3.

Proof. Let E ∈ 𝑒𝑛𝑣 (A1) ∩ 𝑒𝑛𝑣 (A3) be 𝑝-bounded.
Case 1: E ∈ 𝑒𝑛𝑣 (A2). Let 𝜎1 ∈ 𝑆𝑐ℎ(E||A1) 𝑞1-bounded, then,

since A1 ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞2,𝜖12

A2 it exists 𝜎2 ∈ 𝑆𝑐ℎ(E||A2) 𝑞2-bounded s.t.

𝜎1𝑆
≤𝜖12

E,𝑓 𝜎2. and since A2 ≤𝑆𝑐ℎ,𝑓𝑝,𝑞2,𝑞3,𝜖23

A3, it exists 𝜎3 ∈ 𝑆𝑐ℎ(E||A3)
𝑞3-bounded s.t. 𝜎2𝑆

≤𝜖23

E,𝑓 𝜎3 and so for every 𝜎1 ∈ 𝑆𝑐ℎ(E||A1) 𝑞1-

bounded, it exists 𝜎3 ∈ 𝑆𝑐ℎ(E||A3) 𝑞3-bounded s.t. 𝜎1𝑆
≤𝜖13

E,𝑓 𝜎3 , i. e.

A1 ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞3,𝜖13

A3.

Case 2: E ∉ 𝑒𝑛𝑣 (A2). A renaming procedure has to be performed

before applying Case 1.

Let A = {E,A1,A2,A3}. We note 𝑎𝑐𝑡𝑠 (A) = ⋃
B∈A 𝑎𝑐𝑡𝑠 (B).

We use the special character ® for our renaming which is assumed

to not be present in any syntactical representation of any action in

𝑎𝑐𝑡𝑠 (A).
We note 𝑎𝑟𝑖𝑛𝑡 the action renaming fction s. t. ∀𝑞 ∈ E, ∀𝑎 ∈

𝑠𝑖𝑔(E)(𝑞), if𝑎 ∈ 𝑖𝑛𝑡 (E)(𝑞), then𝑎𝑟𝑖𝑛𝑡 (𝑞) (𝑎) = 𝑎®𝑖𝑛𝑡 and𝑎𝑟𝑖𝑛𝑡 (𝑞) (𝑎) =
𝑎 otherwise. Then we note E ′ = 𝑎𝑟𝑖𝑛𝑡 (E).

If E ′ and A2 are not partially-compatible, it is only because

of some reachable state (𝑞E , 𝑞A2
) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (E ′) × 𝑠𝑡𝑎𝑡𝑒𝑠 (A2) s. t.

𝑜𝑢𝑡 (A2) (𝑞A2
) ∩ 𝑜𝑢𝑡 (E ′) (𝑞E ) ≠ ∅. Thus, we rename the actions

for each state to avoid this conflict.

We note𝑎𝑟𝑜𝑢𝑡 the renaming function for E ′, s. t.∀𝑞E ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (E),
∀𝑎 ∈ 𝑠𝑖𝑔(E)(𝑞E ), 𝑎𝑟𝑜𝑢𝑡 (𝑞E ) (𝑎) = 𝑎®𝑜𝑢𝑡 if 𝑎 ∈ 𝑜𝑢𝑡 (E)(𝑞E ) and
𝑎 otherwise. In the same way, We note, for every 𝑖 ∈ {1, 2, 3}
𝑎𝑟 𝑖

𝑖𝑛
the renaming function for A𝑖 , s. t. ∀𝑞A𝑖

∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A𝑖 ), ∀𝑎 ∈
𝑠𝑖𝑔(A𝑖 ) (𝑞A𝑖

) 𝑎𝑟𝑖𝑛 (𝑞A𝑖
) (𝑎) = 𝑎®𝑜𝑢𝑡 if 𝑎 ∈ 𝑖𝑛(A𝑖 ) (𝑞A𝑖

) and 𝑎 oth-
erwise. Finally, E ′′ = 𝑎𝑟𝑜𝑢𝑡 (E ′) and A ′′𝑖 = 𝑎𝑟 𝑖

𝑖𝑛
(A𝑖 ) are obviously

partially-compatible (and even compatible) for each 𝑖 ∈ {1, 2, 3}.
There is an obvious isomorphism between E ′′ | |A ′′

1
and E||A1

and between E ′′ | |A ′′
3
and E||A3 that allows us to apply case 1,

which ends the proof.

□
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Lemma B.5 (composability ≤𝑆𝑐ℎ,𝑓𝑝,𝑞
1

,𝑞
2

,𝜖 ). Let 𝜖 : N → R≥0 and

𝑝, 𝑝3, 𝑞1, 𝑞2 : N → N be given. Let 𝑆𝑐ℎ be a scheduler schema. Let
𝑓(.,.) be an insight function stable by composition. Let A, B and
C be 3 PSIOA (resp. PCA) families satisfying: C has 𝑝3-bounded
description and is partially compatible with bothA and B. Let 𝑐𝑐𝑜𝑚𝑝

be the constant factor associated with description bounds in parallel
composition (see lemma 4.3) Then the following holds.

If A ≤𝑆𝑐ℎ,𝑓
𝑐𝑐𝑜𝑚𝑝 (𝑝+𝑝3),𝑞1,𝑞2,𝜖

B, then C||A ≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞2,𝜖
C||B.

Proof. Fix A = (A𝑘 )𝑘∈N, B = (B𝑘 )𝑘∈N, C = (C𝑘 )𝑘∈N and all

the functions as in the hypotheses.

By definition 4.12, for every 𝑘 ∈ N, A𝑘 ≤
𝑆𝑐ℎ,𝑓

𝑝′ (𝑘),𝑞1 (𝑘),𝑞2 (𝑘) B𝑘
with 𝑝 ′ = (𝑐𝑐𝑜𝑚𝑝 · (𝑝 + 𝑝3)),

Thus, ∀𝑘 ∈ N, (C𝑘 | |A𝑘 ) ≤
𝑆𝑐ℎ,𝑓

𝑝 (𝑘),𝑞1 (𝑘),𝑞2 (𝑘) (C𝑘 | |B𝑘 ) by lemma

4.13.

Finally, we obtain that C||A ≤𝑆𝑐ℎ,𝑝,𝑞1,𝑞2,𝜖 C||B, as needed, ap-
plying definition 4.12 once again. □

Theorem B.6 (composability ≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 ). Let 𝑆𝑐ℎ be a scheduler
schema. Let 𝑓(.,.) be an insight function stable by composition.

LetA
1
,A

2
andA

3
be PSIOAs (resp. PCA) families satisfying:A

3

has 𝑝3-bounded description where 𝑝3 is a polynomial and is partially
compatible with both A

1
and A

2
. Then the following holds.

If A
1
≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 A2

, then A
3
| |A

1
≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 A3

| |A
2
. Observe that,

by induction, Theorem generalizes to any constant number of substi-
tutions.

Proof. Suppose A
1
, A

2
, A

3
and all the functions as in the

hypotheses. Fix polynomial 𝑝3 such that A
3
is 𝑝3-time-bounded.

To show that A
3
| |A

2
≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 A3

| |A
2
, we fix polynomials 𝑝 and

𝑞1; we must obtain a polynomial 𝑞2 and a negligible function 𝜖 such

that A
3
| |A

2
≤𝑆𝑐ℎ,𝑓𝑝,𝑞1,𝑞2,𝜖

A
3
| |A

2
. Define 𝑝 ′ to be the polynomial

𝑐𝑐𝑜𝑚𝑝 (𝑝 + 𝑝3). Since A
2
≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 A2

, there exist a polynomial 𝑞2

and a negligible function 𝜖 such that A
2
≤𝑆𝑐ℎ,𝑓
𝑝′,𝑞1,𝑞2,𝜖

A
2
. Lemma

4.14 then implies that A
3
| |A

2
≤𝑆𝑐ℎ,𝑓
𝑝′,𝑞1,𝑞2,𝜖

A
3
| |A

2
, as needed.

□

C RESULTS FOR STRUCTURED AUTOMATA
Lemma C.1 (Closeness of structured PCA under composi-

tion). Let 𝑋1 and 𝑋2 be partially-compatible structured PCA. Then
𝑋1 | |𝑋2 is a structured PCA.

Proof. Let 𝑋1 and 𝑋2 be partially-compatible structured PCA.

Let𝑞𝑋 = (𝑞𝑋1
, 𝑞𝑋2
) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 ((𝑋1, 𝑋2))Wenote𝐶1 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋1) (𝑞𝑋1

),
𝐶2 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋2) (𝑞𝑋2

),𝐶 = 𝐶1∪𝐶2,ℎ1 = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋1) (𝑞𝑋1
),

𝐶2 = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋2) (𝑞𝑋2
), ℎ = ℎ1 ∪ ℎ2. The closeness un-

der composition is ensured if the new restriction 𝐸𝐴𝑐𝑡𝑋 (𝑞𝑋 ) =
𝐸𝐴𝑐𝑡 (𝐶)\ℎ is still ensured after composition, that is if𝐸𝐴𝑐𝑡𝑋1

(𝑞𝑋1
)∪

𝐸𝐴𝑐𝑡𝑋2
(𝑞𝑋2
) = (𝐸𝐴𝑐𝑡 (𝐶1) \ℎ1)∪ (𝐸𝐴𝑐𝑡 (𝐶2) \ℎ2) = 𝐸𝐴𝑐𝑡 (𝐶1∪𝐶2) \

(ℎ1 ∪ ℎ2). This constraint is ensured for the same reason that the

fourth one. Indeed, since 𝑋1 and 𝑋2 are partially-compatible by

assumption, (i) the signatures 𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋1) (𝑞𝑋1
)) and the sig-

nature 𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋2) (𝑞𝑋2
)) are compatible and (ii) 𝑠𝑖𝑔(𝑋1) (𝑞𝑋1

)
and 𝑠𝑖𝑔(𝑋2) (𝑞𝑋2

) are compatible. The conjonction of (i) and (ii)

implies ℎ1 ∩ 𝑠𝑖𝑔(𝑋2) (𝑞𝑋2
) = ℎ2 (𝑞𝑋2

) ∩ 𝑠𝑖𝑔(𝑋1) (𝑞𝑋1
) = ∅. This is

enough to ensure (𝐸𝐴𝑐𝑡 (𝐶1) \ ℎ1) ∪ (𝐸𝐴𝑐𝑡 (𝐶2) \ ℎ2) = 𝐸𝐴𝑐𝑡 (𝐶1 ∪
𝐶2) \ (ℎ1 ∪ ℎ2). □

D RESULTS FOR ADVERSARIES
Lemma D.1 (Dummy adversary insertion). Let (𝑆𝑐ℎ, 𝑓 ) be a

brave pair made of a scheduler schema 𝑆𝑐ℎ and an insight function
𝑓 . Let A be a structured PSIOA (resp. PCA) family {A𝑘 }𝑘∈N. Let
𝑔 = {𝑔𝑘 }𝑘∈N be a family of bijection from

⌣
𝐴𝐴𝑐𝑡A𝑘

to a set of fresh
action names. Let 𝐴𝑑𝑣 = {𝐴𝑑𝑣𝑘 }𝑘∈N be an adversary for both 𝑔(A)
and ℎ𝑖𝑑𝑒 (A||𝐷𝑢𝑚𝑚𝑦 (A, 𝑔), 𝐴𝐴𝑐𝑡A ). Then,
𝑔(A)||𝐴𝑑𝑣 ≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 ℎ𝑖𝑑𝑒 (A||𝐷𝑢𝑚𝑚𝑦 (A, 𝑔), 𝐴𝐴𝑐𝑡A ) | |𝐴𝑑𝑣

Proof. Let 𝑞1 be any polynomial and set 𝑞2 := 2 · 𝑞1. Let 𝑝, 𝑞

be any polynomials and 𝜖 be the constant zero function, i. e. ∀𝑘 ∈
N, 𝜖 (𝑘) = 0. Fix 𝑘 ∈ N, we note 𝐷𝑘 = 𝐷𝑢𝑚𝑚𝑦 (A𝑘 , 𝑔𝑘 ), 𝐻𝑘 =

ℎ𝑖𝑑𝑒 (A𝑘 | |𝐷𝑘 , 𝐴𝐴𝑐𝑡A𝑘
) and 𝐷 = (𝐷𝑘 )𝑘∈N and 𝐻 = (𝐻𝑘 )𝑘∈N. Let

E be an environment for 𝑔𝑘 (A𝑘 ) | |𝐴𝑑𝑣𝑘 and forA𝑘 | |𝐻𝑘 | |𝐴𝑑𝑣𝑘 . Let
𝜎 ∈ 𝑆𝑐ℎ(E||𝑔𝑘 (A𝑘 ) | |𝐴𝑑𝑣𝑘 ) be a 𝑞1 bounded scheduler.

We are going to construct 𝜎 ′ ∈ 𝑆𝑐ℎ(E||𝐻𝑘 | |𝐴𝑑𝑣𝑘 ) balanced with
𝜎 and 𝑞2 bounded scheduler in the intuitive way.

First we partition the functions depending if they are triggered by

the environment or by the adversary. Hence,∀𝑞 = (𝑞E , 𝑞A , 𝑞𝐴𝑑𝑣) ∈
𝑠𝑡𝑎𝑡𝑒𝑠 (E||𝑔𝑘 (A𝑘 ) | | 𝐴𝑑𝑣𝑘 ), for every 𝑞+ = (𝑞E , 𝑞A , 𝑞𝐷 , 𝑞𝐴𝑑𝑣) ∈
𝑠𝑡𝑎𝑡𝑒𝑠 (E||𝐻𝑘 | |𝐴𝑑𝑣𝑘 ), we note:
• 𝐸 (𝑞) = 𝐸 (𝑞+) = 𝑠𝑖𝑔(E||𝑔𝑘 (A𝑘 ) | |𝐴𝑑𝑣𝑘 ) ((𝑞E , 𝑞A , 𝑞𝐴𝑑𝑣)) \
([𝑒𝑥𝑡 (𝑔𝑘 (A𝑘 )) (𝑞A ) ∩𝑒𝑥𝑡 (𝐴𝑑𝑣𝑘 ) (𝑞𝐴𝑑𝑣)] ∪𝑒𝑥𝑡 (𝐷𝑘 ) (𝑞𝐷 )), i.
e. the actions not dedicated to the dummy adversary.

• – 𝐹A (𝑞) = [𝑜𝑢𝑡 (𝑔𝑘 (A𝑘 )) (𝑞A ) ∩ 𝑖𝑛(𝐴𝑑𝑣𝑘 ) (𝑞𝐴𝑑𝑣)] ∩
𝑖𝑛(𝐷𝑘 ) (𝑞𝐷 ),

– 𝐹𝐴𝑑𝑣 (𝑞) = [𝑖𝑛(𝑔𝑘 (A𝑘 )) (𝑞A ) ∩ 𝑜𝑢𝑡 (𝐴𝑑𝑣𝑘 ) (𝑞𝐴𝑑𝑣)] ∩
𝑖𝑛(𝐷𝑘 ) (𝑞𝐷 )

– 𝐹 (𝑞) = 𝐹A (𝑞) ∪ 𝐹𝐴𝑑𝑣 (𝑞)
– 𝐹+A (𝑞

+) = 𝑖𝑛(𝐷𝑘 ) (𝑞𝐷 ) ∩ 𝑜𝑢𝑡 (A𝑘 ) (𝑞A )
– 𝐹+

𝐴𝑑𝑣
(𝑞+) = 𝑖𝑛(𝐷𝑘 ) (𝑞𝐷 ) ∩ 𝑜𝑢𝑡 (𝐴𝑑𝑣) (𝑞𝐴𝑑𝑣)

– 𝐹+ (𝑞) = 𝐹+A (𝑞) ∪ 𝐹
+
𝐴𝑑𝑣
(𝑞)

each set holds actions that have to be forwarded by the

dummy adversary.

• ∀𝑎 ∈ 𝐹+A (𝑞
+), 𝑜𝑟𝑖𝑔𝑖𝑛(𝑎) = 𝑔𝑘 (𝑎), 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (𝑎) =𝑔𝑘 (𝑎).∀𝑔𝑘 (𝑏)

∈ 𝐹+
𝐴𝑑𝑣
(𝑞+), 𝑜𝑟𝑖𝑔𝑖𝑛(𝑔𝑘 (𝑏)) = 𝑔𝑘 (𝑏) and 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (𝑔𝑘 (𝑏)) =

𝑏. When an action 𝑎 is received by the dummy adversary,

𝑜𝑟𝑖𝑔𝑖𝑛(𝑎) returns the corresponding action shared by𝑔𝑘 (A𝑘 )
and 𝐴𝑑𝑣𝑘 , while 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (𝑎) returns the action forwarded

by the dummy adversary with potential 𝑔𝑘 -renaming.

• 𝐺+ (𝑞+) = 𝑠𝑖𝑔(E||A𝑘 ) | |𝐷𝑘 | |𝐴𝑑𝑣𝑘 ) ((𝑞E , 𝑞A , 𝑞𝐷𝑞𝐴𝑑𝑣))\[𝐸+ (𝑞+)
∪𝐹+ (𝑞+)]. These actions corresponds to a scenario where a

new action is received by the dummy adversary before the

appropriate forward. These actions will never by triggered

by 𝜎 ′.

Now, we define a relationship between executions, noted 𝛼 ∼ 𝛼 ′,
that captures the fact that the latter member 𝛼 ′ of the relation

corresponds to former one 𝛼 when each action shared by 𝑔𝑘 (A𝑘 )
and 𝐴𝑑𝑣𝑘 is correctly forwarded by dummy adversary in 𝛼 ′.
∀(𝛼, 𝛼 ′) ∈ 𝑓 𝑟𝑎𝑔𝑠∗ (E||𝑔𝑘 (A𝑘 ) | |𝐴𝑑𝑣𝑘 ) × 𝑓 𝑟𝑎𝑔𝑠∗ (E||𝐻𝑘 | |𝐴𝑑𝑣𝑘 )

we note 𝛼 ∼ 𝛼 ′ iff:
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• (initialisation): 𝛼 ′ = 𝑠𝑡𝑎𝑟𝑡 (E||𝐻𝑘 , 𝐴𝐴𝑐𝑡A𝑘
) | |𝐴𝑑𝑣𝑘 ) and 𝛼 =

𝑠𝑡𝑎𝑟𝑡 (E||𝑔(A𝑘 ) | |𝐴𝑑𝑣𝑘 )
• (environment side) 𝛼 = (𝑞E , 𝑞A , 𝑞𝐴𝑑𝑣) 𝑎 (𝑞′E , 𝑞

′
A , 𝑞

′
𝐴𝑑𝑣
)

and 𝛼 ′ = (𝑞E , 𝑞A , 𝑞𝐷 , 𝑞𝐴𝑑𝑣) 𝑎 (𝑞′E , 𝑞
′
A , 𝑞

′
𝐷
, 𝑞′

𝐴𝑑𝑣
) with 𝑎 ∈

𝐸 ((𝑞E , 𝑞A , 𝑞𝐴𝑑𝑣))
• (forward) 𝛼 = (𝑞E , 𝑞A , 𝑞𝐴𝑑𝑣) 𝑎 (𝑞E , 𝑞′A , 𝑞

′
𝐴𝑑𝑣
) and 𝛼 ′ =

(𝑞E , 𝑞A , 𝑞𝐷 , 𝑞𝐴𝑑𝑣) 𝑏 (𝑞E , 𝑞′A , 𝑞
′
𝐷
, 𝑞′

𝐴𝑑𝑣
) 𝑏 ′ (𝑞E , 𝑞′′A , 𝑞

′′
𝐷
, 𝑞′′

𝐴𝑑𝑣
)

with 𝑎 = 𝑜𝑟𝑖𝑔𝑖𝑛(𝑏) ∈ 𝐹 ((𝑞E , 𝑞A , 𝑞𝐴𝑑𝑣)), 𝑏 ′ = 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (𝑏)
and 𝑏 ∈ 𝐹+ ((𝑞E , 𝑞A , 𝑞𝐷 , 𝑞𝐴𝑑𝑣)), .
• (generalization)𝛼 = 𝛼1⌢𝛼2⌢ ...⌢𝛼𝑛 ,𝛼 ′ = 𝛼 ′1⌢𝛼 ′2⌢ ...⌢𝛼 ′𝑛

and ∀𝑖 ∈ [1, 𝑛], 𝛼𝑖 ∼ 𝛼 ′𝑖

We note 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑒(A,𝑔,𝐴𝑑𝑣) (𝛼) the (clearly) unique 𝛼
′
s. t. 𝛼 ∼ 𝛼 ′.

Nowwe recursively define𝜎 ′ = 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑠(A,𝑔,𝐴𝑑𝑣) (𝜎) as follows:
Let (𝛼, 𝛼 ′) ∈ 𝑓 𝑟𝑎𝑔𝑠∗ (E||𝑔𝑘 (A𝑘 ) | |𝐴𝑑𝑣𝑘 ) × 𝑓 𝑟𝑎𝑔𝑠∗ (E||𝐻𝑘 | |𝐴𝑑𝑣𝑘 ),
𝜎 ′ mimics 𝜎 , i. e.

• if 𝛼 ∼ 𝛼 ′, ∀𝑏 ∈ 𝑠𝑖𝑔(E||𝐻𝑘 | |𝐴𝑑𝑣𝑘 ) (𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼 ′)),
– if 𝑏 ∈ 𝐸+ (𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼 ′)), 𝜎 ′(𝛼 ′) (𝑏) = 𝜎 (𝛼) (𝑏)
– if 𝑏 ∈ 𝐺+ (𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼 ′)), 𝜎 ′(𝛼 ′) (𝑏) = 0

– if 𝑏 ∈ 𝐹+ (𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼 ′)), 𝜎 ′(𝛼 ′) (𝑏) = 𝜎 (𝛼) (𝑜𝑟𝑖𝑔𝑖𝑛(𝑏))
• if 𝛼 ′ = 𝛼 ′′⌢𝑏𝑞′ with 𝛼 ∼ 𝛼 ′′ and 𝑏 ∈ 𝐹+ (𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼 ′′)), then
𝜎 ′(𝛼 ′) = 𝛿𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (𝑏) .

By construction, for every 𝛼 ′ s. t. |𝛼 ′ | > 𝑞2 (𝑘), 𝜎 ′(𝛼 ′) = 0.

The construction ensures 𝜖𝜎 (𝛼) = 𝜖𝜎′ (𝛼 ′) for 𝛼 ∼ 𝛼 ′ and
𝜖𝜎′ (𝛼 ′) = 0 if there is no 𝛼 ′′ with 𝛼 ′ as prefix with |𝛼 ′′ | = |𝛼 ′ | + 1 s.

t. it exists an execution 𝛼 verifying 𝛼 ∼ 𝛼 ′′. Since, by bravery prop-

erty, for every pair (𝛼, 𝛼 ′) with𝛼 ∼ 𝛼 ′, we have 𝑓(E𝑘 ,𝐻𝑘 | |𝐴𝑑𝑣𝑘 ) (𝛼) =
𝑓(E𝑘 ,𝑔𝑘 (A𝑘 ) | |𝐴𝑑𝑣𝑘 ) (𝛼

′), we obtain 𝑓 -𝑑𝑖𝑠𝑡 (E𝑘 ,𝑔𝑘 (A𝑘 ) | |𝐴𝑑𝑣𝑘 ) (𝜎) = 𝑓 -
𝑑𝑖𝑠𝑡 (E𝑘 ,𝐻𝑘 | |𝐴𝑑𝑣𝑘 ) (𝜎

′).
□

Theorem D.2 (Composability of dynamic secure-emulation).

Let (𝑆𝑐ℎ, 𝑓 ) be a brave pair made of a scheduler schema 𝑆𝑐ℎ and an
insight function 𝑓 . Let 𝑏 ∈ N. Let A1,A2, ...,A𝑏 and B1,B2, ...,B𝑏
be pair- wise partially-compatible polynomial-time-bounded struc-
tured PSIOA (resp. PCA) families, with A𝑖 ≤𝑆𝑐ℎ,𝑓

𝑆𝐸
B𝑖 for every

𝑖 ∈ [1, 𝑏]. Then, we have Â ≤𝑆𝐸 B̂ with Â = A1 | |A2 | |...| |A𝑏

and B̂ = B1 | |B2 | |...| |B𝑏 .

Proof. Let 𝐴𝑑𝑣 be an adversary family for Â with polynomi-

ally bounded description. We need to construct an adversary fam-

ily 𝑆𝑖𝑚 for B̂ with polynomially bounded description such that:

ℎ𝑖𝑑𝑒 (Â | |𝐴𝑑𝑣,𝐴𝐴𝑐𝑡Â ) ≤
𝑆𝑐ℎ,𝑓
𝑛𝑒𝑔,𝑝𝑡 ℎ𝑖𝑑𝑒 (B̂ | |𝑆𝑖𝑚,𝐴𝐴𝑐𝑡 B̂).

For every (𝑖, 𝑘) ∈ [1, 𝑏] × N. We note 𝑔𝑖
𝑘
an arbitrary bijection

from 𝐴𝐴𝑐𝑡A𝑖
𝑘
to a set of fresh action names, i. e. 𝑔𝑖 = {𝑔𝑖

𝑘
}𝑘∈N is a

renaming of adversary actions for A𝑖
. These functions induce a re-

naming for Â:𝑔 = {𝑔𝑘 }𝑘∈N with∀𝑘 ∈ N,𝑔𝑘 = 𝑔1

𝑘
∪ ...∪𝑔𝑏

𝑘
, i. e.∀𝑞 ∈

𝑠𝑡𝑎𝑡𝑒𝑠 (Â
𝑘
), ∀𝑎 ∈ 𝐴𝐴𝑐𝑡Â (𝑞), 𝑔𝑘 (𝑎) = 𝑔𝑖

𝑘
(𝑎) iff 𝑎 ∈ 𝐴𝐴𝑐𝑡A𝑖

𝑘
(𝑞 ↾

A𝑖
𝑘
). We recall that compatibility definition for structured PSIOA

requires that shared actions of two automata cannot be a adversary

actions of their composition. We note �𝐷𝑢𝑚 = 𝐷1 | |...| |𝐷𝑏
, where

∀𝑖 ∈ [1, 𝑏], 𝐷𝑖 = 𝐷𝑢𝑚𝑚𝑦 (A𝑖 , 𝑔𝑖 ). Let 𝑖 ∈ [1, 𝑏]. Since A𝑖 ≤𝑆𝐸 B𝑖 ,

then ∃𝐷𝑆𝑖𝑚𝑖
s. t.

ℎ𝑖𝑑𝑒 (A𝑖 | |𝐷𝑖 , 𝐴𝐴𝑐𝑡𝑖A ) ≤𝑛𝑒𝑔,𝑝𝑡 ℎ𝑖𝑑𝑒 (B
𝑖 | |𝐷𝑆𝑖𝑚𝑖 , 𝐴𝐴𝑐𝑡𝑖B).

We note �𝐷𝑆𝑖𝑚 = 𝐷𝑆𝑖𝑚1 | |...| |𝐷𝑆𝑖𝑚𝑏
.

We observe the following:

ℎ𝑖𝑑𝑒 (Â | |𝐴𝑑𝑣,𝐴𝐴𝑐𝑡Â ) ≡
𝑆𝑐ℎ,𝑓
𝑛𝑒𝑔,𝑝𝑡

ℎ𝑖𝑑𝑒 (𝑔(Â) | |𝑔(𝐴𝑑𝑣), 𝑔(𝐴𝐴𝑐𝑡Â )) ≤
𝑆𝑐ℎ,𝑓
𝑛𝑒𝑔,𝑝𝑡

ℎ𝑖𝑑𝑒 (Â | |�𝐷𝑢𝑚 | |𝑔(𝐴𝑑𝑣), 𝑔(𝐴𝐴𝑐𝑡Â ) ∪𝐴𝐴𝑐𝑡Â ) ≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡

ℎ𝑖𝑑𝑒 (B̂ | |�𝐷𝑆𝑖𝑚 | |𝑔(𝐴𝑑𝑣), 𝑔(𝐴𝐴𝑐𝑡Â ) ∪𝐴𝐴𝑐𝑡 B̂) ≡𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡

ℎ𝑖𝑑𝑒 (B̂ | |ℎ𝑖𝑑𝑒 (�𝐷𝑆𝑖𝑚 | |𝑔(𝐴𝑑𝑣), 𝑔(𝐴𝐴𝑐𝑡Â )), 𝐴𝐴𝑐𝑡 B̂)
We define 𝑆𝑖𝑚 = ℎ𝑖𝑑𝑒 (�𝐷𝑆𝑖𝑚 | |𝑔(𝐴𝑑𝑣), 𝑔(𝐴𝐴𝑐𝑡Â ))
Hence we have shown that for every adversary family 𝐴𝑑𝑣 for

Â with polynomially bounded description it exists a polynomi-

ally bounded adversary 𝑆𝑖𝑚 for B̂ such that: ℎ𝑖𝑑𝑒 (Â | |𝐴𝑑𝑣,𝐴𝐴𝑐𝑡Â )

≤𝑆𝑐ℎ,𝑓𝑛𝑒𝑔,𝑝𝑡 ℎ𝑖𝑑𝑒 (B̂ | |𝑆𝑖𝑚,𝐴𝐴𝑐𝑡 B̂), which ends the proof.

□
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