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Abstract. We investigate the use of the Dilithium post-quantum digital signature scheme
on memory-constrained systems. Reference and optimized implementations of Dilithium in
the benchmarking framework pqm4 (Cortex-M4) require 50 – 100 KiB of memory, demon-
strating the significant challenge to use Dilithium on small IoT platforms. We show that
compressing polynomials, using an alternative number theoretic transform, and falling back
to the schoolbook method for certain multiplications reduces the memory footprint signif-
icantly. This results in the first implementation of Dilithium for which the recommended
parameter set requires less than 7 KiB of memory for key and signature generation and
less than 3 KiB of memory for signature verification. We also provide benchmark details of
a portable implementation in order to estimate the performance impact when using these
memory reduction methods.

1 Introduction

Digital signatures are one of the essential building blocks in our cybersecurity infrastructure. These
cryptographic algorithms need to be computed on different platforms in the ecosystem: ranging
from high-end cloud servers to resource constrained embedded devices. Especially the rise of the
multitude of Internet-of-Things (IoT) devices, which has steadily outgrown the number of humans
living on this planet and is expected to keep increasing [20], highlights the importance of being
able to compute security primitives on such constrained devices.

Currently, the most commonly used digital signature schemes are RSA [26] and variants of
(EC)DSA [13,21]. However, with the possibility of a quantum computer being realized, the security
of RSA and (EC)DSA is threatened. Cryptography designed to run on our current platforms and
which is secure against such a quantum threat is called post-quantum or quantum safe cryptography
(PQC). In an effort to standardize such algorithms the US National Institute of Standards and
Technology (NIST) put out a call for proposals [22] to submit candidate algorithms in 2016. As
of July 2020, seven out of fifteen remaining candidates have been marked as finalists, of which a
subset is expected to be selected for standardized before April 2022. One of the three finalists for
digital signatures is CRYSTALS–Dilithium [5,18], which will be the focus of this paper.

One can observe that Dilithium signing has two main practical drawbacks for embedded devices.
The first one is the variable signing time, which follows a geometric distribution. When using the
parameter set targeting NIST security level 3, the probability that the signing time is more than
twice the expected average is approximately 14 percent. This is significant and will have a real
impact on many performance requirements for various use-cases. The second drawback relates to
the memory requirements which are significantly higher for virtually all PQC schemes compared
to the classical digital signature counterparts. This is not only attributed to relatively large key
and signature sizes, but also heavy use of stack space for the storage of intermediate data. For
example, the embedded benchmarking platform pqm4 [10,9] (which executes on the ARM Cortex-
M4) initially reported memory requirements for Dilithium in the range of 50 – 100 KiB for both
the original reference as well as the optimized implementations.

Dilithium has received a significant amount of attention from the cryptographic community.
One direction of study comes from an applied cryptographic engineering perspective: how can one
realize efficient implementations in practice for a selected target platform. Often the single most
important optimization criteria is latency: the algorithm needs to execute as fast as possible, at the
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possible expense of other important metrics. Examples include the AVX2-based implementations
from [5] and [6]; or the implementation from [24], which requires up to 175 KiB of memory.

Instead, we target platforms which have significantly less memory and computational power.
Typical examples are platforms which are based on ARM Cortex-M0(+) cores. Such platforms are
typical for a large family of IoT applications. Products in this range include the LPC800 series by
NXP (4 – 16 KiB of SRAM), STM32F0 by ST (4 – 32 KiB of SRAM), or the XMC1000 by Infineon
(16 KiB of SRAM). It is clear that PQC algorithms with memory requirements of well over 50
KiB do not fit on these platforms and will not be able to sign nor verify digital post-quantum
signatures.

In this paper we investigate if it is possible to execute Dilithium on such memory constrained
devices that often have up to 8 KiB of SRAM and, if so, which performance penalty is incurred.
Recently, there have been promising results in this direction [7,1]. Most notably the third strategy
from [7] manages to run the recommended parameter set of Dilithium in just below 10 KiB: this is
a remarkable achievement but still too large for many devices with only 8 KiB of SRAM, especially
when you take into account that other applications will require memory as well.

2 Preliminaries

In this paper, we follow the same notation as the Dilithium specification [18]. We let R and Rq

respectively denote the rings Z[X]/(Xn + 1) and Zq[X]/(Xn + 1), for q an integer. Throughout
this document, the value of n will always be 256 and q will be the prime 8380417 = 223 − 213 + 1.
Scalars and polynomials are written in a regular font (a), vectors are written in lowercase bold (a),
and matrices are written in uppercase bold (A). All values in the NTT domain are written with a
hat (â), ◦ denotes coefficient-wise multiplication between two polynomials, and ∥a∥∞ denotes the
infinity norm of a.

In the remaining part of this work we describe optimization strategies for the Dilithium sig-
nature algorithm. One of the techniques used is to reuse memory space that is used by another
value at some point during the computation to reduce the overall memory requirement. In the
context programming languages, a variable’s lifetime is the time from which it is initialized, until
the last time it is used. After a variable has been used for the last time, it is dead. This is not the
same as allocation, which means that a certain part of memory has been reserved for the storage
of a variable. When the lifetimes of two variables overlap this means that, at some point in the
algorithm, both variables are alive at the same time. As a consequence, such overlapping lifetimes
mean that both variables cannot share the same memory location.

2.1 Dilithium

One approach to construct digital signatures comes from the realm of lattice-based cryptogra-
phy. A particular problem used as a security foundation is known as the Learning With Errors
(LWE) problem [25] introduced by Regev, which relates to solving a “noisy” linear system mod-
ulo a known integer. This problem can be used as the basis for a signature scheme, as shown by
Lyubashevsky [17], by improving on their idea to apply Fiat-Shamir with aborts [16,12] to lattices.

The Ring Learning With Errors (R-LWE) [19,23] is a variant of this approach which works
in the ring of integers of a cyclotomic number field and offers significant storage and efficiency
improvements compared to LWE. Yet another approach to address certain shortcomings in both
LWE and R-LWE and allows one to interpolate between the two. This Module Learning with
Errors problem (M-LWE) [4,15] takes the R-LWE problem and, informally, replaces the single
ring element with module elements over the same ring. Using this intuition, R-LWE can be seen
as M-LWE with module rank 1. A practical instantiation of M-LWE with various (practical)
improvements resulted in the CRYSTALS–Dilithium [5,18] digital signature algorithm.

The key generation is listed in Algorithm 1, the signature generation in Algorithm 2, and the
signature verification in Algorithm 3.
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Algorithm 1 Dilithium key generation (taken from [18])
Output: A public/secret key pair (pk , sk).
1: ζ ← {0, 1}256
2: (ρ, ρ′,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 := H(ζ)
3: A ∈ Rk×ℓ

q := ExpandA(ρ) ▷ A is generated in NTT domain as Â
4: (s1, s2) ∈ Sℓ

η × Sk
η := ExpandS(ρ′)

5: t := As1 + s2 ▷ Compute As1 as NTT−1(Â · NTT(s1))
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}256 := H(ρ ∥ t1)
8: return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0))

Algorithm 2 Dilithium signature generation (taken from [18])
Input: Secret key sk and a message M .
Output: Signature σ = Sign(sk ,M).
1: A ∈ Rk×ℓ

q := ExpandA(ρ) ▷ A is generated in NTT domain as Â
2: µ ∈ {0, 1}512 := H(tr ∥M)
3: κ := 0, (z,h) := ⊥
4: ρ′ ∈ {0, 1}512 := H(K ∥ µ) (or ρ′ ← {0, 1}512 for randomized signing)
5: while (z,h) = ⊥ do ▷ Pre-compute ŝ1 := NTT(s1), ŝ2 := NTT(s2), and t̂0 := NTT(t0)
6: y ∈ Sℓ

γ1
:= ExpandMask(ρ′, κ)

7: w := Ay ▷ w := NTT−1(Â · NTT(y))
8: w1 := HighBitsq(w, 2γ2)

9: c̃ ∈ {0, 1}256 := H(µ ∥ w1)
10: c ∈ Bτ := SampleInBall(c̃) ▷ Store c in NTT representation as ĉ = NTT(c)
11: z := y + cs1 ▷ Compute cs1 as NTT−1(ĉ · ŝ1)
12: r0 := LowBitsq(w − cs2, 2γ2) ▷ Compute cs2 as NTT−1(ĉ · ŝ2)
13: if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
14: (z,h) := ⊥
15: else
16: h := MakeHintq(−ct0,w − cs2 + ct0, 2γ2) ▷ Compute ct0 as NTT−1(ĉ · t̂0)
17: if ∥ct0∥∞ ≥ γ2 or the # of 1’s in h is greater than ω then
18: (z,h) := ⊥
19: κ := κ+ ℓ

20: return σ = (c̃, z,h)

Algorithm 3 Dilithium signature verification (taken from [18])
Input: Public key pk , message M and signature σ.
Output: Signature verification Verify(pk ,M, σ): true if σ is a valid signature of M using pk or false

otherwise.
1: A ∈ Rk×ℓ

q := ExpandA(ρ) ▷ A is generated in NTT Representation as Â
2: µ ∈ {0, 1}512 := H(H(ρ ∥ t1) ∥M)
3: SampleInBall(c̃)
4: w′

1 := UseHintq(h,Az− ct1 · 2d, 2γ2)
5: return J∥z∥∞ < γ1 − βK and Jc = H (µ ∥ w′

1)K and J# of 1’s in h is ≤ ωK
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Table 1. Overview of the relevant Dilithium parameters (taken from [18]).

NIST security level 2 3 5

q [modulus] 8380417 8380417 8380417

(k, ℓ) [dimensions of A] (4, 4) (6, 5) (8, 7)

η [secret key range] 2 4 2

τ [hamming weight of c] 39 49 60

d [dropped bits from t] 13 13 13

γ1 [y coefficient range] 217 219 219

γ2 [low-order rounding range] (q − 1)/88 (q − 1)/32 (q − 1)/32

β [range of cs1 and cs2] 78 196 120

public key size (bytes) 1312 1952 2592

secret key size (bytes) 2528 4000 4864

signature size (bytes) 2420 3293 4595

The main mathematical building blocks in Dilithium are polynomials in Rq = Zq[X]/(Xn+1).
These polynomials consist of n = 256 elements modulo q < 223. So far, all previous Dilithium
implementations have stored polynomials in a buffer of 256 (u)int32_ts. This counts up to 1024
bytes =̂ 1 KiB per polynomial. This explains why Dilithium implementations generally require a
significant amount of memory: all of KeyGen, Sign, and Verify use k · ℓ polynomials to store A; add
to that four vectors of length k, and you have already reached a total memory use of {32, 54, 88}
KiB.

It should be noted that not all polynomials require this much memory. The situation is different
for (s1, s2) ∈ Sℓ

η × Sk
η which are uniformly random numbers in the range {−η, . . . ,+η}. Since

η = {2, 4, 2} for Dilithium-{2,3,5} this means each coefficient can be stored using {3, 4, 3} bits
respectively. Hence, the polynomial sx,i requires only {96, 128, 96} bytes of memory. However,
when this polynomial is stored naively in the NTT domain then one cannot use this property and
the full 1024 bytes are needed: requiring {10.7, 8.0, 10.7} times more memory.

3 Dilithium Signature Generation

The digital signature generation in Dilithium requires a significant amount of memory. To illus-
trate, the fastest implementation reported on the benchmark results from pqm41 requires ≈ 49,
≈ 80 and ≈ 116 KiB for Dilithium-{2,3,5}. In this section we outline the proposed techniques to
reduce the memory requirements.

3.1 Streaming A and y

In Dilithium’s signature generation algorithm the matrix A requires k · ℓ KiB: by far the largest
contributor to memory. A straight-forward optimization is to not generate the entire matrix A
but only generate the elements of A and y on-the-fly when they are needed. This approach was
proposed and discussed already in [7, Strategy 3].

The expected memory reduction of this optimization is k · ℓ KiB for A, and ℓ KiB for y; in
practice this means a saving of {20, 35, 63} KiB, for Dilithium-{2,3,5} respectively. This optimiza-
tion comes at a performance price: the matrix A needs to be regenerated again from ρ on every
iteration of the rejection-sampling loop. Moreover, y needs to be generated twice during each
iteration of the rejection-sampling loop; once for computing w = Ay, and once for computing

1 Accessed February 14, 2022 using revision 3bfbbfd3.



Dilithium for Memory Constrained Devices 5

z = y+ cs1 later on. In [7], the authors report a slowdown factor of around 3.3 – 3.9 compared to
precomputing A and y completely.2

3.2 Compressing w

Another significant contributor to the overall memory requirements is the vector w. This could be
resolved if one could compute and use a single element at a time during the signature generation.
Unfortunately, this is not possible due to the overlapping lifetimes of w and c, as identified in [7].
In line 9 of Algorithm 2, c is computed from w1 = HighBits(w). On lines 12 and 16, the values
r0 and h depend on c, and the complete vector w. This means that either all elements of w must
be retained between computing c and computing r0 and h, or w = Ay must be computed twice
during each iteration of the rejection-sampling loop. Recomputing the matrix-vector multiplication
in every loop iteration will roughly double the execution time of the signing algorithm: although
a viable direction to reduce memory we deemed this performance impact too large. Instead, we
explore the other option where all elements of w have to be alive at the same time at the cost of
storing k polynomials.

One polynomial has n = 256 coefficients, which are all bounded by q = 223 − 213 + 1. In
previous works, implementations have always used 32-bit data-types for storing these coefficients.
Instead, we use a compressed representation for storing w. Instead of using 32-bit registers for
storing w coefficients, the approach is to explicitly reduce them modulo q, reducing each coefficient
to 24 bits and next pack the 256 24-bit coefficients into a 768-byte array. The (24-bit) compressed
coefficients reduce the amount of storage that is used for storing w from k · 1024 bytes to k · 768
bytes, which results in a reduction of {1.0,1.5,2.0} KiB for Dilithium-{2,3,5}, respectively. Packing
and unpacking coefficients of w adds a little overhead during the matrix-vector multiplication.

It should be noted that one could compress each coefficient into 23 bits instead of 24 bits. This
would save an additional 32 bytes per polynomial. However, working with the 23-bit format (pack-
ing and unpacking) is significantly more cumbersome and therefore slower compared to the 24-bit
format for alignment reasons and the need for more expensive reductions during the computation
of w. This explains why we compress for the results presented in Section 5 to 24 bits.

3.3 Compressing c · s1, c · s2, and c · t0

The multiplication of the challenge c ∈ Bτ with the polynomials s1 ∈ Sℓ
η, s2 ∈ Sk

η , and t0 ∈ Sk
2d , is

typically computed using NTTs (see line 11, line 12 and line 16 of Algorithm 2). As the values of s1,
s2 and t0 are static throughout a whole signing computation, it is computationally most efficient
to pre-compute the NTTs on all these elements, and store ŝ1, ŝ2 and t̂0 in memory before entering
the rejection-sampling loop. Avoiding the storage of these elements reduces the total memory used
by 2k + ℓ KiB; i.e., {12,17,23} KiB for Dilithium-{2,3,5}, respectively. Indeed, this would naively
imply a performance loss as the NTTs need to be computed several times (at least once for each
aborted signature). However, the routine using (inverse) NTTs on-the-fly needs at least 1.75 KiB
of space: 1 KiB is needed to compute the (inverse) NTT for one operand, while 0.75 KiB is needed
to store the other operand in (24-bit) compressed form. We find that, for the computation of s1,
s2 and t0 we do not necessarily need to use the regular NTT. For most values involved, there is a
lot of structure that can be exploited. In the remainder of this section we discuss three different
ideas to compute c · s1, c · s2 and c · t0 with lower memory requirements than using regular NTTs.

Schoolbook multiplication. The most obvious choice for polynomial multiplication is the school-
book approach. At first glance, using schoolbook multiplication actually requires more memory
compared to NTT-based multiplication because one cannot do the multiplication in-place. How-
ever, when using schoolbook multiplication, one does not need to store the right-hand-side operand
polynomials (s1, s2, and t0) completely. We can multiply their coefficients in a streaming fashion,
unpacking them “lazily” from the secret key. Apart from using a small buffer we have now removed
2 These numbers are for NIST round-2 Dilithium and do not directly apply to the round-3 version.
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the need to store any full element from s1, s2 and t0. Although one still needs 1.0 KiB for the
accumulator polynomial, only 68 bytes are required for storing the challenge c; and a small buffer
of 32 bytes, which is used to unpack polynomial coefficients more efficiently from the secret key.
This adds up to 1124 bytes in total: a reduction of a factor 1.37 compared to using an NTT.

Furthermore, one can reduce the computational as well as the memory complexity by exploiting
the regular structure of the challenge c. Recall that the challenge polynomial has exactly τ non-zero
coefficients that are either ±1, where τ ∈ {39, 49, 60} depending on the Dilithium parameter set.
Therefore, when multiplying c with some other polynomial, one really only needs to multiply each
coefficient from the right-hand side operand with τ coefficients in c. Skipping the multiplications
with the zero-elements is not a security concern (e.g., from a timing leakage perspective) since the
challenge value c is public.

Using this property, one can use a data structure for c that allows for fast iteration over all the
non-zero coefficients. We use a single 64-bit datatype which indicates for each of the τ non-zero
positions whether it is a +1 or a −1; and an array of τ bytes which stores positions of the non-zero
coefficients. The benefit of storing the indices of all non-zero coefficients, as opposed to storing a
bit-string with bits set for each non-zero coefficient, is the fast iteration over the non-zero indices.
If we store a bit for every coefficient in c, we have to do a conditional addition/subtraction of
the coefficient in the other operand for every coefficient of c, i.e., n times. By only storing the
non-zero indices, we only have to do the addition/subtraction τ times and avoid computing any
multiplications. Hence, this polynomial multiplication with c can be done using τ · n additions or
subtractions only.

Alternative Number Theoretic Transforms. When computing c·s1 and c·s2 one can use a different-
sized NTT over a smaller prime as described in [1]. The idea is that all coefficients of both cs1 and
cs2 are bounded by ±τ · η = ±β. This allows computing the polynomial product with modulus
q′ = 257 for Dilithium-{2,5}, and q′ = 769 for Dilithium-3. Since the coefficients in the product
are bounded by ±β, they will not overflow when computing them modulo q′ ≥ 2β. In [1], this
improves the performance of the NTT-based multiplications because—with q′ = 257—some of
the multiplications with twiddle factors become cheaper. Moreover, [1] still uses 32-bit registers
for all values, which provides so much headroom that it eliminates the need for any intermediate
Barrett reductions in both NTT algorithms. However, the small-modulus NTTs also allows one to
store all coefficients in 16-bit variables: computing an NTT in half the amount of memory at the
cost of reintroducing the intermediate Barrett reductions. When using this technique, the memory
requirement of c · s1 and c · s2 is reduced to 1.0 KiB: 0.5 KiB for the first operand and product,
and another 0.5 KiB for the second operand.

Kronecker Substitution. By applying (generalizations of) Kronecker substitution [14,8] to c · s1
and c · s2 one can reduce the polynomial multiplication to the integer multiplications c(2λ) · s1(2λ)
and c(2λ) · s2(2λ) modulo 2256λ + 1. The application of Kronecker substitution to lattice-based
cryptography has been studied [2,3], but its use for c · s1 and c · s2 has not been considered yet.
In order to retrieve the coefficients of the resulting polynomial, we require that 2λ ≥ 2β. This
means we can select λ = 8 for Dilithium-{2,5} and λ = 9 for Dilithium-3, reducing to 2048-bit and
2304-bit multiplications respectively. This requires 256 or 288 bytes for each of the two inputs
and result polynomials: assuming the result can overwrite one of the inputs this means 512 or 576
bytes in total. Additionally one can use the more general Kronecker+ method [3] to improve the
performance further (the optimal setting depending on the platform).

Although Kronecker substitution works perfectly well on the regular central processing unit
it is particularly suitable for small systems that typically have dedicated hardware to perform
(public-key) cryptographic operations in a timely manner. For RSA or elliptic-curve cryptography
(ECC), such co-processors come in the form of large-integer multipliers that are heavily optimized
for performing integer (modular) multiplications.
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3.4 Variable Allocation

After applying the memory optimizations described above we analyzed efficient memory allocation
schemes during the Dilithium signature generation algorithm. This showed that one can reuse the
1 KiB memory location that is used every time to compute with a non-compressed polynomial.
On top of that, we need 128 bytes for storing µ and ρ′; and 68 bytes for storing c, as described
earlier (c̃ is stored solely in the output buffer). The complete memory allocation of the signature
generation algorithm is listed in Figure 1.

When looking at Figure 1 one can observe that the memory bottle-neck is shared between
multiple subroutines. We see no trivial way to further optimize the allocation of variables in
memory. The only time-memory tradeoff that could still be performed is to keep a single element
of w at a time. Following the recommendations from [7] we dismiss this approach because it requires
to compute all elements of w twice during each iteration of the rejection sampling loop. This would
not only require expanding all elements of A and y twice, one would also need to recompute ŷ =
NTT(y) and w = NTT−1(ŵ). Because the matrix-multiplication is already a dominating factor
in the signing algorithm, this optimization would likely result in another slowdown by a factor
two. Its gains in terms of memory consumption would be (k− 1) · 768 bytes, i.e., {2.25, 3.75, 5.25}
KiB for Dilithium-{2,3,5}, so it might be worthwhile if one can compensate for or cope with this
performance penalty.

4 Dilithium Key Generation and Signature Verification

Both the Dilithium key generation and verification algorithms are fundamentally different from the
signature algorithm with the most important difference that there is no rejection-sampling loop.
Therefore, there is no performance benefit to precomputing the matrix A in these algorithms,
which already reduces the memory requirement naturally. Moreover, in both KeyGen and Verify
there are no polynomials for which it makes sense to precompute the NTT representation to speed-
up the algorithms. This makes both algorithms significantly more lightweight in terms of memory
compared to the signature generation, even without any further optimizations.

It is common that the key generation algorithm is executed on the same device where one
performs the signature generation algorithm. Therefore, we do not attempt to reduce the memory
footprint of KeyGen to the maximum extent, but instead try and minimize the memory footprint
of max(KeyGen, Sign). In other words, we optimize the memory use of KeyGen, until it is at least
as low as the memory use of Sign which we try to optimize as much as possible.

4.1 Key Generation

When following the same strategy for computing the multiplication A · s1 in the key generation
algorithm as in the signing algorithm one can already remove the need for ℓ different memory
slots for polynomials. Using this optimization in combination with careful scheduling the other
memory (see Fig. 2) already means that all variables used in KeyGen use less memory than the
signature generation algorithm. Hence, there is no reason to sacrifice any performance to optimize
the KeyGen algorithm further.

Let us outline some memory improvements for the interested reader who has requirements to
reduce the memory even further. One path comes from the observation that one can transpose the
order in which the multiplication in t = As1 + s2 is performed. Recall that in the Sign algorithm,
the lifetime of c overlaps with the lifetimes of all elements in w (where w is the output of the
matrix-vector multiplication) which limits the potential to reduce memory. However, in the KeyGen
algorithm there is no (equivalent to) c, i.e., there is no variable that causes the lifetimes of the
elements in t to overlap. Hence, the elements in t do not have to be alive at the same time and
can be computed in a streaming fashion. With this optimization one can reduce the memory by
(k − 1) KiB, saving {3.0, 4.5, 6.0} for Dilithium-{2,3,5}, respectively.
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| 64←→| | 64←→| | k·768←−−→| | 1024←−→| | 208←−−−−−−−−→| | 68←→|
µ H(tr∥M) µ := H(tr∥M)

ρ′ H(K∥µ) ρ′ := H(K∥µ)
ŵ ŵ := 0

yi ExpandMask yi := ExpandMask(ρ′, κ)
ŷi ExpandA ŷi := NTT(yi)
ŵi ŵj := ŵj + Âj,i ◦ ŷi for 0 ≤ j < k

w wi wi := NTT−1(ŵi)

w1,i w1,i := Highbits(wi)

▷ store packed w1 in output buffer
H(µ∥w1) c̃ := H(µ∥w1) ▷ write c̃ to signature

SampleInBall c c := SampleInBall(c̃)
c s1,i ▷ make 16-bit c and s1,i polynomials
ĉ ŝ1,i ĉ := NTTq′(c); ŝ1,i = NTTq′(s1,i)

T̂0 T̂0 := ĉ ◦ ŝ1,i
T0 T0 := NTT−1

q′ (T̂0)

zi ExpandMask ▷ sample (using ExpandMask) and
and add yi on-the-fly

zi := T0 + yi

check ∥zi∥∞ < γ1 − β

write zi to signature
c s2,i ▷ make 16-bit c and s2,i polynomials
ĉ ŝ2,i ĉ := NTTq′(c); ŝ2,i = NTTq′(s2,i)

T̂1 T̂1 := ĉ ◦ ŝ2,i
T1 T1 := NTT−1

q′ (T̂1)

check ∥LowBitsq(wi − T1, 2γ2)∥∞ < γ2 − β

w − cs2 wi − cs2,i := wi − T1

T2 T2 := c · t0,i ▷ schoolbook multiplication
check ∥T2∥∞ < γ2

hi hi := MakeHint(−T2, wi − cs2,i + T2, 2γ2)

write hi to output

0≤i<ℓ

0≤i<ℓ

0≤i<k

0≤i<k

0≤i<k

reject:

Fig. 1. Memory allocation of the Dilithium signature generation algorithm. Horizontal direction shows
the memory slots that are used. Vertical direction shows the progression in time. The boxes indicate the
lifetimes of the variables used in the algorithm. Dotted barriers denote that a variable is renamed, i.e., it
is modified in-place. Arrows in the algorithm indicate loops that iterate over some range, except for the
loop annotated by reject:, which indicates which code is repeated when a signature in the Sign algorithm
is aborted. All temporary values are denoted by a T .

4.2 Signature Verification

In the setting of the Dilithium signature verification algorithm we are interested in minimizing the
memory usage as much as possible. There are many embedded applications that only use signature
verification: e.g., secure boot implementations or in the case of public-key infrastructures.

The optimizations one can apply to the signature verification algorithm follow the same pattern
as those of Sign and KeyGen. In particular, it is possible to verify any signature using only two
slots for storing polynomials, of which one is 1.0 KiB and one is 768 bytes, using the optimizations
from Section 4.1. Apart from the 1.75 KiB for storing two polynomials, one still need twice the
space for storing the SHA-3 state (208 bytes) plus one compressed challenge polynomial c (68
bytes). This sums up to a minimum of 2276 bytes of required memory for such an approach in
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| 64←→| | k·768←−−→| | 1024←−→| | 208←−−−−→|
ρ′ H(S) ρ, ρ′,K := H(ζ) ▷ write ρ,K to output

t̂ t̂ := 0

s1,i ExpandS1 s1,i = ExpandS1(ρ
′, i)

write s1,i to output
ŝ1,i ŝ1,i := NTT(s1,i)
t̂j ExpandA t̂j := t̂j + Âj,i ◦ ŝ1,i for 0 ≤ j < k

t t̂i ti := NTT−1(t̂i)

s2,i ExpandS2 s2,i := ExpandS2(ρ
′, i)

t ti := ti + s2,i

t1,i (t1,i,_) := Power2Roundq(ti, d)

write t1,i to output
t0,i (_, t0,i) := Power2Roundq(ti, d)

write t0,i to output
H(ρ∥t1) tr := H(ρ∥t1) ▷ write tr to output

0≤i<ℓ

0≤i<k

Fig. 2. Memory allocation of the Dilithium key generation algorithm. Horizontal direction shows the
memory slots that are used. Vertical direction shows the progression in time. The boxes indicate the
lifetimes of the variables used in the algorithm. Dotted barriers denote that a variable is renamed, i.e., it
is modified in-place. Arrows in the algorithm indicate loops that iterate over some range.

the Dilithium verification algorithm. In contrast to the KeyGen and Sign algorithms, the memory
usage of the Verify algorithm is independent from any of the Dilithium parameters.

5 Results & Discussion

Our implementation. Using the Dilithium reference implementation3 as a starting point, we wrote
a new implementation for Dilithium, in which we applied the techniques described in Sections 3
and 4. Because we are only interested in validating the memory reduction techniques and not
focused on performance we have opted to write a cross-platform implementation in pure C. Cor-
respondingly, our implementation does not include any architecture-specific optimizations.

Our implementation introduces many new internal data types that are optimized for a lower
memory footprint: like compressed polynomials (with 24-bit coefficients and 16-bit coefficients)
and the compressed challenge. We implemented the q′ ∈ {257, 769} NTTs for c · s1 and c · s2
multiplications, and we implemented the schoolbook multiplication for the c ·t0 and c ·t1 multipli-
cations. We improved the implementation such that parts can be called in a streaming fashion. For
example, the matrix-vector multiplication and ExpandA routines have been merged into a single
non-buffering function; and almost all packing/unpacking functions have been refactored to allow
for (un)packing polynomials in small chunks. Because of the tight memory budget we have removed
some local stack allocations from all internal Dilithium routines. Instead, one memory block is al-
located on the stack in the root functions (i.e., dilithium_keygen, dilithium_signature, and
dilithium_verify) and passed to the internal functions.

As opposed to the previous works that only support a single Dilithium variant at a time,
selected using C preprocessor macros at compile time, our implementation integrates all variants
at the same time, and the variant is selected by the user at runtime as in typical in cryptographic
software libraries.

Results. We integrated our implementation into a local fork of the benchmarking framework
pqm4 [9].4 We compared the memory footprint and the execution times of our implementation to
3 https://github.com/pq-crystals/dilithium
4 Commit hash e47864b3, forked on 8 Oct 2021.

https://github.com/pq-crystals/dilithium
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| 768←−→| | 1024←−→| | 208←−−−−→| | 208←−−−−→| | 68←→|
tr H(ρ∥t1) tr := H(ρ∥t1)
µ H(tr∥M) µ := H(tr∥M)

SampleInBall c c := SampleInBall(c̃)
H(µ∥w′

1) absorb µ into H(µ∥w′
1)

ŵ′
i ŵ′

i := 0

zj read zj from signature
check ∥zj∥∞ < γ1 − β

ẑj ẑj := NTT(zj)
ExpandA ŵ′

1,i := ŵ′
1,i + Âi,j ◦ zj

w′
i w′

i w′
i := NTT−1(ŵ′

i)

T T := c · t1,i · 2d ▷ schoolbook multiplication
w′

i := w′
i − T

h unpack hints from signature into h

check PopCount(h) ≤ ω

w′
1,i w′

1,i := UseHintq(h,w′
i, 2γ2)

absorb w′
1,i into H(µ∥w′

1)

c̃′ c̃′ := H(µ∥w′
1)

check c̃ = c̃′

0≤j<ℓ

0≤i<k

Fig. 3. Memory allocation of the Dilithium signature verification algorithm. Horizontal direction shows
the memory slots that are used. Vertical direction shows the progression in time. The boxes indicate the
lifetimes of the variables used in the algorithm. Dotted barriers denote that a variable is renamed, i.e., it
is modified in-place. Arrows in the algorithm indicate loops that iterate over some range. All temporary
values are denoted by a T .

those of the Dilithium implementation in PQClean [11], the Dilithium-round-3 updated port of
[7] in pqm4, and the recent implementation results from [1].5

It should be noted that all of these implementations have different goals and implementa-
tion methods, so evaluating the benchmarking results is not as straightforward as just comparing
performance numbers. Firstly, the PQClean implementation has been published as a “clean” im-
plementation of Dilithium. Its main goal is to provide an implementation of Dilithium, written
purely in C, that works cross-platform and follows best coding practices. It has been written with
performance in mind and ensures a running time independent of secret-key related material. How-
ever, it does not include any platform-optimized assembly code which has the potential to greatly
improve the performance. On the other side, there are the pqm4 ([7]) and [1] implementations.
These implementations are specifically hand-crafted for the ARM Cortex-M4 platform and are
highly optimized for performance (i.e., reducing the number of required cycles) and large parts of
these implementations are written in Armv7 assembly. Some attention is paid to reducing memory
in “Strategy 3” from [7]; unfortunately it is hard to compare directly since the paper presents
numbers for the round-2 parameters of Dilithium which are significantly different compared to the
latest (Round 3) ones. As an indication, the round-2 Dilithium-3 memory usage of signature veri-
fication and generation using this strategy are in both settings 10 KiB: significantly less compared
to previous work but still too large for the embedded devices we target in this paper.

Our implementation is designed with a different goal in mind: it is a cross-platform C imple-
mentation that optimizes in the first place for memory usage to ensure it can execute on memory
constrained (≤ 8KiB) platforms. It makes a significant amount of sacrifices in terms of perfor-
mance and does not contain any routines that are specially optimized for the Cortex-M4 (the
techniques presented in this paper are platform independent). Therefore we expect the pqm4 im-

5 As of early 2022, this implementation has replaced the port of [7] in pqm4.
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Table 2. Memory usage and cycle counts for Dilithium in kibibytes (KiB)
and kilocycles (kcc). K, S, and V correspond to the signing primitives Key-
Gen, Sign, and Verify respectively. All cycle counts were averaged over 10 000
iterations.

variant
Dilithium-2 Dilithium-3 Dilithium-5
KiB kcc KiB kcc KiB kcc

total ≤ 8 total ≤ 8 total ≤ 8

[7] (pqm4)
K 37.1 1 602 59.6 2 835 95.7 4 835
S 47.9 4 219 72.3 6 742 112.3 8 960

with V 35.2 1 579 56.6 2 700 90.8 4 718
asm

[1]
K 37.1 1 598 59.6 2 830 95.7 4 828
S 47.9 4 083 67.4 6 624 113.3 8 726
V 35.2 1 572 56.6 2 692 90.8 4 707

PQClean
K 37.4 2 025 59.4 3 504 –a –a

S 50.7 8 034 77.7 12 987 –a –a

C V 35.4 2 223 56.4 3 666 –a –a

only
This work

K 4.9 ✓ 2 927 6.4 ✓ 5 112 7.9 ✓ 8 609
S 5.0 ✓ 18 470 6.5 ✓ 36 303 8.1 44 332
V 2.7 ✓ 4 036 2.7 ✓ 7 249 2.7 ✓ 12 616

a Implementation disabled because the device does not have enough RAM
to support it.

plementation from [7] and the implementation from [1] to outperform our implementation on the
Cortex-M4: we use a slower approach and a generic implementation. In order to assess the impact
of the proposed techniques we remove the optimized assembly implementation from the equation
and compare to the generic PQClean implementation. We include the performance figures of the
other implementations for the sake of completeness.

An overview of the results is provided in Tables 2. The testing platform that we used is the
STM32F4 Discovery board, which is based on the STM32F407 microcontroller. Our implementa-
tion was benchmarked using the pqm4 framework. To obtain the cycle counts we measured 10 000
executions and computed the average. The results for the pqm4 ([7]) and [1] implementations are
based on the results listed in [1].

The pqm4 method for measuring a scheme’s memory usage is to first fill the stack with dummy
values, then run the algorithm, and count how many dummy values were overwritten. The speed
of the scheme is measured by measuring how much the SysTick timer has advanced while running
the algorithm. The SysTick timer is clocked with the same frequency as the CPU, so this gives us
the algorithm’s latency in number of cycles (cc). In order to eliminate the influence of the chip’s
flash latency on the benchmarking results, the STM32F4 chip is clocked at 24 MHz, and the flash
wait-states are set to zero. The code was compiled using GCC version 9.2.1,6 with optimization
level -Os.

In Table 3 we have listed the code sizes for all the implementations that we compare in Ta-
ble 2. We have measured these code sizes using the same settings as for the memory/performance
measurements. Because the [7] pqm4 and the [1] implementations are optimized for speed, we have
listed their code sizes for the optimization levels -O3 and -Os. In these metrics, the contribution
of symmetric primitives—e.g., the size of the SHAKE code—has been excluded.

Discussion. The memory footprints reported in Table 2 for the presented techniques are close to
the lower bounds provided earlier. The discrepancy in memory use is around 0.4 KiB of memory for
all algorithms. The largest contributor to this additional memory use is the execution of SHAKE.

6 arm-none-eabi-gcc (15:9-2019-q4-0ubuntu1) 9.2.1 20191025 (release) [ARM/arm-9-branch
revision 277599]
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Table 3. Code sizes of the implementations from Table 2 expressed
in bytes. Opt-level denotes the optimization level that was used.
Contribution of Keccak and AES code is excluded from all imple-
mentations.

implementation opt-level Dilithium-2 Dilithium-3 Dilithium-5
[7] (pqm4) -O3 10 564 10 092 –a

[1] -O3 18 448 19 916 18 262
[7] (pqm4) -Os 9 700 9 276 –a

[1] -Os 17 408 19 012 17 234
PQClean -Os 6 986 6 534 –b

This work -Os 10 091c 10 091c 10 091c

a Not reported by pqm4.
b Implementation disabled because the device does not have enough
RAM to support it.
c Implementation includes support for all Dilithium variants.

The SHAKE code, which has been unadapted from the Dilithium reference implementation uses
around 300 bytes of stack. The last 100 bytes are found in call-tree information and temporary
buffers used during the packing and unpacking of polynomials into bit-arrays.

Table 2 clearly shows that the proposed techniques pay off. The states of both Dilithium-2 and
Dilithium-3 for signature generation, verification and key generation easily fit into 8 KiB. It should
be noted that none of the other high-speed implementations can execute on devices even with 32
KiB of memory. The amount of headroom arguably allows for plenty of other tasks to run on the
device; 3.0 KiB in the case of Dilithium-2 and 1.4 KiB for Dilithium-3. The memory footprint of
Dilithium-5 signing just exceeds 8 KiB. For Verify, the memory footprint is reduced to 2.7 KiB.

This is of course only half of the story. The memory reduction techniques have a clear impact
on the performance of the scheme. When comparing cycle counts to those of the PQClean im-
plementation (which is the implementation most similar to ours), one observes a factor 2.3 – 2.8
slowdown for Sign and a factor 1.8 – 2.0 slowdown for Verify. For both algorithms, the difference in
performance is due to the overhead from the (24-bit) bit-packing operations in the matrix-vector
multiplication, and the slower schoolbook method for multiplying ct0. For Dilithium-3 signing there
is some additional overhead, because the q′ = 769 NTTs are somewhat slower than the q′ = 257
NTTs in the other variants.

Optimization efforts from [7] and [1] have lead to a 43% – 44% reduction of cycles in Sign
compared to the PQClean implementation. Similarly, one can expect that future performance
enhancements will be able to improve the performance of our implementation of the memory
reduction techniques as well. Depending on the platform, integrating more optimized assembly
implementations for SHAKE, (inverse) NTT, and challenge multiplication could result in signif-
icant performance gains. In particular, many of the values in the challenge multiplication are 8
bits, This is suitable for parallel computation using SIMD instructions, which are not used in our
C-implementation.

More importantly, many of the memory constrained devices come equipped with dedicated
cryptographic coprocessors for symmetric primitives (such as SHAKE) as well as for big-number
arithmetic. When one is able to make use of these coprocessors, the execution times could be
reduced drastically: especially because SHAKE remains a dominating component of the Dilithium
execution time as well as the polynomial multiplication [3].

Although the reduction of the run-time state has a big impact on the execution speed of the
algorithm, we see from the results in Table 3 that this is not the case for the code size. The code
for our new implementation is slightly bigger than the PQClean code, but about the same size as
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the optimized implementations.7 Moreover, we must take into account that our implementation
supports all variants of Dilithium at the same time, so a slight increase is actually expected.

6 Conclusion

Although there is considerable performance impact when implementing Dilithium in a low-memory
environment, we have shown that such low-memory Dilithium implementations are feasible in prac-
tice. In particular, we broke the 8 KiB memory barrier for Dilithium-2 and Dilithium-3. Dilithium-5
uses a little bit more memory than 8 KiB but we have shown that there are still time-memory
tradeoffs that can be applied, even though these tradeoffs are relatively expensive in terms of
performance.

When earlier work (like [24]) was published, it was not clear whether Dilithium was a scheme
that could even be considered for memory constrained devices. Then [7] showed that the Dilithium
algorithms could reasonably fit into 16 KiB of memory. In this paper, we show that most variants
of Dilithium can even fit into 8 KiB without a very drastic impact on performance. More so, we
reduced the memory footprint for Dilithium verification below 3 KiB. For memory-constrained
devices, storing Dilithium’s public keys and signatures has arguably become a bigger challenge
than storing its run-time state.
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