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Abstract

We present new semi-honest and malicious secure PSI protocols that outperform all prior
works by several times in both communication and running time. Our semi-honest protocol
for n = 220 can be performed in 0.37 seconds compared to the previous best of 2 seconds
(Kolesnikov et al., CCS 2016 ). This can be further reduced to 0.16 seconds with 4 threads.
Similarly, our protocol sends 187n bits compared to 426n bits of the next most communication-
efficient protocol (Rindal et al., Eurocrypt 2021 ). Additionally, we apply our new techniques to
the circuit PSI protocol of Rindal et al. and observe a 6× improvement in running time. These
performance results are obtained by two types of improvements.

The first is an optimization to the protocol of Rindal et al. to utilize sub-field vector obliv-
ious linear evaluation. This optimization allows our construction to be the first to achieve a
communication complexity of O(nλ + n log n) where λ is the statistical security parameter. In
particular, the communication overhead of our protocol does not scale with the computational
security parameter times n.

Our second improvement is to the OKVS data structure which our protocol crucially relies
on. In particular, our construction improves both the computation and communication effi-
ciency as compared to prior work (Garimella et al., Crypto 2021 ). These improvements stem
from algorithmic changes to the data structure along with new techniques for obtaining both
asymptotic and tight concrete bounds on its failure probability. This in turn allows for a highly
optimized parameter selection and thereby better performance. 1

1 Introduction

Private-Set Intersection. In this work, we present new improvements for efficiently performing
private set intersection (PSI). Here, two mutually distrusting parties, each hold a set of values
X,Y respectively and wish to learn the intersection between their sets X ∩ Y without revealing
any additional information. In particular, the first party (receiver) with set X should not learn
anything about X \ Y beyond the size of Y . Similarly, the second party (sender) should only learn
the size of X.

PSI dates back to the 1980s [Mea86] and was initially based on OPRFs/Diffie–Hellman. In
fact, several modern protocols [CT10, IKN+20, BKM+20] are still based on the protocol of [Mea86].
With the invention of oblivious transfer extension [IKNP03], research into a new protocol family was
initiated by Schneider et al. [PSSZ15] along with many derivatives [PSZ14, KKRT16, RR17, OOS17,
PRTY19]. These protocols offer improved efficiency at the expense of increased communication.

1The authors grant IACR a non-exclusive and irrevocable license to distribute the article under the
https://creativecommons.org/licenses/by-nc/3.0/
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However, with the advent of [PRTY20] and the closely related protocols of [RS21, GPR+21],
the situation has begun to change. [PRTY20] introduced a new data structure called an OKVS
which offers a very convenient way to represent the sets X and Y . [PRTY20] went on to combine
their OKVS and the PSI protocol of [PRTY19] to obtain one of the most efficient PSI protocols of
their time. Shortly after, [RS21] was able to observe that the OKVS data structure can be more
efficiently combined with vector oblivious linear evaluation (VOLE)[BCG+19, CRR21] to obtain
an even more efficient PSI protocol. Concurrently, [GPR+21] proposed an improvement to OKVS
which allowed for an improved communication overhead of the [PRTY20] PSI protocol. Despite
all these advances, the non-OKVS based protocol of [KKRT16] remains the most computationally
efficient while [RS21] is the most communication efficient, and [GPR+21] is a compromise between
the two.

We make the observation that recent improvements to VOLE [CRR21] and OKVS [GPR+21]
can be applied to [RS21]. While this does further reduce the communication complexity of [RS21],
the running time of the protocol remains slower than [KKRT16] due to the computational overhead
of the [GPR+21] OKVS data structure. We will present significant improvements to the OKVS of
[PRTY20, GPR+21] along with new techniques for further reducing the communication overhead
of [RS21].

We further note that our improvements also translate to several other PSI related functionalities.
One of the most important is circuit PSI[HEK12, PRTY19, RS21]. The functionality is similar to
normal PSI except the output is secret shared between the parties. This can be particularly
useful when additional encrypted computation needs to be performed on the intersection before
revealing it, e.g. compute the cardinality or the sum of associated values[IKN+20]. We apply
our new techniques to this protocol and observe a 6.8× and 2.3× reduction in running time and
communication for set size of a million.

Other functionalities include the multi-party PSI protocol of [NTY21] makes use of both OKVS
and a primitive known as an OPRF/OPPRF which can utilize our improvements. We leave the
application of our work to this protocol and many others as future work.

Oblivious Key-Value Stores. The aforementioned data structure known as an Oblivious Key-
Value Stores (OKVS) consists of algorithms Encode and Decode. Encode takes a list of key-value
pairs (k, v) ∈ L as input and returns an abstract data structure P which encodes L. Decode takes
such a data structure and a key k′ as input, and gives some output v′. Decode can be called on any
key, but if it is called on some k′ that was used to generate P , then the result is the corresponding
v′. An OKVS scheme is said to be linear if for any k, Decode(P, k) can be expressed as a linear
combination of P , i.e. Decode(P, ki) = 〈P, row(ki)〉 = vi where row is some public function. In this
work we restrict ourselves to linear OKVS schemes.

In PaXoS [PRTY20], n items are encoded into a vector ~P of length m = 2.4n. This scheme is
parameterized by row : {0, 1}∗ → R with R ⊂ {0, 1}m containing only weight 2 vectors. Decoding
of a key k is therefore the sum Pi + Pj = 〈~P , row(k)〉 where row(k) is 1 at positions i, j. Encoding
is performed using a graph traversal of the cuckoo graph implied by the n keys and row.

However, with high probability this process will fail to encode a small subset of the input.
The size of this subset is known to be at most O(log n). PaXoS solves this issue by changing the
distribution of row such that it outputs a uniformly random weight 2 vector of length 2.4n followed
by O(log n) + λ randomly sampled bits, i.e. m = 2.4n +O(log n) + λ. Intuitively, this allows the
encoder solve to the system of equations corresponding to these last O(log n) vertices using the last
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O(log n) + λ random bits while all the other vertices are solved using the graph algorithm above.
[GPR+21] proposed generalizing the above construction to have the main part of row(k) output

weight 3 vectors as opposed to weight 2. [GPR+21] proposes that m can be reduced to m = 1.3n+
O(log n) +λ which is a reduction of almost 2×. However, they were unable to prove the security of
their construction for practical security levels. Instead they empirically show that their construction
fails with small but noticeable probability and then provable amplify the failure probability to
be negligible using a recursive amplification technique. Unfortunately, this amplification further
increases the running time and compactness m.

We refer to [RS21] for more related work on PSI and [GPR+21] for additional details on prior
OKVS schemes.

1.1 Our Contributions

In this work, we propose an improved OKVS construction and use it, along with subfield-VOLE,
as a building block in order to obtain the fastest and most communication efficient PSI protocols
to date.

• We put forth a framework to both theoretically and concretely understand failure probabilities
associated with the randomized OKVS construction based on cuckoo hashing.

• In the range of parameters/distribution we work in, our OKVS encoder is “optimal” with
overwhelming probability.

• Equipped with the understanding from above, we derive OKVS constructions that consider-
ably out perform the state of the art in terms of compactness and running time.

• Our OKVS includes several optimization over prior art, including reducing the total row
weight by ∼ 10×, GF (128) dense columns, no recursive structure, and clustering.

• We obtain the most efficient PSI protocol to date by employing our improved OKVS in
addition to a new optimization we introduce to the OPRF/PSI construction put forth in
[RS21]. These improvements enable our construction to perform a PSI of n = 220 items in
0.37 and 0.16 seconds in the single and multi threaded settings, respective. On the same
hardware, the previous fastest protocol required 2 seconds, a 5× improvement, and requires
more communication.

• We further optimize the protocol for the low communication setting using subfield-VOLE.
We achieve the lowest communication complexity to date, performing a PSI of n items with
O(nλ + n log n) bits of communication, where λ is the statistical security parameter. This
protocol remains highly efficient in terms of running time. A PSI with n = 220 can be
performed with just 180n bits of communications compared to the previous best[RS21] of
426n.

• Finally, we apply our new OKVS construction to the circuit PSI protocol of [PRTY19, RS21]
and observe a 1.5× and 23× improvement for running time and communication.
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1.2 Overview

In Section 2 we detail our new OKVS scheme. Encode({(k1, v2), ..., (kn, vn)}) takes as input a
set of key-value pairs. The algorithm constructs a matrix H based on the values of the keys
k1, ..., kn, where the ith row Hi = row(ki) for some function row. The output is a vector ~P such
that H ~P = (v1, ..., vn), i.e. 〈row(ki), ~P 〉 = vi. This is achieved by efficiently placing H into lower
triangular (aka reduced row-echelon) form. Crucially, our linear time algorithm for triangulating H
only permutes the rows and columns of H plus a small amount of additional work, and therefore
H remains sparse. Once in this form, ~P can be computed using the standard back substitution
algorithm. We also present several optimizations to the distribution of H which makes this process
much more efficient.

In Section 3 we prove that our technique for placing H in lower triangular form is asymptotically
optimal. We then translate these asymptotically results into concrete and tight parameters for our
constructions using a combination of empirical and analytical methods. Unlike some prior works,
our construction directly scales to any security level and works for a wide range of parameters
which can be tuned in an application specific manner.

In Section 4 we present how to apply our OKVS scheme to the PSI protocol of [RS21]. From a
technical perspective, this application is relatively straight forward. However, it immediately gives
a large running time and communication improvement over prior art. This construction achieves
both semi-honest and malicious security.

We then present an optimization that further reduces the communication overhead of our PSI
protocol in the semi-honest setting. Intuitively, the PSI protocol works by first having the receiver
construct an OKVS ~P ∈ Fm such that Decode(~P , x) = x for each x in their set X. The parties
generate a VOLE correlation where the PSI sender holds ∆ ∈ F, ~B ∈ Fm and the receiver holds
~C ∈ Fm such that ~C − ~B = ∆~P and therefore, since the OKVS is linear, we have

Decode(~C, x)− Decode( ~B, x) = ∆x

for x ∈ X. The sender can encode their elements y ∈ Y as F (y) = Decode( ~B, y) −∆y which will
equal F (x) = Decode(~C, x) for y = x ∈ X. The PSI protocol completes by having the sender send
Y ′ = {F (y) | y ∈ Y } to the receiver who intersects it with X ′ = {F (x) | x ∈ X} and thereby infers
the intersection X ∩ Y .

The original protocol requires all of this computation to be over a field F of size O(2κ). In
addition, to construct the VOLE correlation for the chosen vector ~P requires |~P | communication.
We present optimizations that allow the VOLE correlation to remain over the field F (for security)
while reducing the size of ~P to be (λ + log n)m = O(nλ + n log n). In particular, we make use of
subfield-VOLE.

1.3 Notation

We use κ as the computational security parameter and λ for statistical security. [a, b] denotes the
set a, a+ 1, . . . , b and [b] is shorthand for [1, b]. We denote row vectors ~A = (a1, . . . , an) using the
arrow notation while the elements are indexed without it. A set S = {s1, . . . , sn} will use similar
notation. For a matrix M , we use ~Mi to denote its ith row vector, and Mi,j for the element at row

i and column j. 〈 ~A, ~B〉 denotes the inner product of ~A, ~B. We use = to denote the statement that
the values are equal. Assignment is denoted as := and for some set S, the notation s ← S means
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that s is assigned a uniformly random element from S. If a function F is deterministic then we
write y := F (x) while if F is randomized we use y ← F (x) to denote y := F (x; r) for r ← {0, 1}∗.

2 Our OKVS Construction

We begin by describing our core OKVS construction which maps a set of key-value pairs {(k1, v1), ..., (kn, vn)}
to a vector ~P ∈ Fm. The full description of the construction can be found in Figure 1 and definitions
in Section A.1.

Our algorithm begins by sampling an instance key r ← {0, 1}κ. Let us define row(k, r) :=
row′(k, r)|| ˆrow(k, r) ∈ Fm where row′(k, r) ∈ {0, 1}m′ outputs a uniformly random (sparse) weight
w vector. In practice we will set m′ ≈ 1.23n. ˆrow(k, r) ∈ Fm̂ outputs a short dense vector. The
exact distribution of ˆrow will vary and is discussed below. m̂ can be thought of as a small constant.
Next, a matrix H is defined as

H :=

row(k1, r)
...

row(kn, r)

 ∈ Fn×m.

The algorithm will output ~P ∈ Fm such that H ~P = (v1, ..., vn).
The first step is to perform triangulation. This permutes the rows and columns of H by πr, πc

respectively. In particular, it defines two permutation matrices πr ∈ {0, 1}n×n, πc ∈ {0, 1}m×m. Let
T correspond to applying the permutations to H.

T := πr ·H · πc =

[
A B C
D E F

]
.

Ideally, T will be lower triangular, i.e. reduced row-echelon form. However, we will show that most
of the time this is impossible to achieve using only permutations2. Instead, these permutations will
have the structure that T can be decomposed into A, ..., F such that F ∈ {0, 1}δ×δ is a large lower
triangular matrix where δ = n− g ≈ n. g � n is referred to as the gap and is the number of rows
that could not be triangulated. The idea is that we can then perform back-substitution on F to
encode δ ≈ n of the inputs. The remaining g inputs are encoded using a different mechanism in
O(g2) time.

In more detail, F ∈ {0, 1}δ×δ is lower triangular where δ := n−g ≈ n. B ∈ Fg×m̂, E will consist
of the dense columns generated by ˆrow. Our triangulation algorithm will aim to minimize the g
subject to F being lower triangular. The next phase computes

T ′ :=

[
I −CF−1
0 I

]
· T =

[
A′ B′ 0
D E F

]
where A′ := −CF−1D+A,B′ := −CF−1E+B. For some Q, let B∗ := QB′ be the (lower) reduced
row echelon form of B′. If B∗ does not have full row rank, e.g. g > m̂, the algorithm aborts.
Otherwise, let

T ∗ :=

[
Q 0
0 I

]
· T ′ =

[
A∗ B∗ 0
D E F

]
2One can always triangulate H using Gaussian elimination, but this would increase the density of H and make

back-substitution inefficient.
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where both B∗, F are lower triangular with ones on their diagonal. We can apply the same row
permutation to V := (v1, ..., vn):

V ∗ :=

[
Q −QCF−1
0 I

]
· πr · V

Since all of T ∗ is lower triangular, we can compute

T ∗ · P ∗ = V ∗ ⇒ P ∗ = T ∗−1 · V ∗

in linear time using back-substitution by solving one row at a time in a top down manner. Finally,
the algorithm output P := P ∗ · (πc−1)ᵀ.

The running time of this algorithm is O(g2 + m) plus the time required to compute the πr, πc

permutations. Therefore, the efficiency of this algorithm depends on the triangularization phase
minimizing g. Moreover, the algorithm aborts if B∗ (equivalently B′) does not have full row rank
(i.e. the rows of B∗ are linearly dependent). We note that in step 5 of Figure 1 refers to an
DOKVS. This optional step is required for our Circuit PSI protocol but not the PSI protocols. See
Section A.2 for details.

Triangulation Our triangulation algorithm runs in time O(m). We prove that this algorithm is
optimal for the case of g = 0 and [near] optimal with overwhelming probability for the small values
of g which we will be concerned about.

The algorithm takes as input the matrix H and outputs a row & column permutation πr, πc.
These permutations are chosen such that πr ·H ·πc is in g-approximate lower triangular form, where
all but g rows are triangular. Begin by initializing H ′ ∈ {0, 1}n×m′ as the sparse part of H, i.e.
the first m′ columns. The algorithm will iteratively remove rows and columns from H ′ and insert
them into

[
A C // D F

]
where A,C,D, F are initially size zero.

The matrix F will have the invariant that it is lower triangular and at iteration i, F ∈ {0, 1}i×i.
For a typical iteration, there will exist some column of H ′ that has hamming weight one. Let the
one in this column be located at H ′r,c, i.e. row r and column c of H ′. The idea is that we will

remove (set to zero) this row from H ′ and add a permuted version of it to the matrix
[
A C // D F

]
such that H ′r,c is mapped to F1,1. In this way the size of F grows by one. It is not hard to verify
that F remains lower triangular.

However, in some situations no weight one columns will exist in H ′. In this case we will select
the lowest non-zero weight column of H ′. One of these non-zero rows will be added to F as before
while all other non-zero rows are permuted such that they are added to C in an arbitrary order.
Triangulation is complete when all rows have been removed from H ′. πr, πc are defined as the
permutations implicit in the transformation above, with the addition that the dense columns of H
are mapped to be in between A//D and C//F .

In Section 3.3 we prove that this algorithm is optimal for g = 0 and performs well for small g.
Section 3.2 shows that the general case for g = O(n) is likely intractable to solve optimally. For our
construction this turns out to not be an issue due to g being small with overwhelming probability,
e.g. g < 4, as shown in Section 3.

We note that in the special case that we do have an upper bound ĝ on g, it is possible to
optimally triangulate H. At a high level, one would simply try all possible ways of placing H in
≤ ĝ-approximate lower triangular form as described above by trying all possible sets of at most ĝ
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Parameters: Statistical and computational security parameters λ, κ respectively. Input length n with
elements (zi, vi) ∈ Z × V, a finite field F, a finite group G. For some m′ = O(n), m̂ = O(λ), let the output
length be m = m′ + m̂.

Encode ((z1, v1), ..., (zn, vn); r) :

1. [Sample] Let row′ : Z×{0, 1}κ → Sw and ˆrow : Z{0, 1}κ → Fm̂ be random functions where Sw ⊂ {0, 1}m
′

is the set of all weight w strings. Let row(z, r) := row′(z, r)|| ˆrow(z, r) and define

H :=

row(z1, r)
...

row(zn, r)

 ∈ Fn×m

2. [Triangulate] Let H ′ := H,J := ∅. While H ′ has rows:

(a) Select j ∈ [m] such that the jth (sparse) column of H ′ has the minimum non-zero weight.

(b) Append index j to the ordered list J . Remove all rows i ∈ [n] from H ′ for which H ′i,j 6= 0.

Define δ := |J |, the gap as g := n − δ, permutation matrices πr ∈ {0, 1}n×n, πc ∈ {0, 1}m×m such that
πc
m−k,m−δ−k = 1 for k ∈ [0, m̂), πc

Ji,m+1−i = 1 and πr
n+1−i,i′ = 1 for some i′ where Hi′,Ji 6= 0 and all

i ∈ [δ]. Let

T := πr ·H · πc =

[
A B C
D E F

]
.

where F ∈ {0, 1}δ×δ is lower triangular, B ∈ Fg×m̂, E ∈ Fδ×m̂ are the dense columns.

3. [Zero-C] Compute T ′ :=

[
I −CF−1
0 I

]
· T =

[
A′ B′ 0
D E F

]
4. [Solve-Dense] If B′ doesn’t have full row rank, return ⊥. Let B∗ := QB′ be the (lower) reduced row

echelon form of B′, and

T ∗ :=

[
Q 0
0 I

]
· T ′ =

[
A∗ B∗ 0
D E F

]
, v∗ :=

[
Q −QCF−1
0 I

]
· πr · v

5. [Optional: DOKVS] If a doubly oblivious key value store is required, set T ∗ :=
[
I // T ∗

]
∈ Fm×m and

v∗ := r′||v∗ ∈ Fm where r′ ← Fm−n, I is the identity matrix with dimension (n−m)×m.

6. [Back-substitution] Compute ~P ∗ := T ∗−1 · v∗ via back-substitution and return ~P := ~P ∗πc−1.

Decode (~P , z, r) : Return 〈row(z, r), ~P 〉.

Figure 1: OKVS scheme.
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rows of H being made part of the gap. However, näıvely, the complexity of this operation would
be O(nĝ). We can do much better than this. As we shall see later, one need only try all possible
sets of at most ĝ rows of the so-called 2-core of GH (GH is a hypergraph defined by H), something
we will define later in Section 3. This modified triangulation algorithm is described in Figure 10.
Let h2 denote the size of the 2-core of GH . Then, the complexity of the modified triangulation
step would be O(m + hĝ2). As we will describe in Section 3, in the parameter regime we consider,
ĝ = O(1) and h2 ≤ c · ĝ with overwhelming probability for c = O(1). In fact, empirically, c ≈ 2 with
overwhelming probability and ĝ is a small constant (for instance, between 2 and 5). The proofs of
all of the above facts and the optimality of the modified triangulation can be found in Section 3.

Full row rank of B′ A key requirement of our algorithm is that B′ contains an invertible
submatrix of size g. A trivial requirement for this is that m′, the number of columns contained
in B′, is greater than or equal to g. This is ensured by upper bounding g as ĝ and setting m′

accordingly. However, it is still possible that B′ does not have full row rank even if m′ ≥ ĝ. The
key factors that determine this are the distribution of ˆrow and how large m′− g is. We present two
techniques for ensuring that B′ has full row rank with overwhelming probability.

Binary ˆrow. The first technique was directly inspired by [PRTY20]. Given the upper bound
ĝ on the gap size g, ˆrow is defined as a uniform function ˆrow : {0, 1}∗ → Fm′ where F := {0, 1},
m′ = ĝ+λ and λ is the statistical security parameter. Given the distribution of ˆrow, we can bound
the probability of B′ having full row rank.

Lemma 1. The Pr[B′ having full row rank] ≥ 1− 2−λ.

Proof. B′ = −CF−1E + B is uniformly random since B is. A random m′ × ĝ binary matrix has
full row rank with probability

Πĝ−1
i=0 (2m

′ − 2i)

2m′ĝ
≥ 1− 2ĝ−m

′
= 1− 2−λ

Here, the ith term of the numerator is the probability that the ith row is linearly independent of
the previous rows while the denominator is the total number of such matrices.

Field ˆrow. While the previous approach works, it has the downside of significantly increasing the
weight of the row function. This imposes a non-trivial performance overhead due the need for the
additional (binary) multiplications. As an alternative, we propose defining F as a large field, e.g.
with order 2κ, and defining ˆrow(k, r) = (k̂, k̂2, ..., k̂m

′
) where m′ := ĝ is an upper bound on the size

of the gap, k̂ := I(k, r), and I : {0, 1}∗ → F is a random mapping. In this case, B′ = −CF−1E+B
will have full row rank with overwhelming probability. This is because B is a random Vandermonde
matrix (which has full row rank iff the k̂ values are distinct) and the argument to show that B has
full row rank with overwhelming probability readily extends to show that the sum of a fixed matrix
(here, −CF−1E) and B will also have full row rank with overwhelming probability.

Lemma 2. The sum of a random Vandermonde matrix and any fixed matrix has full row rank with
overwhelming probability.
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Proof. Recall that we can argue that a random Vandermonde matrix will have full row rank as
follows. Consider the sub-matrix formed by the first n columns of the matrix (where n is the
number of rows). We will show that this matrix has full column rank, which completes the proof.
Suppose there is some linear combination of the columns that yields the zero vector. This then
translates to the fact that the Vandermonde polynomial of degree n− 1 (or n) has n distinct (with
overwhelming probability) roots (other than 0), which is possible iff the polynomial is the zero
polynomial. This argument can be extended to show that the sum of a fixed matrix and a random
Vandermonde matrix will also have full row rank with overwhelming probability. As before, a
column combination can be expanded to a polynomial of degree n which admits at most n distinct
roots in F. Since the Vandermonde matrix is randomly sampled, with overwhelming probability,
the value sampled will be a non-root of the polynomial under consideration3.

The main downside of this approach is the need for performing multiplication over a large field.
However, due to the hardware support for F2128 multiplication, the performance of this approach
significantly outperforms the binary case. One limitation of this approach is that the value domain
V must be a vector over the large field while the binary approach can encode any string.

Parameters Our core construction has two main parameters, the expansion ratio e = m′/n
and the weight w of the sparse row′ function. In Section 3, we give an asymptotic analysis of
the construction which shows that our algorithm succeeds with overwhelming probability and is
linear time. We also present a concrete analysis which allows us to precisely describe the failure
probability of our construction.

Generally speaking, we observe two phenomenons. The first is referred to as a phase transition
[DM08] where the expected size of the gap g goes from g ≈ n to g ≈ 0 over a relative small increase
of e. In particular, if we allow ĝ = O(1), then λ can be express as a linear function of e. Moreover,
the larger n is the faster λ grows as a function of e. We also observe that increasing w typically
has a negative impact on the expansion ratio e. For example, given n = 216, e = 1.25 we obtain
λ = 40 bits of security for w = 3 while w = 5, for example, requires increasing e to e = 1.45.

From this one might conclude that w = 3 is always the optimal choice. However, we empirically
observe and analytically verify that larger w can emit schemes which succeed with overwhelming
probability while ensuring that we can upper bound g as ĝ = 0. In particular, for practical values
of n, e, λ, our scheme is unable to encode under parameters w = 3, ĝ = 0 while it is able to encode
under w = 5. This leads to a trade off between minimizing e and the overall row weight, which we
leave to the application to decide.

2.1 Clustering

Although the aforementioned construction achieves linear time encoding for the desired parameter
regime, it has a major limitation when encoding/decoding very large input lengths, e.g. n = 220.
The bulk of the memory accesses are effectively random access into an array of size O(n). When
n is sufficiently large, the CPU cache can no longer hold the required data and it must be fetched
from main memory. This can impose a large slowdown in the running time.

To mitigate the effect of this, we propose restricting the distribution of row′ : {0, 1}∗ → Sw
such that the non-zero positions are clustered together. In particular, we redefine Sw ⊂ {0, 1}m

′
to

3Note that we assume r is sampled after the k values are fixed.
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be the set of all w weight strings such that for all s ∈ Sw, support(s) ⊂ (im∗, im∗ + m∗] for some
i ∈ [0, β),m∗ where β is the number of clusters and m∗ is the cluster size. That is, each string
s ∈ Sw has all of its non-zero positions clustered in the ith length m∗ non-overlapping substring,
for some i. Each cluster can then be triangulated independently, where only one cluster needs to be
processed at a time. In our implementation we set m∗ ≈ 214 which gives a good tradeoff between
parameters.

While clustering has advantages, it can impact the failure probability. To address this, we
modify the distribution of ˆrow. The core issue is that each cluster will result in some gap with a
probability based on m∗. Given an upper bound n∗ on the number of inputs items mapped to any
cluster, one can then determine an upper bound on the maximum gap size ĝ for any cluster. We
consider the following two strategies.

Combined. ˆrow can be defined as a uniform function ˆrow : Z → Fm̂∗2 where m̂∗ := λ + ĝβ. In
this formulation we leverage the fact that the λ extra columns can be shared among the β clusters.
Since λ is likely several factors larger than ĝ, this will significantly reduce the weight of the rows.
Overall this approach allows for a relatively compact encoding while still enabling clustering.

Separate. Alternatively, ˆrow can be defined to have β clusters which are correlated with row′.
If row′(z) is mapped to the ith cluster, then ˆrow(z) should output a uniform random string in Fm̂β
subject to all but the ith non-overlapping substring of length m̂ being zero. In this way we are
effectively creating β independent instances of the underlying OKVS. This approach is slightly less
compact compared to the previous but allows for greater independence between the clusters and a
lower row weight.

Overall, clustering allows the algorithm to process chunks of size m∗ which can be orders of
magnitude smaller than m. This improves the memory locality and cache efficiency. Moreover, say
for example we ensure that m∗ = 216. It is then the case that all internal state values can be stored
in a 16-bit integer, as compared to say 32 or 64-bit, which allows the implementation to have even
better memory locality, e.g. by a factor of 2 or 4.

Clustering naturally lends itself to a multi-threaded implementation. Items can be mapped to
clusters and then a thread can process each cluster without the need for expensive synchronization.
All of these optimizations hold true for both encoding and decoding.

3 Analysis and Parameter Selection

The performance of our OKVS scheme critically depends on the upper bound ĝ of g. We demon-
strate that our algorithm is optimal for several important cases and otherwise achieves an extremely
good approximation in practice. We then give a detailed characterization of the distribution of ĝ.

3.1 The Case of w = 2

We begin with the case of row weight w = 2. This case is qualitatively distinct due to the expected
value of g being non-zero for practical values of e and the optimality of our algorithm.

Reformulating as a Graph Problem. In order to analyze the gap g, we reformulate our
problem as a graph problem as follows. Recall that the sparse binary part of the matrix H under
consideration is of size n × m′ where m′ = en for an expansion factor of e > 1. We sample the
sparse part of H as follows: Each row is sampled independently at random subject to the constraint
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that the row is of weight w = 2. Now, consider the graph GH = (V,E) induced by the sparse part
of H where V = [m′] and

E = {ei = (ei,1, ei,2) : Hi,1 = Hi,2 = 1}i∈[n]
It turns out that the problem of determining how to best solve the system of equations determined
by H using the process of back-substitution, that is, finding free variables in H, is equivalent to
the problem of optimally peeling GH [Wal21]. We recall that peeling GH corresponds to iteratively
selecting an edge with a vertex of degree 1 (or a free vertex) and removing that edge. If this
process terminates with all the edges of the graph being removed, the graph is said to have been
completely peeled. Clearly, in our setting, this means that there is a way to solve the system of
linear equations involving H entirely using back-substitution, or in other words, g = 0. Otherwise,
the peeling algorithm terminates with a sub-graph of GH where every vertex has degree at least 2.
That sub-graph is called the 2-core of GH .

Indeed, different sub-graphs of GH would admit different peelings that would lead to different
such final unpeelable sub-graphs. One can then ask the question of whether one can determine
the largest sub-graph of GH that can be completely peeled. We call this the problem of optimally
peeling GH . Optimally peeling GH would lead to the identification of a sub-graph (where every
vertex has degree at least 2) of minimum size which if removed from GH would make it completely
peelable. It is easy to see that the gap g is the size of this subset, i.e., the minimum number of
edges to be removed from this 2-core in order to make it peelable. Immediately, g is upper-bounded
by the size of the 2-core of GH . Thus, in general, one way of upper-bounding g is to get a handle
on the size of the 2-core of GH . But for w = 2, we can do a lot better. It turns out that for the case
of w = 2, it is indeed possible to efficiently compute the optimal peeling of GH a greedy algorithm.
We go on to describe why this is the case.

Matroids and the Greedy Algorithm. We begin by defining the matroid abstraction and cast
our algorithm with w = 2 as the associated greedy algorithm. This immediately implies that our
algorithm is optimal for the case of w = 2. A matroid M = (E, I) consists of a ground set E and a
collection I ⊆ 2E of independent sets where each A ∈ I is a subset of E, i.e., A ⊆ E, which satisfies
the following three properties:

(1) The empty set is independent, i.e. ∅ ∈ I.

(2) (hereditary) Every subset of an independent set is an independent set, i.e. A′ ⊆ A ∈ I =⇒
A′ ∈ I.

(3) (augmentation/exchange) If A,B ∈ I and |A| > |B|, then ∃a ∈ A \B s.t. B ∪ {a} ∈ I.

This definition can be extended to the setting where the elements of E each have a positive
weight. The weight of any subset A ⊆ E is then defined as the sum of the element weights. Given
this, a maximum weight independent set A ∈ I can be found in |E| time given oracle access to
determining set independence [Oxl06], i.e., determining if A ∪ {a} ∈ I for some A ∈ I, a ∈ E. In
particular, A can be found by initializing A := ∅ and greedily adding some a ∈ E to A so long as
A ∪ {a} ∈ I.

Let us now look back to the problem of optimally peeling GH , or equivalently, finding the
largest sub-graph of GH that is completely peelable. It is a well-known fact that if G = (V,E) is
an undirected graph, and F is the family of sets of edges that form forests in G, then (E,F ) forms
a matroid. For the sake of completness, we recall the proof of this fact here.

11



Lemma 3. If G = (V,E) is an undirected graph, and F is the family of sets of edges that form
forests in G, then (E,F ) is a matroid. This matroid is called the graphic matroid of G, denoted
as M(G).

Proof. Clearly, ∅ ∈ F . F clearly satisfies the hereditary property as removing edges from a forest
leaves another forest. F also satisfies the exchange property: if A and B are both forests, and A
has more edges than B, then it has fewer connected components, so by the pigeonhole principle
there is a component C of A that contains vertices from two or more components of B. Along any
path in C from a vertex in one component of B to a vertex of another component, there must be
an edge with endpoints in two components, and this edge may be added to B to produce a forest
with more edges. Thus, F forms the independent sets of a matroid.

Let us now consider M(GH). The independent sets of this matroid are the forests in GH . Now,
note that forests are completely peelable, i.e., have empty 2-cores. Thus, finding the largest possible
forest embedded in GH corresponds to finding the optimal way to peel GH . Taking it full circle,
this then also gives us the exact set of rows of H which attains the minimum possible gap g. To
this end, we can set the weight of each edge ei ∈ E as 1. The greedy algorithm will then determine
the maximum weight, i.e., largest size independent set A ⊆ 2E . More concretely, let the ground set
E := [n] correspond to the rows of H and we define I such that all A ∈ I correspond to sets of rows
which can be made exactly triangular via row a permutation. From the argument above, clearly
(1), (2) and (3) are satisfied. We then define the weight of each a ∈ E as one. The maximum
weight independent set A ∈ I is then exactly the set of rows which minimizes g. It is then an easy
task to verify that our triangulation algorithm is equivalent to the matroid greedy algorithm and
therefore is optimal. We state this in the following lemma.

Lemma 4. For the case of w = 2, Step 2 of the procedure in Figure 1 optimally triangulates H,
that is, it computes the minimum g over all possible choices of the set J .

Analysis to bound g. From the discussion above, we know that whatever g is, we can efficiently
find it. The remaining analysis thus is to bound g with overwhelming probability. Again, we do
this via reformulating the problem as a graph problem. The process of sampling the sparse part of
H can be equivalently considered as sampling a random graph GH = (V,E) where V = [m′] and
|E| = n, that is, where E is a collection of random independently (with replacement) sampled n
edges. Now, as argued above, the gap g of H is upper-bounded by the size of the 2-core of GH .
Thus, in order to upper bound g, it suffices to understand the distribution of the size of the 2-core
of such a randomly sampled GH .

This has, once again, been studied extensively. As noted in [FK21], the size of the 2-core
of GH follows the size of the so-called giant component in GH . We recall the phenomenon of
the emergence of the giant component in a random graph. Asymptotically, the evolution of the
random graph undergoes a phase transition at e = 2. The case of e > 2 is called the sub-critical
phase and e < 2 is called the super-critical phase. In the sub-critical phase, the random graph
consists with overwhelming probability of tree components and components with exactly one cycle.
All components during the sub-critical phase are rather small, of order O(logm′), and there is no
significant gap in the order of the first and the second largest component. The situation changes
when e < 2, i.e., when we enter the super-critical phase and then with overwhelming probability,
the random graph consists of a single giant component (of the order comparable to O(m′)), and
some number of simple components, i.e., tree components and components with exactly one cycle.
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One can also observe a clear gap between the order of the largest component (the giant) and the
second largest component which is of the order O(logm′). This phenomenon of dramatic change
of the typical structure of a random graph is called its phase transition. Erdös and Rényi [ER59],
and many others following [Bol84, Luc90] established the phenomenon of the double-jump, where
as we pass through the phase transition e = 2, the size of the largest component changes from
O(logm′) to m′2/3 to Ω(m′), and in fact, for e = 2, the size of the largest component is m′2/3 with
overwhelming probability. The size of the 2-core, and the upper bound ĝ for the gap of H, grows
gradually (unlike the size of k-cores for k ≥ 3, as noted in [FK21]) and eventually follows the same
distribution as that of the largest component of GH for e < 2. Close to e = 2, the upper bound ĝ
on the gap turns out to be O(logm′), following the size of the largest component when e > 2. We
note this in the following lemma.

Lemma 5. For the case of w = 2 and e = 2, ĝ = O(log n).

The issue of duplicates. One subtle issue that gets overlooked by the above analysis is the
occurrence of duplicate rows in H. Indeed, in the context of the induced graph GH , this would
amount to a cycle of length 2, something that would not be considered. However, this event turns
out to be the most likely failure scenario in our case and one we analyze separately.

Lemma 6. The probability that there exists a pair of rows in the sparse part of H that are identical
is upper-bounded by O(n2−w) for w � n.

Proof. The probability that there exists a pair of rows in the sparse part of H that are identical
for w � n is upper-bounded by

(
n

2

)(m′
w

) [(
m′

w

)]n−2
[
(
m′

w

)
]n

=

(
n
2

)(
m′

w

) ≈ n2

2
· w!

m′w
= O

(
1

nw−2

)
For w = 2, the above probability is a constant. Thus, in expectation, we will see a constant

number of duplicate rows in H, a case our algorithm will not be able to handle. Indeed, as we
increase w, the probability of such duplicates occurring falls significantly. This is yet another reason
to consider higher weight w > 2.

Concrete Parameters. While the analysis above provides asymptotic guarantees that ĝ =
O(log n) for e = 2, the concrete security remains ambiguous. We address this by performing
extensive empirical evaluations to determine the constants involved. The general strategy is to run
the triangulation algorithm a large number of times on random instances for various n. A gap of g
is then given an estimated statistical security of λ bits if 2−λ fraction of the instances had a gap of
at most g. Figure 2 shows the resulting distribution. To ensure statistical accuracy, instances with
fewer that 24 instances are not plotted, e.g. for n = 210 approximately 227 trials were performed
while only λ ≤ 23 is plotted.
We observe two primary relationships:

1. For any fixed n there is generally a linear relationship between λ and g with the exception near
zero which is not a practical concern. Since λ = O(log n) this is consistent with the theoretical
analysis.
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Figure 3: The slope of Figure 2 trend lines.

For each n we interpolated the best fit line for g > 5. Moreover, we observe that all of these
linear relationships pass near the point f = (1.9, 0). We conjecture that this is a general trend
and plot the best fit line which passes through f as dashed lines.

2. Observe that the slope of the line is λ/g and that we expect this to be linear in 1/ log n. Indeed,
Figure 3 depicts the slopes of the best fit lines of Figure 2 and which follows this relationship.
We interpolate this relationship as

λ/g = a/(log2 n− c) + b (1)

where a := 7.529, b = 0.610, c = 2.556 and is depicted as the dished line.

In summary, we propose a linear lower bound λ ≥ αng − αn1.9 where αn := a/(log2 n− c) + b.

3.2 General Weight

We now consider the case of row weight w > 2. As before, in order to analyze the gap g, we
reformulate our problem as a graph problem as follows. We sample the sparse part of H as follows:
Each row is sampled independently at random subject to the constraint that the row is of weight
w > 2. Now, consider the hypergraph GH = (V,E) induced by the sparse part of H where V = [m′]
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and
E = {ei = (ei,1, . . . , ei,w) : Hi,1 = . . . = Hi,w = 1}i∈[n]

Once again, the problem of determining how to best solve the system of equations determined by
H using the process of back-substitution, that is, finding free variables in H, is equivalent to the
problem of optimally peeling GH , where peeling GH corresponds to iteratively selecting a hyperedge
with a vertex of degree 1 (or a free vertex) and removing that hyperedge. If this process terminates
with all the hyperedges of the hypergraph being removed, the hypergraph is said to have been
completely peeled. Clearly, in our setting, this means that there is a way to solve the system of
linear equations involving H entirely using back-substitution, or in other words, g = 0. Otherwise,
the peeling algorithm terminates with a sub-hypergraph of GH where every vertex has degree at
least 2. That sub-graph is called the 2-core of GH .

Indeed, different sub-graphs of GH would admit different peelings that would lead to different
such final unpeelable sub-graphs. One can then ask the question of whether one can determine
the largest sub-graph of GH that can be completely peeled. We call this the problem of optimally
peeling GH . Optimally peeling GH would lead to the identification of a sub-graph (where every
vertex has degree at least 2) of minimum size which if removed from GH would make it completely
peelable. It is easy to see that the gap g is the size of this subset, i.e., the minimum number of
hyperedges to be removed from this 2-core in order to make it peelable. Immediately, g is upper-
bounded by the size of the 2-core of GH . Thus, again, one way of upper-bounding g is to get a
handle on the size of the 2-core of GH . For w = 2, it was possible to efficiently compute the optimal
peeling of GH using a greedy algorithm. It turns out that for the case of w > 2, it is unlikely that
there exists a general procedure to efficiently compute the optimal peeling of GH . We go on to
describe why this is the case.

Hardness of General Weight. In Section B, we describe why the matroid-inspired greedy
algorithm that worked in the case of w = 2 does not work for the case of w > 2. Given this, one
could ask if there is any other efficient algorithm to optimally peel GH for the case of w > 2. This
problem is closely connected to the problem of finding minimum unsatisfiable cores in the context of
satsifiability. Two works in this regard are those of Zhang, Li and Shen [ZLS06] and Papadimitriou
and David Wolfe [PW88]. From the first, we note that even verifying minimum cores is very hard,
and that it is known to be DP-complete from the latter (DP = {A∩B : A ∈ NP∧B ∈ coNP}). So
this problem is certainly hard and is unlikely to admit efficient algorithms.

Thus, given that determining g optimally might be difficult, and that the running time of our
algorithm depends quadratically on g, we are left with two questions:

• How large is g likely to be for the matrices that we sample?

• How does this affect the performance of our algorithm?

Phase Transition. The first observation we make is regarding the phenomenon of a sharp phase
transition with regards to the emptiness of the 2-core that occurs with varying the expansion factor
e. This phenomenon has been completely described in the work of Dembo and Montanari [DM08].
We recall their result in the following lemma.

Lemma 7 ([DM08]). For a uniformly chosen random hypergraph of m′ = en vertices and n hy-
peredges, each consisting of the same fixed number w ≥ 3 of vertices, the size of the 2-core exhibits
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for large n a first-order phase transition, changing from o(n) for e > ec to a positive fraction of
n for e < ec, with a transition window size Θ(n−1/2) around ec > 0. For instance, for w = 3,
ec ≈ 1.2218.

Structures in the Gap. We now know that below a certain critical expansion threshold, the 2-
core of GH becomes non-empty. What does this 2-core of GH contain? For general w, the minimal
larger structures “induce” cycles in the hypergraph GH = (V,E) induced by the sparse part of H
where V = [m′] and

E = {ei = (ei,1, . . . , ei,w) : Hi,1 = . . . = Hi,w = 1}i∈[n]

Induced cycles of size 2 correspond to duplicates, which have been analyzed above (and will be
discussed ahead).

Lemma 8. For k > 2, the probability that GH contains an induced cycle of size k is upper-bounded
by O(k̃−k−

1
2 ), where k̃ = Oe,w(k).

Proof. For k > 2, the probability that GH contains an induced cycle of size k is upper-bounded by
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This probability is upper-bounded by
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n→∞
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where k̃ = β(w, e)k for some β(w, e) = Θ(ew−2).

The above analysis qualitatively states that the minimal structures in the gap are more likely
to be small than large. The understanding of this fact will be important as we move ahead.

The issue of duplicates. As before, the issue that gets overlooked by the above analysis is the
occurrence of duplicate rows in H. From before, The probability that there exists a pair of rows in
the sparse part of H that are identical is O(n2−w) for w � n.

16



Putting it all together. Let us now try to describe the what we expect should happen to g as
we vary e.

• Firstly, there is a phase transition window to the far right of which the only bad structures in
the 2-core would be duplicates (with a certain probability) and to the far left of which the 2-core
would start to contain structures of linear size.

• Secondly, the width of this phase transition varies as Θ(n−1/2), being wider for smaller n and
narrower for larger n. Just to the right of the phase transition window, the 2-core contains, with
overwhelming probability, only a few small structures.

• Through the phase transition, we would expect to see larger structures in the gap as we get
closer to the left end of the phase transition window. In other words, towards the right end
of the phase transition window, we would still expect that the gap is small with overwhelming
probability.

Concrete Parameters. The empirical measurements we make do indeed match with the theoret-
ical analysis above. Figure 4 plots the log failure probability versus the expansion factor e = m′/n
for w = 3 and various n. For each n we plot several curves. The lower solid curve for each n
plots the security parameter for g < 1. Some n have a second solid curve which plots the security
parameter for g < 2. Inspecting the distribution of these curves, we see several trends. The first
is that as n increases, the curve increases at a higher rate (in other words, the phase transition
window is wider for smaller n).

Secondly, there is a plateauing effect where a given curve starts to flatten out. For example,
consider n = 210 and observe that the g < 1 curve flattens out at λ ≈ 10 and e = 1.31. However,
the g < 2 curve continues to increase. This plateauing effect perfectly agrees with the probability
of small structures. The most likely (virtually only) structures in the gap post the phase transition
are duplicate rows which occur with probability approximately 1/nw−2 = 1/n for w = 3. Therefore
it is expected to have plateaus at λ = n for each g < 1 curve. Similarly, the mostly likely structure
of size g < 2 are two duplicates which, as expected, occurs at λ = 2n. Figure 4 depicts the projected
continuations of these plateaus as the horizontal dashed lines.

The next observation is that, if we ignore the plateau effect, the curves for each n and g < 1, 2, ...
converge to a linear growth rate. We project this growth rate for each n as the corresponding linear
dashed line. The trend that each of these lines pass through the point f = (1.223,−9.2), which
we call the phase transition point. Therefore as n goes to infinity, we would expect a sharp phase
transition where g goes from g > 0 to g = 0 at e = 1.223. This closely agrees with [DM08] which
analytically computes the phase transition to occur at e = 1.2218.

Figure 5 contains a similar plot for w = 5. We observe that it generally follows the same trend.
The most significant change is that the phase transition point f is shifted right to f = (1.427,−9.2).
Secondly, the plateau effect occurs at a higher λ. For example, a duplicate occurs at λ ≈ 3 log(n) as
the probability of duplicate rows for w = 5 is ≈ 1/nw−2 = 1/n3, which can be observed in Figure 5
for n = 26. Additionally, we performed this analysis for w ∈ {3, 4, 5, 7, 9, 14, 20, 100} and observe
that slope of the linear trend lines changes as w is changed.

Our goal is then to translate these observations into a function of w, e, n which closely lower
bounds λ in the range 30 ≤ λ ≤ 128, 3 ≤ w ≤ 10, 26 ≤ n ≤ 230. The general strategy is to upper
bound the e coordinate of the phase transition point f = (e∗,−9.2) and lower bound the slope of
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the linear trend lines. These bounds can then be combined with the well defined impact of small
structures and plateaus to obtain a lower bound of λ.

For all w ∈ {3, 4, 5, 7, 9, 14, 20, 100} we observe that the e coordinate of the phase transition
point f = (e∗,−9.2) has a positive correlation with w. Figure 6 depicts this relation by plotting
e for various w. As can be seen, the relationship is roughly linear. Recall that our objective is
derive a function which will lower bound λ given the other parameters, and therefore we need
to upper bound e in the curve in Figure 6. We achieve this in a piecewise manner with cases
w = 3, w = 4, w ≥ 5. For the first two cases we simply take the empirically obtained values while
for w ≥ 5 we propose the upper bound

e∗ =


1.223 if w = 3

1.293 if w = 4

0.1485w + 0.6845 otherwise

. (2)

This upper bound is depicted as the dashed line in Figure 6. As can be seen at w = 20, the
empirically obtained values have a slightly sublinear growth which was further validated at w = 100.
Since we are primarily interested in w ≤ 10, we argue that this upper bound is sufficiently accurate.

Finally, we turn our attention to understanding the distribution of the slope (λ/e) of the linear
trend lines. Figure 7 shows this relationship between the log slope and log n for various w. It
is immediately clear that there is a linear relationship between log(λ/e) and log(n). The slope
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of this relationship is 0.55. This closely agrees with the predicted value of 1/2 from [DM08].
Indeed, [DM08] states that the width of the phase transition varies as Θ(n−1/2). The slope of
the phase transition line is inversely related to the width of the phase transition window, that is,
λ/e ∝ Θ(n1/2). Thus, theoretically, the slope of the linear relationship between log(λ/e) and log(n)
would be 1/2, which closely matches our empirical value of 0.55.

As expected, the slope is the same for all measured w but each line has a different additive offset.
To understand this offset we plot the same measurements in Figure 8 where we now compare the
log slope with log w for various n. The linear growth rate in Figure 7 corresponds to even spacing
between all the curves. We observe that w ∈ {3, 4, 5} all have approximately the same slope with
w = 4 being slightly higher. Then as w increases we observe a general trend of the slopes decreasing.
Again, our goal is to lower bound the slope. We achieve this via the polynomial

log2(λ/e) = 0.55 log2(n) + 0.093w′3 − 1.01w′2 + 2.92w′ − 0.13 (3)

for the range 3 ≤ w ≤ 20 and w′ := log2(w). We note that outside this range the polynomial
quickly becomes an upper bound and further investigation is required to obtain a more general
lower bound. We plot this lower bound in Figure 8 as the dashed lines.

3.3 Performance of our algorithm

Optimal for g = 0. Our first positive result for general w is that our algorithm is optimal for
the case of g = 0. Revisiting step 2 of the algorithm, note that for g = 0, δ = n. This means
that the rows can be ordered such that every row of H has a corresponding sparse column which
contains a non-zero entry in that row and some of the subsequent rows. This corresponds exactly
with the case of the hypergraph induced by the sparse part of H having an empty 2-core and
hence can be completely peeled. Indeed, in this case, the optimal way of solving the system is via
back-propagation which is done in O(m) time by step 5 of our algorithm.

We would like to argue that if H had a triangulation that enabled g = 0, step 2 of our algorithm
indeed finds one such triangulation.

Lemma 9. If H sampled in Step 1 of the procedure in Figure 1 has a triangulation with g = 0,
Step 2 finds one such triangulation.
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Proof. This is in fact easy to see. If H admitted such a triangulation, then there must exist a
column of H that has a single non-zero entry. Thus, the first iteration of our algorithm would pick
out such a column. Let us now complete the argument inductively. Consider H ′ after one row
of H has been removed, that is, a row with a column whose only non-zero entry lies in that row.
Note that H is triangularizable with g = 0 iff H ′ is. Thus, to complete the inductive argument,
our algorithm optimally triangulates H ′ with g = 0, and then simply re-introducing the removed
row preserves the triangulation as the row has a corresponding column whose only non-zero entry
lies in that row. Alternatively, we can view this via the lens of optimally peeling GH , i.e., step 2 of
our algorithm completely peels GH if it can be peeled.

Optimal for duplicates. We note that our algorithm is optimal for the case that the only
structures in the 2-core are duplicate rows. In this case, it is easy to see that step 2 of our
algorithm will triangulate H but for its duplicate rows. Or equivalently, our algorithm will peel
GH except for the identical hyperedges.

The case of non-duplicates. If the structures in the 2-core include more than just duplicate
rows, it is hard to theoretically bound the quality of the g determined by our algorithm. Indeed, our
algorithm does perform better than prior works as the upper bound ĝ on the gap g as determined
by our algorithm is strictly smaller than the size of the 2-core of GH . However, in the worst case,
ĝ could end up being as large as the size of the 2-core (minus one). While this does seem less
than optimal, it is unclear if one can do significantly better (efficiently in terms of g) than this on
account of the hardness results presented in Section 3.2. We discuss this in more detail ahead.

Probabilistically good approximation. The silver lining is that probabilistically, our algo-
rithm is guaranteed to perform really well. Our analysis from before has left us with the under-
standing that the probability that the 2-core of GH contains large structures declines (slightly faster
than) exponentially with their size. Therefore, we are guaranteed that with high probability, the
structures in the 2-core are indeed small and few in number. Furthermore, as empirically verified
above, we observe that duplicates and small cycles (contributing a gap of 1 or 2) are the most likely
structures in the 2-core of GH and our algorithm works optimally in the case of just duplicates.
Although the asymptotic analysis is not tight, it does provide enough theoretical evidence that g
will be small (e.g. < 12), and empirically, we note that g is even smaller (e.g. 2 or 3).

Finally, the above analysis also heuristically guarantees that our algorithm, with overwhelming
probability, will not veer off significantly from the actual gap. The reason for this is the following.
Assume that our algorithm has to make a choice at some stage in step 2 on which column to pick
among many of equal minimum non-zero weight. In the case that it makes a “wrong” choice that
results in a large gap, this would mean that the sub-matrix H ′ (where remaining rows follow the
same distribution as only the column weight has been affected by removing rows in step 2) would
have to contain a sufficient number of large-enough independent structures, which, again, as argued
above, is unlikely. This provides theoretical evidence for our empirical finding that our algorithm
indeed performs near-optimally.

Optimality for small g. We finally discuss the optmial triangulation described in Figure 10.

Lemma 10. The procedure in Figure 10 optimally triangulates H.
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Proof. Optimally peeling GH amounts to identifying a minimum subset of hyperedges of the 2-core
of GH which when removed make GH completely peelable. Indeed, if we had an upper bound ĝ
on the size of that subset of the 2-core, an exhaustive search among the edges of the 2-core would
reveal the optimum (minimum) subset of hyperedges (which directly maps to the gap of H). Given
the hardness results presented in Section 3.2, an exhaustive search is probably the best one could
hope for, and this is exactly what is done in Figure 10. The first steps end with H ′ containing
those rows corresponding to the 2-core of GH . Subsequently we perform an exhaustive search to
determine the optimum subset of rows.

Let h2 denote the size of the 2-core of GH . Then, the complexity of Figure 10 would be
O(m+ hĝ2). From all of the analysis above, indeed in the parameter regime we consider, ĝ = O(1)
and h2 ≤ e · ĝ with overwhelming probability for e = O(1). In fact, e ≈ 2 with overwhelming
probability and ĝ is a small constant (for instance, between 2 and 5). Thus, in our setting, it is
indeed possible to optimally triangulate H (equivalently, optimally peel GH) efficiently (in linear
time).

3.4 Conclusions

In summary, we define the phase transition point f = (e∗,−9.2) for e∗ defined in Equation 2 and
the slope of the linear phase transition line, which passes through f , as 2α where α is defined as
the right hand side of Equation 3. ĝ is defined as the smallest value such that4 m′ĝ(w−2) ≥ 2λ, i.e.
ĝ = b λ

(w−2) log2(m′)
c.

We end this section with a concrete strategy to pick parameters. In particular, given n,w and
λ:

• Compute e∗ as defined in Equation 2.

• Compute the slope of the phase transition line as 2α where α is defined as the right hand side
of Equation 3.

• Solve for e such that the line going through the phase transition point f = (e∗,−9.2) with
slope 2α passes through the point (e, λ).

• Compute ĝ = b λ
(w−2) log2(en)

c.

4 Private Set Intersection

Next we turn to the main application for our construction, efficient Private Set Intersection. PSI
allows two parties to compute the intersection of their respective sets X,Y without revealing any-
thing but the final intersection. The full functionality is detailed in Figure 11. To realize this
functionality we make use of the recent PSI construction of [RS21] and modify it in two ways.

1. Replace the OKVS of [PRTY20] with our new construction.

2. Extend the PSI protocol of [RS21] to use subfield-VOLE [CRR21].

4We note that strictly speaking this can be a slight under estimate due to not considering structures other than
duplicates. However, these are the most likely by an order of magnitude and therefore this gives a sufficiently accurate
estimate.
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As detailed below, the former alteration improves both the computational overhead and commu-
nication overhead. In particular, when we instantiate the [RS21] PSI protocol with our new OKVS,
the PSI protocol is able to be executed on a consumer laptop in 0.4 seconds on a single thread, or
0.16 seconds with 4 threads. Additionally, when the subfield-VOLE optimization is applied we are
able to further reduce the communication overhead.

Our starting point is the [subfield] VOLE protocol of [CRR21, BCG+19]. The VOLE function-
ality described in Figure 12 consists of a Sender and Receiver. The Sender is output a random
∆ ∈ F, ~B ∈ Fm while the Receiver is output random vectors ~A ∈ Bm, ~C ∈ Fm subject to

~C − ~B = ∆ ~A

where F is some extension field of B. For example, |B| ≈ 2κ/2 while F is the degree 2 extension. To
obtain PSI, the intuitive idea is to derandomize the VOLE correlation ( ~A, ~B, ~C, δ) to (~P , ~B′, ~C ′)
where ~C ′− ~B′ = ∆~P and ~P is a OKVS which decodes to HB(x) for all x ∈ X, where HB : {0, 1}∗ → B
is a random oracle. This derandomization is the main communication overhead and requires sending
~A− ~P , which requires sending m log2 |B|-bits.

The next phase takes advantage of OKVS linearity. In particular, for x ∈ X we have the
following qualities

~C ′ − ~B′ = ∆~P

Decode(~C ′, x)− Decode( ~B′, x) = ∆Decode(~P , x) = ∆HB(x)

Decode(~C ′, x) = Decode( ~B′, x) + ∆HB(x)

The Sender with ~B′,∆ is able to compute the right hand side while the Receiver with ~C ′ is able
to compute the left hand side. The Receiver computes X ′ := {F (x) | x ∈ X} where F (x) :=
Ho(Decode( ~C ′, x)), while the Sender can compute F (y) = Ho(Decode( ~B′, y) + ∆HB(y)) for any
y. Here, Ho : {0, 1}∗ → {0, 1}out is another random oracle where out = λ + log2(nx) + log2(ny).
The PSI protocol completes by having the Sender send Y ′ := {F (y) | y ∈ Y } to the Receiver who
can then infer the intersection X ∩ Y from X ′ ∩ Y ′. The full semi-honest protocol is presented in
Figure 9. Next we describe several ways our protocol can be instantiated (by defining B,HB and
the OKVS parameters) to get different tradeoffs.

Our fast instantiation The more efficient instantiation of our protocol in terms of running time
is to define B = GF (κ),F = B. This variant does not use subfield VOLE due to it imposing is
slight running time overhead. We also optimize our OKVS scheme to minimize running time at a
cost of mildly increasing m. In particular we employ our w = 3 scheme with a cluster size of 214.
This results in m ≈ 1.28n. See Theorem 3 for the proof of security.

Low communication instantiation Next we aim to minimize the communication overhead
at the mild expense of running time. First we will instantiate B as the smallest field such that
|B| ≥ 2λ+log2(nxny) and F as the smallest extension such that |F| ≥ 2κ. The size requirement on
B stems from need to ensure that random collisions do not occur which would result in leaking
some information about Y or the receiver outputting an x which is not in Y . The intuition is
that there are nxny possible collisions of this type which necessitates B elements to be statistical
security parameter plus log2(nxny) bits in length. Additionally, we parameterize the OKVS scheme
to minimize the size. This effectively means to not use clustering and results in m = 1.23n. See
Theorem 3 in Section C.1 for the proof of security.
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Parameters: There are two parties, a Sender and a Receiver with a respective set Y,X where |Y | =
ny, |X| = nx. Let B be a field with extension F such that |F| = O(2κ). Let HB : {0, 1}∗ → B,Ho :
{0, 1}∗ → {0, 1}out be random oracles.

Protocol: Upon input (sender, sid, Y ) from the Sender and (receiver, sid, X) from the Receiver:

1. The Receiver samples r, r′ ← {0, 1}κ and computes ~P := Encode(L, r) where L := {(x,HB(x, r′)) |
x ∈ X}.

2. The Sender sends (sender, sid) and the Receiver sends (receiver, sid) to Fsub-vole with dimension m :=

|~P |, base field B and extension F. The parties respectively receive ∆, ~B and ~C := ~A∆ + ~B, ~A.

3. The Receiver sends r, ~A′ := ~A− ~P ∈ Bm to the Sender who defines ~B′ := ~B + ~A′∆ ∈ Fm.

4. The Sender sends Y ′ := (Ho(Decode( ~B′, y, r) − ∆HB(y, r′)) | y ∈ Y ) to the Receiver in a random
order.

5. The Receiver outputs {x ∈ X | Ho(Decode(~C, x, r)) ∈ Y ′}.

Figure 9: Semi-honest protocol Πpsi.

Malicious instantiation For malicious security we directly use the protocol of [RS21] with our
OKVS scheme.

Circuit PSI We make use of the Circuit PSI protocol of [RS21]. We note that this protocol
requires an additional oblivious property from the OKVS. See Section A.2 or [RS21] for details.

5 Evaluation

We now turn our attention to the concrete performance of our constructions and a comparison to
related work. The implementation is available at github.com/Visa-Research/volepsi. In summary,
our constructions outperform all prior works by a significant margin. We used the existing im-
plementations from [CGS22, RR17]. The protocols were all bench-marked on a single laptop with
Intel i7 9750H and 16GB of RAM. All constructions target λ = 40 bits of statistical security and
κ = 128 bits of computational security. All protocols were run in the ∼ 1Gbps LAN setting with
sub millisecond latency. MT denotes that 4 threads per party are used.

5.1 OKVS

We begin by comparing the running time of the encoding and decoding of our constructions and
that of [GPR+21]. As shown in Figure 1, our w = 3 constitution requires 653 milliseconds to
encode 220 items and just 54 milliseconds to decode them. This is 13× and 64× faster than the
(w = 3) construction of [GPR+21], respectively. We attribute this speedup to several factors:
smaller expansion, approximately 20× fewer dense columns and our faster encoding algorithm.
Our construction which uses clustering with size β = 214 requires just 143 milliseconds compared
to 4,912 for the star construction of [GPR+21], a speedup of 34×. We attribute this additional
speedup, as compared to w = 3, to their star construction requiring a two phase encoding in order
to amplify the success probability to be at least 1−2−λ. Moreover, their construction & parameters
are not optimized for memory efficiency. In addition, our basic w = 3 construction is fully secure
and therefore our construction allows encoding to be performed in a single pass, with independence
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between the clusters. This independence property enables multi-threading which can provide an
additional 3× speedup with 4 threads.

We also consider the running time of our construction with w ∈ {2, 5} and observe that w = 3
outperforms them in terms of running time and compactness. As such we conclude that w = 3 is
the correct choice for most applications. However, we note that w > 3 can have advantages in that
larger w can allow for the complete removal of all dense columns. Therefore, if the overall weight
needs to be minimized, then w = 5 or larger may be preferable.

Looking more closely at the [GPR+21] construction, we observe several differences and notewor-
thy details. First is that the encoder of [GPR+21] follows a different strategy: 1) greedily traverse
the graph to identify the 2-core, 2) solve the whole subsystem formed by the 2-core using a quadratic
time algorithm, 3) greedily traverse the graph to solve the remaining rows. Their construction leads
to several disadvantages as compared to ours. First is the fact that they directly solve the subsys-
tem formed by the 2-core, for which they require λ+ |2-core| additional dense columns. This is in
contrast to our construction which identifies an optimal subset of the 2-core such that remaining
system is solvable in linear time, which requires only |subset| dense columns. For example, with
n = 220 our construction requires two dense columns as compared to the estimated value of 60 that
[GPR+21] proposed.

Secondly, their encoder requires two graph traversals. The first is needed to identify the 2-
core and the second is needed to identify in which order the non-2-core variables should be solved
in. While being linear time, this type of graph traversal is a costly operation. In contrast, our
construction allows us to maintain an ordered list which exactly determines the order in which the
rows/columns should be solved, thereby reduce the running time.

Moreover, [GPR+21] leaves the security guarantees of their w = 3 construction largely unclear.
In particular, they empirically measure and report the failure probability for the parameters n =
6600, e = 1.3 and report that out of 233 trials only a single instance had a 2-core with more than
0.5 log n rows. They then conclude that with a confidence level of 0.9999, this 0.5 log n upper
bound on the 2-core holds with probability at least 1 − 2−29. However, the probability of this
is extremely low since one can show analytically that more than this many small structures are
expected to occur. Both their paper [GPR+21] and implementation [GPR+] use this upper bound
which appears to be in error. However, by our calculation, this oversight likely only reduces their
statistical security by a few bits, e.g. λ = 27 as opposed to 29. The situation is further complicated
by the fact that [GPR+21] suggesting that an expansion of e = 1.3 generally results in 40 bits of
security and go on to use this e = 1.3 for both smaller and larger values of n, see [GPR+21, Figure
4, Table 1]. Regardless, this confusion speaks to the necessity of performing a rigorous analysis of
the failure probability as has been done in this work.

To obtain provable security with an arbitrarily small failure probability, [GPR+21] proposes a
clever amplification technique which takes a OKVS scheme for n′ items with failure probability p
and amplifies it to pc for some small c. Moreover, the new amplified construction allows for n ≥ n′
items to be encoded. This effectively allows them to achieve the standard λ = 40 bits of security
given their w = 3 construction. Unfortunately, the amplification roughly requires that each item
be encoded/decoded twice. In contrast, our w = 3 construction can be tuned to achieve the desired
security level directly with little overhead. We refer to this amplified scheme as “w = 3, star”. The
overall expansion rate of this construction is e = 1.32 at n = 220. In contrast, our construction
requires e = 1.23 without clustering and e = 1.28 with clustering.
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Table 1: The running time (ms) of encoding and decoding various constructions and input sizes n.
The elements are F2128 for our construction and F264 for [GPR+21]. Binary ˆrow denotes that the
dense columns are binary and opposed to the default of field ˆrow, see Section 2.

Construction
Encode (ms) Decode (ms)

216 220 224 216 220 224

Ours (w = 2) 22.4 878 14,729 7.1 165 3,390
Ours (w = 3) 12.1 653 15,362 2.0 54 1,394
Ours (w = 3, binary ˆrow) 13.4 680 15,832 3.6 82 1,922
Ours (w = 5) 20 1251 30,206 6.4 144 3,317
Ours (w = 3, cluster) 9.5 143 2,412 1.7 42 930
Ours (w = 3, cluster, MT) 6.3 47 764 1.1 14 379
[GPR+21] (w = 3) 359 8,420 158,165 195 3,484 61,014
[GPR+21] (w = 3, star) 419 4,912 − 282 5,475 −

Table 2: Performance metrics of our PSI protocols compared to related works.

Protocol
Time (ms) Comm. (bits/n) Comm. asymptotic (bits)

216 220 224 216 220 224 nx,ny

Semi-Honest PSI
[KKRT16] 137 2,073 53,933 984n 1008n 1032n 6κnx + 3(λ+ log(nxny))ny

[PRTY20] (w = 2) 763 4,998 123,800 1208n 1268n 1302n 9.3κnx + (λ+ log(nxny))ny

[GPR+21] (w = 3, star) 180 2,268 − 780n 788n 804n 5.6κnx + (λ+ log(nxny))ny

[RS21] (w = 2) 499 4,580 113,994 914n 426n 398n 224nx
0.05 + 307nx + 40ny + log(nxny)ny

Ours (fast) 51 369 6,987
241n 251n 260n 1.3κnx + (λ+ log(nxny))ny + 214.5κ

Ours (fast, MT) 49 163 3,145
Ours (SD) 63 1,353 27,681
Ours (SD, MT) 61 1,107 25,325

206n 180n 196n 1.2 log(nxny)nx + (λ+ log(nxny))ny + 214.5κ

Malicious PSI
[PRTY20] (w = 2) 769 5,196 126,294 1766n 11.8κnx + 2κny

[GPR+21](w = 3, star) 184 2,291 − 1357n 8.6κnx + 2κny

[RS21] (w = 2) 556 5,228 132,951 960n 474n 438n 2.4κnx + κny + 217κnx
0.05

Ours 62 439 8,055
Ours (MT) 65 222 3,984

343n 302n 300n 1.3κnx + κny + 214.5κ

Semi-Honest Circuit PSI
[RS21] (w = 2, IKNP) 1,810 25,300 - 21, 888n 14, 640n - O(nκ`)
[RS21] (w = 2, SilentOT) 5,021 112,421 - 2, 701n 2, 216n - O(n`)
[CGS22] (IKNP+) 2,851 28,723 - 8, 371n 8, 856n - O(nκ`)
[CGS22] (Silver) –Estimated– 2,337 23,840 - 8, 371n 8, 856n - O(n`)
Ours (w = 3, Silver) 1,112 15,557 - 931n 921n - O(n`)

5.2 Private Set Intersection

As discussed in Section 4, we proposed several instantiating of our PSI protocols. The first is our
“fast” variant which is optimized for small running time. The second version, dubbed “SD”, uses
the small domain optimization which achieves low communication overhead. “MT” denotes that 4
threads per party were used.

In all cases our protocols significantly outperform the competition. The previous fastest semi-
honest protocol was that of [KKRT16] which uses a specialized OPRF-type protocol. Our protocols
are between 3 to 8× faster on a single thread. Our protocol sends approximately 2 to 5 times less
data. Moreover, our fast protocol (with clustering) enables a multi threaded implementation, which
brings the overall running time to 0.16 seconds for n = 220, a 13× speedup. Compared to [RS21]
on which our protocol is based, at n = 220 we observe a speedup of 125× for our protocol and 40×
for our low communication protocol while reducing the communication overhead 1.7× and 2.2×,
respectively.
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Our PSI protocols also outperform [GPR+21] in running time and communication by several
fold. [GPR+21] is based on the PSI protocol of [PRTY20] with the original w = 2 OKVS scheme
being replaced with w = 3, star scheme discussed above. Finally, in the malicious setting we observe
that our protocol has almost no additional overhead. As such, we similarly outperform all prior
works by several fold in running time and communication.

Our protocol can also be faster than so called Naive-PSI, where the sender sends the hash of
their items. We are faster this insecure protocol when SHA256 is used. Compared to a slightly less
naive hashing (AES-hashing), the running time and communication could be improved to be about
2× better than ours. For unbalanced set sizes (|X| � |Y |), naive hashing is still a big improvement
due to communication scaling with |Y | and not |X|+ |Y |.

Finally, it can be seen that in Table 2 that our circuit PSI protocol significantly out performs the
prior art in terms of running time and communications. Depending on what we compare with, our
protocol is between 1.5 and 5 times faster and sends 15 to 2 times less data. [CGS22] is arguably
the most competitive, requiring 1.8× more running time and 10× more communication. Their
protocol uses IKNP to evaluate a comparison circuit at the end of their protocol along with several
optimizations. One could then ask if using SilentOT+Silver could make their protocol competitive
with ours. Their asymptotic communication would reduce to the same as ours, O(n`). However,
we argue that it would remain concretely higher due the added overhead of their “relaxed OPPRF”
which necessitates comparing each output with three values, compared to our protocol comparing
with just one. Moreover, their running time would likely remain about the same with the use of
Silver.
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[FK21] Alan Frieze and Michal Karoński. Introduction to random graphs, 2021.
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Parameters: The same as Figure 1 and an upper bound ĝ on the size of the gap.

Encode ((z1, v1), ..., (zn, vn); r) : Perform encode as done in Figure 1 except that step 2 is
replaced with the following. Let H ′ := H,J := ∅. While H ′ has rows:

1. Select j ∈ [m] such that the jth (sparse) column of H ′ has weight 1.

2. Append index j to the ordered list J . Remove the row i ∈ [n] from H ′ for which H ′i,j 6= 0.

Define X to be the set of all subsets of size ≤ ĝ of the remaining rows of H ′. For each X ∈ X,
define H ′X := H ′ \ X, that is, H ′X is the sub-matrix of H ′ without the rows indexed by X.
Also define the ordered list JX := J . While H ′X has rows:

1. Select j ∈ [m] such that the jth (sparse) column of H ′X has weight 1.

2. Append index j to the ordered list JX . Remove the row i ∈ [n] from H ′X for which
H ′X,i,j 6= 0.

Let X∗ be an X of minimum size for which the above process terminates with the removal
of all rows of H ′X . Define δ := |JX∗ |, the gap as g := n − δ, permutation matrices πr ∈
{0, 1}n×n, πc ∈ {0, 1}m×m such that πcm−k,m−δ−k = 1 for k ∈ [0, m̂), πcJX∗,i,m+1−i = 1 and
πrn+1−i,i′ = 1 for some i′ where Hi′,JX∗,i 6= 0 and all i ∈ [δ]. Let

T := πr ·H · πc =

[
A B C
D E F

]
.

where F ∈ {0, 1}δ×δ is lower triangular, B ∈ Fg×m̂, E ∈ Fδ×m̂ are the dense columns.

Decode (~P , z, r) : Perform decode of Figure 1.

Figure 10: Alternative OKVS scheme with Optimal Triangulation.

A OKVS Appendix

A.1 OKVS

Definition 1 (OKVS). An OKVS scheme is defined with respect to a statistical security parameter
λ, a randomness space {0, 1}κ, a key space Z, a value space V, input length n and output length m
. It consists of two algorithms

• A randomized encoding algorithm

Encode : (K × V)n × {0, 1}κ → Vm +⊥

Encode(((k1, v1), ..., (kn, vn)), r)→ P

• A decoding algorithm
Decode : Vm ×K

Decode(P, k, r)→ v
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It is required that

• For all L ∈ (K × V)n it holds that

Pr
r←{0,1}κ

[Encode(L, r) = ⊥] ≤ 2−λ

Note that L is fixed before r is sampled.

• For all L ∈ (K × V)n, r ∈ {0, 1}κ such that Encode(L, r) 6= ⊥, it holds that

Decode(Encode(L, r), k, r) = v

where (k, v) ∈ L.

Definition 2 (Linear OKVS). A OKVS scheme is linear if it is an OKVS scheme and there exists
an function

row : K × {0, 1}κ → Vm

such that for all P ∈ Vm, k ∈ K, r ∈ {0, 1}κ it holds that

Decode(P, k, r) = 〈row(k, r), P 〉

Theorem 1. The OKVS scheme of Figure 1 is linear.

Proof. Trivial.

A.2 Doubly Oblivious Key Value Store (DOKVS)

Definition 3 (DOKVS). A OKVS scheme is doubly oblivious if it is an OKVS scheme and if for
all k1, ..., kn ∈ K, r ∈ {0, 1}κ the D is the uniform distribution over Vm

D(k1, ..., kn, r) :

• Sample v1, ..., vn uniformly from V.

• Compute P := Encode(((k1, v1), ..., (kn, vn), r).

• If P = ⊥, set P ← Vm.

• Output P .

Theorem 2. The scheme of Figure 1 is a DOKVS if step 5 is performed.

Proof. If the scheme outputs ⊥ in step 4, then clearly D outputs the uniformly distribution. Oth-
erwise after step 5 T ∗ ∈ Fm×m is a square and invertible matrix. In addition, v∗ ∈ Fm is uniformly
distributed. Therefore ~P is uniformly distributed.
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Parameters: There are two parties, a sender with set Y ⊂ F and a receiver with a set of key
X ⊆ F. Let ny, nx, nx

′ ∈ Z be public parameters where nx ≤ nx′.

Functionality: Upon receiving (sender, sid, Y ) from the sender and (receiver, sid, X) from the
receiver. If |Y | > ny, abort. If the receiver is malicious and |X| > nx, then abort. If the
receiver is honest and |X| > nx, then abort.
The functionality outputs X ∩ Y to the receiver.

Figure 11: Ideal functionality Fpsi of Private Set Intersection [RS21].

Parameters: There are two parties, a Sender and a Receiver. Let F be an extension field
over base field B. Let m denote the size of the output vectors.

Functionality: Upon receiving (sender, sid) from the Sender and (receiver, sid) from the Re-
ceiver. Sample ~A ← Bm, ~B ← Fm,∆ ← F and compute ~C := ~A∆ + ~B. The functionality
sends ∆, ~B to the Sender and ~C := ~A∆ + ~B, ~A to the Receiver.

Figure 12: Ideal functionality Fsub-vole of semi-honest random Sub-field Vector-OLE.

B Matroids and Hypergraphs

We first look into why the matroid-inspired greedy algorithm that worked for triangulation in the
case of w = 2 does not work for the case of w > 2. To this end, let us attempt defining a matroid for
the case of w > 2. Recall that in the case of w = 2, the matroid corresponding to G = (V,E) was
(E,F ), where F is the family of sets of edges that form forests in G, which was also exactly the set
of sub-graphs whose 2-core was empty. Let us try to do the same for the hypergraph GH = (V,E).
Let us define F to be the set of sub-hypergraphs of GH with empty 2-core. The question is: Does
(E,F ) consistitute a matroid? It turns out that the answer is no. While ∅ ∈ F and F clearly
satisfies the hereditary property (removing hyperedges can only make the 2-core smaller), F does
not necessarily satisfy the exchange property. In other words, it is possible that there exist two
sub-hypergraphs A and B of GH which have empty 2-cores, and A has more hyperedges than B,
however, adding any hyperedge of A to B induces a non-empty 2-core in B. It is not a difficult
exercise to construct examples of this form. More formally, let us define the function f : 2E → {0, 1}
to be the indicator function for non-empty 2-cores, that is, the output of f on a set of hyperedges
is 0 if and only if the corresponding sub-hypergraph has an empty 2-core. Defined this way, it is
easy to see that f is monotone, that is, f(S) ≤ f(T ) for all S ⊆ T . However f is not necessarily
sub-modular or super-modular. Indeed, if S ⊆ T and e ∈ E \ T , then we cannot reliably state
a relationship between f(S ∪ {e}) − f(S) and f(T ∪ {e}) − f(T ) (the marginal benefit of adding
e to S versus the marginal benefit of adding it to T ). Let us consider two cases. First consider
the case of S, T, e such that S has an empty 2-core, while S ∪ {e} and T have non-empty 2-cores.
Then, f(S ∪ {e})− f(S) = 1− 0 = 1 while f(T ∪ {e})− f(T ) = 1− 1 = 0. Next, consider the case
of S, T, e such that S, T and S ∪ {e} have an empty 2-cores, while T ∪ {e} and has a non-empty
2-core. Then, f(S ∪{e})− f(S) = 0− 0 = 0 while f(T ∪{e})− f(T ) = 1− 0 = 1. This leads to the
observation that our aforementioned greedy algorithm is unlikely to even approximate the optimal
peeling of GH .

Given the above, a next approach would be to consider if defining the independent sets differently
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would aid in the development of an efficient greedy algorithm to optimally peel GH . Indeed, a
hypercycle matroid over hypergraphs has been considered in the literature [FKK03, For17]. The
independent sets in this case are known as hyperforests, but unfortunately, the definition of the
hyperforests does allow for them to have non-empty 2-cores.

C Private Set Intersection Proofs

C.1 Subfield Vole PSI

Theorem 3. For |B| ≥ 2λ+log2(nx)+log2(ny) and |F| ≥ 2κ, the Protocol Πpsi realizes the Fpsi func-
tionality against a semi-honest adversary in the Fsub-vole-hybrid model.

Proof. Consider a semi-honest sender. The simulator plays the role of Fsub-vole and provides the
sender with uniform ~B,∆. The simulator a uniform string ~A′ ← Bm on behalf of the receiver.

This simulation is perfect in the Fsub-vole-hybrid. Consider the real interaction where ~A′ = ~A− ~P .
Observe that ~A is uniformly random and therefore ~A′ is also uniformly random, subject to being
correlated with ~C. In particular, for any ~P where exists one ~C resulting in the observed transcript.

Consider a semi-honest receiver. The simulator takes as input the receiver’s set X, the inter-
section Z = X ∩ Y and plays the role of Fsub-vole. As such, it knows the full state of the receiver,
i.e. r, ~A, ~B, ~C,∆, ~P . The simulator computes X ′ and generates a uniformly random Y ′ such that
X ′ ∩ Y ′ = {Ho(~C, z, r) | z ∈ Z}. Therefore the receiver will output Z as required.

To demonstrate the correctness of this simulation, consider the following hybrids:

Hybrid 0: Run the real protocol where the simulator knows Y and plays the role of the sender.

Hybrid 1: At the time r′ is sampled, the simulator aborts if the adversary has queried HB(v, r′) before
for any v. Since r ∈ {0, 1}κ uniformly, the probability of this is at most QB/2κ where QB is
the number of times the adversary has queried HB. QB = O(κ) and therefore the probability
of aborting is negligible.

Hybrid 2: At the time r′ is sampled, the simulator aborts if there exists x ∈ X, y ∈ Y such that

HB(x, r′) = HB(y, r′).

The probability of this is at most nxny/|B| since HB(·, r′) has never been queried and each
output is uniformly random. Therefore, we have the probability being at most 2−λ which is
negligible in the statistical security parameter.

Hybrid 3: At the time r is sampled, the simulator aborts if Encode(L, r) = ⊥. As discussed in Section 3,
the probability of this is negligible in the statistical security parameter λ.

Hybrid 4: Now observe that we have

B′ = ~B + ∆( ~A− ~P )

= ~C −∆ ~A+ ∆( ~A− ~P )

= ~C −∆~P .
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For the items in the intersection z ∈ Z = X ∩ Y we have

(Decode(~C −∆~P , z, r) + ∆HB(z, r′) | z ∈ Z)

=(Decode(~C, z, r)−∆Decode(~P , z, r) + ∆HB(z, r′) | z ∈ Z)

=(Decode(~C, z, r)−∆HB(z, r′) + ∆HB(z, r′) | z ∈ Z)

=(Decode(~C, z, r) | z ∈ Z)

Therefore, for all x ∈ Z, the receiver will indeed find a matching encoding in Y ′.
Now consider the items of Y not in the intersection, Y ∗ = Y \ X. For y∗ ∈ Y ∗, x ∈ X,

correctness of the protocol requires

Decode(~C −∆~P , y∗) + ∆HB(y∗) 6= Decode(~C, x)

∆HB(y∗) 6= Decode(~C, x)− Decode(~C −∆~P , y∗)

HB(y∗) 6= Decode(~C∆−1, x)− Decode(~C∆−1, y∗) + Decode(~P , y∗)

To show that this happens with overwhelming probability. Consider the equivalent distribution
of first fixing all variables on the right hand side and then sampling r′. As such, HB(y∗, r′) is
uniformly random and independent of the right hand side. Therefore for any fixed y∗, x, there is
a |B|−1 probability of equality. Taking the union bound over the choices of y∗, x we obtain the
probability of a collision being at most nxny|B| ≤ 2−λ. This hybrid aborts if such a collision does
occur.

Hybrid 5: This hybrid aborts if any (y∗, x) ∈ Y ∗ × X result in collisions in the corresponding Ho

queries. First observe that the inputs to Ho are distinct, since otherwise Hybrid 3 would have
aborted. Therefore the probability is at most nxny2

−out = 2−λ. Assuming the hybrid does not
abort, observe that the receiver will always output the correct result.

Hybrid 6: This hybrid aborts if the receiver ever queries Ho at Decode ( ~B′, y∗, r) −∆HB(y∗, r′) for
any y∗ ∈ Y ∗. First observe that

Decode( ~B′,y∗, r)−∆HB(y∗, r′)

= 〈 ~B′, row(y∗, r)〉 −∆HB(y∗, r′)

= 〈~C, row(y∗, r)〉 − 〈~∆~P , row(y∗, r)〉 −∆HB(y∗, r′)

= 〈~C, row(y∗, r)〉 −∆(〈~P , row(y∗, r)〉+ HB(y∗, r′))

= ay∗∆ + by∗

where ay∗ = 〈~P , row(y∗, r)〉+ Ho(y∗, r′), by∗ = 〈~C, row(y∗, r)〉.
Consider the receiver prior to receiving Y ′. At this point ∆ is uniformly distributed while they

can compute ay∗ , by∗ for any y∗. For sake of a contraction, let us assume the receiver has made
q1, ..., qw queries to Ho and one of them was qi = ay∗∆ + by∗ for some y∗. Wlog let us assume the
receiver know all y∗ values. Then they could compute the polynomial sized set S = {(qj−by∗)/ay∗ |
j ∈ [w], y∗ ∈ Y ∗} such that ∆ ∈ S. This is a contradiction except with negligible probability since
∆ is uniformly distributed over a set of size 2κ. Therefore these queries have never been made with
overwhelming probability in κ.
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Hybrid 7: For y∗ ∈ Y ∗, instead of computing y′ = Ho(Decode(B′, y∗, r) + ∆HB(y∗, r′)), the simulator
directly samples y′ ← {0, 1}out. This distribution is identical. Moreover, observe that ∆ is never
used and therefore need not be sampled. This hybrid is therefore identical to our final simulation.
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