
A Blockchain-based
Long-term Time-Stamping Scheme

Long Meng, Liqun Chen

Abstract. Traditional time-stamping services confirm the existence time of
data items by using a time-stamping authority. In order to eliminate trust re-
quirements on this authority, decentralized Blockchain-based Time-Stamping
(BTS) services have been proposed. In these services, a hash digest of users’
data is written into a blockchain transaction. The security of such services
relies on the security of hash functions used to hash the data, and of the
cryptographic algorithms used to build the blockchain. It is well-known that
any single cryptographic algorithm has a limited lifespan due to the increasing
computational power of attackers. This directly impacts the security of the
BTS services from a long-term perspective. However, the topic of long-term
security has not been discussed in the existing BTS proposals. In this paper,
we propose the first formal definition and security model of a Blockchain-
based Long-Term Time-Stamping (BLTTS) scheme. To develop a BLTTS
scheme, we first consider an intuitive solution that directly combines the BTS
services and a long-term secure blockchain, but we prove that this solution is
vulnerable to attacks in the long term. With this insight, we propose the first
BLTTS scheme supporting cryptographic algorithm renewal. We show that
the security of our scheme over the long term is not limited by the lifespan
of any underlying cryptographic algorithm, and we successfully implement
the proposed scheme under existing BTS services.

Keywords: time-stamping, blockchain, long-term security

1 Introduction

Digital data has been widely adopted in the modern world. Time-stamping services
are used to prove that a data item existed at a given point in time. For traditional
centralized time-stamping services, a proof is created by a Time-Stamping Authority
(TSA), who after receiving a data item from a user produces a verifiable cryptographic
binding between the data and time, which is referred to as a time-stamp token [1,2].
The security of this type of time-stamping services depends on both the security of
the underlying cryptographic algorithms used to generate the token and the reliability
and trustworthiness of TSAs.

In reality, TSAs may not always be reliable or trustworthy. If a TSA is compro-
mised by an attacker, the validity of the time-stamp tokens from this TSA could be
threatened no matter whether the underlying cryptographic algorithms are still secure
or not. Therefore, the requirement on the reliability and trustworthiness of these
central authorities is concerned as a weakness for traditional time-stamping services.

Since 2008, the innovation of the Bitcoin blockchain [3] has inspired people to
explore more decentralized applications. Blockchain could be regarded as a public
ledger, in which all committed transactions are stored in a chain of blocks [4]. A
blockchain-based ledger has several advantages: (1) A blockchain is a decentralized
system, so it minimizes the trust requirement on central authorities. (2) A blockchain
is tamper-resistant, as transactions are validated by multiple decentralized nodes
before being stored in a block. Once a block is validated and confirmed to be a
part of a blockchain, any malicious modification of the transaction data in the block
can be detected. (3) Each block contains a time-stamp when it is appended to the
blockchain, so it is traceable that all the transactions in the blockchain exist at its
corresponding block creation time.

Based on these advantages, several Blockchain-based Time-Stamping (BTS) ser-
vices have been proposed [5–7]. In the “Proof of Existence” service [7], a web server
collects a data item from a user, computes its hash value and embeds the result into
a blockchain transaction. In the “OpenTimestamps” service [6] and “OriginStamp”
service [8], a web server aggregates data items from users by using a Merkle tree [9],
and inserts the tree root value into a blockchain transaction. The transaction record
and the time-stamp in the block become the proof of existence of data items.

A BTS service makes use of hash functions and digital signature schemes to build
a blockchain, and also uses hash functions to hash users’ data. Obviously, the security
of these services relies on the security of these underlying cryptographic algorithms. It
is well-known that any hash function or signature scheme is only secure for a limited
time period due to the operational life cycle or increasing computational powers
of attackers [10]. Particularly, the upcoming quantum computers are considered to
break most of the broadly-used signature algorithms and to increase the speed of
attacking hash functions. However, for many types of digital data, such as identity
information, health records, history archives etc, the proof of existence of data needs
to be maintained for decades or even permanently, which is much longer than the
lifetime of a single algorithm.

For the purpose of this work, if a scheme is secure in a long period of time that
is not bounded with the lifetimes of its underlying cryptographic algorithms, we say
that the scheme is long-term secure. If a BTS scheme is long-term secure, we refer to
it as a Blockchain-based Long-Term Time-Stamping (BLTTS) scheme. Unfortunately,
the topic of long-term security has not been addressed in the existing BTS services.

In this paper, we propose the first formal definition and security model of a BLTTS
scheme. To construct such a scheme, we initially consider an intuitive solution that
directly combines the existing BTS services and a long-term blockchain scheme [11],
in which the hash functions and signature schemes used to build the blockchain could
be securely transferred to stronger ones. But our proof shows that the solution is
vulnerable to attacks after the hash function to hash user’s data is compromised. In
other words, the state-of-the-art solutions in this field show that a BLTTS scheme
is still missing.

We fill this gap by proposing the first BLTTS scheme, which contains three
solutions supporting the renewal of all underlying cryptographic algorithms. This
is not a trivial target due to following challenges: 1) The cryptographic algorithms

2

are used both inside and outside the blockchain system, a comprehensive timeline to
securely renew every algorithm is required. 2) Blockchain is a complex system that
applies cryptographic algorithms in every block. 3) Each time-stamp renewal must be
timely ordered with connections, since a verifier needs a complete time-stamping chain
to prove the data existed before the earliest time-stamp. We formally prove that the
security of our scheme is unbounded with the lifetime of any underlying cryptographic
algorithm. Finally, we implement this scheme under the existing BTS services “Origin-
Stamp” and “Opentimestamps”, and the results show that our scheme is very efficient.

The remaining part of the paper is arranged as follows. We first review the related
works in Section 2 and some preliminary building techniques in Section 3. In Section 4,
we formally define the syntax and security model of a BLTTS scheme. Then we
propose an intuitive BLTTS solution as an failure example and the first BLTTS
scheme with three solutions as our main contribution in Section 5, and analyze the
long-term security of the proposed scheme in Section 6. In the end, we implement
the proposed scheme in Section 7 and conclude the paper in Section 8.

2 Related works

Traditional time-stamping. In 1990, Haber and Stornetta proposed the first
prototype of digital time-stamping with two techniques: linear linking and random
witness [12]. In 1993, Bayer et al. proposed a solution for time-stamp renewal [13]: the
lifetime of a time-stamp could be extended by time-stamping the (data, time-stamp)
pair with a new implementation before the old implementation is compromised.

In further years, the ideas of [12,13] have been adopted by multiple standards, espe-
cially the ISO/IEC standard [1,14,15] and ANSI standard [2]. Both standards specify
time-stamping mechanisms and renewal mechanisms for long-term time-stamping
services.

In addition, the ideas of [13] have been extended into several long-term integrity
schemes [16–18], but the security analysis of such schemes were not given, until
Geihs et al. formalized this idea separately into a signature-based long-term in-
tegrity scheme [19], and a hash-based long-term time-stamping scheme [20]. These
two schemes provide substantial frameworks for analysing the security of long-term
time-stamping schemes.

Recently, Long et al. proposed and analyzed a comprehensive long-term time-
stamping scheme that allows the renewal of both client-side hash functions and
server-side algorithms [21]. We are inspired from the ideas in [19,20], and [21] for our
proposed schemes and security analysis.

Blockchain-based time-stamping. In 2008, Satoshi Nakamoto created the “Bit-
coin” cryptocurrency system as the first blockchain prototype [3]. After that, dozens
of blockchain-based cryptocurrencies were generated. For example, “Ethereum” was
proposed as a developed blockchain platform that supports the creation of advanced
smart contracts for achievable programs and commands [22]. During the past decade,
there were many research surveys and reports on blockchain systems introducing their

3

structures, models, applications and challenges [4,23–25]. In our paper, the structure
of blockchain showing in Fig. 1 is learned from the remarked surveys and reports.

In 2015, the first BTS service “OriginStamp” was proposed [5]. Solutions similar
to the OriginStamp are the “OpenTimestamps” project [6], and “Proof of Existence”
service [7]. After that, there were many applications built on top of the “Origin-
Stamp” service for various scenarios, which refer to manuscript submission [26],
virtual patents [27], secure videos [28] etc. All of them leverage “OriginStamp” as a
basis for time-stamping services. However, the long-term security of the OriginStamp,
OpenTimestamps and Proof of Existence services has not been analyzed. The details
of the existing BTS schemes are reviewed in Section 5.1.

Apart from the design of BTS services, some researches explored the reliability of
the time-stamps included in the blockchain [29–33]. In these papers, the authors ana-
lyzed that the time-stamps in blockchains are not accurate and could be manipulated
for attacks, and they proposed distinct solutions to this issue: [32], [30] and [29] had
slightly different ideas with leveraging an external TSA since it can provide accurate
time records; [33] claimed to integrate the hash value of a user’s document with a con-
stant number of latest confirmed blocks on the Ethereum blockchain; [31] proposed to
use a smart contract that intermediates between a user and some time-stamp providers
according to some selection strategy on the Ethereum blockhain. These ideas can
be adopted for reliable and accurate blockchain time-stamps in our proposed scheme.

For the topic on how to insert data into a blockchain, Sward et al. provided a
comprehensive survey for inserting arbitrary data into the Bitcoin blockchain [34]. His-
torical approaches were listed: Pay-to-Fake-Key-Hash (PF2KH), Pay-to-Fake-Public
Key (PF2K), OP RETURN, Pay-to-Fake-Multisig (P2FMS), Pay-to-Fake-Script-
Hash (PFSH), Data Drop, and Data Hash Method. The authors made a comparison
between these methods in terms of their efficiency, cost, scalability, and potential weak-
nesses. Besides, Gao et al. proposed a method to store data in the Bitcoin blockchain
by encoding it into Bitcoin addresses [35], which enables more storage space for
additional information of the data (e.g., file names, creator names, keywords). In our
proposed scheme, the data insertion method can be selected based on these researches.

Long-term security of Blockchain. Regarding to the security of cryptographic
algorithms in the blockchain, Giechaskiel et al. analyzed the impacts of broken crypto-
graphic primitives on Bitcoin [36]. This work shows that the compromise of SHA-256,
RIPEMD160 and ECDSA algorithms in the Bitcoin blockchain may cause the steal
of coins, double spending, repudiated payments etc, in which any of them could be
a devastating problem for Bitcoin security.

Following this work, Sato et al. proposed the first long-term blockchain (LTB)
scheme with the renewal of hash functions and signatures used in a blockchain [37],
and Chen et al. proposed an improved LTB scheme [38] to avoid the hard fork caused
by the hash function renewal in [37] when using a proof-of-work blockchain.

Recently, Long et al. observed that [37,38] only defined the transition from the
first algorithm to the second one, and the security of those schemes are not analyzed.
Then they proposed an enhanced LTB scheme [11] that enables algorithm renewal

4

in long-term periods, which has been proved secure under their proposed security
model. The ideas of [11] are reviewed in Section 3.

3 Preliminaries

Blockchains. Blockchains are distributed digital ledgers of signed transactions that
are grouped into blocks. A block is linked to its previous one by using hash functions
after validation and undergoing a consensus decision [25]. In specific, each block is
comprised of a block header and block data. As shown in Fig 1, a block header
contains a block index number, a nonce, a hash value of the previous block header,
a time-stamp, and a Merkle tree root hash value of all block data. The block data
contains a list of transactions along with their corresponding digital signatures.

…… ……

Txi1, Sigi1

mkrootihbi-1

Txi2, Sigi2 Txij, Sigij

Block Bi

Block header

Time ti

NonceBlock No.

……

mkrooti+1 hbi+1hbi

Block Bi+1

Block header

Time ti+1

NonceBlock No.

hbi

Tx(i+1)1, Sig(i+1)1 Tx(i+1)2, Sig(i+1)2 Tx(i+1)j, Sig(i+1)j
……

Fig. 1: The general structure of a blockchain

Blockchain technology utilizes cryptographic hash functions and signature schemes.
In the block Bi in Fig. 1, each transaction is signed by the user who initiates the
transaction, then all the transaction and signature pairs (Txi1, Sigi1),...,(Txij, Sigij)
in the block are aggregated together by using a Merkle tree. The result root hash
value mkrooti is stored in the block header for simplified verification [3]. The block
header is then hashed into a hash value hbi that is stored in the block header of the
next block Bi+1. The signatures enable the network nodes to verify the integrity and
authenticity of transactions, the chaining of hash values between blocks protects the
integrity of block data.

Long-term Blockchain scheme. For a long-term blockchain, we review the ideas
of the secure LTB scheme proposed by Long et al. [11], which could be divided into
a hash transition procedure and a signature transition procedure.

The hash transition procedure (as shown in Fig. 2) is performed by the blockchain
system. Assume at time ti(i ≥ 1) when a hash function Hi−1 becomes weak
but not actually broken, the blockchain already has M blocks generated using
hash function H0, ..., Hi−1 for calculating Merkle tree and block hash values.
The transition from Hi−1 to a stronger hash function Hi is performed with fol-
lowing steps: 1) divide all M blocks into r sets, with s blocks in each set, i.e.,
M = r × s. 2) calculate an archive hash value of each set of blocks using Hi,

5

……

Total M blocks generated

using H0, …, Hi-1

…… ……

r blocks generated using Hi

with archiveHash values

b1 b2 bM

archiveHash archiveHash

bM+1 bM+r

……

bM+r+1 bM+r+2 bM+r+F

F blocks generated using Hi

……

r’ blocks generated using Hi+1

with archiveHash values

archiveHash archiveHash

bM’+1 bM’+r’

……

ti
ti+1 Time

Hi-1 is secure Hi is secure Hi+1 is secure

Fig. 2: The hash transition procedure of the LTB scheme proposed by Long et al.

i.e., archiveHashi1 = Hi(b1, ..., bs), ..., archiveHashir = Hi(b(r−1)s+1, ..., bM),
and stores archiveHashi1, ..., archiveHashir separately in the block header of
bM+1, ..., bM+r. Besides, bM+1, ..., bM+r are generated using Hi for calculating
Merkle tree and block hash values. 3) The new blocks after bM+r are generated
using Hi and they do not include archiveHash fields. Assume at time ti+1 when
Hi becomes weak but still secure, there are total F blocks after bM+r. Then set
M ′ = M + r + F and repeats steps 1-3: divide all M ′ blocks into r′ sets, cal-
culate archive hash values for each set using Hi+1, and store them into future
blocks.

The Signature transition procedure is performed by users. Assume a user utilized
a signature scheme Si−1(i≥1) for signing transactions in the blockchain. At the time
when Si−1 is threatened but still secure, a new key pair should be generated from a
stronger signature scheme Si. Then the users’ transactions should be transferred from
the key pair of Si−1 to the new key pair of Si, by using signature scheme Si−1. i.e.,
sigi←Si−1(txi). The new transaction and signature pair (sigi, txi) is then submitted
to the blockchain. After that, users begin to sign new transactions using Si.

4 Definitions of a BLTTS scheme

In this section, we provide the first formal definition and security model of a Blockchain-
based Long-term Time-stamping (BLTTS) scheme.

4.1 Scheme definition

A BLTTS scheme includes following entities: a user, a blockchain system and a verifier.
The user owns the data item to be time-stamped and sends it to the blockchain. The
blockchain system stores the data in a block, which provides proof of existence of
the data item. The verifier checks the validity of the time-stamp proofs.

Algorithms. A BLTTS scheme is comprised of a tuple of algorithms (BTSGen,
BTSRen, BTSVer), which are defined as follows:

– TS0←BTSGen(C0; D, blc): at time t0, the time-stamp generation algorithm
BTSGen takes input a data item D and a blockchain blc, outputs a time-stamp
proof TS0 by using a set of cryptographic algorithms C0.

6

– TSi←BTSRen(Ci−1, Ci; D, blc)(i∈ [1, n]): at time ti(i∈ [1, n]) when any of the
cryptographic algorithm in Ci−1 is threatened but still secure, the time-stamp
renewal algorithm BTSRen takes input a data item D and the blockchain blc,
outputs a time-stamp proof TSi by using a set of cryptographic algorithms Ci.

– b←BTSVer(D, TS0,..., TSn, blc, VD, tv): at verification time tv, the time-stamp
verification algorithm BTSVer takes input a data item D, a group of time-stamp
proofs TS0,..., TSn, the blockchain blc, the verification data VD (defined in the
further paragraph), and the verification time tv, then outputs a bit b=1 if the
time-stamp proofs are valid on D. Otherwise outputs b=0.

Timet1 t'0 t2 t'1 …… tn t'n-1

c0 is secure c1 is secure c2 is secure cn-1 is secure cn is secure

t0 t'ntn-1

Fig. 3: Timeline of cryptographic algorithm lifetime and renewal

Timeline. Fig. 3 shows the relations between the lifetime and renewal time of
every particular type of cryptographic algorithm ci∈Ci. For i∈ [1, n], ci−1 should
be renewed to a stronger one ci when it becomes weak but still within its lifetime.
In other words, at time ti, ci−1 and ci are secure. We denote the starting usage time
and breakage time of ci separately as c.ti and c.t′i. For C.ti and C.t′i, we mean the
common starting usage time of all ci∈Ci and the breakage time of any ci∈Ci.

Verification data. VD contains necessary data used for the BTSVer algorithm.
Especially, VD must contain the information indicating the start time and breakage
time of every ci∈Ci for i∈ [1, n]. This information can be collected from reliable
sources such as the NIST standard [39,40]. Then at the time of verifying the validity
of algorithms, the block time-stamps and the VD time should be synchronized with
a same criteria, e.g., the global time.

4.2 Security model

In a BLTTS scheme, we make following assumptions:

1. The verification data VD is trusted.
2. Every time a hash function or signature scheme is threatened but still secure, a

stronger hash function or signature scheme is available.

A BLTTS scheme should satisfy two properties: correctness and long-term integrity.
The definitions of these two properties are given as follows:

Correctness. Correctness means that if all entities perform their functions correctly,
a BLTTS scheme is able to prove the existence of data items in long-term periods
that are not bounded with the lifetimes of underlying cryptographic algorithms.

7

Definition 1. (Correctness.) Let BLTTS = (BTSGen, BTSRen, BTSVer) be a
BLTTS scheme. For the scheme to be correct, it must satisfy that if time-stamp
proofs TS0, ..., TSn are generated for any data item D by following the BTSGen
and BTSRen algorithms, at time tv∈ [C.tn, C.t′n], the verification algorithm outputs
BTSVer(D, TS0, ..., TSn, blc, VD, tv)=1.

Long-term Integrity. The long-term integrity measures the probability of an
attacker successfully compromising a BLTTS scheme. Intuitively, we say that an
attacker is able to compromise a BLTTS scheme, if it is able to claim that a data
item exists at a point in time but actually it does not exist, or to tamper with existing
time-stamp proofs without being detected. Thereby, we say that a BLTTS scheme
has long-term integrity if any polynomial time adversary is unable to compromise
the BLTTS scheme in long-term periods that are not bounded with the lifetimes of
underlying cryptographic algorithms.

To formalize this, the long-term integrity model is defined as a game running
between a long-lived adversary A and a simulator B. B has computational resources
comparable to A. A is able to access a clock oracle clk(·) and a blockchain oracle
Blc(·), which are defined as follows:

1. clk(·): P←clk(t). A inputs a time point t to the oracle, the oracle returns the
corresponding computational power P according to the timeline introduced in
Section 4.1. That means, P develops with the increase of t but restricted within
each time period. The ability that A can break or cannot break any algorithm
depends on P .

2. Blc(·): TS←Blc(x), R←R∥(x, TS). A inputs a data item x, the oracle submits
x to the blockchain blc, and returns a time-stamp proof TS by following the
BTSGen or BTSRen algorithm. At the same time, the oracle records x along
with TS in a list R.

The long-term integrity experiment is displayed as Algorithm 1.

Algorithm 1: Long-term integrity (LTI) experiment ExpLTI
BLTTS(A)

1 Input: n, blc, VD
2 Output: a bit 1 or 0
3 Set R = [];

4 (x′, TS0, ..., TSn)←Aclk(·), Blc(·) /* R is updated for Blc(·) queries. */

5 if BTSVer(x′, TS0, ..., TSn, blc, VD, tv)=1 and ∃(x′, TS0, ..., TSn) /∈R. then
6 Return 1;

7 else
8 Return 0;

We use Pr[ExpLTI
BLTTS(A)=1] to denote the probability of A winning the game

in Algorithm 1. By the time tv, we denote the probability that B breaks at least one

8

hash function within its validity period as BCom
H , and the probability that B breaks

at least one signature scheme within its validity period as BCom
S .

Definition 2. (Long-term Integrity.) Let BLTTS=(BTSGen, BTSRen, BTSVer)
be a BLTTS scheme, let A and B be an adversary and a simulator respectively as
specified above. Then the BLTTS scheme holds the long-term integrity property if
for any point in time tv, there exists a constant c such that Pr[ExpLTI

BLTTS(A)=1]≤
c·(BCom

H +BCom
S).

5 The proposed BLTTS scheme

In this section, we first briefly show that why the existing BTS schemes do not satisfy
the security requirement of a BLTTS scheme. Then we propose an intuitive BLTTS
solution that directly combines the existing BTS schemes and the LTB scheme re-
viewed in Section 3, and prove that the solution does not hold the long-term integrity
property of a BLTTS scheme. Thereafter, we propose the first successful BLTTS
scheme, which is comprised of three solutions dependent on how the client-side data is
processed before being written into a blockchain. Finally, we compare the advantages
and drawbacks of each solution. The notation follows that in Table. 1.

n∈N Total number of cryptographic algorithm D Data item to be time-stamped

i∈{0, n} Index number of cryptographic algorithm Ci i-th tuple of cryptographic algorithms

ci a particular type cryptographic algorithm in Ci c.ti, c.t
′
i The starting usage time and breakage time of ci

cHi i-th Client-side hash function sHi, Si i-th server-side hash function and signature scheme

TSi Time-stamp proof generated using Ci blc The blockchain used for time-stamping scheme

tv The verification time of time-stamp proofs hi Hash value computed through cHi

bi The block provides the time-stamp proof TSi txi The transaction stores the data item to be time-stamped

bprei The previous block of bi hbi Hash value of block bi
bidi Index number of block bi sigi The digital signature of txi

mkrooti Merkle tree root value of block data in bi tsi Time-stamp included in block bi
VD The verification data used in BTSVer algorithm pc, ps Client and server-side hash path used in MT algorithm

a⇐b Store parameter b into a a⊆b Parameter a is included in parameter b

root←MT(H; D, p) Merkle tree algorithm that takes input D with a hash path p using hash function H, outputs a root value root

Table 1: Notation

5.1 Existing BTS schemes

The existing Blockchain-based Time-Stamping (BTS) schemes “Proof of existence” [7],
“OpenTimestamps” [6], and “OriginStamp” [5] can be summarized as the black fonts
in Fig. 4.

Since the existing BTS schemes do not specify the BTSRen algorithm, they do
not comply with our BLTTS definition in Section 4.1. It is trivial to prove that the
schemes are vulnerable to attacks after any of cH0, sH0 or S0 is compromised.

9

5.2 Intuitive BLTTS solution

As reviewed in Section 3, the existing LTB scheme [11] supports the secure transition
of server-side algorithms sH0 and S0. Intuitively, the guarantee of a long-term secure
blockchain in the BTS schemes may be able to achieve a BLTTS scheme. Thus, we
add a BTSRen algorithm and corresponding procedures in BTSVer algorithm in the
existing BTS schemes by leveraging the LTB scheme (as the red fonts in Fig. 4).

b ← BTSVer(D, TS0 (…, TSn), blc, VD, tv):

₋ h0 ← MT(cH0; D, pc0)

₋ (h0, tx0) ⊆ b0 ⊆ blc

₋ b0 (…, bn) are valid (include sig, mkroot, hbpre etc)

for i ∊ [1, n], i = i +1: /* verify hash transition */

₋ for k ∊ [M+1, M+r], k = k + 1:

₋ tsk ∊ [sHi-1.t, sHi-1.t’]

₋ archiveHashik ⊆ bk

₋ archiveHashik= sHi(b(k-M-1)s+1, ..., b(k-M-1)s+s)

for i ∊ [1, n], i = i +1: /* verify signature transition */

₋ tsi ∊ [Si-1.t, Si-1.t’]

₋ sigi ← Si−1(txi)

TSi ← BTSRen(Ci-1, Ci; D, blc) (i ∊ [1, n]):

₋ Ci := (sHi, Si)

Hash transition (t ∊ [sHi-1.t, sHi-1.t’]):

for M = r × s, k ∊ [M+1, M+r], k = k + 1:

₋ archiveHashik= sHi(b(k-M-1)s+1, ..., b(k-M-1)s+s)

₋ bk ⇐ archiveHashik

₋ Assume bi ⇐ archiveHashi = sHi(…, b0, …)

₋ TSi := (M, r, tsi, bidi)

Signature transition (t ∊ [Si-1.t, Si-1.t’]):

₋ sigi ← Si−1(txi)

₋ bi ⇐ (sigi, txi)

₋ TSi := (txi, sigi, tsi, bidi)

TS0 ← BTSGen(C0; D, blc):

₋ C0 := (cH0, sH0, S0)

Web server:

₋ h0 ← MT(cH0; D, pc0) (include (h0 = cH0(D))

₋ blc ⇐ b0 ⇐ (tx0, h0)

Blockchain system:

₋ sig0 ← S0(tx0, h0)

₋ mkroot0 ← MT(sH0; (tx0, h0, sig0), ps0)

₋ hbpre0 = sH0(bpre0)

₋ b0 := (mkroot0, hbpre0, (tx0, h0, sig0), ts0, bid0)

₋ TS0 := (tx0, h0, ts0, bid0)

Existing BTS schemes and an intuitive BLTTS solution

Fig. 4: An Intuitive BLTTS solution that directly combines the existing BTS schemes
(black fonts) and a LTB scheme (red fonts)

Now we analyze the long-term security of the intuitive solution based on our
security model proposed in Section 4.2.

Theorem 1. The intuitive BLTTS solution specified in Fig. 4 does not hold long-term
integrity property.

Proof. At time t∈ [cH.t0, cH.t′0], A can firstly submit a hash value of data item
x calculated using cH0 to the oracle Blc(·), i.e., h0 = cH0(x). The oracle returns
TS0 and records (x, TS0) in the list R. After that hash function sH0 and signature
scheme S0 could be transferred to stronger ones before they are compromised. For x,
the hash transition can be described as: sH1(tx0, cH0(x)), the signature transition
can be written as: S0(tx0, cH0(x)). But after cH0 is compromised (tv > cH.t′0),
A is able to output (x′, TS0) with sH1(tx0, cH0(x)) = sH1(tx0, cH0(x

′)) or
S0(tx0, cH0(x))=S0(tx0, cH0(x

′)) that achieves BTSVer(x′, TS0, blc, VD, tv)=1
and (x′, TS0) /∈R with non-negligible probability. Thus, Theorem 1 follows. ⊓⊔

Discussions. If a client-side hash function is used, a BLTTS scheme has two layers of
security: the client-side hash function and server-side algorithms. For the BTS schemes,
the algorithms at both sides are not renewed to stronger ones, so the adversary could
attack any side after the algorithms are compromised. For the intuitive solution,
despite the server-side algorithms can be transferred to stronger ones, the client-side

10

could be attacked. The reason is, the data item is not exposed to the blockchain after
it is hashed. The long-term security at the server-side cannot guarantee the long-term
security at client-side. So far, a BLTTS scheme does not exist. This motivates us to
propose a BLTTS scheme (in Section 5.3) that satisfies long-term integrity.

5.3 Proposed BLTTS scheme with three solutions

Our proposed BLTTS scheme is composed of three different solutions as displayed in
Fig. 5: 1) raw data is time-stamped without using client-side hash functions, 2) the
hash value of data is time-stamped, and 3) the hash value of data together with the last
time-stamp proof is time-stamped. Some parts of the algorithms are referred to Fig. 4.

Remarks. In our scheme, the user plays a similar role to the web server in the
existing BTS services. Note that the security of the web server is not required to be
assumed, because the web server only performs a hash calculation or a Merkle tree
aggregation. Both calculations could be easily verified by the user. Thus, we collectively
call the web server and user as a general “user”, who is behalf of the data item holder.

Our scheme supports both client-side and server-side algorithm renewal. Thus, a
renewed time-stamp proof TS1, ..., TSn could be either for client-side or server-side
renewal. The difference is, the relations between server-side renewal proofs are explicitly
recorded on the blockchain, so these proofs are not necessary to be obtained by users.
On the contrary, the client-side renewal proofs are randomly distributed in blockchain
transactions, users need to collect their proofs as related evidences for verification.

The time-stamps in the blockchain should be reliable and accurate to verify the
start and breakage time of cryptographic algorithms. The solutions could be referred
to related works [29–33,41] in terms of detailed scenarios.

The method to insert a data item, a hash value or a hash value along with a time-
stamp proof into a blockchain transaction depends on 1) which blockchain is selected
for the BLTTS scheme, and 2) the specific size of the inputs. For instance, if a user has
a small input (lower than 80 bytes) to submit on Bitcoin, OP RETURN is the most ef-
ficient choice; for medium amounts of data (between 80 and 800 bytes), P2FMS is the
most cost-effective option; for large amounts of data (beyond 800 bytes), the Data Drop
w/o method provides the least expensive option [34]. The user should select a data in-
sertion method that has enough capacity for the data item and while it is cost-effective.

5.4 Solutions Comparison

As Table 2 shows, we provide a comparison between Solution 1, 2, and 3 in terms
of following factors (as the titles of Table 2 from left to right): 1) the renewal type
that the user needs to perform, 2) whether the time-stamped data is exposed to
public, 3) whether the data size is limited in each transaction, 4) whether the solution
is cost-free, 5) whether there are connections between time-stamp proofs, and 6)
the compatibility with existing BTS services. Then we analyze the best application
scenario for each solution.

In Solution 1, a user directly submits the data item to the blockchain. The only
action required for the user is to renew server-side signature schemes. Time-stamp

11

b ← BTSVer(D, TS0, …, TSn, blc, VD, tv):

₋ (tx0, D) ⊆ b0 ⊆ blc

₋ b0, …, bn (sig, mkroot, hbpre) are valid

Add the BTSVer procedures on Fig. 4 for
verifying hash and signature transitions

TSi ← BTSRen(Ci-1, Ci; D, blc) (i ∊ [1, n]):

₋ Ci := (sHi, Si)

Same as the BTSRen algorithm in Fig. 4

₋ Hash transition: TSi := (M, r, tsi, bidi)

₋ Signature transition: TSi := (txi, sigi, tsi, bidi)

TS0 ← BTSGen(C0; D, blc):

₋ C0 := (sH0, S0)

User:

₋ blc ⇐ b0 ⇐ (tx0, D)

Blockchain system:

Change every h0 to D in BTSGen of Solution 2

₋ TS0 := (tx0, D, ts0, bid0)

Solution 1: Time-stamp the raw data

b ← BTSVer(D, TS0, …, TSn, blc, VD, tv):

for i ∊ [1, n], i = i+1: /* verify client-side hash renewal */

₋ tsi ∊ [cHi-1.t, cHi-1.t’]

₋ hi ← MT(cHi; D, pci)

₋ (txi, hi) ⊆ bi ⊆ blc

₋ bi (sigi, mkrooti, hbprei) is valid

Add the BTSVer procedures on Fig. 4 for verifying
hash and signature transitions

TSi ← BTSRen(Ci-1, Ci; D, blc) (i ∊[1, n]):

₋ Ci := (cHi, sHi, Si)

Client-side hash renewal (t ∊ [cHi-1.t, cHi-1.t’]):

User:

₋ hi ← MT(cHi; D, pci) (include (hi = cHi(D))

₋ blc ⇐ bi ⇐ (txi, hi)

Blockchain system:

Change every index from 0 to i in BTSGen

₋ TSi := (txi, hi, tsi, bidi)

Add the BTSRen algorithm in Fig. 4

₋ Hash transition: TSi := (M, r, tsi, bidi)

₋ Signature transition: TSi := (txi, sigi, tsi, bidi)

TS0 ← BTSGen(C0; D, blc):

₋ C0 := (cH0, sH0, S0)

User:

₋ h0 ← MT(cH0; D, pc0) (include (h0 = cH0(D))

₋ blc ⇐ b0 ⇐ (tx0, h0)

Blockchain system:

₋ sig0 ← S0(tx0, h0)

₋ mkroot0 ← MT(sH0; (tx0, h0, sig0), ps0)

₋ hbpre0 = sH0(bpre0)

₋ b0 := (mkroot0, hbpre0, (tx0, h0, sig0), ts0, bid0)

₋ TS0 := (tx0, h0, ts0, bid0)

Solution 2: Time-stamp the hash value of the data

b ← BTSVer(D, TS0, …, TSn, blc, VD, tv):

for i ∊ [1, n], i = i+1:

₋ tsi ∊ [cHi-1.t, cHi-1.t’]

₋ hi ← MT(cHi; D, pci)

₋ (txi, hi‖TSi-1) ⊆ bi ⊆ blc

₋ bi (sigi, mkrooti, hbprei) is valid

Add the BTSVer procedures on Fig. 4 for verifying
hash and signature transitions

TSi ← BTSRen(Ci-1, Ci; D, blc) (i ∊ [1, n]):

₋ Ci := (cHi, sHi, Si)

Client-side hash renewal (t ∊ [cHi-1.t, cHi-1.t’]):

User:

₋ hi ← MT(cHi; D, pci)

₋ blc ⇐ bi ⇐ (txi, hi‖TSi-1)

Blockchain system:

Change hi to hi‖TSi-1 in BTSRen of Solution 2

₋ TSi := (txi, hi‖TSi-1, tsi, bidi)

Add the BTSRen algorithm in Fig. 4

₋ Hash transition: TSi := (M, r, tsi, bidi)

₋ Signature transition: TSi := (txi, sigi, tsi, bidi)

TS0 ← BTSGen(C0; D, blc):

₋ C0 := (cH0, sH0, S0)

User:

₋ h0 ← MT(cH0; D, pc0) (include (h0 = cH0(D))

₋ blc ⇐ b0 ⇐ (tx0, h0)

Blockchain system:

Same as the BTSGen in Solution 2

₋ TS0 := (tx0, h0, ts0, bid0)

Solution 3: Time-stamp the hash value of the data and the previous proof

Fig. 5: Proposed BLTTS scheme with three solutions

proofs generated from server-side hash and signature transitions can be both col-
lected from the blockchain with connections, so the user does not have to hold any
time-stamp proof for verification. Since the data is not hashed and compressed, it
is publicly readable and the data size is limited in each transaction. The existing
BTS services only allow the insertion of hash value of the data item into a blockchain
transaction, thus this solution is not compatible with the services. A user needs to

12

Solutions Cryptographic renewal Data exposure Data size limit Costs Time-stamp Compatibility with
performed by users per transaction connection existing BTS services

1 Server-side Exposed Limited Not free Both sides Not compatible
signature scheme are connected

2 Client-side hash function and Not exposed Unlimited Can be free Only server-side Compatible
server-side signature scheme is connected

3 Client-side hash function and Not exposed Unlimited Not free Both sides Not compatible
server-side signature scheme are connected

Table 2: Comparison between Solution 1, 2 and 3 with multiple factors

insert data individually with a minimum non-dust amount of money for validating
a transaction if the blockchain is used for cryptocurrency.

In Solution 2, a user submits a hash value of data item(s) to the blockchain. The
user needs to renew both client-side hash functions and server-side signature schemes.
Time-stamp proofs for server-side renewal are connected, but time-stamp proofs from
client-side are just hash values without connections. The user needs to collect all
time-stamp proofs for client-side hash renewal for verification. The data item is not
exposed and the data size is unlimited because it is hashed, and it is the only form
that the existing BTS services accept. Especially, Opentimestamps and OriginStamp
provide free time-stamping services.

In Solution 3, a user submits a hash value of data item(s) with a previous
time-stamp proof to the blockchain, which brings connections for time-stamp proofs
generated from client side. The user only provides the last client-side time-stamp
proof for verification. Besides, both client-side hash functions and server-side signature
schemes are renewed by the user. Since the data item is hashed, it preserves data
nondisclosure and unlimited data size. But the nested time-stamp proofs in TSi−1 will
be harder to be inserted when the size becomes much bigger. This form of submission
is not accepted by the existing BTS services, thus it also requires self-insertion by
the user with a minimum non-dust amount of money for each transaction.

In summary, if data’s privacy is not a primary goal to be considered, and the size
of data is small enough to be inserted, Solution 1 is the perfect choice for users due
to its convenience; if the nondisclosure of data is critical to be protected, or the data
size is large, or the user cares most about the cost, Solution 2 is the best choice that
can be implemented by the existing free BTS services; if data’s nondisclosure and size
matters, but the existence of data is required to be proved for a very long time, such as
hundreds of years. It may be hard to keep every time-stamp proof for verification, then
Solution 3 is a good option because it provides connections between time-stamp proofs.

6 Security analysis

We now prove that the proposed BLTTS scheme holding each security property in
terms of the security models and definitions in Section 4.2.

13

6.1 Proof of correctness

Theorem 2. The proposed BLTTS scheme holds the correctness property.

Proof. In terms of the definition of correctness, we assume that a group of time-stamp
proofs TS0, ..., TSn of a data item D are generated through algorithm BTSGen and
BTSRen legitimately. At time tv∈ [C.tn, C.t′n], the algorithm BTSVer takes input
D, TS0, ..., TSn, VD, blc and tv, and the verifications cover three parts: 1) the
correctness of client-side renewal, 2) the connections between data item, transaction,
block and the blockchain, and 3) the correctness of server-side renewal. We now
analyze the output of BTSVer:

For Solution 1, by using algorithm BTSGen, the data item D is submitted to a
block transaction tx0 on block b0 from blockchain blc. Then the client-side renewal
is not required, and the connections between D, tx0, b0 and blc is guaranteed. By
using algorithm BTSRen, the hash transition and signature transition can be both
implemented before the previous server-side hash function sHi−1 or signature scheme
Si−1 is compromised, thus the BTSVer algorithm outputs 1 and Solution 1 is correct.

For Solution 2 and 3, by using algorithm BTSGen, a hash representation h0 of D
is calculated by cH0 and submitted to tx0 on block b0 from blc. Then if the algorithm
BTSRen performs correctly, a new hash representation hi(i≥1) of D is calculated
by using a stronger hash function cHi before the previous one cHi−1 is compromised,
and hi (or hi∥TSi−1) is submitted to txi on block bi from blc. Thus, the client-side
renewal of both solutions are correct, the connections between h0, tx0, b0 and blc,
and the connections between hi (or hi∥TSi−1), txi, bi and blc are guaranteed. Same
as Solution 1, the server-side hash transition and signature transition can be both
implemented at the correct time by algorithm BTSRen, thus the BTSVer algorithm
outputs 1 and Solution 2 and 3 are correct, then the theorem follows. ⊓⊔

6.2 Proof of long-term integrity

Theorem 3. Assume the verification data VD is trusted, and every time a hash
function or signature scheme is threatened but still secure, a stronger hash function or
signature scheme is used for renewal respectively, then the proposed BLTTS scheme
holds long-term integrity property.

As the experiment defined in Section 4.2, the adversary A is able to input data item
(or hash representation) to the blockchain oracle Blc(·) for obtaining time-stamp
proofs. Thus, the long-term integrity of the scheme addresses the long-term security
of server-side algorithms, and of the client-side hash functions. That means A can
win the game through following two cases:

– Case 1: A correctly computes the hash representations of data items aligning
with the VD archive, but wins the game by outputting a valid time-stamp, which
was not through the blockchain oracle Blc(·).

– Case 2: A correctly queries the blockchain oracle Blc(·), but wins the game by
outputting a valid time-stamp, which was not aligned with the VD archive.

14

We use Pr[ExpLTI, C1
BLTTS (A)=1] and Pr[ExpLTI, C2

BLTTS (A)=1] to denote the probability
of A winning the game through Case 1 and Case 2 respectively. We use BCom

cH ,
BCom
sH , and BCom

S to denote the probability that B breaks at least one client-side hash
function, at least one server-side hash function, and at least one server-side signature
scheme within their validity periods respectively. Then we prove Theorem 3 from
Lemma 1 and Lemma 2 corresponding to Case 1 and Case 2.

Lemma 1. There exists a constant c such that Pr[ExpLTI, C1
BLTTS (A)=1]≤c·(BCom

sH +
BCom
S).

Proof. Since we adopt the existing LTB scheme [11] for server-side algorithm renewal,
their proofs show that the LTB scheme satisfies the following two properties:

– Long-term integrity: there is negligible probability that A is able to claim a
non-existed data item or to tamper data in any existing blocks on the blockchain
without being detected in long-term periods.

– Long-term unforgeability: there is negligible probability that A is able to outputs
a message m along with a valid signature s on m, and m was not previously
signed by S on the blockchain in long-term periods.

More accurately, the proof of [11] reduces the probability that a polynomial-time
adversary A wins the game through tampering any block data or forging any sig-
nature on the blockchain to the probability that B breaks at least a server-side hash
function or signature scheme within its validity period, which is negligible. Thus,
Pr[ExpLTI, C1

BLTTS (A)=1]≤c·(BCom
sH +BCom

S) holds, and Lemma 1 follows. Besides, it
directly leads to Theorem. 3 holding for Solution 1 in the BLTTS scheme since only
server-side algorithms are used in the solution.

Lemma 2. There exists a constant c such that Pr[ExpLTI, C2
BLTTS (A)=1]≤c·(BCom

cH).

Proof. In Case 2, A wins the game by outputting time-stamp proofs TS0, ..., TSn on
a distinct data item x′≠x, so that BTSVer(x′, TS0, ..., TSn, VD, blc, tv)=1. Besides,
at time ti for i∈ [1, n], the two corresponding client-side hash function cHi−1 and cHi

used by A must be both collision resistant. Now let us check the following reasoning:
At time t0, A computes a hash representation MT(cH0; x, pc0) of a data item

x (pc0 is empty for the case of a single hash computation of D), and obtains a
time-stamp proof TS0 from the blockchain oracle Blc(·). Assume hash function cH0

is collision resistant at t0.
At time t1, A decides to renew the time-stamp proof TS0 by using a stronger

hash function cH1. Since hash functions cH0 is still collision resistant at this time, A
can compute either MT(cH1; x, pc1) and obtain a new time-stamp proof TS1 (Case
a), or A computes MT(cH1; x

′, pc′1) and obtain TS1 (Case b) from the oracle Blc(·).
If A wins the game after Case b happens, it must hold that MT(cH0; x, pc0) =
MT(cH0; x

′, pc′0). Correspondingly, B can obtain the pair ((x, pc0), (x
′, pc′0)) to

break the collision resistance of cH0 within its validity period. This result is contradict
to the assumption that cH0 is collision resistant at t1. If Case a happens, let us carry
on with our reasoning. We now assume that cH1 is collision resistant at time t1.

15

At time t2, cH0 may have been broken, but we assume that cH1 is still colli-
sion resistant, and the hash representation MT(cH1; x, pc1) is a part of TS1. Now
repeating the previous situation, A can compute either MT(cH2; x, pc2) and ob-
tains TS2 (Case a), or determine MT(cH2; x

′, pc′2) and obtain TS2 (Case b) from
the oracle Blc(·). Again, if A wins the game after Case b happens, it must hold
that MT(cH1; x, pc1)=MT(cH1; x

′, pc′1). Correspondingly, B can obtain the pair
((x, pc1), (x

′, pc′1)) to break the collision resistance of cH1 within its validity period,
which contradicts the assumption, and Case a leads us to continue our reasoning.

Carrying on our argument as before, only Case a for each time-stamp proof
renewal is considered. We assume that cHn−1 is collision resistant at both tn−1 and
tn, and the hash representation MT(cHn−1; x, pcn−1) is a part of TSn−1. If A finally
wins the game after computes MT(cHn; x

′, pc′n) and obtains TSn from the oracle
Blc(·), MT(cHn−1; x, pcn−1)=MT(cHn−1; x

′, pc′n−1) must hold. Then B can obtain
the pair ((x, pcn−1), (x

′, pc′n−1)) to break the collision resistance of cHn−1 within
its validity period.

In summary, based on the above reasoning, the probability that A wins the game
through Case 2 is reduced to the same level of the probability that B breaks at least
one client-side hash function within its validity period. Thus, Pr[ExpLTI, C2

BLTTS (A)=
1]≤c·(BCom

cH) holds, and Lemma 2 follows. ⊓⊔
Combining Lemma 1 and Lemma 2, the winning probability of A from both Case

1 and Case 2 is reduced to the same level of the probability that B breaks at least one
client-side hash function, or at least one server-side hash function, or at least one server-
side signature scheme within its validity period. There exists a constant c such that:

Pr[ExpLTI
BLTTS(A)=1]=Pr[ExpLTI, C1

BLTTS (A)=1]+Pr[ExpLTI, C2
BLTTS (A)=1]

≤ c·(BCom
cH +BCom

sH +BCom
S)

(1)

With aggregating BCom
cH and BCom

sH , we have:

Pr[ExpLTI
BLTTS(A)=1] ≤ c·(BCom

H +BCom
S).

Thus, we have proved Theorem 3.

7 Implementations

We implement the main contribution of Solution 2 - client-side hash renewal under
the existing BTS services “OriginStamp” and “Opentimestamps” (The server-side
algorithm renewal have been implemented in [11]). In a nut shell, we chose a mp3
file as the data item to be time-stamped, and uploaded the file to the services for
three times to simulate the long-term time-stamping process. In each time, the web
server calculated the Merkle tree root value and inserted it to a Bitcoin transaction.
After the transaction is committed, the web server returned us a time-stamp proof
for future verification. The hash function used are all SHA-256 since currently it is
secure and applied in the services, but this can be replaced by stronger hash function
when SHA-256 is proved weak. The evaluations in the end showing our scheme can be
deployed in the existing BTS services easily and efficiently. The details are provided
in Appendix A due to the page limit.

16

8 Conclusions

In this paper, we define the first formal definition and security model for a BLTTS
scheme, and analyze that the existing BTS services simply combining with the
existing LTB scheme could only prove the existence of data in short-term periods.
We observe that for a BLTTS scheme, the security is comprised of two folds: the
client-side hash functions and server-side algorithms. A BLTTS scheme must support
the cryptographic renewal for both of these algorithms. Then we propose the first
BLTTS scheme with three solutions based on different client-side data formats. We
analyze that our scheme satisfies the long-term integrity property, and finally we
implement our scheme under existing BTS services and found that it is very efficient
and easy to deploy it in real applications.

17

References

1. ISO/IEC 18014-1:2008. Information technology – Security techniques – Time-stamping
services – part 1: Framework. Standard, 2008.

2. American National Standard Institute (ANSI). ANSI X9.95-2016 – Trusted Timestamp
Management and Security, 2016.

3. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, 2008.
4. Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang.

Blockchain challenges and opportunities: A survey. International Journal of Web and
Grid Services, 14(4):352–375, 2018.

5. Bela Gipp, Norman Meuschke, and André Gernandt. Decentralized trusted
timestamping using the crypto currency bitcoin. arXiv preprint arXiv:1502.04015, 2015.

6. P Todd. Opentimestamps: Scalable, trust-minimized, distributed timestamping with
bitcoin. Peter Todd [Internet], 15, 2016.

7. Proof of existence. https://www.proofofexistence.com/.
8. Thomas Hepp, Alexander Schoenhals, Christopher Gondek, and Bela Gipp. Originstamp:

A blockchain-backed system for decentralized trusted timestamping. IT-Information
Technology, 60(5-6):273–281, 2018.

9. Ralph C Merkle. A certified digital signature. In Conference on the Theory and
Application of Cryptology, pages 218–238. Springer, 1989.

10. Arjen K Lenstra. Key length. Contribution to the handbook of information security. 2004.
11. Long Meng and Liqun Chen. An enhanced long-term blockchain scheme against

compromise of cryptography. Cryptology ePrint Archive, Report 2021/1606, 2021.
https://ia.cr/2021/1606.

12. Stuart Haber and W Scott Stornetta. How to time-stamp a digital document. In Con-
ference on the Theory and Application of Cryptography, pages 437–455. Springer, 1990.

13. Dave Bayer, Stuart Haber, and W Scott Stornetta. Improving the efficiency and
reliability of digital time-stamping. In Sequences II, pages 329–334. Springer, 1993.

14. ISO/IEC 18014-2:2009. Information technology – Security techniques – Time-stamping
services – part 2: Mechanisms producing independent tokens. Standard, 2009.

15. ISO/IEC 18014-3:2009. Information technology – Security techniques – Time-stamping
services – part 3: Mechanisms producing linked tokens. Standard, 2009.

16. Stuart Haber and Pandurang Kamat. A content integrity service for long-term digital
archives. In Archiving Conference, volume 2006, pages 159–164. Society for Imaging
Science and Technology, 2006.

17. T Gondrom, R Brandner, and U Pordesch. Evidence Record Syntax (ERS). Request
For Comments–RFC, 4998, 2007.

18. Dimitris Lekkas and Dimitris Gritzalis. Cumulative notarization for long-term
preservation of digital signatures. Computers & Security, 23(5):413–424, 2004.

19. Matthias Geihs, Denise Demirel, and Johannes Buchmann. A security analysis of
techniques for long-term integrity protection. In 2016 14th Annual Conference on
Privacy, Security and Trust (PST), pages 449–456. IEEE, 2016.

20. Ahto Buldas, Matthias Geihs, and Johannes Buchmann. Long-term secure time-
stamping using preimage-aware hash functions. In International Conference on Provable
Security, pages 251–260. Springer, 2017.

21. Long Meng and Liqun Chen. Analysis of client-side security for long-term time-stamping
services. In International Conference on Applied Cryptography and Network Security
(ACNS), pages 28–49. Springer, 2021.

22. Vitalik Buterin et al. A next-generation smart contract and decentralized application
platform. White Paper, 3(37), 2014.

18

https://ia.cr/2021/1606

23. Bruno Tavares, Filipe Figueiredo Correia, and André Restivo. A survey on blockchain
technologies and research. Journal of Information Assurance and Security, 14:118–128,
2019.

24. Hussein Hellani, Abed Ellatif Samhat, Maroun Chamoun, Hussein El Ghor, and Ahmed
Serhrouchni. On blockchain technology: Overview of bitcoin and future insights. In
2018 IEEE International Multidisciplinary Conference on Engineering Technology
(IMCET), pages 1–8. IEEE, 2018.

25. Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. Blockchain technology overview.
arXiv preprint arXiv:1906.11078, 2019.

26. Bela Gipp, Corinna Breitinger, Norman Meuschke, and Joeran Beel. Cryptsubmit:
introducing securely timestamped manuscript submission and peer review feedback
using the blockchain. In 2017 ACM/IEEE Joint Conference on Digital Libraries
(JCDL), pages 1–4. IEEE, 2017.

27. Corinna Breitinger and Bela Gipp. Virtual patent-enabling the traceability of ideas
shared online using decentralized trusted timestamping. In Proceedings of the 15th
International Symposium of Information Science, pages 89–95, 2017.

28. Bela Gipp, Jagrut Kosti, and Corinna Breitinger. Securing video integrity using
decentralized trusted timestamping on the bitcoin blockchain. In Mediterranean
Conference on Information Systems (MCIS). Association For Information Systems, 2016.

29. Angelos Stavrou and Jeffrey Voas. Verified time. Computer, 50(3):78–82, 2017.
30. Guangkai Ma, Chunpeng Ge, and Lu Zhou. Achieving reliable timestamp in the bitcoin

platform. Peer-to-Peer Networking and Applications, 13:2251–2259, 2020.
31. Gabriel Estevam, Lucas M Palma, Luan R Silva, Jean E Martina, and Mart́ın Vigil.

Accurate and decentralized timestamping using smart contracts on the ethereum
blockchain. Information Processing & Management, 58(3):102471, 2021.

32. Pawel Szalachowski. (short paper) towards more reliable bitcoin timestamps. In 2018
Crypto Valley Conference on Blockchain Technology (CVCBT), pages 101–104. IEEE,
2018.

33. Yuan Zhang, Chunxiang Xu, Nan Cheng, Hongwei Li, Haomiao Yang, and Xuemin
Shen. Chronos+: An accurate blockchain-based time-stamping scheme for cloud storage.
IEEE Transactions on Services Computing, 13(2):216–229, 2019.

34. Andrew Sward, Ivy Vecna, and Forrest Stonedahl. Data insertion in bitcoin’s blockchain.
Ledger, 3, 2018.

35. Yuefei Gao and Hajime Nobuhara. A decentralized trusted timestamping based on
blockchains. IEEJ Journal of Industry Applications, 6(4):252–257, 2017.

36. Ilias Giechaskiel, Cas Cremers, and Kasper Bonne Rasmussen. On bitcoin security in
the presence of broken crypto primitives. IACR Cryptol. ePrint Arch., 2016:167, 2016.

37. Masashi Sato and Shin’ichiro Matsuo. Long-term public blockchain: Resilience against
compromise of underlying cryptography. In 2017 26th International Conference on
Computer Communication and Networks (ICCCN), pages 1–8. IEEE, 2017.

38. Fengjun Chen, Zhiqiang Liu, Yu Long, Zhen Liu, and Ning Ding. Secure scheme
against compromised hash in proof-of-work blockchain. In International Conference
on Network and System Security, pages 1–15. Springer, 2018.

39. National Institute of Standards and Technology (NIST). Nist policy on hash functions.
Standard, 2017. Online available: https://csrc.nist.gov/projects/hash-functions/nist-
policy-on-hash-functions.

40. National Institute of Standards and Technology (NIST). Digital signature standard
(dss). Standard, 2013.

41. Yuan Zhang, Chunxiang Xu, Hongwei Li, Haomiao Yang, and Xuemin Shen. Chronos:
Secure and accurate time-stamping scheme for digital files via blockchain. In ICC 2019-
2019 IEEE International Conference on Communications (ICC), pages 1–6. IEEE, 2019.

19

A Implementations

In order to simulate our BLTTS scheme in a real block system, we test the client-side
hash renewal in the Solution 2 of our proposed scheme by leveraging the existing
BTS services “OriginStamp” and “Opentimestamps”. Specifically, we upload a mp3
file called “Blue Moon” to the services at three distinct dates, the services compute
the hash value of our file and the Merkle tree root hash value for our file and others,
insert the results respectively into three blocks on Bitcoin blockchain, and returns
us time-stamp proofs after the blocks are confirmed. Although all of the hash values
are determined by the same hash function SHA-256 since now it is secure, we can
operate in the same way when SHA-256 becomes weak and a new option is available.

A.1 Time-stamping process

As an example, we illustrate the first time-stamping process implemented on 5th

April, 2021 in detail as the following:
After we submit the mp3 file to the OriginStamp service, the returning time-stamp

proof is shown as Fig. 6. The title records the submission time of the mp3 file, which
is 00:01:32, 5th April, 2021; the string after “Hash” is the hash value of our file
computed by SHA-256; the string after “Root Hash” is the Merkle tree root hash
value of our file and other files; and the string after “Transaction” is the transaction
ID (hash value of the transaction) that indicates the particular transaction contain-
ing the “Root Hash”. The time-stamp proof is publicly accessible at the website
https://www.blockchain.com/explorer by searching block number 677785, or the
transaction ID shown on Fig. 6.

Fig. 6: First part of the time-stamp proof

Thereafter, we submit the same file to the Opentimestamp service twice separately
at 11:32:06, 9th August, 2021, and 17:02:21, 12th August,2021 to simulate the BTSRen
algorithm. The time-stamp proof can be found on block 694946, with transaction

20

https://www.blockchain.com/explorer

ID “2d3279e70ff2f2b14efce10c95c3b3e72f6c41ad95c538ef91018f70feea446d” and on
block 695443, with transaction ID “418e002df581bcb670ebfc2f24f5db7b8d777b9114
f53f32279c979229373d36” respectively.

A.2 Verification

In terms of the verification procedures specified in 5.3, it is straightforward to verify
that the hash representation (“Root Hash”) of our file is stored with the Bitcoin
transaction, the transaction is confirmed in Bitcoin blockchain, and the server-side
algorithms under Bitcoin blockchain are currently secure. Then we can also verify
that the hash value of the mp3 file and the “Root Hash” value are correctly calculated
by using the SHA-256 hash function. At last, every time-stamp proof is generated
when the client-side hash function is secure, the file is proved existed at the time
displayed on the earliest time-stamp proof. In our experiments, we can prove that
the mp3 file “Blue Moon” existed at 01:00, 5th April, 2021 even the SHA-256 hash
function is later compromised.

A.3 Evaluation

We evaluate our scheme from the following four aspects: network delay, storage
overhead, service fee, and operability.

Network delay. There is a delay between the submission time of the file and the
confirmation time of the transaction. In terms our experiments, this delay is around
60 minutes for Bitcoin. For our scheme, if only the user submits the file when the
client-side hash function is not actually compromised, the proof of existence of the file
is succeed. Based on the SHA-1 breakage example, it will take years from theoretical
attacks to a practical attack, thus this delay is acceptable.

Storage overhead. Our implementation of Solution 2 only adds a hash value
into the blockchain at once, the overhead depends on the output size of the used hash
function. For SHA-256 function, the output size is 256 bits. If the output size of new
hash functions increases in the future, such as 512 bits, 1024 bits etc, it will bring
bigger overhead at that time. But there are different data insertion methods, some
of them allows bigger data size to be submitted. The overhead is manageable if only
the output size of the new hash function does not increase to a considerable level.

Service fee. The consumed costs of our scheme depends on which BTS service
is used. For Proof of Existence service, the submission of every single file costs 0.25
mBTC ≈ 8.3 GBP; the Opentimestamp service is free of charge; and the Originstamp
service provides both free service and subscription plans for different levels of service.
To be cost-effective, the Opentimestamp and Originstamp services are optimal choices.

Operability. Our scheme only requires users to submit their files to any of the
BTS service or with their Bitcoin transactions after they know the hash function is
needed to be updated. As the above discussed, it is not required for a very accurate
date or time. A user can take only several seconds to submit the file, wait 1 hour to
get the time-stamp proof during several years. The operations are simple and efficient.

21

	A Blockchain-based Long-term Time-Stamping Scheme

