
Low-Communication Multiparty Triple
Generation for SPDZ from Ring-LPN

Damiano Abram and Peter Scholl

Aarhus University, Aarhus, Denmark
{damiano.abram, peter.scholl}@cs.au.dk

Abstract. The SPDZ protocol for multi-party computation relies on a
correlated randomness setup consisting of authenticated, multiplication
triples. A recent line of work by Boyle et al. (Crypto 2019, Crypto 2020)
has investigated the possibility of producing this correlated randomness
in a silent preprocessing phase, which involves a “small” setup protocol
with less communication than the total size of the triples being produced.
These works do this using a tool called a pseudorandom correlation gen-
erator (PCG), which allows a large batch of correlated randomness to
be compressed into a set of smaller, correlated seeds. However, existing
methods for compressing SPDZ triples only apply to the 2-party setting.
In this work, we construct a PCG for producing SPDZ triples over large
prime fields in the multi-party setting. The security of our PCG is based
on the ring-LPN assumption over fields, similar to the work of Boyle et
al. (Crypto 2020) in the 2-party setting. We also present a correspond-
ing, actively secure setup protocol, which can be used to generate the
PCG seeds and instantiate SPDZ with a silent preprocessing phase. As
a building block, which may be of independent interest, we construct a
new type of 3-party distributed point function supporting outputs over
arbitrary groups (including large prime order), as well as an efficient
protocol for setting up our DPF keys with active security.

1 Introduction

Multi-party computation (MPC) allows a set of parties to securely compute on
private inputs, while learning nothing but the desired result of the computa-
tion. Modern MPC protocols often use a source of secret, correlated randomness,
which can be distributed to the parties ahead of time, and used to help improve
efficiency of the protocol. This is especially important in the dishonest majority
setting, where up to n− 1 out of n parties may be corrupted, since these types
of protocols rely on expensive, ‘public key’-type cryptographic primitives.

For instance, the SPDZ family of protocols [DPSZ12,DKL+13], which achieves
active security with a dishonest majority, uses preprocessed, authenticated mul-
tiplication triples, to achieve a very fast online phase where the computation
takes place. Multiplication triples, coming from the work of Beaver [Bea92], are
triples of random, secret-sharings of values a, b, c over some ring, where c = a · b,
and allow protocols to offload the heavy work of MPC multiplication to the

preprocessing phase. Unfortunately, producing these triples, although it can be
done ahead of time, is still an expensive process in terms of computation, com-
munication and storage costs, since typically a very large number of triples is
required, for any reasonably complex computation.

Most current techniques for triple generation are either based on homomor-
phic encryption [DPSZ12, DKL+13, KPR18] or oblivious transfer [KOS16]. Ho-
momorphic encryption is computationally expensive and also incurs moderately
high communication costs (especially due to the use of zero-knowledge proofs for
active security), while oblivious transfer is much cheaper computationally, but
requires a large amount of bandwidth.

More recently, Boyle et al. [BCG+19b] proposed using pseudorandom corre-
lation generators to produce a large amount of correlated randomness without
interaction, starting from only a short set of correlated seeds. More concretely,
a PCG consists of a seed-generation algorithm, Gen, which outputs a set of cor-
related seeds κ0, . . . , κn−1, one given to each party. There is then an Expand al-
gorithm, which deterministically expands κi into a large amount of correlated
randomness Ri. The security requirements are that the expanded outputs (Ri)i
should be indistinguishable from a sample from the target correlation, and fur-
thermore, knowing a subset of the keys should not reveal any information about
the missing outputs (beyond what can be deduced from their evaluation). This
paradigm offers the potential to greatly reduce communication in the preprocess-
ing of MPC protocols, while also reducing storage costs for the necessary corre-
lated randomness, since the PCG seeds need only be expanded “on-demand”.

The first construction of a PCG for authenticated triples [BCG+19b] was
based on homomorphic encryption, and not so efficient in practice. However,
more recently, the authors proposed another construction [BCG+20] based on
a variant of the ring learning parity with noise (ring-LPN) assumption. By us-
ing distributed point functions [GI14, BGI15] to compress secret-shared, sparse
vectors, this construction achieves much better concrete efficiency, as well as a
good compression rate.

Unfortunately, both of these PCGs for authenticated, SPDZ-style triples are
restricted to the 2-party setting. Note that unauthenticated triples, as used in
passively secure protocols, can be generated with a PCG in the multi-party
setting, with a transformation from [BCG+19b], however, this does not apply to
the more complex task of authenticated sharings.

1.1 Our Contributions

In this work, we investigate the possibility of constructing PCGs for SPDZ-style,
authenticated triples in the multi-party setting. As our main contributions, we
construct such a PCG based on the ring-LPN assumption over large prime fields,
and design an actively secure protocol for distributing the PCG seeds among the
parties. Our PCG allows expanding short, correlated seeds of size O(n3

√
N) into

N SPDZ triples for n parties. Meanwhile, our actively secure setup protocol pro-
duces N SPDZ triples for n parties with O(n4

√
N) communication. Compared

2

with previous protocols for SPDZ [KPR18,KOS16], which use O(n2N) commu-
nication, our protocol scales sublinearly in the number of triples, but is less suit-
able for a large number of parties. (In the above, we ignore asymptotic factors
that only depend on the security parameter.)

Below, we expand on our results in a little more detail.

Background: Construction of [BCG+20]. We first briefly recall the 2-party
PCG for authenticated triples from [BCG+20]. Their construction relies on a
variant of the ring-LPN (or module-LPN) assumption, which works over the
polynomial ring R = F [X]/

(
F (X)

)
, for some finite field F and fixed polynomial

F (X). The assumption, for noise weight t and dimension c, states that the
distribution

{a, 〈a, e〉
∣∣a← Rc, e← Rc s.t. wt(ei) = t}

is indistinguishable from random, when each ei ∈ R is a sparse polynomial of
degree < N , with up to t non-zero coefficients. In typical parameters, N will be
very large, while c is a small constant, and t the order of the security parameter.

The goal will be to produce a PCG that outputs 2-party, additive shares of
a random tuple (x, y, z, αx, αy, αz), where α ∈ F , x, y ← R and z = x · y ∈ R.
When R is chosen appropriately, such an authenticated triple over R can be
locally converted into a large batch of N triples over F .

To obtain a PCG, the construction picks vectors of sparse polynomials u,v ∈
Rc, and computes the tensor product u ⊗ v ∈ Rc

2

. Each of these polynomial
products is still somewhat sparse, having at most t2 non-zero coordinates. The
idea is that the sparse u,v, as well as their products, can be secret-shared using
distributed point functions (DPFs) [GI14, BGI15, BGI16], which provide a way
to share sparse vectors in a succinct manner.

Given shares of these values, the parties can locally compute inner products
with the public vector a, to transform the sparse vectors u,v into pseudorandom
polynomials x = 〈a,u〉 and y = 〈a,v〉. Similarly, the shares of u ⊗ v can be
locally transformed into shares of xy, due to bilinearity of the tensor product.

The above blueprint gives additive shares of the (x, y, z) components of the
triple. This easily extends to obtain shares of (αx, αy, αz), since multiplying each
sparse vector by α ∈ F preserves its sparsity, so these can be distributed in the
same way.

Using 3-Party Distributed Point Functions. A natural approach to extend
the above to more than two parties, is to simply use multi-party DPFs. Unfor-
tunately, existing n-party DPFs [BGI15] scale badly, with a key size growing ex-
ponentially in the number of parties. Instead, in the full version of [BCG+20],
Boyle et al. sketched an approach using 3-party DPFs, based on the observa-
tion that the product αxy can be broken down into a sum of αixjyk, over par-
ties i, j, k ∈ [n]. This means that each of these terms only needs to be shared
between 3 parties, so 3-party DPFs suffice.

3

However, it turns out this approach is not so straightforward. An immedi-
ate challenge is that existing 3-party DPFs only output shares that are XOR-
sharings, or shares over Zp for small primes p; this excludes the important case
of Fp where p is a large prime, as often used in protocols like SPDZ. Therefore,
our first contribution is to construct a 3-party DPF suitable for this setting, by
modifying the DPF of Bunn et al. [BKKO20] to work with outputs over any
abelian group. Our modification introduces some leakage into the construction:
when two specific parties are corrupted, they now learn some information about
the secret index of the point function that is being hidden. Fortunately, it turns
out that for our application to SPDZ, this leakage is harmless, since it translates
to corrupt parties {Pj , Pk} learning information on the product xjyk, which Pj
and Pk already know if they collude.

An additional benefit of our DPF, beyond supporting more general outputs,
is that our key sizes are smaller than the 3-party DPF of [BKKO20] by around
a factor of 3.

PCG for Authenticated Triples. Given our 3-party DPF, we give the full
construction of a multi-party PCG for authenticated triples over a large field F .
The basic construction for producing N triples with n parties has seeds of size
O(n3t2

√
Nλ) bits, where λ is the security parameter and t is roughly λ, although

this can be optimized slightly with a more aggressive assumption. Compared
with the 2-party PCG of [BCG+20], we incur some extra costs moving to the
multi-party setting, since theirs scales with O(logN) and not O(

√
N). This is

due to the O(
√
N) seed size in our DPF, which is also inherited from previous

3-party DPFs [BGI15,BKKO20]1.

Efficient, Actively Secure Distributed Setup for 3-Party DPF. To ob-
tain our triple generation protocol, we need a way of securely setting up the
PCG seeds among the parties. The main necessary ingredient is a protocol for
distributing the keys in our 3-party DPF. Previously, Bunn et al. [BKKO20]
gave a secure protocol for setting up their 3-party DPF keys; however, as well as
being very complex, their protocol only has passive security and tolerates 1 out
of 3 corruptions. We therefore set out to design an actively secure protocol for
our 3-party DPF, tolerating any number of corruptions, while only introducing
a minimal communication overhead relative to the size of the underlying DPF
keys. Our starting point is a lightweight, passively secure setup protocol based
on OT and 2-party DPFs, which we combine with a recursive step to generate
the necessary “correction word” in the DPF keys. Using recursion here helps to
keep the communication overhead down in our protocol. We add active security,
by first replacing OT with authenticated OT, whereby the receiver’s choice bits
are authenticated using MACs. We then apply several consistency checks on the
DPF keys, including one inspired by a recent OT extension protocol [YWL+20],

1 In the 2-party setting, there are efficient DPFs with logarithmic key size [BGI15,
BGI16].

4

to prove that the parties behaved honestly. Here, we exploit the fact that the
OT choice bits were authenticated, which allows us to reliably perform linear
tests on these bits as part of our checks.

Our final setup protocol is very lightweight, and only communicates a small
constant factor (2–3x) more information than the size of the DPF keys. On top
of the inherent leakage in our DPF, the protocol introduces a small amount of
leakage, in the form of allowing the adversary to try and guess some information
about the secret point function. This is similar to leakage from other PCG setup
protocols based on LPN [BCG+19a, YWL+20], and essentially only translates
into an average of one bit of leakage on the (ring)-LPN secret.

Concrete Efficiency. We analyse the concrete efficiency of our actively se-
cure protocol for setting up the PCG seeds, and producing authenticated triples.
The main bottleneck is the distributed execution of the 3-party DPF, the only
part of the protocol with Ω(

√
N) complexity. We measure the efficiency of the

construction by considering its “stretch”, the ratio between the size of the pro-
duced triples and the total communication. We observed that the stretch be-
comes greater than 1 when N is above 224, meaning producing more than 16
million multiplication triples. When N increases, the stretch improves, reaching
values close to 8 for N = 228. This comes, however, at a greater computational
cost as the latter scales as O(N log(N)). On the other hand, even for N = 220,
our construction performs significantly better than alternative approaches such
as Overdrive [KPR18], improving the communication complexity by at least a
factor of 10. In this parameter regime, the 2-party PCG of [BCG+20] has prac-
tical computational cost, and although we have not implemented our construc-
tion, we believe the same will hold since it uses similar building blocks.

2 Notation and Preliminaries

We denote the multiplicative group of a finite field by F×. The ideal generated
by a polynomial F (X) ∈ F [X] is

(
F (X)

)
.

When dealing with bit sequences, with an abuse of notation, we identify the
sets {0, 1}k, F k2 and F2k as different representations of the finite field with 2k

elements. For this reason, when multiplying two elements a, b ∈ {0, 1}k, we mean
multiplication in F2k .

Throughout the paper, we will deal with protocols between an ordered set
of n parties, P1, . . . , Pn. We let H be the set of indices of honest parties, and C
the set of indices of corrupt ones.

The symbol [m] indicates the set {0, 1, 2, . . . ,m − 1} and b·c denotes the
integral part of a real number. We represent vectors using bold font, the j-th
entry of a vector v is denoted by vj or v[j]. We indicate the scalar product by
〈·, ·〉 The function δy(·) denotes the Kronecker delta function, that is,

δy(x) :=

{
1 if x = y,

0 otherwise.

5

Given two vectors u and v of dimensions l and m respectively, we denote their
outer product by u ⊗ v. Observe that this is an ml-dimensional vector whose
(im+ j)-th entry is ui · vj . In a similar way, we define their outer sum u� v as
the ml-dimensional vector whose (im+ j)-th entry is ui + vj .

We write a
$← S, where S is a set, to mean that a is randomly sampled from S.

Finally, λ denotes the security parameter and P represents a probability measure.

Polynomial Rings. Let p be prime and N a positive integer. We will work with
the ring R := Fp[X]/

(
F (X)

)
, where F (X) is an irreducible, degree-N polynomial

in Z[X]. Similarly to the case of homomorphic encryption [SV14], we will be
interested in the case where F (X) factors completely modulo p into a product of
distinct, linear terms. In this case, we say that R is fully splittable, and have the
isomorphism R ∼= FNp . This can be ensured, for instance, by choosing N to be a

power of 2 and the cyclotomic polynomial F (X) = XN+1, with p = 1 mod (2N).

2.1 Module-LPN

The security of our triple generation protocol relies on the Module-LPN assump-
tion with static leakage, a generalisation of Ring-LPN that was recently studied
by Boyle et al. [BCG+20]. We recap here its definition.

Definition 1 (Module-LPN with static leakage). Let R := Fp[X]/
(
F (X)

)
,

for a prime p and F (X) of degree N . Let t and c be two positive integers with

c ≥ 2. Let HWt be the distribution that samples t noise positions ω[i]
$← [N]

and t payloads β[i]
$← Fp, outputting the polynomial

e(X) :=
∑
i∈[t]

β[i] ·Xω[i]

embedded in the ring R. Let A be a PPT adversary and consider the game
GModule-LPN
R,t,c,A (λ) described in Figure 1. We say that the Rc-LPNt problem with

static leakage is hard if, for PPT adversary A, the advantage

AdvModule-LPN
R,t,c,A (λ) :=

∣∣∣∣P(GModule-LPN
R,t,c,A (λ) = 1

)
−

1

2

∣∣∣∣
is negligible in the security parameter λ.

Clearly, in the definition, we assume that the ring R and the values c and t
depends on the security parameter λ. Observe that the greater c and t are, the
harder the distinguishability becomes. A thorough analysis of the assumption
can be found in [BCG+20], including for the case when the polynomial F (X)
splits completely into linear factors over F , i.e. when R ∼= FN .

Regarding the leakage, note that in Fig. 1, the adversary’s guesses are re-
stricted to before it learns the ring-LPN challenge; thus, even though there may
be many queries, the resulting leakage is very small: just 1 bit of information on
the secret (that is, the fact that all guesses were correct).

6

GModule-LPN
R,t,c,A (λ)

Initialisation. The challenger activates A with 1lλ and samples a random bit

b
$← {0, 1}. Then, it samples c elements of the ring e0, e1, . . . , ec−1 ← HWt. Let

the j-th noise positions of ei be ωi[j].
Query. The adversary is allowed to adaptively issue a polynomial number of
queries of the form (i, j, I) where i ∈ [c], j ∈ [t] and I ⊆ [N]. If ωi[j] ∈ I, the
challenger answers with SUCCESS, otherwise, it sends ABORT and halts.
Challenge. After the Query phase, for every i ∈ [c − 1], the challenger samples

ai
$← R and sets

u1 ←
c−2∑
i=0

ai · ei + ec−1.

Moreover, it samples u0
$← R. Finally, it gives (a0, a1, . . . , ac−2, ub) to the A. The

adversary replies with a bit b′. The final output of the game is 1 if and only if b = b′.

Fig. 1. The Module-LPN game.

Choice of Error Distribution. The basic module-LPN definition assumes
each error polynomial is chosen uniformly, subject to having t non-zero coeffi-
cients. We can also improve efficiency with more structured errors, such as reg-
ular errors, where the non-zero coordinates are more evenly spaced out, so that
each is guaranteed to lie in a unique interval of size N/t. We use this variant
in our efficiency estimates to improve parameters. Note that it has also been
used previously [BCG+19b, BCG+20, YWL+20], and is conjectured to have es-
sentially the same security as the standard assumption.

2.2 Pseudorandom Correlation Generators

To obtain a low communication complexity, our protocol uses pseudorandom cor-
relation generators (PCGs) [BCG+19a, BCG+19b, BCG+20]. An n-party PCG
is a pair of algorithms, the first of which outputs n correlated seeds of relatively
small size. These can be, later on, locally expanded by the parties to obtain a
large amount of desired correlated randomness. Since the expansion phase does
not require any communication between the parties and the seed size is small
compared to the output, the hope is to design low-communication protocols that
securely generate and distribute the seeds to the parties. This allows the secure
generation of large amounts of correlated randomness with low communication
complexity.

We now give the formal definition of PCG [BCG+19b], starting from the
notion of correlation generator.

Definition 2 (Correlation Generator). An n-party correlation generator is
a PPT algorithm Ccorr that, on input 1lλ, outputs n polynomial-size elements in
{0, 1}∗.

7

Definition 3 (Reverse samplability). An n-party correlation generator Ccorr

is reverse-samplable if there exists a PPT algorithm RSample such that, for every
T ⊆ [n], (R′0, R

′
1, . . . , R

′
n−1)

∣∣∣∣∣∣∣∣
(R0, R1, . . . , Rn−1)← Ccorr(1l

λ)

R′i ← Ri ∀i ∈ T {

(R′i)i∈T ← RSample
(
1lλ, T, (Ri)i∈T{

)

is computationally indistinguishable from the output of Ccorr(1l
λ).

In general, the i-th output of a correlation generator is given to the i-th party.
The reverse samplability property states that given any subset of the outputs
of a correlator generator, there exists an efficient algorithm that simulates the
remaining outputs. Given this, an n-party PCG is defined as follows.

Definition 4 (PCG). Let Ccorr be a reverse-samplable n-party correlation gen-
erator. A PCG for Ccorr is a pair of PPT algorithms (PCG.Gen,PCG.Expand)
such that

– On input 1lλ, PCG.Gen outputs n seeds κ0, κ1, . . . , κn−1.

– On input (i, κi) for i ∈ [n], PCG.Expand outputs an element Ri ∈ {0, 1}∗.
– (Correctness). The distribution of{

(R0, R1, . . . , Rn−1)

∣∣∣∣∣ (κ0, κ1, . . . , κn−1)← PCG.Gen(1lλ)

Ri ← PCG.Expand(i, κi) ∀i ∈ [n]

}

is computationally indistinguishable from the distribution of the output of
Ccorr(1l

λ).

– (Security). For every T ⊆ [n], the following two distributions are computa-
tionally indistinguishable{(

(κi)i∈T{ , (Ri)i∈T
)∣∣∣∣∣ (κ0, κ1, . . . , κn−1)← PCG.Gen(1lλ)

Ri ← PCG.Expand(i, κi) ∀i ∈ T

}
and

(
(κi)i∈T{ , (Ri)i∈T

)∣∣∣∣∣∣∣∣
(κ0, κ1, . . . , κn−1)← PCG.Gen(1lλ)

Ri ← PCG.Expand(i, κi) ∀i ∈ T {

(Ri)i∈T ← RSample
(
1lλ, T, (Ri)i∈T{

)

Essentially, correctness requires that the joint distribution of the parties’
outputs (R1, . . . , Rn) is indistinguishable from the target correlation Ccorr. The
security property states that the knowledge of a subset of the seeds leaks no
information about the other outputs, that could not already be inferred from
the knowledge of the expansion of the given seeds.

8

2.3 Distributed Point Functions

In [GI14], Gilboa and Ishai introduced distributed point functions (DPFs). A
point function is a function f whose support (i.e. the elements which have non-
zero image) contains at most one element. Therefore, if the domain has size N ,
we can regard f as an N -dimensional vector with at most one non-zero entry,
whose i-th entry, for i ∈ [N], corresponds to the evaluation f(i). We call such
vector a unit vector, and often refer to the index of the non-zero entry as the
special position and its value as the non-zero element.

An n-party DPF consists of a pair of algorithms, the first of which takes as
input the description of a point function f and outputs n succinct keys. These
can be, later on, locally evaluated by the parties on input x to obtain a secret-
sharing of f(x). DPFs and PCGs have some similarity, in that in both cases, we
have an initial phase in which correlated, succinct keys are generated, followed
by an evaluation phase that locally produces the desired output. The analogy
between the two notions is the reason why DPFs are often a key building block
of PCGs. Our protocol is no exception.

Definition 5 (DPF with leakage). Let (G,+) be an abelian group and let
N be a positive integer. An n-party distributed point function (DPF) for (N,G)
with leakage function Leak is a pair of PPT algorithms (DPFnN .Gen,DPF

n
N .Eval)

with the following syntax:

– On input 1lλ, ω ∈ [N] and β ∈ G, DPFnN .Gen outputs n keys κ0, κ1, . . . , κn−1.
– On input (i, κi, x) for i ∈ [n] and x ∈ [N], DPFnN .Eval outputs a value vi ∈ G.

Moreover, the following properties are satisfied

– (Correctness). For every x, ω ∈ [N] and β ∈ G,

P

(
n−1∑
i=0

vi = β · δω(x)

∣∣∣∣∣ (κ0, κ1, . . . , κn−1)← DPFnN .Gen(1lλ, ω, β)

vi ← DPFnN .Eval(i, κi, x) ∀i ∈ [n]

)
= 1.

– (Security). There exists a PPT simulator Sim such that for every T (
[n], ω ∈ [N] and β ∈ G, the following distributions are computationally
indistinguishable{

(κi)i∈T |(κ0, κ1, . . . , κn−1)← DPFnN .Gen(1lλ, ω, β)
}
≡C{

(κi)i∈T ← Sim
(
1lλ, T, Leak(T, ω, β)

)}
.

Essentially, correctness requires that the evaluation of the keys on x is a
secret-sharing of β if x = ω, or of 0 otherwise. Security instead states that
the information inferable from a subset of the keys is bounded by the leakage
function Leak, which takes as input the special position ω, the non-zero value β
and the set of corrupted parties T . In most cases, Leak just outputs the domain
size N and the codomain G of the point function. However, this will not happen
in the DPF on which our protocol relies.

We write DPFnN .FullEval(i, κi) to mean the result of calling Eval on the entire
domain of the function, obtaining a secret-sharing of the full length-N unit
vector.

9

State-of-the-art. Actually, very little is known about DPFs. In [BGI15], the au-
thors presented a 2-party DPF with O

(
log(N)

)
key size and an n-party con-

struction with O(
√
N) key size. In both cases, the only leakage is N and G, how-

ever, while the 2-party construction allows outputs in any group G, the multi-
party DPF essentially works only when G = ({0, 1}l,⊕), or when G has polyno-
mial order. In [BKKO20], Bunn et al. presented an improved version of the sec-
ond algorithm for the 3-party case, however, obtaining again O(

√
N) key size.

As we will show in Section 3, this construction is also limited to outputs in
G = ({0, 1}l,⊕), and does not extend to e.g. Fp for a large prime p.

Distributed Sum of Point Functions We use a simple extension of DPFs
to sums of point functions, as also done in [BCG+20]. A DSPF scheme DSPFnN,t
consists of algorithms (DSPFnN,t.Gen,DSPF

n
N,t.Eval), just as a DPF, except now

Gen takes as input a pair of length-t vectors ω,β ∈ [N]t × Gt, which define the
sum of point functions

fω,β(x) =
∑
i∈[t]

β[i] · δω[i](x)

Observe that fω,β can be represented as a sum of unit vectors. We will refer to
the latter as a multi-point vector.

The correctness property of a DSPF is then the same as a DPF, except we
require that

∑
i∈[n] vi = fω,β(x), where vi = DSPFnN,t.Eval(i, κi, x). The security

property is defined the same way as in a DPF.

Given a DPF, constructing a t-point DSPF can be done in the natural way,
using one DPF instance for each of the t points, and summing up the t outputs
of DPFnN .Eval to evaluate the DSPF.

3 Generalisation of the 3-party DPF to Prime Fields

In this section, we first recap the 3-party DPF of [BKKO20], and then describe
our extension of this to support outputs modulo p for any prime p.

High-level description of [BKKO20]. The scheme assumes N , the domain size,

is a perfect square, and the codomain is F2l . It uses a PRG G : {0, 1}λ −→ F
√
N

2l
.

DPF keys in their construction do not leak anything beyond the domain and
codomain, namely, the leakage function is given by Leak(T, ω, β) = (N, F2l) for
every subset of parties T ([3], special position ω ∈ [N] and non-zero value
β ∈ F2l .

During key generation, the unit vector representing the point function is
rearranged into a

√
N×
√
N matrix M . If we rewrite x ∈ [N] as x′

√
N+x′′ with

0 ≤ x′, x′′ <
√
N , the x-th element of the unit vector is moved to the x′-th row

10

and x′′-th column of the matrix M . We call the row containing β the special row.

M :=

0 0 · · · · · · 0 · · · · · · · · · 0
0 0 · · · · · · 0 · · · · · · · · · 0
...

...
...

...
0 0 0 0
0 0 · · · 0 β 0 · · · · · · 0
0 0 0 0
...

...
...

...
0 0 · · · · · · 0 · · · · · · · · · 0

← ω′

↑
ω′′

The algorithm is essentially based on the observation that it is possible to com-
press a 3-party secret-sharing of a row of zeros. Indeed, it suffices to sample 3
random PRG seeds aj , bj , cj for every row j and give {aj , bj} to P0, {bj , cj} to
P1 and {cj , aj} to P2. To decompress, each party just has to evaluate the seeds
and XOR the results. We obtain a secret-sharing of zero since(

G(aj)⊕G(bj)
)
⊕
(
G(bj)⊕G(cj)

)
⊕
(
G(cj)⊕G(aj)

)
= 0.

In order to not leak ω′, the parties need to obtain similar seeds for the special
row too. Observe that for every row, an adversary controlling two parties sees
two sets of seeds with only one element in common, therefore, security requires
that the property to hold for the special row too. For this reason, the algorithm
samples 4 PRG seeds aω′ , bω′ , cω′ , dω′ and gives {aω′ , dω′} to P0, {bω′ , dω′} to P1

and {cω′ , dω′} to P2. Observe how the property is still satisfied.
Although security is guaranteed, the seeds aω′ , bω′ , cω′ , dω′ are not a com-

pression of the special row. Indeed, by expanding them ad XORing the results
as for the other rows, we obtain a secret-sharing of a random vector

r := G(aω′)⊕G(bω′)⊕G(cω′)⊕G(dω′).

Observe that when there exists at least one honest party, one of the seeds remains
unknown to the adversary, therefore, r is always indistinguishable from random.
The DPF exploits this fact to include the correction word

CW := r ⊕ (

ω′′︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸√

N elements

)

to the key of every party. By adding the correction word to the expansion of the
seeds of the special row, we obtain exactly what we desire, however, we must find
a way to perform this operation without leaking the position ω′. The algorithm
solves the problem by including in the keys a secret-sharing [[y]]2 of the unit

11

vector having 1 in the special position ω′. Let yi[x
′] denote the x′-th bit of Pi’s

share of y. By summing yi[x
′] ·CW to the expansion of the seeds, we add the

correction word only to the special row. To summarise, the evaluation algorithm
retrieves the row corresponding to the point that has to be evaluated, expands
the associated seeds and obliviously adds the correction word when necessary.

Prime field generalisation. In order to generate multiplication triples over
large prime fields F following the blueprint described in the introduction, we
needed a 3-party DPF with codomain F . Therefore, the first necessary step was
to generalise the construction of [BKKO20]. As we have already mentioned, our
modification requires weakening security, by introducing additional leakage.

The issue. The main cause of problems is that large prime fields have character-
istic different from 2 and therefore addition and subtraction are different opera-
tions. Referring to the roadmap in the previous section, we can still compress a
secret-sharing of zero by sampling 3 PRG seeds aj , bj , cj and giving {aj , bj} to
P0, {bj , cj} to P1 and {cj , aj} to P2. However, the decompression requires atten-
tion, indeed, when two parties have a seed in common, one of them has to add
its expansion to its secret-sharing, the other one has to subtract it. It is there-
fore necessary to associate every seed in the keys with a bit, which will be set
if and only if the expansion of the seed has to be added. Whenever two parties
have a seed in common, the associated bits will be opposites.

This property has to be satisfied by the seeds of the special row too. One pos-
sibility would be of course to do exactly the same as for the normal rows, obtain-
ing a secret-sharing of zero. However, that would not allow us to use the correc-
tion word CW as it would leak the non-zero value β. The only other possibility
would be to sample 4 PRG seeds aω′ , bω′ , cω′ , dω′ as before and give {aω′ , dω′}
to P0, {bω′ , dω′} to P1 and {cω′ , dω′} to P2. Clearly, we have to associate every
seed with a bit expressing whether its expansion has to be added or subtracted,
but whatever way we do it for dω′ , there will always be two parties with the
same bit. If those two parties are corrupted, the value of ω′ is leaked to them,
compromising security of the DPF. On the other hand, this leakage turned out
not to be problematic for our application.

Our solution. We decided to generate the sign bits so that ω′ is leaked when the
last two parties are corrupted. Since these bits do not need to be random, it is
enough to ensure that the first party always subtracts the expansion of its seeds,
the second party always adds them and the last party always adds the expansion
of the first seed and subtracts the expansion of the second one. This means that
the seeds of the second and the third party now have to be ordered. For instance,
when j 6= ω′, we can give {aj , bj} to P0, (bj , cj) to P1 and (aj , cj) to P2. When
instead j = ω′, we can give {aj , dj} to P0, (dj , bj) to P1 and (dj , cj) to P2. The
construction is secure as long as the seeds in common with the first party are
always in the first position of P1 and P2’s pairs (which are ordered). On the other
hand, it is crucial that the seeds of P0 are an unordered set, otherwise ω′ would
be leaked to the adversary when P0 and P1, or P0 and P2 are both corrupted.

12

The fact that we do not need to protect ω′ from an adversary corrupting the
last two parties allows us to further improve the efficiency of the construction.
For instance, we can secret-share y only between the second and the third party
and remove the correction word from the key of the first party. Actually, since
y is a unit vector, we can further compress the secret-sharing using the 2-party
DPF of [BGI15], which has logarithmic key size.

Also, the seeds (aj , bj , cj) can be somewhat compressed. If we consider the
last seeds of the second and the third party, we observe that they coincide for
every j 6= ω′. When instead j = ω′, the two seeds are independent. Essentially,
they form a secret-sharing over F2λ of a

√
N -dimensional unit vector having

special position ω′ and random non-zero element. Such a secret-sharing can again
be compressed using a 2-party DPF, such as from [BGI15,BGI16].

As a final optimization, it turns out the remaining seeds can also be com-
pressed by roughly a factor of 2. This technique relies on the fact that we can
generate the missing seeds using Random-OT tuples2, which can themselves be
compressed using a PCG based on the LPN assumption with logarithmic over-
head [BCG+19b]. We omit the details here for ease of presentation, but the tech-
nique is used in our 3-party DPF protocol in Section 5.

Construction and Concrete Efficiency. Our 3-party DPF following the above
ideas is given in Figure 2. The construction assumes the domain size is a perfect
square and has a prime field F as codomain. The size of the key κ0 is

√
N · 2λ

bits, while the size of κ1 and κ2 is dominated by
√
N ·(λ+log |F |)+O(log(N) ·λ)

bits. When |F | ≈ 2λ, this gives a total of around 6
√
Nλ bits for all three keys.

If we additionally apply the optimization mentioned above, and compress the
seeds using random OT and LPN, the total key size falls to 3

√
Nλ bits (ignoring

small logN terms), which is around 3x smaller than that of [BKKO20] (which
only works in groups of small characteristic, but on the other hand, does not
leak any information on ω).

Theorem 1. The construction described in Figure 2 is a 3-party DPF for (N, F)
with leakage

Leak(T, ω, β) =

(
N, F

)
if T 6= {1, 2},(

N, F ,
⌊
ω/
√
N
⌋)

if T = {1, 2}.

The proof of Theorem 1 is available is Appendix A.

Extension to Distributed Sum of Point Functions. In later sections, we
will use a distributed sum of point functions, built on top of our 3-party DPF in
the naive way, as described in Section 2.3. Here, the leakage function is extended
to output bωi/

√
Nc, for each special position ωi, for i ∈ [t], when the set of

corruptions is T = {1, 2}.

2 Tuples
(
(X0, X1), (b,Xb)

)
where X0, X1

$← {0, 1}λ and b
$← {0, 1}.

13

Prime field 3-party DPF

Let N be a perfect square and suppose that G = F . Let G : {0, 1}λ −→ F
√
N be

a PRG and let DPF2√
N

denote a 2-party DPF with domain size
√
N .

DPF.Gen. On input 1lλ, ω ∈ [N] and β ∈ F , perform the following operations:

1. Rewrite ω as ω′ ·
√
N + ω′′ where 0 ≤ ω′, ω′′ <

√
N .

2. Sample ∆
$← F2λ and compute

(κ̂1
1, κ̂

2
1)← DPF2√

N .Gen(1lλ, ω′, 1), (κ̂1
2, κ̂

2
2)← DPF2√

N .Gen(1lλ, ω′,∆).

3. For every j ∈ [
√
N] with j 6= ω′, sample aj , bj

$← {0, 1}λ and set

S0
j ← {aj , bj}, S1

j ← bj , S2
j ← aj .

4. Sample aω′ , dω′
$← {0, 1}λ and set

S0
ω′ ← {aω′ , dω′}, S1

ω′ ← dω′ , S2
ω′ ← dω′ .

5. Compute

bω′ ← DPF2√
N .Eval(1, κ̂

1
2, ω
′), cω′ ← DPF2√

N .Eval(2, κ̂
2
2, ω
′),

CW ← G(aω′)−G(bω′) +G(cω′)−G(dω′) + (

ω′′︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸√

N elements

).

6. Output (κ0, κ1, κ2) where

κ0 := (S0
j)j∈[

√
N], κi :=

(
κ̂i1, κ̂

i
2, (S

i
j)j∈[

√
N],CW

)
if i ∈ {1, 2}.

DPF.Eval. On input i ∈ [3], the key κi and a point x ∈ [N], perform the following
operations:

1. Rewrite x as x′ ·
√
N + x′′ where 0 ≤ x′, x′′ <

√
N .

2. If i = 0, pick an arbitrary ordering and rewrite S0
x′ as (w0

1, w
0
2).

3. If i ∈ {1, 2}, set wi1 ← Six′ and compute

yi[x
′]← DPF2√

N .Eval(i, κ̂
i
1, x
′), wi2 ← DPF2√

N .Eval(i, κ̂
i
2, x
′).

4. Compute

vix′ ←

−G(w0

1)−G(w0
2) if i = 0,

yi[x
′] ·CW +G(w1

1) +G(w1
2) if i = 1,

yi[x
′] ·CW +G(w2

1)−G(w2
2) if i = 2.

5. Output vix′ [x
′′].

Fig. 2. The prime field 3-party DPF

14

4 Multiparty PCG for Triple Generation

In this section, we show how to use our 3-party DPF to construct a multi-party,
pseudorandom correlation generator for authenticated triple generation.

Authenticated secret-sharing. We produce additively secret-shared values with
information-theoretic MACs, as used in SPDZ [DPSZ12, DKL+13]. Here, an n-
party secret-sharing of x ∈ F is given by a tuple

JxK := (αi, xi,mx,i)i∈[n]

where (αi, xi,mxi) are known to the i-th party. Each αi ∈ F is fixed for every
sharing x, and is a share of the global MAC key α =

∑
i αi. The shares xi ∈ F

and MAC shares mx,i ∈ F then satisfy∑
i

xi = x,
∑
i

mx,i = α · x

We construct a PCG for the correlation which samples a random triple
(JxK, JyK, JzK), where x, y are random elements of the ring R = F [X]/F (X), and
z = x · y (while the MAC key α is a scalar in F). As discussed in Section 2,
when p is a suitable prime and F (X) is e.g. a cyclotomic polynomial of degree
N , this is equivalent to a batch of N triples over F , thanks to the CRT isomor-
phism R ∼= FN .

Note that it is easy to see that this correlation satisfies the reverse-samplable
requirement.

4.1 Construction

Our construction is given in Fig. 3 and Fig. 4. We combine 3-party DPFs with
the ring-LPN assumption, following the outline in the introduction (also sketched
in [BCG+20]).

In more detail, we will compress the x, y terms of the triple using sparse,
random polynomials ur(X), vr(X) ∈ R, for r ∈ [c]. Recall that if a ∈ Rc is a
public, random vector over R, then

x = 〈a,u〉 , y = 〈a,v〉

are computationally indistinguishable from randomR elements, under the module-
LPN assumption.

We sample the ur, vr polynomials by first picking sparse uri , v
r
i for each party,

and summing up these shares. These are implicitly defined in steps 2 of Fig. 3,
which sample the non-zero coefficients and values of the polynomials.

Then, we use 2-party distributed (sums of) point functions to compress ad-
ditive shares of the cross-products αj ·uri , αj ·vri and uri ·vsj , in steps 3–4. This al-
lows the parties to obtain shares of the MACs αx, αy, as well as the product xy.

Finally, to obtain shares of αxy, we decompose this into a sum of products
αi · xj · yk, for every i, j, k ∈ [n]. By distributing shares of each term αi · urj · vsk

15

using the 3-party DPF from Section 3, the parties can locally recover shares of
αxy in the evaluation stage.

Note that due to the leakage in our 3-party DPF, if Pj and Pk are both
corrupted, they learn something about the indices of the non-zero entries in
αi · urj · vsk. However, since these indices are independent of αi, this leakage does
not give away anything that wasn’t already known to Pj and Pk.

In Appendix B,we prove the following.

Theorem 2. Suppose that DSPF2
N,t, DSPF

2
2N,t2 and DSPF3

2N,t2 are secure dis-
tributed sums of point functions, and the Rc-LPNt assumption (Definition 1)
holds. Then the construction in Fig. 3–4 is a secure PCG for n-party authenti-
cated triples over R = F [X]/F (X).

Efficiency. Note that we can optimize the construction slightly, with the ob-
servation that in any 3-party DPF instance where two of i, j, k are equal, we
can instead use a 2-party DPF. This reduces the total number of 3-party DSPFs
from c2n2(n − 1) down to c2n(n − 1)(n − 2). Each DSPF has t2 points and a
domain of size 2N . There are also O(c2n2) 2-party DSPFs, however, since these
have logarithmic key size, their cost is dominated by the 3-party instances.

As a further optimization, we can rely on module-LPN with a regular error
distribution [BCG+20], where each of the t non-zero entries in an error vector is
sampled to be within a fixed range of length N/t. This reduces the domain size
of the DPFs from 2N and N down to 2N/t and N/t, respectively.

In Section 7.2, we analyze the concrete parameters of our PCG, and the
efficiency of our protocol for securely setting up the seeds and producing triples.

5 Distributed Setup for the 3-Party DPF

We now present an actively secure protocol that permits to distribute the keys
of the 3-party DPF described in Section 3. We start by giving an overview of the
passively secure approach; later we will delve into the details, including active
security.

High-level overview. The protocol permits to derive a 3-party secret-sharing of
the unit-vector

(

ω︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸

N

)

given secret-shared special position and non-zero value [[ω]]2 and [[β]]. Writing
ω = ω′

√
N + ω′′, and following the blueprint of our 3-party DPF, the protocol

samples a random ∆ ∈ F2λ and shares the unit vectors

y = (

ω′︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 0, . . . , 0︸ ︷︷ ︸√

N

), Y = (

ω′︷ ︸︸ ︷
0, 0, . . . , 0, ∆, 0, 0, . . . , 0︸ ︷︷ ︸√

N

)

16

PCGtriple

Let F be a prime field and let N be the number of generated triples. Let t and c
be the parameters of the Module-LPN assumption.

Gen: On input 1lλ, do the following:

1. Sample MAC key shares αi
$← F , for every i ∈ [n].

2. For every i ∈ [n], r ∈ [c], sample ωri ,η
r
i

$← [N]t and βri ,γ
r
i

$← F t.
3. For every i, j ∈ [n] with i 6= j, r ∈ [c], compute

(
Ur,0i,j , U

r,1
i,j

)
← DSPF2

N,t.Gen
(

1lλ, ωri , αj · βri
)
,(

V r,0i,j , V
r,1
i,j

)
← DSPF2

N,t.Gen
(

1lλ, ηri , αj · γri
)
.

4. For every i, j ∈ [n] with i 6= j, r, s ∈ [c], compute(
Cr,s,hi,j

)
h∈[2]

← DSPF2
2N,t2 .Gen

(
1lλ, ωri � η

s
j , β

r
i ⊗ γsj

)
.

5. For every i, j, k ∈ [n] with i, j, k not all equal, for r, s ∈ [c], compute(
W r,s,h
i,j,k

)
h∈[3]

← DSPF3
2N,t2 .Gen

(
1lλ, ωrj � η

s
k, αi · (βrj ⊗ γsk)

)
.

6. For every i ∈ [n], output the seed

κi ←

αi,
(
ωri ,β

r
i

)
r∈[c]

,
(
ηri ,γ

r
i

)
r∈[c]

,
(
Ur,0i,j , U

r,1
j,i

)
j 6=i
r∈[c]

,
(
V r,0i,j , V

r,1
j,i

)
j 6=i
r∈[c](

Cr,s,0i,j , Cr,s,1j,i

)
j 6=i

r,s∈[c]

,
(
W r,s,0
i,j,k ,W

r,s,1
k,i,j ,W

r,s,2
j,k,i

)
(j,k)6=(i,i),
r,s∈[c]

Eval: On input the seed κi, do the following:

1. For every r ∈ [c], define the two polynomials

uri (X) =
∑
l∈[t]

βri [l] ·Xω
r
i [l], vri (X) =

∑
l∈[t]

γri [l] ·Xη
r
i [l]

2. For every r ∈ [c], compute

ũri = αi · uri +
∑
j 6=i

(
DSPF2

N,t.FullEval(U
r,0
i,j) + DSPF2

N,t.FullEval(U
r,1
j,i)
)

ṽri = αi · vri +
∑
j 6=i

(
DSPF2

N,t.FullEval(V
r,0
i,j) + DSPF2

N,t.FullEval(V
r,1
j,i)

)
(viewing outputs of FullEval as degree N − 1 polynomials over F)

Fig. 3. PCGtriple - Part 1

17

3. For every r, s ∈ [c], compute

wr,si = uri · vsi+∑
j 6=i

(
DSPF2

2N,t2 .FullEval(C
r,s,0
i,j) + DSPF2

2N,t2 .FullEval(C
r,s,1
j,i)

)
4. For every r, s ∈ [c], compute

w̃r,si =
∑
j,k

(i,i)6=(j,k)

(
DSPF3

2N,t2 .FullEval(W
r,s,0
i,j,k)

+ DSPF3
2N,t2 .FullEval(W

r,s,1
k,i,j)

+ DSPF3
2N,t2 .FullEval(W

r,s,2
j,k,i)

)
+ αi · uri (X) · vsi (X)

5. Define the vectors of polynomials ui = (u1
i , . . . , u

c
i), v

i = (v1
i , . . . , v

c
i), simi-

larly for ũi, ṽi.
Let wi = (w0,0

i , . . . , wc−1,0
i , w0,1

i , . . . , wc−1,1
i , . . . , wc−1,c−1

i), and similarly de-
fine w̃i.

6. Compute the final shares

xi = 〈a,ui〉 , yi = 〈a,vi〉 , zi = 〈a⊗ a,wi〉 and

mx,i = 〈a, ũi〉 ,my,i = 〈a, ṽi〉 ,mz,i = 〈a⊗ a, w̃i〉

in Fp[X]/
(
F (X)

)
.

7. Output (αi, xi, yi, zi,mx,i,my,i,mz,i).

Fig. 4. PCGtriple - Part 2

between the last two parties using a 2-party DPF. The shares of Y are regarded
as vectors of seeds.

As we mentioned in Section 3, to derive the remaining seeds, we rely on
oblivious transfer (OT). Observe that for every position j ∈ [

√
N], the first party

has to generate two random seeds. Moreover, for every j, the last two parties
have to learn one of these seeds each. The discovered seeds coincide if and only
if j = ω′. We setup these seeds by running two sets of OTs, where the first party
is sender in both, and the other two parties play receiver in one set each. The
receivers’ choice bits are determined based on the shares of y, which are random
bits that coincide if and only if j = ω′.

Assuming the availability of a 3-party secret sharing of

v = (

ω′′︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸√

N

),

the generation of the correction word is very simple: each party can just retrieve
its share of v and add or subtract the expansions of its seeds. The correction

18

word is obtained by broadcasting and adding the results. Once we have the
correction word, the DPF setup phase is complete. The only remaining question,
then, is how to derive the secret-sharing of v: since it is a unit-vector, we will
use recursion.

We now discuss the protocol more in detail, including the details of recursion
and active security. To simplify the presentation, we introduce some notation
and building blocks.

Double exponential representation. We assume that N is a double expo-

nential, that is, N = 22h for some h ∈ N. In practice, this choice is rather re-
strictive as the value of N grows very quickly. However, we only make this as-
sumption to simplify the description of a recursive step in our protocol, and this
step can easily be adapted to the case N = 2m without significantly affecting
the overall complexity3.

We define the double exponential function dE(·) as

dE(k) :=

{
2 if k = −1,

22k otherwise.

We also use the following decomposition of integers, using a double exponential
basis. Its proof can be found in Appendix C.

Lemma 1. Any ω ∈ [N] can be written in a unique way as

ω = x(−1) +
∑
i∈[h]

x(i) · dE(i)

for some x(i) ∈ [dE(i)] (depending on ω), for i ∈ [h] ∪ {−1}, i.e. 0 ≤ x(i) < 22i

if i ∈ [h] and x(−1) ∈ {0, 1}.

Notation. Given a number ω ∈ [N], we denote its j-th bit by ωj , whereas the
j-th element of its double exponential notation is indicated by ω(j). Let K :=
[h] ∪ {−1} and define

T :=
{

(k, j) | k ∈ K, j ∈ [dE(k)]
}
.

In the protocol we use h PRGs. The k-th one will be Gk : {0, 1}λ −→ F dE(k).
We will also rely on a tweakable correlation-robust hash function

H : {0, 1}λ × {0, 1}∗ −→ {0, 1}λ.

An important fact is that the protocol requires the cardinality of the field F to
be sufficiently close to 2λ. More specifically, consider the map Enc : {0, 1}λ −→ F

sending every string (x0, x1, . . . , xλ−1) to
∑
i∈[λ] xi · 2i. Let U be the uniform

3 The protocol is more efficient when m is divisible by a power of 2.

19

distribution over {0, 1}λ and let V be the uniform distribution over F . In order to
be secure, the protocol requires the statistical distance between V and Enc(U) to
be negligible in the security parameter. It is possible to prove that this condition
is satisfied if and only if |p− 2λ|/2λ, where p = |F |, is negligible in λ.

We also define a set of sign bits uli with i ∈ [3] and l ∈ {0, 1}, by

uli :=

{
1 if i = 1, or i = 2 and l = 0

−1 otherwise.

These parameters will indicate whether we need to add or subtract the expansion
of the seeds in the 3-party DPF keys (see Section 3).

Finally, we define some matrices used to translate between different repre-
sentations. In the protocol, we use the set of matrices (Bk)k∈K, which allow us
to map an N -dimensional unit vector having special position ω ∈ [N] into a
dE(k)-dimensional unit vector with special position ω(k) and the same non-zero

value. We also use a matrix C ∈ F
log(N)×|T |
2 . This allows us to retrieve a binary

representation of η ∈ [N], given the unit-vector

(

η(k)︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 0, . . . , 0︸ ︷︷ ︸

dE(k)

)

for every k ∈ K. The construction of the (Bk)k matrices is shown in Lemma 2,
while C is in Lemma 3 (both in Appendix D).

5.1 Resources

The protocol we are going to present relies on an authenticated Random-OT
functionality, which we instantiate using similar techniques to the TinyOT pro-
tocol [NNOB12]. We assume that every pair of parties (Pi, Pj) has access to

an instance F i,jauth-ROT of this resource. The functionality F i,jauth-ROT provides
Random-OT tuples, i.e. upon every call, Pi, the sender, obtains two random val-
ues X0, X1 ∈ {0, 1}λ, whereas Pj , the receiver, obtains a random choice bit b

and the value Xb. Additionally, F i,jauth-ROT permits to perform linear operations
on the choice bits it stored. The results of these computations are output to Pi
and their correctness is guaranteed even when Pj is corrupted. Finally, the re-
source can output random bits to Pj . The latter can be used in combination

with the choice bits in the computations. A formal description of F i,jauth-ROT can
be found in Appendix F,where we also show how to implement it with low com-
munication complexity using a Correlated-OT functionality.

In the protocol, we also use a black-box multiparty computation functional-
ity FMPC which allows n parties to perform computations over the prime field
F and over F2. A complete description can be found in Figure 13 (see appen-
dices).The functionality stores the inputs and results of the computations inter-
nally, providing the parties with handles. Each of the stored values is associated

20

with one of the domains F and F2 to which the element must belong. In the
first case, the handle of x is denoted by [[x]], whereas in the second case, the
handle is denoted by [[x]]2. Sometimes, we will abuse the notation and we will
write [[x]]2 even if x 6∈ {0, 1}, in that case, it is understood that the functional-
ity stored x bit by bit and the number of such bits depends only on the actual
domain of x. The functionality FMPC also features a 2-party DPF functionality,
which, on input the indexes of two parties i, j, a value [[β]] in F or F2λ , a power
of 2 M and [[ω]]2 ∈ [M], outputs to Pi and Pj a 2-party secret-sharing of the
M -dimensional unit vector having β in the ω-th position. The group on which
the secret-sharing is defined coincides with the field to which β belongs.

Finally, we will use a functionality FRand which provides all the parties with
random values sampled from the queried domains.

5.2 The Protocol

The functionality that our construction is going to implement is described in
Figure 5. Observe that when the second and the third party are both corrupted
the special position of the unit vector is leaked to the adversary. Since the pro-
tocol is based on the 3-party DPF described in Section 3, a leakage of this type
was unavoidable. The functionality also allows the adversary to test the inputs
in several occasions, every incorrect guess leading to an abort. In the triple gen-
eration protocol, the non-zero value β will be uniformly distributed in F×, so
any attempt of the adversary to guess it will fail with overwhelming probability.
The leakage about the special position will not instead constitute a problem as
it will be absorbed by the hardness of Module-LPN.

We can finally present our protocol. Its formal description can be found in
Figures 6, 7 and 8.

Recursion. The protocol uses the 3-party DPF described in Figure 2 recursively
in h levels indexed by k = 0, 1, . . . , h− 1. Once the k-th level is completed, the
parties obtain a secret-sharing over F of the unit vector

vk+1 := (

ω̂(k+1)︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸

dE(k+1)

),

where ω̂(k + 1) := ω(−1) +

k∑
i=0

ω(i) · dE(i).

Observe that ω̂(h) = ω.

More in detail, suppose that the parties possess a secret-sharing over F of vk.
We aim to use it to securely generate 3-party DPF keys for the unit vector vk+1

(see Figure 2). Using the evaluation algorithm, the parties can then expand the
keys to obtain a secret-sharing of vk+1.

21

F3-DPF

MPC Functionality. The functionality features the procedures Input, LinComb,
Mult, Output, 2-DPF and Abort as in FMPC.
3-DPF. On input [[β]] ∈ F , [[ω]]2 ∈ [N] and three indexes σ0, σ1, σ2 ∈ [n]:

1. If Pσ0 , Pσ1 and Pσ2 are all corrupted, send ω and β to the adversary. If only
Pσ1 and Pσ2 are corrupted, send ω to the adversary.

2. If there exists i ∈ [3] such that Pσi is corrupted, for three times, wait for
I ⊆ [N] from the adversary. If ω 6∈ I, send ω to the adversary and abort.

3. If β = 0, output ZERO to the parties and to the adversary and stop.
4. If there exists i ∈ [3] such that Pσi is corrupted, wait for the adversary.

– If the latter sends (βη,v
′
η)η∈[N], check whether βω = β. If this is the case,

set v̂ ← v′ω. Otherwise, send (ω, β) to the adversary and abort.
– If the latter sends (I ′′′, v̂), check whether ω ∈ I ′′′. If this is not the case,

send ω to the adversary and abort.
5. If Pσ0 , Pσ1 and Pσ2 are all honest, set v̂ ← 0.
6. For every σi ∈ H, sample a random vi ∈ FN subject to

∑
σi∈H

vi + v̂ = (

ω elements︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸

N elements

).

7. Output vi to party Pσi for every σi ∈ H.

Fig. 5. The 3-party DPF functionality

Rearranging vk+1 into a matrix. First of all, observe that vk+1 is an Nk :=
dE(k+1)-dimensional unit vector, whose special position is ω̂(k+1). Notice that

ω̂(k + 1) = ω(k) ·
√
Nk + ω̂(k) and 0 ≤ ω(k), ω̂(k) < dE(k) =

√
Nk.

In other words, when we rearrange vk+1 into a square matrix, following the
procedure described in Section 3, the special position ends up at the intersection
between the ω(k)-th row and the ω̂(k)-th column. Observe that it is easy to
obtain a secret-sharing of ω(k) over F2 given a secret-sharing of ω over F2. Indeed,
ω(k) is described by a 2k-bit substring of the bit representation of ω.

The vectors y0, y1 and y2. Following the blueprint of the 3-party DPF described
in Section 3, the first ingredient needed to generate vk+1 is the vectors yk,1 and
yk,2, i.e. a secret-sharing over F of

yk := (

ω(k)︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 0, . . . , 0︸ ︷︷ ︸

dE(k)

) = yk,1 + yk,2.

22

Π3-DPF

The environment has access to the the procedures Input, LinComb, Mult, Output
and 2-DPF of FMPC.
3-DPF. On input a number [[ω]]2 ∈ [N], [[β]] ∈ F and indexes σ0, σ1, σ2 ∈ [n]:
Generation of yk,0, yk,1 and yk,2.

1. The parties call 2-DPF over F with special position [[ω]]2, non-zero element 1
and indexes σ1 and σ2. If the latter aborts, the parties abort. Let yi be the
output received by Pσi for i ∈ {1, 2}.

2. For every k ∈ K and i ∈ {1, 2}, Pσi computes yk,i ← Bk · yi. Pσ0 sets
yk,0 ← 0.

From F secret-sharing to binary secret-sharing.

3. If there exists (k, j) ∈ T and i ∈ {1, 2} such that yjk,i = 0, Pσi aborts.
4. For every k ∈ K and i ∈ {1, 2}, Pσi sets bk,i ← yk,i mod 2.

Seed generation - Part 1.

5. The parties generate [[∆]]2 ← Rand(F2λ).
6. The parties call 2-DPF over F2λ with special position [[ω]]2, non-zero element

[[∆]]2 and indexes σ1 and σ2. If the latter aborts, the parties abort. Let Ti
be the output received by Pσi for i ∈ {1, 2}.

7. For every k ∈ K and i ∈ {1, 2}, Pσi computes Tk,i ← Bk · Ti.
8. For every (k, j) ∈ T and i ∈ {1, 2}, Pσi computes Y jk,i ← H

(
T jk,i, (k, j)

)
.

Seed generation - Part 2.

9. For ever (k, j) ∈ T :
(a) Pσ0 and Pσ1 call Fσ0,σ1auth-ROT with Pσ0 as sender. Pσ0 obtains

(Xj
k[0], Xj

k[1]) ∈ F2λ × F2λ , Pσ1 receives (tjk,1, X
j
k[2]) ∈ F2 × F2λ , where

Xj
k[2] = Xj

k[tjk,1].

(b) Pσ1 sends wjk,1 ← bjk,1 ⊕ t
j
k,1 to Pσ0 .

(c) Pσ0 and Pσ2 call Fσ0,σ2auth-ROT with Pσ0 as sender. Pσ0 obtains
(W j

k [0],W j
k [1]) ∈ F2λ × F2λ , Pσ2 receives (tjk,2,W

j
k) ∈ F2 × F2λ , where

W j
k = W j

k [tjk,2].

(d) Pσ2 sends wjk,2 ← bjk,2 ⊕ t
j
k,2 to Pσ0 .

(e) Pσ0 sends to Pσ2

Zjk[0]←W j
k [wjk,2]⊕Xj

k[wjk,1], Zjk[1]←W j
k [wjk,2 ⊕ 1]⊕Xj

k[wjk,1 ⊕ 1].

(f) Pσ2 computes Xj
k[3]←W j

k ⊕ Z
j
k[bjk,2]

10. For every (k, j) ∈ T
– Pσ0 sets Sjk,0,0 ← Xj

k[0] and Sjk,0,1 ← Xj
k[1].

– Pσ1 sets Sjk,1,0 ← Xj
k[2] and Sjk,1,1 ← Y jk,1.

– Pσ2 sets Sjk,2,0 ← Xj
k[3] and Sjk,2,1 ← Y jk,2.

Fig. 6. Π3-DPF - Part 1

23

First check.

11. For every i ∈ {1, 2} and k ∈ K, Pσ0 and Pσi call LinearCombination in
Fσ0,σiauth-ROT to compute

tk,i ←
⊕

j∈[dE(k)]

[[tjk,i]]2.

12. For every k ∈ K, Pσ0 computes

ψk ← tk,1 ⊕ tk,2 ⊕
⊕

j∈[dE(k)]

(wjk,1 ⊕ w
j
k,2).

If any of them is different from 1, it makes the protocol abort.

Second check.

13. For every i ∈ {1, 2}, Pσ0 and Pσi call Random in Fσ0,σiauth-ROT for λ times. Let
Ri ∈ {0, 1}λ be the binary string obtained by Pσi .

14. For every i ∈ {1, 2}, Pi inputs Ri into FMPC with domain F2.

15. The parties call FRand to obtain a random matrix V ∈ F
λ×log(N)
2

16. For every i ∈ {1, 2}, Pσ0 and Pσi call LinearCombination in Fσ0,σiauth-ROT to
compute Φi ← [[Ri]]2 ⊕ V · C · [[ti]]2 where ti is the |T |-dimensional vector
having tjk,i in the (dE(k) + j)-th position.

17. Pσ0 computes Φ← Φ1⊕Φ2⊕V ·C ·(w⊕1) where w⊕1 is the |T |-dimensional
vector having wjk,1 ⊕ w

j
k,2 ⊕ 1 in the (dE(k) + j)-th position.

18. Using FMPC the parties open Φ′ ← [[R1]]2⊕ [[R2]]2⊕V · [[ω]]2. If Φ 6= Φ′, Pσ0
makes the protocol abort.

Base case.

19. For every j ∈ [2] the parties set

xj0 ← Enc(Xj
−1[0]), xj1 ← Enc(Xj

−1[1]), xj2 ← Enc(Xj
−1[2]),

xj3 ← Enc(Xj
−1[3]), xj4 ← Enc(Y j−1,1), xj5 ← Enc(Y j−1,2).

Pσ0 sets sj0 ← −x
j
0− x

j
1. Pσ1 sets sj1 ← xj2 + xj4. Pσ2 sets sj2 ← xj3− x

j
5. Then,

for each i ∈ [3], Pσi sets zi ← s0
i ⊕ s1

i .
20. The parties perform the following operations

[[zi]]← Input(Pσi , zi) ∀i ∈ [3]

[[CW]]← ([[z0]] + [[z1]] + [[z2]])−1 · [[β]]

CW ← Output([[CW]])

If CW = 0, the parties stop and output ZERO. If the operation cannot be
performed due to a zero denominator, all the parties stop and output ⊥.

21. Each party Pσi sets vj0,i ← sji · CW for j ∈ {0, 1}. Let v0,i := (v0
0,i, v

1
0,i) for

every i ∈ [3].

Fig. 7. Π3-DPF - Part 2

24

Generation of the correction words.

22. For each k ∈ [h] the parties compute the following operations
(a) For every i ∈ [3], Pσi broadcasts

CWk,i ← vk,i −
∑

j∈[dE(k)]

u0
i ·Gk(Sjk,i,0)−

∑
j∈[dE(k)]

u1
i ·Gk(Sjk,i,1).

(b) The parties set CWk ← CWk,0 +CWk,1 +CWk,2.
(c) Each party Pσi sets for every j ∈ [dE(k)]

vjk+1,i ← u0
i ·Gk(Sjk,i,0) + u1

i ·Gk(Sjk,i,1) + yjk,i ·CWk.

Let vk+1,i := (v0
k+1,i ‖ v1

k+1,i ‖ . . . ‖ v
dE(k)−1
k+1,i).

Final check.

23. The parties call FRand to sample χ = (χ0, χ1, . . . , χN−1) ∈ FN .
24. Perform the following operations

(a) [[di]]← Input(Pσi , 〈χ,yi〉) for each i ∈ {1, 2}.
(b) [[ζi]]← Input(Pσi , 〈χ,vh,i〉) for each i ∈ [3].
(c) [[ρ]]← [[ζ0]] + [[ζ1]] + [[ζ2]]− ([[d1]] + [[d2]]) · [[β]]
(d) ρ← Output([[ρ]])
(e) If ρ 6= 0, Pσi outputs ABORT and stops. Otherwise, Pσi outputs vh,i.

Fig. 8. Π3-DPF - Part 3

At the beginning of our protocol, using the 2-party DPF procedure in FMPC,
the second and third party obtain a secret-sharing of the unit vector

y := (

ω︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 0, . . . , 0︸ ︷︷ ︸

N

).

By locally applying the matrix Bk on the shares, this also gives the shares yk,1
and yk,2. We recall that Bk maps an N -dimensional unit vector having special
position ω ∈ [N] into a dE(k)-dimensional unit vector with special position ω(k)
and the same non-zero value.

From F -secret-sharing to binary secret-sharing. In the previous paragraph, we
described how it is possible to obtain a 2-party secret-sharing over F of the unit
vector yk. In order to securely generate the seeds in the DPF key, we will need to
convert this to a 2-party secret-sharing over the binary field F2. Using a standard
trick , we can do this conversion without any interaction.

Recall that |F | = p for a large prime p. Suppose that the two parties have
shares b1, b2 ∈ [p], where b1 +b2 ≡ b mod p, for some b ∈ {0, 1}, as we do for each
entry of yk. If the shares are random, then with overwhelming probability both
of them are non-zero, so over the integers, 2 ≤ b1 + b2 < 2p and therefore b1 +

25

b2 = b+p. Reducing both sides modulo 2, we get that (b1 mod 2)⊕(b2 mod 2) =
b⊕ 1. In other words, for every j ∈ [dE(k)], the second and the third parties can
obtain bits bjk,1 := yjk,1 mod 2 and bjk,2 := yjk,2 mod 2 that coincide if and only if
j = ω(k).

This procedure works only if both b1 and b2 are non-zero, and for that reason,
the parties abort if this is not satisfied. When the second and the third party are
both honest, the property condition holds with overwhelming probability. If one
of the parties is corrupted, however, FMPC allows the adversary to choose its
shares. An attacker can exploit this fact to retrieve information about ω, indeed,
it can select its shares so that the protocol aborts only if ω assumes particular
values (selective failure attack). The corresponding leakage is modelled in step
2 of F3-DPF (see Figure 5).

The seed generation - Part 1. We now turn to the task of generating the PRG
seeds used in the DPF. We start with the method for obtaining the last seeds
of the second and the third party, which, following the idea from Section 3, we
compress using a 2-party DPF. Recall that these seeds coincide for every position
j 6= ω(k), whereas, when j = ω(k), they are independent. Using the 2-party
DPF command of FMPC, we can obtain a 2-party secret-sharing over F2λ of

(

ω︷ ︸︸ ︷
0, 0, . . . , 0, ∆, 0, 0, . . . , 0︸ ︷︷ ︸

N

).

where ∆ is sampled randomly by FMPC. Then, by applying the matrix Bk, this
can be translated into shares of

(

ω(k)︷ ︸︸ ︷
0, 0, . . . , 0, ∆, 0, 0, . . . , 0︸ ︷︷ ︸

dE(k)

).

for any k ∈ K. The only problem is that, in this way, the entries of the shares
in the special position are not independent, due to the fixed correlation ∆.
Therefore, to turn these shares into independent, random seeds, we apply the
correlation-robust hash function H to each entry.

The seed generation - Part 2. Generating and distributing the remaining seeds
is more complex. We have previously explained how the second and third parties
derive, for each j ∈ [dE(k)], bits bjk,1 and bjk,2 that coincide if and only if j =
ω(k). Now, for every j ∈ [dE(k)], the second and the third party must learn one
of the seeds of the first party. The discovered seeds will coincide if and only if
j = ω(k). We can therefore generate and distribute the remaining seeds using
oblivious transfer (OT). Specifically, for every j ∈ [dE(k)], the first and the
second party can obtain their missing seeds by means of a “sender-random” OT,
i.e. an OT where the sender’s messages, corresponding to the seeds of the first
party, are random, while the receiver can choose its input. The first party will be
the sender, while the second party will be the receiver with choice bit bjk,1. The

26

third party can then receive its missing seed by means of another, now standard,
OT. The sender, corresponding to the first party, will choose its messages to be
the same as in the “sender-random” OT, while the choice bit of the receiver, the
third party, will be bjk,2. The two OTs are implemented using the random-OT
functionality Fauth-ROT. Note that this functionality ensures that the choice bits
are authenticated, which we rely on later, to check consistency of this stage and
achieve active security.

The correction word (Fig. 8). After obtaining the seeds, the only missing piece
of the DPF key is the correction word. Computing it is rather straightforward
as each party can just retrieve its share of vk and add or subtract the expan-
sions of its seeds using Gk

4. The correction word is obtained by broadcasting and
adding the results. Observe that if recursion had not been used, at this point of
the protocol, the parties would have needed to generate a secret-sharing of the√
N -dimensional vector vh−1. Direct approaches would have required O(

√
N)

communication, recursion instead allows us to compute that with O(4
√
N) com-

plexity.

The base case k = 0. We have explained how to derive a secret-sharing of vk+1

given a secret-sharing of vk. It remains to describe how to deal with the base
case, i.e. how to derive a secret-sharing of v0. Observe that v0 is a 2-dimensional
unit vector, where β occupies the ω(−1)-th position.

By using the same procedure described in the seed generation, for each po-
sition of v0, the parties can obtain pairs of elements in {0, 1}λ of the form

if j 6= ω(−1) : {aj−1, b
j
−1}, (bj−1, c

j
−1), (aj−1, c

j
−1),

if j = ω(−1) : {aj−1, d
j
−1}, (dj−1, b

j
−1), (dj−1, c

j
−1).

This time, we do not regard them as seeds anymore, but using the encoding
map Enc, we convert them into random elements in the field F . Observe that by
combining the elements with the coefficients ubi , we can derive a secret-sharing
of zero when j 6= ω(−1) and a secret-sharing of a random value z ∈ F when
j = ω(−1). Obtaining a secret-sharing of v0 is now easy, we simply need to
multiply each secret-sharing we have just computed by β · z−1. The operation
can be performed using FMPC.

Achieving active security. The protocol we just described allows the adversary to
deviate in several points. In order to regain control on the execution, we relied on
three different checks. Only the combination of all of them guarantees security.

The first issue we encounter is in the seed generation. An adversary corrupt-
ing both the second and third party can indeed discover all the seeds of the first
party by always inputting different choice bits in the OTs. With this attack,
the adversary would be able to retrieve β once the correction word is computed.
So, we designed the first check to fail in these situations. Specifically, using

4 Whether we need to add or subtract is specified by the sign multipliers ubi .

27

Fauth-ROT, the check recomputes the sum of the OT bits input by the receivers
for every recursion level k. If the result is different from 1, the protocol aborts.

When the second or third party are corrupted, by cleverly choosing the choice
bits of the OTs, the adversary can move the non-zero value β to a different posi-
tion η 6= ω. The second check makes sure that this attack fails with overwhelm-
ing probability. This is achieved by recomputing η from the OT inputs using the
matrix C and Fauth-ROT. The result is obliviously compared to ω using FMPC,
the protocol aborts when they do not match.

The third check, inspired by [YWL+20], is probably the most important.
Essentially, it draws a random N -dimensional vector χ ∈ FN and checks that
the result of the linear combination 〈χ,vh〉 coincides with χω ·β. The procedure
counteracts any malicious behaviour in the generation of the correction words.
Moreover, in combination with the first check, it makes sure that, for every level
k, there exists only one position for which the choice bits of the OTs coincide.
On the other hand, the third check causes some leakage which is modelled in
step 4 of F3-DPF (see Figure 5). We prove the following in Appendix D.

Theorem 3. Let N = dE(h) be a double power of 2 and assume that F is a
security-parameter-dependent prime field of cardinality p such that |p − 2λ|/2λ
is negligible in λ. Let Gk : {0, 1}λ −→ F dE(k) be a PRG for every k ∈ [h] and let
H : {0, 1}λ×{0, 1}∗ −→ {0, 1}λ be a tweakable correlation-robust hash function.
Then the protocol Π3-DPF UC-realises F3-DPF in the (FMPC,Fauth-ROT,FRand)-
hybrid model. Moreover, if all the parties are honest, Π3-DPF aborts with negli-
gible probability.

Complexity. The protocol Π3-DPF achieves low communication complexity. As
a matter of fact, in [BCG+20], the authors described how to implement the 2-
party DPF procedure of FMPC with O

(
log(N) ·poly(λ)

)
communication. We also

observe that the seed generation needs O(
√
N) OTs. Hence, Π3-DPF has O

(√
N ·

poly(λ)
)

communication complexity. A more detailed analysis of efficiency can
be found in Section 7.

6 Offline Phase

We can finally describe our Offline phase protocol ΠOffline, which achieves sub-
linear communication complexity. It can be broken down into 3 procedures: an
initialisation procedure in which the MAC key α is generated and secret-shared,
a triple generation procedure and an input mask generation procedure. The lat-
ter is used to produce, for every j ∈ [n], random authenticated secret-shared el-
ements JajK whose value is known only to party Pj . As for multiplication triples,
input masks constitute an essential part of SPDZ as they are needed to provide
the inputs of the computation.

The protocol ΠOffline closely resembles PCGtriple. We start by summarising
its working and later, we will provide a more formal description. The protocol
permits to generate N multiplication triples with O

(√
N · poly(λ)

)
communi-

cation complexity and N input masks with O
(
log(N) · poly(λ)

)
communication

28

complexity. The bottleneck of the triple generation is the 3-party DPF. If future
research proves the existence of 3-party DPFs with logarithmic key size, we will
probably be able to design multiparty triple generation protocols with logarith-
mic communication complexity.

Multiplication triples. The protocol uses the functionality F3-DPF as a black box.
During the initialisation procedure, each party Pi samples a random share αi for
the MAC key and inputs it in F3-DPF, fundamentally committing to its choice.

The multiplication triples are derived by executing the seed generation and
the evaluation of PCGtriple inside F3-DPF: at the very beginning, each party Pi
samples random special positions ωri ,η

r
i ∈ [N]t and random non-zero elements

βri ,γ
r
i ∈ F t for every r ∈ [c]. These values are input in F3-DPF. Using 2-DPF and

3-DPF, it is then possible for Pi to obtain ui, ũi,vi, ṽi,wi and w̃i. Finally, by
sampling a random a ∈ Rc using FRand, the parties can compute the final output,
i.e. random authenticated secret-shared elements JxK, JyK, JzK ∈ R such that z =
x ·y. We recall that R = F [X]/

(
F (X)

)
where F (X) is a degree-N polynomial. If

F (X) has N distinct roots in F , the tuple
(
JxK, JyK, JzK

)
can be converted into N

random multiplication triples by evaluating the shares5 over the roots of F (X).

Input Masks. The generation of inputs masks is very similar but simpler. At
the beginning, the party Pj to which the masks are addressed samples random
special positions ωr ∈ [N]t and random non-zero elements βr ∈ F t for every
r ∈ [c], inputting them in F3-DPF. These values will be used to define the sparse
polynomial

ur(X)←
∑
l∈[t]

βr[l] ·Xωr[l]

Later on, for every i 6= j, Pi and Pj can obtain a secret-sharing of αi · ur(X)
using 2-DPF. Finally, by sampling a random a ∈ Rc using FRand and relying
on the hardness of Module LPN, the shares can be converted into a random
authenticated secret-shared element JxK ∈ R. Since Pj knows ur(X) for every
r ∈ [c], it can also learn x. As a last operation, the shares are rerandomised
using a PRG. Observe that from JxK, we can derive N masks using the same
trick described for the multiplication triples.

Leakage. The main difference between ΠOffline and PCGtriple is that every execu-
tion of 2-DPF and 3-DPF has additional leakage. At first, it might seem that the
main issue arises when the last two players Pj and Pk of the 3-party DPF proce-
dure are corrupted. In such cases, the special positions (ωrj �η

s
k)r,s∈[c] are indeed

revealed to the adversary. Notice, however, that this is no problem at all, as the
leaked values were chosen by the adversary itself at the beginning of the protocol.

Regarding the remaining leakage, observe that when the adversary tries the
guess any non-zero element during 3-DPF, the procedure aborts with overwhelm-
ing probability. Indeed, the non-zero values are uniformly distributed in F×, as-
suming that at least one party involved in 3-DPF is honest. Moreover, any leak-

5 The shares are elements of R and therefore polynomials

29

age concerning the special positions is absorbed by the hardness of module-LPN
with static leakage.

6.1 A Formal Description of the Offline Phase

Now, we formally describe the Offline phase protocol ΠOffline. The correspond-
ing functionality is a typical Offline-phase functionality and it is described in
Figure 9, ΠOffline is instead formalised in Figures 10, 11 and 12. However, first,
we have to clarify the notation used in the resource F3-DPF.

FOffline

MPC Functionality. The functionality features the procedures
Input, LinComb,Mult,Output and Abort as in FMPC as well as the following oper-
ations.
Initialisation. The functionality samples α

$← F and waits for (αi)i∈C from the
corrupted parties. Then, it samples a random αi for every i ∈ H subject to∑
i∈[n] αi = α. Finally, it outputs αi to every honest party Pi.

Input Masks. On input (Mask, Pj) from every party, the functionality waits for

x ∈ R from the adversary if Pj is corrupted. Otherwise, it samples x
$← R. The

functionality waits for a pair (x̂, m̂x) from the adversary. Finally, it samples a
random pair (xi,mx,i) for every i ∈ H subject to∑

i∈H

xi + x̂ = x,
∑
i∈H

mx,i + m̂x = α · x.

At the end, it outputs (xi,mx,i) to every honest party Pi.
Triple Generation. On input (Triple) from every party, the functionality samples

x, y
$← R and sets z ← x · y. Then, it waits for a tuple (x̂, m̂x, ŷ, m̂y, ẑ, m̂z) from

the adversary. Finally, it samples a random tuple (xi,mx,i, yi,my,i, zi,mz,i) for
every i ∈ H subject to∑

i∈H

xi + x̂ = x,
∑
i∈H

yi + ŷ = y,
∑
i∈H

zi + ẑ = z,

∑
i∈H

mx,i + m̂x = α · x,
∑
i∈H

my,i + m̂y = α · y,
∑
i∈H

mz,i + m̂z = α · z.

At the end, it outputs (xi,mx,i, yi,my,i, zi,mz,i) to every honest party Pi.

Fig. 9. The offline phase functionality

Resources. Observe that in PCGtriple, many operations are performed on vec-
tors, repeating them entry by entry. In order to not overload the notation with
indexes, we decided to abuse the notation in F3-DPF to include secret-sharings of
vectors. Specifically, a vector of secret-shared elements ([[v0]], [[v1]], . . . , [[vl−1]])
will be denoted by [[v]], in a similar way, a vector ([[u0]]2, [[u1]]2, . . . , [[ul−1]]2)

30

will be denoted by [[u]]2. Recall that in the second case, an entry ui might not
be a bit. Indeed, [[ui]]2 means that ui is stored in F3-DPF bit by bit.

Operations between vectors. When we perform operations over secret-shared vec-
tors, e.g. [[v]] + [[w]], it is understood that the operation is performed entry-
wise. Observe that the outer product ⊗ can easily be computed in MPC by
performing multiplications between the entries of the two secret-shared vectors.
We also assume that F3-DPF features a procedure IntAdd, which, on input two
F2-secret-shared integers [[a]]2, [[b]]2 ∈ [N], outputs an F2-secret-sharing of their
addition [[a + b]]2 over Z. Observe that the procedure can be implemented us-
ing a ripple-carry adder. The operation requires only the computation of XORs
(no communication) and log(N) ANDs (2n bits of communication each). Using
IntAdd, we can easily compute the outer sum �. We recall that the outer sum of
t-dimensional integer vectors a and b is a t2-dimensional integer vector whose
(it+ j)-th entry is ai + bj .

Sum of point functions. Finally, we also assume that F3-DPF features two sum-
of-point-function procedures 2-DSPF and 3-DSPF. In both cases, the output is
a secret-shared multi-point vector over the field F , a 2-party secret-sharing for
2-DSPF and a 3-party secret-sharing for 3-DSPF. The inputs are the length of the
output, the parties among which the result is shared, and two same-dimensional
vectors of secret-shared elements, the first of which indicating the special posi-
tions, the second one representing the non-zero elements. Observe that we can
easily implement 2-DSPF and 3-DSPF by running 2-DPF and 3-DPF multiple
times and outputting the sum of the shares. Therefore, the functionality F3-DPF

will model leakage and influence of the adversary accordingly. To summarise,
2-DSPF and 3-DSPF can be regarded as shorthands for multiple executions of
2-DPF and 3-DPF respectively and the inputs will be given in vectorised form.

Theorem 4. Let F (X) be a degree-N polynomial over the prime field F and
let t, c ∈ N. Define the ring R := F [X]/

(
F (X)

)
and let G : {0, 1}λ −→ R2 be

a PRG. If the Rc-LPNt problem with static leakage is hard, then the protocol
ΠOffline UC-implements FOffline in the (F3-DPF,FRand)-hybrid model. Moreover,
if all the parties are honest, the protocol aborts with negligible probability.

The proof of Theorem 4 can be found in Appendix E.

7 Efficiency

7.1 Complexity Analysis

We now analyse the communication complexity of the protocols presented in
this paper. All the results indicate to total amount of communication sent over
the

(
n
2

)
channels and broadcast medium connecting the players.

31

ΠOffline

PARAMETERS: Let N be a power of 2. Take a degree N polynomial F (X) over
the prime field F . Define the ring R := F [X]/

(
F (X)

)
and consider Module-LPN

parameters t, c ∈ N.
PROCEDURES: The environment has access to the the procedures
Input, LinComb,Mult, and Output of F3-DPF.

Initialisation. Each party Pi samples αi
$← F× and inputs the value in F3-DPF

to obtain [[αi]]. Then, it outputs αi.
Input Masks. Let Pj be the party to which the input masks are addressed.

1. For all r ∈ [c], Pj samples βr
$← F×

t
, ωr

$← [N]t. Then, it computes the
polynomial

er(X)←
∑
l∈[t]

βr[l] ·Xωr [l]

2. For every r ∈ [c], the parties compute the following operations using F3-DPF.

[[βr]]← Input(Pj ,β
r), [[ωr]]2 ← Input(Pj ,ω

r).

3. For every i 6= j and r ∈ [c], the parties compute [[µri]]← [[αi]] · [[βr]].
4. For every i ∈ [n] with i 6= j and r ∈ [c], the parties call F3-DPF to compute

(ẽr,0i , ẽr,1i)← 2-DSPF(N, [[ωr]]2, [[µ
r
i]], i, j)

and obtain a 2-party secret-sharing among Pi and Pj of the N -dimensional
t-point vector with special positions [[ωr]]2 and non-zero elements [[µri]]. If
F3-DPF outputs ZERO, the protocol aborts. Let ẽr,0i and ẽr,1i denote the
shares obtained by Pi and Pj respectively. We regard them as degree-(N − 1)
polynomials ẽri (X) and ẽr,1i (X).

5. For every r ∈ [c], Pj computes

ẽrj (X)← αj · er(X) +
∑
j 6=i

ẽr,1i (X).

6. For each (i, k) ∈ [n]2 with i 6= k, Pi samples a random seed si,k
$← {0, 1}λ

and sends it to Pk.

7. The parties call FRand to obtain ai
$← R for every i ∈ [c − 1]. Let a ←

(a0, a1, . . . , ac−2, 1).
8. Each party Pi computes m′x,i ← 〈a, ẽi〉. Moreover, Pj computes x← 〈a, e〉.
9. Each party Pi with i 6= j, sets

(xi,mx,i)← (0,m′x,i) +
∑
k 6=i

(
G(si,k)−G(sk,i)

)
.

Pj instead computes

(xj ,mx,j)← (x,m′x,j) +
∑
k 6=j

(
G(sj,k)−G(sk,j)

)
.

10. Each party Pi with i 6= j outputs (xi,mx,i), Pj outputs (x, xj ,mx,j).

Fig. 10. The offline phase protocol - Part 1

32

Triple Generation.

1. For all i ∈ [n] and r ∈ [c], Pi samples βri
$← F×

t
, ωri

$← [N]t, γri
$← F×

t
and

ηri
$← [N]t. Then, it computes the polynomials

uri (X)←
∑
l∈[t]

βri [l] ·Xωri [l], vri (X)←
∑
l∈[t]

γri [l] ·Xηri [l]

2. For every i ∈ [n] and r ∈ [c], the parties compute the following operations
using F3-DPF.

[[βri]]← Input(Pi,β
r
i), [[γri]]← Input(Pi,γ

r
i),

[[ωri]]2 ← Input(Pi,ω
r
i), [[ηri]]2 ← Input(Pi,η

r
i).

3. For every i, j ∈ [n] with i 6= j and r ∈ [c], the parties compute

[[µri,j]]← [[αi]] · [[βrj]], [[νri,j]]← [[αi]] · [[γrj]].

4. For every i, j ∈ [n] with i 6= j and r ∈ [c], the parties call F3-DPF to compute

(ũr,0i,j , ũ
r,1
i,j)← 2-DSPF(N, [[ωrj]]2, [[µ

r
i,j]], i, j)

and obtain a 2-party secret-sharing among Pi and Pj of the N -dimensional
t-point vector with special positions [[ωrj]]2 and non-zero elements [[µri,j]].

If F3-DPF outputs ZERO, the protocol aborts. Let ũr,0i,j and ũr,1i,j denote the
shares obtained by Pi and Pj respectively. We regard them as degree-(N − 1)
polynomials ũr,0i,j (X) and ũr,1i,j (X).

5. For every i, j ∈ [n] with i 6= j and r ∈ [c], the parties call F3-DPF to compute

(ṽr,0i,j , ṽ
r,1
i,j)← 2-DSPF(N, [[ηrj]]2, [[ν

r
i,j]], i, j)

and obtain a 2-party secret-sharing among Pi and Pj of the N -dimensional
t-point vector with special positions [[ηrj]]2 and non-zero elements [[νri,j]]. If

F3-DPF outputs ZERO, the protocol aborts. Let ṽr,0i,j and ṽr,1i,j denote the
shares obtained by Pi and Pj respectively. We regard them as degree-(N − 1)
polynomials ṽr,0i,j (X) and ṽr,1i,j (X).

6. For every i, j ∈ [n] and r, s ∈ [c], the parties compute

[[ρr,si,j]]← [[βri]]⊗ [[γsj]], [[ζr,si,j]]← [[ωri]]2 � [[ηsj]]2.

7. For every i, j ∈ [n] with i 6= j and r, s ∈ [c], the parties call F3-DPF to compute

(wr,s,0i,j ,wr,s,1i,j)← 2-DSPF(2N, [[ζr,si,j]]2, [[ρ
r,s
i,j]], i, j)

and obtain a 2-party secret-sharing among Pi and Pj of the 2N -dimensional
t2-point vector with special positions [[ζr,si,j]]2 and non-zero elements [[ρr,si,j]].

Let wr,s,0i,j and wr,s,1i,j denote the shares obtained by Pi and Pj respectively.

We regard them as degree-(2N − 1) polynomials wr,s,0i,j (X) and wr,s,1i,j (X).

Fig. 11. The offline phase protocol - Part 2

33

8. For every not-all-equal i, j, k ∈ [n] and r, s ∈ [c], the parties compute

[[τ r,si,j,k]]← [[αi]] · [[ρr,sj,k]].

9. For every not-all-equal i, j, k ∈ [n] and r, s ∈ [c], the parties call F3-DPF to
compute

(w̃r,s,0i,j,k , w̃
r,s,1
i,j,k , w̃

r,s,2
i,j,k)← 3-DSPF(2N, [[ζr,sj,k]]2, [[τ

r,s
i,j,k]], i, j, k)

and obtain a 3-party secret-sharing among Pi, Pj and Pk of the 2N -
dimensional t2-point vector with special positions [[ζr,sj,k]]2 and non-zero ele-

ments [[τ r,si,j,k]]. Let w̃r,s,0i,j,k , w̃r,s,1i,j,k and w̃r,s,2i,j,k denote the shares obtained by
Pi, Pj and Pk respectively. We regard them as degree-(2N − 1) polynomials
w̃r,s,0i,j,k (X), w̃r,s,1i,j,k (X) and w̃r,s,2i,j,k (X).

10. For every r ∈ [c], each party Pi computes

ũri (X)← αi · uri (X) +
∑
j 6=i

(
ũr,0i,j (X) + ũr,1j,i (X)

)
,

ṽri (X)← αi · vri (X) +
∑
j 6=i

(
ṽr,0i,j (X) + ṽr,1j,i (X)

)
.

11. For every r, s ∈ [c], each party Pi computes over R

wrc+si (X)← uri (X) · vsi (X) +
∑
j 6=i

(
wr,s,0i,j (X) + wr,s,1j,i (X)

)
,

w̃rc+si (X)← αi · uri (X) · vsi (X) +
∑

(j,k)6=(i,i)

(
w̃r,s,0i,j,k (X) + w̃r,s,1k,i,j (X) + w̃r,s,2j,k,i (X)

)
.

12. The parties call FRand to obtain ai
$← R for every i ∈ [c − 1]. Let a ←

(a0, a1, . . . , ac−2, 1).
13. Each party Pi outputs

xi ← 〈a,ui〉, yi ← 〈a,vi〉, zi ← 〈a⊗ a,wi〉,
mx,i ← 〈a, ũi〉, my,i ← 〈a, ṽi〉, mz,i ← 〈a⊗ a, w̃i〉.

Fig. 12. The offline phase protocol - Part 3

34

The 3-party DPF protocol. The communication complexity of the 3-DPF proce-
dure is

– 2 executions of the 2-party DPF in FMPC,
– |T | · (2λ+ 2) bits of communication for the OTs in the seed generation,
– 2(h+ 1) + 2λ bits for the first check,
– 6λ+ 2n · λ bits for the second check (including MAC check),
– (3 + 11n)λ bits for the base case (including MAC checks),
– 3(|T | − 2)λ bits for the correction words,
– (4 + 9n)λ for the final check (including MAC checks).

Furthermore, the estimation needs to take into account the cost for the genera-
tion of preprocessing material used to implement Fauth-ROT and FMPC. Specifi-
cally,

– 3 multiplication triples over F

– 7 input masks over F

– 2λ input masks over F2

– 2|T |+ 2λ Correlated-OT tuples.
– 1 random secret-shared element over F2λ .

Observe that h = log(log(N)), whereas

|T | = 2 +

h−1∑
k=0

dE(k) =
√
N +

4
√
N +

8
√
N + · · ·+ 2h

√
N + 2 ≤ 2

√
N.

The communication complexity of the 2-party DPF protocol of [BCG+20] is
dominated by (2λ+ 3) log(N) + 12λ bits. Also the generation of M Correlated-
OT tuples can be performed with logarithmic communication in M and linearly
in λ [BCG+19a]. In conclusion, the dominating term of the communication com-
plexity of our protocol is 10

√
N · λ+ 22n · λ.

Triple Generation. Our triple generation protocol is particularly efficient from
a communication point of view. The cost of the triple generation procedure is
indeed

– 2n(n− 1) · ct executions of 2-DPF with output length N ,
– n(n− 1) · c2t2 executions of 2-DPF with output length 2N ,
– (n3 − 1) · c2t2 executions of 3-DPF with output length 2N ,
– 2n · ct ·

(
λ+ log(N)

)
bits of communication for the inputs,

– 4n2(n− 1) · ct · λ bits for the multiplications in step 3,
– 2n(n3 − 1) · c2t2 · λ bits for the multiplications in step 8,
– 2n3 · c2t2 · λ bits for the outer product,
– 2n3 · c2t2 · log(N) bits for IntAdd,
– O(λ) complexity for the MAC checks6.

6 It is fundamental to run a check on the inputs of 2-DPF and 3-DPF before executing
the procedures. Clearly, the MAC checks can be batched.

35

Considered the complexity analysis of 3-DPF in the previous paragraph, we
conclude that the dominating term of the communication complexity of the
procedure is 10

√
2 ·n3 ·c2t2 ·

√
N ·λ+24n4 ·c2t2 ·λ. We recall that every execution

of Triple Generation permits to produce N fresh multiplication triples.
Observe that the protocol uses some preprocessing material for the imple-

mentation of F3-DPF, the generation of which does not actually affect the over-
all asymptotic complexity. Specifically, we need

– 2n · ct input masks over F ,
– 2n · ct · log(N) input masks over F2,
– 2n(n− 1) · ct+ (n3 + n2 − 1) · c2t2 multiplication triples over F ,
– n2 · c2t2 · log(N) AND triples over F2.

We finally highlight that the protocol can be improved to achieve higher
efficiency. However, the asymptotic complexity would not change. For instance,
we use the 3-party DPF among Pi, Pj and Pk even if i = j, j = k or k = i. In
those cases, using a 2-party DPF would be sufficient.

Input Masks. The communication complexity of the input mask generation is
asymptotically better than the triple generation. As a matter of fact, we do not
need to rely on the 3-party DPF procedure which constitutes the bottleneck of
the other procedure. We can generate input masks with logarithmic complexity
in N : (n− 1)tc executions of 2-DPF, the communication of tc

(
λ+ log(N)

)
bits

for the inputs, 2tc · n(n − 1) · λ bits for the multiplications and n(n − 1) · λ
for the seeds. We recall that in [BCG+20], the authors presented a protocol for
2-DPF with O

(
λ · log(N)

)
communication complexity. The dominating terms

are therefore 2n · tc · log(N) · λ + 2n2 · tc · λ. We recall that every execution of
Input Masks generates N masks.

Clearly, the protocol uses also preprocessing material for the implementation
of F3-DPF, however, as for the triple generation, it does not affect the asymptotic
complexity. Specifically, we need

– tc inputs masks over F ,
– tc · log(N) input masks over F2,
– tc · (n− 1) multiplication triples over F .

7.2 Concrete Efficiency

In Tables 1 and 2, we estimate the concrete communication cost of our protocol,
for several sets of parameters with n = 3 parties and 80-bit computational
security. 7. Since both the cost and number of 3-party DPFs are much larger than
the 2-party case, these are by far the dominating factor. Therefore, to simplify
the analyis, we ignore all other costs. From the analysis in Section 7.1,the total
cost of a single 3-party DPF protocol is dominated by T ·(3 log p+2λ+2) bits for
all 3 parties. Recall that T (which comes from the recursion step) depends on the

7 Ring-LPN parameters are chosen as in [BCG+20].

36

N 220 224 228

c 2 4 8 2 4 8 2 4 8
w = ct 96 40 32 96 40 32 96 40 32

Comm. (MB) 308 114 109 1120 417 418 4329 1641 1650
Stretch 0.16 0.44 0.46 0.72 1.93 1.92 2.98 7.85 7.81

Table 1. Estimated seed size for producing N triples with the 3-party PCG over a
128-bit field, with 80-bit computational security.

N 220 224 228

c 2 4 8 2 4 8 2 4 8
w = ct 96 40 32 96 40 32 96 40 32

Comm. (MB) 701 288 186 2688 1041 688 10312 3960 2708
Stretch 0.07 0.17 0.27 0.30 0.77 1.17 1.25 3.25 4.76

Table 2. Estimated seed size for producing N triples with the 3-party PCG over a
128-bit field, with 128-bit computational security.

DPF domain size, N , and is upper-bounded by
√
N + 2 4

√
N . The total number

of 3-party DPFs needed in our triple generation protocol is n(n− 1)(n− 2)c2t2.
We also rely on the variant of module-LPN with regular errors, which allows
reducing the domain size of the DPFs from 2N down to 2N/t.

Putting this together, we obtain the per-party communication costs in the
table. The “stretch” of the protocol is defined as the ratio of the size of the un-
compressed triples (3N field elements) and the total communication cost. We
see that, when producing around a million triples (N = 220), the stretch is still
less than 1, meaning that the PCG does not achieve a good compression fac-
tor. Nevertheless, even at this level, we do achieve a protocol for generating
triples with much lower communication than methods based on alternative tech-
niques. For instance, using the Overdrive protocol based on homomorphic en-
cryption [KPR18] requires almost 2GB of communication to generate the same
number of triples, which is more than 10x our protocol.

When moving to larger batch sizes, the stretch improves, going up to almost
8x with N = 228 and c ∈ {4, 8}. This gives a strong saving in communication, but
comes with larger computational costs due to the higher degree polynomial oper-
ations needed for arithmetic in the ring R. In practice, since these operations cost
O(N logN), it seems likely that the smaller sizes of N ≤ 224 will be preferable.

Acknowledgements

We thank the anonymous reviewers for their feedback, which helped to improve
the paper. This work has been supported by the Independent Research Fund
Denmark (DFF) under project number 0165-00107B (C3PO) and a starting
grant from the Aarhus University Research Foundation.

37

References

AS21. Damiano Abram and Peter Scholl. Low-Communication Multiparty Triple
Generation for SPDZ from Ring-LPN. Cryptology ePrint Archive, 2021,
2021.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In ACM CCS 2019. ACM Press, November
2019.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT ex-
tension and more. In CRYPTO 2019, Part III, LNCS. Springer, Heidel-
berg, August 2019.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators from ring-
LPN. In CRYPTO 2020, Part II, LNCS. Springer, Heidelberg, August
2020.

BDOZ11. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias.
Semi-homomorphic encryption and multiparty computation. In EURO-
CRYPT 2011, LNCS. Springer, Heidelberg, May 2011.

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In CRYPTO’91, LNCS. Springer, Heidelberg, August 1992.

BGI15. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In
EUROCRYPT 2015, Part II, LNCS. Springer, Heidelberg, April 2015.

BGI16. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Im-
provements and extensions. In ACM CCS 2016. ACM Press, October 2016.

BKKO20. Paul Bunn, Jonathan Katz, Eyal Kushilevitz, and Rafail Ostrovsky. Effi-
cient 3-party distributed ORAM. In SCN 20, LNCS. Springer, Heidelberg,
September 2020.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishon-
est majority - or: Breaking the SPDZ limits. In ESORICS 2013, LNCS.
Springer, Heidelberg, September 2013.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption. In
CRYPTO 2012, LNCS. Springer, Heidelberg, August 2012.

GI14. Niv Gilboa and Yuval Ishai. Distributed point functions and their appli-
cations. In EUROCRYPT 2014, LNCS. Springer, Heidelberg, May 2014.

KOS16. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster
malicious arithmetic secure computation with oblivious transfer. In ACM
CCS 2016. ACM Press, October 2016.

KPR18. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT 2018, Part III, LNCS. Springer,
Heidelberg, April / May 2018.

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-party
computation. In CRYPTO 2012, LNCS. Springer, Heidelberg, August
2012.

SV14. N. P. Smart and F. Vercauteren. Fully homomorphic simd operations. Des.
Codes Cryptography, 71(1):57–81, April 2014.

38

YWL+20. Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret:
Fast extension for correlated OT with small communication. In ACM CCS
20. ACM Press, November 2020.

A Security of the Prime Field 3-Party DPF

Proof (of Theorem 1).

Correctness. Let the evaluation point be x ∈ [N] and rewrite it as x′ ·
√
N +

x′′ where 0 ≤ x′, x′′ <
√
N . If we add the vectors vi

x′ computed during the
evaluation, we obtain

∑
i∈[3]

vix′ = CW ·
2∑
i=1

yi[x
′]−G(w0

1)−G(w0
2) +G(w1

1) +G(w1
2) +G(w2

1)−G(w2
2).

Suppose that x′ 6= ω′, then
∑2
i=1 yi[x

′] = 0, moreover, as w2
2 = w1

2,∑
i∈[3]

vix′ = −G(w0
1)−G(w0

2) +G(w1
1) +G(w1

2) +G(w2
1)−G(w2

2) =

= −G(ax′)−G(bx′) +G(bx′) +G(w1
2) +G(ax′)−G(w1

2) = 0.

Therefore, the output of the evaluation is a secret-sharing of 0.
If instead x′ = ω′, then

∑2
i=1 yi[x

′] = 1, moreover,∑
i∈[3]

vix′ = CW −G(w0
1)−G(w0

2) +G(w1
1) +G(w1

2) +G(w2
1)−G(w2

2) =

= CW −G(aω′)−G(dω′) +G(bω′) +G(dω′) +G(dω′)−G(cω′) =

= (

ω′′︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸√

N elements

).

The output of the evaluation is therefore a secret-sharing of β if x = ω, of 0
otherwise.

Security. We construct the simulator. Let T ([3] be the set of corrupted
parties (the set of corresponding to the keys that we must simulate) and let Sim2

be the simulator of the 2-party DPF.

Case 1: T = {i} for i ∈ {1, 2}. The value Sij can be simulated perfectly for

every j ∈ [
√
N] by sampling random elements in {0, 1}λ. Moreover, by the PRG

security, we can model CW with a random vector in F
√
N . As a matter of fact,

the seed aω′ is known only to P0. Finally, we can simulate the DPF keys κ̂i1 and
κ̂i2 using Sim2. It is easy to see that any effective distinguisher can be converted
into a successful attacker against the security of the 2-party DPF.

39

FMPC

Input. On input (Input, D, i, x) from Pi and (Input, D, i) from all the other par-
ties, the functionality checks that D ∈ {F2, F} and x ∈ D. If this is the case, it
stores x with handle [[x]]D and domain D.
Linear Combination. On input (LinComb,m, a0, . . . , am, [[x0]], . . . , [[xm−1]])
from every party, where xi ∈ F for every i ∈ [m], the functionality stores y ←
am +

∑m−1
i=0 xi · ai with domain F and handle [[y]].

Multiplication. On input (Mult, [[x1]], [[x2]]) from every party, where xi ∈ F for
every i ∈ {1, 2}, FMPC stores y ← x1 · x2 with domain F and handle [[y]].
Division. On input (Div, [[x1]], [[x2]]) from every party, where xi ∈ F for every
i ∈ {1, 2}, the functionality check whether x2 6= 0: In such case, it stores y ←
x1/x2 with domain F and handle [[y]]. Then, it outputs OK to the adversary. If
instead x2 = 0, it outputs ZD to every party.
Random. On input (Rand, D) from every party, the functionality checks that D ∈
{F , F2, F2λ}. If this is the case, it stores y

$← D with domain D and handle [[y]]D.
Output. On input (Output, [[x]]) from every party, the functionality sends x to
the adversary and waits for a reply. If the answer is OK, the functionality outputs
x to every honest party. Otherwise, it aborts.
2-DPF. On input (2-DPF, N, [[ω]]2, [[β]], σ1, σ2) from every party, where σ1 and
σ2 are different indexes in [n], N is a power of 2, ω is the bit representation of an
integer in [N] and β belongs either to F or F2λ , the functionality does the following.

– If Pσ1 and Pσ2 are both corrupted, it sends β and ω to the adversary.
– If one party Pσ among Pσ1 and Pσ2 is corrupted, it waits for the adversary

to send yσ in FN (if β ∈ F) or in F2λ (if β ∈ F2λ). Moreover, it waits for a set
I ⊆ [N]. If ω 6∈ I, it aborts. Otherwise, denoting by θ the index of the honest
party among Pσ1 and Pσ2 , it outputs to Pθ

yθ ← (

ω︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸

N

)− yσ.

– If Pσ1 and Pσ2 are both honest, it samples y1 uniformly in FN (if β ∈ F) or
in F2λ (if β ∈ F2λ). Then, it computes

y2 ← (

ω︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸

N

)− y1.

Finally, it outputs yi to Pσi for every i ∈ {1, 2}.

IntAdd. On input (IntAdd, [[x1]]2, [[x2]]2) from every party, where xi is the bit
representation of an integer for every i ∈ {1, 2}, the functionality stores the bit
representation of y ← x1 + x2 with domain F2 and handle [[y]]2.
Abort. On input (Abort) from the adversary, the functionality aborts.

Fig. 13. The multiparty computation functionality

40

Case 2: T = {0}. By the correctness of DPF2√
N

, we know that bω′ + cω′ = ∆.

Therefore, since the latter is random, bω′ is uniformly distributed in {0, 1}λ
from the distinguisher perspective. As a consequence, by the PRG security, the

correction word CW is indistinguishable from a random vector in F
√
N . The

simulation of S0
j is instead straightforward: we just need to sample 2 random

elements in {0, 1}λ for every j ∈ [
√
N].

Case 3: T = {1, 2}. Observe that the leakage function provides the simulator
with ω′, therefore, we can simulate the seeds and the 2-party DPF keys with
perfect security. The correction word CW can instead be modelled using a

random vector in F
√
N . As a matter of fact, the seed aω′ is known only to P0.

Therefore, by the PRG security,CW is indistinguishable from a random element

in F
√
N .

Case 4: T = {0, i} with i ∈ {1, 2}. By the correctness of DPF2√
N

, we know that
bω′ +cω′ = ∆. Therefore, since the latter is random, either bω′ or cω′ is uniformly
distributed in {0, 1}λ from the distinguisher perspective. As a consequence, by
the PRG security, the correction word CW is indistinguishable from a random

vector in F
√
N .

The simulation of S0
j and Sij is straightforward: for every j ∈ [

√
N], we

sample two random seeds aj , bj
$← {0, 1}λ and we set Sij ← aj and S0

j ← {aj , bj}.
Observe that this is a perfect simulation even if j = ω′.

Finally, we can simulate the DPF keys κ̂i1 and κ̂i2 using Sim2. It is easy to
see that any effective distinguisher can be converted into a successful attacker
against the security of the 2-party DPF. ut

B Security Proof of the PCG Construction (Theorem 2)

Proof (sketch).

Correctness. We start by showing the outputs form a consistent authenticated
triple.

First, looking at the intermediate shares output by DSPF2
2N,t2 .FullEval, we

have

41

∑
i

wr,si =
∑
i∈[n]

(
uri · vsi +

∑
j 6=i

(
DSPF2

2N,t2 .FullEval(C
r,s,0
i,j)+

+ DSPF2
2N,t2 .FullEval(C

r,s,1
j,i)

))
=

=
∑

i∈[n],j∈[n]

(uri · vsj) =

=
∑
i

uri ·
∑
i

vsi =

= ur(X) · vs(X)

where the polynomial product is over F [X] (without reduction by F (X)).

Similarly,

∑
i

w̃r,si =
∑
i∈[n]

(
αi · uri · vsi +

∑
j,k

(i,i)6=(j,k)

(
DSPF3

2N,t2 .FullEval(W
r,s,0
i,j,k)+

+DSPF3
2N,t2 .FullEval(W

r,s,1
k,i,j)+

+DSPF3
2N,t2 .FullEval(W

r,s,2
j,k,i)

))
=

=
∑

i,j,k∈[n]

αi · urj · vsk =

=
∑
i

αi ·
∑
i

uri ·
∑
i

vsi

Then, we have that the output shares satisfy

∑
i

zi =

〈
a⊗ a,

∑
i

wi

〉
=

= 〈a⊗ a,u⊗ v〉 =

= 〈a,u〉 · 〈a,v〉

which is x · y, as required.

Similarly, it can be seen that the shares of mx,i,my,i,mz,i form consistent
sharings of the MACs αx, αy, αz.

For correctness, we also need to argue that these shares are all indistinguish-
able from random, conditioned on forming a valid triple. Note that each of the
shares xi, yi is a module-LPN sample, so is pseudorandom under this assump-
tion. The remaining shares are all full evaluations of DSPFs, which are pseu-
dorandom by the security of the DPF (since any secure DPF with additively-
shared outputs must have pseudorandom shares [BGI15]).

42

Security. For the security property, we need to show that for any subset T ⊂ [n]
of corrupted parties, the distribution

{(κi)i∈T , (xj , yj , zj ,mx,j ,my,j ,mz,j)j /∈T }

is indistinguishable from the one where the honest expanded outputs xj , yj etc.
are replaced with reverse-sampled outputs, chosen at random, conditioned on
forming a correct multiplication triple together with the corrupt parties’ outputs.

This can be shown in a sequence of hybrids where, similarly to the correctness
case, we rely on module-LPN for the pseudorandomness of the xj , yj shares, and
the correctness and security of the DPFs for the shares of z and the MACs. We
omit the details. ut

C Double Exponential Notation

Proof (of Lemma 1). We proceed by induction over h. If h = 0, the result is
straightforward. Indeed, N = 2, so, either ω = 0 or ω = 1, corresponding to
x(−1) = 0 and x(−1) = 1 respectively. Observe that the representation is unique
(notice that [0] = ∅).

Suppose now that the claim is true for h−1, we prove it for h. Take ω ∈ [N].
Define

y(h− 1) := ω mod dE(h− 1), x(h− 1) :=
ω − y(h− 1)

dE(h− 1)

Observe that both values are natural numbers, moreover, 0 ≤ y(h−1), x(h−1) <
dE(h− 1). The inequality for x(h− 1) follows from the fact that

x(h− 1) =
ω − y(h− 1)

dE(h− 1)
<

dE(h)

dE(h− 1)
= dE(h− 1).

By inductive hypothesis, we can rewrite y(h− 1) as

y(h− 1) = x(−1) +
∑

i∈[h−1]

x(i) · dE(i)

where x(i) ∈ [dE(i)] for every i ∈ [h− 1] ∪ {−1}. So, we have that

ω = x(−1) +
∑
i∈[h]

x(i) · dE(i)

where x(i) ∈ [dE(i)] for every i ∈ [h]∪{−1}. To understand why the representa-
tion is unique, suppose that we have another double exponential representation
for ω. Let it be x′(−1), x′(0), . . . , x′(h− 1). We have that

y(h− 1) = ω mod dE(h− 1) = x′(−1) +
∑

i∈[h−1]

x′(i) · dE(i).

43

By inductive hypothesis, the double exponential representation of y(h − 1) is
unique, therefore, x(i) = x′(i) for every i ∈ [h−1]∪{−1}. The proof is concluded
by observing that

x′(h− 1) =
ω − y(h− 1)

dE(h− 1)
= x(h− 1).

ut

D Security Proof of Π3-DPF

Lemma 2. For every k ∈ [h], we define.

1lk :=
(
1 1 . . . 1

)
∈ F

dE(k)
2 , 0k :=

(
0 0 . . . 0

)
∈ F

dE(k)
2

Bk :=

1lk 0k 0k . . . 0k 1lk 0k 0k . . . 0k 1lk 0k 0k . . . 0k
0k 1lk 0k . . . 0k 0k 1lk 0k . . . 0k 0k 1lk 0k . . . 0k
0k 0k 1lk . . . 0k 0k 0k 1lk . . . 0k 0k 0k 1lk . . . 0k
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

0k 0k 0k . . . 1lk 0k 0k 0k . . . 1lk 0k 0k 0k . . . 1lk

 ∈ F
dE(k)×N
2

B−1 :=

(
1 0 1 0 . . . 1 0
0 1 0 1 . . . 0 1

)
∈ F 2×N

2

Let v be an N -dimensional unit vector over a field F having special position
ω and non-zero element β. Then, for every k ∈ K, vk := Bk · v is a dE(k)-
dimensional unit vector having special position ω(k) and non-zero element β.

Proof. Observe that vk will be equal to β times the ω-th column of Bk. Every
column of Bk has only one element different from zero, its value is 1. Therefore,
vk will be a unit vector with non-zero value β.

It remains to prove that the special position is ω(k). The matrix Bk can be
split into blocks of size dE(k)×dE(k+1). There are N/dE(k+1) blocks in total.
The ω-th column will be the l-th column of its block where l := ω mod dE(k+1).

Each block can be further slit into dE(k) sequences of identical columns. The
columns of the j-th sequence will be unit vectors with special position j. The ω-
th column of Bk will belong to the m-th sequence of its block where

m :=
l −
(
ω mod dE(k)

)
dE(k)

if k ≥ 0, m := l mod 2 if k = −1.

The special position of vk will therefore be m. Remember that, by Lemma 1,

ω = ω(−1) +
∑
i∈[h]

ω(i) · dE(i)

so it is immediate to prove that m = ω(k). ut

44

Lemma 3. For every k ∈ [h], let Ck be the 2k × dE(k) matrix in F2 whose j-th
column is the bit representation of j. We define the matrix C as

C :=

C0 0 0 . . . 0
0 C0 0 . . . 0
0 0 C1 . . . 0
...

...
...

. . .
...

0 0 0 . . . Ch−1

 ∈ F
log(N)×|T |
2

Let η ∈ [N] and, for every k ∈ K, let δk be dE(k)-dimensional unit vector with
special position η(k) and non-zero element 1. Let δ be the vector obtained by
concatenating δk for every k ∈ K. Then, we have that z := C · δ is the log(N)-
bit string representing η.

Proof. Observe that the number of rows in C is

1 +

h−1∑
k=0

2k = 2h = log(N).

We know that z can be split into the concatenation of zk := Ck · δk for every
k ∈ K (we use the convention C−1 := C0). Therefore, zk is a 2k-bit sequence
representing η(k). Now, it is immediate to see that the binary vector z represents
the integer

η(−1) +
∑
k∈[h]

η(k) · dE(k) = η.

ut

We are now ready to prove the security of Π3-DPF.

Proof (Theorem 3). Consider the simulator S3-DPF described in Figures 14, 15
and 16. We prove that no PPT adversary is able to distinguish between the
protocol Π3-DPF and the composition of F3-DPF with S3-DPF.

Throughout the proof, we denote the index of the corrupted party among
Pσ1

and Pσ2
by σ. If Pσ1

and Pσ2
are both honest, we set σ ← 1. The index of

the other party is denoted by θ.
We start by observing that the simulation of 2-DPF is perfect.

Claim 3.1. The simulation of the conversion from F -secret-sharing to binary
secret-sharing is perfect.

Proof of the claim. The only communications involved in this phase of the pro-
tocol are abort notifications from Pσ1 and Pσ2 . If both the parties are corrupted,
the result is clear as the simulator makes the functionality abort whenever the
adversary requests it.

If only one among Pσ1
and Pσ2

is corrupted. The simulator still makes the
functionality abort when the adversary requests it. However, we also need to

45

S3-DPF

MPC Functionality. The simulator directly forwards the messages between the
functionality and the adversary.
3-DPF.

1. If Pσ0 , Pσ1 and Pσ2 are all corrupted, the simulator receives ω and β from
the functionality and runs the protocol with the adversary.

2. S3-DPF simulates 2-DPF:
– If Pσ1 and Pσ2 are both corrupted, the simulator receives ω from the

functionality and forwards it to the adversary together with 1.
– If only one among Pσ1 and Pσ2 is corrupted, let σ and θ denote the index

of the malicious party and the honest party respectively. S3-DPF waits
for yσ and I ⊆ [N] from the adversary and forwards the latter to the
functionality. It then passes the reply to the adversary.

– If Pσ1 and Pσ2 are both honest, S3-DPF sets σ ← 1 and θ ← 2. Then, it

generates yσ
$← FN .

3. If Pσ1 and Pσ2 are not both corrupted, S3-DPF computes
(a) yk,σ ← Bk · yσ for every k ∈ K
(b) Z ← {(k, j) ∈ T | yjk,σ = 0}
(c) U ← {(k, j) ∈ T | yjk,σ = 1}

(d) I ′ :=

{
η ∈ [N]

∣∣∣∣∣ η(k) = j ∀(k, j) ∈ Z
η(k′) 6= j′ ∀(k′, j′) ∈ U

}
(e) S3-DPF sends I ′ to the functionality. If F3-DPF aborts, the simulator tells

the adversary that there exists (k, j) ∈ T such that yjk,θ = 0.
(f) If Pσ is honest and Z 6= ∅, the simulator tells the adversary that there

exists (k, j) ∈ T such that yjk,σ = 0.
(g) If Pσ is corrupted and the adversary requests an abort, claiming that

there exists (k, j) ∈ T such that yjk,σ = 0, the simulator sends Abort to
the functionality.

(h) For every (k, j) ∈ T , S3-DPF sets bjk,σ ←

{
yjk,σ mod 2 if yjk,σ 6= 0,

1 otherwise.

(i) For every (k, j) ∈ T , S3-DPF sets bjk,θ ← δ0(j)⊕ bjk,σ ⊕ 1.
4. S3-DPF simulates again 2-DPF:

– If Pσ1 and Pσ2 are both corrupted, the simulator sends ω to the adversary

together with a value ∆
$← F2λ .

– If only one among Pσ1 and Pσ2 is corrupted, S3-DPF waits for Tσ and
I ′′ ⊆ [N] from the adversary and forwards the latter to the functionality.
It then passes the reply to the adversary.

– If Pσ1 and Pσ2 are both honest, S3-DPF generates Tσ
$← FN .

5. For every k ∈ K, the simulator sets Tk,σ ← BK · Tσ.
6. For every (k, j) ∈ T , the simulator sets Y jk,σ ← H

(
T jk,σ, (k, j)

)
.

7. S3-DPF simulates the second part of the seed generation by interacting with
the corrupted parties using internal copies of Fauth-ROT and modelling bjk,i
when Pσi is honest using the values computed in step 3.

Fig. 14. The simulator S3-DPF - Part 1

46

8. If there exists only one corrupted party among Pσ1 and Pσ2 , S3-DPF computes
εk ← bk,σ ⊕wk,σ ⊕ tk,σ for every k ∈ K.

9. If Pσ1 and Pσ2 are both corrupted, for every (k, j) ∈ T , S3-DPF computes
εjk ← wjk,1 ⊕ w

j
k,2 ⊕ t

j
k,1 ⊕ t

j
k,2 ⊕ δω(k)(j)⊕ 1.

10. S3-DPF simulates the first check using the internal copies of Fauth-ROT. If an
abort occurs, S3-DPF sends Abort to the functionality.

11. S3-DPF simulates the second check using the internal copies of Fauth-ROT and
FMPC and simulating ω with 0 when Pσ1 and Pσ2 are not both corrupted. If
an abort occurs, S3-DPF sends Abort to the functionality.

12. S3-DPF simulates the base case:
(a) It adds the values z′i ∈ F received from every corrupted party Pσi obtain-

ing z′.
(b) If the functionality sent ZERO, the simulator sends CW ← 0 to the

adversary.

(c) Otherwise, the simulator sends CW
$← F× to the adversary.

13. For every k ∈ [h], S3-DPF simulates the generation of the correction word

CWk using CWk,i
$← F dE(k) for every honest party Pσi . Moreover, it adds

the vectors CW ′k,i ∈ F dE(k) received from every corrupted party Pσi , obtain-
ing CW ′k.

14. For every η ∈ [N] and (k, j) ∈ T with j 6= η(k), S3-DPF computes
(a) Sj,ηk,0,b ← Xj

k[b] for every b ∈ {0, 1}
(b) Sj,ηk,i,1 ← Y jk,σ for every honest i ∈ {1, 2}
(c) yj,ηk,σ ← yjk,σ, yj,ηk,θ ← −y

j
k,σ, yj,ηk,0 ← 0

(d) bj,ηk,σ ← bjk,σ
(e) bj,ηk,θ ← bjk,σ ⊕ 1

(f) Sj,ηk,1,0 ← Xj
k[tj,ηk,1] where tj,ηk,1 ← wjk,1 ⊕ b

j,η
k,1

(g) Sj,ηk,2,0 ←W j
k ⊕ Z

j
k[bj,ηk,2]

15. For every η ∈ [N] and j 6= η(−1), S3-DPF computes

v̂j0,η ← −CW ·
2∑
i=0
σi∈H

(
u0
i · Enc(Sj,η−1,i,0) + u1

i · Enc(Sj,η−1,i,1)
)

v̂
η(−1)
0,η ← CW · z′ − v̂j0,η
v̂η0 ← (v̂0

0,η, v̂
1
0,η)

Fig. 15. The simulator S3-DPF - Part 2

47

16. For every η ∈ [N] and k ∈ [h], S3-DPF computes
(a) For every j 6= η(k)

v̂jk+1,η ← −
2∑
i=0
σi∈H

(
u0
i ·Gk(Sj,ηk,i,0) + u1

i ·Gk(Sj,ηk,i,1) + yj,ηk,i ·CWk

)

(b) For j = η(k)

v̂jk+1,η ← v̂ηk −CW
′
k −

∑
l 6=j

v̂lk+1,η +CWk ·
2∑
i=0
σi∈C

∑
l

yl,ηk,i

(c) v̂k+1,η ←
(
v̂0
k+1,η ‖ v̂1

k+1,η ‖ . . . ‖ v̂
dE(k)−1
k+1,η

)
17. S3-DPF simulates the final check

(a) It sends χ
$← FN to the adversary

(b) It waits for d′i from every corrupted party Pσi with i ∈ {1, 2}. It then
adds the received values to obtain d′.

(c) It waits for ζ′i from every corrupted party Pσi . It then adds the received
values to obtain ζ′.

(d) If Pσ0 is honest and there exists any (k, j) ∈ T such that εjk = 1 the

simulator sends ρ
$← F to the adversary and Abort to the functionality.

(e) S3-DPF computes d ← 〈χ,yσ〉 if only one party among Pσ1 and Pσ2 is
corrupted. If instead both Pσ1 and Pσ2 are corrupted, it sets d ← χω.
Finally, if both Pσ1 and Pσ2 are honest it sets d← 0.

(f) If d 6= d′, the simulator computes for every η ∈ [N],

ζ′η ← 〈χ, v̂h,η〉.

Then, it sets βη ← (ζ′ − ζ′η)/(d′ − d). Finally, the simulator sends
(βη, v̂h,η)η∈[N] to the functionality. If the answer is (ω, β) ∈ [N]× F , the
simulator sends ρ← ζ′ − ζ′ω − (d′ − d) · β to the adversary. Otherwise, it
sends 0.

(g) If d = d′, the simulator computes for every η ∈ [N],

ζ′η ← 〈χ, v̂h,η〉.

Then, it sets
I ′′′ := {η ∈ [N] | ζ′ = ζ′η}

and samples η̂
$← I ′′′. Finally, it sends (I ′′′, v̂h,η̂) to the functionality and

waits for a reply. If the answer is ω ∈ [N], the simulator sends ρ← ζ′−ζ′ω
to the adversary. Otherwise, it sends 0.

Fig. 16. The simulator S3-DPF - Part 3

48

check that an abort occurs when there would exist (k, j) ∈ T such that yjk,θ = 0.
Notice that in the protocol, by Lemma 2,

yjk,θ = δω(k)(j)− yjk,σ,

so, yjk,θ = 0 if and only if j = ω(k) and yjk,σ = 1, or j 6= ω(k) and yjk,σ = 0. In
other words, that happens if and only if ω 6∈ I ′.

When both Pσ1
and Pσ2

are honest, observe that yσ has the same distribution
as in the protocol and the simulator makes the functionality abort when there
exists (k, j) ∈ T such that yjk,σ = 0. Moreover, by querying I ′ to the functionality,
S3-DPF makes the simulation abort whenever there would exist (k, j) ∈ T such
that yjk,θ = 0. �

If all the parties are honest, the probability that the protocol aborts during the
conversion from F -secret-sharing to binary secret-sharing is negligible. Indeed,
y1 is random. Since Bk is full-rank for every k ∈ K, yk,1 is random in F dE(k).

Hence, for every (k, j) ∈ T , the probability that yjk,1 ∈ {0, 1} is 2 · |F |−1 which

is negligible. If yjk,1 6∈ {0, 1}, y
j
k,2 6= 0. Observe that T has a polynomial number

of elements, so we conclude by the union bound.
We notice that the simulation of the first part of the seed generation is perfect.

Indeed, S3-DPF just needs to model 2-DPF and we already argued that this can
be done with information theoretical security. The simulation of the second part
is perfect too, indeed, the only difference between protocol and simulation is
that, in the latter, different values for bjk,θ are used. However, all the information

is masked by uniformly random bits tjk,θ unknown to the adversary, resulting in
exactly the same view.

Claim 3.2. Consider the protocol and suppose that both Pσ1
and Pσ2

are honest.
Then, for every (k, j) ∈ T , bjk,2 = δω(k) ⊕ bjk,1 ⊕ 1.

If instead there exists only one σ ∈ {σ1, σ2} such that Pσ is corrupted, for
every (k, j) ∈ T ,

bjk,θ =

{
δω(k)(j)⊕ bjk,σ ⊕ 1 if yjk,σ 6= 0,

δω(k)(j) otherwise.

Proof of the claim. Let σ denote the index of the corrupted party, if it exists.
Otherwise, let σ be 1. Let θ denote the index of the other party.

By Lemma 2, we know that yjk,σ + yjk,θ = δω(k)(j) for every (k, j) ∈ T . Here
the addition denotes the sum modulo p := |F |.

Suppose that yjk,σ and yjk,θ are both different from 0. By denoting the addition

over the integers by +�, we have that 2 ≤ yjk,σ +� yjk,θ ≤ 2p − 2. Since the sum
must reduce to δω(k)(j) modulo p, we have that

yjk,σ +� yjk,θ = δω(k)(j) +� p.
If we reduce both sides of the equation modulo 2, we obtain that bjk,σ ⊕ b

j
k,θ =

δω(k)(j)⊕ 1.

49

Observe that when both Pσ1
and Pσ2

are honest, we can assume that yjk,σ
and yjk,θ are different from 0, otherwise, the protocol would have aborted in step
3. So this terminates the first part of the claim.

If instead Pσ is corrupted, yjk,σ can be 0. In that case, we have that bjk,θ =

yjk,θ mod 2 = δω(k)(j). �

Claim 3.3. The simulation of the first check is perfect.

Proof of the claim. If Pσ1
and Pσ2

are both corrupted, the procedure is perfectly
simulated, so we can restrict our analysis to the other cases.

If Pσ1
and Pσ2

are both honest, observe that bjk,σ is perfectly simulated for
every (k, j) ∈ T . Independently on whether Pσ is corrupt, the only discrepancy
between the protocol and the simulation is the value of bjk,θ. However, observe
that by Claim 3.2, the two values differ by δ0(j)⊕ δω(k)(j), so, the distribution

of
⊕

j∈[dE(k)] b
j
k,θ is the same in both protocol and simulation.

In the protocol, for every honest party Pσi with i ∈ {1, 2}, we have that

tk,i :=
⊕

j∈[dE(k)]

tjk,i =
⊕

j∈[dE(k)]

(wjk,i ⊕ b
j
k,i) =

⊕
j∈[dE(k)]

bjk,i ⊕
⊕

j∈[dE(k)]

wjk,i.

In other words, we know that tk,θ depends only on
⊕

j∈[dE(k)] b
j
k,i and therefore,

the simulation is perfect. �

For every (k, j) ∈ T and i ∈ {1, 2}, we define b′
j
k,i := wjk,i ⊕ t

j
k,i. Observe

that when Pi is honest, b′
j
k,i = bjk,i.

Claim 3.4. If all the parties are honest, the first check never aborts.
If there exists k ∈ K such that ⊕

j∈[dE(k)]

εjk = 1

and Pσ0
is honest, the first check always aborts.

Proof of the claim. Since the simulation is perfect, if S3-DPF makes the function-
ality abort, also Π3-DPF aborts. Observe that for every k ∈ K,

ψk = tk,1 ⊕ tk,2 ⊕
⊕

j∈[dE(k)]

(wjk,1 ⊕ w
j
k,2) =

⊕
j∈[dE(k)]

(tjk,1 ⊕ w
j
k,1 ⊕ t

j
k,2 ⊕ w

j
k,2).

If Pσ1
and Pσ2

are both honest, the value computed by Pσ0
for every k ∈ K is

ψk =
⊕

j∈[dE(k)]

(bjk,σ ⊕ b
j
k,θ) =

⊕
j∈[dE(k)]

(bjk,σ ⊕ b
j
k,θ) =

⊕
j∈[dE(k)]

(δω(k)(j)⊕ 1) = 1.

So, the protocol never aborts.

50

If exactly one of Pσ1
and Pσ2

is corrupted, the value computed by Pσ0
for

every k ∈ K is

ψk =
⊕

j∈[dE(k)]

(b′
j
k,σ ⊕ b

j
k,θ) =

⊕
j∈[dE(k)]

(εjk ⊕ b
j
k,σ ⊕ b

j
k,θ) =

=
⊕

j∈[dE(k)]

εjk ⊕
⊕

j∈[dE(k)]

(bjk,σ ⊕ b
j
k,θ) =

⊕
j∈[dE(k)]

εjk ⊕ 1.

Finally, if Pσ1
and Pσ2

are both corrupted, the value computed by Pσ0
for

every k ∈ K is

ψk =
⊕

j∈[dE(k)]

(εjk ⊕ δω(k)(j)⊕ 1) =
⊕

j∈[dE(k)]

εjk ⊕ 1.

So, if
⊕

j∈[dE(k)] ε
j
k = 1, the protocol always aborts. �

Claim 3.5. The second check is perfectly simulated. Moreover, if all the parties
are honest, the check never fails.

Proof of the claim. If Pσ1
and Pσ2

are both corrupted, the simulation is clearly
perfect.

For every honest party Pσi with i ∈ {1, 2}, Φi is perfectly simulated. Indeed,
in both the protocol and the simulation, Ri is random and unknown to the
adversary, masking all the information.

Suppose that only one among Pσ1 and Pσ2 is corrupted. Let R′σ be the value
input into FMPC by Pσ. Observe that, in the protocol,

Φ⊕ Φ′ = Rσ ⊕R′σ ⊕ V ·
(
ω ⊕ C · (t1 ⊕ t2 ⊕w ⊕ 1)

)
Take now (k, j) ∈ T . The (dE(k) + j)-th entry of t1 ⊕ t2 ⊕w ⊕ 1 is

tjk,1 ⊕ t
j
k,2 ⊕ w

j
k,1 ⊕ w

j
k,2 ⊕ 1 = b′

j
k,σ ⊕ b

j
k,θ ⊕ 1 = b′

j
k,σ ⊕ b

j
k,σ ⊕ δ

j
ω(k).

Now, define ε and δ as the |T |-dimensional vectors having b′
j
k,σ ⊕ b

j
k,σ and

δω(k)(j) in the (dE(k) + j)-th entry, respectively. Observe that, by Lemma 3,
C · δ = ω. So we have that

Φ⊕ Φ′ = Rσ ⊕R′σ ⊕ V ·
(
ω ⊕ C · ε⊕ C · δ

)
= Rσ ⊕R′σ ⊕ V · C · ε.

By substituting ω with 0 and δω(k)(j) with δ0(j), we understand that the same
relation holds in the simulation. That proves that Φ′ is perfectly simulated.

Finally, we can prove the claim when both Pσ1
and Pσ2

are honest, using

exactly the same argument. The only difference is that R′σ = Rσ and b′
j
k,σ = bjk,σ

for every (k, j) ∈ dE(k). Observe that ε = 0, hence Φ′ = Φ. As a consequence,
the second check always succeeds when all the parties are honest. �

51

Claim 3.6. Consider the protocol and suppose that Pσ is corrupted. Then, by

the correlation robustness of H, the adversary cannot distinguish (Y
ω(k)
k,θ)k∈K

form a random sequence of h+ 1 elements in {0, 1}λ.

Proof of the claim. By Lemma 2, we know that, for every k ∈ K, T
ω(k)
k,σ ⊕T

ω(k)
k,θ =

∆. Observe that ∆ is uniformly distributed in {0, 1}λ from every party’s per-
spective, including the corrupted ones. Since we use a different “tag” (k, j) for
every evaluation of the hash function, by the correlation robustness of H, we

conclude that the values (Y
ω(k)
k,θ)k∈K look random and independent from every

party’s perspective except Pθ itself. �

Claim 3.7. Consider the protocol and suppose that Pσ1
and Pσ2

are both honest.
Then, by the correlation robustness of H, (Yk,1,Yk,2)k∈K are indistinguishable
from h + 1 random pairs of vectors over {0, 1}λ having coinciding entries for
every j 6= ω(k).

Proof of the claim. By Lemma 2, we know that for every j 6= ω(k), T jk,1 = T jk,2.

Hence, for all such (k, j), we have Y jk,1 = Y jk,2. We also know that T
ω(k)
k,1 ⊕

T
ω(k)
k,2 = ∆. Observe that ∆ is uniformly distributed in {0, 1}λ from every party’s

perspective.
Consider the vector CT1 having T jk,1 in the (dE(k) + j)-th entry for every

(k, j) ∈ T and observe that CT1 is obtained from T1 by applying a linear
function. The corresponding matrix B consists of all the rows of Bk for every
k ∈ K. Such matrix is not, however, full-rank. Indeed, the sum of all the rows
of Bk is the vector entirely made of ones for every k ∈ K. Let B̂ be the matrix
derived from B by removing the last row of Bk for every k ∈ K and adding the
row entirely made of ones.

For every (k, j) ∈ T with j 6= dE(k)− 1, consider the difference between the

c1 :=
(
j ·dE(k)

)
-th and the c2 :=

(
(j+1) ·dE(k)

)
-th column of B̂. Let it be dk,j .

For every l 6= k, we have that the c1-th and the c2-th column of Bl coincide.
Indeed, if l > k

c1 < c2 = (j + 1) · dE(k) < dE(k + 1) ≤ dE(l).

Remember that the first dE(l) columns of Bl are all identical. If instead l < k, we
know that dE(l+ 1) divides dE(k) and therefore also c1 and c2. Since Bl is split
into several identical blocks of dE(l+ 1) columns, the c1-th and c2-th column of
Bl must coincide. If instead we consider Bk, the c1-th and c2-th column are unit
vectors having a 1 in the j-th and (j + 1)-th position respectively.

To summarise, all the entries of dk,j are zeros with the only exceptions of
the

(
dE(k) + j

)
-th one, being 1, and the

(
dE(k) + j + 1

)
-th one, being -1. All

these vectors are linearly independent as they can be rearranged into a triangular
matrix. Moreover, they are all independent of any column of B̂, as they all have
the last entry equal to 0. Therefore, we have obtained |T |−h independent vectors

belonging to the space generated by the columns of B̂. Observe that |T | − h is

52

exactly the number of rows in B̂, hence, B̂ is full-rank. Let T̂ :=
⊕

j∈[N] T
j
1 .

Since T1 is random, we conclude that the values T̂ , (T jk,1)j 6=dE(k)−1 are random

and independent elements in {0, 1}λ.
It is now easy to see that, for every k ∈ K,

T
dE(k)−1
k,1 = T̂ ⊕

⊕
j 6=dE(k)−1

T jk,1.

Finally, we can conclude the proof of the claim by the correlation robustness
of H. The procedure actually needs three hybrids. In the first one, relying of

the secrecy of ∆, for every k ∈ K, we substitute Y
ω(k)
k,1 with a random element

in {0, 1}λ. In the second one, relying on the secrecy of T̂ , for every k ∈ K, we

substitute Y
dE(k)−1
k,1 and, if dE(k)−1 6= ω(k), Y jk,2 with the same random element

in {0, 1}λ. In the last one, relying on the fact that (T jk,1)j 6=dE(k)−1 are random

and independent, for every j 6= dE(k) − 1, we substitute Y jk,1 and, if j 6= ω(k),

Y jk,2 with the same random element in {0, 1}λ. �

Claim 3.8. Consider the protocol and suppose that Pσ0
is honest. For every

(k, j) ∈ T and i ∈ {1, 2}, define b′
j
k,i := tjk,i ⊕ w

j
k,i. If b′

j
k,1 = b′

j
k,2, one element

among Sjk,0,0 and Sjk,0,1 is uniformly distributed in {0, 1}λ from every party’s
perspective except Pσ0

.

Proof of the claim. Observe that the adversary can obtain information about
Xj
k[tjk,1⊕ 1] from exactly one the values Zjk[0] and Zjk[1]. Specifically, the former

if b′
j
k,1 = 1, the latter if b′

j
k,1 = 0. The analysis of the two cases is identical, for

simplicity, we restrict to the first situation. The information in Zjk[0] is masked by

W j
k [wjk,2]. Observe that wjk,2 = tjk,2⊕1 as b′

j
k,2 = b′

j
k,1 = 1. The value W j

k [tjk,2⊕1]

is random in {0, 1}λ and is known to no party other than Pσ0
. Hence, Zjk[0] does

not contain any information about Xj
k[tjk,1⊕1] either. That proves that Xj

k[tjk,1⊕
1] is uniformly distributed in {0, 1}λ from every party’s perspective except Pσ0 . �

Claim 3.9. If the first check succeeds, for every honest party Pσi and for every
k ∈ K, there exists j ∈ [dE(k)] and b ∈ {0, 1} such that Sjk,i,b is random in

{0, 1}λ from every party’s perspective except Pσi .

Proof of the claim. If i ∈ {1, 2}, by Claim 3.6, the element S
ω(k)
k,i,1 = Y

ω(k)
k,i is

random in {0, 1}λ from every other party’s perspective.
If Pσ0

is honest, the first check passes if and only if ψk = 1 for every k ∈ K.

Let b′
j
k,i := tjk,i ⊕ w

j
k,i for every i ∈ {1, 2} and (k, j) ∈ T . Observe that

ψk = tk,1 ⊕ tk,2 ⊕
⊕

j∈[dE(k)]

(wjk,1 ⊕ w
j
k,2) =

⊕
j∈[dE(k)]

(b′
j
k,1 ⊕ b′

j
k,2).

Hence, we know that there exists j ∈ [dE(k)] such that b′
j
k,1 = b′

j
k,2 (dE(k) is

always even). The result follows from Claim 3.8. �

53

Claim 3.10. Let p := |F |. Since |p − 2λ|/2λ is negligible, the simulation of the
basic case is unconditionally secure.

Proof of the claim. Consider the protocol. By Claim 3.9, we know that there ex-
ists j ∈ [2] such that at least one amongXj

−1[0], Xj
−1[1], Xj

−1[2], Xj
−1[3], Y j−1,1, Y

j
−1,2

is random in {0, 1}λ from the adversary’s perspective. Denote such element by
X−1, let Pσi be the honest party owning it.

When the encoding map Enc is applied to X−1, the distribution of the result
x is statistically indistinguishable from the uniform distribution over F . Observe
that x is then added with other values, obtaining zi. Since all the elements in
the sum are independent of x, the adversary cannot distinguish between the
distribution of zi and the uniform distribution over F .

In conclusion the distribution of CW in the protocol is indistinguishable from
the distribution that outputs 0 if β = 0 and a random element in F×, otherwise.
This is exactly the distribution used in the simulation.

Observe that in the protocol, the procedure can always fail due to a zero
denominator. Since zi looks random in F from the adversary’s perspective, the
probability of such event is negligible. �

Claim 3.11. Since Gk is a PRG for every k ∈ [h], the simulation of the correc-
tion word is computationally secure.

Proof of the claim. Consider the protocol and let k ∈ [h]. By Claim 3.9, we know
that for every honest party Pσi , there exists j ∈ [dE(k)] such at least one among
Sjk,i,0 and Sjk,i,1 is random in {0, 1}λ from the adversary’s perspective. Denote
such element by Sk,i.

When the PRG Gk is applied to Sk,i, the distribution of the result is compu-
tationally indistinguishable from the uniform distribution over F dE(k). Observe
that the expansion of Sk,i is one of the terms of CWk,i. Hence, the distribution
of CWk,i is indistinguishable from the uniform distribution over F dE(k). The
latter is the distribution used in the simulation. �

Clearly, the distribution of χ is the same in both the protocol and the simulation.

Claim 3.12. Suppose Pσ0
is honest and either Pσ1

or Pσ2
is corrupted. Assume

that there exists m ∈ K with the following properties

– ε
ω(m)
m = 1

– There exists l 6= ω(m) such that εlm = 1 and εjm = 0 for every j 6= l, ω(m).

Then, the second check fails with overwhelming probability.

Proof of the claim. The value Φ computed by Pσ0 is

Φ = R1 ⊕R2 ⊕ V · C · (t1 ⊕ t2 ⊕w ⊕ 1).

For every (k, j) ∈ T , the (dE(k) + j)-th entry of s := t1 ⊕ t2 ⊕w ⊕ 1 is

tjk,1 ⊕ t
j
k,2 ⊕ w

j
k,1 ⊕ w

j
k,2 ⊕ 1 = εjk ⊕ δω(k)(j)

54

if both Pσ1
and Pσ2

are corrupted,

tjk,1 ⊕ t
j
k,2 ⊕ w

j
k,1 ⊕ w

j
k,2 ⊕ 1 =b′

j
k,σ ⊕ b

j
k,θ ⊕ 1 =

=εjk ⊕ b
j
k,σ ⊕ b

j
k,θ ⊕ 1 = εjk ⊕ δω(k)(j)

if only Pσ is corrupted8.
Split now s into h + 1 blocks indexed by k ∈ K, the k-th one, denoted by

sk, having dE(k) bits. Observe that sm is a unit vector having special position
l and non-zero element 1.

Let z := C ·s. Similarly to Lemma 3, we split z into h+ 1 blocks indexed by
k ∈ K, the k-th one, denoted by zk, having 2k bits (1 bit if k = −1). Observe
that zm coincides with the bit representation of l.

Let R′1 and R′2 be the values input by the parties Pσ1 and Pσ2 in FMPC, we
define E := R1⊕R2⊕R′1⊕R′2. The second check passes if and only if Φ⊕Φ′ = 0

and therefore if and only if E = V ·(z⊕ω). The matrix V is random in F
λ×log(N)
2

and independent of E. Indeed, it is sampled after the adversary input R′1 and
R′2 in FMPC. Moreover, z⊕ω 6= 0 as the m-th blocks zm and ω(m) are different.
Hence, the probability that E = V · (z ⊕ ω) is 2−λ. �

Claim 3.13. Consider the protocol and suppose that Pσ0 is honest. Assume the
existence of m ∈ K for which there are r 6= l such that b′

r
m,1 = b′

r
m,2 and

b′
l
m,1 = b′

l
m,2. Then, the distribution of ρ is computationally indistinguishable

from the uniform distribution over F and the third check fails with overwhelming
probability.

Proof of the claim. We prove this claim in the hybrid in which the expansion via
a PRG G of every seed S unknown to the adversary is substituted with a random
vector of appropriate length. However, we will still denote such vector by G(S).

In this proof, we will continuously rely on the fact that, for every k ∈ [h]

CWk,0 = vk,0 −
∑

j∈[dE(k)]

vjk+1,0.

This is a consequence of the fact that yjk,0 = 0 for every j ∈ [dE(k)].
By Claim 3.8, we know that one value among Srm,0,0 and Srm,0,1 and one

value among Slm,0,0 and Slm,0,1 is uniformly distributed in {0, 1}λ from every
other party’s perspective, including the corrupted parties. We denote the first
one by Srm and the second one by Slm. Clearly, Srm and Slm are also mutually
independent.

If m = −1, Srm is independent of CW . Indeed, Slm hides the information with
unconditional security. When instead m ≥ 0, no information concerning Gm(Srm)
is leaked byCWm,0 asGm(Slm) protects its privacy with computational security.

If m = −1, we understand that vr0,0 is unconditionally indistinguishable from

a random element in F . Observe that v1−r
0,0 is however not independent of vr0,0, as

8 The last equality follows from Claim 3.2.

55

the sum of the entries of the vector v0,0 is bounded to be z0 ·CW . The important
fact is that this is a linear dependency and z0 · CW is independent of vk0,0.

If m ≥ 0, we know that Gm(Srm) is a random vector in F dE(m). We understand
that vrm+1,0 is a random vector in F dE(m) too. Again, that does not mean that

vrm+1,0 is independent of (vjm+1,0)j 6=r. Indeed, the sum of all the vectors vjm+1,0

is bounded to be equal to vm,0−CWm,0. The latter is independent of vrm+1,0.

Moreover, vrm+1,0 is independent of (vjm+1,0)j 6=r,l.
We now proceed by induction. Suppose that we proved the existence of values

rk, lk and Vk ∈ F such that vrkk,0 is a random element in F independent of

(vjk,0)j 6=rk,lk , Vk. Moreover, suppose that∑
j

vjk,0 = Vk.

Observe that these properties are satisfied for k = m+ 1.
By Claim 3.9, we know that there exists τ ∈ dE(k) and B ∈ {0, 1} such

that Sτk,0,B is uniformly distributed in {0, 1}λ from the adversary’s perspective.

As a consequence, Gk(Sτk,0,b) is a random element in F dE(k). We conclude that
CWk,0 is independent of (

Gk(Sjk,0,b)
)

(j,b) 6=(τ,B)

Let now Gik(Sjk,0,b) denote the i-th entry in Gk(Sjk,0,b). Since vrkk,0 is random in
F , Grkk (Sτk,0,B) is independent of CWk,0 too, and therefore it is random in F

from the adversary’s perspective.
Define now rk+1 := τ ·dE(k)+rk and lk+1 := τ ·dE(k)+ lk. Since Grkk (Sτk,0,B)

is random, the rk-th entry of vτk+1,0 is random in F . Such entry corresponds to

v
rk+1

k+1,0.
Let now Uk denote the sum of the entries in CWk,0 and observe that∑

j

vjk+1,0 = Vk − Uk.

Since the Grkk (Sτk,0,B) is independent9 of (Vk, Uk), we conclude that v
rk+1

k+1,0 is

independent of Vk+1 := Vk−Uk. Finally, since vrkk,0 is independent of (vjk,0)j 6=rk,lk ,

it is easy to see that v
rk+1

k+1,0 is independent of (vjk+1,0)j 6=rk+1,lk+1
, Vk+1.

By induction over k, we can therefore conclude that there exist rh, lh and
Vh such that vrhh,0 is random in F and independent of (vjh,0)j 6=rh,lh , Vh from the
adversary’s perspective. Moreover,

vlhh,0 = Vh −
∑
j 6=lh

vjh,0.

9 This fact is a consequence of the independence between v
rk
k,0 and Vk. Observe indeed

that both v
rk+1

k+1,0 and v
rk
k,0 must be added to obtain Uk, the latter masks all the

information about the former.

56

Observe now that

ζ0 = 〈χ,vh,0〉 =
∑
j∈[N]

χj · vjh,0 =
∑
j 6=lh

(χj − χlh) · vjh,0 + χlh · Vh.

So, when χrh 6= χlh , event that occurs with overwhelming probability 1− |F |−1,
no PPT adversary can distinguish ζ0 from a random element in F . Since ζ0 is
independent of ζ1, ζ2, d1, d2 and β, the distribution of ρ is indistinguishable from
the uniform distribution over F . Hence, the third check aborts with overwhelming
probability. �

Claim 3.14. If Pσ0
is honest and there exists (k, j) ∈ T such that εjk = 1, no

PPT adversary can distinguish between protocol and simulation.

Proof of the claim. If there exists m ∈ K, for which the number of j ∈ [dE(m)]
such that εjm = 1 is odd, the first check aborts in both the protocol and the
simulation.

If there exists m ∈ K, for which there are exactly two positions j, l ∈ [dE(m)]
for which εlm = εjm = 1 and j = ω(m), by Claim 3.12, the protocol aborts at
the second check with overwhelming probability. We have proven that S3-DPF

perfectly models the second check, hence, the same happens in the simulation.
In all other cases, there exist m ∈ K and r, l ∈ [dE(m)], both different from

ω(m), such that εlm = εrm = 1. If both Pσ1
and Pσ2

are corrupted, it means that

b′
l
m,1 ⊕ b′

l
m,2 = εlm ⊕ δω(m)(l)⊕ 1 = 0,

b′
r
m,1 ⊕ b′

r
m,2 = εrm ⊕ δω(m)(r)⊕ 1 = 0.

If instead there exists only one corrupted party among Pσ1
and Pσ2

,by Claim 3.2,
we have

b′
l
m,θ = blm,θ = δω(m)(l)⊕ blm,σ ⊕ 1 = δω(m)(l)⊕ εlm ⊕ b′

l
m,σ ⊕ 1 = b′

l
m,σ,

b′
r
m,θ = brm,θ = δω(m)(r)⊕ brm,σ ⊕ 1 = δω(m)(r)⊕ εrm ⊕ b′

r
m,σ ⊕ 1 = b′

r
m,σ.

In both cases, there exist m ∈ K and r 6= l such that b′
r
m,1 = b′

r
m,2 and

b′
l
m,1 = b′

l
m,2.

To summarise, either both the protocol and the simulation abort in the first
or second check, or, by Claim 3.13, they both abort in the third check. In such
situation, ρ is indistinguishable from a random element in F .

�

Claim 3.15. Consider the protocol. For every k ∈ [h + 1], define the random
variable v̂k,ω as v̂k,η for η = ω in S3-DPF.

Then, we have

v̂h,ω +
∑
i∈[3]
σi∈H

vh,i = (

ω︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸

N

).

57

Proof of the claim. Observe that for every σi ∈ H, j 6= ω(k) and b ∈ {0, 1}, the
seed Sj,ωk,i,b used to compute v̂h,ω coincides with Sjk,i,b. The same occurs for yj,ωk,i
and yjk,i.

For every k ∈ K, we define

ω̂(k + 1) := ω(−1) +

k∑
i=0

ω(i) · dE(i).

Observe that ω̂(h) = ω.
We proceed by induction over k. Consider the base case k = 0. Recalling

what we have just observed about the seeds, it is straightforward to see that for
j 6= ω(−1)

v̂j0,ω +
∑
i∈[3]
σi∈H

vj0,i = 0.

As a matter of fact,

vj0,i = CW ·
(
u0
i · Enc(Sj−1,i,0) + u1

i · Enc(Sj−1,i,1)
)
.

Now, observe that

∑
i∈[3]
σi∈H

1∑
l=0

vl0,i = CW ·
∑
i∈[3]
σi∈H

zi = CW ·
(β

CW
− z′

)
= β − CW · z′.

Therefore,

v̂
ω(−1)
0,ω +

∑
i∈[3]
σi∈H

v
ω(−1)
0,i = CW · z′ − v̂j0,ω + β − CW · z′ −

∑
i∈[3]
σi∈H

vj0,i = β.

Suppose that we have proven that for a certain k ∈ [h]

v̂k,ω +
∑
i∈[3]
σi∈H

vk,i = (

ω̂(k)︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸

dE(k)

) =: ûk.

It is immediate to see that for j 6= ω(k), we have

v̂jk+1,ω +
∑
i∈[3]
σi∈H

vjk+1,i = 0.

As a matter of fact,

vjk+1,i = u0
i ·Gk(Sjk,i,0) + u1

i ·Gk(Sjk,i,1) + yjk,i ·CWk.

58

Now, observe that∑
i∈[3]
σi∈H

∑
j∈[dE(k)]

vjk+1,i =
∑
i∈[3]
σi∈H

(
vk,i −CWk,i +

∑
j∈[dE(k)]

yjk,i ·CWk

)
=

= ûk − v̂k,ω −CWk +CW ′k +
∑
i∈[3]
σi∈H

∑
j

yjk,i ·CWk

By Lemma 2, we know that∑
i∈[3]
σi∈H

∑
j

yjk,i +
∑
i∈[3]
σi∈C

∑
j

yj,ωk,i = 1.

Hence, we have that∑
i∈[3]
σi∈H

∑
j∈[dE(k)]

vjk+1,i = ûk − v̂k,ω +CW ′k −
∑
i∈[3]
σi∈C

∑
j

yj,ωk,i ·CWk =

= ûk −
∑
j

v̂jk+1,ω

We can finally conclude that

v̂
ω(k)
k+1,ω +

∑
i∈[3]
σi∈H

v
ω(k)
k+1,i = ûk.

It is now immediate to see that

v̂k+1,ω +
∑
i∈[3]
σi∈H

vk+1,i

is a unit vector with β as non-zero value. Furthermore, the special position
becomes dE(k) · ω(k) + ω̂(k) = ω̂(k + 1). �

Claim 3.16. If Pσ0 is corrupted or if there exists no (k, j) ∈ T such that εjk = 1,
the third check is perfectly simulated.

Proof of the claim. In the protocol, the third check does not abort if and only
if ρ = 0.

Let Uβω denote the N -dimensional unit vector having special position ω and
non-zero element β. Observe that

ρ =ζ ′ +
∑
i∈[3]
σi∈H

〈χ,vh,i〉 −
(
d′ +

2∑
i=1
σi∈H

〈χ,yi〉
)
· β =

=ζ ′ + 〈χ,Uβω 〉 − 〈χ, v̂h,ω〉 − (d′ + 〈χ,y1 + y2〉 − d) · β =

=ζ ′ + χω · β − ζ ′ω − (d′ − d+ χω) · β =

=ζ ′ − ζ ′ω − (d′ − d) · β.

59

Therefore, if d = d′, the check passes if and only if ζ ′ = ζ ′ω. If instead, d 6= d′,
the check passes if and only if β = (ζ ′− ζ ′ω)/(d′− d). Exactly the same happens
in the simulation. When the check passes S3-DPF sends ρ = 0 to the adversary.
Moreover, when the check fails, S3-DPF receives the information necessary to
recompute ρ from the functionality, perfectly simulating the check. �

Claim 3.17. Consider the simulation, with overwhelming probability there ex-
ists no values η, η′ ∈ I ′′′ such that v̂h,η 6= v̂h,η′ .

Proof of the claim. Suppose that we have η, η′ ∈ [N] such that v̂h,η 6= v̂h,η′ .
The two values can simultaneously belong to I ′′′ only if 〈χ, v̂h,η〉 = 〈χ, v̂h,η′〉
and, therefore, only if 〈χ, v̂h,η − v̂h,η′〉 = 0.

Observe that χ is random in FN and independent of v̂h,η, v̂h,η′ . Since v̂h,η−
v̂h,η′ 6= 0, the probability that 〈χ, v̂h,η− v̂h,η′〉 = 0 is |F |−1, which is negligible.

Since there exists a polynomial number of pairs (η, η′) ∈ [N]2, the result is
proven by the union bound. �

Claim 3.18. If all the parties are honest, the third check never aborts and

∑
i∈[3]

vh,i = (

ω︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸

N

).

Proof of the claim. Take (k, j) ∈ T with j 6= ω(k). By Claim 3.7, we know that
Sjk,1,1 = Sjk,2,1. We now prove that {Sjk,0,0, S

j
k,0,1} = {Sjk,1,0, S

j
k,2,0}.

Observe that Sjk,1,0 ∈ {S
j
k,0,0, S

j
k,0,1}. By Claim 3.2, we know that bjk,2 =

bjk,1 ⊕ 1. Therefore,

Sjk,2,0 = Xj
k[3] = W j

k ⊕ Z
j
k[bjk,2] =

= W j
k ⊕W

j
k [wjk,2 ⊕ b

j
k,2]⊕Xj

k[wjk,1 ⊕ b
j
k,2] =

= W j
k ⊕W

j
k [tjk,2]⊕Xj

k[wjk,1 ⊕ b
j
k,1 ⊕ 1] =

= Xj
k[tjk,1 ⊕ 1].

It is now immediate to see that for every j 6= ω(k), v̂jk+1,ω = 0. This is
consequence of the fact that when a party adds a term obtained from a certain
value Sjk,i,b, the other party holding Sjk,i,b will subtract the same term.

Since no party is corrupted, z′ = 0 and CW ′k = 0. By recursion on k, it is

therefore possible to deduce that v̂
ω(k)
k+1,ω = 0 for every k ∈ K. That proves that

v̂h,ω = 0.
Since ζ ′ = 0, the simulator will never make the functionality abort. Previ-

ously, we have also proven that the third check is perfectly simulated, so the
same happens in the protocol. Finally, by Claim 3.15, we know that

∑
i∈[3]

vh,i = v̂h,ω +
∑
i∈[3]

vh,i = (

ω︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸

N

).

�

60

Claim 3.19. If the protocol does not abort, no PPT adversary can distinguish
between the outputs of the honest parties in the protocol and in the simulation.

Proof of the claim. If the protocol does not abort, with overwhelming probabil-
ity εjk = 0 for every (k, j) ∈ T . Moreover, we know that ω ∈ I ′′′. By Claim 3.17,
we know that for every η ∈ I ′′′, v̂h,η = v̂h,ω with overwhelming probability.
Therefore, in both protocol and simulation

∑
i∈[3]

vh,i = (

ω︷ ︸︸ ︷
0, 0, . . . , 0, β, 0, 0, . . . , 0︸ ︷︷ ︸

N

)− v̂h,ω.

If there exists only one honest party, the claim is proven. If there exist more
than one honest party, we must show that the shares vh,i of the honest parties
look random.

Consider (k, j) ∈ T with j 6= ω(k). Since εjk = 0, the seed generation is exactly

as in the honest case, hence, by Claim 3.18, we know that Sjk,1,1 = Sjk,2,1 and

{Sjk,0,0, S
j
k,0,1} = {Sjk,1,0, S

j
k,2,0}. If Pσ1

and Pσ2
are both honest, by Claim 3.7,

the adversary has no information about Sjk,1,1 and Sjk,2,1.

If Pσ0 and Pσ2 are both honest, Sjk,2,0 is uniformly distributed in {0, 1}λ

from the adversary’s perspective. Indeed, Sjk,2,0 is independent of Sjk,1,0 and the

values Zjk[0] and Zjk[1] leak no information as W j
k [0] and W j

k [1] are independent,
uniformly distributed in {0, 1}λ and unknown to the adversary.

If Pσ0 and Pσ1 are both honest, Sjk,1,0 is uniformly distributed in {0, 1}λ from

the adversary’s perspective. Indeed, Sjk,1,0 is independent of Sjk,2,0. Moreover, the

values Zjk[0] and Zjk[1] leak no information leak no information about it. Indeed,

one of them is W j
k ⊕ S

j
k,2,0, the other one is W j

k [tjk,2 ⊕ 1]⊕ Sjk,1,0. The former is

clearly independent of Sjk,1,0, the latter is too as W j
k [tjk,2 ⊕ 1] is unknown to the

adversary.
By Claim 3.9, we also know that for every k ∈ K and honest party Pσi ,

there exists j ∈ [dE(k)] and b ∈ {0, 1} such that Sjk,i,b is uniformly distributed

in {0, 1}λ from the perspective of every other party. This cannot happen when
j 6= ω(k), indeed, in that case, there always exists another party knowing Sjk,i,b.
Hence, such j must be ω(k).

Let θ be the index of a honest party. Observe that for each (k, j) ∈ T , every
honest party Pσi with σi 6= θ holds a value Sjk,i ∈ {S

j
k,i,0, S

j
k,i,1} uniformly

distributed from the perspective of everybody except Pσi and possibly Pθ.

Consider the base case k = −1 and observe that S
ω(−1)
−1,θ protects the privacy

of (Sj−1,i)i∈H\{θ} with unconditional security when CW is computed. As a con-
sequence, the elements

vj0,i = CW ·
(
u0
i · Enc(Sj−1,i,0) + u1

i · Enc(Sj−1,i,1)
)

are random and mutually independent for every i ∈ H \ {θ} and j ∈ [2].

61

Suppose that we have proven that (vk,i)i∈H\{θ} are random and independent
from the adversary’s perspective for a certain k ∈ [h]. Due to the randomness of
vk,i, we know that CWk,i is independent of Gk(Sjk,i) for every j ∈ [dE(k)] and

i ∈ H \ {θ}. As a consequence, since Gk is a PRG and Sjk,i is unknown to every

party except Pσi and possibly Pθ, the vectors
{
vjk+1,i|j ∈ [dE(k)], i ∈ H, i 6= θ

}
are random in F dE(k) and independent.

By induction, we conclude that the shares (vh,i)i∈H\{θ} are indistinguishable
from |H| − 1 random elements in FN . That ends the proof of the claim and of
the theorem. �

ut

E Security Proof of ΠOffline

Proof (of Theorem 4).

Consider the simulator SOffline described in Figure 17. We prove that no PPT
adversary is able to distinguish between the protocolΠOffline and the composition
of FOffline with SOffline.

Clearly, the simulation of the initialisation is unconditionally secure. Indeed,
the only difference between protocol an simulation is that the values (αi)i∈H
are uniformly distributed in F× in the former and random in F in the latter.
Since we assume F has exponential cardinality in the security parameter, the
two distributions are indistinguishable. Let α be

∑
i∈[n] αi.

It is also immediate to see that the protocol never aborts if all the parties
are honest. Observe that in that case, the non-zero elements of the procedures
2-DSPF and 3-DSPF are never equal to 0. Indeed, they are the product of ele-
ments in F×.

Input Masks. Observe that the simulation of Input Masks is perfect until the
outputs are revealed. We recall that Pj is the party to which the masks are
addressed.

Claim 4.1. In the protocol, we have the following relations∑
i∈[n]

xi = x,
∑
i∈[n]

mx,i = α · x.

Proof of the claim. By how 2-DSPF is defined, we know that for every i 6= j and
r ∈ [c], we have

ẽri (X) + ẽr,1i (X) =
∑
l∈[t]

µri [l] ·Xωr[l] =
∑
l∈[t]

αi · βr[l] ·Xωr[l] = αi · er(X).

62

SOffline

Initialisation. The simulator waits for (αi)i∈C from the adversary and forwards

them to the functionality. Moreover, it samples αi
$← F× for every i ∈ H.

Input Masks. Let Pj be the party to which the masks are addressed. SOffline

runs the protocol with the adversary simulating the honest parties:

1. If the simulation aborts, the simulator sends (Abort) to the functionality.
2. At the end, the simulator reconstructs the sum of the outputs of the corrupted

parties

x̂←
∑
i∈C

xi, m̂x ←
∑
i∈C

mx,i.

Observe that SOffline can perform this operation. Indeed, in the initialisation,
it learnt (αi)i∈C . Moreover, in every execution of 2-DSPF involving corrupted
parties, the adversary sends to the simulator the shares that the corrupted
parties selected for the output. Finally, for every honest party Pi and cor-
rupted party Pk, the simulator knows both the seeds si,k and sk,i. Observe
that if Pi and Pk are both corrupted, the seeds sk,i and si,k do not affect the
value of x̂ and m̂x.

3. If Pj is corrupted, the simulator recomputes x and sends (x, x̂, m̂x) to the
functionality. The operation can always be performed by SOffline. Indeed, at
the beginning of the procedure, it received βr and ωr for every r ∈ [c].

4. If Pj is honest the simulator sends (x̂, m̂x) to the functionality.

Triple Generation. SOffline runs the protocol with the adversary simulating the
honest parties:

1. If the simulation aborts, the simulator sends (Abort) to the functionality.
2. If the adversary tries to guess any non-zero element in any execution of

3-DSPF when any of the three addressed party is honest, the simulator sends
(Abort) to the functionality and notifies the abort to the adversary.

3. At the end, the simulator reconstructs the sum of the outputs of the corrupted
parties

x̂←
∑
i∈C

xi, ŷ ←
∑
i∈C

yi, ẑ ←
∑
i∈C

zi,

m̂x ←
∑
i∈C

mx,i, m̂y ←
∑
i∈C

my,i, m̂z ←
∑
i∈C

mz,i.

Then, it sends (x̂, m̂x, ŷ, m̂y, ẑ, m̂z) to the functionality. Observe that SOffline

can perform this operation. Indeed, in the initialisation, it learnt (αi)i∈C .
Moreover, at the beginning of the procedure, it received βri ,γ

r
i ,ω

r
i ,η

r
i for

every i ∈ C and r ∈ [c]. Finally, in every execution of 2-DSPF and 3-DSPF
involving corrupted parties, the adversary sends to the simulator the sum of
the shares that the corrupted parties selected for the output.

Fig. 17. The simulator SOffline

63

Hence, defining ac−1 := 1, we obtain that∑
i∈[n]

m′x,i =
∑
i∈[n]

〈a, ẽi〉 =
∑
i∈[n]

∑
r∈[c]

ar · ẽri =

=
∑
r∈[c]

ar ·
(∑
i 6=j

ẽri (X) +
∑
i 6=j

ẽr,1i (X) + αj · er(X)
)

=

=
∑
r∈[c]

ar ·
(∑
i∈[n]

αi · er(X)
)

= α · 〈a, e〉 = α · x.

Observe that ∑
i∈[n]

∑
k 6=i

(
G(si,k)−G(sk,i)

)
= 0.

We conclude that∑
i∈[n]

xi = x,
∑
i∈[n]

mx,i =
∑
i∈[n]

m′x,i = α · x.

�

Claim 4.2. Consider the protocol and let Pι be an honest party. By the PRG
security of G, the values (xk,mx,k)k∈H\{ι} look independent and uniformly dis-
tributed in R.

Proof of the claim. Observe that for every k ∈ H with k 6= ι, the seed sk,ι is ran-
dom from the adversary perspective. By the PRG security, the adversary can-
not realise that we substitute G(sk,ι) with two random elements in R. Observe
that these terms are added to obtain xk and mx,k. So, the latter are now uni-
formly distributed over R. We conclude the proof of the claim by observing that
sk,ι is known only to Pk and Pι, therefore, the values (xk,mx,k)k∈H\{ι} are all
independent. �

Observe that by the Claims 4.1 and 4.2, we can conclude that no PPT ad-
versary can distinguish between the real Input Masks and the simulation when
Pj is corrupted. The following claim shows that indistinguishability holds even
when Pj is honest.

Claim 4.3. If Pj is honest, by the Rc-LPNt assumption with static leakage, no
PPT adversary can distinguish between the real Input Masks and the simulation.

Proof of the claim. We can easily convert an adversaryA distinguishing between
protocol and simulation into an attacker A′ that wins the module-LPN game
with non-negligible advantage.

Upon activationA′ would initialise an internal copy ofA and run the protocol
simulating the honest parties. During the generation of input masks addressed to
an honest party Pj , A′ would let its challenger select the non-zero values βr and
special positions ωr for every r ∈ [c]. When A tries to guess a special position
ωr[l] for some r ∈ [c] and l ∈ [t] by specifying a set I lr ⊆ [N] during 2-DSPF, A′

64

would issue a query (r, l, I lr) to its challenger and forward the reply to A. After
exchanging the seeds, A′ would wait for (a, x) from its challenger. We recall that
x is computed as in the protocol with probability 1/2. In the other cases, it is
uniformly sampled in R. A′ would model FRand by sending a to A. Finally, the
attacker would reconstruct the sum of the shares of the corrupted parties

x̂←
∑
i∈C

xi, m̂x ←
∑
i∈C

mx,i

as SOffline does. Then, for every i ∈ H, A′ would simulate the output of Pi by
generating a random pair (xi,mx,i) ∈ R2 subject to∑

i∈H
xi + x̂ = x,

∑
i∈H

mx,i + m̂x = x · α.

Observe that when the challenger replies with random elements in R, the
view of A is indistinguishable from the view in the simulation. Indeed, the only
difference is that the challenger samples βr uniformly in F t, whereas the simu-
lator samples it in F×

t
. The statistical distance between the two distributions in

however negligible, so they are indistinguishable.
If instead the challenger computes x using sparse polynomials in R, the view

of A is indistinguishable from the view in the protocol. The differences are the
distribution of (xi,mx,i)i∈H and the fact that the challenger samples βr uni-

formly in F t, whereas Pj samples it in F×
t
. As we argued before, the second dis-

crepancy is not an issue as the distributions are indistinguishable. The first one
is not a problem either, due to Claims 4.1 and 4.2.

So, if A distinguished between protocol and simulation with non-negligible
advantage, then A′ would break the Rc-LPNt hardness. �

Triple Generation. Observe that the simulation is unconditionally secure until
the outputs are revealed. As a matter of fact, the only difference between protocol
and simulation until that point, is that in the former, guesses of the non-zero
values in 3-DSPF may succeed, whereas in the latter, they always fail. Anyway,
observe that the protocol leaks no information about βri and γri for every i ∈ H
and r ∈ [c]. Moreover, the non-zero elements cannot be 0, otherwise, it means
that for some j ∈ C, the adversary chose αj = 0, or βrj [l] = 0 or γrj [l] = 0 for
some r ∈ [c] and l ∈ [t]. In those cases, the protocol would have aborted during
an execution of 2-DSPF. We understand that if at least one of the addressed
parties is honest, the non-zero elements are uniformly distributed in F× from
the adversary perspective. Hence, any guess fails with overwhelming probability.

Before proceeding with our analysis, we define the random variables x :=∑
i∈[n] xi and y :=

∑
i∈[n] yi.

Claim 4.4. In the protocol, we have the following relations∑
i∈[n]

mx,i = α · x,
∑
i∈[n]

my,i = α · y.

65

Proof of the claim. By how 2-DSPF is defined, we know that for every i 6= j and
r ∈ [c], we have

ũr,0i,j (X) + ũr,1i,j (X) =
∑
l∈[t]

µri,j [l] ·Xωrj [l] =
∑
l∈[t]

αi · βrj [l] ·Xωrj [l] = αi · urj(X),

ṽr,0i,j (X) + ṽr,1i,j (X) =
∑
l∈[t]

νri,j [l] ·Xηrj [l] =
∑
l∈[t]

αi · γrj [l] ·Xηrj [l] = αi · vrj (X).

Hence, defining ac−1 := 1, we obtain that

∑
i∈[n]

mx,i =
∑
i∈[n]

〈a, ũi〉 =
∑
i∈[n]

∑
r∈[c]

ar · ũri (X) =

=
∑
r∈[c]

ar ·
(∑
i∈[n]

αi · uri (X) +
∑
i 6=j

(
ũr,0i,j (X) + ũr,1j,i (X)

))
=

=
∑
r∈[c]

ar ·
(∑
i∈[n]

αi · uri (X) +
∑
i 6=j

αi · urj(X)

)
=

=
∑
r∈[c]

ar ·
(
α ·
∑
i∈[n]

uri (X)
)

= α ·
∑
i∈[n]

〈a,ui〉 = α · x.

In a totally analogous way, we can prove the second half of the claim. �

Claim 4.5. In the protocol, we have that
∑
i∈[n] zi = x · y.

Proof of the claim. By how 2-DSPF is defined, we know that for every i 6= j and
r, s ∈ [c], we have

wr,s,0i,j (X) + wr,s,1i,j (X) =
∑
l,h∈[t]

ρr,si,j [lt+ h] ·Xζr,si,j [lt+h] =

=
∑
l,h∈[t]

βri [l] · γsj [h] ·Xωri [l]+ηsj [h] =

=
(∑
l∈[t]

βri [l] ·Xωri [l]
)
·
(∑
h∈[t]

γsj [h] ·Xηsj [h]
)

=

= uri (X) · vsj (X).

66

Hence, defining ac−1 := 1, we obtain that

∑
i∈[n]

zi =
∑
i∈[n]

〈a⊗ a,wi〉 =
∑
i∈[n]

∑
r,s∈[c]

ar · as · wrc+si (X) =

=
∑
r,s∈[c]

ar · as ·
(∑
i∈[n]

uri (X) · vsi (X) +
∑
i 6=j

(
wr,s,0i,j (X) + wr,s,1j,i (X)

))
=

=
∑
r,s∈[c]

ar · as ·
(∑
i∈[n]

uri (X) · vsi (X) +
∑
i 6=j

uri (X) · vsj (X)

)
=

=
∑
i,j∈[n]

∑
r,s∈[c]

ar · as · uri (X) · vsj (X) =

=
∑
i,j∈[n]

(∑
r∈[c]

ar · uri
)
·
(∑
s∈[c]

as · vsj
)

=

=
∑
i,j∈[n]

〈a,ui〉 · 〈a,vj〉 =
∑
i,j∈[n]

xi · yj = x · y.

�

Claim 4.6. In the protocol, we have that
∑
i∈[n]mz,i = α · x · y.

Proof of the claim. By how 3-DSPF is defined, we know that for every not-all-
equal i, j, k ∈ [n] and every r, s ∈ [c], we have

w̃r,s,0i,j,k + w̃r,s,1i,j,k + w̃r,s,2i,j,k =
∑
l,h∈[t]

τ r,si,j,k[lt+ h] ·Xζr,sj,k [lt+h] =

=
∑
l,h∈[t]

αi · βrj [l] · γsk[h] ·Xωrj [l]+ηsk[h] =

=αi ·
(∑
l∈[t]

βrj [l] ·Xωrj [l]
)
·
(∑
h∈[t]

γsk[h] ·Xηsk[h]
)

=

=αi · urj(X) · vsk(X).

67

Hence, defining ac−1 := 1, we obtain that∑
i∈[n]

mz,i =
∑
i∈[n]

〈a⊗ a, w̃i〉 =
∑
i∈[n]

∑
r,s∈[c]

ar · as · w̃rc+si (X) =

=
∑
r,s∈[c]

ar · as ·
(∑
i∈[n]

αi · uri (X) · vsi (X) +
∑

(j,k) 6=(i,i)

(
w̃r,s,0i,j,k + w̃r,s,1k,i,j + w̃r,s,2j,k,i

))
=

=
∑
r,s∈[c]

ar · as ·
(∑
i∈[n]

αi · uri (X) · vsi (X) +
∑

(j,k) 6=(i,i)

αi · urj(X) · vsk(X)

)
=

=
∑

i,j,k∈[n]

∑
r,s∈[c]

ar · as · αi · urj(X) · vsk(X) =

= α ·
∑
j,k∈[n]

(∑
r∈[c]

ar · urj
)
·
(∑
s∈[c]

as · vsk
)

=

= α ·
∑
j,k∈[n]

〈a,uj〉 · 〈a,vk〉 =

= α ·
∑
j,k∈[n]

xj · yk = α · x · y.

�

Claim 4.7. Consider the protocol and let Pι be an honest party. The values
(mx,j ,my,j , zj ,mz,j)j∈H\{ι} are uniformly distributed in R and independent of
the remaining outputs and the view of the adversary.

Proof of the claim. Observe that for every j ∈ H with j 6= ι, the polynomials
ũc−1,0
j,ι (X), ṽc−1,0

j,ι (X), wc−1,c−1,0
j,ι (X) and w̃c−1,c−1,0

j,ι,ι (X) are all random in R and
independent of the view of the adversary and of the honest parties (Pi)i∈H\{j,ι}.
Here, we are implicitly relying on the fact that the polynomials in F [X] of degree
less than 2N form a vector space and the reduction modulo F (X) is a F -linear
operation from this space to R. As a consequence, every element in R has the
same number of preimages, therefore, the reduction modulo F (X) maps the
uniform distribution over the polynomials of degree less than 2N into the uniform
distribution over R.

Since ũc−1,0
j,ι (X), ṽc−1,0

j,ι (X), wc−1,c−1,0
j,ι (X) and w̃c−1,c−1,0

j,ι,ι (X) are terms of

ũc−1
j (X), ṽc−1

j (X), wc
2−1
j (X) and w̃c

2−1
j (X) respectively, we understand that the

latter are all random in R and independent of the view of the adversary and of
the honest parties (Pi)i∈H\{j,ι}.

To conclude the proof of the claim, observe that ũc−1
j (X) and ṽc−1

j (X) are
multiplied by ac−1 = 1 when computing mx,j = 〈a, ũj〉 and my,j = 〈a, ṽj〉
respectively. Moreover, wc

2−1
j (X) and w̃c

2−1
j (X) are multiplied by ac−1 ·ac−1 = 1

when computing zj = 〈a⊗ a,wj〉 and mz,j = 〈a⊗ a, w̃j〉. �

Claim 4.8. By the Rc-LPNt assumption with static leakage, no PPT adversary
can distinguish between the real Triple Generation and the simulation.

68

Proof of the claim. Observe that when the second and the third parties Pj and
Pk of 3-DSPF are both corrupted, the special positions are already known to the
adversary. Indeed, they are ωrj � η

s
k for some r, s ∈ [c].

We proceed by a series of 2|H| hybrids. In the initial stage, we consider the
protocol execution in which, for every i ∈ H, the values mx,i,my,i, zi and mz,i

are substituted with random elements in R, subject to∑
i∈H

mx,i + m̂x = α · x,
∑
i∈H

my,i + m̂y = α · y,∑
i∈H

zi + ẑ = x · y,
∑
i∈H

mz,i + m̂z = α · x · y.

The variables m̂x, m̂y, ẑ and m̂z represent the sum of the shares of the corrupted
parties and they are formally defined and derived as in SOffline. In the initial
stage, we also make the protocol abort whenever the adversary tries to guess any
non-zero element in an execution of 3-DSPF. Observe that by Claims 4.4, 4.5, 4.6
and 4.7, the initial stage is indistinguishable from ΠOffline.

Consider now an integer i ≤ |H| and let j be the index of the i-th honest
party. In the 2i-th hybrid, we will substitute the final output xj with a random
element in R, in the (2i+1)-th hybrid we will do the same thing with yj . Observe
that in the last stage, the execution is identical to the simulation.

We show that any PPT adversary A distinguishing between two consequent
hybrids can be converted into an efficient attacker A′ against the Rc-LPNt hard-
ness.

Suppose that A distinguishes between the (2i − 1)-th and the 2i-th hybrid.
Let Pj be the i-th honest party. Observe that the only difference between the
two stages is that xj is computed as in the protocol in the former and randomly
sampled in the latter. We construct the module-LPN attackerA′ as follows. Upon
activation, A′ initialises an internal copy of A and runs the protocol simulating
the honest parties. During the generation of multiplication triples, A′ lets its
challenger select the non-zero values βrj and special positions ωrj for every r ∈
[c]. When A tries to guess a special position ωrj [l] for some r ∈ [c] and l ∈ [t] by
specifying a set I ⊆ [N] during 2-DSPF, A′ issues a query (r, l, I) to its challenger
and forwards the reply to A. Moreover, when A tries to guess a special position
ζr,sj,k [lt+ h] = ωrj [l] + ηsk[h] for some k ∈ [n], r, s ∈ [c] and l, h ∈ [t] by specifying
a set I ′ ⊆ [N] during 2-DSPF or 3-DSPF, A′ computes the set

I ′′ ←
{
χ− ηsk[h] | χ ∈ I ′

}
,

issues the query (r, l, I ′′) to its challenger and forwards the reply to A. Observe
that A′ knows ηsk[h] so I ′′ can always be computed. When A tries to guess any
non-zero position in 3-DSPF, A′ always simulates an abort of the protocol.

Finally, A′ waits for (a, xj) from its challenger. We recall that xj is computed
as in the protocol with probability 1/2. In the other cases, it is uniformly sampled
in R. A′ models FRand by sending a to A. At the end, the attacker A′ computes
m̂x, m̂y, ẑ, m̂z and the outputs of the honest parties. For every k ∈ H with

69

k < j, it substitutes xk and yk with random elements in R. Finally, it generates
mx,i,my,i, zi and mz,i for every i ∈ H as in the simulation.

Observe that when the challenger replies with random elements in R, the
view of A is indistinguishable from the view in the 2i-th hybrid. Indeed, the
only difference is that the challenger samples βrj uniformly in F t, whereas the

Pj samples it in F×
t
. The statistical distance between the two distributions in

however negligible, so they are indistinguishable.
If instead the challenger computes xj using sparse polynomials in R, the

view of A is indistinguishable from the view in the (2i−1)-th hybrid. Again, the
difference is the fact that the challenger samples βrj uniformly in F t, whereas Pj

samples it in F×
t
. As we argued before, this is not an issue as the distributions

are indistinguishable.
So, if A distinguished between the (2i−1)-th and the 2i-th hybrid with non-

negligible advantage, then A′ would break the Rc-LPNt hardness. In a totally
analogous way, we can prove that the same holds if A distinguished between the
2i-th and the (2i+ 1)-th hybrid. �

ut

F Implementation of Fauth-ROT

We now show how the functionality Fauth-ROT, described in Figure 18, can
be implemented with low communication. Our protocol, Πauth-ROT, will rely
on a Correlated-OT functionality FCOT, whose description is available in Fig-
ure 19. Note that the latter can be implemented with logarithmic communica-
tion [BCG+19a]. We will also use FRand.

A formal description of Πauth-ROT can be found in Figure 20. Observe that
this is a 2-party protocol between a sender S and a receiver R. When we im-
plement F i,jauth-ROT, the sender will be Pi whereas the receiver will be Pj . The
ideas used in the protocol are rather simple. Essentially, the correlated-OT tu-
ples are converted into Random-OT tuples by means of tweakable correlation-
robust hash function H. However, their role is not accomplished, yet. Indeed,
they are also used as BeDOZa-style MACs [BDOZ11] to authenticate the choice
bits of the receiver and allow verifiable computations.

Theorem 5. Suppose that H : {0, 1}λ × {0, 1}∗ −→ {0, 1}λ is a correlation
robust tweakable hash function. Then, Πauth-ROT securely implements Fauth-ROT

in the (FCOT,FRand)-hybrid model. Moreover, if both the sender and the receiver
are honest, the protocol does not abort.

Proof. Consider the simulator in Figure 21. We show that no adversary can
distinguish between protocol and simulation.

Clearly, when all the parties are corrupted, the simulator can just run the
protocol with the adversary and the simulation is perfect. Therefore, we can
always assume there exists at least one honest party.

Observe that the simulation of Random is perfect. So we focus our attention
on ROT and Linear Combination.

70

Fauth-ROT

ROT. On input (ROT, a) from both the sender S and the receiver R where a is
a fresh element in {0, 1}∗, Fauth-ROT proceeds as follows:

– If both R and S are honest, it samples a random bit t
$← {0, 1} and two strings

X0, X1
$← {0, 1}λ. Then, it sends (t,Xt) to R and (X0, X1) to S. Finally, it

stores t with handle [[t]]2 := a.
– If the receiver R is corrupted and S is honest, it waits for t ∈ {0, 1} and

Xt ∈ {0, 1}λ from the adversary. Then, it samples X1−t
$← {0, 1}λ, it stores

t with handle [[t]]2 := a and outputs (X0, X1) to S.
– If the sender S is corrupted and R is honest, it waits for X0, X1 ∈ {0, 1}λ from

the adversary. Then, it samples t
$← {0, 1}, it stores it with handle [[t]]2 := a

and outputs (t,Xt) to R.

Random. On input (Random, a) from every party where a is a fresh element in
{0, 1}∗, Fauth-ROT proceeds as follows:

– If the receiver R is honest, it outputs t
$← {0, 1} to R and stores the value

with handle [[t]]2 := a.
– If R is corrupted, it waits for t ∈ {0, 1} and stores it with identity [[t]]2 := a.

Linear Combination. On input (LinComb, l,m, V, [[t0]]2, [[t1]]2, . . . , [[tl−1]]2)
from every party, the functionality checks that l,m ∈ N and V ∈ Fm×l2 . If this
is the case, it retrieves the bit tk with handle [[tk]]2 for every k ∈ [l] and sets
t← (t0, t1, . . . , tl−1). Finally, the functionality sends r ← V · t to S.
Abort. On input (Abort) from the adversary, the functionality aborts.

Fig. 18. The functionality Fauth-ROT

FCOT

Initialise. On input (Init,∆) from the sender S where ∆ ∈ {0, 1}λ and (Init)
from the receiver R, store ∆. Ignore subsequent calls to this procedure.
COT. On input (COT) from both R and S proceed as follows

– If both R and S are honest, sample M
$← {0, 1}λ and t

$← F2. Then set
K ←M ⊕ t ·∆. Finally, output (M, t) to R and K to S.

– If S is corrupted, wait for K ∈ {0, 1}λ from the adversary and sample t
$← F2.

Then set M ← K ⊕ t ·∆. Finally, output (M, t) to R.
– If R is corrupted, wait for t ∈ F2 and M ∈ {0, 1}λ from the adversary. Then

set K ←M ⊕ t ·∆. Finally, output K to S.

Abort. On input (Abort) from the adversary, the functionality aborts.

Fig. 19. The functionality FCOT

71

Πauth-ROT

Initialise. The receiver R sends (Init) to FCOT, the sender S samples ∆
$← {0, 1}λ

and sends (Init,∆) to FCOT.
ROT. On input (ROT, a) where a ∈ {0, 1}∗ is fresh, the parties perform the
following operations

1. R and S call COT in FCOT. Let (M, t) ∈ {0, 1}λ × F2 the element obtained
by R and let K ∈ {0, 1}λ be the element obtained by S.

2. R outputs (t,X) where X ← H
(
M,a

)
and stores (M, t), S outputs (X0, X1)

where X0 ← H
(
K, a

)
, X1 ← H

(
K ⊕∆, a

)
and stores K.

Random. On input (Random, a) where a ∈ {0, 1}∗ is fresh, the parties perform
the following operations

1. S and R call COT in FCOT. Let (M, t) ∈ {0, 1}λ × F2 the element obtained
by R and let K ∈ {0, 1}λ be the element obtained by S.

2. R outputs t and stores (M, t), S stores K.

Linear Combination. On input (LinComb, l,m, V, a0, a1, . . . , al−1) where l,m ∈
N, V ∈ Fm×l2 and ai is a label of an execution of ROT or Random for every i ∈ [l],
the parties perform the following operations.

1. For every i ∈ [l], R retrieves the pair (Mi, ti) ∈ {0, 1}λ × F2 obtained in the
execution of ROT or Random of label ai. Then, it sets t ← (t0, t1, . . . , tl−1)
and M ← (M0,M1, . . . ,Ml−1).

2. R sends r ← V · t to S
3. S and R call FRand to obtain χ ∈ Fm2λ .
4. R sends T ← 〈χ, V ·M〉 to S.
5. For ever i ∈ [l], let Ki be the value stored by S in the execution of ROT or

Random of label ai. S sets K ← (K0,K1, . . . ,Kl−1) and

T ′ ← 〈χ, V ·K ⊕ r ·∆〉.

If T = T ′, S outputs r, otherwise, it makes the protocol abort.

Fig. 20. The protocol Πauth-ROT

72

Sauth-ROT

Initialise. If S is corrupted, upon receiving (Init,∆) from the adversary, the
simulator stores ∆.
ROT. The simulator performs the following operations

– If R is corrupted and S is honest, the simulator waits for (M, t) ∈ {0, 1}λ×F2

from the adversary. Then, it sets X ← H
(
M,a

)
and sends (X, t) to the

functionality.
– If S is corrupted and R is honest, the simulator waits for K ∈ {0, 1}λ from

the adversary. Then, it sets X0 ← H
(
K, a

)
and X1 ← H

(
K ⊕∆, a

)
. Then,

it sends (X0, X1) to the functionality.

Random. The simulator performs the following operations

– If R is corrupted, it waits for (M, t) ∈ {0, 1}λ × F2 from the adversary. The
simulator sends t to the functionality.

– If S is corrupted, the simulator waits for K ∈ {0, 1}λ from the adversary.

Linear Combination. On input (LinComb, l,m, V, a0, a1, . . . , al−1) where l,m ∈
N, V ∈ Fm×l2 and ai is a label of an execution of ROT or Random for every i ∈ [l],
the simulator performs the following operations

– If S is the only corrupted party:
1. the simulator waits for r ∈ Fm2 from the functionality, then, it sends it to

the adversary on behalf of R.

2. The simulator sends χ
$← Fm2λ to the adversary.

3. For every i ∈ [l], letKi be the element in {0, 1}λ obtained by the simulator
in the execution of ROT or Random of label ai. The simulator sets K ←
(K0,K1, . . . ,Kl−1) and T ← 〈χ, V ·K ⊕ r ·∆〉.

4. The simulator sends T to the adversary. If the latter replies with ABORT,
the simulator sends Abort to the functionality.

– If R is the only corrupted party:
1. The simulator waits for r ∈ Fm2 from the adversary.

2. The simulator sends χ
$← Fm2λ to the adversary and waits for T ∈ {0, 1}λ

as a reply.
3. For ever i ∈ [l], let (Mi, ti) be the COT tuple used by the simulator in

the execution of ROT or Random of label ai. Let t := (t0, t1, . . . , tl−1) and
M := (M0,M1, . . . ,Ml−1). The simulator sends Abort to the functional-
ity if and only if V · t 6= r or if 〈χ, V ·M〉 6= T . Otherwise, the simulator
forwards (LinComb, l,m, V, a0, a1, . . . , al−1) to the functionality.

Fig. 21. The simulator Sauth-ROT

73

Claim 5.1. If S is corrupted and R is honest, the protocol is perfectly simulated.

Proof of the claim. Consider ROT and observe that the distribution of the value
t output by the receiver is the same as in the protocol. Actually, the same
happens for X. Indeed, in the protocol we have

X = H(M,a) = H(K ⊕ t ·∆, a) =

{
X0 if t = 0,

X1 if t = 1.

Consider now Linear Combination. Observe that r and χ are perfectly simu-
lated. Actually, the same holds for T . Indeed, in the protocol, we have

T = 〈χ, V ·M〉 = 〈χ, V · (K⊕ t ·∆)〉 = 〈χ, V ·K⊕V · t ·∆〉 = 〈χ, V ·K⊕r ·∆〉.

The right-hand side is the value sent by the simulator to the adversary. �

Claim 5.2. Consider the protocol and suppose that S is honest. Consider the
procedure Linear Combination and define ε := r⊕V ·t. The procedure Linear Combination
succeeds if and only if 〈χ, ε〉 = 0 and T = 〈χ, V ·M〉, or

∆ =
T − 〈χ, V ·M〉

〈χ, ε〉

Proof of the claim. Consider the procedure Linear Combination in the protocol
and define ε := r ⊕ V · t. The value T ′ computed by the honest sender is

T ′ = 〈χ, V ·K ⊕ r ·∆〉 = 〈χ, V ·K ⊕ V · t ·∆⊕ ε ·∆〉 =

= 〈χ, V · (K ⊕ t ·∆)〉 ⊕ 〈χ, ε ·∆〉 = 〈χ, V ·M〉 ⊕∆ · 〈χ, ε〉.

The procedure succeeds if and only if T = T ′, therefore, if and only if 〈χ, ε〉 = 0
and T = 〈χ, V ·M〉, or

∆ =
T ⊕ 〈χ, V ·M〉

〈χ, ε〉

�

Claim 5.3. If S is honest and R is corrupted, by the correlation robustness of
H, no PPT adversary can distinguish between protocol and simulation.

Proof of the claim. Observe that we cannot directly reduce the security of the
protocol to the correlation robustness of H. Indeed, the value ∆ is used in
Linear Combination too and both the procedures have some leakage. We proceed
by means of two hybrids.

Hybrid 1. We start by considering a slightly modified version of the protocol,

in which, during the initialisation, the sender samples M̂
$← {0, 1}λ. During

74

Linear Combination, the sender always makes the check succeed if 〈χ, ε〉 = 0 and
T = 〈χ, V ·M〉. When that does not happen, it computes

∆′ ←
T ⊕ 〈χ, V ·M〉

〈χ, ε〉

and makes the protocol abort if and only if H(M̂ ⊕∆′, a) 6= H(M̂ ⊕∆, a) or if
∆′ cannot be computed due to a zero denominator.

Observe that the only difference between Hybrid 1 and Πauth-ROT is that,
in the latter, Linear Combination succeeds if and only if ∆′ = ∆, whereas in
the former the procedure may succeeds even if ∆′ 6= ∆. Observe that M̂ is
uniformly distributed in {0, 1}λ from the adversary’s perspective. So, by the

correlation robustness of H, we can substitute H(M̂ ⊕∆′, a) and H(M̂ ⊕∆, a)
with the responses of a random oracle. In other words, the probability that the
check succeeds when ∆′ 6= ∆ is negligible. Hence, Hybrid 1 and Πauth-ROT are
indistinguishable.

Hybrid 2. Consider now a modified version of the simulator, which, during the

initialisation, samples M̂
$← {0, 1}λ. In Linear Combination, the simulator always

makes the check succeed if 〈χ, ε〉 = 0 and T = 〈χ, V ·M〉. When that does not
happen, it computes

∆′ ←
T ⊕ 〈χ, V ·M〉

〈χ, ε〉

it samples C
$← {0, 1}λ and sends Abort to the functionality, if and only if

H(M̂ ⊕∆′, a) 6= C or if ∆′ cannot be computed due to a zero denominator.
Observe that ∆ is uniformly distributed in {0, 1}λ from the adversary per-

spective. So, in Hybrid 1, by the correlation robustness of H, we can substitute
X1−t (in ROT) and H(M̂ ⊕∆, a) with random elements in {0, 1}λ. Indeed,

X1−t = H(K ⊕ (t⊕ 1) ·∆, a) = H(M ⊕∆, a).

We conclude that Hybrid 1 and Hybrid 2 are indistinguishable.
It is rather simple to see that Hybrid 2 and the composition of Sauth-ROT

with Fauth-ROT are indistinguishable with unconditional security. The only dif-
ferences are in Linear Combination. Observe that, in Hybrid 2, the check fails
with overwhelming probability if r 6= V · t. Indeed, in that case ε 6= 0. Since χ is
random and independent of ε, the probability that 〈χ, ε〉 = 0 is negligible. The

same holds for the probability that H(M̂ ⊕∆′, a) = C. When instead, r = V · t
but T 6= 〈χ, V ·M〉, both cases abort with probability 1.

Claim 5.4. If both the sender and the receiver are honest, by the correlation ro-
bustness of H, no PPT adversary can distinguish between protocol and simula-
tion. Moreover, the protocol never aborts.

Proof of the claim. By Claim 5.2, it is immediate to observe that protocol never
aborts. Indeed, ε is always 0. That also means that Linear Combination is per-
fectly simulated. We focus our attention on ROT.

75

Observe that the distribution of t is the same in both protocol and simulation.
Moreover, in Πauth-ROT, we have X = H(M,a) = H(K ⊕ t · ∆, a) = Xt. The
equality X = Xt holds in the simulation too.

Since K is uniformly distributed in {0, 1}λ and independent of t and ∆,
by the correlation robustness of H, it is secure to substitute X and Xt with a
random element in {0, 1}λ. Finally, since ∆ is random and independent of M ,
again, by the correlation robustness of H, we can substitute

X1−t = H(K ⊕ (1⊕ t) ·∆, a) = H(M ⊕∆, a)

with a random element in {0, 1}λ. �
ut

76

	Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN
	Introduction
	Our Contributions

	Notation and Preliminaries
	Module-LPN
	Pseudorandom Correlation Generators
	Distributed Point Functions

	Generalisation of the 3-party DPF to Prime Fields
	Multiparty PCG for Triple Generation
	Construction

	Distributed Setup for the 3-Party DPF
	Resources
	The Protocol

	Offline Phase
	A Formal Description of the Offline Phase

	Efficiency
	Complexity Analysis
	Concrete Efficiency

	Security of the Prime Field 3-Party DPF
	Security Proof of the PCG Construction (Theorem 2)
	Double Exponential Notation
	Security Proof of 3-DPF
	Security Proof of Offline
	Implementation of Fauth-ROT

