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Abstract

Updatable Encryption (UE) and Proxy Re-encryption (PRE) allow re-encrypting a cipher-
text from one key to another in the symmetric-key and public-key settings, respectively, without
decryption. A longstanding open question has been the following: do unidirectional UE and
PRE schemes (where ciphertext re-encryption is permitted in only one direction) necessarily
require stronger/more structured assumptions as compared to their bidirectional counterparts?
Known constructions of UE and PRE seem to exemplify this “gap” – while bidirectional schemes
can be realized as relatively simple extensions of public-key encryption from standard assump-
tions such as DDH or LWE, unidirectional schemes typically rely on stronger assumptions such
as FHE or indistinguishability obfuscation (iO), or highly structured cryptographic tools such
as bilinear maps or lattice trapdoors.

In this paper, we bridge this gap by showing the first feasibility results for realizing unidirec-
tional UE and PRE from a new generic primitive that we call Key and Plaintext Homomorphic
Encryption (KPHE) – a public-key encryption scheme that supports additive homomorphisms
on its plaintext and key spaces simultaneously. We show that KPHE can be instantiated from
DDH. This yields the first constructions of unidirectional UE and PRE from DDH.

Our constructions achieve the strongest notions of post-compromise security in the stan-
dard model. Our UE schemes also achieve “backwards-leak directionality” of key updates (a
notion we discuss is equivalent, from a security perspective, to that of unidirectionality with
no-key updates). Our results establish (somewhat surprisingly) that unidirectional UE and PRE
schemes satisfying such strong security notions do not, in fact, require stronger/more structured
cryptographic assumptions as compared to bidirectional schemes.
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1 Introduction

Cryptographic encryption is a powerful tool for ensuring data confidentiality. A common security
guarantee offered by any encryption scheme (either symmetric-key or public-key) is the following:
encrypted data can only be decrypted using a certain secret key. However, a limitation of traditional
encryption schemes is that once data is encrypted, it is generally hard to allow a third party to
transform the ciphertext so that it can be decrypted with a different key, without sharing either
the original or the new secret key with the third party.

Re-encryption schemes such as Proxy Re-encryption (PRE) [BBS98] and Updatable Encryption
(UE) [BLMR13] circumvent this limitation by enabling a public transformation of ciphertexts from
encryption under one key to that of another, while protecting the underlying secret keys. Classic
applications for such schemes include key rotation for secure outsourced storage [BBB+12,Pay18],
access control, the delegation of email access, and many more.

Proxy Re-encryption (PRE). PRE is a public-key encryption scheme which enables a party
Alice, with the help of a proxy, to re-encrypt her ciphertexts for decryption by an alternate party
Bob. To facilitate re-encryption, Alice and Bob, with key pairs (pkA, skA) and (pkB, skB) respec-
tively, will together compute a re-encryption key rkAB and then provide this to the proxy. Whenever
the proxy needs to perform re-encryption, it can use rkAB to transform a ciphertext encrypted un-
der pkA into a ciphertext encrypted under pkB. Security of the PRE scheme guarantees that the
proxy learns nothing about the underlying plaintext during the re-encryption process.

Updatable Encryption (UE). UE was introduced by Boneh et al. [BLMR13] to address the
problem of key rotation for secure outsourced storage. UE addresses re-encryption by using similar
techniques to those of PRE, with two main differences: (1) UE is a symmetric-key encryption
scheme, and (2) UE typically only allows sequential updates. More specifically, in UE we divide
time into a series of epochs. In the first epoch a fresh symmetric key k0 is chosen and used to
encrypt all data. When we rotate a key from ke−1 to ke, we transition to the next epoch by
calculating an update token ∆e. All new ciphertexts are encrypted under the new key ke and all
existing ciphertexts cte−1 are re-encrypted using the update token ∆e so that they can be decrypted
by ke. The benefit of this approach is that the storage server can perform the re-encryption of data
using the update token without the risk of exposing any plaintext data.

There are two variants of UE schemes, ciphertext-dependent schemes [EPRS17,BEKS20] and
ciphertext-independent schemes [LT18,KLR19,BDGJ20,Jia20]. In ciphertext-dependent UE schemes,
the update token ∆e,ctxe−1 depends on the ciphertext ctxe−1 to be updated, while in ciphertext-
independent schemes, the update token ∆e is generated independent of the updated ciphertext,
hence a single token can be used to update all ciphertexts on the storage server. In the rest of the
paper, when we refer to UE, we mean a ciphertext-independent scheme unless otherwise specified.

Directionality of PRE and UE. Re-encryption schemes are either bidirectional or unidirec-
tional. A scheme is said to be bidirectional if a re-encryption key/update token can be used to
re-encrypt a ciphertext to either the next party/epoch or the previous party/epoch. In contrast,
the re-encryption key/update token of a unidirectional scheme can only be used to re-encrypt a
ciphertext to the next party/epoch and not the previous. So far we have only discussed the di-
rectionality within the context of ciphertext updates. The (uni)directionality with regards to keys
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differs slightly between PRE and UE, as we discuss next.

Bidirectionality vs. Unidirectionality in PRE. In bidirectional PRE schemes, the re-
encryption key rkAB from Alice to Bob is generated from Alice’s key-pair (pkA, skA) and Bob’s
key-pair (pkB, skB). Given rkAB along with skA (resp. skB), it is usually possible to derive skB (resp.
skA). In unidirectional PRE schemes, the re-encryption key rkAB is derived from ((pkA, skA), pkB);
Bob’s secret key skB is not used. In fact, given the re-encryption key rkAB and Alice’s secret key
skA, it should be impossible to derive any knowledge of Bob’s secret key skB.

Unidirectionality in UE. For UE schemes, there is an extra level of subtlety regarding the
directionality of keys in addition to ciphertexts. A recent work of Jiang [Jia20] extensively studied
the question: given an update token ∆e along with either ke−1 or ke, is it possible to derive the
other key? A scheme has bidirectional key updates if ∆e can be used to derive keys in both
directions, and has unidirectional key updates if ∆e can be used in one direction, to derive ke from
ke−1. Jiang [Jia20] showed that UE with bidirectional key and ciphertext updates implies UE with
unidirectional key and ciphertext updates.

In the same work, Jiang postulated that to capture the same security level as the unidirectional
PRE schemes, one requires even stronger UE schemes with no-directional key updates, where ke
cannot be derived from ke−1 and ∆e. In Jiang [Jia20], the definition of no-directional key updates
intuitively requires that it is also impossible to derive ke−1 from ∆e and ke. The recent work
of Nishimaki [Nis21] proposed a seemingly weaker notion called backward-leak unidirectional key
updates where ∆e can only be used in one direction to derive ke−1 from ke. However, we observe that
this new notion is essentially equivalent to no-directional key updates because derivation of ke−1

does not increase the adversary’s advantage in breaking the scheme. In particular, if the adversary
obtains a ciphertext cte−1 and corrupts ∆e and ke, then it can first update the ciphertext to cte
and decrypt it using ke. Jiang emphasized that UE with no-directional key updates is the ideal
security model, which by our argument above, extends to backwards-leak key updates. Henceforth,
when we refer to unidirectional UE, we mean unidirectional UE with backwards-leak directional
key updates unless otherwise specified.

Gap between Unidirectionality and Bidirectionality. In general, unidirectional UE and
PRE schemes are more ideally suited to real-world applications as compared to their bidirec-
tional counterparts due to their superior security guarantees. For example, unlike bidirectional
UE schemes, unidirectional UE schemes guarantee security of data as if “freshly encrypted” in
epoch e (i.e., not re-encrypted from epoch (e − 1)) even if the adversary gains access to the se-
cret key ke−1 and the update token ∆e. Unidirectional PRE schemes also offer similarly superior
security guarantees over their bidirectional counterparts.

Another natural point of comparison between unidirectional and bidirectional UE and PRE
schemes is the nature of cryptographic assumptions from which such schemes can be realized.
Known constructions of UE and PRE seemingly exemplify an apparent “gap” in terms of the
assumptions required – unidirectional schemes have historically relied on stronger/more structured
cryptographic assumptions as compared to their bidirectional counterparts.

Blaze et al. [BBS98] showed how to construct bidirectional PRE schemes from the Deci-
sional Diffie-Hellman (DDH) assumption by suitably extending the well-known ElGamal encryption
scheme [Gam85]. Similarly, a long line of works [BLMR13,LT18,KLR19,BDGJ20,Jia20] have shown
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how to realize bidirectional UE schemes as relatively simple extensions of public-key encryption from
standard assumptions such as DDH and Learning With Errors (LWE).

On the other hand, unidirectional UE and PRE schemes typically rely on a stronger set of
assumptions such as FHE [Gen09] and indistinguishability obfuscation (iO) [BGI+12], or highly
structured cryptographic tools such as bilinear maps [BF03] and “hard” lattice trapdoors [GPV08].
Examples of constructions of unidirectional PRE from FHE and/or structured lattice trapdoors
can be found in [NX15,CCL+14,Kir14,NAL15,PWA+16,FL17,PRSV17]. Constructions of unidi-
rectional PRE schemes have also been shown to exist from bilinear maps [AFGH06,LV11]; however,
these constructions are restricted to the single-hop setting in the sense that they only permit a single
re-encryption of a ciphertext. Known constructions of unidirectional UE include the construction
in [SS21] (which relies on bilinear maps), and two constructions in [Nis21] (one which achieves
backward-leak key updates from lattice-specific techniques, and one which achieves no-directional
key updates from iO). Sehrawat and Desmedt show a construction of UE from bi-homomorphic
lattice-based pseudorandom functions [SD19]; however, their construction only achieves unidirec-
tional ciphertext updates while still incurring bidirectional key updates (and is hence effectively
bidirectional as per the recent findings in [Jia20]). To date, there exist no constructions of unidi-
rectional PRE or UE from the plain DDH assumption (to our knowledge).

In this paper, we are motivated by the following longstanding open question in the study of UE
and PRE:

Do unidirectional UE and PRE schemes necessarily require stronger/more structured assumptions
as compared to their bidirectional counterparts?

More concretely, we ask the following question:

Can we construct unidirectional UE/PRE schemes from DDH?

1.1 Our Results

In this paper, we bridge this gap between the assumptions for unidirectional and bidirectional
UE/PRE. We establish (somewhat surprisingly) that unidirectional UE and PRE schemes do not, in
fact, require stronger/more structured cryptographic assumptions as compared to their bidirectional
counterparts.

More concretely, we present generic constructions of unidirectional UE and PRE from a new
primitive that we call Key and Plaintext Homomorphic Encryption (KPHE). We also show that
such a KPHE scheme can be instantiated from the BHHO encryption scheme [BHHO08] based on
the DDH assumption. This yields the first constructions of unidirectional UE and PRE from the
plain DDH assumption.

Our main result is summarized by the following (informal) theorem:

Theorem 1.1 (Informal). Assuming the existence of a Key and Plaintext Homomorphic Encryp-
tion (KPHE) scheme that satisfies certain special properties, there exist post-compromise secure
unidirectional UE and PRE schemes.

On KPHE. The KPHE scheme with special properties required in our constructions can be
viewed as a generalization of the BHHO public-key encryption scheme due to Boneh et al. [BHHO08].
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It is a public key encryption scheme where the secret key is a bit-string sk ∈ {0, 1}ℓ and the plain-
text is also a bit-string m ∈ {0, 1}ℓ′ (in our constructions we use ℓ = ℓ′ = 2n). The specialized
KPHE scheme satisfies the following three properties:

� Distributional Semantic Security: We require a KPHE scheme to achieve semantic se-
curity even when the secret keys are sampled from a specific distribution. In particular, we
use KPHE schemes with 2n-bit secret keys where the secret key is uniformly random subject
to the constraint that it has equally many 0 and 1 bits (i,e., n bits of 0 and n bits of 1).

� Additive Key and Plaintext Homomorphisms: We require a KPHE scheme to satisfy
the following property: let T, T ′ be two arbitrary affine transformations that map 0-1 vectors
to 0-1 vectors of the same length (in our constructions we use permutation maps over the bits
of a 2n-bit string). Then, given a public key pk corresponding to some secret key sk and a

ciphertext ct
$← Enc(pk,m), one can generate a public key pk′ corresponding to the secret key

T (sk) and a ciphertext ct′
$← Enc(pk′, T ′(m)), without the knowledge of the original secret

key sk or the original message m.

� Blinding: We also require the KPHE scheme to satisfy an associated security property called
“blinding”, that (informally) argues that the public key and ciphertext generated via the
aforementioned homomorphic transformations are indistinguishable from freshly generated
public keys and ciphertexts (we make this more formal in Section 2).

For our PRE constructions, we also require that the KPHE scheme satisfies a notion of distributional
circular security (i.e., circular security when the secret keys are sampled from a specific distribution).
This is not required for our UE constructions.

Instantiating KPHE. We show how to concretely instantiate a KPHE scheme satisfying all of
the aforementioned properties from DDH (based on the BHHO scheme [BHHO08]).

Lemma 1.2 (Informal). Assuming decisional Diffie-Hellman (DDH) holds, there exists a secure
construction of KPHE that satisfies the aforementioned properties.

Corollary 1.3 (Informal). Assuming the decisional Diffie-Hellman (DDH) assumption holds, there
exist post-compromise secure unidirectional UE and PRE schemes.

Security of Our Constructions. Our constructions of unidirectional UE and PRE achieve the
strongest notions of post-compromise security in the standard model. Our construction of uni-
directional UE achieves the state-of-the-art post-compromise security definition due to Boyd et
al. [BDGJ20], while also ensuring backward-leak unidirectional key updates [Nis21]. Our unidi-
rectional PRE construction achieves the post-compromise security definition recently proposed by
Davidson et al. [DDLM19], which is, to our knowledge, the only notion of post-compromise PRE
security to be proposed to date. We present a more detailed discussion on post-compromise secu-
rity (and other related security notions) of UE and PRE in the next subsection. Table 1 presents
a comparison of our results with those in the existing literature.
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scheme dir. (ctx) dir. (key) security assumption

UE [BLMR13] bi bi IND-ENC DDH/LWE

UE [LT18,KLR19,BDGJ20] bi bi IND-UE DDH

UE [Jia20] bi bi IND-UE DLWE

UE [SD19] uni bi IND-UE LWE

UE [Nis21] uni bwd-uni IND-UE LWE

UE [Nis21] uni no IND-UE iO

UE [SS21] uni no IND-UE SXDH

UE Ours uni bwd-uni IND-UE DDH

PRE [BBS98] bi bi IND-CPA DDH

PRE [CCL+14] uni uni IND-CPA DLWE

PRE [PWA+16] uni uni IND-CCA LWE

PRE [PRSV17] uni uni IND-CPA RLWE

PRE Ours uni uni IND-HRA DDH

Table 1: Summary of bi/unidirectional UE and PRE schemes. We focus on ciphertext-independent UE and multi-
hop PRE. In this table, “bi, uni, bwd-uni, no” stand for bidirectional, unidirectional, backward-leak unidirectional,
no-directional, respectively. We note that the notion of key-directionality differs for UE and PRE; in the case of UE,
unidirectionality of key updates implies that, given the source (secret) key and the update token, the destination
(secret) key can be computed. This is not the case for PRE, where unidirectional key update simply denotes that
the re-key generation algorithm takes as input the source secret key and the destination public key (as opposed to
bidirectional key update, where the re-key generation algorithm takes as input both secret keys).

1.2 Background and Related Work

There has been extensive research on both UE and PRE, including various settings, definitions,
and constructions. Below we only mention works that are the most directly relevant. For both UE
and PRE, we focus on the CPA-type definitions, which are by far the most well-studied notions.

Security Notions for UE. Since the introduction of UE in [BLMR13], several works have
explored its security notions [EPRS17,LT18,AMP19,KLR19,BDGJ20,Jia20]. Most notable is the
work of Lehmann and Tackmann [LT18], which improved the model and studied the notion of
post-compromise security for UE. Their Indistinguishability of Update notion (IND-UPD) returns
a challenge ciphertext ct∗ which is either the re-encryption of a ciphertext ct0 or ct1. A scheme is
IND-UPD secure if an adversary is unable to determine which of the ciphertexts was re-encrypted.

In subsequent works a stronger combined notion of IND-UE security has been used, first defined
by Boyd et al. [BDGJ20]. The IND-UE notion requires an adversary be unable to distinguish
between a fresh encryption of a plaintext m and the re-encryption of a ciphertext ct. As a result
this notion captures both CPA (specifically IND-ENC) and IND-UPD security.

Security Notions for PRE. In the context of PRE, the traditional notion of IND-CPA secu-
rity [ID03,AFGH06] have been shown to be insufficient in practice. To address this, Cohen [Coh19]
introduced the notion of Honest Re-Encryption Attack (HRA) security where an adversary is ad-
ditionally permitted to re-encrypt (from honest to corrupt users) ciphertexts previously output by
the encryption oracle. While only recently considered in the analysis of PRE, the essence of this
notion is also fundamental in formalizing security for UE.
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More recently, Davidson et al. [DDLM19] have investigated achieving post-compromise secure
PRE schemes. They introduced a notion of IND-PCS security for PRE, which can be viewed as the
analogue of IND-UPD security of UE in the context of PRE, albeit for more complex re-encryption
graphs. To date this is the only paper that studies the PCS security of PRE schemes. Their
work again demonstrates the challenges in constructing such schemes in the unidirectional setting.
They discuss two PCS-secure constructions which are based on a prior unidirectional PRE scheme,
Construction 7b of Fuchsbauer et al. [FKKP19] and an extension of BV-PRE [PRSV17].

Updatable Public Key Encryption. In order to achieve forward security in public key en-
cryption (PKE), a notion called updatable PKE (UPKE) has recently been proposed and stud-
ied [JMM19,ACDT20,DKW21], where any sender (encryptor) can initiate a key update by sending
a special update ciphertext to the receiver (decryptor). This ciphertext updates the public key
and also, once processed by the receiver, will update its secret key. These are PKE schemes that
encrypt messages under different public keys and aim to achieve forward security. In contrast, UE
and PRE schemes studied in this paper aim to update ciphertexts encrypted under an old key to
a new key without leaking the message content. The notions of UE/PRE as well as our techniques
are very different from UPKE despite the partial naming collision.

Comparison with Umbral. There exists a practically deployed construction of unidirectional
PRE, namely Umbral [Nun18], from the DDH Assumption, albeit in the random oracle model.
It turns out that the Umbral construction is only single-hop, and focuses on achieving threshold
PRE rather than multi-hop PRE. In particular, the Umbral construction crucially relies on the
Diffie-Hellman key change, and it is unclear how to extend the construction to multiple hops. On
the other hand, our primary aim is to achieve multi-hop unidirectional PRE in the traditional non-
threshold setting. We note additionally that Umbral would not achieve post-compromise security,
which is an important property provided by our constructions. Fundamentally, this is due to the
fact that Umbral adopts a KEM-DEM style approach where only the KEM is re-encrypted.

Concurrent Work. A concurrent work by Galteland and Pan [GP23] constructs unidirectional
UE with backward-leak unidirectional key update from public key encryption (PKE) schemes with
certain properties, which can be realized from the DDH or LWE assumption. Their techniques
are significantly different from ours and do not trivially extend to the PRE setting. The authors
of [GP23] also demonstrate a formal proof that the security definition for unidirectional UE with
backward-leak unidirectional key updates is equivalent to the one with no-directional key updates,
which confirms our observation discussed earlier.

1.3 Technical Overview

In this section, we provide a high-level overview of our techniques for constructing unidirectional
UE and PRE from any generic KPHE scheme satisfying the special properties described earlier.

IND-ENC Secure UE. Our first attempt is to build a unidirectional IND-ENC secure UE
scheme, and we start with a näıve idea. Take an arbitrary symmetric-key encryption scheme and
each epoch key is a freshly generated key of this encryption scheme. The update token ∆e from ke−1

to ke is an encryption of ke−1 under ke, namely ∆e = Encke(ke−1). When we update a ciphertext
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from epoch (e−1) to epoch e, we just attach the update token ∆e to the end of the ciphertext. For
a message m first encrypted in epoch e and then updated through epoch e′, the resulting ciphertext
is of the form:

cte′ =
(
Encke(m),Encke+1(ke), . . . ,Encke′ (ke′−1)

)
.

Given ke′ , one can easily decrypt cte′ layer by layer to recover m.
This näıve approach does not achieve IND-ENC security. We show a concrete attack in the

following. Let e∗ be the challenge epoch and m∗ be the challenge message queried by the adversary.
Let cte∗ = Encke∗ (m

∗) be the challenge ciphertext. To extract the secret key ke∗ , the adversary
proceeds as follows. It first queries for an encryption of an arbitrary message m in epoch 0 and then
updates it to epoch e (for some e > e∗) via a sequence of update queries. This way the adversary
obtains a ciphertext of m of the form:

cte = (Enck0(m),Enck1(k0), . . . ,Encke(ke−1)) .

Now the adversary corrupts the secret key ke. Then it can recover all the previous keys from k0 to
ke−1 (including ke∗) during decryption of the ciphertext cte.

Nonetheless, this simple approach demonstrates some nice properties of unidirectionality. For
key updates, it is impossible to derive ke from ke−1 and ∆e. For ciphertext updates, given a fresh
ciphertext cte in epoch e and the previous update token ∆e (from epoch (e−1) to e), it is impossible
to transition the ciphertext cte to the previous epoch cte−1 (i.e. the epoch prior to its existence).
In fact, Cohen [Coh19] applied this idea to PRE and showed a CPA-secure but not HRA-secure
PRE scheme (HRA security is inherently required in IND-ENC UE schemes).

Re-randomizing the Secret Keys. The problem with these chained ciphertexts is that during
decryption of a single ciphertext, all the previous secret keys are also leaked. To resolve this problem,
our hope is to somehow re-randomize all the previous secret keys in the chain, in a consistent and
homomorphic manner. In particular, we want the ciphertext to be of the form

cte =
(
Enck0(m),Enck1(k0), . . . ,Encke−1

(ke−2),Encke(ke−1)
)
,

where k0, k1, . . . , ke−1 are all re-randomized secret keys that are different for each ciphertext. During
the decryption of cte, only these re-randomized secret keys are leaked, which does not affect the
security of other ciphertexts.

To enable such re-randomization, our idea is inspired by the re-randomizable Yao’s garbled
circuits [GHV10]. We propose a new primitive called Key and Plaintext Homomorphic Encryption
(KPHE), which can be seen as a generalization of the circular secure encryption scheme of Boneh et
al. [BHHO08]. Instead of using an arbitrary symmetric-key encryption scheme, we use the KPHE
scheme for encryption, where the UE secret key ke is a key pair (pke, ske) of the KPHE scheme. The
update token is a KPHE encryption of the previous epoch’s secret key under the current epoch’s
public key, namely ∆e = KPHE.Encpke(ske−1).

To update a ciphertext we exploit the two homomorphism properties of the KPHE scheme, in
both the message space and the key space. Given an update token ∆e and a ciphertext of the form

cte−1 =
(
KPHE.Encpk0

(m),KPHE.Encpk1
(sk0), . . . ,KPHE.Encpke−1

(ske−2)
)
,

we focus on the last component ctx = KPHE.Encpke−1
(ske−2) and the update token ∆e = KPHE.Encpke(ske−1),

In our update operation we first generate a random permutation π and then perform two important
steps:
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� Use the KPHE key-space homomorphism to transform ctx from an encryption under ske−1 to
an encryption under π(ske−1).

� Use the KPHE message-space homomorphism to transform ∆e from an encryption of ske−1

to an encryption of π(ske−1).

The updated ciphertext becomes

cte =
(
KPHE.Encpk0(m),KPHE.Encpk1(sk0), . . . ,KPHE.Encpke−1

(ske−2),KPHE.Encpke(ske−1)
)
,

where ske−1 = π(ske−1) (with corresponding public key pke−1). In our construction, the KPHE
secret key is a 2n-bit string, which is randomly sampled with exactly n bits of 0 and n bits of 1.
The affine transformation π is a random permutation on the 2n bits of the string. By transforming
from ske−1 to ske−1 we ensure that a fresh secret key is used for each update operation and hence
there is appropriate isolation between all ciphertexts updated in a given epoch. The blinding
property of KPHE ensures that re-randomization can be done without knowledge of the underlying
secret keys, and that the re-randomized ciphertexts are computationally indistinguishable from
freshly generated ciphertexts.

Use of Balanced KPHE Keys. The astute reader might have noticed that we use “balanced”
secret keys for our KPHE scheme, wherein each secret key is a randomly sampled 2n-bit string
with exactly n bits of 0 and n bits of 1. The restriction is required to offset some leakage that our
scheme incurs during the honest re-encryption query phase in the security proofs. Informally, the
adversary can use a sequence of honest re-encryption queries to learn some information about the
intermediate (re-randomized) secret keys; in particular, it learns the number of 0 and 1 bits in each
secret key. Intuitively, we offset this leakage by specifying at setup that all secret keys have an
equal number of 0 and 1 entries. As a result, the adversary learns no additional information about
these intermediate keys, irrespective of the number of honest re-encryption queries that it issues.
We defer a formal treatment to the detailed proofs of security for our constructions.

Achieving Post-Compromise Secure UE. We can extend the IND-ENC secure UE construc-
tion to achieve post-compromise security. To achieve IND-UPD security, we can modify the update
operation to ensure that all the chained ciphertexts are updated (rather than just the last one).
In effect what our enhanced construction does is again exploit properties of the KPHE scheme to
re-randomize each of the ciphertext components. This ensures that two updated ciphertexts of
the same length are computationally indistinguishable. To further achieve the combined IND-UE
security, we need to additionally guarantee that a freshly generated ciphertext has the same length
as an updated ciphertext in a certain epoch. More details on our UE constructions are given in
Section 3.

Achieving Unidirectional PRE. We can use the same high-level approach to construct a
unidirectional PRE scheme, where a ciphertext consists of a chain of KPHE ciphertexts, and re-
encryption exploits the two KPHE homomorphisms to transform each new KPHE ciphertext to
a fresh secret key. The crucial subtlety in the PRE case, which makes proving security slightly
more involved, is that we no longer consider sequential ciphertext updates but must consider re-
encryption between all possible key pairs. As a result we need to further exploit the circular security
properties of the KPHE scheme to prove security. This is further detailed in Section 4.
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Connections between UE and PRE. Generally speaking, unidirectional PRE can be viewed
as a stronger primitive than unidirectional UE because UE only allows for sequential updates while
PRE allows for re-encryption between every pair of keys. In fact, we observe that if we treat the
public-secret key pair of PRE as a secret key for UE, and the PRE re-encryption key as an update
token for UE, then IND-HRA secure PRE implies IND-ENC secure UE, and IND-PCS secure PRE
implies IND-UPD secure UE. This is also why our constructions for unidirectional UE and PRE
follow a very similar framework. On the other hand, since PRE supports re-encryption between
(potentially) every pair of keys, our constructions of PRE require stronger security guarantees (in
particular, circular security) from the underlying KPHE scheme.

Efficiency and Feasibility. We acknowledge that the ciphertext length in our UE/PRE con-
structions grows linearly with the number of epochs/re-encryption hops, unlike certain existing
constructions (e.g. in [Nis21, PWA+16, PRSV17]) where the ciphertext size remains the same.
In this context, we emphasize that our paper is the first to achieve backward-leak unidirectional
UE and unidirectional PRE from standard assumptions, specifically DDH. It has been a long-
standing open problem for over a decade whether obfuscation/FHE is necessary for unidirectional
UE/(multi-hop) PRE, and our work closes this assumption gap. As a result, we believe that
our results should be viewed with emphasis on the new theoretical insights/understanding into
unidirectional-UE/PRE that they enable as opposed to concrete efficiency. Our work opens up
the discussion of whether obfuscation/FHE is necessary for achieving unidirectional UE/PRE with
“succinctness” in the ciphertext length.

We note that in the UE setting, key rotation may only happen a small number of times in
practice. For example, once a year for the lifetime of the ciphertext (say 10years). Thus, taking a
similar approach to [BEKS20] (from the ciphertext-dependent setting) we could bound the number
of updates and have fixed-length ciphertexts through some form of padding. We also point out that
while the size of ciphertexts in our general constructions grow linearly, the secret keys and update
tokens/re-encryption keys remain constant-sized. We also note that for the basic versions of our
UE/PRE construction (IND-CPA unidirectional UE and IND-HRA secure unidirectional PRE),
the work done per update/re-encryption operation is also constant (independent of the number of
epochs/update hops).

We note here that a näıve approach to achieving unidirectional UE is the so called “download–
decrypt–re-encrypt–upload” approach, where the client downloads the encrypted data (e.g. from
the server storing the encrypted data), locally decrypts it, re-encrypts it using the new key, and re-
uploads the newly encrypted data to the server. Our UE constructions are non-trivial in the sense
that we achieve significantly better properties as compared to this näıve approach. In particular,
for applications of UE (e.g. key rotation) where the client outsources encrypted data to the server,
this entails constant computational/ communication/storage overheads at the client during key
rotation (the client simply generates and sends the update token to the server); the corresponding
client-overheads are linear (in database size) in the näıve solution.

Using Random Oracles. A possible approach towards achieving practical efficiency is to use
random oracles (such as in the single-hop unidirectional threshold PRE scheme Umbral [Nun18]).
Our focus is primarily on feasibility results for unidirectional UE/PRE in the standard model, and
we consciously avoid the use of random oracles. We also point out that a previous result [AMP19]
showed that, even in the symmetric-key setting, unidirectional UE/PRE implies public-key encryp-
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tion, and so a construction from just a random oracle is unlikely. However, it might be possible to
achieve efficiency gains using a random oracle. We leave investigating such a random oracle-based
construction of unidirectional UE/PRE as an interesting direction of future research.

1.4 Paper Outline

The rest of the paper is organized as follows. Section 2 formally defines a KPHE scheme and its
associated security properties. Section 3 presents our constructions of IND-CPA and IND-UPD
secure UE from any KPHE scheme (parts of the corresponding proofs of security are detailed in
Appendices A and B). Section 4 presents our constructions of IND-HRA secure PRE and IND-
PCS secure PRE from any KPHE scheme (the corresponding proofs of security are detailed in
Appendices C and D, respectively). Finally, Section 5 describes how to instantiate KHPE from
DDH (here, we mostly rely on known results from the literature).

For readers not familiar with the formal definitions of UE and PRE, we present relatively
self-contained background material on UE and PRE in Sections 3.1 and 4.1, respectively.

1.5 Notations

We summarize here the notations used in the rest of the paper. We write x
$← χ to represent that

an element x is sampled randomly from a set/distribution X . The output x of a deterministic (resp.

randomized) algorithm A is denoted by x = A (resp. x
$← A). For a ∈ N such that a ≥ 1, we

denote by [a] the set of integers lying between 1 and a (both inclusive). We refer to λ ∈ N as
the security parameter, and denote by poly(λ) and negl(λ) any generic (unspecified) polynomial
function and negligible function in λ, respectively.1

2 Key and Plaintext Homomorphic Encryption

In this section, we present the definitions for the core building block for our constructions, namely
key and plaintext homomorphic encryption (KPHE). Informally, a KPHE scheme has the following
features:

� Keys and Plaintexts: Each secret key sk is an ℓ-bit string for some ℓ = poly(λ) (λ being
the security parameter). Additionally, each plaintext message m is an ℓ′-bit string for some
ℓ′ = poly(λ).

� Key Distribution: Each secret key is sampled according to some distribution D over {0, 1}ℓ.
In particular, for our applications, we assume KPHE schemes where each secret key sk is a
2n-bit string with equally many 0 and 1 entries.

� Key Homomorphism: Let T be any linear transformation that maps ℓ-bit strings to ℓ-bit
strings. Then, it is possible to efficiently evaluate the following:

1Note that a function f : N → N is said to be negligible in λ if for every positive polynomial p, f(λ) < 1/p(λ)
when λ is sufficiently large.
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– Given a public key pk corresponding to some secret key sk ∈ {0, 1}ℓ, it is possible to
efficiently compute a valid public key pk′ corresponding to the transformed secret key
sk′ = T (sk), without the knowledge of sk.

– Given a ciphertext ct encrypting a message m under some secret key sk ∈ {0, 1}ℓ, it is
possible to efficiently compute a ciphertext ct′ encrypting the same message m under the
transformed secret key sk′ = T (sk), without the knowledge of sk.

� Plaintext Homomorphism: Let T ′ be any linear transformation that maps ℓ′-bit strings
to ℓ′-bit strings. Then, given a ciphertext ct encrypting a message m ∈ {0, 1}ℓ′ under some
secret key sk, it is possible to efficiently compute a ciphertext ct′′ encrypting the transformed
message m′ = T ′(m) under the same secret key sk.

We now summarize these features of KPHE formally below.

Definition 2.1 (KPHE). A KPHE scheme is a tuple of PPT algorithms of the form KPHE =
(Setup,SKGen,PKGen,Enc,Dec,Eval) that are defined as follows:

� pp
$← Setup(1λ): On input the security parameter λ, the setup algorithm outputs a public

parameter pp.

� sk
$← SKGen(pp,D): On input the public parameter pp and a distribution D over {0, 1}ℓ (for

ℓ = poly(λ)), the secret key generation algorithm outputs a secret key sk
$← D.

� pk
$← PKGen(pp, sk): On input the public parameter pp and a secret key sk ∈ {0, 1}ℓ, the

public key generation algorithm outputs a public key pk.

� ct
$← Enc(pk,m): On input a public key pk and a message m ∈ {0, 1}ℓ′ (for ℓ′ = poly(λ)), the

encryption algorithm outputs a ciphertext ct.

� m/⊥ $← Dec(sk, ct): On input a secret key sk ∈ {0, 1}ℓ and a ciphertext ct, the decryption
algorithm outputs a plaintext message string m or an error symbol ⊥.

� (pk′, ct′)
$← Eval(pk, ct, T, T ′): On input a public key pk, a ciphertext ct, and a pair of (lin-

ear) transformations T : {0, 1}ℓ → {0, 1}ℓ and T ′ : {0, 1}ℓ′ → {0, 1}ℓ′, the homomorphic
evaluation algorithm outputs a tuple consisting of a transformed public key and a transformed
ciphertext (pk′, ct′).

Correctness. A KPHE scheme (Setup, SKGen,PKGen,Enc,Dec,Eval) is said to be correct with

respect to a distribution D over {0, 1}ℓ if for any pp
$← Setup(1λ), any sk

$← SKGen(pp,D), any
pk

$← PKGen(pp, sk), any m ∈ {0, 1}ℓ′ , and any pair of (linear) transformations T : {0, 1}ℓ → {0, 1}ℓ
and T ′ : {0, 1}ℓ′ → {0, 1}ℓ′ , letting sk′ = T (sk), m′ = T ′(m) and

ct
$← Enc(pk,m), (pk′, ct′)

$← Eval(pk, ct, T, T ′),

both of the following hold with overwhelmingly large probability:
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Experiment ExptDSS−KPHE
D (λ,A):

1. The challenger generates pp
$← Setup(1λ), sk

$← SKGen(pp,D), and pk
$← PKGen(pp, sk), and

provides the adversary A with (pp, pk).

2. The adversary A issues a challenge encryption query for a pair of messages (m0,m1).

3. The challenger samples b
$← {0, 1}, creates the challenge ciphertext

ct∗
$← Enc (pk,mb) ,

and sends ct∗ to the adversary A.

4. The adversary A outputs a bit b′ ∈ {0, 1}.

5. Output 1 if b = b′ and 0 otherwise.

Figure 1: The D-Semantic Security Experiment for KPHE

� pk′ is a valid public key with respect to sk′ = T (sk), i.e., for any m̄ ∈ {0, 1}ℓ′ , it holds that
Dec(sk′,Enc(pk′, m̄)) = m̄.

� ct′ is a valid encryption of m′ under (pk′, sk′), i.e., Dec(sk′, ct′) = m′.

Distributional Semantic Security. We (informally) say that a KPHE satisfies distributional
semantic security with respect to some distribution D over {0, 1}ℓ if it remains semantically secure
even when the secret key sk is sampled according to the distribution D. Formally, this is modeled
using a semantic security game where the secret key is sampled by the challenger as per the
distribution D.

Definition 2.2 (D-Semantic Security). A KPHE scheme with ℓ-bit secret keys is said to be D-
semantically secure with respect to a distribution D over {0, 1}ℓ if for any security parameter λ ∈ N
and any PPT adversary A, the following holds with overwhelmingly large probability:

| Pr[ExptDSS−KPHE
D (λ,A) = 1]− 1/2 |< negl(λ),

where the experiment ExptDSS−KPHE
D (λ,A) is as defined in Figure 1.

Distributional Circular Security. We (informally) say that a KPHE satisfies distributional
circular security with respect to some distribution D over {0, 1}ℓ if it satisfies the standard notion
of circular security [CL01,BRS02,BHHO08,ACPS09] even when each secret key is sampled from
the distribution D. Formally, this is modeled using a circular security game where the secret keys
are sampled by the challenger as per the distribution D.

Definition 2.3 (D-Circular Security). A KPHE scheme with ℓ-bit secret keys and ℓ-bit messages is
said to be D-circular secure with respect to a distribution D over {0, 1}ℓ if for any security parameter
λ ∈ N and any PPT adversary A, the following holds with overwhelmingly large probability:

| Pr[ExptDCC−KPHE
D (λ,A) = 1]− 1/2 |< negl(λ),
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Experiment ExptDCC−KPHE
D (λ,A):

1. The challenger generates pp
$← Setup(1λ) and provides it to the adversary.

2. The adversary A outputs n = poly(λ).

3. The challenger samples sk1, . . . , skn
$← SKGen(pp,D), sets

pk1
$← PKGen(pp, sk1), . . . , pkn

$← PKGen(pp, skn),

and provides (pk1, . . . , pkn) to the adversary A.

4. The challenger also sets the following for each i, j ∈ [n]:

cti,j,0
$← Enc(pki, skj), cti,j,1

$← Enc(pki, 0
|skj |).

5. The challenger finally samples a bit b
$← {0, 1} and provides the adversaryA with the ensemble

{cti,j,b}i,j∈[n].

6. The adversary A outputs a bit b′ ∈ {0, 1}.

7. Output 1 if b = b′ and 0 otherwise.

Figure 2: The D-Circular Security Experiment for KPHE

where the experiment ExptDCC−KPHE
D (λ,A) is as defined in Figure 2.

Blinding. We (informally) say that a KPHE scheme satisfies public key and ciphertext blinding if
the homomorphic evaluation algorithm outputs a public key-ciphertext pair (pk′, ct′) corresponding
to the transformed secret key sk′ and the transformed message m′ such that:

� The transformed public key pk′ is computationally indistinguishable from a public key sampled
uniformly at random from the set of all valid public keys corresponding to the secret key sk′.

� The transformed ciphertext ct′ is computationally indistinguishable from a ciphertext sampled
uniformly at random from the set of all valid ciphertexts corresponding to the transformed
message m′ under pk′.

More formally, we define this blinding property as follows.

Definition 2.4 (Blinding). A KPHE scheme with ℓ-bit secret keys and ℓ′-bit messages is said to
satisfy blinding security with respect to a distribution D over {0, 1}ℓ if for any security parameter
λ ∈ N and any PPT adversary A, the following holds with overwhelmingly large probability:

| Pr[ExptBlind−KPHE
D (λ,A) = 1]− 1/2 |< negl(λ),

where the experiment ExptBlind−KPHE
D (λ,A) is as defined in Figure 3.
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Experiment ExptBlind−KPHE
D (λ,A):

1. The challenger generates pp
$← Setup(1λ), sk

$← D, and pk
$← PKGen(pp, sk), and provides

the adversary A with (pp, sk, pk).

2. The adversary A sends a message m ∈ {0, 1}ℓ′ to the challenger.

3. The challenger responds to A with a ciphertext ct
$← Enc(pk,m).

4. The adversary A then sends a pair of (linear) transformations

T : {0, 1}ℓ → {0, 1}ℓ, T ′ : {0, 1}ℓ′ → {0, 1}ℓ′ .

5. The challenger sets
sk′ = T (sk), m′ = T ′(m),

and computes the following:

(pk0, ct0)
$← Eval(pk, ct, T, T ′), pk1

$← PKGen(pp, sk′), ct1
$← Enc(pk1,m

′),

6. The challenger finally samples a bit b
$← {0, 1} and provides the adversary A with (pkb, ctb).

7. The adversary A outputs a bit b′ ∈ {0, 1}.

8. Output 1 if b = b′ and 0 otherwise.

Figure 3: The Blinding Experiment for KPHE

KPHE from DDH. In Appendix 5, we show the following: assuming that the decisional Diffie-
Hellman (DDH) assumption holds, there exists a KPHE scheme that satisfies essentially all of the
aforementioned properties. Concretely, we prove the following (informal) theorem:

Theorem 2.5 (Informal). Assuming DDH, there exists a KPHE scheme with 2n-bit secret keys that
satisfies distributional semantic security with respect to the distribution Un, distributional circular
security with respect to the distribution Un, and blinding, as defined above.

In particular, we rely on known results from [BHHO08, NS12, GHV10] for the DDH-based
instantiation of KPHE. See Appendix 5 for details.

KPHE from LWE. In this paper, we do not explicitly describe a construction of KPHE from
LWE since there already exist constructions of unidirectional UE/PRE from LWE [CCL+14,
PWA+16, PRSV17, Nis21]. Our aim in this work is to close the gap between bidirectional and
unidirectional constructions of UE/PRE in terms of assumptions, and so we choose to focus on the
feasibility results from the DDH assumption.

We note, however, that constructing KPHE from LWE is a very interesting direction of future
work. In particular, one needs to be careful during re-encryption, which potentially increases the
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level of noise in the ciphertext of the LWE-based encryption scheme and could leak extra informa-
tion. For example, due to increase in the noise level during re-encryption, it is not straightforward
to prove the ciphertext blinding property, which requires that a freshly created ciphertext and a
re-encrypted ciphertext are distributed in an indistinguishable manner. This issue can be handled
using noise flooding techniques, albeit at the cost of a larger ciphertext size.

KPHE from Other Assumptions. We also leave it as an interesting open question to construct
KPHE from concrete hardness assumptions other than DDH or LWE (e.g., factorization-based
assumptions or LPN). Given our results on achieving unidirectional UE/PRE from KPHE, such
realizations of KPHE would immediately yield new constructions of unidirectional UE/PRE from
these assumptions.

3 Unidirectional UE from KPHE

In this section, we show how to construct unidirectional UE satisfying various security notions
(IND-ENC, IND-UPD and IND-UE) from any KPHE scheme.

3.1 Definition

Definition 3.1. An updatable encryption (UE) scheme for message space M is a tuple of PPT
algorithms UE = (UE.setup,UE.next,UE.enc,UE.upd,UE.dec) with the following syntax:

� k0
$← UE.setup(1λ): On input a security parameter 1λ, it returns a secret key ke for epoch

e = 0.

� (ke+1,∆e+1)
$← UE.next(ke): On input a secret key ke for epoch e, it outputs a new secret key

ke+1 and an update token ∆e+1 for epoch e+ 1.

� cte
$← UE.enc(ke,m): On input a secret key ke for epoch e and a message m ∈ M, it outputs

a ciphertext cte.

� cte+1
$← UE.upd(∆e+1, cte): On input a ciphertext cte from epoch e and the update token

∆e+1, it returns the updated ciphertext cte+1.

� m′/⊥ ← UE.dec(ke, cte): On input a ciphertext cte and a secret key ke of some epoch e, it
returns a message m′ or ⊥.

We stress that UE.next generates a new key along with an update token, which follows from the
definition in the work of Lehmann and Tackmann [LT18]. In our constructions, the update token
∆e+1 can also be generated from ke and ke+1.

Definition 3.2 (Correctness). Let UE = (UE.setup,UE.next,UE.enc,UE.upd,UE.dec) be an updat-

able encryption scheme. We say UE is correct if for any m ∈ M, any k0
$← UE.setup(1λ), any

sequence of (k1,∆1), . . . , (ke,∆e) generated as (ki,∆i)
$← UE.next(ki−1) for all i ∈ [e], and for any

0 ≤ ê ≤ e, let ctê
$← UE.enc(kê,m) and ctj

$← UE.upd(∆j , ctj−1) for all j = ê + 1, . . . , e, then
UE.dec(ke, cte) = m.
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Setup(1λ):

k0
$← UE.setup(1λ)

e := 0; phase := 0

L, L̃,K, T , C $← ∅

O.enc(m):

ct
$← UE.enc(ke,m)

L := L ∪ {(e, ct)}
return ct

O.next:
e := e+ 1

(ke,∆e)
$← UE.next(ke−1)

if phase = 1 then

c̃te
$← UE.upd(∆e, c̃te−1)

L̃ := L̃ ∪ {(e, c̃te)}

O.upd(cte−1):

if (e− 1, cte−1) /∈ L then
return ⊥

cte
$← UE.upd(∆e, cte−1)

L := L ∪ {(e, cte)}
return cte

O.corr(inp, ê) :
if ê > e then

return ⊥
if inp = key then
K := K ∪ {ê}
return kê

if inp = token then
T := T ∪ {ê}
return ∆ê

O.chall-IND-ENC(m0,m1):

if |m0| ̸= |m1| then
return ⊥

phase := 1; ẽ := e

c̃t̃e
$← UE.enc(kẽ,mb)

C := C ∪ {ẽ}
L̃ := L̃ ∪ {(ẽ, c̃t̃e)}
return c̃t̃e

O.chall-IND-UPD(ct0, ct1) :
if (e− 1, ct0) /∈ L or (e− 1, ct1) /∈ L or |ct0| ̸= |ct1| then

return ⊥
phase := 1; ẽ := e

c̃t̃e
$← UE.upd(∆ẽ, ctb)

C := C ∪ {ẽ}
L̃ := L̃ ∪ {(ẽ, c̃t̃e)}
return c̃t̃e

O.chall-IND-UE(m, ct) :

if (e− 1, ct) /∈ L then
return ⊥

phase := 1; ẽ := e
if b = 0 then

c̃t̃e
$← UE.enc(kẽ,m)

else
c̃t̃e

$← UE.upd(∆ẽ, ct)

C := C ∪ {ẽ}
L̃ := L̃ ∪ {(ẽ, c̃t̃e)}
return c̃t̃e

O.updC̃ :

if phase = 0 then
return ⊥

C := C ∪ {e}
return c̃te

Figure 4: Oracles in security games for updatable encryption.

Confidentiality. The adversary A has access to the oracles defined in Figure 4. We follow the
bookkeeping techniques of [LT18,KLR19,BDGJ20,Jia20], using the following sets to keep track of
the generated and updated ciphertexts, and the epochs in which the adversary corrupted a key or
a token, or learned a version of the challenge-ciphertext.

� L: Set of non-challenge ciphertexts (e, cte) produced by calls to the O.enc or O.upd oracle.
O.upd only updates ciphertexts obtained in L.

� L̃: Set of updated versions of the challenge ciphertexts (e, c̃te). L̃ is initiated with the
challenge ciphertext (ẽ, c̃tẽ). Any call to the O.next oracle automatically updates the challenge
ciphertext to the new epoch, which the adversary can fetch via a call to O.updC̃.

� K: Set of epochs e in which the adversary corrupted the secret key ke (from O.corr).
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� T : Set of epochs e in which the adversary corrupted the update token ∆e (from O.corr).

� C: Set of epochs e in which the adversary learned a version of the challenge ciphertext (from
O.chall or O.updC̃).

We further define the epoch identification sets C∗,K∗, T ∗ as the extended sets of C,K, T in which
the adversary learned or inferred information. We focus on no-directional key updates and uni-
directional ciphertext updates.

K∗ := K
T ∗ := {e ∈ {0, . . . , eend}|(e ∈ T ) ∨ (e− 1 ∈ K∗ ∧ e ∈ K∗)}
C∗ := {e ∈ {0, . . . , eend}|ChallEq(e) = true}

where true← ChallEq(e)⇐⇒ (e ∈ C) ∨ (ChallEq(e− 1) ∧ e ∈ T ∗)

Remark 3.3. The constructions we present later will in fact permit backward-leak key updates.
At first glance the backward-leak key updates notion proposed by Nishimaki [Nis21] is seemingly
weaker than no-directionality key updates. However, as mentioned in the introduction, this notion is
essentially equivalent to no-directional key updates because backward-leak derivation of ke−1 does not
increase the adversary’s advantage in breaking the scheme. In particular, if the adversary obtains
a challenge ciphertext c̃te−1 and corrupts ∆e and ke, then it does not matter if the adversary can
derive ke−1 or not, as it can always update the ciphertext to c̃te and decrypt it using ke.

Definition 3.4 (IND-ENC, IND-UPD, IND-UE security). Let UE = (UE.setup,UE.next,UE.enc,UE.upd,
UE.dec) be an updatable encryption scheme. We say UE is notion-secure for notion ∈ {IND-ENC,
IND-UPD, IND-UE} if for all PPT adversary A it holds that∣∣∣∣Pr [ExpnotionA,UE (1λ) = 1

]
− 1

2

∣∣∣∣ ≤ negl(λ)

for some negligible function negl(·).

Experiment ExpnotionA,UE (1λ):

Run Setup(1λ)

(state,Chall0,Chall1)
$← AO.enc,O.next,O.upd,O.corr(1λ)

b
$← {0, 1}

c̃t
$← O.chall-notion(Chall0,Chall1)

Proceed only if c̃t ̸= ⊥
b′

$← AO.enc,O.next,O.upd,O.corr,O.updC̃(state, c̃t)
return 1 if b = b′ and C∗ ∩ K∗ = ∅

3.2 IND-ENC Secure Unidirectional UE

We begin by showing that any KPHE scheme with 2n-bit secret keys that satisfies distributional
semantic security with respect to the distribution Un, as well as public key and ciphertext blinding
as described in Section 2 implies an IND-ENC secure unidirectional UE scheme.
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Construction. Given a KHPE scheme of the form

KPHE = (KPHE.Setup,KPHE.SKGen,KPHE.PKGen,KPHE.Enc,KPHE.Dec,KPHE.Eval),

with 2n-bit secret keys, we construct a unidirectional UE scheme

UE = (UE.setup,UE.next,UE.enc,UE.upd,UE.dec),

with message spaceM = {0, 1}2n as follows:

� UE.setup(1λ): Generate pp
$← KPHE.Setup(1λ), sk0

$← KPHE.SKGen(pp,Un), and output

k0 = (pp, sk0).

� UE.next(ke): Parse ke = (pp, ske). Generate ske+1
$← KPHE.SKGen(pp,Un) and pke+1

$←
KPHE.PKGen(pp, ske+1). Output

ke+1 = (pp, ske+1), ∆e+1 = (pke+1,KPHE.Enc(pke+1, ske)).

� UE.enc(ke,m): Parse ke = (pp, ske). Generate pke
$← KPHE.PKGen(pp, ske) and compute

ctxe
$← KPHE.Enc(pke,m). Output

cte = (0, (pke, ctxe)).

� UE.upd(∆e+1, cte): Parse the update token and the ciphertext as

∆e+1 = (pk∆, ctx∆), cte = (t, (pke−t, ctxe−t), . . . , (pke−1, ctxe−1), (pke, ctxe))

Sample a uniform random permutation π : [2n]→ [2n]. Also, let πid : [2n]→ [2n] denote the
identity permutation. Compute

(pke, ctxe)
$← KPHE.Eval(pke, ctxe, π, πid), (pke+1, ctxe+1)

$← KPHE.Eval(pk∆, ctx∆, πid, π).

and output the updated ciphertext as:

cte+1 = (t+ 1, (pke−t, ctxe−t), . . . , (pke, ctxe), (pke+1, ctxe+1)).

� UE.dec(ke, cte): Parse ke = (pp, ske) and the ciphertext as

cte = (t, (pke−t, ctxe−t), . . . , (pke−1, ctxe−1), (pke, ctxe)).

If t = 0, then output m← KPHE.Dec(ske, ctxe).

Otherwise, compute ske−1 ← KPHE.Dec(ske, ctxe). Then for each j from (e − 1) downto
(e− t+ 1), compute

skj−1 ← KPHE.Dec(skj , ctxj).

Finally, output the message m← KPHE.Dec(ske−t, ctxe−t).
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Correctness. We first prove the correctness of the UE scheme. For any m ∈ M, any k0 ←
UE.setup(1λ), any sequence of (k1,∆1), . . . , (ke,∆e) generated as (ki,∆i)← UE.next(ki−1) for all i ∈
[e], let ct0 ← UE.enc(k0,m) and cti ← UE.upd(∆i, cti−1) for all j ∈ [e], then the final ciphertext is of
the form cte = (e, (pk0, ctx0), . . . , (pke−1, ctxe−1), (pke, ctxe)). All the secret keys are of the form k0 =
(pp, sk0), . . . , ke = (pp, ske). Let πj be the random permutation sampled in UE.upd(∆j+1, ctj) and
let skj = πj(skj) for all j = 0, 1, . . . , e− 1. We can prove by induction that KPHE.Dec(sk0, ctx0) =
m,KPHE.Dec(sk1, ctx1) = sk0, . . . ,KPHE.Dec(ske−1, ctxe−1) = ske−2,KPHE.Dec(ske, ctxe) = ske−1.
Therefore, UE.dec(ke, cte) outputs m. This argument is for any ciphertext starting from epoch 0.
The same argument holds for any ciphertext starting from any epoch ê where 0 ≤ ê ≤ e.

Confidentiality. Next we prove the IND-ENC security of our UE scheme. More formally, we
state and prove the following theorem:

Theorem 3.5 (IND-ENC Security). Assuming that KPHE satisfies distributional security with
respect to the distribution Un, as well as public key and ciphertext blinding as described in Section 2,
the above UE construction is an IND-ENC secure unidirectional UE scheme.

Proof. The proof proceeds via a hybrid argument.

Hyb0 The challenger plays the real game with the adversary.

Hyb1 Same as Hyb0 but for UE.upd(∆e, cte−1) in O.upd and UE.upd(∆e, c̃te−1) in O.next, do the
following:

� Let ke−1 = (pp, ske−1) and ke = (pp, ske).

� Parse the ciphertext cte−1 or c̃te−1 as

(t, (pke−1−t, ctxe−1−t), . . . , (pke−2, ctxe−2), (pke−1, ctxe−1)),

where ctxe−1 = KPHE.Enc(pke−1, x). Note that if t = 0, then x = m for some message,
otherwise x = ske−2 that is the KPHE secret key corresponding to pke−2.

� Sample a uniform random permutation π : [2n]→ [2n], let ske−1 = π(ske−1), and sample

pke−1
$← KPHE.PKGen(pp, ske−1). Compute ctxe−1

$← KPHE.Enc(pke−1, x).

� Sample pke
$← KPHE.PKGen(pp, ske) and compute ctxe

$← KPHE.Enc(pke, ske−1).

� Let cte or c̃te be

(t+ 1, (pke−1−t, ctxe−1−t), . . . , (pke−1, ctxe−1), (pke, ctxe)).

We prove in Lemma 3.6 that this hybrid is computationally indistinguishable from Hyb0 to
any PPT adversary by the blinding property of KPHE.

Hyb2 Same as Hyb1 but for UE.upd(∆e, cte−1) in O.upd and UE.upd(∆e, c̃te−1) in O.next, instead
of letting ske−1 = π(ske−1), sample ske−1 from the distribution Un. This hybrid is statistically
identical to Hyb1.
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Hyb3 Let ẽ be the challenge epoch, and let e be the last epoch where the adversary corrupts
continuous update tokens from ẽ, namely the adversary corrupts ∆ẽ+1,∆ẽ+2, . . . ,∆e but not
∆e+1. This hybrid is the same as Hyb2 except that the challenger guesses ẽ⋆ and e⋆ at the
beginning of the game and aborts the game if guessing incorrectly. Let E be the upper bound
on the number of epochs during the game. If the challenger does not abort, then this hybrid
is identical to Hyb2, which happens with probability at least 1

E2 . In the remaining hybrids,
we assume for simplicity that the challenger guesses ẽ and e correctly.

Hyb4 Same as Hyb3 except that for each ke = (pp, ske), generate a single public key p̂ke
$←

KPHE.PKGen(pp, ske). Then whenever KPHE.Enc(pke, x) is computed for a freshly generated

pke and some x, compute it as KPHE.Eval(p̂ke,KPHE.Enc(p̂ke, x), πid, πid). That is, instead

of generating a fresh pke from ske every time, use the same p̂ke to encrypt x and use then
KPHE.Eval to re-randomize it.

This hybrid is computationally indistinguishable from Hyb3 by the blinding property of KPHE.
We omit the detailed reduction here, but it is similar to the reduction in the proof of Lemma
3.6.

Hyb5 Same as Hyb4 except that for all ẽ+1 ≤ e ≤ e, UE.next(ke−1) is computed as follows. Generate

ske
$← KPHE.SKGen(pp,Un) and let p̂ke

$← KPHE.PKGen(pp, ske) be the single public key for
ke (that will be used for every KPHE.Enc). Output

ke = (pp, ske), ∆e = (p̂ke,KPHE.Enc(p̂ke, 0
2n)).

We prove in Lemma 3.7 that this hybrid is computationally indistinguishable from Hyb4 to
any PPT adversary based on the distributional semantic security of KPHE.

Hyb6 Same as Hyb5 except that for each ke = (pp, ske), generate a single public key p̂ke
$←

KPHE.PKGen(pp, ske) and use KPHE.Eval(p̂ke,KPHE.Enc(p̂ke, ·), πid, πid) for all the compu-
tation of KPHE.Enc(ke, ·) (including the computation of ∆e). The only exception is the

challenge ciphertext c̃tẽ, which is computed using p̂kẽ without re-randomization, namely

c̃tẽ = (0, (p̂kẽ,KPHE.Enc(p̂kẽ,mb))).

This hybrid is computationally indistinguishable from Hyb5 by the blinding property of KPHE.
We omit the detailed reduction here, but it is similar to the reduction in the proof of Lemma
3.6.

Finally, we argue that in the final hybrid Hyb6, any PPT adversary cannot distinguish an
encryption of m0 or m1 in the challenge epoch ẽ, which relies on the distributional semantic security
of KPHE, which will conclude our proof.

Assume for the purpose of contradiction that there exists a PPT adversary A that can distin-
guish an encryption of m0 or m1 in the challenge epoch. Then we construct a PPT adversary B
that breaks the distributional semantic security of KPHE. The adversary B first receives (pp, pk)
from the challenger in the semantic security security game. Then B plays the UE game with A as
a challenger in Hyb6. B uses pp to generate UE keys and update tokens as in Hyb6 except that for
epoch ẽ, the UE key kẽ is unknown. When B receives the challenge messages (m0,m1) from A in
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the UE game, it forwards the two messages to the KPHE challenger and gets back ctx, and then
responds to A with ct = (0, (pp, ctx)). Note that B doesn’t need to know kẽ because it is never
used. In particular, B can use pk to compute all the UE.enc(kẽ, ·). Finally, B outputs whatever A
outputs.

If A can distinguish between encryptions of m0 and m1 with non-negligible probability, then B
can break the distributional semantic security of KPHE with non-negligible probability, which leads
to contradiction.

Lemma 3.6. Hyb0
c
≈ Hyb1 in the proof of Theorem 3.5.

Lemma 3.7. Hyb4
c
≈ Hyb5 in the proof of Theorem 3.5.

We defer the formal proofs of Lemmas 3.6 and 3.7 to Appendix A. These proofs complete the
overall proof of Theorem 3.5.

Remark 3.8. In our construction one can derive ke−1 from ∆e and ke. It is for this reason that
our construction permits backward-leak unidirectional key updates proposed by Nishimaki [Nis21]
where secret keys can be derived in the backward direction but not forward direction. However,
as discussed earlier, this notion is essentially equivalent to no-directional key updates (the optimal
case) and has no bearing on our security analysis.

3.3 Post-Compromise Secure Unidirectional UE

In this section, we show that any KPHE scheme with 2n-bit secret keys that satisfies distributional
security with respect to the distribution Un, as well as public key and ciphertext blinding as
described in Section 2 implies a post-compromise secure unidirectional UE scheme.

3.3.1 IND-UPD Secure Unidirectional UE

We first show how to construct an UE scheme that satisfies the IND-UPD security definition as
proposed in [LT18]. Given a KHPE scheme of the form

KPHE = (KPHE.Setup,KPHE.KeyGen,KPHE.Enc,KPHE.Dec,KPHE.TransPK,KPHE.Eval),

with 2n-bit secret keys, we construct a unidirectional UE scheme

UE = (UE.setup,UE.next,UE.enc,UE.upd,UE.dec),

that only differs from the IND-ENC construction in UE.upd:

� UE.upd(∆e+1, cte): Parse the update token and the ciphertext as

∆e+1 = (pk∆, ctx∆), cte = (t, (pke−t, ctxe−t), . . . , (pke−1, ctxe−1), (pke, ctxe))

Sample (t+1) uniform random permutations πe−t, . . . , πe : [2n]→ [2n]. Also, let πid : [2n]→
[2n] denote the identity permutation. For each i ∈ {e− t+ 1, . . . , e− 1}, compute

(p̃ki, c̃txi)
$← KPHE.Eval(pki, ctxi, πi, πi−1).
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Additionally, compute

(p̃ke−t, c̃txe−t)
$← KPHE.Eval(pke−t, ctxe−t, πe−t, πid),

(pke, ctxe)
$← KPHE.Eval(pke, ctxe, πe, πe−1),

(pke+1, ctxe+1)
$← KPHE.Eval(pk∆, ctx∆, πid, πe).

Output the updated ciphertext as:

cte+1 = (t+ 1, (p̃ke−t, c̃txe−t), . . . , (p̃ke−1, c̃txe−1), (pke, ctxe), (pke+1, ctxe+1)).

Correctness. We first prove the correctness of the UE scheme. For any m ∈ M, any k0 ←
UE.setup(1λ), any sequence of (k1,∆1), . . . , (ke,∆e) generated as (ki,∆i) ← UE.next(ki−1) for all
i ∈ [e], let ct0 ← UE.enc(k0,m) and cti ← UE.upd(∆i, cti−1) for all j ∈ [e], then the final ci-
phertext is of the form cte = (e, (pk0, ctx0), . . . , (pke−1, ctxe−1), (pke, ctxe)). All the UE secret keys
are of the form k0 = (pp, sk0), . . . , ke = (pp, ske). We can prove by induction that there ex-
ist permutations π0, π1 . . . , πe−1 : [2n] → [2n] such that ski = πi(ski) for all i = 0, 1, . . . , e − 1,
and that KPHE.Dec(sk0, ctx0) = m,KPHE.Dec(sk1, ctx1) = sk0, . . . ,KPHE.Dec(ske−1, ctxe−1) =
ske−2,KPHE.Dec(ske, ctxe) = ske−1. Therefore, UE.dec(ke, cte) outputs m. This argument is for
any ciphertext starting from epoch 0. The same argument holds for any ciphertext starting from
any epoch ê where 0 ≤ ê ≤ e.

Confidentiality. Next we prove the IND-UPD security the UE scheme. More formally, we state
and prove the following theorem (the proof is provided in Appendix B):

Theorem 3.9 (IND-UPD Security). Assuming that KPHE satisfies distributional security with
respect to the distribution Un, as well as public key and ciphertext blinding as described in Section 2,
the above UE construction is an IND-UPD secure unidirectional UE scheme.

3.3.2 IND-UE Secure Unidirectional UE

The basic IND-UPD construction allows ciphertexts from the same epoch e to have different sizes.
In particular, a freshly created ciphertext in epoch e can be trivially distinguished from a ciphertext
that was created as an update of a ciphertext from epoch (e−1). So it cannot satisfy the combined
security definition of post-compromise security for UE due to Boyd et al. [BDGJ20].

We showcase here a simple extension of the basic construction wherein we ensure that the
size for any ciphertext in epoch e is the same, irrespective of whether it was freshly created, or
created as an update of a ciphertext from epoch (e− 1). The overall construction remains exactly
the same; the key alteration is in how we generate fresh ciphertexts. At a high level, a freshly
created ciphertext in epoch e is made to look exactly like a ciphertext that has undergone e update
operations. We do this by having e “dummy wrapper” layers over and above the core ciphertext
generated by the basic construction.

We describe the new encryption algorithm below (we assume here that information about the
epoch e is available as part of ke):

� UE.enc(ke,m): Parse ke = (e, pp, ske) and generate pke
$← KPHE.PKGen(pp, ske).
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For each i ∈ {0, . . . , e− 1}, generate

ski
$← KPHE.SKGen(pp,Un), pki

$← KPHE.PKGen(pp, ski).

Compute ctx0
$← KPHE.Enc(pk0,m) and ctxe

$← KPHE.Enc(pke, ske−1).

For each i ∈ [e− 1], compute

ctxi
$← KPHE.Enc(pki, ski−1).

Output the ciphertext cte = (e, (pk0, ctx0), . . . , (pke−1, ctxe−1), (pke, ctxe)).

The only difference between the above UE construction and the IND-UPD secure UE construc-
tion presented in Section 3.3.1 is that all the fresh and updated ciphertexts in epoch e have the
same length. The correctness and confidentiality proofs of the new construction follow exactly
the same way as the IND-UPD secure construction. In particular, for the security proof, we can
use the same hybrid argument as in Theorem 3.9 and prove that the challenge ciphertext c̃tẽ is
computationally indistinguishable from a ciphertext freshly generated in Hyb7 of the form

(ẽ, (p̃k0, c̃tx0), . . . , (p̃kẽ−1, c̃txẽ−1), (p̂kẽ, ctxẽ)),

where each ctx is a KPHE encryption of 02n. We state the theorem below and omit the detailed
proof.

Theorem 3.10 (IND-UE Security). Assuming that KPHE is a KPHE scheme with 2n-bit secret
keys that satisfies distributional security with respect to the distribution Un, as well as public key
and ciphertext blinding as described in Section 2, the above UE construction is an IND-UE secure
unidirectional UE scheme.

4 Unidirectional PRE from Circular-Secure KPHE

In this section, we show how to construct unidirectional PRE from any KPHE scheme that satisfies
distributional circular security. We present the simpler construction of IND-HRA unidirectional
PRE in Section 4.2. Subsequently, in Appendix 4.3, we show how to augment it to achieve the
stronger notion of strong post-compromise security (PCS) as introduced in a recent work by David-
son et al. [DDLM19].

4.1 Definition

Definition 4.1 (Unidirectional Proxy Re-Encryption (PRE)). A unidirectional PRE scheme is a
tuple of PPT algorithms of the form

PRE = (Setup,KeyGen,Enc,ReKeyGen,ReEnc,Dec),

described as follows:

� pp
$← Setup(1λ): On input the security parameter λ, the setup algorithm outputs some public

parameters pp (these parameters are implicit to all other algorithms).
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� (sk, pk)
$← KeyGen(pp): On input the public parameters pp, the key-generation algorithm

outputs a secret key-public key pair, (sk, pk).

� ct
$← Enc(pk,m): On input a public key pk and a message m, the encryption algorithm outputs

a ciphertext ct.

� rki,j
$← ReKeyGen((ski, pki), pkj): The re-key generation algorithm returns a re-encryption

key rki,j for translation of a ciphertext from a key-pair (ski, pki) to a key-pair (skj , pkj). It
takes as input (ski, pki) and pkj, and outputs the re-encryption key rki,j.

2

� ctj
$← ReEnc(rki,j , cti): On input a re-encryption key rki,j and a ciphertext cti, the re-

encryption algorithm outputs an updated ciphertext ctj.
3

� m/⊥ ← Dec(sk, ct): On input a secret key sk and a ciphertext ct, the decryption algorithm
outputs either a plaintext message or an error symbol.

Definition 4.2 (Correctness). A PRE scheme PRE = (Setup,KeyGen,Enc,ReKeyGen,ReEnc,Dec)

is said to be correct if for any pp
$← Setup(1λ), for any ℓ ≥ 0, for any (ℓ+1) key-pairs (pk0, sk0), . . . ,

(pkℓ, skℓ)
$← KeyGen(pp), and for any plaintext message m, letting ct0

$← Enc(pk0,m), and letting
for each j ∈ [ℓ]

rkj
$← ReKeyGen(skj−1, pkj−1, pkj), ctj

$← ReEnc(rkj , ctj−1),

we have Dec(skℓ, ctℓ) = m (with all but negligible probability).

Confidentiality. We recall the various security notions for unidirectional PRE, namely IND-CPA
security, IND-HRA security (introduced by Cohen [Coh19]), and IND-PCS security (introduced by
Davidson et al. [DDLM19]). Our definitions are game-based, where the game is played between a
challenger and a PPT adversary A. We assume that the adversary A in a PRE security game has
access to (a subset of) the oracles defined in Figure 5. As with our UE definitions, we begin by
introducing the following notations for our security definitions:

� L: Set of non-challenge ciphertexts (i, cti) (i being the key-index under which cti is gen-
erated) produced by calls to the O.enc or O.HonReEnc oracle. O.HonReEnc only outputs a
re-encryption of a non-challenge ciphertext provided that this ciphertext is currently available
in L.

� L̃: Set of re-encrypted versions of the challenge ciphertext c̃t. L̃ is initiated with the chal-
lenge ciphertext (i, c̃t) (i being the key-index under which c̃t is generated). Any call to the
O.HonReEnc oracle on a ciphertext in L̃ results in a re-encrypted challenge ciphertext that
gets added to L̃.

� KCorrupt: Set of indices i ∈ [n] for which the adversary has corrupted the secret key ski (using
O.KeyGen).

2In a bidirectional PRE scheme, the re-key generation algorithm additionally takes as input the destination secret
key skj , i.e., it takes as input (ski, pki) and (skj , pkj), and outputs the re-encryption key rki,j .

3The re-encryption algorithm could be either deterministic or randomized; in this work, we assume throughout
that the re-encryption algorithm is randomized.
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Setup(1λ):

pp
$← Setup(1λ)

state := ⊥
L, L̃,KCorrupt,KHonest := ∅
return pp

O.KeyGen(n,K):

(sk1, pk1), . . . , (skn, pkn)
$← KeyGen(1λ)

KCorrupt := K
KHonest := [n] \ K
state := {ski, pki}i∈[n]

return
(
{ski}i∈KCorrupt

, {pki}i∈[n]

)
O.enc(i,m)

ct
$← Enc(pki,m)

L := L ∪ (i, ct)
return ct

O.ReKeyGen(i, j)
if i ∈ KHonest and j ∈ KCorrupt then

return ⊥
rki,j

$← ReKeyGen(ski, pki, pkj)
return rki,j

O.ReEnc(i, j, ct)
if i ∈ KHonest and j ∈ KCorrupt then

return ⊥
rki,j

$← ReKeyGen(ski, pki, pkj)

ct′
$← ReEnc(rki,j , ct)

return ct′

O.HonReEnc(i, j, ct)

if (i, ct) ̸∈ L, or (i, ct) ̸∈ L̃ then
return ⊥

if (i, ct) ∈ L̃ and j ∈ KCorrupt then
return ⊥

rki,j
$← ReKeyGen(ski, pki, pkj)

ct′
$← ReEnc(rki,j , ct)

if (i, ct) ∈ L̃ then

L̃ := L̃ ∪ {(j, ct′)}
else
L := L ∪ {(j, ct′)}

return ct′

O.chall-PRE(i,m0,m1)
a

if i ∈ KCorrupt or |m0| ≠ |m1| then
return ⊥

c̃t
$← Enc(pki,mb)

L̃ := L̃ ∪ {(i, c̃t)}
return c̃t

O.chall-IND-PCS(i, j, ct0, ct1)
if (i, ct0) ̸∈ L or (i, ct1) ̸∈ L then

return ⊥
if |ct0| ≠ |ct1| then

return ⊥
if j ∈ KCorrupt then

return ⊥
rki,j

$← ReKeyGen(ski, pki, pkj)

c̃t
$← ReEnc(rki,j , ctb)

L̃ := L̃ ∪ {(j, c̃t)}
return c̃t

aThis is the challenge oracle that is used in both the
IND-CPA and the IND-HRA experiments for PRE.

.

Figure 5: Oracles in security games for unidirectional PRE.

� KHonest: Set of indices i ∈ [n] for which the adversary has not corrupted the secret key ski.

We now formally define the various security notions of unidirectional PRE. Note that the CPA and
HRA proceed almost identically, with the major difference being the restrictions posed by their
respective re-encryption oracles, O.ReEnc and O.HonReEnc.

Definition 4.3 (IND-CPA/IND-HRA Security). A unidirectional PRE scheme

PRE = (Setup,KeyGen,Enc,ReKeyGen,ReEnc,Dec)

is said to be IND-CPA-secure (IND-HRA-secure resp.) if for any security parameter λ and any
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(non-uniform) PPT adversary A, it holds that∣∣∣∣Pr [ExpIND-CPA/IND-HRA
A,PRE (1λ) = 1

]
− 1

2

∣∣∣∣ ≤ negl(λ),

for some negligible function negl(·), where the experiment ExpIND-CPA
A,PRE (ExpIND-HRA

A,PRE resp.) is defined
as below.

Experiment Exp
IND-CPA/IND-HRA
A,PRE (1λ):

Run pp
$← Setup(1λ)

(state, n,K)← A(pp)
Run

(
{ski}i∈KCorrupt , {pki}i∈[n]

) $← O.KeyGen(n,K)
(state, i,m0,m1)← AO.enc,O.ReKeyGen,O.ReEnc/O.HonReEnc

(
state, {ski}i∈KCorrupt , {pki}i∈[n]

)
b

$← {0, 1}
c̃t← O.chall-PRE(i,m0,m1)
Proceed only if c̃t ̸= ⊥
b′ ← AO.enc,O.ReKeyGen,O.ReEnc/O.HonReEnc(state, c̃t)
return 1 if b = b′

Definition 4.4 (IND-PCS Security). A unidirectional PRE scheme

PRE = (Setup,KeyGen,Enc,ReKeyGen,ReEnc,Dec)

is said to be IND-PCS-secure if for any security parameter λ and any (non-uniform) PPT adversary
A, it holds that ∣∣∣∣Pr [ExpIND-PCS

A,PRE (1λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

for some negligible function negl(·), where the experiment ExpIND-PCS
A,PRE is defined as below.

Experiment ExpIND-PCS
A,PRE (1λ):

Run pp
$← Setup(1λ)

(state, n,K)← A(pp)
Run

(
{ski}i∈KCorrupt , {pki}i∈[n]

) $← O.KeyGen(n,K)
(state, i, j, ct0, ct1)← AO.enc,O.ReKeyGen,O.HonReEnc

(
state, {ski}i∈KCorrupt , {pki}i∈[n]

)
b

$← {0, 1}
c̃t← O.chall-IND-PCS(i, j, ct0, ct1)
Proceed only if c̃t ̸= ⊥
b′ ← AO.enc,O.ReKeyGen,O.HonReEnc(state, c̃t)
return 1 if b = b′

4.2 HRA-Secure Unidirectional PRE

We show that any KPHE scheme with 2n-bit secret keys and plaintext messages that satisfies:
(a) distributional semantic and circular security with respect to the distribution Un, and (b) blind-
ing, implies the existence of a multi-hop IND-HRA secure unidirectional PRE scheme.
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Construction. Given a KHPE scheme of the form

KPHE = (KPHE.Setup,KPHE.SKGen,KPHE.PKGen,KPHE.Enc,KPHE.Dec,KPHE.Eval),

with 2n-bit secret keys, we construct a unidirectional PRE scheme

PRE = (PRE.Setup,PRE.KeyGen,PRE.Enc,PRE.ReKeyGen,PRE.ReEnc,PRE.Dec),

with message spaceM = {0, 1}2n as follows:

� PRE.Setup(1λ): Sample pp
$← KPHE.Setup(1λ) and output pp.

� PRE.KeyGen(pp): Sample and output (pk, sk) where

sk
$← KPHE.SKGen(pp,Un), pk

$← KPHE.PKGen(pp, sk).

� PRE.Enc(pk,m): Compute ctx0
$← KPHE.Enc(pk,m) and output

ct = (0, (pk, ctx0)).

� PRE.ReKeyGen(ski, pki, pkj): Output rki,j = (pkj , ctx∆), where

ctx∆
$← KPHE.Enc(pkj , ski).

� PRE.ReEnc(rki,j , ct): Parse the reencryption key and the ciphertext as

rki,j = (pkj , ctx∆), ct = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)),

for some t ≥ 0. Sample a uniformly random permutation π : [2n] → [2n]. Also, let πid :
[2n]→ [2n] denote the identity permutation. Compute

(pkt, ctxt)
$← KPHE.Eval(p̂kt, ĉtxt, π, πid),

(p̂kt+1, ĉtxt+1)
$← KPHE.Eval(pkj , ctx∆, πid, π),

and output the updated ciphertext as:

ct′ = (t+ 1, (pk0, ctx0), . . . , (pkt, ctxt), (p̂kt+1, ĉtxt+1)).

� PRE.Dec(sk, ct): Parse the ciphertext as

ct = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)),

for some t ≥ 0. Compute skt−1 = KPHE.Dec(sk, ĉtxt). Next, compute the following for each
ℓ from (t− 1) to 1 in decreasing order:

skℓ−1 = KPHE.Dec(skℓ, ctxℓ).

Finally, output the message m = KPHE.Dec(sk0, ctx0).

29



We prove correctness in the following lemma:

Lemma 4.5 (Correctness). If the underlying KPHE scheme is correct, then for any pp
$← PRE.Setup(1λ),

for any sequence of (n+ 1) key-pairs (where n ≥ 0):

(pk0, sk0), (pk1, sk1), . . . , (pkn, skn)
$← PRE.KeyGen(pp),

and for any plaintext message m, letting ct0
$← PRE.Enc(pk1,m), and letting for each j ∈ [n]

rkj
$← PRE.ReKeyGen(skj−1, pkj−1, pkj), ctj

$← PRE.ReEnc(rkj , ctj−1),

we must have PRE.Dec(skn, ctn) = m (with all but negligible probability).

Proof. From the description of the re-encryption algorithm, it follows that

ctn = (n, (pk0, ctx0), (pk1, ctx1), . . . , (pkn−1, ctxn−1), (p̂kn, ĉtxn)),

where for each j ∈ [0, n− 1], letting πj : [2n]→ [2n] be a uniformly random permutation sampled
during the execution of PRE.ReEnc(rkj+1, ctj), and letting skj = πj(skj), we have the following (with
all but negligible probability) whenever the KPHE scheme is correct:

KPHE.Dec(sk0, ctx0) = m, {KPHE.Dec(skj , ctxj) = skj−1}j∈[n−1],

KPHE.Dec(skn, ĉtxn) = skn−1.

It immediately follows that we have (with all but negligible probability)

PRE.Dec(skt, ctt)

= KPHE.Dec(. . . (KPHE.Dec( KPHE.Dec(skn, ĉtxn) , ctxn−1), . . .), ctx0)

= KPHE.Dec(. . . (KPHE.Dec( skn−1 , ctxn−1), . . .), ctx0)

...

= KPHE.Dec( KPHE.Dec(sk1, ctx1) , ctx0)

= KPHE.Dec( sk0 , ctx0)

= m.

Theorem 4.6 (IND-HRA Security). Assuming that KPHE satisfies blinding and distributional
semantic+circular security with respect to the distribution Un, PRE is a multi-hop IND-HRA secure
unidirectional PRE scheme.
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IND-CPA Security (Warm-Up). As a warm-up, we begin by outlining the proof of IND-CPA
security for our construction, which is significantly simpler than the proof of IND-HRA security.
We subsequently present the proof of IND-HRA security (in Appendix C), which is significantly
more nuanced since it requires careful simulation of adversarial re-encryption queries on honestly
generated ciphertexts.

We assume throughout that the adversary corrupts keys statically at the beginning of the IND-
CPA game, while the ReKeyGen queries may be issued adaptively. Finally, the adversary may issue
the challenge encryption query adaptively on any honest key of its choice at any point during the
IND-CPA game.

The proof proceeds through a sequence of hybrids. We use [N ] to denote the set of all keys (hon-
est + corrupt), KHonest ⊂ [N ] to denote the set of honest keys, and KCorrupt ⊂ [N ] to denote the set
of corrupt keys. As mentioned earlier, these sets are fixed (adversarially) at the beginning of the
game, before the adversary is allowed to issue re-key generation queries (this remains unchanged
in each hybrid).

Hyb0: This hybrid is identical to the real IND-CPA security game between the challenger and the
adversary.

Hyb1: This hybrid is identical to Hyb0 except for the manner in which the challenger answers the
ReKeyGen and ReEnc queries issued by the adversary. In particular, at setup, the challenger
creates an (n× n) table Trk (initially empty) and populates it as follows:

� If i ∈ KHonest and j ∈ KCorrupt, set Trk[i, j] = ⊥.
� Else, set Trk[i, j] = (pkj ,KPHE.Enc(pkj , ski)).

Given a query of the form ReKeyGen(i, j), the challenger responds with Trk[i, j]. Additionally,
given a query of the form ReEnc(i, j, ct), the challenger proceeds as follows:

� If i ∈ KHonest and j ∈ KCorrupt, respond with ⊥.

� Else, respond with the updated ciphertext ct′
$← ReEnc(Trk[i, j], ct).

It is easy to see that Hyb1 is identical to Hyb0.

Hyb2: This hybrid is identical to the hybrid Hyb1 except that the challenger pre-populates the table
Trk at setup as follows: if i ∈ KHonest and j ∈ KHonest, set Trk[i, j] = (pkj ,KPHE.Enc(pkj , 0

2n)).

We argue that Hyb2 is indistinguishable from Hyb1 in a straightforward manner under the
assumption that KPHE satisfies distributional circular security.

Remark 4.7. Note that in Hyb2, the set of honest secret keys {ski}i∈KHonest is no longer used
by the challenger when answering ReKeyGen and ReEnc queries. In other words, Hyb2 allows
the challenger to “forget” the honest secret keys.

Hyb3: This hybrid is identical to the hybrid Hyb2 except for the manner in which the challenger
answers the challenge encryption query issued by the adversary. In particular, given a query
of the form O.chall(i,m0,m1), the challenger proceeds as follows:
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� If i ∈ KCorrupt, respond with ct∗ = ⊥ (this is exactly as in Hyb1).

� If i ∈ KHonest, respond with ct∗ = (0,KPHE.Enc(pki, 0
2n)).

We argue that Hyb3 is indistinguishable from Hyb2 under the assumption that KPHE satisfies
distributional semantic security.

We defer the detailed proof of IND-HRA security to Appendix C.

4.3 Strongly Post-Compromise Secure Unidirectional PRE

We augment the construction in Section 4 to achieve a strongly post-compromise secure unidirec-
tional PRE scheme (as per the notion of strong post-compromise security introduced in a recent
work by Davidson et al. [DDLM19]), without assuming any additional properties on the underly-
ing KPHE scheme. In particular, we only make the following modification to the re-encryption
algorithm PRE.ReEnc from the IND-HRA construction described above:

PRE.ReEnc(rki,j , ct): Parse the update token and the ciphertext as

rki,j = (pkj , ctx∆), ct = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)),

for some t ≥ 0. Sample (t+ 1) uniform permutations π0, . . . , πt : [2n]→ [2n]. Also, let πid : [2n]→
[2n] denote the identity permutation. For each ℓ ∈ [1, t], compute

(p̃kℓ, c̃txℓ)
$← KPHE.Eval(pkℓ, ctxℓ, πℓ, πℓ−1).

Additionally compute

(p̃k0, c̃tx0)
$← KPHE.Eval(pk0, ctx0, π0, πid),

(p̂kt+1, ĉtxt+1)
$← KPHE.Eval(pkj , ctx∆, πid, πt),

and output the updated ciphertext as:

ct′ = (t+ 1, (p̃k0, c̃tx0), . . . , (p̃kt−1, c̃txt−1), (p̃kt, c̃txt), (p̂kt+1, ĉtxt+1)).

Correctness. The correctness of the IND-PCS secure PRE scheme follows from essentially the
same arguments as its IND-HRA counterpart, and is hence not detailed.

Theorem 4.8 (IND-PCS Security). Assuming that KPHE is a KPHE scheme with 2n-bit secret
keys that satisfies blinding, distributional circular security and distributional semantic security with
respect to the distribution Un, PRE is a multi-hop strongly post-compromise secure unidirectional
PRE scheme.

We defer the detailed proof to Appendix D.
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5 KPHE from the DDH Assumption

In [BHHO08], Boneh et al. showed that assuming that the decisional Diffie-Hellman (DDH) as-
sumption holds (over any prime-order group), there exists a KPHE scheme with 2n-bit secret keys
that satisfies circular security with respect to the distribution Un, as well as public key and ci-
phertext blinding as described in Section 2. In addition, Naor and Segev [NS12] showed that the
scheme in [BHHO08] satisfies distributional semantic security, while Gentry et al. [GHV10] pointed
out that this scheme additionally satisfies distributional circular security.

For the sake of completeness, we recall the DDH assumption, as well as the main results
from [BHHO08,NS12,GHV10].

The DDH assumption. Let G be a cyclic group of prime order p, and let g be any uniformly
sampled generator for G. The decisional Diffie-Hellman (DDH) assumption is that for all PPT
algorithms A, we have∣∣∣Pr [A(

g, gα, gβ, gα·β
)
= 1

]
− Pr

[
A
(
g, gα, gβ, gγ

)
= 1

]∣∣∣ ≤ negl(λ),

where α, β, γ
R←− Z∗

p.

KPHE from DDH (Imported from [BHHO08]). We now recall the construction of DDH-
based KPHE from [BHHO08], which is the “expanded version” of the original circular secure PKE
scheme in [BHHO08]. We note that the original scheme in [BHHO08] supports affine homomorphic
transformations for both the key and the plaintext. In the description below, we present a simplified
version of the scheme that allows homomorphically permuting keys and plaintexts (which are 2n-bit
strings), as required by our applications.

We first present some notations before describing the construction of KPHE from DDH. Let G
be a cyclic group of prime order p. For any m ∈ N, we use GLm(Zp) to denote the set of all full-
ranked m×m matrices with entries in Zp. For any m, ℓ, ℓ′ ∈ N with m ≥ ℓ ≥ ℓ′, we use Rkℓ′

(
Gm×ℓ

)
denote the set of all matrices in Gm×ℓ of rank ℓ′. For any m ∈ N, any r =

[
r1 . . . rm

]t ∈ Zm
p ,

and any h =
[
h1 . . . hm

]t ∈ Gm, we define

rth :=
∏
i∈[m]

(hi)
ri .

Similarly, for any m,n, ℓ ∈ N, any R ∈ Zn×m
p , and any H ∈ Gm×ℓ such that

R =
[
(r1)

t . . . (rn)
t
]t
, H =

[
h1 . . . hn

]
,

where ri ∈ Zm
p and hj ∈ Gm represent the i-th row and j-th column of R and H, respectively, we

define the matrix of group elements RH ∈ Gn×ℓ as

RH :=
[
(ri)

thj

]
i∈[n],j∈[ℓ] .

Finally, for any m ∈ N, given a vector s =
[
s1 . . . sm

]t ∈ {0, 1}m and a permutation π :
{0, 1}m → {0, 1}m we denote by the shorthand π(s) the vector

s′ =
[
sπ(1) . . . sπ(m)

]t ∈ {0, 1}m.

We now describe the construction of KPHE from DDH.
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� Setup(1λ): The setup algorithm outputs a public parameter pp = (G, p, g), where G is a cyclic
group of prime order p (p being a λ-bit prime), and g ← G is a uniformly random generator
for the group G. In the description of the algorithms below, we assume that pp is an implicit
input to each algorithm, and we avoid specifying it explicitly.

� SKGen(pp,D = Un): The secret key generation algorithm outputs a secret key sk = s ∈
{0, 1}2n where s

$← Un.

� PKGen(pp, sk = s): Let n = ⌈3 log q⌉. The public key generation algorithm samples a uni-
formly random matrix of group elements L ← Rk2n

(
G(2n+1)×2n

)
, computes the vector of

group elements h = Ls, and outputs the public key pk = S ∈ G(2n+1)×(2n+1), where

S =
[
L | −h

]
.

� Enc(pk = S,m ∈ {0, 1}2n): Parse the message vector as m = (m1, . . . ,m2n) where mi ∈ {0, 1}
for each i ∈ [n]. Let

m =
[
gm1 . . . gm2n g

]t ∈ G(2n+1), M =
[
0(2n+1)×2n | m

]
∈ G(2n+1)×(2n+1).

The encryption algorithm samples a uniformly randommatrix of field elementsR← Z(2n+1)×(2n+1)
p ,

and outputs the ciphertext ct = W ∈ G(2n+1)×(2n+1), where

W = RS+M.

� Dec(sk = s, ct = W): Let s′ =
[
st | 1

]t ∈ G(2n+1). Compute

m′ =
[
g1 . . . g2n g2n+1

]t
= Ws′ ∈ G(2n+1),

and output m′ = (m′
1, . . . ,m

′
2n), where for each i ∈ [2n], we have m′

i = 1 if gi = g, and m′
i = 0

otherwise.

� Eval
(
pk = S, ct = W,

(
π, π′ : {0, 1}2n → {0, 1}2n

))
: The evaluation algorithm proceeds via

the following steps:

– Step-1: Message Rotation under Permutation π′. Parse the ciphertext matrix

W ∈ G(2n+1)×(2n+1) as W =
[
(w1)

t . . . (w2n)
t (w2n+1)

t
]t
, where wi is the i-th row

of W. Output the row-permuted ciphertext matrix W′ ∈ G(2n+1)×(2n+1), where

W′ =
[(
wπ′(1)

)t
. . .

(
wπ′(2n)

)t
(w2n+1)

t
]t

.

Note that the permutation affects only the first 2n rows of the ciphertext (since these
rows “contain” the 2n bits of the message), while the last row remains unchanged.
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– Step-2: Key Rotation (Public Key) under Permutation π. Let F ∈ Z2n×2n
p be

the invertible matrix associated with the permutation π′, i.e., we have Fs = π(s), and
let

F′ =

[
F 02n×1

01×2n 1

]
∈ Z(2n+1)×(2n+1)

p .

Output the rotated public key pk′ = S (F′)−1 as the public key corresponding to the
secret key sk′ = π(s).

– Step-3: Key Rotation (Ciphertext) under Permutation π. Given the message-
rotated ciphertext matrix W′ ∈ G(2n+1)×(2n+1), output the message and key-rotated
ciphertext ct′′ = W′ (F′)−1, where F ′ is as defined above.

– Step-4: Public Key Blinding: Given the rotated public key pk′ = S′ ∈ G(2n+1)×(2n+1),
sample U← GL(2n+1)(Zp) and output the blinded public key

p̃k = US′.

– Step-5: Ciphertext Blinding: Given the message and key-rotated ciphertext ct′′ =
W′′ ∈ G(2n+1)×(2n+1), sample V← GL(2n+1)(Zp) and output the blinded ciphertext

c̃t = VS′ +W′′.

Correctness of Decryption. Let W be a ciphertext encrypting a bit-vector m ∈ {0, 1}2n under

a public key-secret key pair of the form (S, s). Also, let s′ =
[
st | 1

]t ∈ G(2n+1). Note that we
have

Ss′ = Ls− h = 0(2n+1), Ms′ =
(
0(2n+1)×2n

)
s+m = m.

Hence, we have
m′ = Ws′ = RSs′ +Ms′ = m,

and hence m′ = m, as desired.

Correctness of Evaluation. Let W be a ciphertext encrypting a bit-vector m ∈ {0, 1}2n under
a public key-secret key pair of the form (S, s). Now, observe the following.

Correctness of Message Rotation. Let W = RS + M. Then W′ = R′S + M′, where R′ and
M′ are row-rotated versions of R and M under the permutation π′. Hence, we have M =[
0(2n+1)×2n | m′], where m′ = π′(m), as desired.

Correctness of Key Rotation (Public Key). Let S =
[
L | −Ls

]
. Then, we have

S′ = S
(
F′)−1

=
[
L (F)−1 | −Ls

]
=

[
L′ | −L′Fs

]
=

[
L′ | −L′π(s)

]
,

as desired (recall that F is invertible since it represents a permutation).
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Correctness of Key Rotation (Ciphertext). Let W′ = R′S+M′. Then we have

W′′ = R′S
(
F′)−1

+M′ (F′)−1
= R′S′ +

[
0(2n+1)×2n (F)−1 | m′] = R′S′ +M′,

as desired.

Correctness of Public Key Blinding. We have

p̃k = US′ =
[
UL | −ULπ(s)

]
=

[
L̃ | −L̃π(s)

]
,

as desired.

Correctness of Ciphertext Blinding. We have

c̃t = VS′ +W′′ = (V +R′)S′ +M′ = R̃S′ +M′,

as desired. This completes the proof of evaluation correctness.

Security Properties. Finally, we state the following theorem. The proof of this theorem follows
from prior works [BHHO08,GHV10,NS12], and is hence not explicitly detailed here.

Theorem 5.1 (Imported from [BHHO08, GHV10, NS12]). Assuming that the DDH assumption
holds over the group G, the above a KPHE scheme with 2n-bit secret keys that satisfies: (i) distri-
butional semantic security with respect to the distribution Un, (ii) distributional circular security
with respect to the distribution Un, and (iii) blinding.

Proof Overview. At a high level, the proofs of semantic and circular security follow from the matrix
DDH family of assumptions (albeit for high-entropy secrets), which is in turn implied by the DDH
assumption, while the proofs of key and ciphertext blinding follow from statistical arguments.
We refer to Section 3.2 of [BHHO08] for the proofs of semantic security, circular security and
key/ciphertext blinding assuming that the secret keys are uniformly random 2n-bit strings (the
authors of [BHHO08], in fact, prove key-dependent message (KDM) security, which implies both
semantic and circular security). We also refer to [GHV10,NS12] for the adaptation of the proof to
high-entropy secret keys, and more concretely, secret keys samples from the distribution Un. The
adaptation of the proof of [BHHO08] follows, fundamentally, from an application of the leftover
hash lemma [HILL99,Sho06] for high-entropy sources as opposed to uniformly random sources.
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A Hybrid Arguments in Proof of IND-ENC Security (Theorem 3.5)

In this section, we present the proofs for the hybrid arguments in Theorem 3.5, which establishes
the IND-ENC security of our UE construction detailed in Section 3.2. In particular, we formally
prove Lemmas 3.6 and 3.7.
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A.1 Proof of Lemma 3.6

We first present the detailed proof of Lemma 3.6.

Proof. Let Q be the upper bound on the total number of UE.upd(∆e, cte−1) and UE.upd(∆e, c̃te−1)
outputs. We construct a series of Q intermediate hybrids {Hyb0,q}q∈[Q] where in each hybrid we only
change the q-th output of UE.upd (one by one from the first to the last) as described in Hyb1. Note
that Hyb0 = Hyb0,0 and Hyb1 = Hyb0,Q. In the following we argue that changing the q-th UE.upd

output is computationally indistinguishable to any PPT adversary, namely Hyb0,q−1

c
≈ Hyb0,q for

all q ∈ [Q].
For the q-th output of UE.upd, without loss of generality we assume it is UE.upd(∆e, cte−1)

handled in O.upd.

Intermediate hybrid Hyb′0,q−1. We first construct an intermediate hybrid Hyb′0,q−1 between
Hyb0,q−1 and Hyb0,q that computes UE.upd(∆e, cte−1) as follows:

� Let ke−1 = (pp, ske−1).

� Parse the ciphertext cte−1 as

(t, (pke−1−t, ctxe−1−t), . . . , (pke−2, ctxe−2), (pke−1, ctxe−1)),

where ctxe−1 = KPHE.Enc(pke−1, x). Note that if t = 0, then x = m for some message,
otherwise x = ske−2 that is the KPHE secret key corresponding to pke−2.

� Sample a uniform random permutation π : [2n] → [2n], let ske−1 = π(ske−1), and sample

pke−1
$← KPHE.PKGen(pp, ske−1). Compute ctxe−1

$← KPHE.Enc(pke−1, x).

� (pke, ctxe) are computed same as in Hyb0,q−1 using π and πid. That is, let ∆e = (pk∆, ctx∆),

compute (pke, ctxe)
$← KPHE.Eval(pk∆, ctx∆, πid, π).

� Let cte be
(t+ 1, (pke−1−t, ctxe−1−t), . . . , (pke−1, ctxe−1), (pke, ctxe)).

Hyb0,q−1

c
≈ Hyb′0,q−1. We first argue Hyb0,q−1

c
≈ Hyb′0,q−1 by the blinding property of KPHE.

Assume for the purpose of contradiction that there exists a PPT adversary A that can distinguish
the two hybrids. Then we construct a PPT adversary B that breaks the blinding property of KPHE.
The adversary B first receives (pp, sk, pk) from the challenger in the KPHE blinding experiment.
Then B plays the UE game with A as a challenger in Hyb0,q−1.

Let E be the upper bound on the number of epochs during the UE game. B randomly guesses
e⋆ from [E] as the epoch where the target UE.upd(∆e, cte−1) computation occurs. B uses pp to
generate UE keys and update tokens as in Hyb0,q−1 except that in epoch (e⋆ − 1), it uses (pp, sk)
as ke⋆−1.

Let C be the upper bound on the number of ciphertexts generated from UE.enc and UE.upd
during epoch (e⋆ − 1). B randomly guesses c from [C] as the target ciphertext cte⋆−1. In the
computation of cte⋆−1, first set pke⋆−1 = pk (from the KPHE blinding experiment). Assume ctxe⋆−1
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should be an encryption of x under pke⋆−1 for some x. B sends m = y to the challenger in the
KPHE blinding experiment and gets back a ciphertext ct. Let ctxe⋆−1 := ct.

If the q-th UE.upd computation does not occur in epoch e⋆ or if it is not computed on the above
cte⋆−1, namely B’s guess is wrong, then B aborts the UE game and outputs a random bit b ∈ {0, 1}.
If B’s guess is correct, then B computes the target UE.upd(∆e⋆ , cte⋆−1) as follows:

� First note that ke⋆−1 = (pp, sk) received in the KPHE blinding experiment.

� Parse the ciphertext cte⋆−1 as

(t, (pke⋆−1−t, ctxe⋆−1−t), . . . , (pke⋆−2, ctxe⋆−2), (pke⋆−1, ctxe⋆−1)),

where ctxe⋆−1 = KPHE.Enc(pke⋆−1, x), which is computed by the challenger in the KPHE
blinding experiment.

� Sample a uniform random permutation π : [2n]→ [2n]. Send (π, πid) to the challenger in the
KPHE blinding experiment and get back (pke⋆−1, ctxe⋆−1).

� (pke⋆ , ctxe⋆) are computed same as in Hyb0,q−1 using π and πid. That is, let ∆e⋆ = (pk∆, ctx∆),

compute (pke⋆ , ctxe⋆)
$← KPHE.Eval(pk∆, ctx∆, πid, π).

� Let cte⋆ be

(t+ 1, (pke⋆−1−t, ctxe⋆−1−t), . . . , (pke⋆−1, ctxe⋆−1), (pke⋆ , ctxe⋆)).

Finally, B outputs whatever A outputs. Note that if the challenger in the KPHE blinding exper-
iment responds to B with the output of KPHE.Eval, then the game is identical to Hyb0,q−1 to A;
otherwise the game is identical to Hyb′0,q−1 to A. If A can distinguish between the two hybrids
with non-negligible probability, then B can break the blinding property of KPHE with non-negligible
probability, which leads to contradiction.

Hyb′0,q−1

c
≈ Hyb0,q. We next argue Hyb′0,q−1

c
≈ Hyb0,q also by the blinding property of KPHE.

Assume for the purpose of contradiction that there exists a PPT adversary A that can distinguish
between the two hybrids. Then we construct a PPT adversary B that breaks the blinding property
of KPHE. The adversary B first receives (pp, sk, pk) from the challenger in the KPHE blinding
experiment. Then B plays the UE game with A as a challenger in Hyb′0,q−1.

Let E be the upper bound on the number of epochs during the UE game. B randomly guesses
e⋆ from [E] as the epoch where the target UE.upd(∆e, cte−1) computation occurs. B uses pp to
generate UE keys and update tokens as in Hyb′0,q−1 except that in epoch e⋆, it uses (pp, sk) as ke⋆ .
Additionally, B sends m = ske⋆−1 in the KPHE blinding experiment and receives ctx. Then B sets
∆e⋆ = (pk, ctx).

If the q-th UE.upd computation does not occur in epoch e⋆, namely B’s guess is wrong, then B
aborts the UE game and outputs a random bit b ∈ {0, 1}. If B’s guess is correct, then B computes
the target UE.upd(∆e⋆ , cte⋆−1) as follows:

� Let ke⋆−1 = (pp, ske⋆−1). Note that ∆e⋆ = (pk, ct), where ct = KPHE.Enc(pk, ske⋆−1) com-
puted by the challenger in the KPHE blinding experiment.
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� Parse the ciphertext cte⋆−1 as

(t, (pke⋆−1−t, ctxe⋆−1−t), . . . , (pke⋆−2, ctxe⋆−2), (pke⋆−1, ctxe⋆−1)),

where ctxe⋆−1 = KPHE.Enc(pke⋆−1, x). Note that if t = 0, then x = m for some message,
otherwise x = ske⋆−2 that is the KPHE secret key corresponding to pke⋆−2.

� Sample a uniform random permutation π : [2n] → [2n], let ske⋆−1 = π(ske⋆−1), and sample

pke⋆−1
$← KPHE.PKGen(pp, ske⋆−1). Compute ctxe⋆−1

$← KPHE.Enc(pke⋆−1, x).

� Send (πid, π) to the challenger in the KPHE blinding experiment and get back (pke⋆ , ctxe⋆).

� Let cte⋆ be

(t+ 1, (pke⋆−1−t, ctxe⋆−1−t), . . . , (pke⋆−1, ctxe⋆−1), (pke⋆ , ctxe⋆)).

Finally, B outputs whatever A outputs. Note that if the challenger in the KPHE blinding
experiment responds to B with the output of KPHE.Eval, then the game is identical to Hyb′0,q−1 to
A; otherwise the game is identical to Hyb0,q to A. If A can distinguish between the two hybrids
with non-negligible probability, then B can break the blinding property of KPHE with non-negligible
probability, which leads to contradiction. This concludes our proof.

A.2 Proof of Lemma 3.7

We next present the detailed proof of Lemma 3.7.

Proof. Between Hyb4 and Hyb5, we construct a series of intermediate hybrids Hyb4,e,Hyb4,e−1, . . . ,Hyb4,̃e+1

where in each hybrid we change a single ∆e from (p̂ke,KPHE.Enc(p̂ke, ske−1)) to (p̂ke,KPHE.Enc(p̂ke, 0
2n)),

one by one from e down to ẽ+1. Note that Hyb4 = Hyb4,e+1 and Hyb5 = Hyb4,̃e+1. In the following
we argue that changing a single ∆e is computationally indistinguishable to any PPT adversary,

namely Hyb4,e+1

c
≈ Hyb4,e for all e ≥ e ≥ ẽ+ 1.

Assume for the purpose of contradiction that there exists a PPT adversary A that can distin-
guish between Hyb4,e+1 and Hyb4,e for some e ≥ e ≥ ẽ+ 1. Then we construct a PPT adversary B
that breaks the distributional semantic security of KPHE. The adversary B first receives (pp, pk)
from the challenger in the KPHE semantic security game. Then B plays the UE game with A as a
challenger in Hyb4,e+1. B uses pp to generate UE keys and update tokens as in Hyb4,e+1 except that
for epoch e, the UE key ke is unknown. In addition, B sends (m0 = ske−1,m1 = 02n) to the KPHE
challenger and gets back a ciphertext ctx. Then B sets ∆e = (pk, ctx). Note that B doesn’t need to
know ke because it is never used in Hyb4,e+1 or Hyb4,e. In particular, B can use pk to compute all
the KPHE.Enc(ke, ·). Finally, B outputs whatever A outputs.

Note that if the challenger in the KPHE leakage resilience experiment responds to B with an
encryption of m0, then the UE game is identical to Hyb4,e+1 to A; otherwise the UE game is identical
to Hyb4,e to A. If A can distinguish between the two hybrids with non-negligible probability, then
B can break the distributional semantic security of KPHE with non-negligible probability, which
leads to contradiction. This concludes our proof.
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B Proof of IND-UPD Security (Theorem 3.9)

In this section, we prove Theorem 3.9, which formally establishes the IND-UPD security of our UE
construction in Section 3.3.1.

Proof. The proof proceeds via a hybrid argument.

Hyb0 The challenger plays the real game with the adversary.

Hyb1 Same as Hyb0 but for UE.upd(∆e, cte−1) in O.upd and UE.upd(∆e, c̃te−1) in O.next, do the
following:

� Let ke−1 = (pp, ske−1) and ke = (pp, ske).

� Parse the ciphertext cte−1 or c̃te−1 as

(t, (pke−1−t, ctxe−1−t), . . . , (pke−2, ctxe−2), (pke−1, ctxe−1)),

where KPHE.Dec(ske−1−t, ctxe−1−t) = m,KPHE.Dec(ske−t, ctxe−t) = ske−1−t, . . . ,KPHE.Dec(ske−2,
ctxe−2) = ske−3,KPHE.Dec(ske−1, ctxe−1) = ske−2.

� Sample (t + 1) uniform random permutations πe−1−t, . . . , πe−1 : [2n] → [2n]. Also, let
πid : [2n]→ [2n] denote the identity permutation.

� For each i ∈ {e−1−t, . . . , e−2}, let s̃ki = πi(ski) and sample p̃ki
$← KPHE.PKGen(pp, s̃ki).

Additionally, let ske−1 = πe−1(ske−1) and sample pke−1
$← KPHE.PKGen(pp, ske−1).

Sample pke
$← KPHE.PKGen(pp, ske).

� For each i ∈ {e − t, . . . , e − 2}, compute c̃txi
$← KPHE.Enc(p̃ki, s̃ki−1). Additionally,

compute

c̃txe−1−t
$← KPHE.Enc(p̃ke−1−t,m),

ctxe−1
$← KPHE.Enc(pke−1, s̃ke−2),

ctxe
$← KPHE.Enc(pke, ske−1),

� Let cte or c̃te be

(t+ 1, (p̃ke−1−t, c̃txe−1−t), . . . , (p̃ke−2, c̃txe−2), (pke−1, ctxe−1)(pke, ctxe)).

This hybrid is computationally indistinguishable from Hyb0 to any PPT adversary by the
blinding property of KPHE. We omit the detailed proof here, but it follows similarly to the
proof of Lemma 3.6.

Hyb2 Same as Hyb1 but for UE.upd(∆e, cte−1) in O.upd and UE.upd(∆e, c̃te−1) in O.next, sample
each s̃ke−1−t, . . . , s̃ke−2, ske−1 from the distribution Un. This hybrid is statistically identical
to Hyb1.
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Hyb3 Let ẽ be the challenge epoch, and let e be the last epoch where the adversary corrupts
continuous update tokens from ẽ, namely the adversary corrupts ∆ẽ+1,∆ẽ+2, . . . ,∆e but not
∆e+1. This hybrid is the same as Hyb3 except that the challenger guesses ẽ⋆ and e⋆ at the
beginning of the game and aborts the game if guessing incorrectly. Let E be the upper bound
on the number of epochs during the game. If the challenger does not abort, then this hybrid
is identical to Hyb2, which happens with probability at least 1

E2 . In the remaining hybrids,
we assume for simplicity that the challenger guesses ẽ and e correctly.

Hyb4 Same as Hyb3 except that for each ke = (pp, ske), generate a single public key p̂ke
$←

KPHE.PKGen(pp, ske). Then whenever KPHE.Enc(pke, x) is computed for a freshly generated

pke and some x, compute it as KPHE.Eval(p̂ke,KPHE.Enc(p̂ke, x), πid, πid). That is, instead

of generating a fresh pke from ske every time, use the same p̂ke to encrypt x and use then
KPHE.Eval to re-randomize it.

This hybrid is computationally indistinguishable from Hyb3 by the blinding property of KPHE.
We omit the detailed reduction here, but it is similar to the reduction in the proof of Lemma
3.6.

Hyb5 Same as Hyb4 except that for all ẽ+1 ≤ e ≤ e, UE.next(ke−1) is computed as follows. Generate

ske
$← KPHE.SKGen(pp,Un) and let p̂ke

$← KPHE.PKGen(pp, ske) be the single public key for
ke (that will be used for every KPHE.Enc). Output

ke = (pp, ske), ∆e = (p̂ke,KPHE.Enc(p̂ke, 0
2n)).

This hybrid is computationally indistinguishable from Hyb4 based on the distributional se-
mantic security of KPHE. We omit the detailed proof here, but it follows similarly to the
proof of Lemma 3.7.

Hyb6 Same as Hyb5 except that for each ke = (pp, ske), generate a single public key p̂ke
$←

KPHE.PKGen(pp, ske) and use KPHE.Eval(p̂ke,KPHE.Enc(p̂ke, ·), πid, πid) for all the compu-
tation of KPHE.Enc(ke, ·) (including the computation of ∆e). The only exception is in the

computation of the challenge ciphertext c̃tẽ
$← UE.upd(∆ẽ, ctb), which is in the form of

c̃tẽ = (t+ 1, (p̃kẽ−1−t, c̃txẽ−1−t), . . . , (p̃kẽ−2, c̃txẽ−2), (pkẽ−1, ctxẽ−1)(pkẽ, ctxẽ)),

where the last ciphertext is computed from p̂kẽ directly, namely pkẽ = p̂kẽ and ctxẽ
$←

KPHE.Enc(p̂kẽ, skẽ−1).

This hybrid is computationally indistinguishable from Hyb5 by the blinding property of KPHE.
We omit the detailed reduction here, but it is similar to the reduction in the proof of Lemma
3.6.

Hyb7 Same as Hyb6 but the challenge ciphertext c̃tẽ is computed as follows.

� Let kẽ = (pp, skẽ) and let p̂kẽ be its corresponding public key.

� Parse the ciphertext ct0 as

(t, (pkẽ−1−t, ctxẽ−1−t), . . . , (pkẽ−2, ctxẽ−2), (pkẽ−1, ctxẽ−1)),

Note that ct1 is of the same form because |ct0| = |ct1|.
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� For each i ∈ {ẽ−1−t, . . . , ẽ−1}, sample s̃ki from Un and sample p̃ki
$← KPHE.PKGen(pp, s̃ki).

� For each i ∈ {ẽ − 1 − t, . . . , ẽ − 1}, compute c̃txi
$← KPHE.Enc(p̃ki, 0

2n). Additionally,

compute ctxẽ
$← KPHE.Enc(p̂kẽ, 0

2n).

� Let the challenge ciphertext c̃tẽ be

(t+ 1, (p̃kẽ−1−t, c̃txẽ−1−t), . . . , (p̃kẽ−1, c̃txẽ−1), (p̂kẽ, ctxẽ)).

We prove in Lemma B.1 that this hybrid is computationally indistinguishable from Hyb6
based on the distributional semantic security of KPHE.

Notice that in the final hybrid Hyb7, UE.upd(∆ẽ, ctb) is computed in the exact same way for
b = 0 and b = 1. This concludes our proof.

Lemma B.1. Hyb6
c
≈ Hyb7 in the proof of Theorem 3.9.

Proof. Between Hyb6 and Hyb7, we construct a series of intermediate hybrids Hyb6,̃e,Hyb6,̃e−1, . . . ,Hyb6,̃e−1−t

where in each hybrid we change a single ctx (in c̃tẽ) to a KPHE encryption of 02n, one by one from
ẽ down to ẽ − 1 − t. That is, changing ctxẽ, ctxẽ−1, c̃txẽ−2, . . . , c̃txẽ−1−t to encryptions of 02n one
by one in each hybrid. Note that Hyb6 = Hyb6,̃e+1 and Hyb7 = Hyb6,̃e−1−t. In the following we
argue that changing a single ctx is computationally indistinguishable to any PPT adversary, namely

Hyb6,e+1

c
≈ Hyb6,e for all ẽ ≥ e ≥ ẽ− 1− t.

Hyb6,̃e+1

c
≈ Hyb6,̃e. Assume for the purpose of contradiction that there exists a PPT adversary A

that can distinguish between Hyb6,̃e+1(= Hyb6) and Hyb6,̃e. Then we construct a PPT adversary B
that breaks the distributional semantic security of KPHE. The adversary B first receives (pp, pk)
from the challenger in the KPHE semantic security game. Then B plays the UE game with A as a
challenger in Hyb6. B uses pp to generate UE keys and update tokens as in Hyb6 except that for

epoch ẽ, the UE key kẽ is unknown, but B uses pk as p̂kẽ for all the computation of KPHE.Enc(kẽ, ·).
In addition, the challenge ciphertext c̃tẽ is computed as follows.

� Parse the ciphertext ct0 as

(t, (pkẽ−1−t, ctxẽ−1−t), . . . , (pkẽ−2, ctxẽ−2), (pkẽ−1, ctxẽ−1)),

� For each i ∈ {ẽ−1−t, . . . , ẽ−1}, sample s̃ki from Un and sample p̃ki
$← KPHE.PKGen(pp, s̃ki).

� For each i ∈ {ẽ− 1− t, . . . , ẽ− 1}, compute c̃txi same as in Hyb6.

� Send (m0 = s̃kẽ−1,m1 = 02n) to the KPHE challenger and get back ctx, and set ctxẽ := ctx.

� Let the challenge ciphertext c̃tẽ be

(t+ 1, (p̃kẽ−1−t, c̃txẽ−1−t), . . . , (p̃kẽ−1, c̃txẽ−1), (p̂kẽ, ctxẽ)).
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Note that B doesn’t need to know kẽ because it is never used in Hyb6 or Hyb6,̃e. In particular, B
can use pk to compute all the KPHE.Enc(kẽ, ·). Finally, B outputs whatever A outputs.

Note that if the challenger in the KPHE leakage resilience experiment responds to B with an
encryption of m0, then the UE game is identical to Hyb6 to A; otherwise the UE game is identical
to Hyb6,̃e to A. If A can distinguish between the two hybrids with non-negligible probability, then
B can break the distributional semantic security of KPHE with non-negligible probability, which
leads to contradiction.

Hyb6,e+1

c
≈ Hyb6,e for all ẽ−1 ≥ e ≥ ẽ−1− t Assume for the purpose of contradiction that there

exists a PPT adversary A that can distinguish between Hyb6,e+1 and Hyb6,e for some ẽ− 1 ≥ e ≥
ẽ−1− t. Then we construct a PPT adversary B that breaks the distributional semantic security of
KPHE. The adversary B first receives (pp, pk) from the challenger in the KPHE semantic security
game. Then B plays the UE game with A as a challenger in Hyb6,e+1. B uses pp to generate

UE keys and update tokens as in Hyb6,e+1 except that the challenge ciphertext c̃tẽ is computed as
follows.

� Let kẽ = (pp, skẽ) and let p̂kẽ be its corresponding public key.

� Parse the ciphertext ct0 as

(t, (pkẽ−1−t, ctxẽ−1−t), . . . , (pkẽ−2, ctxẽ−2), (pkẽ−1, ctxẽ−1)),

� For each i ∈ {ẽ−1−t, . . . , ẽ−1}\{e}, sample s̃ki from Un and sample p̃ki
$← KPHE.PKGen(pp, s̃ki).

Set p̃ki := pk (received from the KPHE challenger).

� For each i ∈ {ẽ − 1 − t, . . . , e − 1}, compute c̃txi
$← KPHE.Enc(p̃ki, s̃ki−1). For each i ∈

{e + 1, . . . , ẽ − 1}, compute c̃txi
$← KPHE.Enc(p̃ki, 0

2n). Additionally, compute ctxẽ
$←

KPHE.Enc(p̂kẽ, 0
2n).

� Send (m0 = s̃ke−1,m1 = 02n) to the KPHE challenger and get back a ciphertext ctx, and let
c̃txe := ctx.

� Let the challenge ciphertext c̃tẽ be

(t+ 1, (p̃kẽ−1−t, c̃txẽ−1−t), . . . , (p̃kẽ−1, c̃txẽ−1), (p̂kẽ, ctxẽ)).

Finally, B outputs whatever A outputs. Note that if the challenger in the KPHE leakage resilience
experiment responds to B with an encryption of m0, then the UE game is identical to Hyb6,e+1

to A; otherwise the UE game is identical to Hyb6,e to A. If A can distinguish between the two
hybrids with non-negligible probability, then B can break the distributional semantic security of
KPHE with non-negligible probability, which leads to contradiction.

This concludes the proof of Theorem 3.9.
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C Proof of IND-HRA Security (Theorem 4.6)

In this section, we prove Theorem 4.6, which establishes the IND-HRA security for our PRE
construction in Section 4.

Proof. The proof follows a sequence of hybrids as outlined below. We use [N ] to denote the set of
all keys (honest + corrupt), KHonest ⊂ [N ] to denote the set of honest keys, and KCorrupt ⊂ [N ] to
denote the set of corrupt keys. These sets are fixed (adversarially) at the beginning of the game,
before the adversary is allowed to issue re-key generation queries (this remains unchanged in each
hybrid).

Hyb0: This hybrid is identical to the real IND-HRA security game between the challenger and the
adversary.

Hyb1: This hybrid is identical to the hybrid Hyb0 except that the challenger locally maintains two
additional tables T0 and T1 (initially empty), and does the following:

� For each honest encryption query of the form Enc(i,m), the challenger adds to the local
table T0 an entry of the form (i, ct,m), where ct is generated as ct = KPHE.Enc(pki,m).

� For each honest re-encryption query of the form ReEnc(i, j, cti) to which the challenger
does not respond with ⊥, it fetches the entry (i, cti) (from either L or L̃) and proceeds
as follows.

Suppose cti is of the form:
cti = (0, (pki, ĉtx0)).

Recover the plaintext mesage m = KPHE.Dec(ski, ĉtx0). Next, sample a uniform permu-
tation π : [2n]→ [2n] and set

sk0 = π(ski), pk0 = KPHE.PKGen(pp, sk0).

Also set
ctx0

$← KPHE.Enc(pk0,m), ctx1
$← KPHE.Enc(pkj , sk0),

(p̂k1, ĉtx1)
$← KPHE.Eval(pkj , ctx1, πid, πid),

where πid : [2n]→ [2n] is the identity permutation. Output the re-encrypted ciphertext
as:

ctj = (1, (pk0, ctx0), (p̂k1, ĉtx1).

Also, add to the local table T1 an entry of the form (j, ctj , sk0).

Alternatively, suppose cti is of the form (for some t > 0):

cti = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)).

Recover the intermediate secret key skt−1 = KPHE.Dec(ski, ctxt). Next, sample a uniform
permutation πt : [2n]→ [2n] and set

skt = πt(ski), pkt
$← KPHE.PKGen(pp, skt).
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Also set
ctxt

$← KPHE.Enc(pkt, skt−1), ctxt+1
$← KPHE.Enc(pkj , skt),

(p̂kt+1, ĉtxt+1)
$← KPHE.Eval(pkj , ctxt+1, πid, πid),

where πid : [2n]→ [2n] is the identity permutation. Output the re-encrypted ciphertext
as:

ctj = ((t+ 1), (pk0, ctx0), . . . , (pkt−1, ctxt−1), (pkt, ctxt), (p̂kt+1, ĉtxt+1)).

Also, add to the local table T1 an entry of the form (j, ctj , skt).

The view of the IND-HRA adversary in this hybrid is computationally indistinguishable from
that in the hybrid Hyb0 under the assumption the KPHE scheme satisfies public key and
ciphertext blinding. We prove this formally in Lemma C.4.

Hyb2: This hybrid is identical to the hybrid Hyb1 except that the challenger does the following (it
still locally maintains the tables T0 and T1 as in Hyb1): for each (valid) honest re-encryption
query of the form ReEnc(i, j, cti), suppose cti is of the form:

cti = (0, (pki, ĉtx0)).

Look up the local table T0 for an entry of the form (i, cti,m
∗). Such an entry is guaranteed

to exist. Set m = m∗. The rest of the simulation proceeds as in hybrid Hyb1.

Alternatively, suppose cti is of the form (for some t > 0):

cti = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)).

Look up the local table T1 for an entry of the form (i, cti, sk
∗). Such an entry is guaranteed

to exist. Set the intermediate secret key skt−1 = sk∗. The rest of the simulation proceeds as
in hybrid Hyb1.

It is easy to see that, assuming that the KPHE scheme is correct with overwhelmingly large
probability, the view of the IND-HRA adversary in this hybrid is statistically indistinguishable
from that in the hybrid Hyb1.

Hyb3: This hybrid is identical to the hybrid Hyb2 except that the challenger does the following (it
still locally maintains the tables T0 and T1 as in Hyb2): for each (valid) honest re-encryption
query of the form ReEnc(i, j, cti), suppose cti is of the form:

cti = (0, (pki, ĉtx0)).

Look up the local table T0 for an entry of the form (i, cti,m
∗). Such an entry is guaranteed

to exist. Set m = m∗. Next, set

sk0
$← Un, pk0 = KPHE.PKGen(pp, sk0).

The rest of the simulation proceeds as in hybrid Hyb2.

Alternatively, suppose cti is of the form (for some t > 0):

cti = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)).
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Look up the local table T1 for an entry of the form (i, cti, sk
∗). Such an entry is guaranteed

to exist. Set the intermediate secret key skt−1 = sk∗. Next, set

skt
$← Un, pkt = KPHE.PKGen(pp, skt).

The rest of the simulation proceeds as in hybrid Hyb2.

It is easy to see that the view of the IND-HRA adversary in this hybrid is identical to that in
the hybrid Hyb2, since the distributions of sk0 and pk0 (resp,. skt and pkt) remain unchanged
from hybrid Hyb2.

Remark C.1. Note that in Hyb3, the set of secret keys {ski}i∈[N ] (including both corrupt
and honest secret keys) is no longer used by the challenger when answering ReEnc queries.
In particular, all ReEnc queries are answered using only the knowledge of the public keys
{pki}i∈[N ], and the local tables T0 and T1 maintained by the challenger.

Hyb4: This hybrid is identical to the hybrid Hyb3 except for the manner in which the challenger
answers the ReKeyGen queries issued by the adversary. In particular, given a query of the
form ReKeyGen(i, j) such that i ∈ KHonest and j ∈ KHonest, the challenger responds with
rki,j = (pkj ,KPHE.Enc(pkj , 0

2n)).

We argue that Hyb4 is indistinguishable from Hyb3 in a straightforward manner under the
assumption that KPHE satisfies distributional circular security. This argument relies crucially
on the fact that, as in Hyb3, Hyb4 allows the challenger to answer all ReEnc queries using
only the knowledge of the public keys {pki}i∈[N ], and the local tables T0 and T1 maintained
by the challenger. We prove this formally in Lemma C.5.

Remark C.2. Note that in Hyb4, the set of honest secret keys {ski}i∈KHonest is no longer used
by the challenger when answering ReKeyGen queries. Also, as in Hyb3, the set of honest secret
keys {ski}i∈KHonest are also not used by the challenger when answering ReEnc queries. In other
words, Hyb4 allows the challenger to entirely “forget” the set of honest secret keys.

Hyb5: This hybrid is identical to the hybrid Hyb4 except for the manner in which the challenger
answers the challenge encryption query issued by the adversary. In particular, given a query
of the form O.chall(i,m0,m1), the challenger proceeds as follows:

� If i ∈ KCorrupt, respond with ct∗ = ⊥ (this is exactly as in Hyb4).

� If i ∈ KHonest, respond with ct∗ = (0,KPHE.Enc(pki, 0
2n)).

We argue that Hyb5 is indistinguishable from Hyb4 under the assumption that KPHE satisfies
distributional semantic security. This argument relies crucially on the fact that, as in Hyb4,
Hyb5 allows the challenger to answer all ReKeyGen queries and ReEnc queries using only the
knowledge of the corrupt secret keys {skj}j∈KCorrupt , the set of all public keys {pki}i∈[N ], and
the local tables T0 and T1 maintained by the challenger. We prove this formally in Lemma C.6.

Remark C.3. Note that in Hyb5, the challenge ciphertext ct∗ is independent of (m0,m1),
and hence the adversary’s advantage in winning the IND-HRA game is zero.

Lemma C.4. Hyb0
c
≈ Hyb1 in the proof of Theorem 4.6.
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Lemma C.5. Hyb3
c
≈ Hyb4 in the proof of Theorem 4.6.

Lemma C.6. Hyb4
c
≈ Hyb5 in the proof of Theorem 4.6.

In what follows, we prove these lemmas formally. These proofs complete the overall proof of
Theorem 4.6.

C.1 Proof of Lemma C.4

We first present the detailed proof of Lemma C.4. The proof is essentially identical to the proof of
Lemma 3.6 in the proof of IND-ENC security of our UE construction, with only minor syntactic
changes to account for the differences between the UE and the PRE schemes. Let Q be the upper
bound on the total number of ReEnc(i, j, cti) queries issued by the adversary A in hybrid Hyb0.
We construct a series of Q intermediate hybrids {Hyb0,q}q∈[Q] where in each hybrid we only change
the q-th output of ReEnc (one by one from the first to the last) as described in Hyb1. Note that
Hyb0 = Hyb0,0 and Hyb1 = Hyb0,Q. In the following we argue that changing the q-th ReEnc output is

computationally indistinguishable to any PPT adversary, namely Hyb0,q−1

c
≈ Hyb0,q for all q ∈ [Q].

Intermediate Hybrid. To argue that Hyb0,q−1

c
≈ Hyb0,q for all q ∈ [Q], we first define an inter-

mediate hybrid Hyb′0,q−1 as follows: this hybrid is identical to Hyb0,q−1, except that the challenger
answers the q-th ReEnc query as follows: suppose that the q-th honest re-encryption query of the
form ReEnc(i, j, cti) to which the challenger does not respond with ⊥. The challenger fetches the
entry (i, cti) (from either L or L̃) and proceeds as follows.

� Suppose cti is of the form:
cti = (0, (pki, ĉtx0)).

Recover the plaintext mesage m = KPHE.Dec(ski, ĉtx0), sample a uniform permutation π :
[2n]→ [2n] and do the following:

– Set (pk0, ctx0) as in hybrid Hyb0,q.

– Set (p̂k1, ĉtx1) as in hybrid Hyb0,q−1.

– Output the re-encrypted ciphertext as:

ctj = (1, (pk0, ctx0), (p̂k1, ĉtx1).

� Alternatively, suppose cti is of the form (for some t > 0):

cti = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)).

Recover the intermediate secret key skt−1 = KPHE.Dec(ski, ctxt), sample a uniform permuta-
tion πt : [2n]→ [2n] and do the following:

– Set (pkt, ctxt) as in hybrid Hyb0,q.

– Set (p̂kt+1, ĉtxt+1) as in hybrid Hyb0,q−1.

– Output the re-encrypted ciphertext as:

ctj = ((t+ 1), (pk0, ctx0), . . . , (pkt−1, ctxt−1), (pkt, ctxt), (p̂kt+1, ĉtxt+1)).
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Hyb0,q−1

c
≈ Hyb′0,q−1. We argue that Hyb0,q−1

c
≈ Hyb′0,q−1 for all q ∈ [Q].

Proof. Suppose that there exists some PPT adversary A that can efficiently distinguish Hyb0,q−1

and Hyb′0,q−1 with non-negligible advantage ϵ. We construct a PPT algorithm B that breaks the
blinding security of the KPHE scheme with non-negligible advantage ϵ′. The algorithm B receives
from the challenger in the blinding security game the public parameters pp, a secret key sk∗, and
a public key pk∗, and proceeds as follows.

� B uses pp to set up the PRE keys (both honest and corrupt) to be provided to the adversary A
exactly as in Hyb4 except that it sets ski := sk∗ and pki := pk∗ for some uniform i

$← KHonest.
Since pk∗ is uniformly random, the view of the adversary A with respect to the distribution
of the keys (both honest and corrupt) remains identical.

� Suppose that the q-th honest re-encryption query of the form ReEnc(i′, j, cti′) to which the
challenger does not respond with ⊥. If i ̸= i′, B outputs ⊥. Otherwise, it fetches the entry
(i, cti) (from either L or L̃) and proceeds as follows.

� Suppose cti is of the form:
cti = (0, (pki, ĉtx0)).

Recover the plaintext mesage m = KPHE.Dec(ski, ĉtx0) and provide to the challenger in the
blinding security game the message m. Next, sample a uniform permutation π : [2n] → [2n]
and provide to the challenger the pair of permutations

(T, T ′) = (π, πid).

Receive from the challenger in the blinding security game a tuple of the form (pk
∗
, ctx∗), and

set
pk0 = pk

∗
, ctx0 = ctx∗.

Set (p̂k1, ĉtx1) as in hybrid Hyb0,q−1, and output the re-encrypted ciphertext as:

ctj = (1, (pk0, ctx0), (p̂k1, ĉtx1).

� Alternatively, suppose cti is of the form (for some t > 0):

cti = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)).

Recover the intermediate secret key skt−1 = KPHE.Dec(ski, ctxt) and provide to the challenger
in the blinding security game the message skt−1. Next, sample a uniform permutation πt :
[2n]→ [2n] and provide to the challenger the pair of permutations

(T, T ′) = (πt, πid).

Receive from the challenger in the blinding security game a tuple of the form (pk
∗
, ctx∗), and

set
pkt = pk

∗
, ctxt = ctx∗.

Set (p̂kt+1, ĉtxt+1) as in hybrid Hyb0,q−1, and output the re-encrypted ciphertext as:

ctj = ((t+ 1), (pk0, ctx0), . . . , (pkt−1, ctxt−1), (pkt, ctxt), (p̂kt+1, ĉtxt+1)).
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� Eventually the adversary A outputs a bit b′. B outputs the same bit b′.

It immediately follows B has the same advantage ϵ as A in breaking the blinding security of the
KPHE scheme whenever i = i′ (i.e., when B does not abort the simulation). Hence, the overall
advantage of B in breaking the blinding security of the KPHE scheme is

ϵ′ ≥ ϵ · Pr[i = i′] ≥ ϵ/n,

which is non-negligible whenever ϵ is non-negligible, for any n = poly(λ). This leads to a contra-

diction, and concludes the proof of Hyb0,q−1

c
≈ Hyb′0,q−1 for all q ∈ [Q].

Hyb′0,q−1

c
≈ Hyb0,q. We now argue that Hyb′0,q−1

c
≈ Hyb0,q for all q ∈ [Q].

Proof. Suppose that there exists some PPT adversary A that can efficiently distinguish Hyb′0,q−1

and Hyb0,q with non-negligible advantage ϵ. We construct a PPT algorithm B that breaks the
blinding security of the KPHE scheme with non-negligible advantage ϵ′. The algorithm B receives
from the challenger in the blinding security game the public parameters pp, a secret key sk∗, and
a public key pk∗, and proceeds as follows.

� B uses pp to set up the PRE keys (both honest and corrupt) to be provided to the adversary A
exactly as in Hyb4 except that it sets skj := sk∗ and pkj := pk∗ for some uniform j

$← KHonest.
Since pk∗ is uniformly random, the view of the adversary A with respect to the distribution
of the keys (both honest and corrupt) remains identical.

� Suppose that the q-th honest re-encryption query of the form ReEnc(i, j′, cti) to which the
challenger does not respond with ⊥. If j ̸= j′, B outputs ⊥. Otherwise, it fetches the entry
(i, cti) (from either L or L̃) and proceeds as follows.

� Suppose cti is of the form:
cti = (0, (pki, ĉtx0)).

Provide to the challenger in the blinding security game the message ski. Next, sample a
uniform permutation π : [2n]→ [2n] and provide to the challenger the pair of permutations

(T, T ′) = (πid, π).

Receive from the challenger in the blinding security game a tuple of the form (pk
∗
, ctx∗). Set

(pk0, ctx0) as in hybrid Hyb0,q, and

p̂k1 = pk
∗
, ĉtx1 = ctx∗.

Output the re-encrypted ciphertext as:

ctj = (1, (pk0, ctx0), (p̂k1, ĉtx1).
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� Alternatively, suppose cti is of the form (for some t > 0):

cti = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)).

Provide to the challenger in the blinding security game the message ski. Next, sample a
uniform permutation πt : [2n]→ [2n] and provide to the challenger the pair of permutations

(T, T ′) = (πid, πt).

Receive from the challenger in the blinding security game a tuple of the form (pk
∗
, ctx∗). Set

(pkt, ctxt) as in hybrid Hyb0,q, and

p̂kt+1 = pk
∗
, ĉtxt+1 = ctx∗.

Output the re-encrypted ciphertext as:

ctj = ((t+ 1), (pk0, ctx0), . . . , (pkt−1, ctxt−1), (pkt, ctxt), (p̂kt+1, ĉtxt+1)).

� Eventually the adversary A outputs a bit b′. B outputs the same bit b′.

It immediately follows B has the same advantage ϵ as A in breaking the blinding security of the
KPHE scheme whenever j = j′ (i.e., when B does not abort the simulation). Hence, the overall
advantage of B in breaking the blinding security of the KPHE scheme is

ϵ′ ≥ ϵ · Pr[j = j′] ≥ ϵ/n,

which is non-negligible whenever ϵ is non-negligible, for any n = poly(λ). This leads to a contra-

diction, and concludes the proof of Hyb′0,q−1

c
≈ Hyb0,q for all q ∈ [Q].

Putting these together, we have Hyb0,q−1

c
≈ Hyb0,q for all q ∈ [Q]. Finally, a simple hybrid

argument over each q ∈ [Q] completes the proof of Lemma C.4.

C.2 Proof of Lemma C.5

We now present the detailed proof of Lemma C.5.

Proof. Suppose that there exists some PPT adversary A that can efficiently distinguish Hyb3 and
Hyb4 in the proof of Theorem 4.6 with non-negligible advantage ϵ. We construct a PPT algorithm B
that breaks the distributional circular security of the KPHE scheme with non-negligible advantage
ϵ′. The algorithm B receives from the challenger in the distributional circular security game the
public parameters pp proceeds as follows.

� Suppose that the adversary A outputs the honest and corrupt sets KHonest and KCorrupt of
its choice. B provides to the challenger in the distributional circular security game with
n′ = |KHonest|, and receives the set of KPHE public keys, say, {pkj}j∈KHonest .

� In its simulation, B uses the KPHE public keys {pkj}j∈KHonest to simulate the honest PRE keys
to be provided to the adversary A. It additionally samples the corrupt keys to be provided
to the adversary A on its own. Note that the view of the adversary A with respect to the
distribution of the keys (both honest and corrupt) remains identical to that in Hyb3.
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� B simulates the challenger in answering all re-encryption queries (on honestly generated ci-
phertexts) issued by A exactly as in Hyb3. Note that B can simulate the challenger in Hyb3
perfectly in answering such re-encryption queries, even without the knowledge of the secret
keys corresponding to the honest public keys, since the challenger in Hyb3 does not require
any knowledge of the honest secret keys to answer re-encryption queries on honestly generated
ciphertexts.

� B receives an ensemble of ciphertexts {ct∗i,j}i,j∈KHonest from the challenger in the distributional
circular security game. Upon receipt of a query from A of the form ReKeyGen(i, j) such that
i ∈ KHonest and j ∈ KHonest, B responds with rki,j = (pkj , ct

∗
j,i).

� B simulates the challenger in answering the challenge encryption query issued by A exactly as
in Hyb3. Note that B can simulate the challenger in Hyb3 perfectly in answering the challenge
encryption query, even without the knowledge of the secret keys corresponding to the honest
public keys, since the challenger in Hyb3 does not require any knowledge of the honest secret
keys to answer the challenge encryption query.

� Eventually the adversary A outputs a bit b′. B outputs the same bit b′.

It immediately follows B has the same advantage ϵ as A in breaking the distributional circular
security of the KPHE scheme. This leads to a contradiction, and concludes the proof of Lemma C.5.

C.3 Proof of Lemma C.6

Finally, we present the detailed proof of Lemma C.6.

Proof. Suppose that there exists some PPT adversary A that can efficiently distinguish Hyb4 and
Hyb5 in the proof of Theorem 4.6 with non-negligible advantage ϵ. We construct a PPT algorithm B
that breaks the distributional semantic security of the KPHE scheme with non-negligible advantage
ϵ′. The algorithm B receives from the challenger in the distributional semantic security game the
public parameters pp and a public key pk∗, and proceeds as follows.

� B uses pp to set up the PRE keys (both honest and corrupt) to be provided to the adversary

A exactly as in Hyb4 except that it sets pki∗ := pk∗ for some uniform i∗
$← KHonest. Since

pk∗ is uniformly random, the view of the adversary A with respect to the distribution of the
keys (both honest and corrupt) remains identical.

� B then proceeds to simulate the challenger exactly in Hyb4. Note that B can simulate the
challenger in Hyb4 perfectly, without the knowledge of the secret key sk∗ corresponding to
pk∗, since the challenger in Hyb4 does not require any knowledge of the honest secret keys.

� Suppose that in the challenge phase of hybrid Hyb4, the adversary issues a challenge query
of the form O.chall(i,m0,m1). If i ̸= i∗, B outputs ⊥ and aborts.

� Otherwise, B samples b ∈ {0, 1} and outputs the challenge messages (mb, 0
2n) to the challenger

in the distributional semantic security game. Upon receipt of the challenge ciphertext ĉt
∗
, B

outputs ct∗ = (0, (pk∗, ĉt
∗
)) to the adversary A.
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� Eventually the adversary A outputs a bit b′. B outputs the same bit b′.

It immediately follows when i = i∗ (i.e., when B does not abort the simulation), B has the same
advantage ϵ as A in breaking the distributional semantic security of the KPHE scheme. Hence, the
overall advantage of B in breaking the distributional semantic security of the KPHE scheme is

ϵ′ ≥ ϵ · Pr[i = i∗] ≥ ϵ/n,

which is non-negligible whenever ϵ is non-negligible, for any n = poly(λ). This leads to a contra-
diction, and concludes the proof of Lemma C.6.

D Proof of IND-PCS Security (Theorem 4.8)

In this section, we prove Theorem 4.8, which establishes the IND-PCS security for our PRE con-
struction in Section 4.3.

Proof. The proof follows a sequence of hybrids as outlined below. As before, we use [N ] to denote
the set of all keys (honest + corrupt), KHonest ⊂ [N ] to denote the set of honest keys, and KCorrupt ⊂
[N ] to denote the set of corrupt keys. As mentioned earlier, these sets are fixed (adversarially) at
the beginning of the game, before the adversary is allowed to issue re-key generation queries (this
remains unchanged in each hybrid). We additionally let T denote the set of all re-encryption
keys received by the adversary in response to the (valid) ReKeyGen queries issued by it during the
game (where these queries can be issued adaptively).

Hyb0: This hybrid is identical to the real IND-PCS security game between the challenger and the
adversary.

Hyb1: This hybrid is identical to the hybrid Hyb0 except that the challenger locally maintains an
additional table T (initially empty), and does the following:

� For each honest encryption query of the form Enc(i,m), the challenger adds to the local
table T an entry of the form (i, ct,m), where ct is generated as ct = KPHE.Enc(pki,m).

� For each honest re-encryption query of the form ReEnc(i, j, cti) to which the challenger
does not respond with ⊥, it fetches the entry (i, cti) (from either L or L̃) and proceeds
as follows.

Suppose cti is of the form:

cti = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)).

for some t ≥ 0. The challenger recovers the following (in order):

skt−1 = KPHE.Dec(ski, ĉtxt),

skt−2 = KPHE.Dec(skt−1, ctxt−1),

...

sk0 = KPHE.Dec(sk1, ctx1),

m = KPHE.Dec(sk0, ctx0).
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The challenger samples uniform permutations π0, . . . , πt : [2n] → [2n] and sets the
following:

s̃kℓ = πℓ(skℓ), p̃kℓ
$← KPHE.PKGen(pp, s̃kℓ) for each ℓ ∈ [0, t− 1],

skt = πt(ski), pkt
$← KPHE.PKGen(pp, skt).

Also set

ctxt
$← KPHE.Enc(pkt, skt−1), ctxt+1

$← KPHE.Enc(pkj , skt),

(p̂kt+1, ĉtxt+1)
$← KPHE.Eval(pkj , ctxt+1, πid, πid),

where πid : [2n] → [2n] is the identity permutation. Finally, the challenger sets the
following:

c̃tx0
$← KPHE.Enc(p̃k0,m),

c̃txℓ
$← KPHE.Enc(p̃kℓ, s̃kℓ−1) for each ℓ ∈ [1, t− 1].

Output the re-encrypted ciphertext as:

ctj = ((t+ 1), (p̃k0, c̃tx0), . . . , (p̃kt−1, c̃txt−1), (pkt, ctxt), (p̂kt+1, ĉtxt+1)).

Also, add to the local table T an entry of the form (j, ctj , s̃k0, . . . , s̃kt−1, skt).

The view of the IND-PCS adversary in this hybrid is computationally indistinguishable from
that in the hybrid Hyb0 under the assumption the KPHE scheme satisfies public key and ci-
phertext blinding. The proof of this indistinguishability claim follows from a hybrid argument
very similar to that used in the proof of Lemma C.4, and is hence not detailed separately.

Hyb2: This hybrid is identical to the hybrid Hyb1 except that the challenger does the following (it
still locally maintains the table T as in Hyb1): for each honest re-encryption query of the
form ReEnc(i, j, cti) to which the challenger does not respond with ⊥, it fetches the entry
(i, cti) (from either L or L̃) and proceeds as follows.

Suppose cti is of the form:

cti = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)).

for some t ≥ 0. The challenger looks up the local table T for an entry of the form

(i, cti,m, sk0, . . . , skt−1),

and uses these secret keys for the simulation instead of decrypting and recovering them as
in hybrid Hyb1. Such an entry is guaranteed to exist. The rest of the simulation proceeds
exactly as in hybrid Hyb1.

It is easy to see that view of the IND-PCS adversary in this hybrid is identical to that in the
hybrid Hyb1.
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Hyb3: This hybrid is identical to the hybrid Hyb2 except that the challenger does the following (it
still locally maintains the table T as in Hyb2): for each honest re-encryption query of the
form ReEnc(i, j, cti) to which the challenger does not respond with ⊥, it fetches the entry
(i, cti) (from either L or L̃) and proceeds as follows.

Suppose cti is of the form:

cti = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)),

for some t ≥ 0. The challenger looks up the local table T for an entry of the form

(i, cti,m, sk0, . . . , skt−1),

and uses these secret keys for the simulation instead of decrypting and recovering them as in
hybrid Hyb1. Such an entry is guaranteed to exist. Next, the challenger samples the following:

s̃kℓ
$← Un, p̃kℓ

$← KPHE.PKGen(pp, s̃kℓ) for each ℓ ∈ [0, t− 1].

skt
$← Un, pkt

$← KPHE.PKGen(pp, skt).

The rest of the simulation proceeds exactly as in hybrid Hyb2.

It is again easy to see that the view of the IND-PCS adversary in this hybrid is identical
to that in the hybrid Hyb2, since the distributions of the intermediate secret keys in the
re-encrypted ciphertexts remain identical.

Remark D.1. Note that in Hyb3, the set of secret keys {ski}i∈[N ] (including both corrupt
and honest secret keys) is no longer used by the challenger when answering ReEnc queries.
In particular, all ReEnc queries are answered using only the knowledge of the public keys
{pki}i∈[N ], and the local table T maintained by the challenger.

Hyb4: This hybrid is identical to the hybrid Hyb3 except for the manner in which the challenger
answers the ReKeyGen queries issued by the adversary. In particular, given a query of the
form ReKeyGen(i, j) such that i ∈ KHonest and j ∈ KHonest, the challenger responds with
rki,j = (pkj ,KPHE.Enc(pkj , 0

2n)).

We argue that Hyb4 is indistinguishable from Hyb3 in a straightforward manner under the
assumption that KPHE satisfies distributional circular security. This argument is identical to
the argument in the proof of Lemma C.5, and is hence not detailed.

Remark D.2. Note that in Hyb4, the set of honest secret keys {ski}i∈KHonest is no longer used
by the challenger when answering ReKeyGen queries. Also, as in Hyb3, the set of honest secret
keys {ski}i∈KHonest are also not used by the challenger when answering ReEnc queries. In other
words, Hyb4 allows the challenger to entirely “forget” the set of honest secret keys.

Hyb5: This hybrid is identical to the hybrid Hyb4 except for the manner in which the challenger
answers the challenge re-encryption query issued by the adversary. In particular, given a
challenge query of the form O.chall-IND-PCS(i, j, ct∗0, ct

∗
1), the challenger proceeds as follows:

� If (i, ct0) ̸∈ L or (i, ct1) ̸∈ L, respond with ct∗ = ⊥ (this is exactly as in Hyb4).
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� If |ct∗0| ≠ |ct
∗
1| or j ∈ KCorrupt, respond with ct∗ = ⊥ (this is exactly as in Hyb4).

� Otherwise, proceed as follows: let b be the choice bit of the challenger and suppose ct∗b
is of the form:

ct∗b = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)),

for some t ≥ 0. Look up the local table T for an entry of the form

(i, ct∗b ,m, sk0, . . . , skt−1).

Such an entry is guaranteed to exist. Next, sample uniform permutations π0, . . . , πt :
[2n]→ [2n] and set the following:

s̃kℓ = πℓ(skℓ), p̃kℓ
$← KPHE.PKGen(pp, s̃kℓ) for each ℓ ∈ [0, t− 1],

skt = πt(ski), pkt
$← KPHE.PKGen(pp, skt).

Also set
ctxt

$← KPHE.Enc(pkt, skt−1), ctxt+1
$← KPHE.Enc(pkj , skt),

(p̂kt+1, ĉtxt+1)
$← KPHE.Eval(pkj , ctxt+1, πid, πid),

where πid : [2n] → [2n] is the identity permutation. Finally, the challenger sets the
following:

c̃tx0
$← KPHE.Enc(p̃k0,m),

c̃txℓ
$← KPHE.Enc(p̃kℓ, s̃kℓ−1) for each ℓ ∈ [1, t− 1].

Output the re-encrypted ciphertext as:

ct∗j = ((t+ 1), (p̃k0, c̃tx0), . . . , (p̃kt−1, c̃txt−1), (pkt, ctxt), (p̂kt+1, ĉtxt+1)).

Also, add to the local table T1 an entry of the form (j, ct∗j , s̃k0, . . . , s̃kt−1, skt).

We argue that the view of the adversary in Hyb5 is computationally indistinguishable from
that in Hyb4 under the assumption the KPHE scheme satisfies public key and ciphertext
blinding.

Hyb6: This hybrid is identical to the hybrid Hyb5 except for the manner in which the challenger
answers the challenge re-encryption query issued by the adversary. In particular, when re-
sponding to the challenge query, the challenger sets:

s̃kℓ
$← Un, p̃kℓ

$← KPHE.PKGen(pp, s̃kℓ) for each ℓ ∈ [0, t− 1].

skt
$← Un, pkt

$← KPHE.PKGen(pp, skt).

The rest of the simulation proceeds exactly as in hybrid Hyb5.

It is again easy to see that the view of the adversary in Hyb6 is identical to that in Hyb5, since
the distributions of the intermediate secret keys in the challenge ciphertext do not change.
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Hyb7: This hybrid is identical to the hybrid Hyb6 except for the manner in which the challenger
answers the challenge re-encryption query issued by the adversary. In particular, when re-
sponding to the challenge query, the challenger sets:

ctxt
$← KPHE.Enc(pkt, 0

2n), ctxt+1
$← KPHE.Enc(pkj , 0

2n),

(p̂kt+1, ĉtxt+1)
$← KPHE.Eval(pkj , ctxt+1, πid, πid),

where πid : [2n]→ [2n] is the identity permutation. Finally, the challenger sets the following:

c̃tx0
$← KPHE.Enc(p̃k0, 0

2n),

c̃txℓ
$← KPHE.Enc(p̃kℓ, 0

2n) for each ℓ ∈ [1, t− 1].

The rest of the simulation proceeds exactly as in hybrid Hyb6, i.e., the challenger outputs
the re-encrypted ciphertext as:

ct∗j = ((t+ 1), (p̃k0, c̃tx0), . . . , (p̃kt−1, c̃txt−1), (pkt, ctxt), (p̂kt+1, ĉtxt+1)).

We argue that Hyb7 is indistinguishable from Hyb6 under the assumption that KPHE satisfies
distributional semantic security. The argument follows via a hybrid argument over each of
the intermediate secret keys in the challenge ciphertext in reverse order, i.e., starting with
skt, and then in order from s̃kt−1 through s̃k0, where each hybrid argument is very similar
to the argument used in the proof of Lemma C.6. The overall argument is also very similar
to the proof of Lemma B.1 in the proof of IND-UPD security for our UE construction in
Section 3.3.1. Hence, the argument is not detailed separately.

Remark D.3. Note that in Hyb7, the challenge ciphertext ct∗ is independent of (ct∗0, ct
∗
1),

and hence the adversary’s advantage in winning the IND-PCS game is zero.
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