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Abstract. Broadcast Encryption is a fundamental cryptographic primitive, that gives the ability to
send a secure message to any chosen target set among registered users. In this work, we investigate
broadcast encryption with anonymous revocation, in which ciphertexts do not reveal any information
on which users have been revoked. We provide a scheme whose ciphertext size grows linearly with the
number of revoked users. Moreover, our system also achieves traceability in the black-box confirmation
model.
Technically, our contribution is threefold. First, we develop a generic transformation of linear functional
encryption toward trace-and-revoke systems for 1-bit message space. It is inspired from the transfor-
mation by Agrawal et al (CCS’17) with the novelty of achieving anonymity. Our second contribution
is to instantiate the underlying linear functional encryptions from standard assumptions. We propose
a DDH-based construction which does no longer require discrete logarithm evaluation during the de-
cryption and thus significantly improves the performance compared to the DDH-based construction of
Agrawal et al. In the LWE-based setting, we tried to instantiate our construction by relying on the
scheme from Wang et al (PKC’19) only to find an attack on this scheme. Our third contribution is
to extend the 1-bit encryption from the generic transformation to n-bit encryption. By introducing
matrix multiplication functional encryption, which essentially performs a fixed number of parallel calls
on functional encryptions with the same randomness, we can prove the security of the final scheme
with a tight reduction that does not depend on n, in contrast to employing the hybrid argument.
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1 Introduction

Trace-and-revoke systems, introduced in [23,24] have been studied extensively in many works, including [4,
12,15,20,26]. A trace-and-revoke system is a multi-recipient encryption scheme in which a content distributor
can find malicious users and revoke their decryption capability. Note that a user might share its secret key
with non-legitimate entity. In such a case, it should be possible to identify the user, so that it is revoked
from further accessing new content. A traitor tracing system guarantees that if a coalition of users pool their
secret keys to construct a pirate decoder box that can decrypt ciphertexts, then there is an efficient trace
algorithm to find at least one guilty user provided the trace algorithm is given access to the decoder. Then
the content distributor can use the revocation functionality to prohibit guilty users from accessing the data
in future. A revocation system ensures that if a coalition of illegitimate users pools their secret keys, they
still cannot decrypt the ciphertext. A natural question occurs if one can devise a protocol where a revoked
user is not able to find out if it has been revoked. One may further request that, given a ciphertext, no
legitimate user will get any information about the users who have been revoked.

Anonymity of receivers is important in numerous real-life applications and have been considered in
multiple works, such as [7, 14, 17, 21, 22]. The standard notion of anonymity requires that the adversary
cannot distinguish between ciphertexts of two targeted sets of its choice, even if it can corrupt any user in
the intersection of these two sets or outside of the two sets. Unfortunately, it turned out to be extremely
difficult to achieve this anonymity level in the general case without any restriction on the size of the target set.
The state-of-the-art constructions by Barth et al [7] and Libert et al [22] start from a public-key encryption
and result in schemes with ciphertext size which is N times larger, where N denotes the total number of
users. Moreover, Kiayias and Samari [19] proved that ciphertext size will be linear in N in the general case.



For revoke systems, the efficiency is often negatively correlated to the upper bound on the number of
revoked users. One of the most important applications of broadcast encryption is Pay-TV and it can typically
be in the form of a revoke system: the service broadcasts to all users except revoked users who were detected
as traitors or who unsubscribed from the system. The state-of-the-art revoke systems [4, 12, 23, 24] have
compact ciphertext sizes that grow as O(r) for r the bound of revoked users and which is not dependent
in the number of users. None of these schemes is anonymous. An attempt was made to consider outsider
adversaries, who can only corrupt users outside of the two targeted sets. In this limited setting, Fazio and
Perera [17] showed that one can get key and ciphertext sizes that are sublinear in the number of users. We
observe totally different situations for getting anonymity in broadcast encryption and in revoke systems:
in broadcast encryption, optimal solutions exist [6, 9] but one cannot get the anonymity with sublinear
ciphertext size in the total number of users; in revoke systems, no impossibility result has been settled and
it does not exclude the possibility to get an anonymous schemes which is as efficient as non-anonymous
ones, namely ciphertext size is O(r), independent in the number of users. In this paper, we show that we
can design anonymous schemes with O(r) ciphertext size. Moreover, we also handle traceability to achieve
anonymous trace-and-revoke systems.

1.1 Contributions

Our primary contribution is to develop the first symmetric-key trace-and-revoke scheme with traceability
and anonymous revocation. We give two constructions of trace-and-revoke schemes, namely TR0 and TR1

from so-called linear functional encryptions. The former TR0 is generically constructed from inner product
functional encryption (IPFE) and encrypts single bit messages. Similarly, TR1 is constructed from matrix
multiplication functional encryption (MMFE) to support n-bit messages. Interestingly, unlike [4], our DDH
instantiations do not require discrete-log evaluation for ciphertext decryption.

Our second contribution is to propose efficient constructions. We give an efficient construction of MMFE
in the prime-order groups and prove that our MMFE construction is indeed tightly secure under the stan-
dard matDH assumption. This construction can be seen as tweaked Tomida’s tightly secure IPFE for the
symmetric-key settings [28]. However, we note that our security argument is somewhat different from To-
mida’s. On top of that, our tightly secure MMFE is more efficient than applying [28] naively.

Our third contribution is a cryptanalysis on the LWE-based IPFE construction of [29]. This justifies our
choice of LWE-based IPFE to instantiate TR0.

Anonymous Revocation. Before describing our results, we discuss the notion of anonymous revocation in
trace-and-revoke schemes. The Enc algorithm of any trace-and-revoke scheme takes a message m and a
revoked user set description R and computes a ciphertext that can only be decrypted by users outside R.
The anonymity property intuitively means that no information onR should be inferred from the ciphertext. A
typical multi-challenge security model is defined by polynomially many challenge phases where the adversary

adaptively produces (m(t),R(t)
0 ,R(t)

1 ) on the t-th phase and gets an encryption of (m(t),R(t)
β ) for the same

β ← {0, 1} for all the phases. However, this security model is quite strong and there are practical scenarios
that do not require such stronger definition. For example, a typical trace-and-revoke scheme revokes more
and more users over time. If a revoked user wants to get access to the system again, it has to contact the
broadcaster, which can give the user a new key. In such a scenario, the revoked user set increases with time,
such that R(t−1) ⊆ R(t) for any timestamp t > 1. We model this scenario by introducing the restriction that,

for any t, if the adversary produces the challenge (m(t),R(t)
0 ,R(t)

1 ), then R(t−1)
0 ⊆ R(t)

0 and R(t−1)
1 ⊆ R(t)

1 ,
and call the resulting security property multi-challenge monotonic anonymity (mIND-ID-CPA). Although this
setting may suffice in many cases, this multi-challenge security model puts an additional restriction on the
adversary that the challenge revocation sets must be related in a particular manner. This raises the following
question: if we restrict ourselves to the single-challenge security model, can we get rid of such restriction on
the monotonicity of challenge queries? Looking ahead, we formalize this security model in the appendix of
the paper and show that our construction is secure in this model too.
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1.2 Technical Overview

We start with a basic description of the trace-and-revoke scheme by Agrawal et al [4] (in the bounded
collusion model). Each user id in this scheme is associated with a vector xid and, correspondingly, a set R
is associated with XR, the vector space spanned by (xid)id∈R. Then, the predicate ‘id /∈ R’ can be emulated
by testing if ‘⟨xid,vR⟩ = 0’ for vR orthogonal to XR. Using this relation, one encrypts a message m by
encrypting m · vR using an IPFE. An IPFE key for xid is used to evaluate id /∈ R in the encrypted domain.
We now describe the decryption algorithm of [4] to clarify that this construction does not achieve anonymity
of the revocation set. Decryption takes a ciphertext ct for (m,R) and a secret key sk for id and runs IPFE
decryption to obtain an intermediate Res = ⟨xid,m · vR⟩. The correctness then follows from the fact that
decryption can compute ⟨xid,vR⟩ and divide Res by it to retrieve m. This is the reason why the description
of R is provided as part of the ciphertext. Thus, the Agrawal et al scheme does not achieve revocation set
hiding.

Our constructions build on [4], but avoid the above difficulty by exploiting the fact that if we consider
the message to be single bit (i.e., m ∈ {0, 1}), we have the following four cases:

– m = 0, id ∈ R: The value of ⟨xid,yR⟩ = m · ⟨xid,vR⟩ is zero.
– m = 1, id ∈ R: Same as above where the value of ⟨xid,yR⟩ = m ·⟨xid,vR⟩ is zero; therefore, when id ∈ R,

the message m is hidden.
– m = 0, id /∈ R: The value of ⟨xid,yR⟩ = m · ⟨xid,vR⟩ is again zero.
– m = 1, id /∈ R: The value of ⟨xid,yR⟩ = m · ⟨xid,vR⟩ is non-zero.

The above list of cases shows that a secret key for xid decrypts an IPFE ciphertext for m · vR and retrieves
m ∈ {0, 1} correctly if id /∈ R. Note that the decryption algorithm no longer requires the description of the
revoked set R. Based on this observation, our constructions translate (m,R) into a vector m · vR where
vR is a random vector orthogonal to XR and id to a non-zero vector xid. The monotonic anonymity (in
the mIND-ID-CPA security model discussed above) then follows from the fact that the underlying IPFE
hides the plaintext vector (here m · vR). For an n-bit message space, we can run independent and parallel
executions of the IPFE that allow bit-by-bit retrieval of the message encrypted.5 We propose a more efficient
alternative, namely, matrix multiplication functional encryption (MMFE). Our generic transformation above
ensures that any efficient instantiation of MMFE will result in efficient trace-and-revoke scheme. We discuss
constructions of MMFE in both the group-based settings and in the lattice-based settings. We further show
that our group-based construction of MMFE is tightly secure under standard assumptions. For lattice-based
setting, we suggest to use [4] as we could mount a concrete attack on the state-of-the-art [29], rendering it
insecure. Lastly, we note that tracing is performed in a similar fashion to [4].

An attack on the Wang et al IPFE. Here, we show that the IPFE construction by Wang et al can be
broken for the parameters chosen in [29]. Our attack can be thwarted by increasing the parameters, but
then the scheme does not enjoy great efficiency compared to the one from [4]. Here, we give the overview
LWE-based IPFE from [29]. The dimension n of the LWE secrets is proportional to the security parameter λ,
the parameters ℓ,m, p, q are polynomial in n. The master secret key is Z, uniform over {0, . . . , p − 1}ℓ×m.
The public key is of the form pk = (A ∈ Zm×nq ,T = ZA ∈ Zℓ×nq ). The secret key for the vector x ∈ Zℓp is

skx = xt · Z. The ciphertext for a vector y ∈ Zℓp is of the form (c0 ≈ As, c1 ≈ Ts+ (q/p) · y). The authors
state that under the LWE assumption, this IPFE is adaptively secure for chosen message distributions,
assuming that the secret key queries are linearly independent. We will give an algorithm that can recover the
master key from the public key and ciphertexts (i.e., recover z from Xt and Xtz, where z← {0, . . . , p− 1}ℓ
and X ∈ {0, . . . , p− 1}ℓ×(ℓ−1) is chosen by the adversary). We remark that z belongs to a coset of the lattice
orthogonal of X defined by t. The crux of the attack is that for parameters as above, the minimum of this
lattice is larger than ∥z∥. This means that we have a Bounded Distance Decoding problem instance in a
lattice of dimension 1. Finally, we also explain why our attack does not extend to the schemes from [4,5].

5 In practice, we use this scheme to send 128-bit session keys or a stream: if an user is in the targeted set then it
decrypts correctly and if the user is not in the targeted set then it gets all 0s (and therefore the equivalent of a
trivial decryptor which generates 0 all the time).

3



Organization of the paper. In Section 2, we present some important definitions. In Section 3, we present black-
box transformations to convert linear functional encryptions into trace-and-revoke systems with traceability
and anonymity of revocation. Before we present group-based MMFE construction, in Section 4, we show
an attack of a recent LWE-based IPFE construction [29]. Then, in Section 5, we present a construction of
MMFE in the prime-order groups. We then give the definition of single-challenge anonymous security and
give a proof in Appendix A.

2 Definitions and Preliminaries

For a, b ∈ N such that a ≤ b, we often use [a, b] to denote {a, . . . , b}. Given a set of vectors S, we use
Matrix(S) to denote the matrix whose each row is a distinct vector from S. For any two sets S and R, we
define S∆R = (S \ R) ∪ (R \ S). For a dictionary D = (k, vk)k, D.vals() gives the set {vk : k ∈ D}. For a
vector space V over a field K, the corresponding orthogonal space is denoted by V⊥. For a distribution D,
we write x← D to say that x is sampled from D. The ppt abbreviation stands for probabilistic polynomial
time. We denote Ggen(1λ, p) → (g,G) such that G is a cyclic group of prime order p and g generates G. For
A = (aij) ∈ Zβ×αp we denote [A] = (gaij ) ∈ Zβ×αp . For m, k ∈ N for m > k, we use M← Dm,k to get a full

rank matrix M ∈ Zm×kp where the first k rows are linearly independent.

2.1 Linear Functional Encryption

A functional encryption scheme [11] allows a user, having a secret key skf corresponding to a function f ,
to evaluate f(z) securely given a ciphertext ctz for a plaintext z. The inner product function, being one of
the simplest functionalities, has received a tremendous amount of exposure [1–3, 5, 13, 28]. We here define a
variant of inner product functional encryption (IPFE) in the symmetric-key setting and introduce matrix
multiplication functional encryption (MMFE) as a generalization of IPFE to construct a trace-and-revoke
scheme with anonymous revocation with larger message space.

2.2 Inner Product Functional Encryption.

We consider inner product functional encryption (IPFE) over Zp in the symmetric-key settings 6 for a prime
integer p ≥ 2. Unlike existing IPFE definitions in [1,2,4,5], the IPFE .Dec algorithm here retrieves an injective
function of the inner product value. In particular, it may not be the inner product value itself. More precisely,
the IPFE .Dec algorithm takes as input a ciphertext ct that encrypts y ∈ Zℓp and a secret key skx with respect

to x ∈ Zℓp, and outputs f(⟨x,y⟩).
Definition 1. An inner product functional encryption (IPFE) over Zp with respect to an injective map f
is a tuple IPFE = (IPFE .Setup, IPFE .KeyGen, IPFE .Enc, IPFE .Dec) of four ppt algorithms.

• IPFE .Setup(1λ, 1ℓ, p) takes as input the security parameter λ and the dimension of vectors ℓ. It outputs
the public parameters pp and the master secret key msk. The public parameters pp contain the description
of the injective function f .

• IPFE .KeyGen(pp,msk,x) takes as input the public parameters pp, the master secret key msk and a vector
x ∈ Zℓp and outputs a secret key skx.

• IPFE .Enc(pp,msk,y) takes as input the public parameters pp, the master secret key msk and a vector
y ∈ Zℓp and outputs a ciphertext ct.

• IPFE .Dec(pp, skx, ct) takes as input the public parameters pp, the secret key of a user skx and a cipher-
text cty, and outputs f(⟨x,y⟩).

The correctness requirement is that, with overwhelming probability over the randomness used by the al-
gorithms, for (pp,msk) ← IPFE .Setup(1λ, 1ℓ, p), for all x,y ∈ Zℓp, for skx ← IPFE .KeyGen(pp,msk,x) and
ct← IPFE .Enc(pp,msk,y):

IPFE .Dec (pp, skx, ct) = f(⟨x,y⟩).
6 We define IPFE in the symmetric-key settings as a stepping stone to construct trace-and-revoke in the symmetric-
key settings.
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Security. The security (IND-CPA) of symmetric-key IPFE is modeled as the following security game played
between a challenger and an adversary A. This security model is reminiscent of that of [27].

• The challenger runs (pp,msk)← Setup(1λ, 1ℓ, p), keeps msk secret and gives the public parameters pp to
the adversary A. The challenger further samples β ← {0, 1}.

• Adversary A adaptively issues queries of one of the following two types:

1. Ciphertext query: The adversary sends two vectors y(0),y(1) ∈ Zℓp, and the challenger responds

with ct(β) ← Enc(pp, msk,y(β)).

2. Secret key query: The adversary sends a vector x ∈ Zℓp, and the challenger responds with skx ←
KeyGen(pp,msk,x).

These queries can be made under the restriction that for all ciphertext query (y(0),y(1)) and all secret
key query x, we must have f(⟨x,y(0)⟩) = f(⟨x,y(1)⟩).

• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the challenger. The adversary
wins this game if β = β′.

The advantage of the adversary is defined as AdvIND-CPA
FE,A = |Pr[β = β′]−1/2|. A symmetric-key IPFE scheme

IPFE is said secure if AdvIND-CPA
FE,A is negligible for all ppt adversary A.

2.3 Matrix Multiplication Functional Encryption.

We now define matrix multiplication functional encryption (MMFE) over Zp for a prime integer p ≥ 2. As
the name suggests, MMFE decrypts a ciphertext for a matrix M ∈ Zn×ℓp with a key skx made of x ∈ Zℓp
revealing only Mx and nothing else. Due to its similarity with the definition of IPFE, MMFE can be achieved
from available IPFE. In particular, one can use n-many instances of IPFE to encrypt n vectors (y1, . . . ,yn)
independently and the Dec algorithm basically computes ⟨yi,x⟩ for each i ∈ [1, n] individually. However, such
a trivial construction suffers from a degradation proportional to n. This gets worse in case of multi-challenge
security which in fact we consider in this work.

We give a definition and propose a concrete construction with tight security in this paper. A related
primitive was already introduced for predicate encryption to allow decryption based on subspace membership
relation (decrypt if Mx = 0) in [10]. Looking ahead, we present a symmetric-key MMFE definition here to
construct symmetric-key trace-and-revoke scheme TR1 for arbitrary n-bit messages in Section 3.2.

Definition 2. A matrix multiplication functional encryption scheme MMFE over Zp with respect to an
injective function f is a tuple MMFE = (MMFE .Setup, MMFE .KeyGen,MMFE .Enc,MMFE .Dec) of four ppt
algorithms with the following specifications:

• MMFE .Setup(1λ, 1ℓ, 1n, p) takes as input the security parameter λ and the dimensions (n, ℓ) of matrices. It
outputs the public parameters pp and the master secret key msk. Similarly to IPFE, the public parameters
pp contain the description of an injective function f .

• MMFE .KeyGen(pp,msk,x) takes as input the public parameters pp, the master secret key msk and a
vector x ∈ Zℓp and outputs a secret key skx.

• MMFE .Enc(pp,msk,M) takes as input the public parameters pp, the master secret key msk and a matrix
M ∈ Zn×ℓp and outputs a ciphertext ct.

• MMFE .Dec(pp, skx, ct) takes as input the public parameters pp, the secret key of a user skx and a cipher-
text ct, and outputs (f(M1x), . . . , f(Mnx)) where Mi is the ith row of M.

The correctness requirement is that, with overwhelming probability over the randomness used by the algo-
rithms, for (pp,msk)← MMFE .Setup(1λ, 1ℓ, 1n, p), for all x ∈ Zℓp and M ∈ Zn×ℓp , for skx ← MMFE .KeyGen(pp,msk,x)
and ct← MMFE .Enc(pp,msk,M):

MMFE .Dec (pp, skx, ct) = (f(M1x), . . . , f(Mnx)) .
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Security. Full security (IND-CPA) of symmetric-key matrix multiplication functional encryption is modeled
as the following security game played between a challenger and an adversary A.

• The challenger runs (pp,msk) ← Setup(1λ, 1ℓ, 1n, p), keeps msk secret and gives the public parameters
pp to the adversary A. The challenger further samples β ← {0, 1}.

• Adversary A adaptively issues queries of one of the following two types:

1. Ciphertext query: The adversary sends two matrices M(0),M(1) ∈ Zn×ℓp , and the challenger re-

sponds with ct(β) ← Enc(pp,msk,M(β)).

2. Secret key query: The adversary sends a vector x ∈ Zℓp, and the challenger responds with skx ←
KeyGen(pp,msk,x).

These queries can be made under the restriction that for all ciphertext query (M(0),M(1)) and all secret
key query x, we must have f(M(0)x) = f(M(1)x).

• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the challenger. The adversary
wins this game if β = β′.

The advantage of the adversary is defined as AdvIND-CPA
MMFE,A = |Pr[β = β′] − 1/2|. A symmetric-key inner

matrix multiplication functional encryption scheme MMFE is said secure if AdvIND-CPA
MMFE,A is negligible for all

ppt adversary A.

2.4 Trace-and-Revoke Systems

A symmetric key traitor tracing encryption scheme is a multi-recipient encryption system in which a broad-
casting office has the master secret key for encryption and there are many users with decryption capabilities,
each having its own secret key. Additionally, the encryption scheme provides a feature to let the broadcaster
identify at least one user from a coalition T of malicious users (traitors) that built an unauthorized decryp-
tion device D. The following is the blackbox confirmation model [8], in which an efficient tracing algorithm
Trace is given oracle access to D, which we denote by OD. The oracle OD takes as input any message-
ciphertext pair (m,C) and returns 1 if D(C) = m and 0 otherwise. Given as input a set S of suspected
users containing T , the Trace algorithm should disclose the identity of at least one user from the set T . For
security, a traitor coalition should not be able to design a useful box that escapes tracing, i.e., such that the
Trace algorithm replies ⊥ or frames an innocent user in S \ T .

Following [4], the probability of decryption of decoder D, can be estimated by repeatedly querying the
oracle OD with plaintext-ciphertext pairs. Therefore, we assume the decryption device D correctly decrypts
a properly generated ciphertext with significant probability. The following is a description of D, reproduced
from [4] and modified for the symmetric-key setting. Let R be any set of revoked users, of size ≤ r. Let the
message m be sampled uniformly at random from the message space M and let CR be the output of the
encryption algorithm Enc using the master secret key msk and R as the set of revoked users. With CR as
input, the device D is assumed to output m with probability significantly more than 1/|M|:

Pr
m← U(M)

CR ← Enc(msk, pp,R,m)

[
OD(CR,m) = 1

]
≥ 1

|M|
+

1

λc
, (1)

for some constant c > 0.

We let the identity space ID and the message space M be implicit arguments to the setup algorithm
below. We let the secret key space K, the ciphertext space C (along with ID andM) and the descriptions of
mathematical tools that are used be part of the public parameters output by the setup algorithm. We adapt
the definition from [4] to the symmetric-key setting.

Definition 3. A dynamic trace-and-revoke scheme TR in the black-box confirmation model is a tuple TR =
(Setup,KeyGen,Enc,Dec,Trace) of five ppt algorithms with the following specifications.
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• Setup(1λ, 1r, 1t) takes as input the security parameter λ, the bound t on the size of traitor coalitions
and the bound r on the number of revoked users. It outputs (msk, pp, dir) containing the master secret
key msk, the public parameters pp and the initially empty user directory dir. Here, unlike [4], dir is kept
secret.
• KeyGen(pp,msk, dir, id) takes as input the public parameters pp, the master secret msk, the user di-
rectory dir and an identity id ∈ ID of a user. It outputs the corresponding secret key skid and some
information uid for the given identity id. It also updates dir to include uid.
• Enc(pp,msk, dir,R,m) takes as input the public parameters pp, the master secret msk, the user direc-

tory dir, a set R of size ≤ r which contains the uid of each revoked user in dir, and a plaintext mes-
sage m ∈M. It outputs a ciphertext CR ∈ C.

• Dec(pp, skid, CR) takes as input the public parameters pp, a secret key skid of a user with identity id and
a ciphertext CR ∈ C. It outputs a plaintext m′ ∈M.

• Trace(pp,msk, dir,R,S,OD) is a tracing algorithm in the black-box confirmation model that takes as input
the public parameters pp, the master secret key msk, the user directory dir, a set R of ≤ r revoked users,
a set S of ≤ t suspect users, and has black-box access to the pirate decoder D through the oracle OD. It
outputs an identity id or ⊥.

The correctness requirement is that, with overwhelming probability over the randomness used by the al-
gorithms, for (pp,msk, dir)← Setup(1λ, 1r, 1t), for any set R of ≤ r revoked users:

∀m ∈M, ∀id ∈ ID \ R : Dec(pp, skid,Enc(pp,msk, dir,R,m)) = m.

In this work, we consider three security properties for a trace-and-revoke scheme: message hiding, revo-
cation set hiding, and traceability.

2.4.1 Message Hiding. The IND-CPA security of a trace-and-revoke scheme TR is defined based on the
following game. Informally speaking, neither a system outsider nor a revoked user must be able to get any
information about the encrypted message.

• The challenger runs Setup(1λ, 1r, 1t) and gives the produced public parameters pp to the adversary A.
The adversary may ask the challenger to add polynomially many users in the system (these user addition
queries can be adaptive and take place at any time in the game). The challenger updates dir accordingly.

• The adversary can adaptively make up to r secret key queries and a single challenge ciphertext query,
of the following form:
∗ Given a key generation query id, the challenger provides the corresponding skid to A.
∗ Given the challenge ciphertext query (m0,m1,R) with R ⊂ ID of size ≤ r, the challenger samples
β ← {0, 1} and provides C(β) ← Enc(pp,msk, dir,R,mβ) to A.

These queries are subject to the restriction that every queried id belongs to R.
• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the challenger. The adversary

wins this game if β = β′.

The advantage of the adversary A is defined as

AdvIND-CPA
TR,A = |Pr[β = β′]− 1/2|.

A trace-and-revoke scheme TR is said to be IND-CPA secure if AdvIND-CPA
TR,A is negligible for all ppt adversary A.

2.4.2 Revocation Set Hiding. The anonymity of a trace-and-revoke scheme TR captures the idea of
hiding the revocation set in the ciphertext: if tth challenge ciphertext is created for one of the two adversarially

chosen revoked sets (R(t)
0 ,R(t)

1 ) on the tth challenge phase, then the adversary cannot distinguish if R(t)
0 or

R(t)
1 was used for the encryption for all of t.
As we already have mentioned in the Introduction, we aim for a multi-challenge security settings that

properly emulates the following scenario: A typical trace-and-revoke scheme traces and revokes more and
more users over the time. In such a scenario, each new ciphertext is created for growing revoked user sets.
We call this setting as monotonic anonymity security model (mIND-ID-CPA) and define it as following.
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• The challenger runs Setup(1λ, 1r, 1t) and gives the produced public parameter pp to the adversary A.
The adversary may ask the challenger to add polynomially many users in the system (these user addition
queries can be adaptive and take place at any time in the game). The challenger updates dir accordingly.

• The adversary can adaptively make up to (r + t) secret key queries and polynomially many anonymity
challenge queries, of the following form:
∗ Given a key generation query id, the challenger provides the corresponding skid to A.
∗ Given a challenge anonymity query (m,R0,R1) with R0,R1 ⊂ ID of size ≤ r, the challenger samples
β ← {0, 1} and provides C(β) ← Enc(pp,msk, dir,Rβ ,m) to A.

These queries are subject to the restriction that for every queried id, either id ∈ R0 ∩ R1 or id ∈
ID \ (R0 ∪ R1). Among all the key queries that have been made, at most t of them could be satisfying
id ∈ ID \ (R0 ∪ R1) and at most r of them could be satisfying id ∈ R0 ∩ R1. The challenge anonymity

queries also have a natural restriction that R(i)
0 ⊆ R(j)

0 and R(i)
1 ⊆ R(j)

1 for all i ≤ j where the tth

challenge anonymity query was made on (m(t),R(t)
0 ,R(t)

1 ).
• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the challenger. The adversary

wins this game if β = β′.

The advantage of the adversary A is defined as

AdvmIND-ID-CPA
TR,A = |Pr[β = β′]− 1/2|.

A trace-and-revoke scheme TR is said to be mIND-ID-CPA secure if AdvmIND-ID-CPA
TR,A is negligible for all ppt

adversary A.

2.4.3 Traceability. The notion of traceability considers a suspected set S of users who might have
produced the pirate decoder D. Then the tracing algorithm Trace outputs an id ∈ S \ T where T is the
set of traitors who are already detected. This requirement is formalized using the following game, denoted
by AD-TT, between an adversary A and a challenger. We reproduce the security model from [4] for sake of
completeness.7More precisely, the authors of [4] achieved public-traceability : for this purpose, the public-key
Enc algorithm was used to construct so-called probe ciphertexts to query OD and identify a traitor. Our
trace-and-revoke scheme relies on a symmetric key Enc algorithm, and hence tracing relies on the master
secret key msk (in particular, tracing is not public).

• The challenger runs Setup(1λ, 1r, 1t) and gives pp to A. The adversary may ask the challenger to add
polynomially many users in the system (these user addition queries can be adaptive and take place at
any time in the game). The challenger updates dir accordingly.

• Adversary A makes adaptive traitor key queries on at most t distinct users. For every id queried, the
challenger checks to find uid ← dir[id]. If available, records id in T and returns skid. Otherwise, adds uid
to dir[id], records id in T and returns skid ← KeyGen(pp,msk, id).

• Adversary A sends an adaptively chosen revocation set R ⊂ ID of size ≤ r and gets back all the secret
keys {skid ← KeyGen(pp,msk, id)}id∈R.

• Adversary A then produces a pirate decoder D and gives the challenger its access in terms of an oracle
OD. A also produces a suspect set S of size ≤ t containing T and sends it to the challenger.

• The challenger then runs Trace(pp,msk, dir,R,S,OD). The adversary wins if both of the following hold:
∗ Equation (1) is satisfied for the set of revoked users R chosen by the adversary (i.e., decoder D is
useful),
∗ the execution of Trace outputs ⊥ or outputs an id ∈ S \ T with probability ≥ 1/λc.

We define the tracing advantage AdvAD-TT
TR,A as the probability of A’s win. A trace-and-revoke scheme TR is

said to be AD-TT secure if the advantage AdvAD-TT
TR,A is negligible for all ppt adversary A.

7 Recently, a more general model of pirate, called pirate distinguisher, have been introduced and considered in [18,26].
However, as proven in [14], in the bit-encryption setting, such a notion of pirate distinguisher is equivalent to the
pirate decoder. In this section, we consider bit-encryption and in the next section about multi-bit encryption, the
tracing is reduced to the tracing in the bit-encryption sub schemes. Therefore, we keep using the definition from [4]
(adapted to the symmetric-key setting).
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2.5 Mathematical Tools and Hardness Assumptions

Prime-Order Groups. We assume Ggen to be the group generator that generates the prime order group
description. Precisely, Ggen(1λ, p)→ (g,G) such that G is a cyclic group of prime order p and g generates G.
We follow the notation of [16] to denote ga by [a] for any a ∈ Zp and for A = (aij) ∈ Zβ×αp we denote

[A] =

g
a11 . . . ga1α

...
. . .

...
gaβ1 . . . gaβα

 ∈ Gβ×α.

2.5.1 Dk-matDH. For all adversary A, the advantage function is defined as following

AdvDk-matDH
A (λ) = |Pr[A([U] , [Ux]) = 1]− Pr[A([U] , [z]) = 1]|

where U← Dk, x← Zkp and The Dk-matDH assumption states that AdvDk-matDH
A (λ) is negligible in λ for all

ppt adversary A.

2.5.2 n-Dk-matDH. For all adversary A, the advantage function is defined as following

Advn-Dk-matDH
A (λ) = |Pr[A([U] , [UX]) = 1]− Pr[A([U] , [Z]) = 1]|

whereU← Dk,X← Zk×np and The n-foldDk-matDH assumption (i.e. n-Dk-matDH) states that Advn-Dk-matDH
A (λ)

is negligible in Now, [16] showed that Advn-Dk-matDH(λ) ≤ AdvDk-matDH(λ) for any fixed value n that is poly-
nomial in λ.

2.5.3 D2k,k-matDH. For all adversary A, the advantage function is defined as following

Adv
D2k,k-matDH
A (λ) = |Pr[A([V] , [Vy]) = 1]− Pr[A([V] , [z]) = 1]|

where V ← D2k,k, y ← Zkp and z ← Z2k
p . The D2k,k-matDH assumption states that Adv

D2k,k-matDH
A (λ) is

negligible in λ for all ppt adversary A. [16] showed that given a Dk-matDH problem instance, one can create
a D2k,k-matDH problem instance with the degradation of k i.e.

AdvD2k,k-matDH(λ) ≤ k · AdvDk-matDH(λ).

2.5.4 Dk-matDH′. For all adversary A, the advantage function is defined as following

AdvDk-matDH′

A (λ) = |Pr[A([S] ,
[
u⊤S

]
) = 1]− Pr[A([S] ,

[
z⊤

]
) = 1]|

where S ← Zk×mp , u ← Zkp and z ← Zmp for a fixed value m that is polynomial in λ. The Dk-matDH′

assumption states that AdvDk-matDH′

A (λ) is negligible in λ for all ppt adversary A. [28] showed that given a
Dk-matDH′ problem instance, one can create a m-fold Dk-matDH problem instance without any degradation

i.e. AdvDk-matDH′
(λ) ≤ Advm-Dk-matDH(λ). Due to relation between Dk-matDH and m-Dk-matDH mentioned

above, AdvDk-matDH′
(λ) ≤ AdvDk-matDH(λ).

3 Trace-and-Revoke from Linear Functional Encryption

In this section, we construct a trace-and-revoke system from a linear functional encryption scheme that
achieves traceability and anonymous revocation. This is achieved in two steps. First, a trace-and-revoke
system for single-bit messages is constructed from inner product functional encryption. Then we extend such
a trace-and-revoke system to support arbitrary fixed length strings.

We first define a generic transformation similar to the one of [4], which converts an IND-CPA secure inner
product functional encryption scheme IPFE into a trace-and-revoke system TR0 for the restricted message
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space M = {0, 1} that enjoys anonymous revocation. Note that this transformation converts an IND-CPA
secure IPFE in the bounded collusion model to a trace-and-revoke system TR0 that supports an exponential
number of users like [4]. Then we provide another generic transformation that converts an IND-CPA secure
matrix multiplication functional encryption scheme (MMFE) into a trace-and-revoke system TR1 for the
message space M = {0, 1}n for n as large as poly(λ). This transformation also ensures that TR1 achieves
anonymous revocation along with supporting an exponential number of users.

As, our primary contribution in this paper, is to introduce trace-and-revoke schemes with anonymous
revocation, our presentation mainly focuses on the construction and the anonymity security of TR0 and TR1.
Nevertheless, in Section 3.1, we have provided a complete description of the TR0 that includes an explicit
description of the Trace function. For the sake of simplicity, we however have presented the general trace-
and-revoke systems TR1 in Section 3.2 without a Trace. Note that, TR1 can use the Trace algorithm of
TR0.

3.1 Trace-and-Revoke for Single Bit Messages

We construct a trace-and-revoke scheme TR0 following the specifications of Definition 3 for the message space
M = {0, 1}. TR0 relies on a user directory dir which contains the identities of all the users that have been
assigned keys in the system. This user directory is initially empty. Unlike [4], we assume that dir can only
be accessed by the central authority, which is the sender as well as the key generator. TR0 relies on an inner
product functional encryption scheme IPFE for the ℓ-dimensional vector space on Zp, where the value ℓ is a
function of r and t. Recall that, in a typical trace-and-revoke scheme, the bound on the number of revoked
users r and the bound on the number of suspected users (traitors) t are given as the system parameters. Our
description of IPFE (simpler form of MMFE as noted in Section 2.1) comes with an injective map f whose
description is included in the public parameters pp. To define the trace-and-revoke scheme TR0, we define
a special element in the range of the map elem∗ = f(0). Concretely, in case of a group-based construction
of IPFE , we take the exponentiation map f : x 7→ [x] and have elem∗ = [0]. In case of a lattice-based
construction, we take the identity map f : x 7→ x and have elem∗ = 0.

1. Setup(1λ, 1r, 1t). Upon input the security parameter λ, the bound t on the number of the suspected users,
and the bound r on the number of revoked users, set p = λω(1) and proceed as follows:

(a) Let (pp,msk)← IPFE .Setup(1λ, 1ℓ, p), where we set ℓ = 2r + t+ 1. The key space K and ciphertext
space C are the IPFE key space and ciphertext space, respectively.

(b) Create an empty directory dir.
(c) Output the public parameter pp, master secret key msk and the (empty) user directory dir.

2. KeyGen(pp,msk, dir, id). Upon input the public parameters pp, the master secret key msk, the user direc-
tory dir and a user identity id ∈ ID, proceed as follows:

(a) Sample xid ← Zℓp. The pair uid = (id,xid) is then appended to dir.
(b) Let skid ← IPFE .KeyGen(pp,msk,xid).
(c) Output (skid,xid).

3. Enc(pp,msk, dir,R,m). Upon input the public parameters pp, the master secret key msk, the user di-
rectory dir, a set of revoked users R of size ≤ r and a plaintext message m ∈ M = {0, 1}, proceed as
follows:

(a) Sample vR ← X⊥R where XR = {xid : id ∈ R}.
(b) Compute yR = m · vR.
(c) Output CR = IPFE .Enc(pp,msk,yR).

4. Dec(pp, (skid,xid), CR). Upon input the public parameters pp, the secret key skid for user id and a cipher-
text CR, proceed as follows:

(a) Compute Res = IPFE .Dec(pp, (skid,xid), CR).
(b) If Res = elem∗, then output 0. Otherwise output 1.

5. Trace(pp,msk, dir,R,S,OD). Upon input the master secret key msk, the user directory dir, a revoked set
of users R, a suspect set of users S and given access to the oracle OD, proceed as follows:
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(a) Suppose the users in the suspect set S can distinguish between the messages m = 0 and m′ = 1
except with negligible probability provided these users can access the oracle OD.8

(b) Set S1 = {id1, id2, . . .} = S \ R.
(c) Sample vR ← X⊥R where XR = {xid : id ∈ R}.
(d) For all i = 1, 2, . . . , t,

– If i = 1, set vSi = 0. If Si = ∅, set vSi = (m′ −m) · vR.
– Otherwise, sample vSi ← X⊥R∪Si ∩

(
X⊥S1\Si + (m′ −m) · vR

)
where XR∪Si = {xid : id ∈ R∪Si}

and XS1\Si = {xid : id ∈ S1 \ Si}.
– Construct yi = vSi +m · vR;
– Provide the oracle OD with (CSi ,m) as input and get a binary value bi as output. Suppose the

probability of bi = 1 is pi.
– The probe ciphertext is CSi = IPFE .Enc(pp,msk,yi); We note that, the decryption result of the

probe ciphertext CSi is m if id ∈ Si and m′ if id ∈ S \ Si.
– If i > 1 and |pi − pi−1| is non-negligible,
• Output idi−1 as the traitor identity and abort;
• If Si = ϕ, output ⊥ and abort. Otherwise, set Si+1 = Si \ {idi}.

We first check the correctness of the scheme, whose proof is adapted from the correctness proof of [4]

Theorem 1. Assume that p = λω(1). Then, for every set R of revoked users of size ≤ r, every id /∈ R and
every m ∈M = {0, 1}, we have

Dec(pp, (skid,xid),Enc(pp,msk, dir,R,m)) = m,

with probability ≥ 1− λ−ω(1).

Proof. As xid is uniform in Zℓp, p = λω(1) and ℓ > r, we have that ⟨xid,vR⟩ ̸= 0, with overwhelming
probability. The execution of Dec(pp, (skid,xid), CR), with CR = Enc(pp,msk, dir,R,m), on Step (a) computes
(with overwhelming probability):

Dec(pp, (skid,xid), CR) = f(⟨xid,yR⟩) = f(m · ⟨xid,vR⟩)

by the correctness of IPFE where f is the deterministic function included in pp.
Now, observe that, if m = 0, then f(⟨xid,yR⟩) = f(0) = elem∗. In this case, Dec outputs 0. On the other

hand, if m = 1, then f(⟨xid,yR⟩) = f(⟨xid,vR⟩) ̸= elem∗ (since ⟨xid,vR⟩ ̸= 0 and f is injective). In this
case, Dec outputs 1. Thus, for both values of m, Dec retrieves the correct value of m with overwhelming
probability.

Now, we show that Step (a) of Trace is indeed successful, i.e., we can use OD (satisfying Equation (1) for
M = {0, 1}) to distinguish between m = 0 and m′ = 1.

Theorem 2. Let R be arbitrary of size ≤ r and assume Equation (1) holds for OD and R. Then we have:∣∣∣∣ Pr
C←Enc(pp,msk,dir,R,0)

[OD(C, 0) = 1]− Pr
C←Enc(pp,msk,dir,R,1)

[OD(C, 0) = 1]

∣∣∣∣ ≥ 2

λc
,

with probability ≥ 1− λ−ω(1) and for some constant c > 0.

Proof. By Equation (1), we have

Pr
C←Enc(pp,msk,dir,R,0)

[OD(C, 0) = 1] ≥ 1

2
+

1

λc
, and Pr

C←Enc(pp,msk,dir,R,1)
[OD(C, 1) = 1] ≥ 1

2
+

1

λc
.

8 Note that [4] used Hoeffding’s inequality to ensure that one can efficiently find such distinguishable m and m′. In
our case, it is simpler, as M = {0, 1}.
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The latter means that if m′ = 1 is encrypted as C, then OD(C, 1) outputs 1 with probability non-negligibly
better than a random choice. Taking the complement, we obtain that

Pr
C←Enc(pp,msk,dir,R,1)

[OD(C, 0) = 1] <
1

2
− 1

λc
.

The result the follows naturally.

Security. We prove that the base scheme TR0 enjoys message hiding, revocation set hiding and traceability.

Theorem 3. If IPFE is an IND-CPA secure inner product functional encryption scheme allowing up to r
key extraction queries, then TR0 is IND-CPA secure.

Proof. Let ATR0
be a ppt adversary that breaks the IND-CPA security of TR0. We construct a ppt adversary

AIPFE that breaks the IND-CPA security of the underlying IPFE :

• It first obtains the public parameter pp output by the IPFE challenger (which runs the IPFE .Setup(1λ, 1ℓ)
algorithm) and relays it to ATR0

. On ATR0
’s request, the adversary AIPFE creates dir with polynomially

many (id,xid) pairs for xid ← Zℓp. The IPFE challenger samples β ← {0, 1}.
• The adversary ATR0

can make multiple secret key queries on id ∈ ID and multiple challenge ciphertext
queries on (m0,m1,R).
• For every secret key query on id,

* AIPFE retrieves xid = dir[id].
* AIPFE then sends xid to the IPFE challenger. The latter returns skxid

, which AIPFE forwards to
ATR0

as skid.
• For every challenge anonymity query on (m0,m1,R),
∗ It samples vR ← X⊥ where X = {xid ∈ Zℓp : id ∈ R}.
∗ It sends y0 = m0 · vR and y1 = m1 · vR to the IPFE challenger. The latter encrypts yβ

as ct(β) ← IPFE .Enc(pp, msk,yβ) and outputs ct(β).
∗ It forwards the received ciphertext to ATR0

as its challenge C(β).
• Finally, the ATR0

adversary outputs its guess β′ ∈ {0, 1} and AIPFE also outputs β′ as its own guess of β.

Note that adversary AIPFE behaves as an IND-CPA challenger in the view of ATR0 . Further, it is a valid
adversary against IPFE as ⟨y0,xid⟩ = ⟨y1,xid⟩ = 0 for every vector xid queried to the IPFE challenger (i.e.,
each id ∈ R). The advantage of AIPFE is exactly the same as the advantage of ATR0

.

Theorem 4. If IPFE is an IND-CPA secure inner product functional encryption scheme allowing up to (t+r)
key extraction queries, then TR0 is mIND-ID-CPA secure.

Proof. Given an mIND-ID-CPA adversary ATR0
, we produce AIPFE that breaks the IND-CPA security of IPFE .

– AIPFE first obtains the public parameter pp output by the IPFE challenger (who runs the IPFE .Setup(1λ, 1ℓ)
algorithm) and relays it to ATR0 . The IPFE challenger, at this point, samples β ← {0, 1}. On ATR0 ’s
request, AIPFE creates dir with polynomially many id without the corresponding xid.

– Recall that, ATR0
can make multiple secret key queries on id ∈ ID and multiple challenge cipher-

text queries on (m,R0,R1). To accommodate such queries, AIPFE first defines a set of vector VS =
{x1, . . . ,xt+2r} where xi ← Zℓp. This set is used to answer to secret key queries.

• For every secret key query on id,
* If id ∈ dir, AIPFE sets x = dir[id].
* Otherwise, AIPFE samples a vector x← VS and sets dir[id] = x.
* AIPFE then sends x to the IPFE challenger. The latter returns skxid

, which AIPFE forwards to ATR0

as skid.
• For every challenge anonymity query on (m,R0,R1),

* For every id ∈ R0 ∪ R1, if id /∈ dir, AIPFE samples a vector x ← VS without repetition and sets
dir[id] = x.
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* AIPFE defines R̂ = R0 ∩R1.
* Then AIPFE defines three matrices:

1. Z = Matrix(VS \ Z) where Z = {xid : id ∈ R̂}.
2. X0 = Matrix(X0) where X0 = {xid : id ∈ R0}.
3. X1 = Matrix(X1) where X1 = {xid : id ∈ R1}.

* It samples

(
vR0

vR1

)
← V⊥ where

V =

 Z −Z
X0 0
0 X1

. (2)

* It sends yR0 = m · vR0 and yR1 = m · vR1 to the IPFE challenger encrypts yRβ
as ct(β) ←

IPFE .Enc(pp,msk,yRβ
) and outputs ct(β).

* AIPFE then forwards the received ciphertext to ATR0
as its challenge C(β).

– At the end of the game, ATR0
returns β′ as its guess of β which AIPFE forwards to the IPFE challenger

as its answer.

From Equation (2), Z(vR0 −vR1) = 0, X0vR0 = 0 and X1vR1 = 0. As yRu ∈ Span(vRu) for u ∈ {0, 1},
Z(yR1

− yR0
) = 0 and X0yR0

= X1yR1
= 0.

We now show that AIPFE is a valid challenger against ATR0
in the mIND-ID-CPA security model. For that

we show, for every ith key query on idi and j
th challenge ciphertext query on (m(j),R(j)

0 ,R(j)
1 ) from ATR0

,
AIPFE can forward corresponding vectors to the IPFE challenger. Due to the natural restriction, note that,

idi ∈ (R(j)
0 ∩R

(j)
1 ) ⊔ (ID \ (R(j)

0 ∪R
(j)
1 )) for all i ∈ [1, t+ r − 1] and all j ∈ [1, r].

For all queried idi, if one of the following two holds.

– idi ∈ (R(j)
0 ∩R

(j)
1 ): This means, idi /∈ (R(t)

0 ∆R(t)
1 ) for all t ∈ [1, j− 1] due to the natural restriction. The

corresponding xidi ∈ VS ∩ R̂(j) and by our reduction, the xidi vector is included in the definition of X
(j)
0

and X
(j)
1 . From Equation (2) above, we see that X

(j)
0 y

(j)
R0

= X
(j)
1 y

(j)
R1

= 0. Thus, AIPFE can forward this
to the IPFE challenger for key query.

– idi ∈ ID \ (R(j)
0 ∪R

(j)
1 ): Observe that, the corresponding xidi ∈ VS \ R̂(j) and such xidi is included in the

definition of Z(j). From Equation (2) above, we see that Z(j)y
(j)
R0

= Z(j)y
(j)
R1
̸= 0 (w.h.p. as y

(j)
R0
,y

(j)
R1

are
sampled randomly). Thus, AIPFE can forward this to the IPFE challenger for key query.

Next, note that, for every query on idi from ATR0 , the adversary AIPFE returns a distinct random vector
xidi from VS that were sampled at the starting of the reduction. The crucial point here is AIPFE faces at
most (t + 2r) many distinct identities id, hence VS is sufficient to assign the corresponding xid. Moreover,
ATR0

gets encryption of either yR0
or yR1

where both the vectors are randomly sampled. Thus, from the
point of view of ATR0 , ZyRb

is a random vector. Thus, AIPFE behaves as a valid mIND-ID-CPA challenger to
ATR0 .

As we have seen above, for every xidi and (y
(j)
R0
,y

(j)
R1

) the adversary AIPFE gives to the IPFE challenger,

⟨xidi ,y
(j)
R0
⟩ = ⟨xidi ,y

(j)
R1
⟩ holds. Thus, AIPFE behaves as a valid IND-CPA adversary to the IPFE challenger.

If ATR0 can distinguish between any R(j)
0 and R(j)

1 , AIPFE can distinguish between corresponding y
(j)
R0

and y
(j)
R1

. Thus, the advantage of AIPFE is exactly the same as the advantage of ATR0
.

Theorem 5. If IPFE is an IND-CPA secure inner product functional encryption scheme allowing (r + t)
queries, then TR0 is AD-TT secure.

Proof. Given an AD-TT adversary ATR0
, we have to produce AIPFE that breaks the IND-CPA security of IPFE .

AIPFE first obtains the public parameter pp output by the IPFE challenger (who runs the IPFE .Setup(1λ, 1ℓ)
algorithm) and relays it to ATR0 . On ATR0 ’s request, AIPFE creates dir with polynomially many id without
the corresponding xid. The IPFE challenger, being a symmetric key primitive, provides AIPFE polynomially
many accesses to the encryption oracle Oct(·) and to the key generation oracle Osk(·).
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ATR0 adaptively chooses id ∈ ID, AIPFE assigns a random xid to dir[id] and makes query to Osk on xid.
The response it gets is forwarded to ATR0 as the secret key skid. A can make at most t many such queries
and these queries are collected as a set T .
ATR0

then adaptively chooses R ⊂ ID such that |R| ≤ r. For every id ∈ R, AIPFE assigns a xid and makes
query to Osk on xid, the response it gets is forwarded to ATR0

as the secret key skid.
Finally, A produces a pirate decoder OD and a suspected list of traitors S that includes the traitor set T

where |S| ≤ t. Next, AIPFE runs Trace on S and R given access to Oct and OD. Precisely, for all i ∈ [1, |S|],
AIPFE computes vSi and asks Oct to get the so-called probe-ciphertext CSi . Finally, Trace outputs either ⊥
or some id ∈ S. More specifically, the winning condition of AD-TT security model tells that Trace outputs
either ⊥ or some id ∈ S \ T with probability ≥ 1/λc for some constant c > 0.

In case, Trace outputs ⊥, AIPFE outputs a random bit. Otherwise, we assume id to be idi−1 for which
Trace aborted on the ith round for some i < t. Then, by the description of Trace, |pi−pi−1| is non-negligible.
At this point AIPFE retrieves vSi−1 and vSi to define y0 = vSi−1 +m · vR and y1 = vSi +m · vR and makes
challenge ciphertext query to the IPFE challenger where Si = Si−1 \ {idi−1}. The IPFE challenger responds
with C(β) ← Enc(pp,msk,yβ) for β ← {0, 1}. AIPFE runs β′ ← OD(C(β),m) and outputs (1− β′).

Here, we first show that AIPFE is a valid adversary in the IND-CPA security model. In other words, we
show that for all secret key queries on id ∈ R∪ T , ⟨y0,xid⟩ = ⟨y1,xid⟩. This can be seen from the following:

1. id ∈ R: ⟨y0,xid⟩ = ⟨y1,xid⟩ = 0.
2. id ∈ T ∩ Si−1: ⟨y0,xid⟩ = ⟨y1,xid⟩ = m · ⟨vR,xid⟩.
3. id ∈ T ∩ (S1 \ Si−1): ⟨y0,xid⟩ = ⟨y1,xid⟩ = m′ · ⟨vR,xid⟩.

Now, we show that AIPFE wins with probability given Trace didn’t output ⊥.

If β = 0. C(β) is an encryption of y0 that encoded vSi−1
. The description of the Trace tells that ⟨vSi−1

,xidi−1
⟩ =

0. Thus, given OD one views C(β) as an encryption of y0 = m ·vR. In this case, OD(C(β),m) gives β′ = 1
with very high probability.

If β = 1. C(β) is an encryption of y1 that encoded vSi . The description of the Trace tells that ⟨vSi ,xidi−1
⟩ =

(m′−m) · ⟨vR,xidi−1
⟩. Thus, given OD one views C(β) as an encryption of y1 = (m′−m) ·vR+m ·vR =

m′ ·vR. In this case, OD(C(β),m) gives β′ = 0 with very high probability due to the so-called usefulness
of OD.

Thus, when ATR0
gives β′, AIPFE just forwards (1− β′) as its guess of β.

Now, we prove that the probability that Trace outputs ⊥ is negligible. We mention, [4, Lemma 17] already
have made this argument. However, for completeness, we overview the argument here. From Theorem 2, we
see that OD distinguishes between m = 0 and m′ = 1 with probability ≥ 2/λc for some constant c > 0.

The description of Trace tells that
∣∣∣∑i∈[1,t](pi − pi−1)

∣∣∣ ≥ 2/λc that is non-negligible. Then, by triangle

inequality, there exists an i such that |pi − pi−1| is non-negligible. Thus, Trace outputs idi−1 with non-
negligible probability and aborts. Therefore, the probability that Trace continues t many iterations and
outputs ⊥ is negligible.

3.2 Efficient Trace-and-Revoke for Bit Strings

We present a trace-and-revoke scheme TR1 for M = {0, 1}n that does not run parallel independent n
executions of TR0. However, we note that, we omit the description of Trace here as it follows from the Trace
algorithm of TR0. This scheme again assumes the existence of a user directory dir which is initialized to be
empty, contains the identities of the users that have been assigned keys in the system. We assume that dir
can only be modified by the central authority who is the sender as well as the key generator. Here, we assume
existence of an efficient matrix multiplication functional encryption MMFE that encrypts matrices of n × ℓ
dimension. The intuitive idea here is that, we utilize n copies of inner product of ℓ dimensional vectors as a
linear system of equations Mx where M ∈ Zn×ℓp and x ∈ Zℓp. Each of the rows of M is used to encrypt each
message bit.
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1. Setup(1λ, 1n, 1r, 1t). Upon input the security parameter λ, the message bit-length n, the bound t on
the number of the suspected users and the bound r on the number of revoked users, set p = λω(1) and
proceed as follows:

(a) Let (pp,msk)← MMFE .Setup(1λ, 1ℓ, 1n, p), where we set ℓ = 2r + t+ n+ 1.
(b) Output the public parameter pp, master secret key msk and an empty user directory dir.

2. KeyGen(pp,msk, dir, id). Upon input the public parameters pp, the master secret key msk, the user direc-
tory dir and a user identity id ∈ ID, proceed as follows:

(a) Sample xid ← Zℓp. The pair uid = (id,xid) is then appended to the user directory dir.
(b) Let skid ← MMFE .KeyGen(pp,msk,xid) ∈ MMFE .K.
(c) Output (skid,xid).

3. Enc(pp,msk, dir,R,m). Upon input the public parameter pp, the master secret key msk, the user directory
dir, a set of revoked users R of size ≤ r and a plaintext messages m ∈M = {0, 1}n, proceed as follows:

(a) Sample vR,1, . . . ,vR,n ← X⊥R where XR = {xid ∈ Zℓp : id ∈ R}.
(b) Compute yR,i = mi · vR,i for i ∈ [1, n].
(c) Define a matrix MR = (yR,1, . . . ,yR,n)

⊤.
(d) Output CR = MMFE .Enc(pp,msk,MR).

4. Dec(pp, (xid, skid), CR). Upon input the public parameters pp, the secret key skid for user id and a cipher-
text CR considering the revoked set R, proceed as follows:

(a) Compute t = MMFE .Dec(pp, (xid, skid), CR).
(b) Output m′ = (m′1, . . . ,m

′
n) ∈ {0, 1}n where for all i ∈ [1, n], m′i = 0 if ti = elem∗; else m′i = 1.

Correctness. The correctness basically follows from the correctness of TR0 above. The main difference is
that, functionally, Enc of TR1 is some-what n many copies of Enc of TR0. Thus, Dec must concatenate all
the bits to get back the message. Therefore, TR1 is correct if Dec of TR1 retrieves all the bits mi correctly.
Now, if ∃i ∈ [1, n], such that Dec of TR1 didn’t compute mi correctly, this can be extended to an attack on
the correctness of Dec of TR0. This basically ensures the correctness of TR1.

Security We prove that TR1 enjoys message hiding and revocation set hiding.

Theorem 6. If MMFE is an IND-CPA secure matrix multiplication functional encryption scheme, then TR1

is IND-CPA secure.

Proof Sketch. The proof is very similar to the proof of Theorem 3. However, the primary difference being the
ciphertext generation on a challenge (m0,m1,R). In particular, AMMFE finds solution of X ·V = 0 such that
V is a full-rank matrix in Zℓ×np . Precisely, V =

(
vR,1 . . . vR,n

)
. Then AMMFE constructs the challenge as

M0 and M1 where Mb = (yR,b,1, . . . ,yR,b,n)
⊤ such that yR,b,j = mb,j ·vR,j . The rest follows naturally.

Theorem 7. If MMFE is an IND-CPA secure matrix-multiplication functional encryption scheme allowing
at most (t+ r − 1) key extraction queries, then TR1 is mIND-ID-CPA secure.

Proof Sketch. The proof is very similar to the proof of Theorem 4. The difference is again how we handle
ciphertext generation. For, ciphertext query on (m,R), AMMFE finds solution of X ·V = 0 such that V is
a full-rank matrix in Zℓ×np . Precisely, V =

(
vR,1 . . . vR,n

)
. Then we construct the ciphertext query to the

MMFE challenger as M where M = (yR,1, . . . ,yR,n)
⊤ such that yR,j = mj ·vR,j . For the challenge query on

(m,R0,R1), AMMFE finds non-trivial solution of the following equations where both VR0
,VR1

are full-rank
matrices from Zℓ×np .  Z −Z

X0 0
0 X1

 · (VR0

VR1

)
=

0
0
0

 (3)

where VRb
=

(
vRb,1 . . . vRb,n

)
for b ∈ {0, 1}. Then AMMFE constructs the challenge as M0 and M1 where

Mb = (yRb,1, . . . ,yRb,n)
⊤ such that yRb,j = mj · vRb,j . The rest of the argument follows naturally.
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Construction TR0 and TR1. Note that, available IPFE schemes [4, 5] suffice to construct of TR0 and TR1.
In particular, withholding the public keys of available IPFE schemes, one can get symmetric-key IPFE
schemes and use them to construct TR0. Furthermore, TR1 can be constructed from running n independent
instances of any symmetric-key IPFE scheme. We in fact use this technique to construct TR0 and TR1 in the
lattice-based settings withholding the public key of Agrawal et al.’s IPFE [4]. In the group-based settings,
however, we can achieve more efficient constructions than naively hiding the public key of the public-key
IPFE. In Section 5, we propose new constructions of symmetric-key IPFE and symmetric-key MMFE in the
prime-order groups.

4 Cryptanalysis of the Wang et al IPFE Construction

As we mention above, the schemes from Section 3 can be instantiated with the LWE-based IPFE scheme
from [4]. Note that the latter does not enjoy IND-CPA security, but it was showed to enjoy a weaker security
property that still suffices for the trace-and-revoke scheme from [4]. That weaker security property restricts
the number of key requests to be significantly smaller than the dimension of the vector space, and imposes
that the vectors of the key queries are uniformly sampled. This relaxation of IND-CPA security also suffices
for our adaptation from Section 3.

IPFE scheme from [29], note that the LWE-based IPFE scheme from [29] is also claimed to enjoy a security
property that is stronger than IND-CPA security (which the authors leverage to obtain a decentralized
Attribute-Based Encryption scheme). In fact, as we will show below, this scheme can be broken for the
parameters suggested in [29]. Before showing an attack, we first recall some definitions.

Lattices. Given n linear independent vectors b1, . . . ,bn ∈ Rm, the lattice generated by them is defined as

L(B) := {Bz =
∑
i∈[1,n]

zibi : z ∈ Zn}.

The rank of this lattice is n and its dimension is m.
We define the determinant of L as det(L) :=

√
det(BtB). For a rank-n matrix B ∈ Rm×n, there exist

orthogonal matrices U,V and a diagonal matrix Σ = Diag(σ1, . . . , σn) ∈ Rm×n such that B = UΣVt and
σ1 ≥ · · · ≥ σn > 0. From this decomposition, we see that det(L(B)) =

∏
i∈[1,n] ∥σi∥.

For i ∈ [1, n], the i-th successive minimum λi(L) is defined as

λi(L) := inf{r : dim(Span(L ∩ B(r))) ≥ i},

where B(r) denotes the closed zero-centered Euclidean ball of radius r.

Definition 4. Let m > n ≥ 1 be integers and q ≥ 2 be prime. Let X ∈ Zm×n.
The orthogonal lattice Λ⊥(X) is the integral lattice whose vectors are orthogonal to the rows of X, i.e.,

Λ⊥(X) := {u ∈ Zm : Xtu = 0}.

We note that if X has rank n (over the integers), then Λ⊥(X) has rank (m− n).

Definition 5. The bounded distance decoding problem BDDγ is as follows: given a basis B of an n-rank
lattice L, t ∈ Rn, and real d ≤ λ1

2 such that dist(t, L) ≤ d, find the unique v ∈ L closest to t. Note that this
is equivalent to finding e ∈ t+ L such that ∥e∥ ≤ d.

We now describe here a simplified version of the security property that this scheme aims to achieve, and
the corresponding simplified version of the scheme (this corresponds to setting k = 1 in the definition
from [29]; our attack readily extends to k ≥ 1). In the challenge phase, the adversary sends to the challenger
descriptions of two distributions D0 and D1 over plaintext vectors. The challenger chooses β ← {0, 1} and
samples y ← Dβ ; it encrypts it under the public key pk and the resulting ciphertext Encpk(y) is given
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to the adversary. The adversary can adaptively make key queries x, before or after the challenge phase.
The security property, called adaptive security for chosen message distributions, requires that the adversary
cannot guess β correctly, as long as the distributions D0 and D1 remain indistinguishable given the replies
to the key queries.

We review their construction based on LWE.

• IPFE .Setup(1n, 1ℓ, p). Set integers m, q = pe for some integer e, and reals α, α′ ∈ (0, 1). Sample A ←
Zm×nq , Z← {0, . . . , p− 1}ℓ×m,9 compute T = ZA ∈ Zℓ×nq , define

msk := Z and pk := (A,T).

• IPFE .KeyGen(msk,x). Given x ∈ Zℓp, set zx = xtZ ∈ Zm (interpreting each coordinate of x as an integer
in {0, . . . , p− 1}), and output skx = zx.

• IPFE .Enc(pk,y). To encrypt a vector y ∈ Zℓp, sample s← Znq , e0 ← DZm,αq, e1 ← DZℓ,α′q and compute

c0 = As+ e0 ∈ Zmq , c1 = Ts+ e1 + pe−1 · y ∈ Zℓq.

Then, return the ciphertext C = (c0, c1).
• IPFE .Dec(sk, C). Given C = (c0, c1) and secret key skx = zx, compute µ′ = ⟨x, c1⟩− ⟨zx, c0⟩ mod q, and
output the value µ ∈ Zp that minimize |µ′ − pe−1µ|.

In [29], the dimensions n is proportional to the security parameter λ, the parameters ℓ,m, p, q, 1/α, 1/α′

are polynomial in n, and e is a constant. In [29, Theorem 3.5], the authors state that under the LWE
assumption, the above functional encryption for inner products is adaptively secure for chosen message
distributions, assuming that the secret key queries corresponding are linearly independent.
Below, we describe a cryptanalysis of the scheme above with the specified parameters. We then explain why
this attack does not apply to the schemes from [5] and [4].

We show that even for with challenge vectors rather than distributions, key queries allow to recover the
master secret key msk. Concretely, we can recover Z from Xt and XtZ, where Z← {0, . . . , p−1}ℓ×m and X ∈
{0, . . . , p−1}ℓ×(ℓ−1) is chosen by the adversary. We let our adversary sample X← {0, . . . , p−1}ℓ×(ℓ−1) (recall
that the multiplication XtZ is over Z). The fact that X has only ℓ − 1 columns means that we can find
distinct challenge plaintexts (which are elements of Zℓp) so that the columns of X are valid key queries.

It suffices to show how the adversary can recover the first column z of Z from Xtz, as it can proceed
similarly for all columns of Z. Given t = Xtz and X, we know that z belongs to a coset of the lattice Λ⊥(X)
defined by t.

Let us now study the lattice Λ⊥(X). As X ← {0, . . . , p − 1}ℓ×(ℓ−1), its columns are expected to be
linearly independent with overwhelming probability and det(XZℓ−1) is expected to grow as pΩ(ℓ). These
properties would be easier to prove if the entries of X were Gaussian with standard deviation p, but it can
be experimentally checked that this behavior also holds for this distribution. We also expect the latticeXZℓ−1
to be primitive, i.e., that XtZℓ = Zℓ−1. By [25, p. 30], we hence have that det(Λ⊥(X)) = det(XZℓ−1). As X
is full column-rank, we known that dim(Λ⊥(X)) = 1, and hence we expect that λ1(Λ

⊥(X)) = pΩ(ℓ). Finally,
note that the orthogonal lattice can be efficiently computed, by using a Hermite Normal Form algorithm.

Now, recall that we want to recover z from a known coset of Λ⊥(X). As ∥z∥ ≤
√
ℓp, by the above analysis

of Λ⊥(X), we expect to have

∥z∥ < λ1(Λ
⊥(X))/2.

This implies that z is uniquely determined from the coset. Moreover, this is a Bounded Distance Decoding
problem instance in a lattice of dimension 1, which can be solved efficiently. Concretely, if Λ⊥(X) = bZ and
we are given b and kb+ z, we can recover k = ⌊⟨kb+ z,b⟩/∥b∥2⌉ and hence z.

9 In [29], the notation Zℓ×m
p is used instead of {0, . . . , p − 1}ℓ×m. We stress that it should indeed be interpreted

as {0, 1, . . . , p− 1}ℓ×m. In particular, the operation xtZ in the IPFE .KeyGen algorithm is over Z and not modulo p,
as otherwise decryption correctness would not hold.
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Remarks. The above discussion shows that the IPFE scheme of [29] is not secure with the specified param-
eters. We explain here why the above attack does not work for the [5] and [4] schemes. First, in the mod-p
scheme from [5, Section 4.1], the authors take z from a discrete Gaussian distribution with a large standard
deviation. With the parameters specified in [5], we then have that ∥z∥ is significantly larger than λ1(Λ

⊥(X)).
This implies that there is a large amount of entropy left in z given t = Xtz. Also, this attack does not work
for the [5] scheme over Z, because in that case, the matrix X and hence the lattice Λ⊥(X) are not random
at all. Indeed, the kernel lattice is forced to be (y0 − y1)Zℓ, where y0 and y1 are the challenge vectors.
By assumption on the scheme, these challenge vectors are small. Put differently, in that setting, if we first
do (ℓ − 1) random queries, there does not exist y0 − y1 ̸= 0 short anymore that allows us to create a
non-trivial challenge phase. Finally, the attack does not work for the [4] scheme variant, because in that
case, the matrix X has much fewer columns than rows. This increases the dimension of Λ⊥(X) enough to
make λ1(Λ

⊥(X)) much smaller, and in particular smaller than ∥z∥.

5 Linear Functional Encryptions in Prime-Order Groups

As outlined in Section 3, our trace-and-revoke schemes are instantiated using different linear functional
encryption schemes. In this section, we give a construction of MMFE in the symmetric-key setting. For
n = 1, the MMFE construction reduces to IPFE . Due to space restraint, we omit the description of IPFE
and present the MMFE below. The point of interest being, the Dec in our MMFE (and in our IPFE) does
not compute the discrete log.

5.1 MMFE from Dk-matDH

We propose a construction of matrix multiplication functional encryption (MMFE) from Dk-matDH. Since,
the complete matrixM = (y1, . . . ,yn)

⊤ is available to Enc at once, our construction can reuse the randomness
for all yi ∈ Zℓp. This also allows the proof to be tightly reduced to Dk-matDH. For this, we require n matrices
W1, . . . ,Wn unlike IPFE from Dk-matDH that required only one. We emphasize that, similar to IPFE above,
MMFE also does not need to evaluate discrete logarithm algorithm.

• Setup(1λ, 1ℓ, 1n, p). Run (g,G) ← Ggen(1λ, p). Sample A ← Dk and W1, . . . , Wn ← Zℓ×kℓnp . Define
msk = (W1, . . . ,Wn) and pp = ([1]).
• KeyGen(pp,msk,x ∈ Zℓp). Set skx ← (x⊤W1, . . . ,x

⊤Wn,x).

• Enc(pp,msk,M = (y1, . . . ,yn)
⊤ ∈ Zn×ℓp ) proceeds as follows to encrypt the given vectors y1, . . . ,yn ∈ Zℓp.

Sample s← Zkℓnp . Set ctM ← ([s] , [y1 +W1s] , . . . , [yn +Wns]).

• Dec(pp, skx, ctM). Parse ctM = ([c0] , [c1] , . . . , [cn]). Return t = (t1, . . . , tn) where ti =
[
x⊤ci

]
·[skx · c0]−1.

The correctness is easy to verify.
We show a rough comparison of our scheme with [28] if their scheme was used for symmetric key settings

directly. Section 5.1 shows that the symmetric key variant resulted from hiding the public key of [28] has
bigger public parameters and bigger ciphertext i.e. contain more group elements than our scheme. On the
other hand, our secret key contains more elements from Zp. Both the schemes are proven secure under
same assumption Dk-matDH with constant degradation. We further compare the result for the SXDH based
instances which shows that their scheme outputs ciphertext that is 1.5 times bigger than us.

Security. Next, we argue the security of MMFE in the IND-CPA security model. Our construction is basically
a modification of [28] for symmetric-key settings. This improves upon the performance in terms of ciphertext
size and removes the usage of public parameters completely. Note that, this modification required us to argue
the security proof in a different manner. Although the overall proof strategy stayed more-or-less the same,
our proof presents a completely new proof for an essential lemma. We state the security theorem next and
give the proof.

18



Table 1. Comparison of naive application of [28] with our construction in symmetric-key settings. The sizes of pp
and ct are in number of group elements, whereas those of the sk column are in number of elements of Zp.

|pp| |sk| |ct| Degradation Assumption

[28]
k3(k + 1)ℓ2 + k2ℓ2 (k + 1)kℓ n((k + 1)kℓ+ ℓ) 4 Dk-matDH

2ℓ2 + ℓ2 2ℓ 3nℓ 4 SXDH

This work
1 kℓn2 kℓn+ ℓn k + 1 Dk-matDH
1 n2ℓ 2nℓ 2 SXDH

Theorem 8. For any adversary A of the construction MMFE in the IND-CPA security model that makes at
most qsk secret key queries (for qsk < ℓ) and qct challenge ciphertext queries in an interleaved manner, there
exists adversary C such that,

AdvIND-CPA
MMFE,A(λ) ≤ (k + 1) ·AdvDk-matDH

C (λ).

The proof is done by defining a hybrid argument of a sequence of games that begins with the real protocol
(called Game0) and ends with a so-called final game (called Game3) where the adversary has no advantage
at all. During the sequence, we use Xi to denote the event that the adversary has won Gamei.

– Game0. This is the real game. All secret key queries on x ∈ Zℓp are responded as the real game. For all

jth (such that j ∈ [1, qct]) ciphertext query on two matrices M
(0)
j ,M

(1)
j ∈ Zn×ℓp , the challenge ciphertext

returned is ct(β) ← MMFE .Enc(pp,msk,M
(β)
j ) for β ← {0, 1}. More precisely, the jth ciphertext query is

responded as,

sj ← Zkℓnp , [cj,0] = [sj ] , [cj,i] =
[
y
(β)
j,i +Wisj

]
for j ∈ [1, qct]. At the end, A outputs β′ ∈ {0, 1} and wins the game if β = β′.

– Game1. The response of the challenge queries are defined as following. For jth ciphertext query is made

on (M
(0)
j ,M

(1)
j ) where M

(b)
j = (y

(b)
j,1, . . . ,y

(b)
j,n)
⊤ for b ∈ {0, 1},

sj ← Zkℓnp , [cj,0] = [sj ] , [cj,i] =

y(β)
j,i +Wisj +

∑
ι∈[1,ϕi(j)]

u⊤vj,i,ι · zψi(ι),i


where u ← Zkp, zj,i = y

(1)
j,i − y

(0)
j,i , ϕi(j) = Rank(z1,i|| . . . ||zj,i), ψi(j) = min(ϕ−1i (j)), and vj,i,1,

. . . ,vj,i,ℓ ← Zkp where i ∈ [1, n] and j ∈ [1, qct]. In Lemma 1 we show that |Pr[X1] − Pr[X0]| ≤
AdvD2k,k-matDH(λ).

– Game2. The response of the challenge queries are defined as following. For jth ciphertext query is made

on (M
(0)
j ,M

(1)
j ) where M

(b)
j = (y

(b)
j,1, . . . ,y

(b)
j,n)
⊤ for b ∈ {0, 1},

sj ← Zkℓnp , [cj,0] = [sj ] , [cj,i] =

y(β)
j,i +Wisj +

∑
ι∈[1,ϕi(j)]

vj,i,ι · zψi(ι),i


where zj,i = y

(1)
j,i − y

(0)
j,i , ϕi(j) = Rank(z1,i|| . . . ||zj,i), ψi(j) = min(ϕ−1i (j)), and vj,i,1, . . . , vj,i,ℓ ← Zp

where i ∈ [1, n] and j ∈ [1, qct]. In Lemma 2 we show that |Pr[X2]− Pr[X1]| ≤ AdvDk-matDH′
(λ).

– Game3. Finally, we show that, the injected entropy is sufficient to hide β in the returned ciphertexts
completely. This is because, for any j ∈ [1, qct] and i ∈ [1, n],

∑
ι∈[1,ϕi(j)]

vj,i,ιzψi(ι),i is basically a random

vector in the span of {zψi(ι),i}ι∈[1,ϕi(j)]. Furthermore, by the definition of ϕ and ψ, {zψi(ι),i}ι∈[1,ϕi(j)] are
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the basis and therefore each zj,i ∈ Span({zψi(ι),i}ι∈[1,ϕi(j)]). Then,

y
(β)
j,i +Wisj +

∑
ι∈[1,ϕi(j)]

vj,i,ιzψi(ι),i = βzj,i + y
(0)
j,i +Wisj +

∑
ι∈[1,ϕi(j)]

vj,i,ιzψi(ι),i

≡ y
(0)
j,i +Wisj +

∑
ι∈[1,ϕi(j)]

vj,i,ιzψi(ι),i

As the ciphertext distribution stays the same as in Game2, Pr[X3] = Pr[X2].

Now, notice that, [cj,i] =
[
y
(β)
j,i +Wisj +

∑
ι∈[1,ϕi(j)]

vj,i,ιzψi(ι),i

]
hides β completely for all j ∈ [1, qct]

and i ∈ [1, n]. Thus Pr[X3] = 1/2.

To summarise,

AdvIND-CPA
MMFE,A(λ) ≤ |1/2− Pr[X0]|

= |Pr[X3]− Pr[X0]|
≤ |Pr[X3]− Pr[X2]|+ |Pr[X2]− Pr[X1]|+ |Pr[X1]− Pr[X0]|

≤ 0 + AdvD2k,k-matDH(λ) + AdvDk-matDH′
(λ)

≤ k ·AdvDk-matDH(λ) + AdvDk-matDH(λ)

(due to Section 2.5.3)

≤ (k + 1) ·AdvDk-matDH(λ)

.

Lemma 1. For any efficient adversary A that makes at most qsk secret key queries and at most qct ciphertext

queries, there exists a algorithm B such that |Pr[X1]− Pr[X0]| ≤ Adv
D2k,k-matDH
B (λ).

Proof. To simulate the game, we use a D2k,k-matDH (as described in Section 2.5.3) problem instance ([A] , [t])

where t =

(
Aw

Aw + δδδ

)
for w ∈ Zkp where δδδ = 0 or chosen uniformly random vector from Zkp. In fact, we

use random self-reducibility property to define qctnℓ many problem instances ([A] , [tj,i,ι]) for j ∈ [1, qct],
i ∈ [1, n] and ι ∈ [1, ℓ]. We use such problem instances to sample the W1, . . . ,Wn. First, we set

sj = (tj,1,1, . . . , tj,1,ℓ, . . . , tj,n,1, . . . , tj,n,ℓ)
⊤.

For all i ∈ [1, n], we then sample

Wi = W̃i +
∑

ι∈[1,ϕi(q)]

zψi(ι),iu
⊤T

[
0k×k(ℓ(i−1)+(ι−1))||Ik||0k×k((ℓ−ι)+ℓ(n−i))

]
where W̃i ← Zℓ×kℓnp , u← Zkp, T = A · (A)−1 and zj,i = y

(1)
j,i − y

(0)
j,i where i ∈ [1, n] and j ∈ [1, qct] for j

th

ciphertext query is made on (M
(0)
j ,M

(1)
j ) where Mb

j = (ybj,1, . . . ,y
b
j,n)
⊤ for b ∈ {0, 1}.

For all j ∈ [1, qsk], the j
th secret key query on xj , we respond with sk = (x⊤j W̃1, . . . ,x

⊤
j W̃i). Given jth

ciphertext query on (M
(0)
j ,M

(1)
j ) for j ∈ [1, qct], we respond with ([cj,0] , [cj,1] , . . . , [cj,n]) where cj,0 = sj

and for all i ∈ [1, n], cj,i = ybj,i + W̃isj +
∑
ι∈[1,ϕi(j)]

zψi(ι),iu
⊤tj,i,ι where ϕi(j) = Rank(z1,i|| . . . ||zj,i) and

ψi(j) = min(ϕ−1i (j)).

Firstly, observe that, the ciphertext generation uses z1,1, . . . , z1,n, . . . , zj,1, . . . , zj,n where zι,i = y
(1)
ι,i −y

(0)
ι,i

where i ∈ [1, n] and ι ∈ [1, j] i.e. each jth ciphertext is defined using already queried matrices (M
(0)
1 ,M

(1)
1 ),

. . . , (M
(0)
j ,M

(1)
j ). Moreover, x⊤Wi = x⊤W̃i for all i ∈ [1, n] as x⊤zj,i = 0 for all j ∈ [1, q] and therefore the

secret keys are simulated properly. We now show that the ciphertexts are also simulated properly.
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Wisj = W̃isj +
∑

ι∈[1,ϕi(q)]

zψi(ι),iu
⊤T

[
0k×k(ℓ(i−1)+(ι−1))||Ik||0k×k((ℓ−ι)+ℓ(n−i))

]
·



tj,1,1
...

tj,1,ℓ
...

tj,n,1
...

tj,n,ℓ


= W̃isj +

∑
ι∈[1,ϕi(j)]

zψi(ι),iu
⊤Ttj,i,ι

= W̃isj +
∑

ι∈[1,ϕi(j)]

zψi(ι),iu
⊤ · (A(A)−1) · (Awj,i,ι)

= W̃isj +
∑

ι∈[1,ϕi(j)]

zψi(ι),iu
⊤ · (Awj,i,ι)

≈ W̃isj +
∑

ι∈[1,ϕi(j)]

zψi(ι),iu
⊤tj,i,ι

Now, it is clear that if t ∈ Span(A), the simulation is identical to Game0 as tj,i,ι = Awj,i,ι for j ∈ [1, qct],
i ∈ [1, n] and ι ∈ [1, ℓ]. Otherwise, the simulation is identical to Game1.

Lemma 2. For any efficient adversary A that makes at most qsk secret key queries and at most qct ciphertext

queries, there exists a ppt algorithm B such that |Pr[X2]− Pr[X1]| ≤ AdvDk-matDH′

B (λ).

Proof. Here, B gets an Dk-matDH′ problem instance ([T] ,
[
v(δ)

]
) for δ ← {0, 1} where T ∈ Zk×mp , v(0) =

a⊤T and v(1) ← Z1×m
p (as described in Section 2.5.1) where a← Zkp. Note that here we set m = qctnℓ and

implicitly set u as a and set T =
[
t1,1,1 . . . tqct,n,ℓ

]
.

Given the problem instance, B chooses W1, . . . ,Wn ← Zℓ×kℓnp to define msk. Since, B knows msk com-

pletely, it can respond to the secret key queries on its own. On jth ciphertext query (M
(0)
j ,M

(1)
j ), B samples

sj ← Zkℓnp and defines the ciphertext as following:

cj,0 = [sj ]

cj,i =

Wisj +
∑

ι∈[1,ϕi(j)]

zψi(ι),iv
(δ)
j,i,ι + y

(β)
j,i

 (4)

for all i ∈ [1, n] where ϕ and ψ are defined as in the previous game. It is clear that the simulation is
distributionally consistent. Precisely, if

[
v(0)

]
is provided, the simulation is identical to Game1. Otherwise,

the simulation is identical to Game2. If A distinguishes between Game1 and Game2, B can distinguish
between

[
v(0)

]
and

[
v(1)

]
.
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A Single-Challenge Anonymous Security

In the Introduction, we informally discussed different practical scenarios involving the anonymity of revo-
cation set. The anonymity security model in Section 2.4.2 is a multi-challenge security model and captures
the security requirements of a typical broadcasting agency. However, the security definition is restrictive in
principle as all the revoked sets in anonymity challenge queries are related. In this section, we first give a
single-challenge security definition (IND-ID-CPA) for revocation set hiding. Being a single-challenge security
definition for symmetric-key settings, this new security definition (IND-ID-CPA) for revocation set hiding
supports multiple ciphertext queries along with multiple secret key queries and a single challenge anonymity
query.

The positive side of IND-ID-CPA is that in the security proof, we no longer put any restriction on the
revoked sets R across multiple ciphertext queries and challenge anonymity query. However, we still need to
impose some new security restrictions on the adversary here in terms of post-challenge secret key queries.
Precisely, we define IND-ID∗-CPA security that allows all pre-challenge queries (both key and ciphertext) and
all post-challenge ciphertext queries (satisfying the natural restriction). However, for post-challenge secret
key queries, IND-ID∗-CPA imposes a new restriction. In the literature, similar restriction has already been
put like “outsider corruption” in [17]. However, unlike [17] we can still support “insider corruption” (i.e.
post-challenge key queried on id ∈ R0 ∩ R1) completely and “outsider corruption” (i.e. post-challenge key
queried on id ∈ ID \ (R0 ∪ R1)) with some restriction. The restriction is a bit unusual in the sense, the
adversary is not allowed to make post-challenge secret key queries on id ∈ ID \ (R0 ∪ R1) for an id that
was a part of pre-challenge ciphertext query but was not queried for secret key in the pre-challenge query
phase. But, this is all we require to argue our construction TR0 is secure. Here, note that, TR0 being a
trace-and-revoke scheme with unbounded users, the set ID \ (R0 ∪ R1) is sufficiently big and the adversary
is restricted from making query on a small subset.

A.1 Security Definition

We first define the IND-ID-CPA security model and then weaken it to define IND-ID∗-CPA security. The
IND-ID-CPA security of a trace-and-revoke scheme TR is defined based on the following game.

• The challenger runs Setup(1λ, 1r, 1t) and gives the produced public parameter pp to the adversary A.
The adversary may ask the challenger to add polynomially many users in the system (these user addition
queries can be adaptive and take place at any time in the game). The challenger updates dir accordingly.
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• The adversary can adaptively make up to (r+t) secret key queries, polynomially many ciphertext queries
and a single anonymity challenge query, of the following form:
∗ Given a key generation query id, the challenger provides the corresponding skid to A.
∗ Given a ciphertext query (m,R) withR ⊂ ID of size≤ r, the challenger provides C ← Enc(pp,msk, dir,R,m)
to A.

∗ Given the challenge anonymity query (m,R0,R1) with R0,R1 ⊂ ID of size ≤ r, the challenger
samples β ← {0, 1} and provides C(β) ← Enc(pp,msk, dir,Rβ ,m) to A.

These queries are subject to the restriction that for every queried id, either id ∈ R0 ∩ R1 or id ∈
ID \ (R0 ∪ R1). Among all the key queries that have been made, at most t of them could be satisfying
id ∈ ID \ (R0 ∪R1) and at most r of them could be satisfying id ∈ R0 ∩R1.

• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the challenger. The adversary
wins this game if β = β′.

The advantage of the adversary A is defined as AdvIND-ID-CPA
TR,A = |Pr[β = β′]− 1/2|.

We then weaken the security model a small amount to define IND-ID∗-CPA security, which does not allow
post-challenge secret key queries on id ∈ ID \ (R0 ∪R1) for an id that was a part of pre-challenge ciphertext
query but was not queried for secret key in the pre-challenge query phase. A trace-and-revoke scheme TR is
said to be IND-ID∗-CPA secure if the advantage AdvIND-ID∗-CPA

TR,A is negligible for all ppt adversary A.

A.2 Security

Theorem 9. If IPFE is an IND-CPA secure inner product functional encryption scheme allowing up to
(t+ r − 1) key extraction queries, then TR0 is IND-ID∗-CPA secure.

Before we give the proof, we informally discuss the necessity of such unusual restriction of IND-ID∗-CPA
security. Note that, in TR0, for every id we assign a uniformly random vector xid. However, being a symmetric-
key trace-and-revoke, we define such an assignment on the fly when an id is referred for the first time. Thus, in
the post-challenge phase, we can say for all id in pre-challenge ciphertext queries, a corresponding xid vector
has already been assigned. With overwhelming probability, such xid /∈ RowSpan(Z) (see Equation (5).) This
then creates a distributional problem while simulation. To avoid such scenario, we impose the restriction
only on post-challenge “outsider corruption” queries not to include id for which (id,xid) relation has been
fixed but has not been queried for key extraction. We now give a formal proof of the theorem.

Proof. Let ATR0
be a ppt adversary that breaks the IND-ID∗-CPA security of TR0. Note that ATR0

is allowed
to corrupt at most t legitimate users and the ciphertext is created considering at most r revoked users. We
construct a ppt adversary AIPFE that breaks the IND-CPA security of the underlying IPFE .

• It first obtains the public parameter pp output by the IPFE challenger (who runs the IPFE .Setup(1λ, 1ℓ)
algorithm) and relays it to ATR0 . On ATR0 ’s request, the adversary AIPFE creates dir with polynomially
many (id,xid) pairs for xid ← Zℓp. It then sets up two empty dictionaries Qsk = {} and Qct = {}.
Informally speaking, Qsk contains all id for which key query have been/could be made and Qct contains
all id on which key query has not yet been made.
• When AIPFE receives a pre-challenge secret key query for id ∈ ID from ATR0 , it proceeds as follows:

∗ If id ∈ Qct, it updates Qsk[id] = Qct[id] and removes the id entry from Qct.
∗ If id /∈ Qsk, it samples xid ← Zℓp and sets Qsk[id] = xid.
∗ If id ∈ Qsk, it sets xid = Qsk[id].
∗ It then sends xid to the IPFE challenger. The latter returns skxid

, which AIPFE forwards to ATR0
as

skid.

• When AIPFE receives a ciphertext query on (m,R), it proceeds as follows:
∗ For all id ∈ R\ ((R∩Qsk.vals())∪ (R∩Qct.vals())), it samples xid ← Zℓp and then adds Qct[id] = xid.

∗ It samples vR ← X⊥ where X = {xid : id ∈ R} ⊆ Qsk.vals() ∪Qct.vals().
∗ It sends y = m ·vR to the IPFE challenger. The latter returns cty, which AIPFE forwards to ATR0

as
the ciphertext response ctR.
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• When AIPFE receives ATR0 ’s challenge query on (m,R0,R1), it proceeds as follows:
1. First, it sets QidR = {id : id ∈ Qct \ (R0 ∪R1)}.
2. Then it defines R̂0 = R0 \ R1, R̂ = R0 ∩R1 and R̂1 = R1 \ R0.
3. For all id ∈ R̂ \Qsk,
• If id /∈ Qct, it samples xid ← Zℓp and updates Qsk[id] = xid.
• Otherwise, it updates Qsk[id] = Qct[id] and removes the id entry from Qct.

4. Then it defines Z = Matrix((Qsk.vals()\R̂)⊔T ) where T = {xid ← Zℓp} is of size t−|(Qsk.vals()\R̂)|.
5. For all id ∈ (R̂0 \Qct.vals()) ∪ (R̂1 \Qct.vals()), it samples xid ← Zℓp and updates Qsk[id] = xid.
6. It sets X0 = Matrix({xid : id ∈ R0 ∩ (Qsk.vals() ∪ Qct.vals())}) and X1 = Matrix({xid : id ∈ R1 ∩

(Qsk.vals() ∪Qct.vals())}).

7. It samples

(
vR0

vR1

)
← V⊥ for

V =

 Z −Z
X0 0
0 X1

. (5)

8. It sends yR0 = m · vR0 and yR1 = m · vR1 to the IPFE challenger who samples β ← {0, 1} and
encrypts yRβ

as ct(β) ← IPFE .Enc(pp,msk,yRβ
) and outputs ct(β).

9. AIPFE then forwards the received ciphertext to ATR0
as its challenge C(β).

• ATR0
can make queries for secret key on id ∈ ID and for ciphertext queries on R.

∗ For all post-challenge key queries on id, AIPFE does the following:
1. If id ∈ R0 ∩R1, it retrieves xid = Qsk[id].
2. If id /∈ R0 ∪R1, if id /∈ Qsk, it samples xid ← RowSpan(Z) and sets Qsk[id] = xid.
3. It then sends xid to the challenger who returns skxid

which AIPFE forwards to ATR0 as skid.
∗ For all ciphertext queries on (m,R), AIPFE does the following:

1. For all id ∈ R\((R∩Qsk.vals())∪(R∩Qct.vals())), it samples xid ← Zℓp and then adds Qct[id] = xid.

2. It samples vR ← X⊥ where X = {xid : id ∈ R}.
3. Sends y = m·vR to the challenger who returns cty whichAIPFE forwards toATR0

as the ciphertext
response ctR.

• Finally, adversary ATR0
outputs its guess β′ ∈ {0, 1} and AIPFE also outputs β′ as its own guess of β.

From Equation (5), Z(vR0
− vR1

) = 0, X0vR0
= 0 and X1vR1

= 0. As yRj
∈ Span(vRj

) for j ∈ {0, 1},
Z(yR1

− yR0
) = 0 and X0yR0

= X1yR1
= 0. As a result, for any xid ∈ RowSpan(Z), x⊤id(yR1

− yR0
) = 0.

Thus, AIPFE behaves as a valid adversary in the IND-ID∗-CPA security model.
Firstly, note that, ATR0 gets encryption of either yR0 or yR1 where both the vectors are randomly

sampled. Thus, from the point of view of ATR0 , ZyRb
is a random vector. Then, we show that ATR0 sees

xid purely random even though xid is sampled randomly from RowSpan(Z). This follows from the fact that
ATR0

has access to all purely random vectors xid ← Zℓp for id ∈ R̂. Thus, from the point of view of ATR0
, it

has access to |R̂| basis vectors of Zℓp and the space Zℓp is left with entropy of (ℓ − |R̂|) basis vectors where

ℓ−|R̂| > t. As ATR0
gets at most t samples of xid ← RowSpan(Z), it sees xid identically distributed to vectors

chosen uniformly random from Zℓp. The ciphertext and the secret keys are already properly distributed since
AIPFE has forwarded the reply of IPFE challenger. This shows that AIPFE behaves as a valid challenger in the
IND-ID∗-CPA security model.

If ATR0
can distinguish between R0 and R1, AIPFE can distinguish between yR0

and yR1
. Thus, the

advantage of AIPFE is exactly the same as the advantage of ATR0
.
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