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Abstract—We consider finding as many faults as possible on
the target device in the laser fault injection security evaluation.
Since the search space is large, we require efficient search
methods. Recently, an evolutionary approach using a memetic
algorithm was proposed and shown to find more interesting
parameter combinations than random search, which is commonly
used. Unfortunately, once a variation on the bench or target
is introduced, the process must be repeated to find suitable
parameter combinations anew.

To negate the effect of variation, we propose a novel method
combining a memetic algorithm with a machine learning ap-
proach called a decision tree. Our approach improves the
memetic algorithm by using prior knowledge of the target
introduced in the initial phase of the memetic algorithm. In our
experiments, the decision tree rules enhance the performance
of the memetic algorithm by finding more interesting faults in
different samples of the same target. Our approach shows more
than two orders of magnitude better performance than random
search and up to 60% better performance than previous state-of-
the-art results with a memetic algorithm. Another advantage of
our approach is human-readable rules, allowing the first insights
into the explainability of target characterization for laser fault
injection.
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I. INTRODUCTION

A secure device should be designed so that as little as
possible secret information can leak to an attacker. Even if
the algorithms (e.g., cryptographic algorithms) running on the
device are mathematically secure, it does not mean the attacks
are impossible. One well-known and powerful category of the
attacks is called the implementation attacks, which aim at
the weaknesses of the implementation and not the algorithms
themselves. Two common implementation attacks are side-
channel attacks (SCAs) and fault injection (FI) attacks. Side-
channel attacks are passive, and the attacker tries to obtain
some side-channel information from the execution on the
hardware, such as time [10], power consumption [9], and
electromagnetic radiation [26]. From this information, it is
possible to obtain secret information. Fault injection attacks
are active attacks where the attacker tries to force the device to
make errors during its execution. This way, the adversary could
reach some malicious goal, like passing the authentication
or obtaining secret information from the target device. Both
implementation attacks are prevalent in security evaluations

but can be challenging to deploy in practice.
This work focuses on laser fault injections (LFI), as in-

troduced by Skorobogatov et al. [27]. Laser fault injections
are very powerful as they provide high precision for injecting
faults by producing single-bit faults [6]. However, multiple
parameters define the laser injections, such as location on
the device (x and y coordinates), distance from the device
to the microscope lens, lasers settings like intensity, delay,
and pulse width. The attacker’s goal is to find the parameters
that lead to successful fault injection causing the device to
skip instructions, change values in memory, etc. Afterward,
the attackers can use various techniques, e.g., differential fault
analysis (DFA) [1] to reach their malicious goals.

As mentioned, there are many parameters to be defined and
many possibilities to consider. Consequently, the search space
is large, and finding exploitable faults is difficult, making this
attack challenging to perform. While an exhaustive search is
commonly not reasonable, the location on the target is often
searched in a grid-like manner using the same laser settings.
The laser settings are usually based on previous experience,
which might be lacking if the target or the bench is new.
This process is often time-consuming, so a random search
is applied as an alternative. However, both approaches could
miss interesting parameter sets that lead to faults. Additionally,
there is a problem with the transferability of the results in fault
injection attacks [30], [22]. Results obtained with one setup
are not necessarily easily reproduced on another, and changing
the target can cause changes in the optimal parameters for the
injection. Thus, the attackers need to repeat the same process
of finding the optimal parameters for every change, increasing
the difficulty of a successful FI.

There is a need for better, automated approaches to ef-
ficiently search the parameter space for FI. Evolutionary
algorithms were proposed for laser fault injections [11], as well
as other types of injections such as voltage glitching [4], [21],
[20] and electromagnetic fault injection [14] since laser fault
injections are not the only type of injections suffering from the
previously described issues. Methods applied are either genetic
algorithm (GA) or memetic algorithm (MA), which combines
a genetic algorithm with local search. Besides evolutionary
approach, hyperparameter optimization techniques [29] and
reinforcement learning [17] were also investigated. Addition-
ally, for laser injections, machine learning (ML) was used



in the fast characterization method proposed in [30]. The
authors generate a sensitivity curve and use neural networks
(multilayer perceptron) to predict the target’s behavior from
the obtained data of the sensitivity curve. The authors also
discuss the transferability issue and test their method on
different samples of the same target.

In this work, we focus on the security evaluation process.
We aim to find as many fault injection settings where the
device does not behave as expected. At the same time, we do
not consider exploiting the obtained faults with any specific
attack. We start from the memetic algorithm for the LFI
presented in [11] since it provides state-of-the-art results to
the best of our knowledge. Then, we use the concept of
prior knowledge to enhance the algorithm performance further
and, consequently, find more faults. Our approach combines
machine learning and a memetic algorithm where we use
decision trees (DTs) to extract knowledge about the target’s
behavior and use it in the initialization phase of the MA.
Our main contributions are:

• We develop an approach to increase the number of desired
outcomes in the initial population (i.e., parameters that
lead to faults), which helps the memetic algorithm find
more faults with less tested parameters. The improvement
happens because the algorithm can distinguish between
desired and other outcomes from the first iteration and
learn from already found parameter sets. At the same
time, the process is more efficient than running a memetic
algorithm for more iterations as it can easily get stuck in
specific regions of search space. Our results show that we
can improve the efficiency of the search process by up to
60%.

• Our approach allows us to tackle the transferability is-
sue. Changing the setup or the target requires repeating
exploration of the search space to find faults. However, if
the same target type is used, and we only change differ-
ent samples of the same target while keeping (almost)
the same bench setup, an intuitive assumption is that
the resulting parameters should be (mostly) transferable.
Indeed, minor differences in hardware introduced during
the production or preparation of the target for conducting
the laser injection (mechanical thinning of the backside
silicon substrate) could be negligible for the LFI trans-
ferability. We test this assumption using our approach on
1) different samples of the same target and 2) slightly
modified bench setups. We observe that prior knowledge
is transferable and helps characterize the target more
efficiently.

• As the decision tree outputs rules, we provide the initial
results on the explainability of fault injection target
characterization.

II. BACKGROUND

A. Decision Tree (DT)

The decision tree is a supervised machine learning technique
for classification and regression problems. More specifically, it
is a tree-based technique in which any path starting at the root
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Decision tree example
x: categorical variable with possible
values {A, B, C} 
y: continuous variable 
target: classification with possible
labels {Class1, Class2, Class3}

Fig. 1: Decision tree example. A possible structure of a binary
decision tree is shown with different node types - root node,
internal node, and leaf node. There are examples of conditions
for both categorical variable x and continuous numeric variable
y. The example has three classes visible in the leaf nodes.

node separates data based on specific criteria in the internal
nodes (also called decision nodes) until the outcome in the
leaf node is reached. An example of a decision tree is given
in Figure 1, where the mentioned nodes are distinguished.
We consider a classification problem with two features and
three target classes, and this example demonstrates how the
conditions can be expressed for categorical and continuous
numeric variables. Decision trees are easier to understand
than, for example, Artificial Neural Networks (ANNs) because
of their tree-like structure that mimics the human decision-
making process and the rules generated from these trees. The
rules are often structured as if-then statements.

Decision tree learning is done by finding the best set of
conditions based on the features’ values in the training data
to split the datasets into subsets of instances corresponding to
one (dominant) target outcome (class/label). There are many
algorithms proposed on how trees can be constructed. Several
surveys [3], [5], [12] discuss different decision tree algorithms,
such as Iterative Dichotomies 3 (ID3) [23], successor of ID3
- C4.5 [24], an extension of C4.5 algorithm - C5.0 algo-
rithm [25], Classification And Regression Tree (CART) [2],
CHi-squared Automatic Interaction Detector (CHAID) [8], and
Quick, Unbiased and Efficient Statistical Tree (QUEST) [13].
Of the mentioned algorithms, the most popular and successful
are C4.5, C5.0, and CART. However, C5.0 is not publicly
available. Between C4.5 and CART, based on the perfor-
mance, there is no superior one, so we use CART as the
implementation is easier to integrate. We first describe the
general procedure and mention the differences between various
proposed learning algorithms.

The decision tree learning algorithm starts with a collection
of samples described by a specific number of input features.
Each instance has a particular outcome (target): a numeric
value for regression or a class/label for classification. Since



we consider a classification problem where we predict fault
classes based on the laser fault injection parameters, we
further explain the decision tree learning process considering a
classification problem. We aim to have pure subsets of samples
in the decision tree, where pure means that all the instances
in the subset belong to one specific target class. The learning
algorithm selects the conditions by evaluating the resulting
subsets. The idea is to lower the impurity of the subsets with
each split until the subsets become pure. The internal nodes
represent the conditions over the feature values, and each
branch from that node is either one possible value of that
feature or a subset of those values. A few examples of different
types of conditions are visible in Figure 1. The branches lead
to other internal nodes with different conditions over the input
features or leaf nodes. Leaf nodes represent the target classes
or a probability distribution over the target classes. Passing
the internal node conditions and reaching the leaf node, the
data sample gets classified as the specific class indicated by
the leaf node. The goal for classification trees is to arrive at
different classes with the least number of splits and the lowest
misclassification error rates. However, there are trade-offs to
be considered to avoid overfitting to training data that causes
the model to generalize poorly.

The difference in the many proposed learning algorithms
is how they measure which split is better and which feature
and its corresponding value should be used to separate the
dataset in the best way. Another difference is how many
branches can exist from a condition: only two (binary) or
multiple partitions. For multiple partitions, a good example is
a categorical variable. If a categorical variable has only three
possible values, the condition could have three branches, each
corresponding to one of the variable’s values. Splitting the
dataset is done when the subset at a node is pure or splitting
no longer improves the prediction performance. Additionally,
the learning algorithm can stop if, for example, the tree reaches
a defined maximum depth or a minimal number of samples
for the split.

CART Learning Algorithm: The CART algorithm supports
classification and regression problems. Decision trees created
by the CART algorithm are binary trees, meaning that the
node branches in only two subtrees. For numeric feature A,
the internal node criteria are defined as A ≤ h,A > h, where
the threshold h is found by sorting the values of feature A
and then choosing the split between successive values that are
best depending on the criterion utilized. The midpoint between
two consecutive values is selected in CART as the threshold.
For categorical values, the conditions are all subsets from the
possible set of categorical values. Different algorithms use
different measures to select the condition in the internal nodes.
CART originally proposed a Gini index for the splitting mea-
sure, also known as Gini impurity. The Gini index measures
how often a randomly chosen sample from the set would be
incorrectly classified. If Gini is 0, it expresses the purity of
classification, i.e., all elements belong to a specified class.
If Gini is 1, it indicates the random distribution of elements
across various classes, and 0.5 shows an equal distribution of

samples for all classes. On the other hand, Information Gain is
calculated by subtracting the weighted entropy of each child
node from the parent node, where entropy is a measure of
impurity or randomness in the data points. Since the process
continues until each subset contains samples of the same
class or the splits no longer offer improvement, the resulting
tree can often be very large and complex. Additionally, the
generalization ability of such a tree beyond the training data
might be poor. Thus, the CART includes pruning of the
trees. The idea is to remove subtrees that do not contribute
to the classification accuracy of unseen data. The pruning
in CART is done from the bottom of the tree, examining
each subtree. If replacing the subtree with a leaf or its most
frequently used branch leads to a lower prediction error rate,
the tree is pruned accordingly. We use the CART algorithm
implemented in the Python package scikit-learn [19]. The
scikit-learn implementation of the CART algorithm uses the
total sample weighted impurity of the terminal nodes instead
of estimating the prediction error rate. The impurity of a node
depends on the criterion used. This way, there is no need for
a test dataset for estimating the misclassification rate.

B. Memetic Algorithm (MA)

A memetic algorithm consists of a population-based search
and a local search for some individuals [18]. The population-
based search, in our case, is a genetic algorithm (GA), where
the population is a set of solutions for the optimization prob-
lem. For each specific optimization problem, there is a particu-
lar solution representation. Once the solution representation is
defined, the algorithm generates the initial population using an
initialization procedure. Usually, the initialization procedure is
random sampling. Then, the algorithm uses the GA operators.
First, the individuals from the population get selected by a
selection operator. The selection determines which solutions
produce offspring. The fitness function samples the population
to allocate the parent solutions. Fitness is a relative measure
of how good solution A is compared to the rest of the current
population or a different solution B. Usually, solutions with
better fitness are selected as parents, reasoning that these solu-
tions have “better genes”. After selecting the parent solutions,
the parents’ genes are recombined in the crossover operator.
Created offspring can then be modified using the mutation
operator. The mutation operator introduces new variations in
the solutions and thus the population. Mutation can be done
by randomly changing some of the genes in the solutions
or replacing an offspring with a completely new solution. A
commonly used mechanism is elitism, where one or more best
solutions from the current generation are placed directly into
the next population. This mechanism ensures that the optimal
solution will not be lost in the following generations once it is
found. Before starting a new iteration, a portion of solutions
is selected for the local improvements. A good option for the
local search is the Hooke-Jeeves algorithm, an optimization
algorithm that does not require derivatives of the objective
function [7]. This algorithm in the context of FI is explained
in [11].



III. PROPOSED METHOD

Our proposed method combines the explained decision trees
and the current state-of-the-art memetic algorithm. The MA
we use is an existing implementation described in [11]. The
representation of the laser fault injection solution is an array
of numbers indicating laser fault injection parameters - x,
y, trigger delay, laser pulse width, and intensity. The user
sets the bounds for these parameters that can be used in the
algorithm. The algorithm starts with the initial population, cre-
ated by an initialization method. In [11], the authors explored
different initialization methods. As no specific one achieved
significantly better results than the usual random sampling,
we keep it as the initialization method for MA to compare
with the newly proposed approach. The difference in the new
approach is in the initialization method. We propose to use
decision tree rules for initializing the population. We perform
a campaign with laser fault injections on a specific target to
obtain the data. We can then analyze the acquired data to
determine what parameters caused fail responses vs. the other
responses. We utilize the decision tree algorithm to learn when
we obtain each fault class depending on the parameters. That
is a classification problem, as our labels are categorical values
pass, mute, fail, and changing. These are the names of fault
classes that correspond to a specific device response, and more
details can be found in Section IV-A. The input features are
the five LFI parameters. The trained model can be used to
predict the behavior of the target on parameter combinations
that were not tested. Additionally, we can use it to analyze
what parameters are more relevant for achieving fail responses
if there are such. We, however, use the model to improve
performance when conducting another campaign on a different
integrated circuit (IC). Specifically, we test the approach on
transferability between different samples of the same target.

Since the decision trees can be easily translated to if-then
rules, we can acquire rules for the fail fault class. We select
a trained model and traverse the decision tree to extract paths
where the leaf nodes are fail classes. Since the paths contain
conditions on the different parameters, we get intervals for
the parameters that lead to fail classes based on the model.
We denote the combination of the intervals for parameters
from one path in the tree as a rule. After we obtain the rules
for the fail class, we apply them to initialize the memetic
algorithm’s population. We use only a maximum of 25 rules
with the highest number of classified fail examples as our
initial exploration gave good results with this number. The
limit can be further investigated for an even better choice.
To create one solution for the population, we first select one
rule if there are many. The probability of selecting a rule is
proportional to the number of fail examples classified by the
rule. Since the rule defines the parameters’ intervals, we select
the parameter value uniformly at random from the defined
intervals. Each solution can be created from a different rule,
and the whole population is built in the same manner.

One could argue that this might reduce the exploration
ability of the memetic algorithm. However, since the MA

operators (crossover and mutation) are not modified to use
the prior knowledge, the algorithm can still explore outside
initial solutions and exploit the “head start”.

The rest of the memetic algorithm in the proposed methods
remains the same as in [11], except for the crossover operator.
Instead of using the average crossover, we use a uniform
crossover. With uniform crossover, values for the child so-
lution are taken randomly from the two selected parents, and
the probability is equal for both parents’ parameter values.
Compared to the average crossover that calculates the mean
for all parents’ parameters and leads to one specific child every
time, the uniform crossover can create more different children
with the same parents. That leads to more possibilities which
can lead to better results sooner.

The evaluation includes performing the laser shots and ac-
quiring the devices’ responses. The responses are categorized
into fault classes - pass, mute, and fail. Each parameter set is
tested several times, so if multiple fault classes appear with
the same solution, the class for that parameter combination
is changing. The MA does not work directly with these fault
classes. We use a fitness value, which is given to each fault
class. The fitness values for the pass, mute, and fail, taken
from [14], are 2, 5, and 10, respectively. The values display the
preference of the fault classes, where the fail class, being the
desired one, has the highest fitness value. As in [11], the fitness
of the changing class is calculated as fP ·NP+fM ·NM+fF ·NF

NP+NM+NF
,

where fP , fM , and fF represent the fitness values for fault
classes pass, mute, and fail, respectively. NP , NM , and NF

represent the number of times the pass, mute, and fail class
occurred out of the number of measurements for a specific
parameter set. The sum of NP , NM , and NF is the number
of measurements per parameter set.

The number of solutions taken for local search can vary, and,
based on the improvements during it, the number of tested
parameters can be different in each iteration. Additionally,
MA keeps the tested solutions in a list to avoid repeating the
measurements. Thus, if the algorithm creates the same solution
already tested, we do not execute the laser injection again
but return the previous result. That explains the variations in
the number of tested parameters we display in different tables
throughout the paper.

IV. EXPERIMENTAL SETUP

A. Targets

We use products from STMicroelectronics. Due to con-
fidentiality reasons, we cannot disclose the details of the
targets and the utilized laser bench. Information about the
laser bench might inform possible malicious attackers on what
kind of bench they could use to attack the products. Utilized
integrated circuits (ICs) are constructed with 40nm technology,
and all went through a mechanical thinning process before
the experiments as part of the preparation for conducting
laser injections. Along with differences introduced during
the hardware production, thinning of the backside silicon
substrate can also affect differences in device sensitivity to
laser injections. However, as mentioned, the assumption is



that these differences are negligible. The code running on the
target device is a test program where data words are loaded
from the non-volatile memory (NVM) into a register. Its
implementation is in the C programming language displayed
in Pseudocode 1. The trigger event function is a monitored
event that is used to inject faults at the desired time - on
loading a data word into a register (marked with a comment
in Pseudocode 1). After the fault injection, the register is read,
and there is a fault if the register value has changed (fault class
fail). If there is no response from the device, we categorize
this as a fault class mute, and if the laser injection does not
modify the data, the fault class is pass.

Pseudocode 1: Pseudocode of the program running on the
target devices.

. . .
t r i g g e r e v e n t ( )
l o a d r e g i s t e r ( ) / / i n j e c t i o n here
r e a d r e g i s t e r ( )
. . .

We optimize the following five parameters - x, y, delay, laser
pulse width, and intensity. These parameters are often used
in literature and practice during a security evaluation. We
use a subset of the available values for each of the five
parameters, defined according to the known layout. While we
cannot share the parameter intervals as they are specific to the
product and laser bench, we note that there are 305 017 650
possible combinations of the parameter values. Thus, search
optimization is highly relevant as the exhaustive search with
the utilized subset of possible values would take around 529
days if we consider that one laser shot takes ≈ 0.15 seconds.
Additionally, since we perform the laser shot several times
with the same parameters, this would increase the necessary
time to perform the exhaustive search.

B. Experimental Process

We use three samples of the same target in our experiments,
referring to them as IC1, IC2, and IC3. IC1 is an integrated
circuit for obtaining the decision trees’ training and test data.
One training dataset is obtained from the memetic algorithm
with random sampling for initialization and another from a
random search. The random search is defined to test 50 000
different examples. We train different decision tree models on
the memetic algorithm (MA) and random search (RS) data.
To test the models, we use prediction performance, and to
calculate it, we need test data. Test data is again obtained
from the IC1 using a random search with 5 920 examples and
a search we refer to as the fast grid search (FGS). The FGS
uses the same bounds for x and y as other algorithms, but
the laser settings are fixed. The values of the laser settings
are defined based on the most often values for fail class
from the initial experiments on IC1 using a MA with random
initialization. We also defined the number of parameter sets for
the random search based on the same experiments where we
tested on average 5 917.4 different parameter combinations.
Later, we apply the memetic algorithm with the DT models,

trained on data from IC1, for campaigns on IC2 and IC3.
We investigate if we can use the knowledge from IC1 on
IC2 and IC3 to improve the memetic algorithms’ performance
and test how well the obtained knowledge transfers between
different samples. Additionally, we make changes to the bench
setup while changing the ICs. The laser focus is less sharp for
experiments on IC2 but was again improved for experiments
on IC3. Additionally, for the experiments on IC3, we change
the bench setup to lose less power from the laser source to
the target. These changes have the most effect on the laser
intensity parameter.

C. Memetic Algorithm Hyperparameters

For the memetic algorithm, we use a maximum number of
iterations of 100 as the stopping criterion since our exper-
iments indicate that this is sufficient to reach convergence.
We perform five measurements with the same parameter
combination, which means we conduct five laser shots per
parameter combination. This way, we can obtain different
responses categorized as a changing fault class. We use a
population of size 100, with an elite size of 10. Thus, the ten
best solutions from the population are transferred to another
generation without changes. Lastly, the mutation probability is
0.05. These hyperparameters stay the same in our experiments
and are decided based on the preliminary investigations and
information from previous work [11].

D. Decision Tree Hyperparameters

The scikit-learn implementation of CART has many DT
hyperparameters, but we only used some to obtain models for
comparison as many are not independent. The hyperparameters
we chose to test and the specific values used are in Table I.
First, the criterion hyperparameter is the function to measure

TABLE I: Decision tree hyperparameters with values used in
our experiments. All combinations of listed values are tested.
For the numerical hyperparameters, the interval is inclusive,
and the step size is mentioned next to the interval.

Hyperparameter Values
criterion {‘gini’, ‘entropy’}
splitter {‘best’, ‘random’}
min samples split [2, 42], step = 4
ccp alpha [0, 0.020], step = 0.005
class weight {None, ‘balanced’}
balance data {True, False}

the quality of the split. The first option is ‘gini’ for Gini
impurity, and the other is ‘entropy’ for Information Gain.
Next is the splitter, a strategy to choose the split at each
node. Options are either the ‘best’ or the ‘random’ split.
Then, min samples split that indicates the minimum number
of samples required to split an internal node that by default
is 2. ccp alpha is a hyperparameter used for minimal cost-
complexity pruning, but by default, no pruning is performed,
and the value is 0. The intervals for the min samples split
and ccp alpha are defined based on the empirical study [16],
[15], where the authors used a package rpart written in R



programming language1 [28] for implementation of the CART
algorithm. From their results, most values selected by the
optimization techniques for the pruning hyperparameter were
in the range 0 to 0.02. For the minimum number of instances
necessary for a split to be attempted, most of the values
were below 40. We note that the authors also considered the
minimum number of samples in a leaf and the maximum
depth of any node in the tree called min samples leaf and
max depth in scikit-learn implementation, respectively. How-
ever, we do not experiment with these two hyperparameters.
The min samples leaf was mostly below 10, and the number
of models with a certain max depth value was increasing
with a larger max depth value. Thus, we keep the default
value of 1 for the minimum number of samples in a leaf
and enable the tree to grow until all leaves are pure or
contain less than min samples split (default for max depth).
These two hyperparameters can regulate overfitting, but the
min samples split and ccp alpha for pruning do the same.
Additionally, the scikit-learn has a slightly different pruning
method, so we kept the ccp alpha hyperparameter. Since there
is an imbalance in the training set because there is usually a
majority of pass classes compared to all others, we included
the class weight hyperparameter. The ‘balanced’ mode adjusts
weights inversely proportional to class frequencies in the input
data, and by default, with None, all classes have the weight
one. We also included an option to balance the training dataset,
which is not part of the scikit-learn implementation, but we
added it to Table I. The method for balancing the dataset
finds the class with the least number of samples and then
randomly samples the exact number of samples for all other
classes (random undersampling). Other hyperparameters from
the scikit-learn implementation that are not mentioned in the
table are kept at default values. We train 880 decision tree
models based on the described hyperparameter combinations.
Each model is trained ten times because of the randomness in
the algorithm.

V. EXPERIMENTAL RESULTS

A. Comparison of Different ICs with a Fast Grid and Random
Search

We execute a fast grid search where the bounds for x and
y are the same as in other experiments, but we use a large
step to test the whole area with a grid search rather fast.
Laser settings are fixed based on the memetic algorithm results
conducted on IC1. From the memetic algorithm, we analyzed
the results and found the most often values for the delay,
pulse width, and intensity with fail class and used them for
FGS. We conducted the same search with identical parameter
combinations on all three ICs, and the results are provided in
Table II. Similarly, we conduct a random search on all three
ICs with the same bounds for all the parameters. We perform
only one random search on each IC, and the results are shown
in Table III. From both experiments with fast grid and random
search, we get most fails on IC3. Recall that we have changed

1https://cran.r-project.org/web/packages/rpart/index.html

TABLE II: Fast grid search with 12 350 tested parameters on
different ICs.

Fast Grid Search (1 run) IC1 IC2 IC3

Tested combinations 12 350 12 350 12 350
fail 9 (0.07%) 0 (0%) 33 (0.27%)
changing 87 (0.7%) 14 (0.11%) 154 (1.25%)
mute 43 (0.35%) 0 (0%) 126 (1.02%)
pass 12 211 (98.87%) 12 336 (99.89%) 12 037 (97.47%)

the bench setup slightly between experiments with each target
sample, as described before. Considering the changes on the

TABLE III: Random search with 5 920 tested parameters on
different ICs.

Random Search (1 run) IC1 IC2 IC3

Tested combinations 5 920 5 920 5 920
fail 7 (0.12%) 3 (0.05%) 19 (0.32%)
changing 74 (1.25%) 27 (0.46%) 66 (1.11%)
mute 43 (0.73%) 12 (0.2%) 99 (1.67%)
pass 5 796 (97.91%) 5 878 (99.29%) 5 736 (96.89%)

bench, the differences between the fault class distributions
seem reasonable. With a worse focus on IC2 compared to
IC1, we have fewer discovered fails, while with the improved
setup on IC3, we have ≈ 3.7 times more fails with fast grid
search and ≈ 2.7 times more fails with the random search.

B. Training and Testing Datasets

In our approach with decision trees, we first need a training
dataset. The training dataset, in our case, is the data from
IC1. We create two datasets. First, we have a dataset acquired
with a random search. The difference from the random search
shown in Table III is that we execute the random search
to test 50 000 unique five-parameter combinations instead of
5 920. The other training dataset comes from the experiments
using the memetic algorithm with random initialization. The
memetic algorithm is executed ten times to obtain ten inde-
pendent results (runs). In total, with the memetic algorithm,
we obtain 61 107 unique five-parameter combinations. The
described training datasets can be seen in Table IV, showing
the fault class distributions for both datasets. In both datasets,
the number of instances for the fail fault class is low, but
in total, with MA, we have ≈ 3 600 fail examples, and with
random search, only 58. Thus, with the random search, the
pass class is dominant as 98.53% of examples belong to the
pass class while, with MA, 82.08% belong to the pass class.
This might cause the classifier to ignore the classes with few
instances, as predicting only the dominant class can still give
high prediction accuracy. However, we include the MA data
as another training dataset as there are more examples of fail
class. Note that our results confirm observations from [11] that
the memetic algorithm works better than random search.

We must define a way to evaluate the models trained on
the datasets. The idea is to use the prediction performance of
the decision tree models to evaluate how well these models
would perform and improve the memetic algorithm when
used in the initialization. We need test data different from

https://cran.r-project.org/web/packages/rpart/index.html


TABLE IV: Training data on IC1: memetic algorithm (MA)
with random initialization and random search (RS). The num-
bers present an average value over ten runs for MA and one
run for RS.

Training data MA with Random Initializa-
tion (10 runs)

Random Search (1 run)

Tested combinations 6 150.5 50 000
fail 366.5 (6.12%) 58 (0.12%)
changing 548.6 (8.92%) 451 (0.9%)
mute 182.6 (2.89%) 226 (0.45%)
pass 5 052.8 (82.08%) 49 265 (98.53%)

the training data (unseen examples) for predictions. In our
case, we are interested in how well the model trained on
IC1 predicts the fault classes on other ICs. However, since
we want to use the proposed approach on other ICs without
acquiring their campaign data, we also use IC1 for the test
dataset. The test datasets are results from the fast grid search
(FGS) and random search (RS) conducted on IC1, presented
in Tables II and III, respectively. Therefore, this random
search is another campaign with the same algorithm (random
sampling) as the training data (Table IV) but with fewer tested
combinations. We can see that the distribution of fault classes
in the experiments with the random search for training and
test are similar. Thus, we expect the models trained on random
search data to perform well on the random search test data.
On the other hand, since the data from FGS is very different
from both training datasets, it might be more challenging for
these models to predict correctly on the FGS test dataset.

C. Training the Models and their Prediction Performance

After we prepare the training and test datasets, we train 880
different decision tree models by applying different hyperpa-
rameters of the decision tree. In Table I, we report values for
all the hyperparameters we tested. Each combination of the
hyperparameters is tested ten times, and then we calculate the
average of the metrics from the predictions on test datasets to
assess the performance. Additionally, we train the DT models
separately on random search (RS) data and memetic algorithm
(MA) data. We do not consider fast grid search for training as
it only has data for one combination of laser settings, and in
total, there are only 12 350 data points for learning.

As mentioned, the pass class is the dominant class based
on the number of examples per class. For this reason, we
investigate different classification metrics prevalent in machine
learning. Usually, accuracy is used, but with imbalanced data
such as ours, one could use recall, precision, or f1 score.
In multi-class classification, the metrics precision, recall, and
f1 score are calculated for each class. However, in our work,
we focus on the fail responses, so we only consider the
precision, recall, and f1 score for the fail class, ignoring the
rest. Accuracy is the fraction of the total samples that were
correctly classified. Since we want the model to learn when
fails happens, accuracy might not be a good choice because of
a low number of samples for all classes except pass. Precision
is the number of samples correctly predicted as a class for

which the metric is calculated from all samples predicted as
that class, including those belonging to some other class. With
high precision, the rules from the DT model might be specific,
e.g., defining one combination of parameters that leads to a
fail class. However, considering our application of the rules,
where we switch between different ICs, we can allow some
samples to be classified as fail even if they are not fails. For
example, if the same parameter set with a fail fault class on
one IC does not lead to a fail class on another IC, a parameter
set with minor differences may lead to a fail. The recall is the
fraction of class samples for which the metric is calculated
that were correctly predicted as that class. Thus, recall tells
how many true fails in the test data were predicted as fails.
We would like to get this metric quite high for our case, but
the model may predict everything as a fail class to accomplish
this, which again would not be useful. Thus, there is f1 score,
calculated as a harmonic mean of precision and recall, to find
a balance between the two metrics.

To get an idea about the models’ predictions, we select
the best model for each metric and compare the original
distribution of the test data and the predicted distributions
of the classes. In Table V, we show the original distribution
of the random search data set on IC1 in the first column of
the table. Similarly, we show the class distribution based on
the DT models’ predictions. As mentioned, we take the best
models based on each metric. Thus, the rest of the columns
show distributions from predictions of the best model based
on the accuracy, precision, recall, and f1 score, respectively.
The metrics are highlighted in the header to specify the metric
used to select the best model.

TABLE V: Comparing prediction metrics. The first column is
the original test data from IC1 (random search). The following
columns correspond to predictions from models trained on MA
data on the given test data from IC1. The predictions come
from the best models based on the highlighted metric. The
numbers represent the distributions of fault classes.

Random
Search
test data IC1
True
distribution

Accuracy:
0.9796
Precision: 0
Recall: 0
f1 score: 0

Accuracy:
0.9774
Precision:
0.3333
Recall: 0.1429
f1 score:
0.1999

Accuracy:
0.1873
Precision:
0.0018
Recall: 0.8
f1 score:
0.0036

Accuracy:
0.9535
Precision:
0.1765
Recall: 0.4286
f1 score: 0.25

fail 0.12% 0.05% 0.05% 100% 0.29%
changing 1.25% 0.56% 0.19% 0% 2.4%
mute 0.73% 0.25% 0% 0% 1.72%
pass 97.91% 99.14% 99.76% 0% 95.59%

We can see that with accuracy, the model preferred to
predict a pass fault class, so the percentage of predicted fails is
lower than in the original dataset. With precision, even fewer
data points are predicted as any other class except for pass.
Then, with the recall of 0.8, the model predicts all classes as
fail, which is not the desired behavior. Lastly, the best model
based on f1 score generalizes the best. While other models
in this table predict too little or too many fail classes, this
model finds a balance. We notice this model predicts more



fails than there are, but this can be the desired effect for our
analysis. Indeed, if the area for the fail class is small and
specific, the fails on another IC might not be at those exact
points. However, they can be very close. Thus, if the model
correctly allocates intervals for fails class and makes them
slightly larger, it gives us more chances to find fail responses
on another IC with those intervals. Therefore, we choose to
use the f1 score metric for selecting the model to use its rules
for initializing the population of the memetic algorithm.

There are two test datasets - fast grid search (FGS) and
random search (RS), so we test on both and average the metric
values. We show these average values in Table VI for the
best models based on f1 score trained on memetic algorithm
(MA) data and random search (RS) data, followed by other
models used in our experiments. This table also shows the
decision tree hyperparameters that define the model. Hyper-
parameters values in table correspond to splitting criterion,
splitter, min samples split, class weight, ccp alpha, and flag
for balanced data, in that order. The two best models differ

TABLE VI: All models used in the experiments with their
prediction metrics and hyperparameters. Metric values are av-
erage from results on random search (RS) and fast grid search
(FGS) on IC1. The best models are selected based on the
highlighted f1 score metric. Model parameters are criterion,
splitter, min samples split, class weight, ccp alpha, and a
flag for balance data, in that order.

Average tested on RS
and FGS data

accuracy precision recall f1 score Model parameters

Best model from MA
data

0.9529 0.1227 0.3254 0.1776 gini, best, 30, balanced,
0.0, False

Best model from RS data 0.9630 0.1476 0.3254 0.1999 gini, best, 10, balanced,
0.0, False

Model from MA data
with lower f1 score 1

0.9831 0.1666 0.0714 0.0999 entropy, best, 10, None,
0.01, False

Model from MA data
with lower f1 score 2

0.9833 0.1666 0.0556 0.0833 gini, best, 30, None, 0.0
False

Second-best model
trained on RS data

0.9534 0.1238 0.3254 0.1756 gini, best, 14, balanced,
0.0, False

in only the min samples split. The min samples split is a
parameter that helps prevent overfitting in decision trees. If
we allow this parameter to be very low (minimum is 2), the
model can overfit to training data. However, if we increase the
min samples split, the chances of overfitting are lower. Since
in the MA training set, we have more examples of the fail
class than with RS data, it is reasonable that the model trained
on RS data requires a smaller min samples split. Smaller
min samples split forces the model to learn when fail classes
occur by finding those specific cases. On the other hand, if we
include pruning or increase the min samples split, the model
can predict only the pass class and, in most cases, it will be
correct since the majority of examples in training and test data
are indeed pass classes.

D. Experiments on Different ICs

Once we obtained training and test data on IC1 and trained
the decision tree models, we can change to other samples of
the same target: IC2 and IC3. First, we ran experiments on IC2,

starting with the already presented random search and then
the memetic algorithm with random initialization. The target’s
behavior and the setup used for the injection can influence
the results. When using the same target and setup and only
changing different samples, the assumption is that the results
should be similar, with minor variations. The variations can
come, for example, from unplanned production differences in
hardware, unintended chip alignment on the setup, and silicon
thickness variations. However, these should be negligible. In
our case, we use different samples of the same target, but
we also change the focus of the laser spot on the chip. The
focus while running experiments on IC2 was worse than for
experiments on IC1. The focus directly influences the laser
parameter intensity. The results from the random search were
already given in Table III but are here presented in Table VII
with the memetic algorithm with random initialization to allow
easier comparison. We compare the results on IC2 with those
on IC1, and, as seen in Table III, with RS, we found less
than half of what we found on IC1 for all classes except
pass. Accordingly, the number of found pass classes increased.
However, with the MA on IC1 (Table IV), only for the
changing class, we had around two times more examples than
with MA on IC2 (Table VII). For other classes, while still
slightly fewer examples were found on IC2, the results are
comparable. Thus, the guided search in MA contributes to the
algorithm being more transferable as it adapts to the behavior
of the target and changes in the setup.

TABLE VII: Experiments on IC2: memetic algorithm (MA)
with random initialization and random search.

MA with Random Initializa-
tion (10 runs)

Random Search (1 run)

Total combinations 6 389.6 5 920
fail 304.7 (5.03%) 3 (0.05%)
changing 250 (3.88%) 27 (0.46%)
mute 147.9 (2.28%) 12 (0.2%)
pass 5 687 (88.82%) 5 878 (99.29%)

Finally, we run the newly proposed approach as described
in Section III. With the new method, we should have more
parameter sets with a fail response in the initial population
and therefore provide the memetic algorithm with a “head
start” which can be exploited to obtain more fails in a similar
number of tested parameters.

We first run the experiment with the best model trained on
MA data, and then we test a model with a lower f1 score.
Indeed, the question is whether f1 score is a good metric
to consider when selecting the model for our application
- initialization of the memetic algorithm’s population on a
different sample of the same target. Thus, we ran a model with
a lower f1 score than the best one, but not the worst because
that is a model with an f1 score of 0. If the f1 score is 0, the
model does not perform well even for the predictions on IC1,
which is used for training, so we expect it to not perform well
in our case. Therefore, we selected the first model trained
on MA data with an f1 score lower than 0.1. The selected
model has an f1 score of 0.0999, and we use it to test if



the lower f1 score leads to fewer fails found by the memetic
algorithm using the model in the initialization. The numbers
from these experiments can be seen in Table VIII in the second
and third columns. From the headers, we distinguish models
based on their f1 score. We see that both models trained on
MA data improved the performance of the MA algorithm
compared to MA with random initialization. MA with random
initialization had 5.03% of fails, while MA with models has
16.86% and 12.48% for models with f1 score 0.1776 and
0.0999, respectively. Notice the performance of the MA is
worse with the model with a lower f1 score. However, it is
still better than a MA with random initialization.

Then, we also test with the best model trained on the RS
data. The results are visible in Table VIII. This model has a
higher f1 score (0.1999) than the best model trained on MA
data (0.1776), but it found the least fails from all the other
models, even the model with an f1 score of 0.0999. We use
data from a random search for training and calculating the
metrics, which might be why a model with a higher f1 score
trained on RS data does not find more fails when used in
MA. It could be that the model created a precise interval for
when the fails in RS data occurred, or it generated random
intervals without learning what parameter values lead to fail
responses. Thus, we ran the algorithm with a second-best
model trained on RS data that has f1 score of 0.1756, which
is close to the f1 score of the best model trained on MA data.
The algorithm has found the most fail classes between the
four tested decision tree models. We can see that the number
of tested parameter sets (combinations) also increases, which
could cause the difference in the found fails compared to the
results with the model trained on MA data with f1 score of
0.1776. Thus, we conclude that the performance of the models
trained on MA and RS data with a comparable f1 score is
similar in the distribution of fault classes when used in the
MA initialization.

TABLE VIII: Experiments on IC2: fault class distribution for
the memetic algorithm (MA) with the random initialization,
followed by MA with a decision tree (DT) rules used in
initialization. The models are distinguished by their f1 score,
and the hyperparameters for each are in Table VI. The header
also states which data the model is trained on - memetic
algorithm (MA) or random search (RS) data.

Mean
(10 runs)

MA with
Random Ini-
tialization

MA with DT
rules
f1: 0.1776
MA data

MA with DT
rules
f1: 0.0999
MA data

MA with DT
rules
f1: 0.1999
RS data

MA with DT
rules
f1: 0.1756
RS data

Tested com-
binations

6 389.6 5 059.3 5 284.2 5 581.3 5 507.9

fail 304.7
(5.03%)

848.4
(16.86%)

676.5
(12.48%)

633
(11.38%)

1 072.7
(19.39%)

changing 250.0
(3.88%)

234.6
(4.61%)

216.9
(4.11%)

160.2
(2.89%)

198.7
(3.6%)

mute 147.9
(2.28%)

37.3
(0.74%)

81.7
(1.53%)

16
(0.29%)

33
(0.58%)

pass 5 687.0
(88.82%)

3 939
(77.79%)

4 309.1
(81.51%)

4 772.1
(85.44%)

4 203.5
(76.43%)

We also compare the performance of the models based on

the number of fail responses in the initial population and when
the first fail is found. This can help understand how the model
improves the initial population and impacts the algorithm’s
overall performance based on this information. The best model

TABLE IX: The first fails with all the DT models tested on
IC2.

Population
size = 100

MA with
Random
Initialization

MA with DT
rules
f1: 0.1776
MA data

MA with DT
rules
f1: 0.0999
MA data

MA with DT
rules
f1: 0.1999
RS data

MA with DT
rules
f1: 0.1756
RS data

First fail (0-
indexed)

53, 3 335,
2 578, 377,
1 381, 1 381,
1 847, 3 071,
1 223, 5 681
(avg 2 092.7)

41, 36, 38,
41, 31, 34,
50, 36, 57, 36
(avg 40.0)

43, 46, 25,
39, 66, 58, 8,
23, 46, 82
(avg 43.6)

33, 203, 47,
84, 52, 59,
55, 53, 56, 46
(avg 68.8)

56, 38, 46,
28, 32, 60,
71, 53, 73, 59
(avg 51.6)

Number
of fails in
the first
population

1, 0, 0, 0, 0,
0, 0, 0, 0, 0
(avg 0.1)

14, 34, 23,
18, 15, 17,
16, 15, 14, 16
(avg 18.2)

5, 6, 7, 8, 7,
3, 8, 8, 10, 1
(avg 6.3)

2, 0, 3, 4, 3,
1, 6, 3, 4, 1
(avg 2.7)

6, 4, 5, 4, 6,
6, 3, 5, 3, 2
(avg 4.4)

trained on the MA with f1 score 0.1776 finds the most
parameter sets with fail response in the initial population - on
average 18.2/100 compared to 6.3/100, 2.7/100, or 4.4/100,
for the other three models. Both models trained on MA data
had a higher number of fail classes in the first population than
models trained on RS data. That might be because we have
more parameter set examples for the fail response with MA
data, which helps the model learn. The model trained on RS
data with f1 score of 0.1756 on average had only 4.4/100 fail
responses in the initial population. Still, in combination with
MA, it found the most fail responses. Thus, we see that the
rest of the algorithm can influence the overall performance of
the memetic algorithm as it affects the exploration. Initially,
we might focus on only one area found by the model, but
crossover and mutation can find fails in other regions on
another IC. Additionally, we noticed more tested parameters
when the model in the initial phase found fewer fail responses.
MA with DT rules finds the first fail response earlier in the
algorithm compared to MA with the random initialization,
and the initial population has more fail examples in the
initial population. Therefore, the models improve the initial
population. However, considering the overall performance, the
algorithm with the most fails in the initial population did not
find the most fails. Still, MA with all tested models improved
the performance of the MA with random initialization by
finding at least two times more fail classes.

We further test the models on another sample of the same
target, IC3, where the bench was slightly modified as described
in Section IV-B. We already discussed the results of the fast
grid and random search compared to other ICs in Section V-A.
With IC3, we found more fails, even when the same points
were tested (fast grid search). From the experiments on IC2,
the memetic algorithm benefits from using DT models in
the initialization. Thus, we do not test the memetic with
random initialization on IC3. We test the best model trained
on MA data with f1 score of 0.1776 and the second-best
model trained on RS data with f1 score of 0.1756 as it was
better than the model with 0.1999 f1 score. We also test



another model trained on MA data with a lower f1 score of
0.0833. The results from the random search and the mentioned
three models are in Table X. The algorithm finds at least two

TABLE X: Experiments on IC3: fault class distribution for a
random search, followed by the memetic algorithm (MA) with
decision tree (DT) rules used in initialization. The models are
distinguished by their f1 score, and the hyperparameters for
each are in Table VI. The header also states which data the
model is trained on - memetic algorithm (MA) or random
search (RS) data.

Mean
(10 runs)

Random
Search (1
run)

MA with DT
rules
f1: 0.1776
MA data

MA with DT
rules
f1: 0.0833
MA data

MA with DT
rules
f1: 0.1756
RS data

Tested combina-
tions

5 920 5 262.7 5 495.1 5 554.5

fail 19
(0.32%)

1 662.8
(31.53%)

2 688.8
(48.85%)

2 325.7
(41.83%)

changing 66
(1.11%)

221.9
(4.23%)

210.1
(3.81%)

153.4
(2.76%)

mute 99
(1.67%)

126
(2.37%)

74.1
(1.35%)

101.5
(1.82%)

pass 5 736
(96.89%)

3 252
(61.86%)

2 522.1
(45.98%)

2 973.9
(53.58%)

times more fail responses on IC3 than IC2 with the models,
which is in line with experiments with random search and fast
grid search because of the changes on the bench. Again the
second-best model trained on RS data in combination with
MA found more fails compared to the best model trained on
MA data with f1 score of 0.1776. However, in the case of
IC3, it is interesting that the model with a worse f1 score of
0.0833 that was trained on MA data performed better than
the other two models. The difference in the number of tested
parameter combinations in these experiments does not explain
that improvement. Thus, we again compare the number of fails
found in the initial population and discuss possible reasons.
Compared to results on IC2, we see that both with IC2 and
IC3, the model with the f1 score of 0.1776 found the most
fails in the initial population, on average 33.5 examples. In
both cases, the second model based on the number of fails
found in the initial population is the model with a worse
f1 score trained on MA data. For IC2, this was the model
with f1 score of 0.0999 and 0.0833 for IC3. Then, it is
the second-best model trained on RS data with f1 score of
0.1756 with 12.9 fails in the initial population. Considering
the algorithm’s overall performance, again, the model with the
most fail examples in the initial population did not, in the end,
find the most fails. Nonetheless, experiments on IC2 and IC3
show that the MA with rules improves the performance of
random search by obtaining two orders of magnitude more
fails and up to 60% more fails than the MA with random
initialization.

We again notice that the number of tested parameters in-
creases as the number of fail examples in the initial population
decreases. Thus, we confirm that there is a need to balance
the number of fail examples in the initial population and
that the rest of the memetic algorithm improves the overall

performance. This also raises the question of whether the
prediction metric alone is the best metric for selecting a model
for this specific use case. While all the models improve overall
performance and the number of fails in the initial popula-
tion compared to random search and MA with the random
initialization, we might need to consider some other aspects
of the models to improve the selection of the model. Since
we do not use the models strictly for prediction purposes,
possibly, instead of using a prediction metric f1 score, we
need to analyze the models’ size or some information about
the rules. Combining different aspects of the model and its
rules in one metric could give more reliable expectations of
the models’ overall performance for our use case. We leave
this as future work.

TABLE XI: The first fails with all the DT models tested on
IC3.

Population size =
100

MA with DT rules
f1: 0.1776
MA data

MA with DT rules
f1: 0.0833
MA data

MA with DT rules
f1: 0.1756
RS data

First fail (0-indexed) 0, 1, 1, 0, 0, 1, 0, 1,
1, 1
(avg 0.6)

4, 5, 2, 20, 7, 2, 6, 9,
2, 2
(avg 5.9)

37, 8, 13, 10, 40, 7,
44, 2, 6, 7
(avg 17.4)

Number of fails in
the first population

40, 36, 30, 37, 50,
32, 35, 32, 30, 13
(avg 33.5)

33, 24, 33, 25, 28,
31, 24, 24, 15, 22
(avg 25.9)

9, 17, 14, 7, 21, 10,
8, 18, 12, 13
(avg 12.9)

We use machine learning (decision trees) to provide a
good initial population that will, in turn, help the memetic
algorithm to find many fail responses. It stands to ask if it
is possible to compare our approach with the deep learning
(multilayer perceptron) approach followed by Wu et al. [30].
We consider those two approaches orthogonal as Wu et al.
found a representative set of responses to predict future ones
for the same sample of the target device. That way, the authors
obtained the complete characterization from a small number
of fault injections. This is only an estimate but still gives a
great insight into the device’s behavior. In our case, we use
the model for the prediction on other samples of the same
targets for transferability issues between targets. Additionally,
we use machine learning to provide an initial population to
guide the optimization process. Consequently, we use machine
learning in different phases of the target characterization. Still,
we believe it could be possible to use our approach to provide
an initial population, which will then be used as the training
set for a deep learning classifier. Doing this could make the
target characterization even more powerful and efficient. We
leave this as possible future work.

E. Obtained Rules for Initialization

In Table XII, we show the number of rules produced for
the fail class by each of the utilized models. Additionally,
we display the numbers for possible parameter combinations
by a specific rule from the model’s set of rules - minimum,
median, mean, and maximum, and the total number of possible
combinations for all the rules created by the model. It is
essential to understand that there could be possible overlaps
between the rules, which would lower the total number of



unique combinations than those reported in the table. Lastly,
we show the number of rules in which not all parameters were
used to specify areas that the model predicts as the fail class.
As mentioned, we use a maximum of 25 rules with the highest
number of examples classified as a fail class by each rule for
initialization. Thus, in the table, for the two models with more
rules for fail than 25, we also show information specifically
for the used 25 rules (separated by | symbol).

TABLE XII: Information about the rules, specifically for fail
class, found by the models used in our experiments.

Total
possible
combina-
tions =
305 017 650

MA with DT
rules
f1: 0.1776
MA data

MA with DT
rules
f1: 0.0999
MA data

MA with DT
rules
f1: 0.0833
MA data

MA with DT
rules
f1: 0.1999
RS data

MA with DT
rules
f1: 0.1756
RS data

Number of
rules for fail

359 | 25 1 205 | 25 24 22

Combinations
per rule:
Minimum

12 | 60 93 960 4 | 42 2 400 2 400

Median 360 | 135 93 960 96 | 110 25 875 43 310
Mean 2 093.82 |

491.24
93 960 690.6 |

169.28
26 772.25 41 237.27

Maximum 38 808 |
7 436

93 960 33 320 | 624 65 250 87 500

Combinations
from all rules

751 682 |
12 281

93 960 141 574 |
4 232

642 534 907 220

Rules not
defining all
parameters

105/359
(29%) |
11/25 (44%)

1/1 (100%) 71/205 (34%)
| 11/25 (44%)

18/24 (75%) 13/22 (59%)

While the table only shows information about numbers
considering the rules for the fail class, the number of rules
for classifying all classes for each of the models is 1 646,
14, 1 614, 901, and 782, following the order in Table XII.
We see that the model with pruning (f1 score of 0.0999) is
the smallest, with only 14 rules, compared to other models
without pruning. Additionally, the models trained on MA data
have more rules concerning all classes than those trained on
RS data, except for the mentioned model with pruning. The
same is visible for the number of rules, specifically for the
fail class. Thus, the models trained on MA without pruning
are more complex and larger than those trained on RS data.
Additionally, the percentage of rules for the fail class is larger
for models trained on MA data than RS data, which might be
because there are more examples for the fail class in the MA
training set.

The rule from the model with f1 score of 0.0999 (with
pruning) considers a path in the decision tree where the
conditions for the parameter x were

{x > x1, x > x2, x ≤ x3, and x ≤ x4},
where {x1 < x2, and x3 > x4}.

We then obtain the bounds x ∈ ⟨x2, x4] from this path. For y
parameter, the path only had requirements {y > y1, y ≤ y2}.
Thus, the bounds are set to y ∈ ⟨y1, y2]. For pulse width,
in the path, there was only a condition stating pw > pw1, so
the rule bounds include the user-defined upper bound for the
pulse width and the mentioned pw1 as the lower bound. The
delay and intensity are not in the path, and the user-defined

bounds are used in the initialization. With this rule, there are
93 960 unique possible combinations for the initial population
compared to user-defined bounds that provide 305 017 650
combinations. If the exhaustive search is done for only the
rule bounds, it will last around 4 hours, compared to 529 days
for the exhaustive search with user-defined bounds considering
the laser shot lasts for ≈ 0.15 seconds.

While other models have more rules, each specific rule
covers less search space. For example, a model trained on
MA data has rules with as little as 4 possible combinations
to a maximum of 33 320 unique combinations. Considering
only the utilized rules, the number of combinations per rule
goes from 42 to 624. We also show the number of possible
combinations from all the rules, but this is not a unique number
of possibilities because we do not consider the overlaps
between them. Still, the rules from models trained on RS data
have at least 50 times more combinations than the utilized 25
rules from models trained on MA data. The number of rules
used in the initialization is similar for all models except for
the one with pruning that had only one rule. Combining this
information with the number of fails in the initial population,
models trained on MA data seem to have better rules for
transferability. Models trained on MA data on both IC2 and
IC3 found more fails in the initial population. There are more
examples for the fail class in MA training data than RS data
that could lead to the model creating better rules. Additionally,
the number of possibilities per rule from models with MA data
is lower than with RS data. That makes the rule more specific,
defining smaller intervals where the fail class can be expected.
However, not too small as having only four combinations
because we could miss a fail class with a slightly different
intensity or location since we change the IC. On the other
hand, the lower number of fails in the initial population from
models trained on RS data can come from large intervals in
the rules. For example, the minimum number of combinations
in one of the rules is 2 400. We could miss the fails and
select parameter sets leading to less interesting classes with
that many possible combinations. We also present the number
of rules where not all parameters included a reduced interval,
but the user-defined intervals were used. Usually, the laser
parameters were not reduced, while the location coordinates
were specified in all the rules. Except for the model with
pruning (f1 score of 0.0999), the models trained on MA data
had a higher percentage of those rules specifying bounds for
all parameters than models trained on RS data. That again
suggests that the rules from models trained on MA data define
smaller areas.

VI. CONCLUSIONS AND FUTURE WORK

Previous work [11] showed that the memetic algorithm finds
more interesting LFI parameter combinations than a random
search that leads to possibly exploitable device responses. This
work further improves the memetic algorithm approach by
using decision tree models for cases where different samples
of the same target are tested, or some minor changes are
introduced on the bench. Such decision tree models store the



knowledge in a tree structure from which if-then rules can be
extracted. Thus, we extract rules for the device’s interesting
fail responses. The rules consist of intervals for the LFI
parameters, and they can indicate areas where there were most
fail responses. The approach uses the knowledge obtained
from a campaign on one IC in the initialization phase of the
memetic algorithm conducted on another IC. We only consider
different samples of the same target and minor changes on the
bench setup. Considering the number of found fail responses,
we can see that the performance has significantly improved
in the conducted experiments. More precisely, we obtain two
orders of magnitude more fail responses than random search
and up to 60% more fail responses than the previous state-of-
the-art (memetic algorithm with random initialization).

We show this is possible with the simple version of decision
tree learning. In future work, we could consider decision tree
ensembles, like the random forest, to further improve the mod-
els. Still, we note that the possible improved performance of
the models would come with higher computational complexity
and more difficult interpretability of the rules due to having
many decision trees in the random forest. This work is limited
to experimenting with different samples of the same target.
The trained models correspond to a specific target and utilized
bench and cannot directly be used for other transferability
issues, such as changing the bench entirely or using a different
target. However, we believe the idea behind the approach can
be extended to propose a similar algorithm or different training
for those cases. We noticed that all of the models we tested
improved the performance of the memetic algorithm. While
in this work, we use f1 score, a popular prediction metric, to
distinguish the best models to apply for the memetic algorithm,
it might be beneficial to consider other aspects of the model.
Since we do not use the model specifically for predictions,
another metric might provide a more reliable way of selecting
a model for the initialization phase of the memetic algorithm.
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