
SoK: Oblivious Pseudorandom Functions

Sílvia Casacuberta
Harvard University

scasacubertapuig@college.harvard.edu

Julia Hesse
IBM Research Europe - Zurich

jhs@zurich.ibm.com

Anja Lehmann
Hasso Plattner Institute &

University of Potsdam
anja.lehmann@hpi.de

Abstract—In recent years, oblivious pseudorandom functions
(OPRFs) have become a ubiquitous primitive used in crypto-
graphic protocols and privacy-preserving technologies. The
growing interest in OPRFs, both theoretical and applied, has
produced a vast number of different constructions and func-
tionality variations. In this paper, we provide a systematic
overview of how to build and use OPRFs. We first categorize
existing OPRFs into essentially four families based on their
underlying PRF (Naor-Reingold, Dodis-Yampolskiy, Hashed
Diffie-Hellman, and generic constructions). This categoriza-
tion allows us to give a unified presentation of all oblivious
evaluation methods in the literature, and to understand
which properties OPRFs can (or cannot) have. We further
demonstrate the theoretical and practical power of OPRFs
by visualizing them in the landscape of cryptographic prim-
itives, and by providing a comprehensive overview of how
OPRFs are leveraged for improving the privacy of internet
users.

Our work systematizes 15 years of research on OPRFs
and provides inspiration for new OPRF constructions and
applications thereof.

1. Introduction

In the 80’s, Goldreich et al. [1] demonstrated that it
is indeed possible to efficiently construct deterministic
functions whose output looks like it is chosen at random.
Pseudorandom functions (PRFs) have ever since been
a core cryptographic primitive with innumerable appli-
cations and instantiations. Two decades later, Naor and
Reingold [2], [3] noticed that their number-theoretic PRF
allows for an interactive and oblivious evaluation, where
a “client” with input x obtains PRFk(x) for a function
PRFk(·) that is contributed by a “server”. Neither does
the client learn the function (i.e., its key k), nor does
the server learn x or PRFk(x). Freedman et al. [4] later
called such two-party protocol an oblivious pseudorandom
function (OPRF) and gave first formal definitions and two
OPRFs based on the Naor-Reingold PRF [3].

The destiny of OPRFs: Protecting our privacy. Al-
though Freedman et al. [4] directly demonstrated how
OPRFs were useful for obliviously searching a database,
OPRFs did not immediately receive a lot of attention.
A few years later, Hazay and Lindell [5] discovered

This work was partly supported by the EU Horizon 2020 research and in-
novation programme under grant agreement No 786725 OLYMPUS. The
second author was partly supported by SNF AMBIZIONE grant “Your
Biometrics, please! Cryptographic Protocols for Human Authentication
and the IoT”.

their close relationship to private set intersection (PSI),
underlining the role OPRFs can play in our everyday
lifes: their obliviousness allows to construct protocols
that protect private data, such as our passwords, our
search inputs, our identities, our digital footprints. And
indeed, in the past decade, OPRFs have shown to be a
central primitive for building oblivious keyword search
(KS) [4], [6], private set intersection (PSI) [5], [6], [7],
[8], password-protected secret sharing (PPSS/TPASS) [9],
[10], [11], [12], [13], private information retrieval (PIR)
[4], password-authenticated key exchange (PAKE) [9],
[14], single sign-on (SSO) with privacy [12], cloud key
management [15], de-duplication systems [16], secure pat-
tern matching [5], [17], and “untraceable” contact tracing
[18].

Naturally, adapting OPRFs to all these applications
required the introduction of several additional properties:
OPRFs that are verifiable [9], [13], [19], [20], [21], have
correlated [13] or committed inputs [7], [9] or outputs
[22], have updatable keys [12], [19], partially reveal their
input to the server [12], [13], [19], work in the threshold
or distributed server setting [11], [12], [13], or allow for
batching techniques [6].

Where are we now? More than 15 years after their
introduction, OPRFs have become an established and well
researched part of cryptography. Being at the core of
privacy-preserving technologies, OPRFs enjoy a growing
interest and, consequently, efforts arise towards standard-
ization [23], [24], [25]. However, the downside of the
high activity is also visible from the literature. There
is an increasing list of properties, partly repeated under
ambiguous or different names. Some properties seem to
partly or fully imply, or even contradict, one another.
By now, many variants of initial OPRFs have evolved in
the literature, and keeping track of which already exist
has become increasingly hard. On top of that, there exist
various notions of security for OPRFs (e.g., weak, strong,
game-based, securely computable, or composable). Lastly,
from a more theoretical point of view, it is unclear where
OPRFs stand in the landscape of cryptographic primitives,
with individual relations to other primitives proven often
only implicitly in the numerous literature.

Our contributions and outline of the paper. In this paper
we provide the first comprehensive overview of oblivious
pseudorandom functions. We highlight both theoretical
aspects of OPRFs as a cryptographic object, as well as
their practical role as a building block for many applica-
tions. In Section 2 we categorize OPRFs from the liter-
ature according to their underlying PRF, and explain all

known methods for obliviously evaluating them. Section
3 describes functional OPRF properties, such as sharing
or update of the key, verifiability, or partial revelation
of inputs. We explain which OPRF constructions can
(or cannot) achieve which properties. Section 4 explains
in which models one can formulate OPRF security. In
Section 5, we consider practical applications of OPRFs,
and observe that they can be divided into essentially two
categories: (1) retrieval of cryptographic material, and (2)
enforcing interaction when computing hash values; e.g.,
to allow for rate limiting. We give examples, blueprint
protocols and pointers to papers and real-world deploy-
ments for the above ways on how to leverage OPRFs. We
conclude by suggesting several research directions that we
believe will improve adaptation of OPRFs in the future in
Section 6. The appendix provides a gentle introduction to
OPRFs for non-cryptographers (Appendix A). Appendix B
discusses the theoretical impact of OPRFs and visualizes
them in the landscape of cryptography. This constitutes the
first comprehensive source of information on how OPRFs
can be constructed from other primitives. This section
also includes a classification of OPRFs that have been
developed case-tailored to PSI (Appendix B.4).

2. Constructions

To gain an overview of the many OPRF construc-
tions in the literature, we first observe that we can sort
them into mainly four categories. In Table 1 we list all
practically-relevant OPRFs from the literature based on
their underlying PRF and high-level method of oblivi-
ous evaluation. In this survey we focus on OPRFs that
are more efficient than simply computing the evaluation
circuit with generic multi-party computation (MPC) tech-
niques. Before explaining each of these categories in more
detail, we give a first formal definition of an OPRF. We
recommend readers unfamiliar with PRFs to first read the
non-technical introduction to OPRFs in Appendix A.

Using MPC terminology, an OPRF protocol for the
PRF fk(·) is a secure computation of the functionality
(k, x) → (⊥, fk(x)). More formally, we obtain the fol-
lowing first definition.

Definition 1 (Oblivious pseudorandom function, [4]). A
two-party protocol π between a client and a server is an
oblivious pseudorandom function (OPRF) if there exists
some PRF family fk, such that π privately realizes the
following functionality:
• Client has input x; Server has key k.
• Client outputs fk(x); Server outputs nothing.

Freedman et al. [4] call the above functionality a
strong OPRF, as opposed to a weak (also called relaxed)
OPRF [4, Def. 6] which does not prevent the client from
learning partial information about the key.

2.1. Naor-Reingold PRF

Let p, q be primes such that q | p − 1, n ∈ N, k :=
(a0, . . . , an)←R Zn+1

q and g ∈ Zp is an element of order
q. The Naor-Reingold (NR) PRF [2], [3] with key k on
input x := x1x2 . . . xn ∈ {0, 1}n is defined as follows:

fNRk (x) := ga0·
∏n

i=1 a
xi
i ,

PRF OPRFs Method

Naor-Reingold [4], [5], [21], [26] Obl. Transfer
[9], [27] Hom. encryption

HashedDH [9], [10], [11], [14] Blinded exp.
[12], [13], [28], [29]

Dodis-Yampolskiy [7], [16], [22], [30] Hom. encryption
[31] Blinded exp.

Any [6], [32], [33] Obl. Transfer
[18], [34], [35], [36]

TABLE 1: Classification of OPRF protocols based on their
underlying PRF and method of oblivious evaluation.

i.e., raise ga0 to ai if and only if the i-th bit of x is 1. This
function’s outputs on chosen inputs are indistinguishable
from randomly sampled elements from the group 〈g〉,
and hence are pseudorandom, under the decisional Diffie-
Hellman assumption (DDH) [2]. The DDH assumption is
a standard discrete-log type assumption and is believed
to hold in many groups. Naor and Pinkas [37], [38]
later demonstrated that pseudorandomness also holds if
the group is of prime order, allowing for more efficient
instantiations.

A protocol for evaluating the prime-order variant of
fNR obliviously, and at the same time the first formal
OPRF protocol in the literature, was given by Freeman et
al. [4, §5.1]. Their OPRF leverages oblivious transfer (OT;
see Appendix B.1 if unfamiliar) and is depicted in Figure
1. On a high level, the server S chooses fresh randomness
~r to blind the key ~a, and for each input bit the client C
receives either only the blinding or the blinded key part
via oblivious transfer.

C(x) S(k)

(r1, . . . , rn)←R Znp
(a0, . . . , an) := k

� ĝ
ĝ ← ga0

∏n
i=1 1/ri

xi := i-th bit of x

(for i = 1, . . . , n) do:

-
xi �(ri, airi)(

2
1

)
-OT

�ria
xi
i

(end for)

A←
∏n
i=1 ria

xi
i

Output ĝA

Figure 1: Oblivious evaluation of the NR PRF using OT.

Correctness of the protocol follows from cancellation
of the blinding values ri, and the protocol is secure (as in
Def. 1) if DDH is hard in the group, w.r.t a semi-honest
server. The final cost is that of n

(
2
1

)
-OTs (which can be

performed efficiently with batched OT techniques [39])
and one exponentiation. The protocol was later shown
secure against malicious servers [5], still under DDH, by
using a maliciously secure OT variant.

Jarecki et al. [9] provided a universally composable
(UC) [40] OPRF based on fNR in the Common Reference
String (CRS) model. In their construction, they allow the
client to additionally receive a “public key” version of
k (which can be thought of it as, e.g., gk) along with
fNRk (x), and verify correct computation w.r.t this public

2

key. Such an OPRF is a versatile building block, since
it allows to enforce re-use of the server’s key. Note that
in Definition 1, a client is only guaranteed to receive a
correctly computed value w.r.t whatever input the server
provided, but cannot find out whether a server uses the
same or a different key in another protocol run [41]. We
will dive into all these aspects of formalizing OPRFs in
more sophisticated ways than Definition 1 in Section 4.

C(x, sk, pk) S(k)

(r1, . . . , rn)←R Znp
(a0, . . . , an) := k

� ĝ
ĝ = ga0

∏n
i=1 1/ri

xi := i-th bit of x

(for i = 1, . . . , n) do:

if xi = 0 set mi ← (1, 0)
else set mi ← (0, 1) -HEncpk(mi)

�HEncpk(mi)
(ri,riai)

Decrypt to riaxi
i using sk

(end for)

A←
∏n
i=1 ria

xi
i

Output ĝA

Figure 2: Oblivious evaluation of the NR PRF using
homomorphic encryption HEnc on message tuples mi,
omitting proofs of honest behavior.

We depict a blueprint for oblivious evaluation of the
NR PRF using homomorphic encryption in Figure 2. An
encryption scheme HEnc is homomorphic if (using the
multiplicative notation) HEncpk(~a)

~b := HEncpk(a1)b1 ·
HEncpk(a2)b2 = HEncpk(〈~a,~b〉), where 〈·, ·〉 denotes the
inner product. The idea on how to leverage such an
encryption scheme to build an OPRF is similar to the
NR-OPRF from OT of Figure 1, except that this time one
value chosen out of (ri, riai) is transmitted from S to
C in encrypted form. Usage of homomorphic encryption
allows to equip the blueprint in Figure 2 with verifiability
(the server performs ZK proofs of honest behavior w.r.t
public key ga0 , . . . , gan , requiring also additional commit-
ments) and security against malicious parties (efficiently
implementable with several parallel Σ-protocols [9]).

Finally, we mention a variant of the NR PRF with
compact key k := (k0, k1) ←R Z2

q for inputs x < D
that are polynomial in the security parameter. Then the
function fNRpoly(x) := gk0k

x
1 is pseudorandom under the

D-strong Diffie-Hellman assumption [42], and it can be
evaluated obliviously using techniques for oblivious poly-
nomial evaluation [26]. This OPRF is a trade-off between
stronger assumption/smaller input domain and more effi-
cient evaluation (see Table 4 for cost comparisons.).

2.2. Hashed Diffie-Hellman

The function fHk (x) := H(x)k with hash function
H is a PRF under the idealized assumption that H
produces uniformly random elements from a group 〈g〉
[43]. Implicitly when setting ga ← H(x), fHk (x) := gak

becomes a Diffie-Hellman value, hence we refer to this
PRF as HashDH. fH can be obliviously evaluated with a

HashDH 2HashDH
H(x)k H′(x,H(x)k)

Plain OPRF [4], [5], [46] [8]∗, [10]
Partially oblv. [19] [12], [13]
Verifiable – [9] (+ NIZK)

[13] (semi-H)
Correlated input – [13]
Adaptive key compr. – [14]
Proactive sec. – [12]
Updatable key [19] –
Distributed eval. – [12], [13]
Threshold eval. – [11]

TABLE 2: HashDH and 2HashDH OPRFs and which
properties were already demonstrated for them. [8]∗ also
hashes the first input of H ′.

very simple “blinded exponentation” protocol, depicted in
Figure 3, which is secure under the one-more gap Diffie-
Hellman (OM-gapDH) assumption in the random oracle
model (ROM).

C(x) S(k)

r ←R Zq
a← H(x)r -a

b← ak

Output b1/r � b

Figure 3: Blinded exponentiation for evaluating the
HashDH PRF.

The idea behind this protocol, namely blinded DH
exponentiation,1 is not new and has a long history in cryp-
tography: it is central to building blind signatures [44],
[45], and it was used in the seminal work on password-
based cryptography by Ford and Kaliski [46] and others
[8], [43], [47], [48], [49]. We further explore analogies
between OPRFs and blind signatures in Appendix B.2.

A series of works by Jarecki et al. [9], [10], [11],
[14] shows that a slight variation of the above protocol
called 2HashDH [9], where the client adds an outer hash
H ′ and outputs f2H := H ′(x,H(x)k), can be proven
secure in the Universal Composability (UC) framework
[40]. Security holds under the OM-gapDH assumption,
and with both hash functions modeled as random oracles.
2HashDH is extensively used in the literature [10], [11],
[12], [13], [14], [28] and has demonstrated to be versatile
in terms of properties: the protocol allows for verifiable
computation (FV−OPRF mentioned above) through effi-
cient non-interactive zero knowledge proofs (NIZK), or
a threshold version for sharing the OPRF key among
multiple servers.

We refer the reader to Table 2 for further pointers on
which oblivious evaluation properties have been already
demonstrated for HashDH and 2HashDH. A variation
of f2H where the One-More RSA assumption is used
instead of OM-gapDH is also included in [9], which we

1. Very recently, Jarecki et al. [29] investigated whether multiplicative
blinding suffices for Hashed DH. This requires only fixed-base exponen-
tiation and hence decreases the client’s computational cost by a factor
of 2− 6. However, the resulting protocol cannot satisfy standard OPRF
security notions and is recommended to be used only when the correct
value of the public key gk is authenticated, and when the OPRF inputs
are of high entropy. We show a close relation of their protocol to blind
signatures in Section B.2.

3

summarize in Figure 15. The figure also demonstrates the
similarities between 2HashRSA and Chaum’s blind RSA
signature scheme.

2.3. Dodis-Yampolskiy PRF

The Dodis-Yampolskiy (DY) PRF [50] is based on
the Boneh-Boyen unpredictable function (originally intro-
duced as a weak signature) [51]. The PRF requires a cyclic
group G = 〈g〉 of order q and is defined as

fDYk (x) := g1/(k+x)

for a key k ←R Zq. Pseudorandomness is guaranteed
by the q-DDH inversion (q-DDHI) problem [50] for
polynomial-sized domains. The key aspect in obliviously
evaluating fDY is the use of an additively homomorphic
encryption scheme such as Paillier [7], [16] or Camenisch-
Shoup [22], [30].

We depict a blueprint of the evaluation protocol in
Figure 4. The protocol is related to blind signing of secret
keys [52]. A notable difference to oblivious evaluation
of the NR PRF from homomorphic encryption is that,
in the case of the DY PRF, the key pair belongs to the
server. See, e.g., Camenisch et al. [22] on how to equip the
protocol with efficient zero-knowledge proofs to protect
against a malicious client. We note that the literature
provides variants of the above blueprint, for example one
where both the server and the client hold a key pair and
computations are performed on ciphertexts encrypted with
a combination of both public keys [7]. This construction
then features full malicious security.

C(x, pk) S(k, sk, pk)

� HEncpk(k)

r ←R Zq -(HEncpk(k) · HEncpk(x))rDecrypt to r(k + x)

y′ ← g1/r(k+x)

Output y′r � y′

Figure 4: Blueprint for oblivious evaluation of the DY PRF
using homomorphic encryption scheme HEnc, omitting
proofs of honest behavior.

The protocol in Fig. 4 requires a CRS comprising a
safe RSA modulus with unknown factorization, and is se-
cure under the Composite Decisional Residuosity (CDR)
assumption if fDY is pseudorandom in the corresponding
domain [7].

A slight modification of the DY PRF, namely the
function

fmodDY
k (x, t) := H ′(x, t,H(x)1/(k+t)),

is considered in a recent work by Tyagi et al. [31].
Here, t is a public part of the message that is known to
the server, implementing a useful property called partial
obliviousness of OPRFs that we discuss further below.
Making the exponent independent of secret x allows for
efficient evaluation via blinded exponentiation, as used
in 2HashDH explained above. Tyagi et al. demonstrate
their OPRF secure under a new type of Diffie-Hellman
inversion assumption.

2.4. Generic Techniques

Oblivious pseudorandom functions can be constructed
from oblivious transfer (OT), either by applying generic
techniques for secure multi-party computation (MPC),
or directly from random OT (ROT). We explain both in
more detail. Generic MPC schemes such as Yao’s Garbled
Circuits [53] can evaluate any function, in particular any
PRF, obliviously w.r.t secret input x of the client and secret
key k of the server. Put differently, any MPC protocol for
securely evaluating a PRF on inputs x and k yields an
OPRF according to Definition 1.

C(x) S(k)

-x � k
MPC of
F(·)(·)

�Fk(x)

Output Fk(x)

Figure 5: OPRF from secure MPC for any PRF F .

For example, the Advanced Encryption Standard’s
(AES) encryption function

fAESk (x) := AES.Enc(k, x)

is designed to produce uniform 128-bit strings on arbitrary
128-bit long inputs and hence is assumed to be a PRF [32].
There exist several improvements over generic MPC meth-
ods for securely evaluating the AES encryption circuit
[32], [33], [54], directly yielding faster OPRF protocols
for fAES. Recently, block ciphers optimized for MPC
emerged, such as LowMC [55], and the corresponding
OPRF protocols [18] allow for efficient batching. We also
mention here a line of work developing special-purpose
OPRF protocols [6], [34], [35], [36], [56] optimized for
implementing private set intersection (PSI). These OPRFs
can be instantiated with any PRF, and leverage batched
OT variants and special purpose hashing. We defer the
reader to Appendix B.4 for further details.

Random OT (ROT) generically yields an OPRF. In(
n
1

)
-ROT, the client obtains 1 out of n random values

k1, . . . , kn generated by the server, without the client
learning the other n − 1 values, and without the server
learning which value the client retrieved. Let x denote the
index of the value that the client wants to receive. Then,
the
(
n
1

)
-ROT corresponds to client and server obliviously

evaluating PRF Fk(x) := kx with k := (k1, . . . , kn),
where kx denotes the x-th element of k [6].

C(x) S(k)

(k1, . . . , kn) := k

-x �k1, . . . , kn(
n
1

)
-ROT

� kx

Output kx

Figure 6: OPRF with input domain {1, . . . , n} from ran-
dom OT.

Consequently, a
(
n
1

)
-ROT protocol with arbitrarily

large n, also often called an OT extension protocol [39],

4

yields an OPRF with unlimited input domain {0, 1}∗ [6].
In Appendix B we discuss the relation between OPRFs,
blind signatures and OT in more depth.

Another generic way to build an OPRF is to
use a unique blind signature scheme [44], [45]
BSIG = (Gen,Blind,Sign,Unblind,Vfy). This is a sig-
nature scheme with a deterministic signing algorithm
(uniqueness of signatures), and where the signer does
not learn which message he signed (blindness). If BSIG
produces pseudorandom signatures, we can interpret the
secret key of key pair (pk, sk)←R Gen as PRF key k ← sk
and directly obtain an OPRF for PRF Signk(), as depicted
below. The two known unique blind signature schemes in
the literature [44], [45] yield particular HashDH OPRFs
already described in Section 2.2 (see Appendix B.2 for
details).

C(x) S(k)

(x̄, r)←R Blind(x) -x̄

σ ← Unblind(σ̄, r) � σ̄
σ̄ ← Signk(x̄)

Output σ

Figure 7: OPRF from a unique blind signature scheme
(Gen,Blind,Sign,Unblind,Vfy).

3. Properties

We now turn to describing additional properties of
OPRFs. For this whole section, we recommend frequently
checking out Table 3, which gives further pointers to
OPRF protocols conforming with the notions presented
herein.

3.1. Partially-oblivious PRFs

While OPRFs were originally introduced as a fully
oblivious primitive, subsequent constructions required re-
vealing part of the client’s input x to the server [19]. These
constructions are called partially-oblivious PRF (initially,
the term tweak visibility was also used) and are purely
application-motivated: they give the server sufficient con-
trol to establish a rate limit for the number of evaluation
requests made by the client, with respect to a specific
public part of the input. We denote the private part of the
input as xpriv, and the public one as xpub. The goal of
the joint protocol is to allow the client to obtain a value
fk(xpriv, xpub), but now with the server learning xpub:

Definition 2 (Partially-oblivious pseudorandom function).
A two-party protocol π between a client and a server is
a partially-oblivious pseudorandom function (pOPRF) if
there exists some PRF family fk, such that π privately
realizes the following functionality:
• Client has inputs xpriv, xpub; Server has key k and public

input xpub.
• Client outputs fk(xpriv, xpub); Server outputs nothing.

Formal versions of this property have been defined in
UC [12], [13] and with game-based models [19], [31].

Constructions. A common construction for partially-
oblivious PRFs uses the (2)HashDH in a bilinear map
setting, leveraging the pairing to combine both input

values. The original construction proposed as part of
the Pythia protocol [19] uses a pairing e to compute
fk(xpriv, xpub) := e(H1(xpub), H2(xpriv))

k. While xpub is
known to the server, the pairings second input H2(xpriv) is
send blindly as a ← H2(xpriv)

r to the server. The server
returns b← e(H1(xpub), a

k) to the client, which unblinds
the value into y ← b1/r. For the 2HashDH variant – which
is needed to get UC security – the unblinded value is
simply hashed again with both inputs.

Recently, Tyagi et al. [31] considered the partially-
oblivious PRF

fmodDY
k (xpriv, xpub) := H ′(xpriv, xpub, H(xpriv)

1/(k+xpub)),

which can be evaluated with only three exponentiations,
hence omitting the need for pairings. The idea of this
construction is that the server augments the key k of
2HashDH with the public input. Since this must occur
in a non-malleable way, the exponent is inverted and the
resulting PRF resembles the Dodis-Yampolskyi PRF.

Related to this idea, there is a simple trick to derive
an OPRF output from a partially known input, which
could generically be combined with all (fully-blind) OPRF
constructions, yet so far it has only been instantiated in
combination with (2)HashDH [13], [57], [58]. Therein
the public input is used to derive an xpub-specific key
using a standard pseudorandom function PRF. That is,
a partially-oblivious PRF fk(xpriv, xpub) can be derived
from a fully-oblivious PRF f ′ and a standard PRF as

fk(xpriv, xpub) := f ′PRF(k,xpub)
(xpriv).

Thus, technically, the server uses a different key for
every public input. The advantage of this approach is that
it allows to add partial-blindness to (2)HashDH without
requiring bilinear maps.

3.2. Verifiability & Committed Inputs/Outputs

We now review different ways of establishing guaran-
tees on the inputs and outputs of an OPRF protocol.

Verifiable OPRF. A verifiable OPRF (V-OPRF) refers to
the concept of correct output verifiability. That is, it allows
the client to be convinced that she has received the PRF
value fk(x) with k denoting the server’s key. Definition
1 is already verifiable, as it guarantees that the output of
the client is fk(x) whenever the client inputs x and the
server inputs k. Verifiability can be achieved by handing
the client a “public key” version of the server’s key k,
which can be used not only to verify correctness of PRF
evaluations but also equality of the server’s key among
different runs of the protocol.

This property can easily be realized in the DL-based
setting, by letting the client obtain a commitment gk
to the PRF key k, and requiring the server to provide
zero-knowledge proofs of correct evaluation w.r.t. k, or
using some construction-specific verification method, e.g.,
when using blind-signature-based constructions or relying
on pairings. Verifiable constructions for NR, DY and
(2)HashDH-based OPRFs have been proposed so far; see
Table 3 for an overview. We note that some works [4], [13]
present verifiable definitions of OPRFs but only achieve
them by restricting to semi-honest servers. As semi-honest

5

PRF Batc
hin

g

M
ult

i-p
oin

t

Part
ial

ly
ob

liv
iou

s

Veri
fiab

le

Com
mitte

d

Proa
cti

ve
sec

.

Upd
ata

ble

Dist
rib

ute
d

Thre
sh

old

Spe
cia

l (S
ec

t.
3.8

)

FIPR05, 1st [4] NR # # # # # # # # #

HL08 [5] NR # # # # # # # #

JKK14 [9] NR # # # # # # # #

Hazay15 [26] NR variant # = # # # # # # #

JL09 [7] DY # # i # # # # #

CL17 [22] DY # = # # o # # # # #

MPRSY20 [30] DY # # # # # #

TCRSTW21 [31] DY variant # # # # # # #

JL10 [8] 2HashDH = # # # # # # # #

JKK14 [9] 2HashDH/RSA # # # # # # # #

ECSJR15 [19] HashDH # # # #

JKKX16 [10] 2HashDH # # # # # # # # #

JKKX17 [11] 2HashDH # # # # # # #

DGSTV18 [28] 2HashDH = = # # # # # # #

Lehmann19 [57] HashDH ♣ # # # # #

BFHLY19 [12] 2HashDH # # # # # #

DHL22 [13] 2HashDH # # # # # #

KKRT16 [6] Any V # # # # # # # # #

KMPRT17 [34] Any # # # # # # # # #

JKR18 [58] Any # � # # #

TABLE 3: Properties of OPRFs from the literature.
 = applicable
 = trivially implied
= not satisfied

V = with related keys
= = enforcing same key
� = input-dependent key

♣ = for same input
sh = semi-honest server
i = input, o = output

behavior of the server implies verifiability by assumption,
their constructions should not be considered as verifiable.

Committed In- & Outputs. Since OPRFs are often used
as building blocks in more complex protocols, it might
be necessary to ensure that they are run on certain well-
formed values, or to allow subsequent computations for
the blindly derived outputs. Both can be realized via cryp-
tographic commitments, such as Pedersen commitments.

For committed inputs, this slightly weakens the se-
crecy property of OPRFs from full blindness (i.e., where
the server learns nothing about the input) to learning a
commitment c ← com(x; r) of the client’s input x and
with r denoting the randomness for the commitment. This
commitments can serve as “glue” to other parts of the
protocol, e.g., the client can prove that she invoked the
OPRF on a value that was the result from a previous step
in the protocol.

Definition 3 (OPRF with Committed Inputs). A two-party
protocol π between a client and a server is an OPRF with
committed inputs if there exists some PRF family fk such
that π privately realizes the following functionality:

• Client has input x, r; Server has key k and input
c← com(x; r).

• Client outputs fk(x); Server outputs nothing.

OPRFs with committed outputs instead have full
blindness for the inputs, but the server learns a commit-
ment c ← com(y; r) of the client’s output y := fk(x).
A high-level protocol can now use this commitment to
ensure that the client correctly uses the blindly computed
OPRF value y in its subsequent computations.

Definition 4 (OPRF with Committed Outputs). A two-
party protocol π between a client and a server is an OPRF
with committed outputs if there exists some PRF family fk
such that π privately realizes the following functionality:
• Client has input x; Server has key k.
• Client outputs (y ← fk(x), r); Server outputs c ←
com(y; r).

In terms of constructions, both commitment ap-
proaches require that the blinded in- and outputs of the
underlying PRF preserve a certain (algebraic) structure,
as is the case for the NR and DY PRFs. While we find a
DY-based OPRF with committed input [7] and committed
output [22] in the literature, these properties have not yet
been investigated for NR-based PRFs. The (2)HashDH-
based constructions are not amendable to this setting, as
the hash “destroys” the structure of in- and outputs, and
the same holds for oblivious evaluations of non-algebraic
PRFs such as, e.g., fAES.

3.3. Updatable OPRFs

Key rotation, i.e., periodically changing the secret key,
is a common security measure in order to minimize the
risk and impact of key exposure. An OPRF is called
updatable if there is an efficient (possibly interactive)
procedure that lets the client update previously computed
PRF values to a new key. We note that such updatability is
independent of the evaluation process and hence rather a
property of the PRF. To realize such an update procedure,
one requires controlled access to the underlying key, and
thus again a certain algebraic structure from the PRF
value. The natural PRF construction that satisfies these

6

requirements is fk(x) := H(x)k, and in the context of
OPRFs the feature of updatability was first proposed (for
the pairing-version of that PRF) in [19].

The main idea is as follows: If the server wants to
rotate from the current key k to a new k′, it issues the
compact token ∆ = k′/k to the client. The client can then
efficiently update his stored PRF value fk(x) := H(x)k

by raising it to ∆.
This approach is compatible with all OPRFs that pro-

duce outputs of the form Xk (for arbitrary X), but unfor-
tunately does not work with the more popular 2HashDH
variants that offer stronger UC-security. In fact, it is an
interesting open problem how to construct an updatable
and UC-secure OPRF.

Another interesting update feature is proactive security
(a term also referred to as recovery from compromise or
security against transient corruptions2) if it guarantees a
recovery strategy that allows a server to refresh its keys so
that it can securely re-initialize after a compromise. This
works through key rotation [19], where the server switches
to a fresh key and provides a short update token that
allows to update all previous PRF outputs. If the server
is distributed (see below), techniques from proactively
secure secret sharing apply [11], [12]. Proactive security
can be seen as the “opposite” of forward secrecy, where
compromise of the OPRF key can only impact security of
evaluations until the next recovery procedure is executed.

3.4. Distributed & Threshold ORPFs

While the original OPRF definition [4] only involves
one client and one server, several extensions exist that
distribute the server role to several entities. The main
goal of such distribution is to increase resilience against
key compromise. This is particularly important when the
OPRF is used to protect low-entropy inputs, such as
passwords, where a full key exposure would allow to
recover the inputs of acquired PRF values through brute-
force attacks.

The DH-based constructions naturally lend themselves
to both distributed and threshold versions, by simply
applying either additive sharing of the key or Shamir’s
secret sharing respectively. The latter realizes a (t, n)-
threshold OPRF [11], [19], by splitting the secret key k
over a set of n servers, such as any subset of t servers
can jointly compute the PRF value fk(x). Consequently,
computation of the PRF value now becomes an interactive
protocol of the client and at least t servers. As long as no
more than t servers are corrupted (at the same time), the
adversary learns nothing about the key and thus cannot
brute-force learned PRF outputs. If t = n this is called a
distributed PRF [12]. Jarecki et al. [14] show how to use
a share conversion technique due to Cramer et al. [59] to
thresholdize a partially oblivious PRF. Their construction
however is not fully generic as it requires the underlying
OPRF to derive keys from a PRF, and it is only efficient
in small settings since it requires

(
n−1
t

)
exponentiations

on the client side.

2. Permanent vs transient: a permanent corruption is for the party’s
lifetime (i.e., once a server is corrupted it will always be controlled by
the attacker), whereas that in a transient corruption the attacker controls
the server only for a specific amount of time.

So far, distributed and threshold schemes mainly build
upon (2)HashDH and are nicely compatible with other
properties that were realized for that line of constructions,
such as partial-blindness and verifiability. While generic
MPC could of course be used to distribute all OPRF
constructions, realizing dedicated efficient versions of NR-
based scheme is still an open problem.

3.5. Choice of PRF Key

In many OPRF applications, such as PSI or password-
based cryptography, one needs to obliviously evaluate a
PRF more than once. If the OPRF allows for consecutive
evaluations w.r.t the same key, then we call the OPRF
multi-point, otherwise we call it single-point.

Definition 1 models a multi-point OPRF (also referred
to as multi-query [34], multi-evaluation, or multi-session
[22]), by allowing the server to provide an arbitrary OPRF
key for each evaluation. Most OPRFs in the literature are
multi-point (see Table 3), and some even enforce usage
of the same key in consecutive evaluations [22], [26]. We
can further distinguish between adaptive queries, where
the client can decide on the value of each query after
receiving the answer to previous queries (as modeled by
Def. 1), and a non-adaptive (also called static) setting,
where the client must provide all queries before receiving
any evaluation.

Single-point OPRFs (also referred to as one-time [60]
or single-evaluation) do not take an OPRF key as input.
Instead, a uniformly (mostly, with only few exceptions
[6]) key is given to the server as output.

Definition 5 (Single-point oblivious pseudorandom func-
tion). A two-party protocol π between a client and a server
is a single-point OPRF if there exists some PRF family fk,
such that π privately realizes the following functionality:
• Client has input x;
• Client outputs fk(x); Server outputs k.

Obviously, a single-point OPRF cannot be evaluated
twice with respect to the same PRF key k (except with
negligible probability). This limits the applicability of
such OPRFs, and indeed, all single-point OPRFs from
the literature [6], [34], [35], [54], [61], [62], [63] are used
exclusively in the context of Private Set Intersection (PSI).
An interesting side fact, which we develop further in
Appendix B, is that the relationship between single-point
and multi-point OPRFs is analogous to the one between
Random OT and OT [6], [60]. It is thus not surprising that
the seminal Random OT extension protocol of Ishai et al.
[39] is used as single-point batched OPRF by Kolesnikov
et al. [6].

All algebraic OPRFs (i.e., based on the NR PRF,
the DY PRF, or Hashed DH) are multi-point, and hence
the PRF key is chosen by the server. Additionally, some
OPRFs enforce usage of the same key in consecutive (or
batched) runs of the protocol, which works for the NR-
PRF [26], the DY PRF [22], and also 2HashDH [28]. To
really enforce same key usage (and not only deploy some
sort of “soft” enforcement, where the client discards all
outputs that do not verify with respect to a public key),
an OPRF with same-key enforcement can be easily built
for the DY PRF as in Figure 4: the client always uses

7

the same Encpk(k) in each evaluation, and proves correct
behavior in zero-knowledge [22].

Lastly, there exist transformations from single-point to
multi-point OPRFs based on Cuckoo hashing [34].

3.6. Batched OPRFs

Batching improves the efficiency of multiple parallel
OPRF executions either with the same [8] key yet different
inputs, or different keys yet same inputs [57], or correlated
keys [6]. From a batched OPRF protocol that lets a client
compute ` PRF values we expect a lower complexity than
that of performing ` successive runs of the corresponding
single evaluation OPRF protocol.

The main setting for batched OPRFs is for batched
inputs, i.e., the client wishes to obtain several PRF values
for different input values at once. This is a particularly
desirable feature in large-scale private set intersection
protocols, e.g., for privacy-friendly contact discovery [18].
So far, all constructions for batched inputs are based on
generic OPRF-constructions from symmetric primitives
[6], [35], [54], [62], [63].

In contrast, for realizing batching for different keys,
i.e., the client wants to obtain ` PRF values for ` differ-
ent keys for the same input x, (2)HashDH is a natural
candidate as it allows to simply reuse the blinding input
value in several responses [57]. See Figure 8 below which
compares the standard and batched constructions.

C(x) S(k1, . . . , k`)

r ←R Z `
q

a← H(x)r -a
bi ← aki

i
, i ∈ [`]

Output b
1/r

i

i
�b1, . . . , b`

Figure 8: Batched and unbatched HashDH. In an un-
batched run, r and a are `-dimensional vectors and hence
the client needs to send ` group elements instead of one
as in the batched version.

3.7. Weak OPRFs

Ideally, an OPRF protocol leaks no information be-
yond the client learning the evaluation. But such a rigid
definition is often too strong, and it does not allow to prove
security of many efficient OPRF protocols, for example
ones where the client applies a hash to derive the final PRF
output. The notion of weak OPRF3 (also called relaxed
OPRF) was also coined by Freedman et al. [4]. It allows
the client to learn additional key-dependent information.
This additional information may not compromise pseu-
dorandomness of yet unqueried inputs [4, Def. 6]. For
example, consider an OPRF that reveals the first bit of the
PRF key, or one that reveals the preimage of a final key
derivation function. Such OPRFs are still “secure enough”

3. Not to be confused with weak PRFs. A weak PRF is pseudorandom
on randomly chosen inputs. For example, fk(x) := xk is a weak PRF,
but not a PRF: given fk(x) one can easily compute, e.g., fk(x2).
Transformations from weak PRFs to PRF exist in the ROM [43]. We are
not aware of any formal definitions of oblivious evaluation protocols of
weak PRFs, but note that [15] implicitly evaluates weak PRF H(xk) in
an oblivious way. See Section 6 for further discussion.

for most applications. Prominent examples are 2HashDH
OPRFs (see Table 2 for references) and a special OPRF
of Kolesnikov et al. [6], which serves as the basis of many
OPRFs tailored for private set intersection (see Appendix
B.4).

3.8. Specialized properties

We now explain several “niche” properties that were
introduced to serve particular applications, but have not
(yet) found use beyond.

A programmable OPRF (OPPRF) [34] allows the
server to "program" the output of the PRF f on a limited
number of inputs. More formally, in an OPPRF the server
holds a constant-sized set of point-value pairs (xi, yi).
Then, the server generates an OPRF key k such that
PRFk(xi) = yi and PRFk is pseudorandom everywhere
else. The client learns the PRF output as before, but,
importantly, is not able to distinguish whether his input
was one on which the PRF was programmed by the server.
OPPRFs allow for efficiency gains in modern PSI proto-
cols [34], [35], [62], [63] (see Appendix B.4). OPPRFs
can be constructed generically from OPRFs [34], [62].

The OPRF in [57] provides two new features: First, it
expresses and realizes OPRFs for a 3-party setting, where
the party blindly invoking the OPRF and the one receiving
the unblinded output are different entities. For this, the
OPRF is moved to a public-key setting where the blinding
and evaluation are done w.r.t. a public blinding key bpk
of the receiving entity. Only the receiver knows the corre-
sponding secret key bsk and can unblind the derived PRF
value. This feature is useful when the correlation between
in- and outputs must not be known to a single party; e.g.,
when the OPRF is used to create pseudonymized data in
a way that no entity can link the original identifier with
its derived pseudonym.

Another unique feature introduced in [57] is converta-
bility. This allows a blind conversion from an already
received PRF value y = fk(x) into y′ = fk′(x). This
blind conversion can only be performed through the server
that knows both k and k′. The privacy properties are
maintained through conversion, i.e., the server neither
learns y, y′ or the underlying x for which the PRF values
are derived. This was again proposed in the context of
pseudonymization, but the feature also naturally lends
itself to key rotation, as a server can blindly rotate all
previously computed PRF values under key k towards a
fresh key k′.

The concept of extendable OPRFs was introduced
in [13] and allows that certain blinded inputs can be re-
used in the second evaluation. That is, after receiving a
PRF value y = fk(xpub, xpriv) the client and server can
engage in a subsequent run of the protocol where the
client obtains y = fk(x′pub, x

′
priv, xpriv). The second value

is evaluated on fresh (partially-blind) inputs x′pub, x
′
priv but

also re-uses xpriv from the previous run. This feature can
be useful in password-based protocols, where the first PRF
value serves for explicit password-verification whereas the
second PRF value derives a password-depended key from
the verified password.

8

3.9. Discussion

On choosing between the different OPRF constructions.
As explained in Section 2, there are two groups of OPRFs
in the literature: algebraic constructions (evaluating the
NR-, DY- or HashDH PRF) and OT-based constructions
(used mostly to evaluate block-cipher based PRFs such as
AES encryption). OT-based OPRFs are a good choice if
many evaluations need to be computed, in particular if the
application allows for randomly chosen keys (single-point
OPRFs), and if bitstrings as PRF values are sufficient.
Table 5 can be consulted to pick an appropriate OT-based
OPRF.

Algebraic OPRFs are computationally more expensive
than OT-based OPRFs, but produce pseudorandom group
elements as output and offer a variety of interesting prop-
erties as explained in this section. Table 3 helps in picking
an OPRF with the desired property combination, and Table
4 depicts computational and commmunication costs of
algebraic OPRFs. Regarding the type of PRF, while NR-
based OPRFs are conceptually simple, they do not allow
for much flexibility and have thus found only very little
adoption in recent years. HashDH-based constructions are
the most abundant in the literature and offer the broadest
variation of properties – if one wants to construct an
OPRF with new properties, HashDH-based OPRFs are
a good starting point! HashDH-based OPRFs also have
optimal communication complexity (1 group element in
each direction) per single evaluation. Still, for some prop-
erties such as committed input/output, DY-based OPRFs
are currently the only available option, however at a sig-
nificant efficiency loss due to use of higher order groups
with unknown factorization. In settings where quantum
security matters, although none of the algebraic OPRFs
are quantum secure, HashDH-based OPRFs information-
theoretically blind the input of the user, and hence protect
it even against quantum computers. This is not the case
for NR- and DY-based constructions, where a discrete
logarithm solver can recover the user’s input. Lastly, we
note that some algebraic OPRFs should be handled with
care, e.g., ones that require more interaction [7], [9], [26]
or do not provide security against malicious servers [4],
[13], [22]. Table 4 marks such cases in red.

Regarding benchmarking of resource/bandwith set-
tings in which algebraic and OT-based OPRFs outperform
each other, we refer the reader to the works of [18], [33],
[54], [64].

On potentially conflicting properties. It can be seen from
Table 3 that none of the non-hash-based OPRFs, namely
the NY/DY-based ones, provide updatability. The crucial
difference between NR/DY-based OPRFs and HashDH-
based ones is that, in HashDH, the key-dependent expo-
nent is simply k, hence it is independent of the user’s
input and thus easy for the server to generate a universal
update token. For the DY PRF, the exponent is 1/(k+x)
and hence dependent on a value that the server does not
know, and similarly for the NR PRF. Manipulating the
key in PRF values in such a way that the user cannot
derive related evaluations seems inherently hard – at least
as long as we require the manipulation procedure to be
non-interactive.

Another conflict arises when one wants to build a
universally composable OPRF (see upcoming Section 4
about security) that supports key rotation, providing the
user with update tokens that let her update old PRF values
to the new key. As explained above, the only choice for
key rotation seems a hash-based OPRF, such as HashDH.
Yet proving universal composability of HashDH seems
to require an “outer hash”, as otherwise very inefficient
techniques such as proof of correct hash computation need
to be added on top. However, the outer hash inherently
limits the client’s “access” to the key, as it makes it
impossible to perform any arithmetic operations on the
hashed value.

Lastly, the generic way to construct partially-oblivious
PRFs using PRF(k, xpub) as the key, as described in Sec-
tion 3.1, somewhat conflicts with the goal of verifiability.
This is because in that case, the OPRF is computed with
many different keys, requiring the server to additionally
provide xpub-specific “public keys”, and also proving that
these keys have been correctly derived from k. The lat-
ter might require proving correct evaluations of an AES
circuit, depending on the choice of PRF.

4. Formalizing OPRF security

We explain how to formalize security of an OPRF
using the two options available, namely simulation-based
and game-based. We also describe special security proper-
ties, such as proactive security, and how to capture them
as well as the properties of the previous section in the
different models. Practically-oriented readers might want
to skip this section, and directly jump to applications
(Section 5).

4.1. Simulation-based security

Simulation-based security follows a real world – ideal
world paradigm. In a nutshell, an OPRF is considered
secure if it “behaves” as if it was carried out by a
trusted party, and the protocol transcript can be simulated
without knowledge of secret inputs. A good introduction
to simulation-based security is offered by Lindell [65].

Defining simulation-based security of OPRFs requires
formulating how an “ideal” OPRF looks like: how would
a fully-trusted party F , talking to a client and a server,
execute the task? Definition 1 already shows the two main
aspects that F needs to implement:
• F implements a truly random function;
• F only lets the client obtain an evaluation if the

server agrees to participate.
As OPRFs are often used as building blocks in crypto-

graphic protocols, strong composability and concurrency
guarantees are desirable. Unfortunately, Definition 1 does
not ensure secure concurrent executions of the OPRF [9].
A simulation-based framework which offers particularly
strong composability and concurrency guarantees is the
Universal Composability framework (UC, [40]), and it
is hence not surprising that it is frequently used as a
method of formalization in the OPRF literature [9], [10],
[11], [12], [13], [14], [21], [22], [28], [29]. All these
works provide differing OPRF functionalities, with special
properties that make it hard to understand the essence of

9

The functionality assigns [1] random values FS(x) ← {0, 1}λ
for yet undefined FS(x).

On (INIT) from [2] server S, send (INIT, S) to adversary A.
Ignore all subsequent INIT queries.

On [3] (EVAL, ssid, x) from any client C, do:
• send [4] (EVAL, ssid, S) to S and A;
• record (C, ssid, S, x).

On (PROCEED, ssid) from [5] server S, do:
• send (PROCEED, ssid) toA and [9] receive back (ssid, S′);
• retrieve record (C, ssid, S, x);
• [7] abort if S 6= S′ and S is honest;
• output [6] (ssid, FS′ (x) to C.

On [8] (OFFLINEEVAL, x) from A, if S is corrupt then send
FS(x) to A.

Figure 9: UC functionality FOPRF, without any special
properties.

the functionality. Therefore, in Figure 9, we give the core
code that they all comprise.

Outputs of FOPRF are consistent and indistinguishable
from random through maintaining a function table F(·)(·),
assigning random values wherever no value is assigned
yet ([1]). Hence, any OPRF indistinguishable from FOPRF

implements a pseudorandom function. FOPRF is “keyed”
by the server identity S ([2]) and, in unattacked sessions,
computes function FS(·). When a client wants to eval-
uate the PRF ([3]) on input x, privacy of x is ensured
by informing the adversary A about the evaluation but
not leaking x ([4]). The client only receives output if
the server agrees in the evaluation ([5], an evaluation is
identified by a unique ssid). The output received by the
client is either FS(x) in an honest run of the protocol, or
FS′(x) in case the adversary (= the corrupt server) decides
to use a different PRF key S′ ([7]) that is not equal to S.
Finally, in case the server is corrupt, the adversary can
freely evaluate the PRF via interface OFFLINEEVAL ([8]).
Finally, the adversary can always mount a DoS attack
by not replying anymore ([9]). It should be clear from
this description that FOPRF specifies not only input-output
behavior of an OPRF but also all attacks that the OPRF
admits. The motivation behind allowing attacks in the first
place is efficiency in the realizing OPRF protocol.

One drawback is that definitions following Figure 9
cannot be realized by AES-based OPRFs [6], [18], [35],
[36], [54], [56], [61], [62], [63], since pseudorandomness
of AES is based on heuristics.4 For the other three main
PRF classes from the previous section, UC-secure OPRFs
exist (cf. Table 4). Several variants of the PRF H(x)k,
such as H ′(x,H(x)k), owe the outer hash H ′ to UC
security, since this hash enables efficient extraction of
inputs. Since the hash is essentially required for UC
security, all papers that do algebraic manipulations of the
key, such as key rotations, instead use game-based security
notions [8], [19], [57], which we detail below.

We now give explanations on how to extend Figure 9
to capture properties from the previous section.

4. Camenisch et al. [22] give a UC OPRF functionality which differs
from Figure 9: their FOPRF has a hard-coded PRF which is used to
generate outputs – similar to Definition 1. Indistinguishability from their
FOPRF hence only implies unpredictability. On the plus side, a definition
with hard-coded PRF can be used to argue simulation-based security
even of AES-based OPRFs, under the assumption that AES is a PRF.

• Partial obliviousness: modify ([4]) to let FOPRF leak
the public part of the input to the server [12].

• Verifiability: remove instruction [7] and remove S′
from [9]. Namely, do not let A switch to S′ 6= S
even in case the server gets corrupted after an honest
INIT phase [9].

• Committed inputs/outputs: FOPRF gets an addi-
tional COMMIT interface that allows the client to
commit to his inputs or his outputs, where FOPRF

ensures consistency with actual inputs and outputs
[22].

• Key rotation: Due to randomly chosen outputs, there
is no natural way to capture key updates or objects
such as update tokens within FOPRF. And indeed, the
literature does not provide any definition or construc-
tion of a UC-secure OPRF with key rotation.

• Proactive security: FOPRF gets an additional “un-
corrupt S” interface, which lets it treat server S as
honest again in instructions [7] and [8] [12].

• Distributed/threshold: the INIT and PROCEED inter-
faces have to be called by all servers, or a threshold
of them. FOPRF decides about honest or corrupt
evaluation based on how many servers are corrupt
[11], [12], [13].

• Programmability: Modify the INIT interface to let
the server provide a list of point-value pairs to pro-
gram into FS(·) [62].

• Multi-point: FOPRF already implements a multi-
point PRF, since repeated calls to EVAL allow eval-
uation of the same function FS(·).

• Single-point: this can be captured by dropping the
INIT query and letting FOPRF choose a fresh key
S for each EVAL. Additionally, FOPRF must offer
the involved server an OFFLINEEVAL interface with
respect to that key. Single-point OPRF definitions
do not exist in the literature, as they only implic-
itly appear in works based on the PSI protocol of
Kolesnikov et al. [6].

• Batching: Since FOPRF does not demand anything
about the efficiency of the realizing protocol, batch-
ing cannot be captured in a UC definition.

• Weak OPRF: FOPRF can be realized by weak
OPRFs, since it already enforces pseudorandomness
of other PRF values via instruction [1]. Additional
leakage about the key is allowed as long as a simu-
lator can fabricate indistinguishable information.

Finally, we mention a commonly used proof technique
that allows to tweak efficiency of UC-secure OPRFs.
Namely, Jarecki et al. [9] added a so-called ticketing mech-
anism to OPRF functionalities. This is a technique used
in simulation-based proofs which dispenses with the need
to “on-line” extract the user’s input during the execution
(note that the existence of a simulator already implies
an efficient extractor of the input message). Ticketing
avoids heavy cryptographic mechanisms and costs for,
e.g., extractable proofs of knowledge when building a
simulator for proving the security of a given OPRF proto-
col. Essentially, each evaluation results in generation of a
ticket, and each PRF value given out reduces the number
of tickets by one, making sure that the overall number of
values given out does not exceed the number of protocol
runs. A similar method to the ticketing mechanism for

10

OPRFs has already been considered in the context of blind
signatures in the UC model [66].

4.2. Game-based security

Another way to define security of OPRFs is to inspect
various aspects of the OPRF via experiments formulated
as games between an adversary and a challenger. For ex-
ample, security against a malicious client can be checked
by challenging an adversary to predict an unqueried PRF
value (one-more unpredictability, [19], [57]), or to dis-
tinguish it from random (pseudorandomness, [57]). More
detailed, to break one-more unpredictability of an OPRF
protocol, the adversary A plays an interactive game with
a challenger who randomly samples a PRF key k ←R K
from key space K. A gets access to a “transcript oracle”
PRFrsp and can use it to receive polynomially-many PRF
values together with the evaluation transcript. A then
needs to output one more input-output pair of the PRF.
We exemplarily depict this in Figure 10, but note that
it only works for 1-round OPRF protocols Π. For more
complex protocols, the transcript oracle PRFrsp would
need to be more involved. The choice of notion (unpre-
dictability is weaker than pseudorandomness) depends on
the application: if the PRF value is used as a credential,
unpredictability might be sufficient [19]; if the PRF value
is used as a pseudonym [57], pseudorandomness seems
required.

Game Expone-more unpred
A,Π

k ←R K, c← 0
(x1, y1), . . . , (xn, yn)← APRFrspk(·)

If ∃i, j ∈ [n], i 6= j with (xi, yi) = (xj , yj) return 0
Return (∧i=1,...,n yi = PRFk(xi) ∧ c < n)

Oracle PRFrspk(·):
on input x set c+ + and return PRFrspk(x)

Figure 10: One-more unpredictability game for a 1-round
OPRF protocol Π evaluating PRF PRF, where the server’s
response is computed with function PRFrsp. If A’s ad-
vantage in winning this game is negligible, then Π is one-
more unpredictable.

To check security of an OPRF protocol w.r.t. malicious
servers, we can define a corresponding experiment that
checks obliviousness of the protocol, resembling semantic
security of an encryption scheme: the adversary provides
two inputs, one of which is randomly selected by a
challenger and used to generate the protocol transcript.
The adversary wins the game if it can tell which input
was selected. See Lehmann [57] for a formal definition.

Only few OPRFs in the literature are proven secure
in a game-based model [8], [19], [31], [57], and the
only properties formalized so far are proactive security,
verifiability and key rotation [19].

5. Applications

A common design paradigm to leverage an OPRF is to
let a client5 compute a high-entropy cryptographic object

5. For the sake of consistency with the technical sections, we use
the term “client” instead of the more common term “user” also in this
section.

(e.g., a key, or a token) from a low-entropy input (e.g.,
a password, a username, an identifier, or a file). The fact
that the computation is assisted by one or many servers
enables protocols that are lightweight on the client side:
crytographic material can be securely stored on servers
and recovered with the help of the OPRF. On the other
hand, obliviousness of the PRF evaluation allows to hide
client’s protocol input. Together with being efficient and
strongly secure, these features have made OPRFs one
of the most promising privacy-enhancing tools in recent
years.

Applications of OPRFs in the literature leverage
OPRFs in essentially two ways. First, OPRFs are used
to let clients (re-)compute high-entropy cryptographic ob-
jects, such as cryptographic keys, from her data. Applica-
tions include but are not limited to

• Secure password verification
• Server-assisted encryption
• Secret key recovery/password-encrypted backups

Second, OPRFs are deployed instead of hash functions,
to enforce interaction when computing hash values. This
is useful in settings where limitation of hash evaluation is
desirable. Examples are:

• Precomputation-resistant password hardening
• Rate limiting for web-services
• Secure comparison of private inputs (e.g., contact

tracing)

We now detail each of these applications.

Secure password verification. On the internet, password
verification is usually deployed through “Password-over-
TLS”, a mechanism that requires the client to send her
clear-text password to the server, who then hashes it and
compares the hash against a local database. Using OPRFs,
one can implement lightweight protocols to interactively
compute the hash and have the client prove knowledge of
the correct hash afterwards. Crucially, the server does
not see the client’s password by the obliviousness of
the OPRF. We depict a blueprint for secure password
verification using an OPRF in Figure 11.

C(pw) S(k)

-
pw

� k
OPRF

�
y

(sk, pk)←R Gen(y) -pk store pk

-
pw

� k
OPRF

� y′

(sk, pk)←R Gen(y′)
π ←R PoK(y′) -π Accept if

Vfy(π, pk) = 1
Otherwise reject

Figure 11: Blueprint for secure password verification from
multi-point OPRFs, with registration above the dashed
line, and verification below.

Upon registration, the client runs the OPRF protocol
to compute a secret key from her password. The server

PR
F

R
ef

er
en

ce

M
od

el

Se
cu

ri
ty

m
od

el

A
dv

.m
od

el
C

-S

H
ar

dn
es

s
as

s.

D
es

cr
ip

tio
n

M
od

ul
ar

bl
oc

ks

R
ou

nd
s

C
om

p.
co

st
s

C
om

m
.c

os
ts

N
ao

r-
R

ei
ng

ol
d

(N
R

)

FIPR05, 1st SC - DDH Protocol of Fig. 1
(
2
1

)
-OT for semi-h. S 1 n

(
2
1

)
-OTs, n

(
2
1

)
-OTs

[4] S: 1 exp, C: 1 exp S → C: 1 ge

HL08 [5] SC - DDH Protocol of Fig. 1 Maliciously secure
(
2
1

)
-OT 1 same as above same as above

Hazay15 SC - DDH Variant of Fig. 2, Hom. enc. (ElGamal), 2 see paper see paper

[26] forced same key, 6 types of ZKP

for special NR variant

JKK14 UC - Strong RSA, Variant of Fig. 2 Σ-ZKP, 1-time-Sign., 2 O(n · λ) mainly 5 Σ-ZKP

[9] DCR with proofs Commitment scheme, + 2n ctxt (each way)

Hom. encryption

D
od

is
-Y

.(
D

Y
)

JL09 SC - factoring, Variant of Fig. 4, Verif. & Hom. encryption 2 C: 1 π/enc/dec, 2 vfy/exp C → S: 1 π/pk, 2 ctxt

[7] n-DDHI with 2 public keys (Camenish-Shoup [67]), S: 1 exp/enc/dec/i/vfy, 2 π S → C: 1 ge/pk 2, π/ctxt

and proofs ZKPoK, safe RSA modulus

CL17 UC - q-BDDHI, Protocol of Fig. 4, Server-side Authentication, 1 C: 1 enc/com/π, 2 exp C → S: 1 com/ctxt/π

[22] DCR with proofs Certificate Auth., Com., S: 1 vfy/dec/exp S → C: 1 ge

+ same as above

TCRSTW21 G - OM-gapSDHI Blinded exponentation NIZK of dlog 1 C: 2 exp, 1 vfy C → S: 1 ge

[31] of DY variant S: 1 exp/π S → C: 1 π/ge

H
as

he
d

D
iffi

e-
H

el
lm

an

JL10 G - OM-gapCDH 2HashDH — 1 C: 2 exp C → S: 1 ge

[8] S: 1 exp S → C: 1 ge

JKK14 UC - OM-gapCDH 2HashDH NIZK of dlog 1 C: 2 exp, 1 v C → S: 1 ge

[9] with proof S: 1 exp, 1 π S → C: 2 ge, 1 π

DDH-Oracle O 1 C: 2 exp, 1 O C → S: 1 ge

(e.g., pairing) S: 1 exp S → C: 2 ge

OM-RSA 2HashRSA (Fig. 15) – 1 C: 3 exp C → S: 2 ge

S: 1 exp S → C: 1 ge

ECSJR15 G - OM-BDDH HashDH (Fig. 3), NIZK of dlog 1 C: 2 exp, 1 v C → S: 1 ge

[19] w. pairing & proofs S: 2 exp, 1 π, 1 prg S → C: 2 ge, 1 π

threshold version ” ” ” ” for each server

JKKX16 [10] UC - OM-gapCDH 2HashDH, Authenticated Channel 1 C: 2 exp C → S: 1 ge

and JKX18 [14] non-verifiable S: 1 exp S → C: 1 ge

JKKX17 UC - T-OM-gapCDH 2HashDH Secure & auth. channels 1 C: 2 exp C → every S: 1 ge

[11] with multiple servers every S: 1 exp every S → C: 1 ge

DGSTV18 UC - OM-gapCDH JKK14 [9] with NIZK of dlog 1 C: 1 vfy, 2 exp C → S: 1 ge

[28] forced same key S: 1 exp/π S → C: 1 ge/π

BFHLY19 UC - OM-gapBCDH Distributed 2HashDH, — 1 C: 2 exp C → every S: 1 ge

[12] with pairings and every S: 1 exp/prg every S → C: 1 ge

proactive security

Lehmann19 G - OM-DDH-io 3-party HashDH Hom. encryption 1 Req: 1 enc. Req → S: 1 ctxt

[57] with C=(Req,Rec) (ElGamal) S: 1 rand, 1 exp, S → Rec: 1 ctxt

Rec: 1 dec Req → Rec: 1 pk

DHL22 UC - OM-gapBCDH Distributed 2HashDH, — 1 C: 2 exp C → S: 1 ge

[13] w. pairings and S: 1 exp/prg S → C: 1 ge

extendable input

TABLE 4: Algebraic OPRFs and their costs for one evaluation. We omit negligible factors from cost columns, such as
transmission of identifiers, sampling, group operations and symmetric operations. Elements in modular building blocks
may add to hardness assumptions, model and rounds, and they need to be instantiated to derive final costs. We mark
in red OPRFs that are not maliciously secure, or require more than one round. Green marks optimal costs for one
evaluation.

Model
= standard (plain)
= CRS
= ROM

Adv. Model
= semi-honest
= malicious

Security model
SC = secure computation
UC = universal composability
G = game-based

Costs
n = input length
C = client
S = server
exp = exponentiation
mexp = multi-exp
p = pairing

enc = encryption
dec = decryption
rand = randomization
π = proof
prg = pairing
vfy = verify
ge = group element
σ = signature
pk = public key
ctxt = ciphertext
com = commitment

Hardness assumptions
CDH = computational Diffie-Hellman
DDH = decisional Diffie-Hellman
B = bilinear
I = inversion
S = strong
OM = one-more
gap = decision oracle
io = inversion oracle
T = threshold
DCR = dec. composite residuosity
n- = interactive n-type assumption

12

stores the corresponding public key. To verify the client’s
password later, the OPRF step is repeated, and the client
performs a proof of knowledge of the secret key. The
server is convinced that the client is eligible, i.e., knows
either the password or the secret key, if the proof ver-
ifies. Examples from the literature that use this protocol
layout include the asymmetric password-authenticated key
exchange (PAKE) protocol OPAQUE [14], the distributed
SSO protocol PESTO [12], and the distributed password-
authenticated symmetric encryption service DPaSE [13].
Proofs of knowledge can be efficiently implemented by
signing a server’s nonce [12], [13], or by performing
an authenticated key agreement [14]. Recent activities
have aimed at integrating such strongly secure password
verification into TLS6.

Secure password verification is usually deployed with
Hashed DH OPRFs (Section 2.2), since they have lowest
costs when only single evaluations are required, and they
offer various advanced properties (see Table 3). Deploying
a threshold or distributed OPRF further protects against
offline attacks upon server breach [68]7, since a certain
number of servers need to be corrupted before they can
jointly evaluate the PRF. Partial obliviousness can be used
to bind the stored public key to a username, by letting the
username be the public part of the input. This allows the
server to limit the number of attempts per account.

Server-assisted encryption. Using the OPRF, the client
turns data such as her password, a file [16], a file identifier
[15], or even a combination thereof [13] into a symmetric
key PRFk(data), with which she subsequently encrypts
her messages, or her hard drive. The server-contributed
part of the encryption key, namely the OPRF key k, can
be distributed to increase security [13], and can even be
made updateable [15]. If the key is derived from the data
to be encrypted, then the deterministic nature of the OPRF
even allows for deduplication [16], [69].

Secret key recovery. Another use case in line with the two
former ones is recovery of cryptographic material from
only a password [10], [11], [70]. This is useful to, e.g.,
rescue encrypted data after losing one’s key material, or
to recover a cryptocurrency wallet after losing the corre-
sponding secret key. We note that most works on secret
key recovery in fact deploy a cryptographic primitive
called password-protected secret sharing (PPSS), which
is in turn most efficiently built from OPRFs [10], [11]
(see Appendix B.3 for details). Recently, WhatsApp has
rolled out an encryption feature for their chat backup
function.8 Here, the user can restore the encryption key
from a password through the PAKE protocol OPAQUE
[14], which uses the HashDH PRF.

Precomputation-resistant password hardening. Conven-
tional password hardening functions, such as scrypt or Ar-
gon2, can be computed locally and are thus prone to pre-
computation attacks. Using an interactive OPRF instead
of a hardening function prevents such attacks (as long as
the key is stored on a different server than the hardened

6. https://blog.cloudflare.com/opaque-oblivious-passwords/
7. The concept of a distributed, verifiable, and proactively secure

OPRF appears only implicitly in [68].
8. https://www.whatsapp.com/security/WhatsApp_Security_

Encrypted_Backups_Whitepaper.pdf

password database). The main idea is that hard compu-
tation is substituted by interactive computation, where
the latter limits attacks even more as it requires active
participation of the server. A hardening service deployed
with an OPRF can even support efficient key updates [19].
The principle works also if password hardening is part of
another primitive; for example, plugging an OPRF instead
of a hardening function protects password-authenticated
key exchange (PAKE) schemes against precomputation
attacks [14].

Rate-limiting for web-services. Rate limiting access to
web services, a common way to defend against Denial-of-
Service attacks, can be enforced by giving out a limited
number of access tokens to clients. Interactively comput-
ing access tokens of the form (n,PRFk(n)) with an OPRF,
for nonce n chosen by the client, has been demonstrated
superior to approaches using signatures [28]. An imple-
mentation example is the PrivacyPass protocol9.

Secure comparison of private inputs. An OPRF can be
seen as a protocol for interactively and obliviously evalu-
ating a hash function. This makes OPRFs extremely useful
for applications such as private set intersection (PSI) [5]
(see Appendix B.4), pattern matching [5], [17], oblivious
keyword search (KS) [4], [71] and contact tracing [61],
[63] which merely need to compare client inputs but no
longer need to compute anything with them. The interac-
tive nature of the OPRF adds significantly to the security
level: whenever hashes of private data are shared or even
broadcasted (as done in, e.g., Apple’s AirDrop protocol),
computation of the hash through an OPRF significantly
limits the number of brute-force attempts to recover the
private data [72]. We exemplarily depict the transition
from hash functions to OPRFs for KS [4] in Figure 12.

6. Open Problems and Future Work

We summarize relevant open problems and identify
possible future research directions related to ORPFs.

OPRF constructions. In Section 3 we gave an overview
of which (combined) properties we can achieve from
which constructions. But is there any way to, e.g., batch
evaluate OPRFs based on NY or DY, potentially exploring
techniques from cryptographic accumulators? Can OPRFs
based on NR be distributed? A threshold version for the
distributed OPRF of Baum et al. [12] would enhance
usability of their SSO scheme.

Oblivious weak PRFs. Weak PRFs appear pseudorandom
only on randomly chosen inputs and are a strictly weaker
primitive than PRFs. There exist many efficient construc-
tions, with an interesting recent line of research on LPN-
based weak PRFs [73], [74]. Weak PRFs can be more
efficient than PRFs, and they find applications in sym-
metric primitives such as encryption or message authenti-
cation codes, and can be even used to construct signature
schemes. It is an interesting open question whether weak
PRFs can be evaluated obliviously, how to even define
security of such a primitive, and what applications they
can be used for.

9. https://asecuritysite.com/encryption/privacypass

13

https://blog.cloudflare.com/opaque-oblivious-passwords/
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://asecuritysite.com/encryption/privacypass

C(x) S(D, k, k′)

Parse (wi, ri)i∈[N] ← D

U = ((H(wi), H
′(wi)⊕ ri))i∈[N]

� U

If ∃i s.t. H(x) = (Ui)1 then
Output (Ui)2 ⊕H ′(x)

Parse (wi, ri)i∈[N] ← D

U = ((fk(wi), fk′(wi)⊕ ri))i∈[N]

� U

-x �k, k
′

OPRF
�y, y

′

If ∃i s.t. y = (Ui)1 then
Output (Ui)2 ⊕ y′

Figure 12: Top: “Insecure” KS for searching keyword x
in an N -sized database D, using hash functions H,H ′.
(Ui)1, e.g., denotes the first entry in the i-th pair of list
U . The client can reveal the whole database by exhaustive
search of keywords wi. Bottom: Oblivious KS [4], sub-
stituting hashes with OPRF evaluations of PRF f . Client
C can reveal at most one database entry ri, and the server
does not learn which one.

Dealing with malicious servers and weak keys. The obliv-
ious nature of OPRFs makes it sometimes challenging to
enforce correctness of the client’s output. Many OPRFs
rely on expensive zero knowledge proofs to enforce cor-
rect behavior of the server (see Table 4 for references), but
there exist cases in which not even these techniques can
be applied, and no (reasonably efficient, single-evaluation)
protocol is known that works for a malicious server [4],
[5], [13]. Moreover, most OPRF constructions let the
client check honest server behavior by verifying proofs
w.r.t a public key generated by the server. This leaves
OPRFs and their implementation to the following pitfall:
if the server chooses (intentionally or not) a non-uniform
key, then from the perspective of the client all checks pass,
and she might now, e.g., encrypt her data with a weak
key. Integrating well-formedness of keys into OPRFs has
not yet been considered, but would significantly improve
security guarantees of many applications.

Unification of security notions. Despite significant time
spent researching, even the authors of this work lost
track of the number of UC functionalities for OPRFs.
Unification efforts seem required to streamline existing
definitions into one that captures all necessary aspects,
but is still strong enough for the respective applications.

Efficiency of OT-based OPRFs. The original ORPF con-
struction in [4] requires n parallel OT instances (see Table
4), which with the best OT techniques translates to O(n)
exponentiations. OT is one of the best researched prim-
itives in cryptography, and new variants and efficiency
improvements arise almost on a weekly basis. Since OT
and OPRFs are strongly related (see Figure 13), OPRFs
can directly benefit from OT improvements. It is thus

important to “keep up” with OT research from the side of
OPRFs. For example, it is still not known how to exploit
one of the biggest advancements in OT efficiency, namely
OT Extensions [39], to improve efficiency of the NR-
based OPRFs evaluated with n

(
2
1

)
-OTs. Another example

is a recent OT variant called silent OT [74], which is
claimed to yield a batched OPRF with costs as little as 1
bit of communication per OPRF evaluation on a random
input, while computational costs increase. But can silent
OT only be applied to generic OPRF evaluation, or can it
also improve, e.g., oblivious evaluation of the NR PRF?
Can it be applied to improve efficiency of the PSI-tailored
batched OPRFs shown in Table 5?

Adaptation in practice. To put forth usage of OPRFs,
they need to be standardized and integrated into existing
protocols such as, e.g., TLS 1.3. The Internet Research
Task Force (IRTF) has recently recommended10 usage
of the PAKE protocol OPAQUE, which protects against
precomputation attacks by using an OPRF. Currently, the
IRTF supports drafting of an RFC [23] for the verifiable
Hashed DH OPRF of Jarecki et al. [9]. Some examples
of upcoming IRTF RFCs with protocols deploying OPRFs
are OPAQUE [24] and its integration into TLS 1.3, called
TLS-OPAQUE [25]. The latter protocol is a potential
candidate for replacing the ubiquitous but completely
non-private “password-over-TLS” mechanism. All these
works need to be driven forward by a joint effort of the
community.

Quantum-secure ORPFs. With the exception of OPRFs
based on symmetric primitives, all known efficient OPRF
constructions rely on discrete-log- or factoring-type hard-
ness assumptions. These assumptions are known to fall
with the rise of quantum computers. While it is true
that some of the primitives that act as building blocks
of OPRF constructions (such as OT – one can instantiate
Yao’s garbled circuit protocol with a post-quantum-secure
OT, which can then be used to obliviously evaluate an
AES cricuit) can be instantiated quantum-securely, there
is only little work so far in designing special-purpose and
efficient quantum-secure algorithms for OPRFs. The two
notable exceptions are the lattice-based OPRF by Albrecht
et al. [20], and the isogeny-based OPRF by Boneh et al.
[21]. Both constructions constitute nice feasibility results,
and more research is needed to improve their efficiency.
Moreover, neither of the two OPRFs comes with any of
the properties mentioned throughout this paper.

References

[1] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct
random functions,” Journal of the ACM (JACM), vol. 33, no. 4,
pp. 792–807, 1986.

[2] M. Naor and O. Reingold, “Number-theoretic constructions of
efficient pseudo-random functions,” Journal of the ACM (JACM),
vol. 51, no. 2, pp. 231–262, 2004.

[3] ——, “Number-theoretic constructions of efficient pseudo-random
functions,” Journal of the ACM (JACM), vol. 51, no. 2, pp. 231–
262, 2004.

[4] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword
search and oblivious pseudorandom functions,” in Theory of Cryp-
tography Conference. Springer, 2005, pp. 303–324.

10. https://github.com/cfrg/pake-selection

14

https://github.com/cfrg/pake-selection

[5] C. Hazay and Y. Lindell, “Efficient protocols for set intersection
and pattern matching with security against malicious and covert
adversaries,” in Theory of Cryptography Conference. Springer,
2008, pp. 155–175.

[6] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient
batched oblivious PRF with applications to private set intersection,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, 2016, pp. 818–829.

[7] S. Jarecki and X. Liu, “Efficient oblivious pseudorandom function
with applications to adaptive OT and secure computation of set
intersection,” in Theory of Cryptography Conference. Springer,
2009, pp. 577–594.

[8] ——, “Fast secure computation of set intersection,” in International
Conference on Security and Cryptography for Networks. Springer,
2010, pp. 418–435.

[9] S. Jarecki, A. Kiayias, and H. Krawczyk, “Round-optimal
password-protected secret sharing and T-PAKE in the password-
only model,” in International Conference on the Theory and Ap-
plication of Cryptology and Information Security. Springer, 2014,
pp. 233–253.

[10] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu, “Password-
protected secret sharing,” in Proceedings of the 18th ACM Confer-
ence on Computer and Communications Security, 2011, pp. 433–
444.

[11] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “TOPPSS: cost-
minimal password-protected secret sharing based on threshold
OPRF,” in International Conference on Applied Cryptography and
Network Security. Springer, 2017, pp. 39–58.

[12] C. Baum, T. Frederiksen, J. Hesse, A. Lehmann, and A. Yanai,
“PESTO: proactively secure distributed single sign-on, or how to
trust a hacked server,” in 2020 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 2020, pp. 587–606.

[13] P. Das, J. Hesse, and A. Lehmann, “DPaSE: Distributed Password-
Authenticated Symmetric Encryption,” Cryptology ePrint Archive,
2020.

[14] S. Jarecki, H. Krawczyk, and J. Xu, “OPAQUE: an asymmetric
PAKE protocol secure against pre-computation attacks,” in Annual
International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer, 2018, pp. 456–486.

[15] S. Jarecki, H. Krawczyk, and J. Resch, “Updatable oblivious key
management for storage systems,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security,
2019, pp. 379–393.

[16] J. Camenisch, A. D. Caro, E. Ghosh, and A. Sorniotti, “Oblivious
PRF on committed vector inputs and application to deduplication
of encrypted data,” in International Conference on Financial Cryp-
tography and Data Security. Springer, 2019, pp. 337–356.

[17] S. Faust, C. Hazay, and D. Venturi, “Outsourced pattern match-
ing,” in International Colloquium on Automata, Languages, and
Programming. Springer, 2013, pp. 545–556.

[18] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Wein-
ert, “Mobile private contact discovery at scale,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019, pp. 1447–1464.

[19] A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and T. Ristenpart,
“The Pythia PRF service,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 547–562.

[20] M. R. Albrecht, A. Davidson, A. Deo, and N. P. Smart, “Round-
optimal verifiable oblivious pseudorandom functions from ideal
lattices,” in IACR International Conference on Public-Key Cryp-
tography. Springer, 2021, pp. 261–289.

[21] D. Boneh, D. Kogan, and K. Woo, “Oblivious pseudorandom func-
tions from isogenies,” in International Conference on the Theory
and Application of Cryptology and Information Security. Springer,
2020, pp. 520–550.

[22] J. Camenisch and A. Lehmann, “Privacy-preserving user-auditable
pseudonym systems,” in 2017 IEEE European Symposium on Se-
curity and Privacy (EuroS&P). IEEE, 2017, pp. 269–284.

[23] A. Davidson, N. Sullivan, and C. Wood, “Oblivious pseudorandom
functions (OPRFs) using prime-order groups,” https://datatracker.
ietf.org/doc/draft-irtf-cfrg-voprf/, Internet Engineering Task Force,
Tech. Rep., 2019.

[24] H. Krawczyk, D. Bourdrez, K. Lewi, and C. Wood, “The
OPAQUE asymmetric PAKE protocol,” https://datatracker.ietf.org/
doc/draft-irtf-cfrg-opaque/, 2021.

[25] N. Sullivan, D. Krawczyk, O. Friel, and R. Barnes, “OPAQUE with
TLS 1.3,” https://datatracker.ietf.org/doc/draft-sullivan-tls-opaque/,
Internet Engineering Task Force, Tech. Rep., 2021.

[26] C. Hazay, “Oblivious polynomial evaluation and secure set-
intersection from algebraic PRFs,” Journal of Cryptology, vol. 31,
no. 2, pp. 537–586, 2018.

[27] M. Abdalla, M. Cornejo, A. Nitulescu, and D. Pointcheval, “Robust
password-protected secret sharing,” in European Symposium on
Research in Computer Security. Springer, 2016, pp. 61–79.

[28] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Val-
sorda, “Privacy pass: Bypassing internet challenges anonymously,”
Proceedings on Privacy Enhancing Technologies, vol. 2018, no. 3,
pp. 164–180, 2018.

[29] S. Jarecki, H. Krawczyk, and J. Xu, “On the (In) Security of
the Diffie-Hellman oblivious PRF with multiplicative blinding,”
in IACR International Conference on Public-Key Cryptography.
Springer, 2021, pp. 380–409.

[30] P. Miao, S. Patel, M. Raykova, K. Seth, and M. Yung, “Two-sided
malicious security for private intersection-sum with cardinality,” in
Annual International Cryptology Conference. Springer, 2020, pp.
3–33.

[31] N. Tyagi, T. Ristenpart, N. Sullivan, S. Tessaro, C. A. Wood et al.,
“A fast and simple partially oblivious PRF, with applications,”
Cryptology ePrint Archive, 2021.

[32] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure
two-party computation is practical,” in International Conference
on the Theory and Application of Cryptology and Information
Security. Springer, 2009, pp. 250–267.

[33] Á. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas, “Private set
intersection for unequal set sizes with mobile applications.” Proc.
Priv. Enhancing Technol., vol. 2017, no. 4, pp. 177–197, 2017.

[34] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu,
“Practical multi-party private set intersection from symmetric-key
techniques,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 1257–1272.

[35] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai, “Efficient
circuit-based PSI with linear communication,” in Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2019, pp. 122–153.

[36] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “SpOT-light:
lightweight private set intersection from sparse OT extension,” in
Annual International Cryptology Conference. Springer, 2019, pp.
401–431.

[37] M. Naor and B. Pinkas, “Oblivious transfer and polynomial eval-
uation,” in Proceedings of the thirty-first annual ACM Symposium
on Theory of Computing, 1999, pp. 245–254.

[38] ——, “Oblivious transfer with adaptive queries,” in Annual Inter-
national Cryptology Conference. Springer, 1999, pp. 573–590.

[39] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in Annual International Cryptology Confer-
ence. Springer, 2003, pp. 145–161.

[40] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium
on Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[41] C. Hazay, “Oblivious polynomial evaluation and secure set-
intersection from algebraic PRFs,” Journal of Cryptology, vol. 31,
no. 2, pp. 537–586, 2018.

[42] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of
computation over large datasets,” in Annual Cryptology Confer-
ence. Springer, 2011, pp. 111–131.

[43] M. Naor, B. Pinkas, and O. Reingold, “Distributed pseudo-random
functions and KDCs,” in International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 1999,
pp. 327–346.

[44] D. Chaum, “Blind signatures for untraceable payments,” in Ad-
vances in Cryptology. Springer, 1983, pp. 199–203.

15

https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/
https://datatracker.ietf.org/doc/draft-sullivan-tls-opaque/

[45] A. Boldyreva, “Threshold signatures, multisignatures and blind sig-
natures based on the gap-Diffie-Hellman-group signature scheme,”
in International Workshop on Public Key Cryptography. Springer,
2003, pp. 31–46.

[46] W. Ford and B. S. Kaliski, “Server-assisted generation of a strong
secret from a password,” in Proceedings IEEE 9th International
Workshops on Enabling Technologies: Infrastructure for Collabo-
rative Enterprises (WET ICE 2000). IEEE, 2000, pp. 176–180.

[47] D. Chaum and T. P. Pedersen, “Wallet databases with observers,”
in Annual International Cryptology Conference. Springer, 1992,
pp. 89–105.

[48] B. A. Huberman, M. Franklin, and T. Hogg, “Enhancing privacy
and trust in electronic communities,” in Proceedings of the 1st
ACM Conference on Electronic Commerce, 1999, pp. 78–86.

[49] R. Agrawal, A. Evfimievski, and R. Srikant, “Information sharing
across private databases,” in Proceedings of the 2003 ACM SIG-
MOD International Conference on Management of Data, 2003, pp.
86–97.

[50] Y. Dodis and A. Yampolskiy, “A verifiable random function with
short proofs and keys,” in International Workshop on Public Key
Cryptography. Springer, 2005, pp. 416–431.

[51] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,”
in Annual International Cryptology Conference. Springer, 2004,
pp. 41–55.

[52] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyan-
skaya, and H. Shacham, “Randomizable proofs and delegatable
anonymous credentials,” in Annual International Cryptology Con-
ference. Springer, 2009, pp. 108–125.

[53] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th
Annual Symposium on Foundations of Computer Science (sfcs
1986). IEEE, 1986, pp. 162–167.

[54] B. Pinkas, T. Schneider, and M. Zohner, “Scalable private set
intersection based on OT extension,” ACM Transactions on Privacy
and Security (TOPS), vol. 21, no. 2, pp. 1–35, 2018.

[55] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and
M. Zohner, “Ciphers for MPC and FHE,” in Annual International
Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2015, pp. 430–454.

[56] M. Chase and P. Miao, “Private set intersection in the internet
setting from lightweight oblivious PRF,” in Annual International
Cryptology Conference. Springer, 2020, pp. 34–63.

[57] A. Lehmann, “ScrambleDB: Oblivious (Chameleon)
Pseudonymization-as-a-Service.” Proc. Priv. Enhancing Technol.,
vol. 2019, no. 3, pp. 289–309, 2019.

[58] S. Jarecki, H. Krawczyk, and J. Resch, “Threshold partially-
oblivious PRFs with applications to key management,” Cryptology
ePrint Archive, 2018.

[59] R. Cramer, I. Damgård, and Y. Ishai, “Share conversion, pseudo-
random secret-sharing and applications to secure computation,” in
Theory of Cryptography Conference. Springer, 2005, pp. 342–362.

[60] B. Hemenway Falk, D. Noble, and R. Ostrovsky, “Private set
intersection with linear communication from general assumptions,”
in Proceedings of the 18th ACM Workshop on Privacy in the
Electronic Society, 2019, pp. 14–25.

[61] T. Duong, D. H. Phan, and N. Trieu, “Catalic: Delegated PSI
cardinality with applications to contact tracing,” in International
Conference on the Theory and Application of Cryptology and
Information Security. Springer, 2020, pp. 870–899.

[62] N. Chandran, D. Gupta, and A. Shah, “Circuit-PSI with linear
complexity via relaxed batch OPPRF,” Proceedings on Privacy
Enhancing Technologies, vol. 2022, no. 1, pp. 353–372, 2022.

[63] P. Rindal and P. Schoppmann, “VOLE-PSI: Fast OPRF and Circuit-
PSI from Vector-OLE,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer,
2021, pp. 901–930.

[64] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing:
Private set intersection using permutation-based hashing,” in 24th
USENIX Security Symposium (USENIX Security 15), 2015, pp.
515–530.

[65] Y. Lindell, “A tutorial on the simulation proof technique,” Tutorials
on the Foundations of Cryptography, pp. 277–346, 2017.

[66] M. Abe and M. Ohkubo, “A framework for universally composable
non-committing blind signatures,” in International Conference on
the Theory and Application of Cryptology and Information Secu-
rity. Springer, 2009, pp. 435–450.

[67] J. Camenisch and V. Shoup, “Practical verifiable encryption and
decryption of discrete logarithms,” in Annual International Cryp-
tology Conference. Springer, 2003, pp. 126–144.

[68] J. Camenisch, A. Lehmann, and G. Neven, “Optimal distributed
password verification,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015, pp.
182–194.

[69] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked
encryption and secure deduplication,” in Annual International Con-
ference on the Theory and Applications of Cryptographic tech-
niques. Springer, 2013, pp. 296–312.

[70] J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven, “Me-
mento: How to reconstruct your secrets from a single password in a
hostile environment,” in Annual Cryptology Conference. Springer,
2014, pp. 256–275.

[71] W. Ogata and K. Kurosawa, “Oblivious keyword search,” Journal
of Complexity, vol. 20, no. 2-3, pp. 356–371, 2004.

[72] A. Heinrich, M. Hollick, T. Schneider, M. Stute, and C. Wein-
ert, “PrivateDrop: Practical Privacy-Preserving Authentication for
Apple AirDrop,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 3577–3594.

[73] D. Boneh, Y. Ishai, A. Passelègue, A. Sahai, and D. J. Wu, “Ex-
ploring crypto dark matter,” in Theory of Cryptography Conference.
Springer, 2018, pp. 699–729.

[74] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl,
“Efficient pseudorandom correlation generators: Silent OT exten-
sion and more,” in Annual International Cryptology Conference.
Springer, 2019, pp. 489–518.

[75] A. Bogdanov and A. Rosen, “Pseudorandom functions: Three
decades later,” in Tutorials on the Foundations of Cryptography.
Springer, 2017, pp. 79–158.

[76] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for
signing contracts,” Communications of the ACM, vol. 28, no. 6, pp.
637–647, 1985.

[77] G. Brassard and C. Crépeau, “Oblivious transfers and privacy
amplification,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 1997, pp.
334–347.

[78] J. Camenisch, G. Neven et al., “Simulatable adaptive oblivious
transfer,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2007, pp.
573–590.

[79] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private
matching and set intersection,” in International Conference on the
Theory and Applications of Cryptographic Techniques. Springer,
2004, pp. 1–19.

[80] C. Hazay and Y. Lindell, “Efficient oblivious polynomial evaluation
with simulation-based security,” Cryptology ePrint Archive, 2009.

[81] M. O. Rabin, “How to exchange secrets with oblivious transfer,”
Cryptology ePrint Archive, 2005.

[82] J. Kilian, “Founding cryptography on oblivious transfer,” in Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, 1988, pp. 20–31.

[83] G. Brassard, C. Crépeau, and J.-M. Robert, “All-or-nothing disclo-
sure of secrets,” in Conference on the Theory and Application of
Cryptographic Techniques. Springer, 1986, pp. 234–238.

[84] C. Crépeau and G. Savvides, “Optimal reductions between oblivi-
ous transfers using interactive hashing,” in Annual International
Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2006, pp. 201–221.

[85] R. Impagliazzo and S. Rudich, “Limits on the provable conse-
quences of one-way permutations,” in Proceedings of the Twenty-
First Annual ACM Symposium on Theory of Computing, 1989, pp.
44–61.

16

[86] V. Kolesnikov and R. Kumaresan, “Improved OT extension for
transferring short secrets,” in Annual Cryptology Conference.
Springer, 2013, pp. 54–70.

[87] M. Orrù, E. Orsini, and P. Scholl, “Actively secure 1-out-of-
N OT extension with application to private set intersection,” in
Cryptographers’ Track at the RSA Conference. Springer, 2017,
pp. 381–396.

[88] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersec-
tion based on OT extension,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 797–812.

[89] D. Malkhi and Y. Sella, “Oblivious transfer based on blind signa-
tures,” Technical Report 2003-31, Leibniz Center, Hebrew Univer-
sity, Tech. Rep., 2003.

[90] M. Fischlin, “Round-optimal composable blind signatures in the
common reference string model,” in Annual International Cryptol-
ogy Conference. Springer, 2006, pp. 60–77.

[91] A. Kiayias and H.-S. Zhou, “Equivocal blind signatures and
adaptive UC-security,” in Theory of Cryptography Conference.
Springer, 2008, pp. 340–355.

[92] C.-K. Chu and W.-G. Tzeng, “Efficient k-out-of-n oblivious trans-
fer schemes with adaptive and non-adaptive queries,” in Interna-
tional Workshop on Public Key Cryptography. Springer, 2005,
pp. 172–183.

[93] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko,
“The power of RSA inversion oracles and the security of Chaum’s
RSA-based blind signature scheme,” in International Conference
on Financial Cryptography. Springer, 2001, pp. 319–338.

[94] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
Weil pairing,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer,
2001, pp. 514–532.

[95] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu, “Password-
protected secret sharing,” in Proceedings of the 18th ACM confer-
ence on Computer and Communications Security, 2011, pp. 433–
444.

[96] C. Meadows, “A more efficient cryptographic matchmaking proto-
col for use in the absence of a continuously available third party,”
in 1986 IEEE Symposium on Security and Privacy. IEEE, 1986,
pp. 134–134.

[97] E. De Cristofaro and G. Tsudik, “Practical private set intersection
protocols with linear computational and bandwidth complexity,”
Cryptology ePrint Archive, 2009.

Appendix A.
A non-technical Introduction to OPRFs

Hash functions are ubiquitous in the digital world.
They map arbitrary inputs to a bitstring of fixed length.
The resulting hash looks like a random bit sequence and
it does not reveal which input it was computed from.

In practice, such hash functions are used to verify
integrity of data via checksums, to demonstrate knowl-
edge of hashed values, or to protect data such as, e.g.,
passwords. In some of these applications, it is desirable
to additionally equip the hash function H() with a seed,
i.e., compute

H(s||x).

The seed s might be a public nonce, which is useful for
applications where it is crucial to ensure freshness of the
hash. If on the other side the seed is kept secret, it plays
the role of a secret key: only the owner of the secret key
can compute the hash value. A real-world example with
secret seeds are password authentication protocols, where
it is common practice to not store plaintext passwords
pw but hashes H(s, pw) of them with a seed s that the

authentication server ideally should keep secret in order
to prevent precomputation attacks.

This can be seen as some form of keying a hash func-
tion. Let’s go one step further and make hash computation
interactive: imagine not only the server (who knows the
seed s) can compute hash values, but also clients can
compute them with the help of the server. A trivial such
protocol would be the following.

Client holds pw Server holds s

-
pw

h← H(s||pw)
output h � h

From the perspective of the server S, the protocol has
the nice property of preventing the client from learning
seed s. However, privacy of the client is not protected
well, since S learns the value h computed by the client,
and even the input pw. Can we improve this?

Oblivious pseudorandom functions not only answer
this question in the affirmative. They provide protection
of the client’s privacy. Namely, they let clients compute
keyed hash functions interactively with a server who holds
the key, without the client learning the key, and without
the server learning the client’s input or the hash value.

While it is instructive to think about OPRFs in terms
of interactive keyed hashing, their formalization uses the
related concept of a pseudorandom function (PRF). In a
nuthsell, a PRF is a keyed function that behaves essentially
like a random function. We give a formal definition of
PRFs below.

We recommend the reader to continue with Section
2, to learn how to construct perfectly private alternatives
of the small protocol above, namely how to construct an
oblivious pseudorandom function. Readers wondering how
interactive and keyed hashing is useful directly look at
Section 5.

Pseudorandom functions have been introduced by Gol-
dreich, Goldwasser and Micali [1]. We give a formal
definition below and also point the interested reader to
a good survey [75].

Definition 6 (Pseudorandom function). A family of func-
tions fk : {0, 1}m → {0, 1}n with key k ∈ {0, 1}λ is
called pseudorandom if the following holds.
• fk(x) is efficiently computable from k and x.
• It is not efficiently decidable whether one has access

to a computation oracle for Fs(·) or to an oracle
producing random bitstrings of length n.

Appendix B.
Relations to Other Cryptographic Primitives

In this section, we put OPRFs in context with related
cryptographic primitives. We provide a comprehensive
overview in Figure 13, and discuss the most prominent
relations in the following.

B.1. Oblivious Transfer

Oblivious transfer (OT) (“Rabin-OT”, [81]) is an
oblivious channel between two parties with erasure prob-
ability 1/2. It was demonstrated to be sufficient for

17

strong OPRF

n-time wOPRF

OPRF on [1]

OPRF on [n]

(
2
1

)
-OT

(
2
1

)
-ROT(

n
1

)
-ROT

OT extension

T-OPRF D-OPRF

unique BS

weak OPRF

(
n
m

)
-ad. OT

V-OPRF

Obl. KS

OPE

PPSS

PSI

MP-PSI

Index OT

OPPRF

garbled BF

bt. OPPRFrelaxed
bt. OPPRF

[76]V

[9
]

[4][7
7]

[6]�

[6]�

[6]

[11]VR

[7
]

[9]R

[7
8]

=
[71], [78]

[7]

[4], [71] [4]

[26]

[79]

[7], [80]

[34]

[34]

[34]
[34]

[35
]

[62]

Figure 13: Reductions between OPRFs (gray) and related cryptographic primitives, in particular OT variants (red).

−→ reduces to
99K trivial
V = generic SFE
= = under additional assumptions
� = non-generic
R = Random oracle model

wOPRF = weak OPRF
BS = Blind signatures
OT = Oblivious transfer
ROT = Random OT
KS = Oblivious keyword search
PSI = Private set intersection

MP = Multi-party
OPE = Obl. polynomial evaluation
OPPRF = Obl. programmable PRF
BF = Bloom filters
bt. = batched
ad. = adaptive

any 2-party secure function evaluation (SFE) by Kilian
[82]. Even et al. [76] later introduced the information-
theoretically equivalent version of OT that we are most
familiar with today: in 1-out-of-2 OT (

(
2
1

)
-OT), Alice

provides two bits m0,m1, and Bob provides a bit b. Alice
learns nothing, and Bob learns only mb. In other words,(

2
1

)
-OT is a secure computation of FOT : ((m0,m1), b)→

(⊥,mb). The concept generalizes from bits to k-bit mes-
sages, denoted

(
2
1

)
-OTk, and further to

(
n
1

)
-OTk [83] and

(static or adaptive)
(
n
m

)
-OTk [38]. We can also consider

OT of random messages (ROT) [84], OT extension [39]
and batching OT [5].

The close relation between OT and OPRFs becomes
apparent with the following construction of

(
2
1

)
-OTk from

one execution of a strong OPRF (Def. 1) evaluating PRF
f with key space K and domain 2k.

• Alice, on input m0,m1 chooses k ←R K, computes
c0 ← m0⊕fk(0), c1 ← m1⊕fk(1) and sends c0, c1
to Bob.

• Alice and Bob engage in one execution of the OPRF
protocol, with Alice playing the role of the server
with input k, and Bob in the role of the client with
input b ∈ {0, 1}. Bob learns fk(b), Alice learns
nothing.

• Bob decrypts mb ← cb ⊕ fk(b) and outputs mb.

The construction generalizes as depicted in Figure 14 to
adaptive

(
n
m

)
-OTk from m subsequent evaluations of the

strong OPRF [7]. The fact that such a strong variant of
OT efficiently reduces to strong OPRFs demonstrates the
power of OPRFs as cryptographic primitive, and yields
constructions of OT variants such as

(
n
m

)
-ROTk via the

known reduction from
(
n
m

)
-OTk to ROT [84].

U(i1, . . . , im) S(m1, . . . ,mN , k)

ci ← mi ⊕ fk(i), i ∈ [n]

�(ci)i∈[n]

Repeat for j ∈ [m]:
-ij � k

sOPRF
�

yj

Output cij ⊕ yj

Figure 14: Transformation from a strong OPRF to adaptive(
n
m

)
-OTk. The client can input its indices in an arbitrary

order and hence retrieve t evaluations in an adaptive
fashion.

B.1.1. OT of random messages. In random OT (ROT),
the client learns random m0,m1, while the receiver learns
mb for a choice bit b ∈ {0, 1}. Thus, the messages m0,m1

are uniformly generated by the protocol itself (note the
similarities between this definition and the definition of
single-point OPRF from Section 3.5, where the server
obtains a PRF key uniformly generated by the OPRF
protocol).

One execution of random OT corresponds to oblivi-
ously evaluating the PRF f(m0,m1)(r) := mr with input
domain {0, 1} [6]. More generally, we can interpret a 1-
out-of-n OT of random messages as an oblivious evalua-
tion of the above PRF with input domain {1, . . . , n}.

B.1.2. OT Extension. While OTs are highly unlikely to
be possible without using public key cryptography [85], it
was shown that it is possible to extend a small number λ

18

of "base" OTs to a large (i.e., polynomial in λ) number of
OTs using only symmetric key primitives. Such a protocol
is called an OT extension [39], [86]. Kolesnikov et al. [6]
were the first to observe that the extension protocol of
Ishai et al. [39] can be interpreted as a weak single-point
ORPF protocol, and this analogy was further developed
in [36], [54], [87], among others. Constructions of single-
point OPRFs from OT extension where made explicit
in several works [6], [54], [88]. Pinkas et al. [36] even
construct a multi-point OPRF from OT extension, but such
that the client must choose all the query points before the
OPRF key is generated (this corresponds to the OPPRF
functionality introduced by Kolesnikov et al. [34]).

B.2. Blind Signatures

Blind signatures [44] were first proposed as a tool to
provide anonymity in E-cash systems. A blind signature
scheme is an interactive protocol involving a client and
an authority, where the client can get a message signed
by the authority, but without revealing the contents of the
message nor the signature. Blind signatures are power-
ful primitives (see, e.g., [89] for a construction of OT
from Chaum’s RSA blind signature protocol). The resem-
blance with OPRFs regarding obliviousness is apparent,
but both primitives differ in guarantees (pseudorandom-
ness of OPRF output vs. unforgeability of signatures) and
functionality (for verifying a signature we may reveal the
message, which we keep secret when verifying OPRF
computation). Moreover, signing algorithms may be inde-
terministic, while OPRFs as function evaluation protocols
are inherently deterministic. Nonetheless, the concepts of
blind signatures have been a source of inspiration for
OPRFs. For example, the DY PRF fDYk (x) = g1/(k+x)

(Section 2.3) is based on the Boneh-Boyen weak signa-
ture defined as Signsk(x) = g1/(x+sk). Some DY-based
OPRF protocols [7], [22] are very similar to particular
constructions for blind signatures [52]. UC-secure blind
signatures [66], [90], [91] have inspired initial definitions
of UC-secure OPRFs [9] as well as constructions: the V-
OPRF protocol of Jarecki et al. [9] is obtained by hashing
a blind signature-message pair. Moreover, a tweak in UC
OPRF definitions called the “ticketing mechanism”, which
essentially allows for lazy extraction of inputs provided
by a corrupted client, is inspired by measures to postpone
message extraction in UC definitions of blind signatures
[66].

B.2.1. Unique blind signature. We now restrict our
attention to unique blind signature schemes [71], [92].
Unfortunately, existential unforgeability of signatures does
not imply pseudorandomness: take any unforgeable signa-
ture scheme and append each signature with a 1; the result-
ing signatures are still unforgeable, but not pseudorandom.
While this rules out a generic reduction from OPRFs
to unique blind signature schemes, the two unique blind
signature schemes from the literature do in fact produce
pseudorandom signatures. Firstly, Chaum [44] proposed a
unique blind signature scheme, known as Chaum’s RSA
construction, which we describe in Figure 15. The figure
assumes an RSA setting with N = pq, where p, q are two
large equal-size primes, and e, d two integers satisfying
ed ≡ 1 mod φ(N), where φ(N) = (p − 1)(q − 1)

denotes Euler’s phi function. One can notice how the
exponential blinding idea behind the modern hashed DH
protocols (see Section 2.2) shares the same principle as
in Chaum’s blind signature scheme. Security for Chaum’s
blind signature scheme was only proven years later [93]
and required introduction of a one-more type variant of
RSA. The second unique blind signature scheme from
the literature is that of Boldyreva [45], which is DH-
based (more concretely, based on the Gap Diffie-Hellman
assumption). We depict it in Figure 16.

Both the above schemes are closely related to the mod-
ern hashed DH protocols for OPRFs (Section 2.2). Besides
all of them using the same principle – namely, double-
blinded exponentation – we can even find OPRF protocols
that are almost analogous to the corresponding signing
procedures. As we show in Figures 15 and 16, Mult-
2HashDH [29] is analogous to signing with Boldyreva’s
scheme, and the 2HashRSA OPRF [9] (ignoring artifacts
that stem from UC security and verifiability) is essentially
signing with Chaum’s scheme.11

C(n, e, x) S(n, d)

r ←R Z∗n
a← H(x)re

mod n
-a

y ← br−1 mod n � b b← ad mod n

If be = a mod n then
Output y

Figure 15: Signing with Chaum’s blind RSA signature
scheme [44] with message x, and the 2HashRSA OPRF
[9]. Both schemes’ security proofs [9], [93] require the
hash function to be modeled as random oracle.

C(gx, g, q) S(x)

r ←R Zq
a← H(x)gr -a

y ← by−r � b b← ax

Output
H ′(x, y)

Figure 16: Signing with Boldyreva’s blind GDH scheme
[45], and the Mult-2HashDH OPRF [29] that multiplica-
tively blinds the client’s input x.

Finally, the short signature scheme of Boneh, Lynn
and Shacham [94] can be seen as an implementation of
2HashDH over a bilinear group.

B.3. Password-Protected Secret Sharing

A Password-Protected Secret Sharing (PPSS) [95]
scheme is a special secret sharing scheme where Share
and Reconstruct procedures take a password as additional
input, and correctness of Reconstruct holds only if the

11. We note here that some works claim slightly inaccurately that
2HashDH is an equivalent of Chaum’s blind signature.

19

same password is used as in Share. Jarecki et al. [9]
noticed that PPSS can be efficiently built from (single-
server) OPRFs, by encrypting every single share with a
PRF value derived from the client’s password.

C(s, pw) Si(ki)

-
pw

� ki
OPRF

�
yi

(s1, . . . , sn)← SS.Share(s)

ci ← si ⊕ yi -
ci store ci

Figure 17: A generic construction of PPSS from verifiable
OPRFs, depicting the Share procedure per server Si.
SS.Share denotes a standard secret sharing scheme, such
as Shamir.

To protect the client from malicious servers, either the
encryption scheme or the OPRF must be verifiable. Instead
of running one OPRF with every server in parallel, one
can directly use a threshold OPRF [11], [68] executed
between the client and all servers.

B.4. Private Set Intersection

Private set intersection (PSI) enables two parties P1

and P2 with respective input sets X and Y to compute
their intersection X ∩ Y . The different protocols for
computing PSI split into two categories: (a) those that
compute the intersection itself, and (b) constructions that
output f(X ∩ Y) for some function f [35] (also known
as circuit-based PSI). While the first PSI protocols were
mostly based on public-key cryptography [3], [96], [97],
Hazay et al. [5] initiated a line of PSI research by noticing
that PSI can be immediately built from OPRFs. We depict
their generic construction in Figure 18.

P1(set X) P2(set Y, k)

ui ← fk(i) ∀i ∈ Y
U ← {ui}i∈Y

� U

For all x ∈ X:
-x � k

OPRF
�

y

If y ∈ U output x

Figure 18: PSI from OPRFs [5], for sets X , Y of poten-
tially different size.

The protocol can be modified to one where both P1

and P2 output the intersection set, by having both commit
to their inputs and run the protocol in both directions [7].
Besides that, it does not seem to make sense to equip the
OPRF with the properties described in Section 3, such as
distribution (it is essential that P2 can evaluate the PRF
himself), proactive security (fresh keys can be used for
every protocol run anyway), or verifiability (even if P2

could not cheat in the V-OPRF, he can easily cheat while

sending U). Hence, the above PSI blueprint is an example
of a protocol where “plain” OPRFs already work well.

The above PSI protocol can be further improved,
e.g., by speeding up computation of fk(·) at P2, or by
applying batching techniques to let P1 compute the |X|
PRF values more efficiently. Efforts to improve efficiency
have brought up special OPRF protocols case-tailored for
PSI. We now give more details on all these aspects.

WHICH OPRF IS BEST FOR PSI? The choice of OPRF
protocol depends on the limitations of the setting. Some
examples of settings to consider are:
(1) Large difference in set sizes
(2) |X| ≈ |Y |
(3) Low channel bandwith

One way to speed up computation of P2 in case of
|Y | � |X| is to take an OPRF whose underlying PRF can
be computed with low effort. Here, PRFs based on sym-
metric primitives, such as AES encryption, are orders of
magnitude faster to compute than NR, DY and HashedDH
PRFs, since all of the latter require one exponentiation.
An OPRF for fAESk () is then given by Yao’s Garbled
Circuit [53] protocol, and by efficiency improvements
thereof [18], [32], [33]. When using such an OPRF to
instantiate the protocol from Figure 18, the resulting PSI
protocol features low computational costs for P2, which is
beneficial especially when P2’s set is much larger than the
one of P1. If the parties have low bandwith connectivity,
Hashed DH OPRFs yield the fastest PSI instantiation,
since they have lowest communication costs [33], [54].

In case of |X| � |Y |, or more generally whenever
|X| is large, efficient batching of |X| OPRF executions is
an option to speed up the PSI protocol in such settings.
Further, Kolesnikov et al. [6] observe that, for the case of
|X| = |Y | =: n, which can easily achieved by padding
if |X| ≈ |Y |, the PRF evaluations can be performed with
respect to different12 PRF keys k1, . . . , kn. This requires
pre-sorting the elements in the set held by the OPRF
client, in a way that allows the OPRF server to determine
which key was used for which element. In practice, a
bin-hashing technique called Cuckoo Hashing is used,
and the choice of key used per element can only be
narrowed down to 3 keys (which makes comparison less
efficient, but significantly speeds up sorting). We refer
the reader to [6], Section 5.2, for a nice explanation of
this PSI protocol. From the viewpoint of OPRFs, the gist
is that PSI for same-sized sets can be implemented with
batch evaluation of n OPRFs, allowing arbitrary keys per
evaluation. Kolesnikov et al. [6] provide such an OPRF
based on any PRF, and efficiency of their construction was
improved afterwards [54].

SPECIAL-PURPOSE OPRFS FOR PSI. Recently,
programmable OPRFs (OPPRF) were introduced by
Kolesnikov et al. [34]. An OPPRF is an OPRF protocol
for which the server can program a limited number of
point-value pairs of the function that is evaluated by the
OPRF. The client cannot tell whether she evaluated a
programmed or a non-programmed point. Kolesnikov et
al. demonstrate that OPPRFs are extremely useful for
PSI, even in the multi-party setting. The idea is to let

12. The idea of using different PRF keys is already implicitly con-
tained in the “Circuit-Phashing” PSI protocol of [64].

20

parties set up OPPRFs that are programmed at |X|, to
special values that later help figuring out whether all other
parties evaluated this OPPRF at some x ∈ X . OPPRFs
can be obtained generically from OPRFs [34], or, more
efficiently, from OPRFs and linear system solvers [62].
The concept of OPPRFs was extended to batched OP-
PRFs [35], relaxed OPPRFs (where the client learns few
values of which one is the PRF value), and a combination
thereof [62]. Further special properties are shuffling of
OPRF outputs [30], and secret-sharing of outputs [61].
We note that all these properties are exclusively used
by PSI protocols. In some cases, these special OPRFs
have “dropped out” of the larger PSI protocols during
optimization. Nonetheless, the concepts are related and
we hence provide a comprehensive overview of OPRFs
for PSI in Table 5.

21

R
ef

er
en

ce

U
nd

er
ly

in
g

PR
F

Sp
ec

ia
l

Pr
op

er
tie

s

Si
ng

le
-/M

ul
ti-

po
in

t

B
at

ch
in

g

Fo
r

PS
I

pr
ot

oc
ol

PS
I

se
t

si
ze

s

O
pt

im
iz

ed
fo

r
PS

I
se

tt
in

g

HL08 [5] NR — ∗ — Fig. 18 [5] any —
PSSW09 [32] AES — ∗ — Fig. 18 [5] any (1)

JL10 [8] 2HashDH — ∗ — Fig. 18 [5] any (3)
KKRT16 [6] any related keys • 4 Circuit-phasing PSI [64] = (2)

KLSAP17 [33] AES — ∗ — Fig. 18 [5] any (1)
KMPRT17 [34] any programmable • — Multi-Party PSI from OPPRF [34] any —

PSZ18 [54] any related keys • 4 Circuit-phasing PSI [64], = (2)
optimized with OT Extensions

KRSSW19 [18] LowMC — ∗ — Fig. 18 [5] with correlated any (1)
& NR random OT precomputation

PRTY19 [36] any — ∗ — Fig. 18, optimized with hashing any (3)
and sparse OT extension

PSTY19 [35] any programmable • 4 Circuit PSI, = (2)
Variant of [64] with OPPRFs

DPT20 [61] any secret-shared output • — Delegated PSI Cardinality [61] = (1)
CM20 [56] any — ∗ — Variant of [6] for any (3)

multi-point OPRFs
MPRSY20 [30] DY shuffled ∗ — PSI Sum with Cardinality [30] any —

CGS21 [62] any relaxed, programmable • 4 Circuit-PSI of [35] = —
RS21 [63] any programmable • 4 Circuit-PSI of [35] any (3)

TABLE 5: OPRFs suitable or even case-tailored for private set intersection. First 4 columns are about the OPRF
introduced (or improved, in case of [32], [33]) in the referenced work, the last three columns about the PSI protocol
the OPRF is used for. For the OPRF part, ∗ stands for multi-point evaluation, • for single-point. Special properties are
briefly described in Appendix B.4 and Section 3.8. For the PSI part, we recall the PSI settings indicated in the last
column: (1) |X| � |Y | or |X| � |Y |, (2) |X| ≈ |Y |, (3) Low channel bandwith.

22

	Introduction
	Constructions
	Naor-Reingold PRF
	Hashed Diffie-Hellman
	Dodis-Yampolskiy PRF
	Generic Techniques

	Properties
	Partially-oblivious PRFs
	Verifiability & Committed Inputs/Outputs
	Updatable OPRFs
	Distributed & Threshold ORPFs
	Choice of PRF Key
	Batched OPRFs
	Weak OPRFs
	Specialized properties
	Discussion

	Formalizing OPRF security
	Simulation-based security
	Game-based security

	Applications
	Open Problems and Future Work
	References
	Appendix A: A non-technical Introduction to OPRFs
	Appendix B: Relations to Other Cryptographic Primitives
	Oblivious Transfer
	OT of random messages
	OT Extension

	Blind Signatures
	Unique blind signature

	Password-Protected Secret Sharing
	Private Set Intersection

