
Related-Tweakey Impossible Differential Attack
on Reduced-Round SKINNY-AEAD M1/M3

Yanhong Fan1,2, Muzhou Li1,2, Chao Niu1,2, Zhenyu Lu1,2, and Meiqin
Wang1,2(B)

1 School of Cyber Science and Technology, Shandong University,
Qingdao, Shandong, 266237, China

{fanyh, muzhouli, niuchao, luzhenyu}@mail.sdu.edu.cn, mqwang@sdu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security of Ministry of

Education, Shandong University, Qingdao, Shandong, 266237, China

Abstract. SKINNY-AEAD is one of the second-round candidates of the
Lightweight Cryptography Standardization project held by NIST. SKINNY-
AEAD M1 is the primary member of six SKINNY-AEAD schemes, while
SKINNY-AEAD M3 is another member with a small tag. In the design docu-
ment, only security analyses of their underlying primitive SKINNY-128-384
are provided. Besides, there are no valid third-party analyses on SKINNY-
AEAD M1/M3 according to our knowledge. Therefore, this paper focuses
on constructing the first third-party security analyses on them under
a nonce-respecting scenario. By taking the encryption mode of SKINNY-
AEAD into consideration and exploiting several properties of SKINNY, we
can deduce some necessary constraints on the input and tweakey dif-
ferences of related-tweakey impossible differential distinguishers. Under
these constraints, we can find distinguishers suitable for mounting pow-
erful tweakey recovery attacks. With the help of the automatic searching
algorithms based on STP, we find some 14-round distinguishers. Based
on one of these distinguishers, we mount a 20-round and an 18-round
tweakey recovery attack on SKINNY-AEAD M1/M3. To the best of our
knowledge, all these attacks are the best ones so far.

Keywords: Related-tweakey · Impossible differential cryptanalysis · SKINNY-
AEAD M1/M3 · Tweakey recovery · SKINNY-128-384

1 Introduction

SKINNY-AEAD schemes are proposed by Beierle et al. [5] and accepted as one
of the second-round candidates of the NIST Lightweight Cryptography (LWC)
Standardization project1. There are six schemes for SKINNY-AEAD and SKINNY-
AEAD M1 is the primary member. SKINNY-AEAD M3 is the same as M1 except
that M3 has smaller length of tag than M1. These two authenticated encryption
1https://csrc.nist.gov/Projects/lightweight-cryptography/
round-2-candidates

https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates

2 Y. Fan et al.

schemes M1/M3 use a mode following the ΘCB3 framework [13] and adopts
SKINNY-128-384 [4] as their internal tweakable block cipher. For M1/M3, only
security analyses of their underlying primitive SKINNY-128-384 are introduced in
the design document [5]. As for M1/M3 themselves, no cryptanalytic results are
presented there.

SKINNY-128-384 belongs to the well-known SKINNY family designed by Beierle
et al. [4]. It adopts 128-bit plaintexts and 384-bit tweakeys. Since its proposal,
many cryptanalytic results have been proposed [9,15,20,21,22]. Among all of
them, the best attack so far was provided by [9], where a 30-round related-
tweakey rectangle attack was mounted with time complexity 2361.38. As for im-
possible differential attacks, Liu et al. gave a 27-round attack in related-tweakey
setting [15] with time complexity 2378, while a 22-round attack in single-tweakey
setting was proposed by Tolba et al. in [21] with time complexity 2373.48. Besides,
there is a 22-round Demirci-Selçuk meet-in-the-middle attack provided in [20]
with time complexity 2382.46.

From above security analyses of SKINNY-128-384, we can see that there are
no constraints on the value or difference of the tweakey. However, when it comes
to SKINNY-AEAD, some constraints should be considered in the attack proce-
dure because of the encryption mode, the nonce-respecting scenario and com-
plex tweakey initialization. In [5], the designers depict that SKINNY-AEAD M1/M3
apply a 384-bit tweakey but a 128-bit key, and claim full 128-bit security for key
recovery in the nonce-respecting scenario. Thus, only attacks on SKINNY-128-
384 with time complexity less than 2128 is valid for SKINNY-AEAD M1/M3. Due
to this constraints on time complexity, above attacks [9,15,20,21,22] cannot be
directly applied to SKINNY-AEAD M1/M3. Zhao et al. [22] gave a related-tweakey
rectangle attack on SKINNY-AEAD M1. However, the second-round status update
document of SKINNY-AEAD [1] pointed that the attack of [22] on SKINNY-AEAD M1
is invalid. To the best of our knowledge, there is no valid third-party analysis
of SKINNY-AEAD M1/M3 up to now. This motivates us to evaluate their security
considering these restrictions.

In this paper, we mount tweakey recovery attacks by searching for the related-
tweakey impossible differential distinguishers. As one of the most popular crypt-
analytic methods, the impossible differential attack was proposed in [7]. Bi-
ham [6] firstly proposed the related-key attack, where only the relations between
pairs of related keys are chosen by the attacker, who does not know the keys
themselves. Jakimoski et al. [10] proposed the related-key impossible differential
attack firstly combining the two aforementioned attacks. In recent years, the
related-key/tweakey impossible differential attacks [2,15,19] gave some better
cryptanalysis results in block ciphers.

Our Contributions. The main contribution of our work is providing the third-
party cryptanalytic results on SKINNY-AEAD M1/M3 by utilizing related-tweakey
impossible differentials. All these distinguishers are found with the automatic
solver STP after setting several constraints on the input and tweakey differences.

RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 3

1) Automatically Searching for Distinguishers of SKINNY-AEAD M1/M3.
Unlike finding distinguishers of SKINNY-128-384 itself, distinguishers exploited
here should fulfill several conditions due to the encryption mode of SKINNY-
AEAD M1/M3, as well as the complex tweakey initialization. By combin-
ing these restrictions with several properties of SKINNY cipher, we can de-
duce some constraints on the input and tweakey differences of the target
related-tweakey impossible differential distinguishers. Based on the method
of searching for related-tweakey impossible differentials [15,19], we find some
14-round distinguishers with only one active input and output state differ-
ences with the help of STP.

2) Tweakey Recovery Attacks for SKINNY-AEAD M1/M3. Based on one 14-
round distinguisher, we mount a 20-round and an 18-round tweakey recovery
attack under nonce-respecting scenario. All the attacks are applicable to M1
and M3. Our attack results along with [22] are illustrated in Table 1. To
our knowledge, they are the best tweakey recovery attacks on SKINNY-AEAD
M1/M3 so far.

Table 1. Summary of attack results on SKINNY-AEAD M1/M3

Attack Cipher Rounds Data Time Memory Ref.

RTID M1/M3 20 2121.6 CP 2127.1 2124.8 bits Sect. 4
18 2121.6 CP 2125.9 252.8 bits Sect. 5

RTR+ M1 24 2123.0 CP 2123.0 2121.0 [22]
Note: RTID: Related-Tweakey Impossible Differential. CP: Chosen PlaintextS.
RTR: Related-Tweakey Rectangle. +: This attack is invalid, as pointed out in [1].

Outline. In Section 2, we give the brief description of SKINNY-AEAD M1/M3,
SKINNY-128-384 and properties of SKINNY, and then introduce some notations
used in the paper. Section 3 gives the 14-round related-tweakey impossible dif-
ferential distinguishers that are found by an automatic search algorithm with
STP. Based on one of these 14-round distinguishers, Section 4 and 5 discuss a
20-round and an 18-round tweakey recovery attack, respectively. In Section 6,
we summarize and conclude our work.

2 Preliminaries

2.1 Description of SKINNY-AEAD M1/M3

In this section, we briefly give some specifications for SKINNY-AEAD M1/M3. The
input parameters of SKINNY-AEAD M1/M3 might contain an associated data A, a
message M and a nonce N . In our attack scenario, A is set to be empty, and then
the message block is handled directly, which can reduce the time complexity of

4 Y. Fan et al.

the tweakey recovery attack. The output parameters of M1/M3 are a ciphertext
with the same length as the plaintext and a tag. The tag length of M1 and M3
are 128 and 64 bits, respectively. Fig. 1 illustrates the message encryption part
of SKINNY-AEAD M1/M3 without padding.

M0

E
l0||d0
N,K

C0

M1

E
l1||d0
N,K

C1

Mlm−1

E
lm−1||d0
N,K

Clm−1

· · ·

Fig. 1. The message encryption part of SKINNY-AEAD M1/M3 with SKINNY-128-384 with-
out padding. E refers to SKINNY-128-384. For simplicity, we denote the block counter
by l0, . . . , lm−1 but actually refer to the state of the LFSRs serving as a block counter.

Messages are encrypted with SKINNY-128-384 under the 384-bit tweakey i.e.,
rev64(LSFR)||056||d0||N ||K. The 384-bit tweakey states can be seen as a group
of three 128-bit data that are denoted as TK1, TK2, and TK3, where TK1 ←
rev64(LSFR)||056||d0, TK2← N , and TK3← K. In SKINNY-AEAD M1/M3, TK1,
TK2 and TK3 store information corresponding to block counter li, nonce N and
a 128-bit key, respectively. rev64(LSFR) stores 8-byte values from a 64-bit LFSR.
d0 is a domain separation value and denotes encryption of a full message block
without padding, where d0 = 0x00 for M1, d0 = 0x08 for M3. rev64(LSFR) can
be updated in a series of blocks in the following way.

The 64-bit state of the LFSR can be expressed as: x63||x62|| . . . ||x1||x0 and
initialized to LFSR0 = 063||1. The LFSR is updated by the function upd64 (i.e.,
LFSRt+1 = upd64(LFSRt)), where upd64 is defined as

upd64 : x63||x62|| . . . ||x1||x0 → y63||y62|| . . . ||y1||y0

with

yi ← xi−1 for i ∈ {63, 62, . . . , 1}\{4, 3, 1},
y4 ← x3 ⊕ x63, y3 ← x2 ⊕ x63,

y1 ← x0 ⊕ x63, y0 ← x63.

Before loaded into the tweakey state, the order of the bytes of the LFSR state
should be first reversed by rev64 function, where rev64 is defined as

rev64 : S7||S6||S5||S4||S3||S2||S1||S0 7→ S0||S1||S2||S3||S4||S5||S6||S7,

where Si is an 8-bit value, 0 ≤ i ≤ 7.

RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 5

2.2 Specification of the Underlying Primitive of SKINNY-AEAD M1/M3

In the SKINNY-AEAD M1/M3, 56-round SKINNY-128-384 is adopted as their under-
lying tweakable block cipher. The SKINNY family ciphers follow the TWEAKEY
framework from [11] and therefore take a tweakey input. Here, we provide a brief
specification of SKINNY-128-384 that is relevant to our related-tweakey impossible
differential attacks. For more details about SKINNY, please refer to [4].

Initialization. SKINNY-128-384 has 128-bit internal states and 384-bit tweakey.
128-bit internal states are represented as 4×4 array of cells with each cell being a
byte. The tweakey states can be seen as a group of three 4×4 arrays (i.e., TK1,
TK2 and TK3). Note that the internal states and tweakey states are loaded
row-wise as shown in Fig. 2.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Fig. 2. Cell number of the states in the 4× 4 array

Round Function. One encryption round of SKINNY-128-384 contains five op-
erations in the following order: SubCells, AddConstants, AddRoundTweakey,
ShiftRows and MixColumns, as shown in Fig. 3 (a).

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

(a) Round function

(b)Tweakey schedule

Extracted
64-bit subtweakey

PT

LFSR

LFSR

Fig. 3. Round function and tweakey schedule of SKINNY-128-384

1) SubCells (SC). An 8-bit S-box is applied to each cell of the internal states.
It is a non-linear operation in the round function.

6 Y. Fan et al.

2) AddConstants (AC). Three round constants (i.e., c0, c1 and c2) are
XORed to the first three cells of the first column of an internal state. c0
and c1 are generated by a 6-bit affine LFSR, and c2 = 0x02.

3) AddRoundTweakey (ART). Only the first two rows of round tweakey are
XORed with the first two rows of the corresponding internal state. The round
tweakey (tki) in the i-th round is defined as tki = TK1i ⊕ TK2i ⊕ TK3i.
The tweakey arrays are updated by permutation and LFSR operations in
the tweakey schedule algorithm as shown in Fig. 3 (b). In the permutation
phase, a permutation PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] on
cell positions is applied to TK1, TK2 and TK3, respectively. In the LFSR
update phase, each cell of the first two rows of TK2 and TK3 are individually
updated using an 8-bit LFSR, while there is no LFSR updating on TK1.
The LFSRs are given in Table 2.

Table 2. The LFSRs used in SKINNY-128-384 to generate round tweakeys

TK LFSR

TK2 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

TK3 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

Note: x7 (resp. x0) is the MSB (resp. LSB) bit of the cell.

4) ShiftRow (SR). The second, third and fourth rows are rotated by 1, 2 and
3 cell positions to the right, respectively.

5) MixColumns (MC). Every column of the internal state is multiplied by a
binary matrix M below. The inverse MixColumns M−1 can be deduced and
given as follows.

M =

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 M−1 =

0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

2.3 Properties of SKINNY

Liu et al. [15] proposed some properties of SKINNY block cipher. For the sake of
completeness, we give several properties related to our attacks below.

1) The order of ART , SR and MC operations in any round can be changed by
first using SR and MC, and then xoring the internal state with an equivalent
round tweakey. The equivalent tweakey denoted as tkeq can be computed by
tkeq = MC(SR(tk)) as given in Fig. 4.

2) Tweakey schedule of SKINNY is linear. Thus, if the differential value injected
in the master tweakey is known, we can determine the exact differences in
all the other subtweakeys.

RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 7

tkeq

0 1 2 3

0 1 2 3

7 4 5 6

0 1 2 3

SR MC

tk

0 1 2 3

4 5 6 7

Fig. 4. Obtain tkeq by changing the order of ART , SR and MC

3) Subtweakey difference cancellation. In our attack scenario, a single cell of
TK1 and TK2 is active and the active cell position is in the first and second
rows. There is no difference for TK3. Hence, we take TK2 as an example.
As noticed in [4], for a given active tweakey cell, there is only one sub-
tweakey difference cancellation every 30 rounds for TK2. Let α1 and α2

be nonzero differences of the active cells for TK1 and TK2, respectively.
In the first round, the subtweakey difference is α1 ⊕ α2 for the active cell.
For the (2i + 1)-th round, the subtweakey difference is α1 ⊕ LFSRi

2(α2) by
ignoring the permutation PT , where LFSR2 has a cycle of 15. Thus one
subtweakey cancellation (i.e., α1 ⊕ LFSR2

i(α2) = 0) can occur every 30
rounds. In SKINNY-128-384, only the first two rows of the round tweakey tki
are XORed with the internal state in i-th round. Moreover, according to the
permutation PT , the subtweakey cells involved in the i-th round will next
appear in (i + 2)-th round. Therefore, we can deduce that there are three
rounds of fully inactive internal states for TK2.

2.4 Notations

We give the following notations (see Table 3) which are used in this paper. Some
of them follow [8,15].

3 Related-Tweakey Impossible Differential Distinguisher

Due to the encryption mode, nonce-respecting scenario and complex tweakey ini-
tialization, the attacks on SKINNY-AEAD M1/M3 should fulfill some constraints. In
this section, based on these constraints and several properties of SKINNY cipher,
we search for the related-tweakey impossible differential distinguishers. Here,
we first give the descriptions of constraints for distinguishers in SKINNY-AEAD
M1/M3.

3.1 Constraints of Searching for Distinguishers in SKINNY-AEAD
M1/M3

To facilitate the description, we use ∆T K1
1, ∆T K2

1 and ∆T K3
1 to denote tweakey

differences of the distinguisher corresponding to TK1, TK2 and TK3 in the

8 Y. Fan et al.

Table 3. Notations related to our attacks

∆X (resp. ∆Y) Input (resp. output) differences of the impossible differential.
∆in (resp. ∆out) Set of all impossible input (resp. output) differences.

r∆ The number of rounds of the impossible differential.
rin (resp. rout) The number of rounds of the differential ∆X → ∆in (resp.

∆Y → ∆out).
cin (resp. cout) The number of bit-conditions that have to be verified from ∆in

to ∆X (resp. from ∆out to ∆Y).
Kin (resp. Kout) The subset of subtweakey bits involved in the first rin rounds

(resp. the last rout rounds).
Xi (resp. Yi) The state before SC (resp. AC, ART) in the i-th round.
Zi (resp. Wi) The state before SR (resp. MC) in the i-th round.

tki The round tweakey of i-th round.
col(k) The k-th column, where 1 ≤ k ≤ 4.

∆X/Y/Z/W , The difference of the state X/Y/Z/W .
∆Xi[n] The n-th cell difference value of state X in i-th round, where

0 ≤ n ≤ 15.
∆Xi[k, . . . , l] The k-th, . . ., l-th cell difference value of state X in i-th round,

where 0 ≤ k, l ≤ 15.

first round, respectively. ∆SC1 represents the internal state difference after SC
in the first round of the distinguisher. Usually, to achieve powerful impossible
differential tweakey recovery attacks, the number of active cells of input/output
differences in the distinguisher is constrained to be as small as possible. Besides,
to obtain longer distinguishers for SKINNY-128-384, two strategies are often used,
as shown in [15,19]: (1) using the subtweakey difference (∆T K1

1 ⊕ ∆T K2
1 ⊕

∆T K3
1) to cancel ∆SC1; and (2) applying the subtweakey difference cancellation

property (i.e., LFSR(∆T K2
1[p]) = ∆T K1

1[p]), which ensure that there is no active
tweakey cell for 3 consecutive rounds (i.e., second, third and fourth round of the
distinguisher).

Recall the composition of tweakey used in SKINNY-AEAD M1/M3 in Sec-
tion 2.1. The highest 64 bits of T K1

1 serve as a block counter li. To reduce the
time complexity of tweakey recovery attacks, we set |A| = 02 and ∆T K1

1[p] =
0x033, where p (0 ≤ p ≤ 7) is the position of the active cell. T K3

1 stores the 128-
bit key. To make our attack more practical, we set ∆T K3

1 = 0, and then we can
mount our attacks after obtaining only one encryption oracle. T K2

1 stores nonce

2|A| denotes the bit length of associated data A. When |A| = 0, there is no encryption
of associated data in the tweakey recovery attack.

3Taking a 20-round tweakey recovery attack as an example, we explain why ∆T K1
1[p] =

0x03. In the tweakey recovery attacks, if ∆T K1
1[p] = 0x03, we will utilize plaintext-

ciphertext pairs in the i-th and (i+1)-th block of encryptions in SKINNY-AEAD M1/M3,
where i = 8 · ((P−1

T) ◦ (P−1
T (p))) + 1, which needs less time complexity than other

values once p is fixed.

RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 9

N . Since we mount attacks under a nonce-respecting scenario and ∆T K3
1 = 0,

∆T K2
1 ̸= 0.

Combining all the above constraints on the tweakey differences, we can get
∆T K2

1[p] = 0x81, ∆SC1[p] = 0x82 under ∆T K1
1[p] = 0x03, where the p-th

cell is the only active one in the corresponding difference of the first round of
distinguishers.

3.2 Searching for Related-Tweakey Impossible Differential
Distinguisher with STP

In recent years, some works [12,14,16,18] use the Boolean Satisfiability Prob-
lem (SAT) [17]/ Satisfiability Modulo Theories (SMT) problem [3] solver STP4

(Simple Theorem Prover) to search for distinguishers of some ciphers. The appli-
cation of STP for cryptanalysis is a decision problem to confirm whether there is
a solution to a set of equations. To search for related-tweakey impossible differ-
ential distinguishers, we should use some equations to describe the differential
propagation properties of basic operations in the round function and tweakey
schedule. To make it clear, we present all relevant equations for basic operations
as follows.

Equations for Basic Operations. In the round function and tweakey sched-
ule of SKINNY-128-384, basic operations consist of XOR, three-branch, Substitu-
tion and confusion layer. We give the following properties describing the differ-
ential propagation equations.

Property 1 (XOR [14]) Let ∆in1 and ∆in2 represent two input differences
and ∆out denote the output difference for the XOR operation. Then the corre-
sponding equation can be expressed as ∆out = ∆in1 ⊕∆in2.

Property 2 (Three-Branch [14]) Let ∆in denote the input difference of this
operation, two output differences are represented as ∆out1 and ∆out2. Then the
relation between them is ∆out1 = ∆out2 = ∆in.

Property 3 (Substitution) Let S be an S-box used in the round function of
SKINNY cipher. Define Xin as the input value of S. Let ∆in and ∆out represent
input and output differences, respectively. Denote v as a flag variable indicating
the validity of difference propagation. Then their relations are

v =

{
0 (invalid), if S(Xin)⊕ S(Xin ⊕∆in) ̸= ∆out,
1 (valid), if S(Xin)⊕ S(Xin ⊕∆in) = ∆out,

where v = 1 represents that there is a value Xin that makes the difference
propagation ∆in → ∆out valid.
4https://github.com/stp/stp

https://github.com/stp/stp

10 Y. Fan et al.

Property 4 (Confusion Layer) Denote M as the confusion matrix. −−−→∆Cin

and −−−−→∆Cout represent the column-wise input and output difference, respectively.
Then the equation is −−−−→∆Cout = M ·

−−−→
∆Cin.

In this section, we utilize a similar method used in [15,19] to search for
related-tweakey impossible differential distinguishers with STP. Firstly, accord-
ing to the round function and tweakey schedule, we use Property 1∼4 to con-
struct some equations to express the bit-level differential propagation properties
between input and output differences. In addition, we should construct some
equations representing the constraints on tweakey and state differences. Finally,
we can confirm whether an expected impossible differential distinguisher ex-
ists through the result returned by the solver STP. If the solver STP returns
Invalid for the specific input and output active cell positions, it shows that this
differential distinguisher is impossible.

Note that, only the active input difference values are fixed as mentioned
earlier (i.e., ∆T K1

1[p] = 0x03, ∆T K2
1[p] = 0x81 and ∆SC1[p] = 0x82), but to

determine the value of p, we have to traverse all the values of cell position p and
active cell positions of output differences as shown in Algorithm 1.

Algorithm 1: Seaching Related-Tweakey Impossible Distinguishers
Input: R: The number of rounds covered by the expected distinguisher.
Output: R-round related-tweakey impossible differential distinguisher or

”No solution”.
1 ▷ pi: Active cell position of input differences of the distinguisher.
2 ▷ po: Active cell position of output differences of the distinguisher.
3 for pi ← 0 to 7 do
4 for po ← 0 to 15 do
5 ▷ (1) Construct equations to describe differential propagation.
6 for r ← 1 to R+ 1 do
7 Use the Property 1∼4 to construct equations for the round

function and tweakey schedule of r-th round.
8 ▷ (2) Construct equations to represent the distinguisher’s restrictive

conditions.
9 Construct equations to describe the difference values for the active

cells of the internal state after SC and tweakey in the first round
(i.e., ∆SC1[pi] = 0x82, ∆T K1

1[pi] = 0x03 and ∆T K2
1[pi] = 0x81) and

the differential value of the active cell in the output difference of the
distinguisher (i.e., ∆SCR+1[po] ̸= 0x00).

10 Input all the equations (1) and (2) into STP solver and solve them.
11 if STP return ”Invalid” then
12 Return the active cell position (pi, po) of the R-round

relate-tweakey impossible differential distinguisher.

13 Return ”No solution”

RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 11

3.3 14-Round Related-Tweakey Impossible Differential
Distinguishers

Utilizing Algorithm 1, we find some 14-round distinguishers. Under the related-
tweakey model, our impossible differential distinguishers start with one active
cell in internal state after SC of the first round and end with one active cell
after SC of the 15-th round. Thus, they can be seen as complete 14-round distin-
guishers for the underlying primitive SKINNY-128-384 in SKINNY-AEAD M1/M3.
In the tweakey recovery phase, we select the related-tweakey impossible dif-
ferential distinguisher with (pi, po) = (2, 10)5, which can obtain a lower at-
tack complexity for both 20-round and 18-round attacks. This distinguisher is
illustrated in Fig. 5. The 14-round related-tweakey impossible differential is:
(00α0|0000|0000|0000) 14r↛ (0000|0000|00 ∗ 0|0000), where α = 0x82 and ∗ de-
notes any non-zero difference. An 8.5-round related-tweakey differential in the
forward direction (having probability 1) starting at Y1 (after SC in the first
round) is concatenated to a 5.5-round related-tweakey differential (having prob-
ability 1) starting from Y15 (before the AC and ART in the 15-th round) in the
backward direction. The contradiction takes place at X10 in the 10-th round.

tk1 Y1 Z1 W1 X2

AC
ART

SR MC Round 1

tk2 X2 Y2 Z2 W2 X3

SC

AC
ART

SR MC Round 2

tk3 X3 Y3 Z3 W3 X4

SC

AC
ART

SR MC Round 3

tk4 X4 Y4 Z4 W4 X5

SC

AC
ART

SR MC Round 4

tk5 X5 Y5 Z5 W5 X6

SC

AC
ART

SR MC Round 5

tk6 X6 Y6 Z6 W6 X7

SC

AC
ART

SR MC Round 6

tk7 X7 Y7 Z7 W7 X8

SC

AC
ART

SR MC Round 7

tk8 X8 Y8 Z8 W8 X9

SC

AC
ART

SR MC Round 8

tk9 X9 Y9 Z9 W9 X10

SC

AC
ART

SR MC Round 9

tk10 X10 Y10 Z10 W10 X11

SC

AC
ART

SR MC Round 10

tk11 X11 Y11 Z11 W11 X12

SC

AC
ART

SR MC Round 11

tk12 X12 Y12 Z12 W12 X13

SC

AC
ART

SR MC Round 12

tk13 X13 Y13 Z13 W13 X14

SC

AC
ART

SR MC Round 13

tk14 X14 Y14 Z14 W14 X15

SC

AC
ART

SR MC Round 14

X15 Y15

SC Round 15

CONTRADICTION

Zero difference

Fixed difference

Any non-zero difference

Fig. 5. 14-round related-tweakey impossible differential distinguisher for the underly-
ing primitive SKINNY-128-384 in SKINNY-AEAD M1/M3

5pi and po denote the active cell positions corresponding to the input and out differences
of the distinguisher, respectively.

12 Y. Fan et al.

4 Tweakey Recovery Attack on 20-Round SKINNY-AEAD
M1/M3

In this section, we propose a 20-round related-tweakey impossible differential
attack on SKINNY-AEAD M1/M3. The whole attack contains two phases (i.e, dis-
tinguisher construction phase in Section 3 and tweakey recovery phase in this
section). In the distinguisher construction phase, we find some 14-round impossi-
ble differential distinguishers under some constraints for the underlying primitive
SKINNY-128-384. As a result, we select one distinguisher with (pi, po)=(2,10) to
mount our tweakey recovery attack to achieve a lower attack complexity. In the
tweakey recovery phase, we construct a 20-round related tweakey recovery at-
tack to derive the right tweakey by filtering out the wrong candidates suggested
by the impossible differential distinguisher.

Fig. 6 presents a 20-round tweakey recovery attack on SKINNY-AEAD M1/M3
based on the 14-round related-tweakey impossible differential distinguisher. We
extend the distinguisher 4 rounds on the top and 2 rounds at the bottom to
cover 6 rounds in the tweakey recovery phase. As discussed in Section 2.3, we can
obtain the equivalent plaintext P eq (resp. equivalent tweakey tkeq1) by applying
P eq = MC ◦ SR ◦AC ◦ SC(P) (resp. tkeq1 = MC ◦ SR(tk1)) in the first round.
We start our tweakey recovery attack at W1 since there is no tweakey involved
before W1. In the rest of section, we call the inputs at the position W1 as the
plaintext inputs P eq. The original plaintext P can be recovered by applying
SC−1 ◦AC−1 ◦ SR−1 ◦MC−1(P eq).

The 14-round distinguisher is placed between the 5-th round and the 19-th
round as shown in Fig. 6. In the first round, the subtweakey difference ∆tk1[1]
(i.e., ∆tkeq1 [1, 5, 13]) is a nonzero fixed difference, the other cell-position differ-
ences are all zero . The values of fixed differences tk1[1], tk3[0], tk5[2] and tk19[0]
affect 20-round attack. These differential values are dependent on each other. If
the input tweakey differences of distinguisher are fixed, other subtweakey differ-
ences can be derived using the tweakey schedule. The involved active subtweakey
differences in the whole attack procedure are shown in Table 4.

Table 4. Active subtweakey difference values related to 20-round tweakey recovery

r ∆TK1r[p] ∆TK2r[p] ∆TK3r[p] ∆tkr[p]

1

0x03

0xE0

0x00

∆tk1[1] = 0xE3
3 0xC0 ∆tk3[0] = 0xC3
5 0x81 ∆tk5[2] = 0x82
19 0xC3 ∆tk19[0] = 0xC0

Note: ∆tkr[p] = ∆TK1r[p] ⊕∆TK2r[p] ⊕∆TK3r[p]. r and p denote the
number of round and active cell position, respectively.

RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 13

tkeq

0 1 2 3

0 1 2 3

7 4 5 6

0 1 2 3

tk1 P W1(P
eq) X2

SC AC SR MC
Round 1

tk2 X2 Y2 Z2 W2 X3

SC

AC
ART

SR MC
Round 2

tk3 X3 Y3 Z3 W3 X4

SC

AC
ART

SR MC
Round 3

tk4 X4 Y4 Z4 W4 X5

SC

AC
ART

SR MC
Round 4

tk5 X5 Y5

SC

AC
ART

Round 5

tk19 X19 Y19 Z19 W19 X20

SC

AC
ART

SR MC
Round 19

tk20 X20 Y20 Z20 W20 X21

SC

AC
ART

SR MC
Round 20

14-R Impossible Distinguisher

Zero difference Fixed difference Any non-zero difference

Fig. 6. 20-round tweakey recovery attack for SKINNY-AEAD M1/M3

In the 20-round attack, r∆ = 14, rin = 4, rout = 2, cin = 48, |∆in| =
56, cout = 56, |∆out| = 64 and |Kin ∪ Kout| = 13 × 8 + 2 × 8 = 120. The
attack procedure is briefly described in Algorithm 2. Detailed steps of 20-round
cryptanalysis are given as follows.

Data Collection. The adversary should construct 2N pairs of structures S1

and S2 at W1, where each structure contains 2|∆in| = 256 equivalent plaintexts.
For each equivalent plaintext pair P eq ∈ S1 and P eq ∈ S2, its difference is P eq⊕
P eq=(0, α, ∗, 0, ∗, ∗, 0, ∗, ∗, 0, ∗, 0, 0, ∗, 0, 0), where α = ∆tk1[1] = 0xE3 and ∗ de-
notes any nonzero byte value. Using 2N ·(2·2|∆in|) = 2N+|∆in|+1 equivalent plain-

14 Y. Fan et al.

Algorithm 2: Tweakey Recovery Attack on 20-Round SKINNY-AEAD
M1/M3

1 ▷ Data collection;
2 for 2N pairs of structures do
3 for 2|∆in| equivalent plaintext P eq

i in S1 do
4 P eq

i = P eq
i ⊕ (0, α, ∗, 0, ∗, ∗, 0, ∗, ∗, 0, ∗, 0, 0, ∗, 0, 0), where α = 0xE3;

5 Choose a nonce Ni that has never been used;
6 Ni = Ni ⊕ (0, γ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where γ = 0xE0;
7 Pi = SC−1 ◦AC−1 ◦ SR−1 ◦MC−1(P eq

i);
8 Pi = SC−1 ◦AC−1 ◦ SR−1 ◦MC−1(P eq

i);
9 for m from 0 to 7 by 1 do

10 C ← encrypt Pi under (lm, Ni,Key);
11 Ci ← encrypt Pi under (l8, Ni,Key);
12 W20i ←MC−1(Ci);
13 for 2|∆in| plaintext Pi in S2 do
14 for n from 0 to 8 by 1 do
15 C ← encrypt Pi under (ln, Ni,Key);
16 Ci ← encrypt Pi under (l9, N i,Key);

17 W20i ←MC−1(Ci);
18 for 22|∆in| pairs do
19 ∆W20 ←W20i ⊕W20i ;
20 if ∆W20 = (∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗) then
21 Remain the pair of (Pi, Ni, Ci) and (Pi, Ni, Ci);
22 ▷Seive 2N+16 remaining pairs finally;

23 ▷ Subkey recovery;
24 Call Algorithm 3 under 2N+16 pairs to discard the candidates of

tk1[0, 1, 2, 3, 4, 5, 6, 7], tk2[0, 3, 4, 5, 7] and tk20[0, 4], and obtain 2ρ

|Kin ∪Kout|-bit remaining subtweakey candidates tkrem;
25 ▷ Brute force;
26 for 2ρ tkrem do
27 for 28 remaining master key MK[12] do
28 Compute the master key MK from tkrem and MK[12] using the

tweakey schedule;
29 Get a random new pair of (P,C) with a nonce value N and a number

related to the first block counter l0;
30 C′ ← encrypt P under (l0, N,MK);
31 if C′ = C then
32 Return the MK as the right tweakey.

RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 15

texts, we can generate 2N+2|∆in| plaintext pairs (P, P). In the 20-round tweakey
recovery attack, we define the two related-tweakey inputs as (TK1||TK2 ||TK3)
and (TK1||TK2||TK3). Encrypt the plaintexts P (resp. P) under TK1||TK2
||TK3 (resp. TK1||TK2||TK3) to obtain the corresponding ciphertexts C (resp.
C). In the 20-round attack of SKINNY-AEAD M1/M3, (TK1,TK2,TK3) (resp.
(TK1, TK2, TK3)) is expressed as (l8, N,Key) (resp. (l9, N,Key)), where l8
(resp. l9) represents the first 128-bit tweakey value in the 9-th (resp. 10-th)
block message encryption, N and N denote different nonce values, and Key
means the 128-bit key. Note that l8 ⊕ l9 = (0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
and N ⊕ N = (0, γ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where β = 0x03 and γ =
0xE0 (see the case of r = 1 in Table 4).

After obtaining ciphertexts C and C, we can get W20 and W20 directly re-
spectively, as shown in line[12] and line[17] of Algorithm 2. For each cipher-
text pair, check whether the condition in line[20] is satisfied and remain it
if true. In total, 2N+2|∆in|−(128−|∆out|)−32 = 2N+16 plaintext-ciphertext pairs
are remained in the phase of data collection. Time complexity of this phase is
(2N · (2|∆in| · (2 · 1

20 + 9 + 1
2 ·

1
20 + 10 + 1

2 ·
1
20))) ≈ 2N+60.3 times of 20-round

encryptions, and the memory complexity is

Mcol = 2|∆in| · (2 · 128) + 2 · 2|∆in| · (3 · 128) + 2 · 2N+16 · (3 · 128)
= (2|∆in|−0.59 + 2|∆in|+1 + 2N+17) · (3 · 128) bits.

Tweakey Recovery. The tweakey recovery procedure of the 20-round attack is
briefly described in Algorithm 3. We will show the detailed attack procedure as
follows. In the attack process of SKINNY-AEAD M1/M3, the value of (l8, l9, N,N)
is known, in the following section, we focus on guessing the value of subtweakey
tki (i ∈ {1, 2, 20}) to deduce the master tweakey corresponding to Key6.

1) Line[1,2,3] in Algorithm 3. Guess tk20[4] and compute ∆X20[4] under 2N+16

remaining pairs. According to Fig. 6, get ∆X20[4] = SC−1(Z20[4]⊕ tk20[4]⊕
c120)⊕SC−1(Z20[4]⊕ tk20[4]⊕c120), where c120 = 0x02 is the 20-th round con-
stant corresponding to c1. Checking if ∆X20[4] = ∆tk19[0] = 0xC0 will lead
to an 8-bit filter and generally sieve 2N+16−8 = 2N+8 plaintext-ciphertext
pairs. The time complexity of this step is 28 · 2 · 2N+16 · 1

16 ·
1
20 ≈ 2N+16.7

20-round encryptions.
2) Line[4,5,6] in Algorithm 3. Guess tk20[0] and compute ∆X20[0, 4, 8, 12] un-

der 2N+8 remaining pairs from the previous step. According to Fig. 6, com-
pute ∆X20[0] = SC−1(Z20[0]⊕ tk20[0]⊕ c020)⊕SC−1(Z20[0]⊕ tk20[0]⊕ c020),
∆X20[4] = SC−1(Z20[4] ⊕ tk20[4] ⊕ c120) ⊕ SC−1(Z20[4] ⊕ tk20[4] ⊕ c120),
∆X20[8] = SC−1(Z20[8]⊕ c220)⊕ SC−1(Z20[8]⊕ c220) and ∆X20[12] = SC−1

(Z20[12]) ⊕SC−1(Z20[12]), where c020 = 0x0B, c120 = 0x02, and c220 = 0x02
are the 20-th round constants corresponding to c0, c1 and c2, respectively.
Based on the properties of MC operations on col(1) of W19, we have the
conditions ∆X20[0] = ∆X20[12] and ∆X20[4]⊕∆X20[8] = ∆X20[12]. Check

6We define the master tweakey corresponding to Key as master key MK.

16 Y. Fan et al.

Algorithm 3: Subtweakey Recovery Procedure of the 20-Round Attack
1 for 28 tk20[4] do
2 for 2N+16 remaining pairs do
3 Compute ∆X20[4] and use the condition (i.e., ∆X20[4] is a fixed

difference) to get 2N+16−8 = 2N+8 remaining pairs;
4 for 28 tk20[0] do
5 for 2N+8 remaining pairs do
6 Compute ∆X20[0, 4, 8, 12] and use the conditions

∆X20[0] = ∆X20[12] and ∆X20[4]⊕∆X20[8] = ∆X20[12] to
obtain 2N+8−16 = 2N−8 remaining pairs;

7 for 216 tk1[3, 5] do
8 for 2N−8 remaining pairs do
9 Compute ∆W2[4, 8] and use the condition ∆W2[4] = ∆W2[8] to

choose 2N−8−8 = 2N−16 remaining pairs;
10 for 224 tk1[1, 2, 7] do
11 for 2N−16 remaining pairs do
12 Compute ∆W2[2, 6, 10] and use the conditions

∆W2[6] = ∆W2[10] and ∆W2[2] = ∆W2[10] to sieve
2N−16−16 = 2N−32 remaining pairs;

13 for 216 tk1[0] tk2[0] do
14 for 2N−32 remaining pairs do
15 Compute ∆Y3[0] and use the condition (i.e., ∆Y3[0] is a

fixed difference) to get 2N−32−8 = 2N−40 remaining
pairs;

16 for 216 tk1[6] tk2[4] do
17 for 2N−40 remaining pairs do
18 Compute ∆W3[7, 11, 15] and use the conditions

∆W3[7] = ∆W3[11] and ∆W3[11] = ∆W3[15] to
obtain 2N−40−16 = 2N−56 remaining pairs;

19 for 232 tk1[4] tk2[3, 5, 7] do
20 for 2N−56 remaining pairs do
21 Compute ∆Y5[2] and use the condition (i.e.,

∆Y5[2] is a fixed difference) to filter out the
wrong subkeys.

RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 17

whether the conditions are satisfied or not, which can act as a 16-bit filter to
choose 2N+8−16 = 2N−8 remaining pairs. In this step, the time complexity
is 216 · 2 · 2N+8 · 4

16 ·
1
20 ≈ 2N+18.7 20-round encryptions.

3) Line[7,8,9] in Algorithm 3. Guess tk1[3, 5] and compute ∆W2[4, 8] under
2N−8 remaining pairs from step 2). Base on tkeq[7] = tk1[3] and tkeq[10] =
tk1[5], we can compute ∆W2[4] = SC(P eq[7]⊕ tk1[3])⊕ SC(P eq[7]⊕ tk1[3])
and ∆W2[8] = SC(P eq[10]⊕ tk1[5])⊕SC(P eq[10]⊕ tk1[5]). According to the
properties of MC−1 operations on col(1) of X3, we have ∆W2[4] = ∆W2[8].
Checking if ∆W2[4] = ∆W2[8] will lead to an 8-bit filter and select 2N−8−8 =
2N−16 remaining pairs. In this step, the time complexity is 232 ·2 ·2N−8 · 2

16 ·
1
20 ≈ 2N+17.7 20-round encryptions.

4) Line[10,11,12] in Algorithm 3. Guess tk1[1, 2, 7] and compute ∆W2[2, 6, 10]
under 2N−16 remaining pairs from the previous step. Base on tkeq[2] = tk1[2],
tkeq[5] = tk1[1] and tkeq[8] = tk1[7], we can compute ∆W2[2] = SC(P eq[2]⊕
tk1[2])⊕ SC(P eq[2]⊕ tk1[2]), ∆W2[6] = SC(P eq[5]⊕ tk1[1])⊕ SC(P eq[5]⊕
tk1[1]⊕∆tk1[1]) and ∆W2[10] = SC(P eq[8]⊕ tk1[7])⊕ SC(P eq[8]⊕ tk1[7]).
In the light of the properties of MC−1 operations on col(3) of X3, we
have the conditions ∆W2[2] = ∆W2[10] and ∆W2[6] = ∆W2[10]. Check-
ing whether the conditions are satisfied or not will act as a 16-bit filter and
sieve 2N−16−16 = 2N−32 remaining pairs. The time complexity of this step
is 256 · 2 · 2N−16 · 3

16 ·
1
20 ≈ 2N+34.3 20-round encryptions.

5) Line[13,14,15] in Algorithm 3. Guess tk1[0], tk2[0] and compute ∆Y3[0] under
2N−32 remaining pairs from step 4). Base on tkeq[0] = tk1[0], we can compute
∆Y3[1] = (SC((SC(P eq[0] ⊕ tk1[0]) ⊕ tk2[0] ⊕ c02) ⊕ SC(P eq[10] ⊕ tk1[5]) ⊕
SC(P eq[13]⊕tk1[1])))⊕(SC((SC(P eq[0]⊕tk1[0])⊕tk2[0]⊕c02)⊕SC(P eq[10]⊕
tk1[5]) ⊕ SC(P eq[13] ⊕ tk1[1] ⊕ ∆tk1[1]))), where c02 = 0x03 is the second
round constant corresponding to c0. As shown in Fig. 6, ∆Y3[0] = ∆tk3[0]
is a fixed difference that is 0xC3. Checking if ∆Y3[0] = 0xC3 will act as an
8-bit filter and sieve 2N−32−8 = 2N−40 remaining pairs. In this step, the
time complexity is 272 · (2 · 2N−32) · (3

16 + 1
16 ·

1
2) ·

1
20 ≈ 2N+34.5 20-round

encryptions.
6) Line[16,17,18] in Algorithm 3. Guess tk1[6], tk2[4] and compute ∆W3[7,

11, 15] under 2N−40 remaining pairs from the step 5). Based on tk1[0, 2, 5],
tk2[0] determined by steps 3) to 5) and tk2[2] derived from tk20[4], we can
compute ∆W3[7] = (SC(SC(P eq[2] ⊕ tk1[2]) ⊕ tk2[2])) ⊕ (SC(SC(P eq[2] ⊕
tk1[2])⊕tk2[2])), ∆W3[11] = SC((SC(P eq[4]⊕tk1[0])⊕tk2[4])⊕SC(P eq[11]⊕
tk1[6])) ⊕ SC((SC(P eq[4] ⊕ tk1[0]) ⊕ tk2[4]) ⊕ SC(P eq[11] ⊕ tk1[6])) and
∆W3[15] = SC((SC(P eq[0] ⊕ tk1[0]) ⊕ tk2[0]) ⊕ SC(P eq[10] ⊕ tk1[5])) ⊕
SC((SC(P eq[0]⊕tk1[0])⊕tk2[0])⊕SC(P eq[10]⊕tk1[5])). Based on the prop-
erties of MC−1 operations on col(4) of X4, we have the conditions ∆W3[7] =
∆W3[11] and ∆W3[11] = ∆W3[15]. Checking whether the conditions are sat-
isfied or not will act as a 16-bit filter and sieve 2N−40−16 = 2N−56 remaining
pairs. The time complexity of this step is 288 · (2 · 2N−40) · (5

16 + 3
16) ·

1
20 ≈

2N+43.7 20-round encryptions.
7) Line[19,20,21] in Algorithm 3. Guess tk1[4], tk2[3, 5, 7] and compute ∆Y5[2]

under 2N−56 remaining pairs from step 6). As shown in Fig. 6, ∆Y5[2] is

18 Y. Fan et al.

a fixed difference that equals to ∆tk5[2] = 0x82. Checking if ∆Y5[2] =
∆tk5[2] = 0x82 can act as an 8-bit filter and discard the wrong subtweakeys.
The time complexity of this step is 2120 ·(2 ·2N−56) ·(1116 +

7
16 +

3
16 +

1
16) ·

1
20 ≈

2N+61.1 20-round encryptions.

In step 7), the number of the wrong subtweakeys tk1[0, 1, 2, 3, 4, 5, 6, 7],
tk2[0, 3, 4, 5, 7] and tk20[0, 4] left is

2ρ = (2|Kin∪Kout| − 1)× (1− 2−8)2
N−56

= (2120 − 1)× (1− 2−8)2
N−56

,

where we set N = 64.6 and ρ = 117.8.

Brute Force. The values of master key MK[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
13, 14, 15] can be derived from tkrem using the tweakey schedule. For the re-
maining master key MK[12], we traverse 28 candidate values. For each guessed
value of MK[12], we verify the master key by one plaintext-ciphertext pair un-
der a number related to the first block counter l0, given nonce value N and
MK[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15]. In this step, the time complexity is
2ρ × 28 = 2ρ+8 20-round encryptions.

Complexity Computation. The 20-round attack above on SKINNY-AEAD M1/M3
requires a data complexity of

D = 2N · (2|∆in| + 2|∆in|) = 2N+57 = 264.6+57 = 2121.6

chosen plaintexts. The total time complexity is the summation of the time con-
sumption in all the steps. When N = 64.6 and ρ = 117.8, the total time com-
plexity is

T = 2N+60.3 + 2N+16.7 + 2N+18.7 + 2N+17.7 + 2N+34.3 + 2N+34.5

+ 2N+43.7 + 2N+61.1 + 2ρ+8 ≈ 2127.1

20-round encryptions. In the attack procedure, we should store the wrong candi-
dates of guessing tweakey and the pairs of equivalent plaintext, ciphertext and
nonce. The total memory complexity is

M =Mcol + 2 · (2N+8 + 2N−8 + 2N−16 + 2N−32 + 2N−40 + 2N−56) · (3 · 128)
+ 2ρ · 128 = 290.2 + 282.2 + 2124.8 ≈ 2124.8 bits.

5 Tweakey Recovery Attack on 18-Round SKINNY-AEAD
M1/M3

We propose an 18-round related-tweakey impossible differential attack on SKINNY-
AEAD M1/M3 in this section. The 14-round distinguisher with (pi, po) = (2, 10) is

RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 19

placed between the third round and 17-th round. Based on the 14-round related-
tweakey impossible differential distinguisher, an 18-round attack on SKINNY-AEAD
M1/M3 is shown in Fig. 7 of Appendix A. We extend the distinguisher 2 rounds
on the top and 2 rounds at the bottom to cover 4 rounds in the tweakey recovery
phase. In the first round, the subtweakey difference ∆tk1[0] (i.e., ∆tkeq1 [0, 4, 12])
is a nonzero fixed difference, the other cell-position differences are all zero. The
involved active subtweakey differences (i.e., the values of ∆tk1[0], ∆tk3[2] and
∆tk17[0]) in the attack procedure are given in Table 5.

Table 5. Active subtweakey difference values related to 18-round tweakey recovery

r ∆TK1r[p] ∆TK2r[p] ∆TK3r[p] ∆tkr[p]

1
0x03

0xC0
0x00

∆tk1[0] = 0xC3
3 0x81 ∆tk3[2] = 0x82
17 0xC3 ∆tk17[0] = 0xC0

Note: ∆tkr[p] = ∆TK1r[p] ⊕∆TK2r[p] ⊕∆TK3r[p]. r and p denote the
number of round and active cell position, respectively.

In the 18-round attack, r∆ = 14, rin = 2, rout = 2, cin = 0, |∆in| = 8,
cout = 56, |∆out| = 64, and |Kin∪Kout| = 4×8+2×8 = 48. Algorithm 4 briefly
describes the 18-round attack process. We will give the detailed attack steps as
follows.

Data Collection. 2N pairs of structures S1 and S2 at W1 should be con-
structed, where each structure contains 2|∆in| = 28 equivalent plaintexts. For
each equivalent plaintext pair P eq ∈ S1 and P eq ∈ S2, its difference is P eq ⊕
P eq=(α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, ∗), where α = ∆tk1[0] = 0xC3 and ∗ de-
notes any nonzero difference. We use 2N · (2 · 2|∆in|) = 2N+|∆in|+1 equivalent
plaintexts to construct 2N+2|∆in| plaintext pairs (P, P). Under (l0, N,Key) and
(l1, N,Key), we use the line[10] and line[14] in Algorithm 4 to compute W18 and
W18, respectively. Note that l0 ⊕ l1 = (β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and
N⊕N = (γ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where β = 0x03 and γ = 0xC0 (see
the case of r = 1 in Table 5). For each ciphertext pair, check whether the condi-
tion in line[17] is satisfied and remain it if true. In total, 2N+2|∆in|−(128−|∆out|)−32 =
2N−80 plaintext-ciphertext pairs are remained in the step of data collection. The
time complexity of this step is (2N ·(2|∆in| ·(2· 118+1+ 1

2 ·
1
18+2+ 1

2 ·
1
18))) ≈ 2N+9.7

times of 18-round encryptions, and the memory complexity is

Mcol = 2|∆in| · (2 · 128) + 2 · 2|∆in| · (3 · 128) + 2 · 2N−80 · (3 · 128)
= (2|∆in|−0.59 + 2|∆in|+1 + 2N−79) · (3 · 128) bits.

20 Y. Fan et al.

Algorithm 4: Tweakey Recovery Attack on 18-Round SKINNY-AEAD
M1/M3

1 ▷ Data collection;
2 for 2N pairs of structures do
3 for 2|∆in| equivalent plaintext P eq

i in S1 do
4 P eq

i = P eq
i ⊕ (α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, ∗), where α = 0xC3;

5 Choose a nonce Ni that has never been used;
6 Ni = Ni ⊕ (γ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where γ = 0xC0;
7 Pi = SC−1 ◦AC−1 ◦ SR−1 ◦MC−1(P eq

i);
8 Pi = SC−1 ◦AC−1 ◦ SR−1 ◦MC−1(P eq

i);
9 Ci ← encrypt Pi under (l0, Ni,Key);

10 W18i ←MC−1(Ci);
11 for 2|∆in| plaintext Pi in S2 do
12 C ← encrypt Pi under (l0, Ni,Key);
13 Ci ← encrypt Pi under (l1, N i,Key);

14 W18i ←MC−1(Ci);
15 for 22|∆in| pairs do
16 ∆W18 ←W18i ⊕W18i ;
17 if ∆W18 = (∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗) then
18 Remain the pair of (Pi, Ni, Ci) and (Pi, Ni, Ci);
19 ▷Seive 2N−80 remaining pairs finally;

20 ▷ Subkey recovery;
21 for 28 tk18[4] do
22 for 2N−80 remaining pairs do
23 Compute ∆X18[4] and use the condition (i.e., ∆X18[4] is a fixed

difference) to get 2N−80−8 = 2N−88 remaining pairs;
24 for 28 tk18[0] do
25 for 2N−88 remaining pairs do
26 Compute ∆X18[0, 4, 8, 12] and use the conditions

∆X18[0] = ∆X18[12] and ∆X18[4]⊕∆X18[8] = ∆X18[12] to
obtain 2N−88−16 = 2N−104 remaining pairs;

27 for 232 tk1[2, 3, 7] tk2[2] do
28 for 2N−104 remaining pairs do
29 Compute ∆Y3[2] and use the condition (i.e., ∆Y3[2] is a fixed

difference) to filter out the wrong subkeys. Finally, 2ρ
|Kin ∪Kout|-bit subtweakey candidates tkrem have been left;

30 ▷ Brute force;
31 for 2ρ tkrem do
32 for 280 remaining master key MK[0, 1, 4, 5, 6, 11, 12, 13, 14, 15] do
33 Compute the master key MK from tkrem and MK[0, 1, 4, 5, 6, 11, 12,

13, 14, 15] using the tweakey schedule algorithm;
34 Get a random new pair of (P,C) with a nonce value N and a number

related to the first block counter l0;
35 C′ ← encrypt P under (l0, N,MK) ;
36 if C′ = C then
37 Return the MK as the right key.

RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 21

Tweakey Recovery. In the attack process of SKINNY-AEAD M1/M3, we are
concerned about guessing the value of subtweakey tki (i ∈ {1, 2, 18}) to deduce
the master tweakey corresponding to Key.

1) Line[21,22,23] in Algorithm 4. Guess tk18[4] and compute ∆X18[4] under
2N−80 remaining pairs, where ∆X18[4] = SC−1(Z18[4] ⊕ tk18[4] ⊕ c1) ⊕
SC−1(Z18[4] ⊕tk18[4]⊕c118) as shown in Fig. 7 , where c118 = 0x03 is the 18-th
round constant corresponding to c1. Checking if ∆X18[4] = ∆tk17[0] = 0xC0
will lead to an 8-bit filter and generally sieve 2N−80−8 = 2N−88 plaintext-
ciphertext pairs. The time complexity of this step is 28 · 2 · 2N−80 · 1

16 ·
1
18 ≈

2N−79.2 times of 18-round encryptions.
2) Line[24,25,26] in Algorithm 4. Guess tk18[0] and compute ∆X18[0, 4, 8, 12]

under 2N−88 remaining pairs from the previous step. According to Fig. 7,
compute ∆X18[0] = SC−1(Z18[0]⊕ tk18[0]⊕ c018)⊕ SC−1(Z18[0]⊕ tk18[0]⊕
c018), ∆X18[4] = SC−1(Z18[4]⊕ tk18[4]⊕ c118)⊕SC−1(Z18[4]⊕ tk18[4]⊕ c118),
∆X18[8] = SC−1(Z18[8]⊕ c218)⊕SC−1(Z18[8]⊕ c218), and ∆X18[12] = SC−1

(Z18[12]) ⊕SC−1(Z18[12]), where c018 = 0x0A, c118 = 0x03, and c218 = 0x02
are the 18-th round constants corresponding to c0, c1, and c2, respectively.
Based on the properties of MC operations on col(1) of W17, we have the
conditions ∆X18[0] = ∆X18[12] and ∆X18[4]⊕∆X18[8] = ∆X18[12]. Check
whether the conditions are satisfied or not, which can act as a 16-bit filter to
choose 2N−88−16 = 2N−104 remaining pairs. In this step, the time complexity
is 216 · 2 · 2N−88 · 4

16 ·
1
18 ≈ 2N−77.2 18-round encryptions.

3) Line[27,28,29] in Algorithm 4. Guess tk1[2, 3, 7], tk2[2] and compute ∆Y3[2]
under 2N−104 remaining pairs from step 2). As shown in Fig. 7, ∆Y3[2]
is a fixed difference that equals to ∆tk3[2] = 0x82. Checking if ∆Y3[2] =
0x82 can act as an 8-bit filter and discard the wrong subtweakeys. The time
complexity of this step is 248 · (2 · 2N−104) · (3

16 +
1
16) ·

1
18 ≈ 2N−61.2 18-round

encryptions.

In step 3), the number of the wrong subtweakeys tk1[2, 3, 7], tk2[2] and
tk20[0, 4]) left is

2ρ = (2|Kin∪Kout| − 1)× (1− 2−8)2
N−104

= (248 − 1)× (1− 2−8)2
N−104

,

where we set N = 112.6 and ρ = 45.8.

Brute Force. The values of master key MK[2, 3, 7, 8, 9, 10] can be derived from
tkrem using the tweakey schedule. For the remaining master key MK[0, 1, 4, 5, 6,
11, 12, 13, 14, 15], we exhaustively traverse 280 candidate values. We verify the
master key by one plaintext-ciphertext pair under (l0,N , MK). In this step, the
time complexity is 2ρ × 280 = 2ρ+80 18-round encryptions.

Complexity Computation. For the 18-round attack on SKINNY-AEAD M1/M3,
the data complexity is :

D = 2N · (2|∆in| + 2|∆in|) = 2N · 2 · 2|∆in| = 2N+9 = 2112.6+9 = 2121.6

22 Y. Fan et al.

chosen plaintexts, the time complexity is :

Tcal = 2N+9.7 + 2N−79.2 + 2N−77.2 + 2N−61.2 + 2ρ+80 ≈ 2125.9

18-round encryptions, and the memory complexity is :

M =Mcol + 2 · (2N−88 + 2N−104) · (3 · 128) + 2ρ · 128
= 242.2 + 234.2 + 252.8 ≈ 252.8 bits.

6 Conclusion

In this paper, we analyze the security of SKINNY-AEAD M1/M3 using the related-
tweakey impossible differential attack. Firstly, based on the encryption mode,
nonce-respecting scenario and complex tweakey initialization of M1/M3, we pro-
pose some constraints to search for longer distinguishers and mount tweakey
recovery attacks with less time complexity. Then, according to the constraints
given in Section 3.1, we search for the related-tweakey impossible differential
distinguishers with the help of automatic searching algorithm based on STP. As
a result, we find some 14-round distinguishers. Finally, based on one of these
distinguishers, 20-round and 18-round tweakey recovery attacks are conducted
under a nonce-respecting scenario. To our knowledge, all the attacks are the best
tweakey recovery attacks on these two ciphers so far.

The underlying primitive SKINNY-128-384 of SKINNY-AEAD M1/M3 have 128-
bit security, while the block cipher SKINNY-128-384 has 384-bit security. Previ-
ous attack results (related-tweakey impossible differential, meet-in-the-middle,
related-tweakey rectangle) cannot directly be used in SKINNY-AEAD M1/M3. This
paper only investigates the related-tweakey impossible differential attacks on
M1/M3. The security of SKINNY-AEAD M1/M3 against other attacks deserves
further analysis.

Acknowledgements

This work has been supported by the National Natural Science Foundation
of China (Grant No. 62032014 and Grant No. 62002204), the National Key
Research and Development Program of China (Grant No. 2018YFA0704702),
the Major Basic Research Project of Natural Science Foundation of Shandong
Province, China (Grant No. ZR202010220025).

References

1. SKINNY-AEAD and SKINNY-Hash: NIST LWC second-round candi-
date status update (2020), https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/status-update-sep2020/
SKINNY-AEAD_and_SKINNY-Hash_status_update.pdf

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/status-update-sep2020/SKINNY-AEAD_and_SKINNY-Hash_status_update.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/status-update-sep2020/SKINNY-AEAD_and_SKINNY-Hash_status_update.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/status-update-sep2020/SKINNY-AEAD_and_SKINNY-Hash_status_update.pdf

RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 23

2. Ankele, R., Banik, S., Chakraborti, A., List, E., Mendel, F., Sim, S.M., Wang, G.:
Related-key impossible-differential attack on reduced-round skinny. In: Gollmann,
D., Miyaji, A., Kikuchi, H. (eds.) Applied Cryptography and Network Security -
15th International Conference, ACNS 2017, Kanazawa, Japan, July 10-12, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10355, pp. 208–228. Springer
(2017), https://doi.org/10.1007/978-3-319-61204-1_11

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp.
825–885. IOS Press (2009), https://doi.org/10.3233/978-1-58603-929-5-825

4. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 14-18, 2016, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 9815, pp. 123–153. Springer (2016), https://doi.org/10.1007/
978-3-662-53008-5_5

5. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: SKINNY-AEAD and skinny-hash. IACR Trans. Symmetric
Cryptol. 2020(S1), 88–131 (2020), https://doi.org/10.13154/tosc.v2020.iS1.
88-131

6. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4),
229–246 (1994), https://doi.org/10.1007/BF00203965

7. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) Advances in Cryptology
- EUROCRYPT ’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding.
Lecture Notes in Computer Science, vol. 1592, pp. 12–23. Springer (1999), https:
//doi.org/10.1007/3-540-48910-X_2

8. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: Applications to clefia, camellia, lblock and simon. In: Sarkar,
P., Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT 2014 - 20th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I.
vol. 8873, pp. 179–199 (2014), https://doi.org/10.1007/978-3-662-45611-8_10

9. Hadipour, H., Bagheri, N., Song, L.: Improved rectangle attacks on SKINNY and
CRAFT. IACR Trans. Symmetric Cryptol. 2021(2), 140–198 (2021), https://
doi.org/10.46586/tosc.v2021.i2.140-198

10. Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key
AES variants. In: Matsui, M., Zuccherato, R.J. (eds.) Selected Areas in Cryptog-
raphy, 10th Annual International Workshop, SAC 2003, Ottawa, Canada, August
14-15, 2003, Revised Papers. Lecture Notes in Computer Science, vol. 3006, pp.
208–221. Springer (2003), https://doi.org/10.1007/978-3-540-24654-1_15

11. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 8874, pp. 274–288.
Springer (2014), https://doi.org/10.1007/978-3-662-45608-8_15

https://doi.org/10.1007/978-3-319-61204-1_11
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.13154/tosc.v2020.iS1.88-131
https://doi.org/10.13154/tosc.v2020.iS1.88-131
https://doi.org/10.1007/BF00203965
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/978-3-662-45611-8_10
https://doi.org/10.46586/tosc.v2021.i2.140-198
https://doi.org/10.46586/tosc.v2021.i2.140-198
https://doi.org/10.1007/978-3-540-24654-1_15
https://doi.org/10.1007/978-3-662-45608-8_15

24 Y. Fan et al.

12. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family.
In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology - CRYPTO 2015 -
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 9215, pp. 161–185.
Springer (2015), https://doi.org/10.1007/978-3-662-47989-6_8

13. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) Fast Software Encryption - 18th International Work-
shop, FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 6733, pp. 306–327. Springer (2011),
https://doi.org/10.1007/978-3-642-21702-9_18

14. Li, M., Hu, K., Wang, M.: Related-tweak statistical saturation cryptanalysis and
its application on QARMA. IACR Trans. Symmetric Cryptol. 2019(1), 236–263
(2019), https://doi.org/10.13154/tosc.v2019.i1.236-263

15. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey
settings (long paper). IACR Trans. Symmetric Cryptol. 2017(3), 37–72 (2017),
https://doi.org/10.13154/tosc.v2017.i3.37-72

16. Liu, Y., Wang, Q., Rijmen, V.: Automatic search of linear trails in ARX with
applications to SPECK and chaskey. In: Manulis, M., Sadeghi, A., Schneider,
S.A. (eds.) Applied Cryptography and Network Security - 14th International
Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings. Lec-
ture Notes in Computer Science, vol. 9696, pp. 485–499. Springer (2016), https:
//doi.org/10.1007/978-3-319-39555-5_26

17. Longo, G., Zilli, M.V.: Complexity of theorem-proving procedures : some general
properties. RAIRO Theor. Informatics Appl. 8(3), 5–18 (1974), https://doi.org/
10.1051/ita/197408R300051

18. Niu, C., Li, M., Sun, S., Wang, M.: Zero-correlation linear cryptanalysis with
equal treatment for plaintexts and tweakeys. In: Paterson, K.G. (ed.) Topics
in Cryptology - CT-RSA 2021 - Cryptographers’ Track at the RSA Conference
2021, Virtual Event, May 17-20, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12704, pp. 126–147. Springer (2021), https://doi.org/10.1007/
978-3-030-75539-3_6

19. Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round
SKINNY block cipher. IACR Trans. Symmetric Cryptol. 2018(3), 124–162 (2018),
https://doi.org/10.13154/tosc.v2018.i3.124-162

20. Shi, D., Sun, S., Derbez, P., Todo, Y., Sun, B., Hu, L.: Programming the
demirci-selçuk meet-in-the-middle attack with constraints. In: Peyrin, T., Gal-
braith, S.D. (eds.) Advances in Cryptology - ASIACRYPT 2018 - 24th Inter-
national Conference on the Theory and Application of Cryptology and Informa-
tion Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 11273, pp. 3–34. Springer (2018),
https://doi.org/10.1007/978-3-030-03329-3_1

21. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis
of reduced-round SKINNY. In: Joye, M., Nitaj, A. (eds.) Progress in Cryptology
- AFRICACRYPT 2017 - 9th International Conference on Cryptology in Africa,
Dakar, Senegal, May 24-26, 2017, Proceedings. Lecture Notes in Computer Science,
vol. 10239, pp. 117–134 (2017), https://doi.org/10.1007/978-3-319-57339-7_7

22. Zhao, B., Dong, X., Meier, W., Jia, K., Wang, G.: Generalized related-key rectangle
attacks on block ciphers with linear key schedule: applications to SKINNY and
GIFT. Des. Codes Cryptogr. 88(6), 1103–1126 (2020), https://doi.org/10.1007/
s10623-020-00730-1

https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.13154/tosc.v2019.i1.236-263
https://doi.org/10.13154/tosc.v2017.i3.37-72
https://doi.org/10.1007/978-3-319-39555-5_26
https://doi.org/10.1007/978-3-319-39555-5_26
https://doi.org/10.1051/ita/197408R300051
https://doi.org/10.1051/ita/197408R300051
https://doi.org/10.1007/978-3-030-75539-3_6
https://doi.org/10.1007/978-3-030-75539-3_6
https://doi.org/10.13154/tosc.v2018.i3.124-162
https://doi.org/10.1007/978-3-030-03329-3_1
https://doi.org/10.1007/978-3-319-57339-7_7
https://doi.org/10.1007/s10623-020-00730-1
https://doi.org/10.1007/s10623-020-00730-1

RTID Attack on Reduced-Round SKINNY-AEAD M1/M3 25

A 18-Round Related-Tweakey Impossible Differential
Attack for SKINNY-AEAD M1/M3

tkeq

0 1 2 3

0 1 2 3

7 4 5 6

0 1 2 3

tk1 P W1(P
eq) X2

SC AC SR MC
Round 1

tk2 X2 Y2 Z2 W2 X3

SC

AC
ART

SR MC
Round 2

tk3 X3 Y3

SC

AC
ART

Round 3

tk17 X17 Y17 Z17 W17 X18

SC

AC
ART

SR MC
Round 17

tk18 X18 Y18 Z18 W18 X19

SC

AC
ART

SR MC
Round 18

14-R Impossible Distinguisher

Zero difference Fixed difference Any non-zero difference

Fig. 7. 18-round related-tweakey impossible differential attack for SKINNY-AEAD
M1/M3

	Related-Tweakey Impossible Differential Attack on Reduced-Round SKINNY-AEAD M1/M3

