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Abstract

Is it possible to convert classical reductions into post-quantum ones? It is customary to argue that
while this is problematic in the interactive setting, non-interactive reductions do carry over. However,
when considering quantum auxiliary input, this conversion results in a non-constructive post-quantum
reduction that requires duplicating the quantum auxiliary input, which is in general inefficient or even im-
possible. This violates the win-win premise of provable cryptography: an attack against a cryptographic
primitive should lead to an algorithmic advantage.

We initiate the study of constructive quantum reductions and present positive and negative results for
converting large classes of classical reductions to the post-quantum setting in a constructive manner. We
show that any non-interactive non-adaptive reduction from assumptions with a polynomial solution space
(such as decision assumptions) can be made post-quantum constructive. In contrast, assumptions with
super-polynomial solution space (such as general search assumptions) cannot be generally converted.

Along the way, we make several additional contributions:

1. We put forth a framework for reductions (or general interaction) with stateful solvers for a com-
putational problem, that may change their internal state between consecutive calls. We show that
such solvers can still be utilized. This framework and our results are meaningful even in the classical
setting.

2. A consequence of our negative result is that quantum auxiliary input that is useful against a problem
with a super-polynomial solution space cannot be generically “restored” post-measurement. This
shows that the novel rewinding technique of Chiesa et al. (FOCS 2021) is tight in the sense that it
cannot be extended beyond a polynomial measurement space.
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1 Introduction

The notion of provable security in cryptography has had a great impact on the field and has become a de-
facto gold standard in evaluating the security of cryptographic primitives. A provably secure cryptographic
primitive is stated in the form of a computational problem P , whose hardness is related by means of reduction
to that of another problem Q which is either by itself considered intractable or in turn can be further reduced
down the line. The reduction is an algorithm that solves the problem Q provided that it is given access to
an algorithm that solves the problem P .

This gives rise to the “win-win principle” which stands as one of the main motivations for using provably
secure cryptography. The logic is the following. Either an algorithmic solution for P cannot be found, i.e. the
cryptographic primitive P is secure for all intents and purposes, or one can find an algorithmic solution for P
which would imply an algorithmic solution forQ, thus contributing to the state of the art in algorithms design.
Indeed, cryptographic reductions are the main working tool for the theoretical cryptographer. Numerous
reductions between cryptographic primitives are known and hundreds of such reductions are published in
the cryptographic literature every year.

The emergence of the quantum era in computing poses a new challenge to provable security and the win-
win principle. Many existing reductions in the “pre-quantum” world implicitly or explicitly relied on the P -
algorithm being classical. These reductions are thus a-priori invalid when considering quantum algorithms.
A central line of investigation in the domain of post-quantum security is thus dedicated to the following
question.

To what extent can pre-quantum reductions be ported to the post-quantum setting?

Such conversion may not always be possible. This is particularly a concern when considering interactive
problems, i.e. ones where the solution to P involves multiple messages being exchanged with the solver
algorithm. Indeed, one of the most prominent techniques for proving security in the interactive setting,
namely the notion of rewinding, does not directly translate to the quantum setting and moreover one can
explicitly show cases where pre-quantum reductions exist but post-quantum ones do not. In fact, this
property was actually used to construct proofs of computational quantumness [BCM+18] in which a party
proves that it is quantum by succeeding in a task for which there is a classical impossibility result (under
computational assumptions). In a nutshell, the reason is that a quantum algorithm may keep a quantum
state between rounds of interaction, and this quantum state is measured and thus potentially destroyed
in order to produce the next message of interaction. It is therefore not possible to naively “rewind” the
interaction back to a previous step as is customary in many classical proofs.

The focus of this work, therefore, is on non-interactive cryptographic assumptions. These are problems P
whose syntax contains a (randomized) instance generator which generates some instance x, and a verifier
that checks whether solutions y are valid (with respect to x or more generally the randomness that was used
to generate x). The role of the solver algorithm in this case is simply to take x as input and produce a y
that “verifies well” (we avoid getting into the exact formalism at this point).

Contrary to the interactive case, it is customary to postulate (often without proof) that classical reduc-
tions to non-interactive cryptographic assumptions carry over straightforwardly to the post-quantum setting
since there is no rewinding. There is a simple challenge-response interface that on the face of it “does not
care” whether the underlying P -solver is implemented classically or quantumly. This viewpoint, however,
is overly simplistic, since the P solver may use quantum auxiliary input : a quantum state |s〉 that is used
as a resource for solving P . The state |s〉 can be the result of some natural process upon which we have
no control, or a result of some exhaustive preprocessing, or generated in the course of execution of some
protocol. At any rate, the means to produce |s〉 are often not at our disposal, we just get a copy of the state.

In this case, similarly to the interactive setting, the quantum state is measured whenever the P -solver
is called, and therefore, it potentially precludes us from calling the P solver more than once. This issue is
often addressed in the literature by noticing that providing many copies of |s〉 would allow to call the P
solver multiple times – namely there exists a quantum state |s〉⊗t that allows to solve Q given access to the
P solver. Therefore, the existence of a classical reduction still implies that if Q is intractable even given
arbitrary auxiliary input, then the same holds for P .
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We argue that the aforementioned common “solution” for post-quantum reductions in the presence of
quantum auxiliary input is unsatisfactory. First and foremost, this solution strictly violates the win-win
principle. While the argument above indeed implies that (some form of) intractability for P follows from
(some form of) intractability for Q, it does not allow to convert an auxiliary-input algorithm for P into an
auxiliary-input algorithm for Q in a constructive manner, since the transformation |s〉 → |s〉⊗t is not an
efficient one. An additional related concern is the durability of such reductions. Namely, that if we wish to
execute the reduction more than once (i.e. solve multiple instances of Q) then we need to duplicate the state
|s〉 an a-priori unbounded number of times.

Given this state of affairs, the question we are facing is the following.

To what extent can pre-quantum reductions to non-interactive assumptions be ported to the post-quantum
setting constructively and durably?

Naturally, we do not wish to redo decades of cryptographic work in re-proving each result individually.
Instead, we would like to identify the broadest class of pre-quantum reductions that can be generically
converted into the post-quantum regime, and at the same time characterize the limitations where such generic
conversion is not possible. This is the focus of this work, and indeed we show a generic transformation for a
very broad class of reductions. Along the way we develop an adversarial model for stateful adversaries that
may be of interest in its own right, even in the classical setting.

1.1 Our Main Results

We prove a general positive result for converting classical reductions into post-quantum ones. In particular
we consider non-adaptive reductions. In such reductions, the set of queries to the oracle is determined before
any query is made. It turns out that an important parameter in our positive as well as our negative result is
the size of the solution space of the computational problem P (“the cryptographic primitive”). Our positive
results apply to cases where the solution space is polynomial. One notable example the case where P is a
“decision assumption”, namely the P solver is a distinguisher that returns a single bit as output. Another
notable example is the case where P is an NP search problem, with unique solutions (e.g., injective one-way
functions or unique signatures). An informal result statement follows.

Theorem 1.1 (Positive result, informal). There exists an efficient transformation for converting any clas-
sical non-adaptive black-box reduction from assumption Q to assumption P , where P is a non-interactive
assumption with a polynomial solution space, into a constructive and durable post-quantum reduction from
Q to P .

We prove a complementary negative result, for the case where P has a large solution space. The negative
result relies on the existence of classical indistinguishability obfuscation which is secure against quantum
adversaries.

Theorem 1.2 (Negative result, informal). Assume the existence of post-quantum secure indistinguishability
obfuscation. Then there exist non-interactive assumptions P , Q, where P has a super-polynomial solution
space and the following hold. There exists a classical non-adaptive black-box reduction from assumption Q
to assumption P , but there is no such constructive post-quantum reduction.

As explained above, in order to address the question of constructiveness, we need to develop a new
adversarial model and a host of tools to address this question. An account of these intermediate contributions
appears in the technical overview below.

1.2 Our Techniques and Additional Contributions

Known approaches fall short of achieving constructiveness and durability since they regard quantum auxiliary
input similarly to its classical counterpart, despite the inherent difference of the inability to duplicate or reuse
quantum information. We assert that the process of making multiple calls to an algorithm with quantum
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side information is inherently stateful. Namely, the internal state of the “oracle” changes and evolves over
time. In this work we put forth a framework for stateful solvers, namely algorithms that change their internal
state and thus their behavior over time.

In the post-quantum setting, reductions start from one-shot solvers. That is, ones that have an initial
state that allows them to provide an answer for a single instance of P successfully, but afterwards all bets
are off. It seems natural (and, as we show, turns out to be useful) to consider stateful solvers that propagate
their P -solving property throughout an execution, we call this property persistence. Persistent solvers evolve
their state in an arbitrary way subject to being able, at any point in their evolution, to successfully answer
a P -query (with some noticeable advantage).

A Framework for Stateful Solvers. Section 3 is dedicated to formally defining the notion of a (potentially
stateful) solver and quantifying its success probability in solving a problem P . We accordingly provide
definitions for a post-quantum reduction in this setting, and more specifically the notion of a post-quantum
black-box reduction. The standard notion of a classical black-box reduction is recovered as a special case of
our definition, when specializing to so-called stateless P -solvers.

Using our new formalism, the task at hand is to convert a reduction that expects to be interacting with
a stateless solver, into one that is successful even when given a one-shot stateful solver.

One-Shot Solvers Imply Persistent Solvers. One-shot solvers may seem quite useless, since on the face
of it they may only successfully respond to a single query. However, our first technical result, in Section 4,
is that they can in fact be converted generically (but in a non-black-box manner) into persistent solvers.
Namely, ones that can answer an a-priori unbounded number of queries and maintain roughly the same
success probability. The persistent solver has a state of length that is polynomially related to that of the
one-shot solver. The running time of the persistent solver increases with each query it is being asked. That
is, the time complexity of answering the t-th query scales with poly(t) for a fixed polynomial. This still
ensures that for any polynomial-length sequence of queries, the total time to answer all queries is bounded
by a fixed polynomial. The persistent value of the resulting solver (i.e. the value that is maintained for an
a-priori unbounded number of times) is itself a random variable that is determined during the conversion
process. The expectation of the persistent value is equal to the one-shot value of the solver we start from.
(We note that it is inherently impossible to achieve a non-probabilistic behavior, i.e. to ensure a persistent
value that is always above some threshold.1)

Our transformation is an extension of the techniques in the recent work of Chiesa, Ma, Spooner and
Zhandry [CMSZ21], that can be interpreted as showing such a transformation for “public-coin” crypto-
graphic assumptions (ones where the instances are uniformly distributed and the verification requires only
the instance and the solution, and not the randomness that was used to generate the instance). It is only
in this step that we have the restriction that the solution space of the problem needs to be polynomial, due
to limitations of the [CMSZ21] technique. Our negative result (further discussed below) proves that these
limitations are inherent.

The conversion from one-shot to persistent is the only transformation that uses the solver in a non-black-
box manner. In the rest of our (positive) results we take a persistent P -solver and a bound on the length of
its auxiliary quantum state and only make black-box use of this solver, i.e., provide instances as input and
receive solutions as output. We do not further intervene with the evolution of the state between consecutive
calls to the solver.

Once we transformed our solver to being persistent, we are guaranteed that we can make multiple P
queries, and each one will be answered by a “successful” solver. It may seem that our mission is complete.
However, this is far from being the case. While all queries are answered by a successful solver, these solvers
may be arbitrarily correlated. For example, thinking about a simple linearity test where a reduction queries

1To see this, consider the case where the one-shot auxiliary input |s〉 is a superposition giving weight
√

1− ε to a value
|⊥〉 that always makes the P -solver fail, and giving weight

√
ε to a state that makes the P -solver perfectly successful. Then,

by trace-distance considerations, any processing of |s〉 must be ε-statistically-indistinguishable from a case where |s〉 = |⊥〉.
Therefore, with probability at least 1− ε the persistent value will be trivial. Nevertheless, using a Markov argument, if we start
from a one-shot solver with a non-negligible advantage, we recover, with a non-negligible probability, a many-shot solver with
a non-negligible persistent advantage.
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x1, x2, x3 = x1 ⊕ x2 and checks whether a linear relation holds. It may be the case that for each query
xi we get a response yi from an approximately-linear function, and yet the solver “remembers” that x1, x2

were previously made as queries, and deliberately fails on x1 ⊕ x2 in the next query. Another example, that
will be quite useful to illustrate our transformation is that of the Goldreich-Levin (GL) hardcore bit [GL89],
where queries take the form (f(x), ri), always with the same f(x), and with additional correlations between
the ri values across different queries. In particular, it may be the case that once a query with some value
f(x) has been made, the solver refuses to meaningfully answer any additional queries with the same f(x).2

We note that attributing adversarial behavior to the solver is done for purposes of analysis. Our trans-
formation from one-shot to persistent appears quite “innocent” and we do not know whether it can actually
generate such pathological behavior that will prevent reductions from running. However, we cannot rule it
out and therefore we consider a worst-case adversarial model.

When described in this way, it seems that only very specialized reductions can be carried over to the
post quantum setting. For example, ones that employ a strong form of random self reduction when making
solver queries. One such case is the search-to-decision reduction for the learning with errors problem [Reg05].
However, as the GL hardcore bit example demonstrates, this doesn’t even extend to all search to decision
reductions. We must therefore find a new way to utilize stateful solvers. Indeed, the handle that we use is
that while the solver may change its behavior adversarially, its adversarial behavior is constrained by the
length of the auxiliary state |s〉 that it uses. We will indeed leverage the fact that this state is polynomailly
bounded to limit the adversarial powers of the solver and handle more general reductions.

Before moving on to describe our techniques in this context, we notice that while this adversarial model
(of black-box access to a persistent solver) emerged as a by-product of our work on quantum reductions, it
is nevertheless a valid model in its own right in both the quantum and classical setting. We may consider
interacting with an adversary/solver that is only guaranteed to be noticeably successful at every point in
time but, unlike the standard notion of an “oracle”, may change its behavior over time. In our case, we allow
the behavior to change arbitrarily, so long that the amount of information carried over between executions
is bounded (in our case, by the length of the state, which is polynomially bounded).

Memoryless Persistent Solvers. Our next step, in Section 5, is to show that a persistent solver, even
with adversarial behavior, can be effectively converted into a more predictable form of solver that we call
memoryless (note that this is different from our final goal which is to achieve a stateless solver). A memoryless
solver keeps track of the sequence number of the question it is asked (e.g. it knows that it is now answering
query number 4) but it is not allowed to remember any information about the actual content of the previous
queries that were made.

We show that a combination of a non-adaptive reduction and a persistent solver induce a memoryless
(persistent) solver (more accurately a distribution over memoryless solvers). These memoryless solvers are
accessible using a simulator that, given access to the reduction and the original solver, efficiently simulates
the interaction of the reduction with the induced memoryless solver, up to inverse-polynomial statistical
distance. Note that we require that the reduction is non-adaptive. Namely, its queries to the solver can be
arbitrarily correlated (as in the GL case), but the identity of the queries must not depend on the answers to
previous queries.

The transformation relies on the fact that the solver has a bounded amount of memory, say ` qubit of
state that is propagated through the execution. Our strategy is to dazzle the solver with an abundance of
i.i.d dummy queries, that are sampled from the marginal distribution of the “real” queries (for example, in
the GL case, each dummy query will have the form (f(xi), ri) where xi, ri are both random). In between the
dummy queries, in random locations, we plant our real queries, in random order. We prove that the solver,
having only ` qubits of state, must answer our real queries as if they were dummy queries. This requires
us to develop a proper formalism and to prove a new lemma (Plug-In Lemma) using tools from quantum
information theory. See Section 9 for the full details.

Stateless Solvers at Last. Finally, we show in Section 6 that memoryless solvers imply stateless solvers.

2We note that while the classical GL reduction, falls under our umbrella of non-adaptive reductions, in this specific case,
it is in fact known how to devise a single-query quantum reduction [AC02]. This, however, does not resolve the question of
durability, and more importantly does not provide a general framework for all non-adaptive reductions.
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This is again shown by means of simulation via a similar formalism to the previous result. Recall that a
stateless solver must answer all queries according to the same distribution. This transformation again relies
on the non-adaptive nature of the reduction, namely on the ability to generate all solver-queries ahead of
time. To do this, we notice that we can think of a memoryless solver simply as a sequence of stateless solvers
that can be queried one at a time. Therefore, we can consider the induced stateless solver that at every query
picks a random solver from this collection and executes it on the query. This indeed will result in a stateless
solver. The solving probability of the induced stateless solver is simply the average success probability of
solvers in the collection, which is concentrated due to persistence. Moreover, this behavior can be simulated
by randomly permuting the queries, while still calling the solvers according to their order in the sequence.3

This way, asking the queries in a permuted order to the memoryless solver will (almost) mimic the action
of sampling a solver from the collection independently for each query. The only reason why this mimic is not
perfect is that permuted queries are sampling “without repetition”, i.e. none of the solvers in the sequence
defined by the memoryless solver will be queried twice, whereas in the ideal strategy we described above, it
is possible that the same solver from the sequence will be sampled more than once. We deal with this by
making the number of solvers in the sequence so big, that the probability of hitting the same solver twice
becomes very small (inversely polynomial for a polynomial of our choice). We simply add to our queries of
interest a large number of dummy “0 queries”, and perform a random permutation on this extended set of
queries.

Putting Things Together. In Section 7 we put all of the components together and prove our main positive
result, that any classical non-adaptive reduction which relies on a non-interactive polynomial-solution-space
assumption can be made post quantum. This requires putting together the components in a careful manner.

The fact that the first step in our transformation was to produce a persistent P , allows us to continue
using it even after having solved a Q instance. In particular, this means that we can solve additional instances
of Q, or use it to solve additional instances of P or any other problem Q′ for which a non-adaptive reduction
to P exists. In particular, this property implies that our reduction is durable.

A Negative Result for Search Assumptions. We show in Section 8, that a generic conversion from clas-
sical to constructive quantum reductions is not always possible, even for the case of non-adaptive reductions
to non-interactive assumptions. In particular, if P is an assumption with a large solution space (intuitively,
a search assumption) this may not be possible.

We show our negative result by relying on a recently introduced primitive known as tokenized signatures
[BS16]. These are signature schemes with the standard classical syntax, but for which it is possible to
produce a quantum signature token. The signature token allows to generate a single classical signature for a
message of the signer’s choice, but only one such signature can be created. Tokenized signatures have been
constructed relative to a classical oracle [BS16] or based on cryptographic assumptions [CLLZ21].

We can define an “assumption” which is essentially the task of signing a random message using a tokenized
signature scheme.4 In the classical world, there is a trivial reduction between the task of signing one random
message and the task of signing two random messages. However, if we consider a quantum solver that holds
the token as auxiliary input, then by definition it should not be possible to use it to obtain two signatures
for two different messages. Our negative result holds for any conversion process that is constructive, and in
particular does not obtain any implicit non-uniform advice about the assumption.

1.3 Other Related Work

The question of which reductions can be translated from the classical to the post-quantum setting also
received significant attention in the context of the random-oracle model (ROM), starting from the work of
Boneh et al. [BDF+11]. The question asked in these works is whether it is possible to convert reductions in
the classical ROM into ones the quantum ROM (QROM, where the adversary is allowed to make quantum
queries to the oracle). There are several results proving that specific schemes that are secure in the ROM are

3Remember that we have access to the memoryless solver which only allows to make queries in order.
4The assumption is instantiated by a verification key which we can think of as non-uniformity of the assumption, see

discussion in Section 8.
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also secure in the QROM [Zha12, TU16, JZC+18, KYY18, Zha19, DFMS19, LZ19, DFM20, KS20]. Recently,
a more general “lifting theorem” was given in [YZ21], showing how to convert a proof in the ROM to one
in the QROM for any “search-type game” where a challenger makes only a constant number of queries to
the random oracle. This work also presented a negative result, showing that there are schemes that are
secure in the ROM yet are insecure in the QROM. While the general motivation in these works is similar
to ours, the question they ask is quite different from ours. In the ROM/QROM, the solver is allowed to
make queries to the oracle (which is simulated by the reduction), which is more similar to the setting where
interactive-assumptions are used.

Our memoryless transformation (Section 5) relies heavily on the state of the solver being bounded in
length. The idea that bounded quantum memory can be used to restrict an otherwise all powerful adversary
is at the core of the bounded quantum storage model. It can be shown (see, e.g., [DFSS08]) that it is possible
to achieve cryptographic abilities against strong adversaries while relying only on a limit on the amount
of quantum storage they can use. This setting is quite different from ours, though, since the quantum
bounded storage model allows an unbounded amount of classical memory, which in our setting would make
it impossible to achieve any result. Indeed, the bounded storage model requires quantum communication
(whereas our reduction-solver communication is completely classical), and thus the set of tools and techniques
that are used in both settings are completely different.

2 Preliminaries and Tools

We say that a given function f(x1, . . . , xk) is poly(x1, . . . , xk), if there exist constants c, C such that (x1 ·
x2 · . . . · xk)c ≤ f ≤ (x1 · x2 · . . . · xk)C .

We denote by TD the trace distance between two matrices.

Algorithms. By default, when referring to an algorithm we mean a classical probabilistic (resp. quantum)
algorithm. Algorithms may be uniform or non-uniform, meaning that they have classical advice related to
the input size (we specify when uniformity matters). An efficient algorithm is also polynomial time.

Quantum Notation. We use standard quantum information in Dirac notation. We denote quantum
variables in boldface x and classical variables in lowercase x. The density matrix of x is denoted ρx. Classical
variables may also have (diagonal) density matrices. Quantum variables x,y have a joint density matrix
ρx,y if they can be jointly produced by an experiment. As usual, x,y are independent if ρx,y = ρx ⊗ ρy.
We never assume that quantum variables are independent unless we explicitly say so. Quantum registers
are denoted in capital letters. We also sometimes use capital letters to denote distributions, where it is clear
from the context. For a finite Hilbert space H we denote by S(H) the set of density matrices over quantum
states in H.

A quantum procedure is a general quantum algorithm that can apply unitaries, append ancilla registers
in 0 state, perform measurements in the computational basis and trace out registers. The complexity of F
is the number of local operations it performs (say, operations on up to 3 qubits are considered local). If F is
a quantum procedure then we denote by F (x) the application of F on x. Any unitary induces a quantum
procedure that implements this unitary, which does not perform measurements or trace out registers, we call
this procedure “a unitary quantum circuit”.

Purification of Quantum Procedures and States. A quantum procedure may introduce new ancilla
qubits, perform intermediate measurement throughout its computation and discard registers or parts thereof.
However, any quantum procedure can be purified into unitary form without much loss in complexity [NC16].
This is formally stated below.

Proposition 2.1. Let C be a general quantum procedure of complexity s. Then it is possible to efficiently
generate a unitary quantum circuit Ĉ of size O(s), such that for any quantum state (x,a), setting (y, z) =

Ĉ(x,0), it holds that (y,a) has identical density matrix to (C(x),a).

Likewise, any quantum state can be viewed as a reduced density matrix of the output of a unitary (which
may be inefficient to implement) .
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Proposition 2.2. Let x be a variable with density matrix ρx. Then there exists a unitary U over registers
XY such that applying U(0,0), the reduced density matrix of the value in the X register has density matrix
ρx.

2.1 The Plug-In Lemma

The following lemma is another manifestation of information incompressibility in the quantum setting.
Specifically, we are interested in an experiment in which an all powerful compressing procedure attempts to
compress t samples which are arbitrarily distributed into ` quantum bits. We show that this is infeasible
even in the weak sense in which a decoder receives the compressed value, and a (j−1)-prefix of the sequence,
and is required to identify the j-th element. We show that as t increases, the probability of succeeding in
the experiment drops. A formal statement follows.

Lemma 2.3 (Plug-In Lemma). Let ~Y = (Y1, . . . , Yt) be a vector of arbitrarily jointly distributed classical

random variables. Let ~y be distributed according to ~Y . Let s be an `-qubit random variable that has arbitrary
dependence on ~y. We let ~yi denote the prefix ~yi = (y1, . . . , yi) for 1 ≤ i ≤ t, and ~y0 is the empty vector (and

likewise for ~Y ). Let J be the uniform distribution over [t] and let j ← J . Define y′ ← YJ |(~Yj−1 = ~yj−1).
Then it holds that

TD((j, ~yj−1, yj , s), (j, ~yj−1, y
′, s)) ≤

√
`/(2t) . (1)

Note that the above two distributions are not identical even though (j, ~yj−1, yj) and (j, ~yj−1, y
′) are

identically distributed. The reason is that in both cases, s is always generated as a function of ~y, i.e. using
yj and not y′j .

The lemma is proven in Section 9.

3 Assumptions, Stateful Solvers, and Reductions

In this section, we formally define the concepts of non-interactive cryptographic assumptions, stateful solvers,
and their value and advantage in breaking an assumption.

3.1 Non-Interactive Assumptions

We define the notion of a non-interactive (falsifiable) cryptographic assumption as in [Nao03, HH09]. While
we frame the notion as “cryptographic”, it can be viewed more generally as a notion for average-case problems
where the solution can be verified.

Definition 3.1 (Non-Interactive Assumption). A non-interactive assumption is associated with polynomials
d(λ), n(λ),m(λ) and a tuple P = (G,V, c) with the following syntax. The generator G takes as input 1λ and
r ∈ {0, 1}d, it returns x ∈ {0, 1}n. The verifier V takes as input 1λ and (r, y) ∈ {0, 1}d×{0, 1}m and returns
a single bit output. (Both G and V are deterministic.) c(λ) is the assumption’s threshold.

We say that P is falsifiable if G,V are uniform polynomial-time algorithms (in their input size).

We also define a property called verifiably-polynomial image that roughly speaking requires that any
instance has at most polynomial many solutions and that this can be verified in some weak sense. The
property in particular captures problems where the solution space {0, 1}m is of polynomial size such as
decision problems (where m = 1), and problems in NP where there are a few solutions per instance (such
as injective one-way functions).

Definition 3.2 (Verifiably-Polynomial Image). A non-interactive assumption P has a verifiably-polynomial
image if there exists an efficient verifier K and a polynomial k = poly(λ), such that for any instance
x ∈ {0, 1}n, the set Yx := {y : K(1λ, x, y) = 1} of K-valid solutions is of size at most k and for any valid
instance x = G(1λ, r) and solution y such that V (1λ, r, y) = 1, it holds that y ∈ Yx.
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The traditional notion of the advantage in solving an assumption P is measured in terms of the distance
between the solving probability (which we term the value) and the threshold c.

Definition 3.3 (Value and Advantage of Classical Functions). Let P = (G,V,C) be a non-interactive
assumption and let f = { fλ : {0, 1}n → {0, 1}m }λ be a family of (possibly randomized) functions. For every
λ ∈ N, we define the corresponding value and advantage:

valP [f ](λ) := Pr

V (1λ, r, y) = 1

∣∣∣∣∣∣
r ← {0, 1}d
x = G(1λ, r)
y ← fλ(x)

 aP [f ](λ) := |valP [f ](λ)− c(λ)| ,

where the probability is also above the randomness of fλ in case it is randomized.

3.2 Stateful Solvers

The premise of our work is that in the quantum setting, one ought to think about stateful solvers, which
generalizes the standard treatment of a solver as a one-shot algorithm. We now define this formally.

Definition 3.4 (Stateful Solvers: Syntax). Let P be a non-interactive assumption.

Let ` = `(λ) be a function. A classical (resp. quantum) `-stateful solver B = (B, state0 = {stateλ,0}λ) is
defined as follows.

• B is a classical (resp. quantum) algorithm that takes as input 1λ, 1t, x ∈ {0, 1}n and state which is
an `-bit (resp. qubit) string, and outputs a value y ∈ {0, 1}m and state′ which is an `-bit (resp. qubit)
next-state. We let B(· · · )y denote the y output and B(· · · )st denote the state′ output.

• state0 = {stateλ,0}λ is a sequence of classical (resp. quantum) states consisting of ` = `(λ) bits (resp.
qubits).

We say that B is efficient if B runs in time poly(λ, t, n); i.e., in polynomial time in the lengths of its inputs.

Remark 3.1 (Non-uniformity). The algorithm B may have a non-uniform classical advice. It does not have
any additional quantum advice.

Remark 3.2 (Dependence on Runtime). Our definition allows the running time of efficient stateful solvers
to depend polynomially on the “iteration” t. In particular, for any polynomial number of solving attempts
t = poly(λ), the overall running of the solver is polynomial. One could also consider a more stringent
definition that requires that each call runs in fixed polynomial time independently of the iteration number t.
Jumping forward, we will show how a solver can preserve its solving ability through time, but at the cost
of running for longer in each step. Doing this according to the more stringent time-independent definition
remains an open question.

It will be useful to define some properties of solvers with respect to an extension of the sovler’s execution
transcript. The extension corresponds to the would-be transcript of a purified version of the solver, running
on a purified version of the initial state. This will allow us to get a precise well-defined handle on the
evolution of quantum states throughout the lifetime of the solver. The extended transcript will only be used
for purposes of definition and analysis and will never be required algorithmically.

Definition 3.5 (Stateful Solvers: Purifying Values). Consider a solver B = (B, state0 = {stateλ,0}λ). Let
Bλ,t,x denote the quantum procedure that takes s as input and produces B(1λ, 1t, x, s) over registers SY .

By Proposition 2.1, we can consider its purification B̂λ,t,x which acts on registers SY Ŷ and takes as input

(s,0,0). Then define B̂(1λ, 1t, x, s) as the algorithm that computes (s′,y, ŷ) = B̂λ,t,x(s,0,0), measures
(y, ŷ) in the computational basis to obtain (y, ŷ), and then outputs s′ as the state output, y as the solution
output, and ŷ as the purifying output.

In addition, by Proposition 2.2, there exists a (possibly inefficient) unitary B̂0,λ that operates on two

registers SŶ such that when applying (s0, ŷ0) ← B̂0,λ(0,0), the reduced density matrix of s0 is identical to
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that of state0. Then define B̂0(1λ) as the quantum procedure that computes (s0, ŷ0)← B̂0,λ(0,0), measures
ŷ0 in the computational basis, and then outputs s0 as state0 and ŷ0 as the purifying initial value.

We refer to the collection B̂ = { B̂i,λ,x } as a purification of B (it is not unique).

Remark 3.3. We note that the purifying values can be arbitrarily long. These values will only be used for
analysis purposes and are never produced in an actual execution, and hence we do not require any bound
whatsoever on the length of the purifying values or the complexity of producing them.

We now define the concept of a solver interaction, which captures the process of repeatedly invoking a
stateful solver by a given algorithm.

Definition 3.6 (Solver Interaction). Let P = (G,V, c) be a non-interactive assumption. For any stateful

solver B = (B, state0) and corresponding purification B̂, and any algorithm A with input z ∈ {0, 1}∗, we
consider the process AB(1λ, z) of the algorithm interacting with the solver. We define this process in two
different yet equivalent manners: one which is efficient given the ability to execute B, and one which may be
inefficient but implies an identical output distribution. The latter will include a production of all purifying
values (Definition 3.5) which will be useful for definitions and analysis.

• We let state0 be as defined in B.
Equivalently: We let (state0, ŷ)← B̂0(1λ).

• A is invoked on input (1λ, z) and at every step i ≥ 1:

1. A submits a query xi ∈ {0, 1}n.

2. (yi, statei)← B(1λ, 1i, xi, statei−1) is invoked.

Equivalently: (ŷi, yi, statei)← B̂(1λ, 1i, xi, statei−1) is invoked.

3. A obtains yi, and proceeds to the next step.

• At the end of the interaction A may produce an output w.

We sometimes refer to A as a solver-aided algorithm and use the shorthand ABz for the solver interaction and

AB̂z for the purified solver interaction. We refer to the random variables state0, state1, state2, . . . as the state
random variables of the interaction. We refer to the list of pairs of generated instances and solutions (xi, yi)
as the transcript of the interaction and denote it by ts. We also define the extended transcript t̂s of the
execution as consisting of the value ŷ0 followed by a list to triples (xi, yi, ŷi). Given an extended transcript
t̂s, we can produce the standard transcript ts by removing all purifying values. We call this action redaction
and say that ts is the redacted transcript induced by t̂s. Generating an extended transcript according to the

purified solver interaction AB̂z and redacting it produces an identical distribution to the generation of the
redacted transcript by direct interaction ABz . The length of a transcript/extended-transcript is the number of
pairs/triples it contains (this means that an extended transcript of length 0 is not empty since it still contains
ŷ0 . The i-prefix of a transcript/extended-transcript is denoted tsi/t̂si and contains the first i pairs/triples
(and also ŷ0 in the extended case).

We show that the purifying values indeed purify the entire solver interaction, in the sense that they
determine all states statei as pure states for any solver interaction.

Proposition 3.7. Let B = (B, state0) be a solver with purification B̂ and consider the extended transcript

t̂s of the solver interaction AB̂z and let t be its length. Then for all i ≤ t, the state statei is pure conditioned
on t̂si. Specifically, it has density matrix |st̂si〉 〈st̂si | that is completely determined by t̂si (and therefore by

the classical string t̂s) and does not depend on any other parameter of the execution.

Proof. We consider the purifying description of the solver interaction AB̂z and prove by induction. For t = 0,

we recall that the pair (state0, ŷ) is generated by applying B̂0,λ on the zero state, followed by measuring the
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Ŷ register. The pre-measurement state over registers SŶ is therefore pure, and can always be written as∑
ŷ

αŷ |sŷ〉S ⊗ |ŷ〉Ŷ , (2)

where αŷ are non-negative real values with
∑
ŷ α

2
ŷ = 1, and |sŷ〉 are fully specified unit vectors. Therefore,

post-selecting on having measured the value ŷ0 in register Ŷ , we have that the state in register S is exactly
state0 = |sŷ0〉 〈sŷ0 |, which completes the base step of the proof.

Now assume that the above holds for all i < t. Consider a transcript t̂s of length t s.t. t̂s = t̂st−1‖(x, y, ŷ)
for some t̂st−1, x, y, ŷ.

Let us consider the state of the system right before the t-th query to the solver. At this point, t̂st−1 was
already determined, and thus by induction we know that statet−1 = |st̂st−1

〉 〈st̂st−1
| is a pure state. At this

point x has also been determined.
By definition, statet is produced by executing a unitary B̂λ,t,x (that acts on registers SY Ŷ ) on (statet−1,0,0),

which is pure by the induction hypothesis, and measuring the Y Ŷ registers. The analysis here is similar to
the base case. The pre-measurement state is pure (since it is induced by applying a unitary on a pure state)
and thus can always be written as ∑

y,ŷ

αy,ŷ |sy,ŷ〉S ⊗ |y, ŷ〉Y Ŷ , (3)

and as above αy are non-negative real values with
∑
y α

2
y = 1, and |sy,ŷ〉 are fully specified unit vectors. Post

selecting on y, ŷ leaves us with register S containing statet = |sy,ŷ〉 〈sy,ŷ|, which completes the proof.

We are now ready to define the concepts of value and advantage of stateful solvers. Traditionally, when
thinking about stateless solvers, we consider their one shot value, namely the probability that they solve the
problem on a random instance. Since they are stateless this probability does not change over time. In the
case of stateful solvers, this probability may change over time. Our definition of the many shot values aims
to capture exactly this. For any solver interaction ABz , the value at time t, captures the probability that the
solver B successfully solves a random instance at this time, after a given t-round interaction with Az. This
value is, in fact, a random variable that depends on the history of the interaction. To make this precise, we
consider any purification B̂, and define these values as a function of the extended transcript.

Definition 3.8 (Stateful Solvers: Value and Advantage). Let P be a non-interactive assumption, B =

(B, state0) be a corresponding stateful solver, B̂ a corresponding purification, and A a solver-aided algorithm
with input z. For every λ, i ∈ N, let statei be the i-th pure state random variable of the solver interaction

AB̂z (determined by t̂si). The corresponding value random variables are:

valP [i, AB̂z ](λ) := Pr

V (1λ, r, y) = 1

∣∣∣∣∣∣
r ← {0, 1}d
x = G(1λ, r)

(ŷi+1, y, statei+1)← B̂(1λ, 1i, x, statei)

 ,

where the probability is over the choice of r and the measurement of ŷi+1, y.

The one-shot value of B is

valP [0,B](λ) := Pr

V (1λ, r, y) = 1

∣∣∣∣∣∣
r ← {0, 1}d
x = G(1λ, r)

(y, state1)← B(1λ, x, state0)

 ,

where the probability is over the choice of r, measurements of B, and (the possibly mixed) state0. Note that

this is in fact a number, independent of any A or the choice of purification B̂.
The corresponding advantage random variables are:

aP [i, AB̂z ](λ) :=
∣∣∣valP [i, AB̂z ](λ)− c(λ)

∣∣∣ aP [0,B](λ) := |valP [0,B](λ)− c(λ)| .
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For a distribution B on solvers {Bα }α, we define the one-shot value of the distribution as:

valP [0,B](λ) = Eα←B[valP [0,Bα](λ)] .

The corresponding advantage is aP [0,B](λ) = |c(λ)− valP [0,B](λ)|.

As the solver’s state evolves over time, its advantage in solving an assumption may reduce or disappear
altogether. This is in particular relevant to the quantum setting, where when a solver is invoked its internal
state is disturbed. Aiming to capture solvers that remain useful over time, we next define the notion of
solvers with persistent value, namely, solvers whose value in solving a given assumption is preserved through
time. We define it more generally for distributions over solvers; single solvers are a special case.

Definition 3.9 (Persistent Value). Let P be a non-interactive assumption. A distribution B on solvers

{Bα }α is η-persistent if there exist purifications { B̂α }α such that for any algorithm A with input z, with
probability 1− η over the choice of solver α← B and over an extended transcript t̂s in the solver interaction

process AB̂αz , there exists a value p such that:

max
i

∣∣∣valP [i, AB̂αz ]− p
∣∣∣ ≤ η . (4)

We call p a persistent value. Given a random variable p∗(α) ⊆ [0, 1], we say that a solver is (p∗, η)-persistent
if the condition holds for p∗(α).

We next define the notion of a persistent advantage. This aims to capture the case that solvers maintain
a lower bound on their advantage through time.

Definition 3.10 (Persistent Advantage). Let P be a non-interactive assumption with threshold c. A distri-

bution B on solvers {Bα }α has ε-persistent advantage if there exist purifications { B̂α }α such that for any
algorithm A with input z:

E
[
min
i

valP [i, AB̂αz ]
]
≥ c+ ε , (5)

where the expectation is over the choice of solver α ← B and over an extended transcript t̂s in the solver

interaction process AB̂αz .

In the above, We require that the advantage has a consistent sign (for simplicity, positive). Intuitively,
the reason we focus on persistence of the positive advantage vt − c at time t, rather than the absolute
advantage |vt− c|, is that if the sign of vt− c arbitrarily changes after each solver invocation, then the solver
may not be as useful. (As a simple example, take a deterministic distinguisher and turn it into a stateful
distinguisher that flips the output of the original distinguisher at random with each invocation, deeming it
useless.) We note that η persistent solvers in particular preserve the sign of their advantage (up to η).

Memoryless and Stateless Solvers. A special case of the above definitions is that of memoryless and
stateless solvers.

Definition 3.11. A solver B = (B, state0) is memoryless if the size of its state is ` = 0. The solver is
stateless if in addition (to being memoryless), the algorithm B does not depend on 1t (in functionality or
runtime).

Remark 3.4 (Persistent Value for Stateless and Memoryless Solvers). Note that in the case of stateless solvers,
successive invocations of the solver will always result in the same output distribution. Here the one-shot
(and many-shot) advantage coincide with the standard notion of advantage for functions (Definition 3.3) and
values are persistent (Definition 3.9). Accordingly, stateless solvers exactly capture the traditional notion of
classical solvers, given by a randomized function.

Moreover, even for memoryless solvers, when considering the definition of persistent solvers the value

valP [i, AB̂z ] does not depend on Az at all (only on i), and therefore it is a fixed number rather than a random
variable. It follows that for (p, η)-persistent memoryless solvers, Eq. (5) holds with probability 1.
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3.3 Reductions

We now define the notion of a reduction. A reduction is a way to prove a claim of the form “if there
exists a successful solver for assumption P then there exists a successful solver for an assumption Q”. We
consider constructive reductions in the sense that they are an explicit uniform algorithm that takes as input
a successful solver for P and efficiently solves the problem Q.

The default notion of a reduction in the literature is one shot. In pparticular, a given quantum P -solver is
only assumed to have a meaningful one-shot advantage in solving P , and there is no a priori guarantee on its
advantage in any many shot solving process, in particular there may not be any value persistence. Likewise,
the produced solver for the assumption Q is only required to have a meaningful one-shot advantage. Below
we define both the default notion of one-shot reductions as well as the stronger notion of durable reductions
requiring that the resulting Q-solver also has persistent advantage, meaning that with noticeable probability,
the reduction can go on solving for an arbitrary polynomial number of times.

Definition 3.12 (Reduction). A reduction from classically (resp. quantumly) solving a non-interactive as-
sumption Q to classically (resp. quantumly) solving a non-interactive assumption P is an efficient classical
(resp. quantum) uniform algorithm R with the following guarantee. For any solver BP = (BP , state0) for
P with one-shot advantage ε and running time T , let state′0 = (state0, BP , 1

1/ε, 1T ). Then BQ = (R, state′0)
is a solver for Q with one-shot advantage ε′ = poly(ε, T−1, λ−1) and running-time poly(T, ε−1, λ). We say
that the reduction is durable if BQ has poly(ε, T−1, λ−1)-persistent advantage.

We refer to a reduction from solving Q to classically (resp. quantumly) solving P as a classical-solver
(resp. quantum-solver) reduction.

Remark 3.5 (Many Shot Reductions). There could be several conceivable extensions of the above definition
that also account for the many-shot advantage. One such natural extension is requiring that the reduction
works only given a solver with a persistent value (as in Definition 3.9). Jumping ahead, in section 4, we
show that under certain conditions, persistent solving can in fact be reduced to one-shot solving, even in the
quantum setting.

Remark 3.6 (The Loss). We allow for a (fixed) polynomial loss in the advantage and running time. One
could naturally extend it to more general relations.

Classical Black-Box Reductions. In this work, we prove that several general classes of classical reductions
that a priori are only guaranteed to work for classical solvers, can be enhanced efficiently to also work
for quantum solvers. Our focus is on black-box reductions; that is, reductions that are oblivious of the
representation and inner workings of the solver that they use (in contrast to the above Definition 3.12, where
the reduction obtains the full description of the solver BP ).

We next formally define such black box reductions, using the terminology we have already developed.
Specifically, we capture the notion of a classical solver for a given problem P as a stateless (classical) solver.

Definition 3.13 (Classical Black-Box Reduction). A classical black-box reduction, from solving a non-
interactive assumption Q to solving a non-interactive assumption P , is an efficient classical solver-aided
uniform algorithm R with the following syntax and guarantee. R takes as input a security parameter 1λ,
parameter 11/ε, and instance x ∈ {0, 1}nQ of Q. It interacts with a solver B for P (per Definition 3.6) and
produces an output y ∈ {0, 1}mQ . We require that for any distribution B over stateless classical solvers
{Bα }α such that B has advantage at least ε in solving P , the corresponding solver distribution R over solvers
{RBα(1λ, 11/ε, ·) }α has advantage at least poly(ε, λ−1) in solving Q. The advantage of R is positive if its
value is always at least cQ (above the assumption Q’s threshold), regardless of any P -solver.

We further say that the reduction R is non-adaptive if R produces all of its oracle queries x1, . . . , xk ∈
{0, 1}nP to B in one shot, obtains all answers y1, . . . , yk, and then produces its output y.

Remark 3.7. In our definition of solver interaction, a given solver B is only ever invoked for the instance
size nP (λ). Accordingly, the above definition restricts attention to classical reductions that in order to solve
problem Q for instance size nQ(λ) make queries to a P -solver on a specific related input size np(λ). While
this is not without loss of generality, it does capture natural reductions. (In fact, we are not aware of
important reductions that do not adhere to this.)
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Remark 3.8 (Deterministic Solver Reductions, Positive Advantage, and Repeated Queries). We consider
classical reductions that ought to work when given a stateless solver from a distribution B over solvers
{Bα }. (As a matter of fact in our model, even once a stateless solver Bα is fixed, the process of answering
any given query is randomized, but this can be modeled as sampling a deterministic stateless solver from
another distribution B with the same advantage.) A weaker notion of classical reductions only requires
that the reduction works for deterministic solvers. In the classical setting, this is typically not an issue,
as long as the reduction has the power to fix the solver’s randomness and repeatedly replace it as needed.
Jumping forward, when considering quantum reductions, the randomness of a given solver may arise from
the quantum nature of the solving process, and the reduction may not be able to control it. Accordingly,
in our transformations from classical-solver reductions to quantum-solver reductions, we will naturally need
the classical reduction we start from to also be able to deal with distributions over solvers.

We note that for typical assumptions Q such as search problems (with trivial threshold c = 0) or decision
problems (with solution length m = 1 and trivial threshold c = 1/2), a classical reductionR from Q-solving to
deterministic P -solving implies a classical reduction R’ from Q-solving to distributional P -solving. Here two
subtleties should be addressed. The first issue that could prevent R from working for distributional P -solvers
is that the sign of the advantage of RB as a Q-solver may depend on the randomness of B and may cancel out
in expectation. For search assumptions Q, where c = 0, this cannot happen as any advantage is positive. For
decision problems, this can be avoided by slightly augmenting R to make sure that the advantage is always
positive using standard black-box techniques [BG11]. This incurs only a polynomial overhead in solving
queries, or even just a single query, at the cost of quadratically decreasing the advantage. The second issue
concerns the running time of the reduction. Specifically a reduction that works for deterministic oracles,
excepts to get their advantage 11/ε as input, where ε is the P -solver’s advantage. When executing such
a reduction with a solver distribution, we are given 11/ε, where ε is the average advantage. Nevertheless,
we can run the original reduction with input 12/ε. Note that the probability that that the advantage of a
sampled oracle is at least ε/2 is at least ε/2, and since the reduction has positive advantage, we are overall
guaranteed to maintain a noticeable advantage.

Following the above, for typical assumptions Q, we can in particular assume w.l.o.g positive advantage.
For simplicity, we also assume throughout that classical reductions We do not repeat queries. This is w.l.o.g
as given a deterministic oracle, the reduction can simply store previous answers and answer consistently by
itself.

4 Persistent Solvers in the Quantum Setting

In this section, invoking state restoration techniques from [CMSZ21], we prove that any one-shot solver for
an assumption P with a verifiably-polynomial image (in particular, decision problems) can be converted into
a persistent solver for P .

Theorem 4.1 (Persistence Theorem). Let P be a non-interactive falsifiable assumption with a verifiably-
polynomial image. For any inverse polynomial function η, there exist efficient quantum algorithms S,R with
the following syntax and guarantee. SB(state0) takes as input a quantum algorithm B and state state0 and
outputs a state state∗0 and a value p∗ ∈ [0, 1]. RB(1λ, 1i, x, state∗i−1) takes as input B, a security parameter
1λ, step 1i, input x ∈ {0, 1}n, and state state∗i−1 and outputs a solution y ∈ {0, 1}m and state state∗i .

For any solver B = (B, state0) with one-shot value p = valP [0,B], considering the random variable
(state∗0, p

∗)← SB(state0), it holds that:

1. E [p∗] = p.

2. R∗ = (RB , state
∗
0) sampled in this process is a distribution over efficient stateful solvers that is (p∗, η)-

persistent.

Remark 4.1. The efficiency of the algorithms S,R is also polynomial in the running time of B. We avoid
passing explicitly the running time bound as input to simplify notation.
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The proof is based on two lemmas from [CMSZ21], adapted to our notation and simplified for our needs.

Lemma 4.2 (Lemmas 4.9 and 4.10 in [CMSZ21], adapted). Let H be a Hilbert space. There exist efficient
quantum algorithms:

1. (ρ∗, p∗)← ValEstV,A(ρ, 11/ε) that given as input any verifier circuit V : {0, 1}d×{0, 1}n → {0, 1}, any
quantum circuit A, a quantum state ρ ∈ S(H) and accuracy parameter 11/ε, outputs a quantum state
ρ∗ ∈ S(H) and value p∗ ∈ [0, 1];

2. σ∗ ← RepairV,A,Π(σ, y, p, 11/ε, 1k) that given V , A, and a projective measurement Π = (Πy)y∈Y on H
with outcomes Y = { y1, . . . , yk }, and given a quantum state σ ∈ S(H), outcome y ∈ Y , probability
p ∈ [0, 1], and parameters 11/ε, 1k, outputs a quantum state σ∗ ∈ S(H);

such that the following guarantees hold:

1. Value Estimation:

E
[
p∗
∣∣∣ (ρ∗, p∗)← ValEstV,A(ρ, 11/ε)

]
= Pr

[
V (r, y) = 1

∣∣∣∣ r ← {0, 1}d
y ← A(ρ, r)

]
.

2. Estimation is Almost Projective:

For ε ≥ ε′ > 0, Pr

[
|p∗ − p∗∗| ≥ ε

∣∣∣∣ (ρ∗, p∗)← ValEstV,A(ρ, 11/ε)

(ρ∗∗, p∗∗)← ValEstV,A(ρ∗, 11/ε′)

]
≤ ε .

3. Repairing:

For ε > 0, Pr

|p∗ − p∗∗| ≥ ε
∣∣∣∣∣∣∣∣

(ρ∗, p∗)← ValEstV,A(ρ, 11/ε)
(σ, y)← Π(ρ∗)
σ∗ ← RepairV,A,Π(σ, y, p∗, 11/ε, 1k)

(ρ∗∗, p∗∗)← ValEstV,A(σ∗, 11/ε)

 ≤ ε .

Remark 4.2 (On the Restriction to Verifiably-Polynomial Image Assumptions). We note that the reason that
the Persistence Theorem 4.1 is restricted to assumptions P with a verifiably-polynomial image stems from
the fact that the running time of the repairing procedure Repair given by Lemma 4.2 scales with the number
of outcomes k of the corresponding projection Π. It is tempting to search for a better repairing procedure
that does not scale with k, since (as we show) it would imply a stronger version of Theorem 4.1, without
the restriction of a verifiably-polynomial image. However, as we show in Section 8 (Theorem 8.3), such a
stronger version of Theorem 4.1 does not exist (provided that R,S use the assumption P as a black box,5

which is indeed the case in our proof).

We now proceed to prove the Persistence Theorem 4.1 relying on Lemma 4.2.

Proof of Theorem 4.1. Throughout, fix the assumption P , with generator G, verifier V , and polynomial-
image verifier K with corresponding polynomial image bound k. Also fix an inverse polynomial function η
and the security parameter λ.

Notation and Conventions. In what follows, we consider a one-shot quantum solver y ← B(1λ, x, state)
that operates on quantum states state ∈ S(H). We assume that H = ZY, where for every x ∈ {0, 1}n, there

is an efficiently computable unitary purification B̂λ,x on H, describing the action of B(1λ, x, state) on state,
where Y is the output register (this assumption regarding H is w.l.o.g by polynomially increasing the size of

the state if needed ). We also consider a wrapper solver B̃(1λ, r, state∗) that given state∗ ∈ S(H), computes

x = G(1λ, r), applies B̂λ,x, and outputs a measurement of Y in the computational basis.

5Or in some more general explicit fashion that we define in Section 8.
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For any x ∈ {0, 1}n, we denote by Πx = (Πx,y)y∈Yx∪⊥ the projective measurement on H where:

Yx := { y ∈ {0, 1}m : K(1λ, x, y) = 1 } ,

Πx,y := B̂†λ,x(IZ ⊗ |y〉 〈y|Y)B̂λ,x for y ∈ Yx ,

Πx,⊥ :=
∑

y∈{0,1}m\Yx

B̂†λ,x(IZ ⊗ |y〉 〈y|Y)B̂λ,x .

We define the algorithms S and R. Throughout, the algorithms ValEst and Repair operate on corresponding
states state∗ in S(H).

SB(state0):

• Output (state∗0, p
∗
0)← ValEstV,B̃(state0, 1

2/η).

RB(1λ, 1i, xi, state
∗
i−1):

• Let εi = η/(iπ)2.

• Apply (σi−1, pi−1)← ValEstV,B̃(state∗i−1, 1
1/εi).

• Apply (σ∗i , yi)← Πxi(σi−1).

• Apply ρi ← RepairV,B̃,Πxi
(σ∗i , yi, pi−1, 1

1/εi , 1k+1).

• Apply (state∗i , p
∗
i )← ValEstV,B̃(ρi, 1

1/εi).

• Output (yi, state
∗
i )

We now prove that the above algorithms satisfy the requirements of Theorem 4.1.
First note that if B has one-shot value p, then by the estimation guarantee of Lemma 4.2,

E
[
p∗0

∣∣∣ (state∗0, p
∗
0)← ValEstV,B̃(state0, 1

2/η)
]

= Pr

[
V (r, y) = 1

∣∣∣∣ r ← {0, 1}d
y ← B̃(1λ, r, state0)

]

= Pr

V (r, y) = 1

∣∣∣∣∣∣
r ← {0, 1}d
x = G(1λ, r)
y ← B(1λ, x, state0)

 = p .

We now turn to prove the persistence property.

The Purified R̂. We consider the unitary purifications { R̂λ,i,x }λ,i,x of RB(1λ, 1i, x, ·) that act on registers

SY Ŷ . Each such unitary R̂λ,i,x is composed of the unitary purifications of each of the steps RB(1λ, 1i, x, ·),
which are performed coherently. We assume w.l.o.g that Y Ŷ consist of the purifying registers for each one
of the steps. In particular, Ŷ includes registers Pi−1P

∗
i corresponding to the measurements pi−1, p

∗
i done

by ValEst, and Y corresponds to the measurement of yi by Πxi . Throughout we rely on the fact that the

distribution of pi−1, p
∗
i measured in any purified interaction AR̂

∗

z is identical to their distribution in the
non-purified interaction AR

∗

z .

Lemma 4.3. Fix any state∗ ∈ S(H) with purification R̂λ,0(0,0). Then R∗ = (RB , state
∗
0) is η

2 -persistent,

with respect to the purifications { R̂λ,i,x }, with persistent value p0, where p0 the purifying measurement
corresponding to the first application of (the purified) ValEst.
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Lemma 4.4. Except with probability η/2, over (state∗0, p
∗
0)← SB(state0) and (σ0, p0)← ValEstV,B̃(state∗0, 1

1/ε1),

|p0 − p∗0| ≤ η/2 .

Indeed, combining the two lemmas it follows the distribution on R∗ = (RB , state
∗
0) induced by (state∗0, p

∗
0)←

S(state0) is (p∗0, η)-consistent.

We now prove the above lemmas. Toward proving Lemma 4.3, we first prove two useful claims. In what

follows let V̂alEstε be a unitary purification of ValEstV,B̃(·, 11/ε) that operates on registers SPZ, where given

(ρ,0,0), it outputs (σ,p, z) where (σ,p) have the same density matrix as ValEst(ρ, 11/ε). Then given any
pure input state ρ, measuring (p, z) in the computational basis, purifies σ. We denote by (σ, p, z) ←
V̂alEst(·, 11/ε) the process that applies ValEstε and measures (p, z).

Claim 4.5 (Value of Post-Estimation State). Let ρ ∈ S(H) be a pure state. Then with probability 1− ε over

the measurement of (p, z) in (σ, p, z)← V̂alEst(ρ, 11/ε), it holds that∣∣∣∣∣∣p− Pr

V (r, y) = 1

∣∣∣∣∣∣
r ← {0, 1}d
x = G(1λ, r)

y ← B̃(1λ, r,σ)

∣∣∣∣∣∣ ≤ ε .

Proof. Consider applying (σ, p, z)← V̂alEst(ρ, 11/ε) and then applying (σ∗, p∗)← ValEstV,B̃(σ, 11/ε). Then

by the fact that estimation is almost projective (Lemma 4.2), it holds with probability 1−ε that |p∗−p| ≤ ε.
Also,

Pr

V (r, y) = 1

∣∣∣∣∣∣
r ← {0, 1}d
x = G(1λ, r)

y ← B̃(1λ, r,σ)

 = E[p∗] = p+ E(p∗ − p) .

The claim follows.

Claim 4.6 (Πx vs B̃). For any state ρ ∈ S(H),

Pr

V (r, y) = 1

∣∣∣∣∣∣
r ← {0, 1}d
x = G(1λ, r)
(ρ∗, y)← Πx(ρ)

 = Pr

V (r, y) = 1

∣∣∣∣∣∣
r ← {0, 1}d
x = G(1λ, r)

y ← B̃(1λ, r,ρ)

 .

Proof. By the definition of Πx it acts exactly as B̃(1λ, r, ·) with the exception that Πx replaces with ⊥ any
y /∈ Yx = { y : K(1λ, x, y) = 1 }. Recall, however, that Yx contains all valid solutions { y : V (1λ, r, y) = 1 },
and hence (assuming w.l.o.g that V (1λ, r,⊥) 6= 1), this difference does not affect whether V (1λ, r, y) = 1.

We now prove Lemma 4.3.

Proof of Lemma 4.3. Fix any solver-aided algorithm A with input z. We consider the random variables

state∗0, p0, p
∗
1, state

∗
1, p1, p

∗
2, state

∗
2, p2, . . . given by extended the solver interaction AR̂

∗

z , where state∗i are the
corresponding pure state and pi−1, p

∗
i are the purifying measurements of registers Pi−1P

∗
i .

Claim 4.7 (The Many Shot Value). For all i ≥ 0, except with probability εi+1 over AR̂
∗

z ,∣∣∣pi − valP [i, AR̂
∗

z ]
∣∣∣ ≤ εi+1 ,

where each random variable valP [i, AR̂
∗

z ] is determined by the random variable state∗i .
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Proof. For every i,

valP [i, AR̂
∗

z ] = Pr

V (r, y) = 1

∣∣∣∣∣∣∣∣
(σi, pi, z)← V̂alEst(state∗i , 1

1/εi+1)
r ← {0, 1}d
x = G(1λ, r)
(σ∗i+1, y)← Πx(σi)

 =

Pr

V (r, y) = 1

∣∣∣∣∣∣∣∣
(σi, pi, z)← V̂alEst(state∗i , 1

1/εi+1)
r ← {0, 1}d
x = G(1λ, r)

y ← B̃(1λ, r,σi)

 ,

where the first equality follows by the definition of valP [i, AR̂
∗

z ] and the second by Claim 4.6. The claim now
follows from Claim 4.5.

Claim 4.8 (Persistence). For all i ≥ 1, except with probability 2εi over AR̂
∗

z ,

|pi − p∗i | ≤ εi ,
|p∗i − pi−1| ≤ εi .

Proof. The first inequality follows from the estimation is almost projective guarantee and second from the
repairing guarantee (both given by Lemma 4.2).

Combining Claims 4.7 and 4.8, and applying a union bound, we deduce that 3
∑
i εi-persistence holds,

with persistent value p0. The Lemma now follows by our choice of εi:

3
∑
i

εi =
3η

π2

∑
i

i−2 = η/2 .

Proof of Lemma 4.4. The lemma follows from the estimation is almost projective guarantee (Lemma 4.2).

This concludes the proof of Theorem 4.1.

5 Stateful Solvers To Memoryless Solvers

The following theorem shows that it is possible to convert stateful solvers into memoryless solvers with
the same value, albeit with a few caveats. First, the distribution of queries that is to be made to the
memoryless solver needs to be known ahead of time (i.e. it needs to be decided upfront in a non-adaptive
manner). Second, the resulting memoryless solver might not be efficiently executable. Instead, we provide a
simulator that can emulate its behavior, but only once, and only on an input that comes from the prescribed
distribution. The simulator only manages to simulate the execution up to some statistical error, and its
running time is polynomial in the inverse of this error. A formal theorem statement follows.

Theorem 5.1. There exists a polynomial time oracle-aided simulator SimMemless with the following prop-
erties. Let B be a (p, η)-persistent `-stateful solver for a falsifiable non-interactive assumption P and let
D = {Dλ}λ be an efficiently samplable distribution ensemble over k-tuples of P instances. Finally, let δ be
some parameter. Then there exists a (p, η)-persistent (but possibly inefficient) distribution over memoryless
solvers B′ = B′`,D,δ = (B′, ∅) for P such that the following holds.

Consider sampling ~x ← Dλ, and let B′(1λ, ~x) be the transcript of the process that feeds the elements of
~x into B′ one-by-one in order (i.e. executes B′(1λ, 1i, xi, ∅) in order). Then SimMemlessB,D(1λ, 1`, 11/δ, ~x)
makes non-adaptive black-box access to B and produces a distribution that is within at most δ statistical
distance from B′(1λ, ~x).
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We note that our simulator is “almost” a black-box algorithm in B in the sense that it takes the size
of the state 1` as input, but otherwise it only makes black-box queries to B. We also emphasize that the
simulator does not depend at all on p, η or any other property of B (other than `).

5.1 The Simulator SimMemless

We start by describing the simulator that will be used to prove Theorem 5.1. The simulator SimMemless
simply “floods” the solver B with queries from a fixed distribution, and plants the elements of ~x in random
positions.

Specifically, SimMemlessB,D(1λ, 1`, 11/δ, ~x) works as follows. Let t be such that k
√
`/2t ≤ δ, i.e. t =

O(`(k/δ)2). The simulator is also going to generate a non-adaptive sequence of queries. We start by defining
our “flooding” distribution.

Definition 5.2 (Random Marginal). Let D be a distribution over Xk, i.e. k-tuples over a domain X. Then
the random marginal distribution DU over X is a distribution obtained by sampling (x1, . . . , xk) according
to D, sampling a random i in [k], and outputting xi as the final sample.

The simulator starts by sampling the following values.

1. A vector ~z of k · t samples zj,i ← DU , where j ∈ [k], i ∈ [t].

2. k uniform samples ij ← [t], where j ∈ [k].

3. A uniform permutation π over [k].

It then generates a sequence of queries ~z∗ by taking the vector ~z and, for all j ∈ [k], replacing zj,ij with
xπ(j). Namely, thinking of ~z as containing k sequences of queries of length t each, we plug in a random
element from ~x in a random location in each sequence.

The simulator then calls B on the queries in ~z∗ in order, to obtain a sequence of responses ~y. Let
yj,i be the (j, i) element in this sequence. We define y∗j = yj,ij . The simulator returns the transcript
((x1, y

∗
π−1(1)), . . . , (xk, y

∗
π−1(k))). Namely, we output a transcript that pairs each xi with the response that B

produces when introduced to the query zj,ij = xi, namely π(j) = i.

5.2 Proving Theorem 5.1

We now turn to prove the theorem. We start by defining a hybrid distribution which is defined with respect
to purifying executions of B. This will allow us to make claims about extended transcripts, and finally to
redact to standard transcript and derive the proof of the theorem.

A Hybrid Distribution. To prove the theorem, we define the hybrid distribution Sh, defined for every
h ∈ {0, 1, . . . , k}.

1. Sample a uniform permutation π over [k].

2. For all j ∈ [k], sample a random index ij ∈ [t].

3. Sample ~x from D.

4. Generate a sequence of queries zj,i for all j ∈ [k], i ∈ [t] as follows.

(a) For all j > h, set zj,ij = xπ(j).

(b) Otherwise sample zj,ij from DU .

5. Generate the extended transcript t̂s of executing B (in a purifying manner) on the entries zj,i in
lexicographic order (i.e. starting with (1, 1), . . . , (1, t) and concluding with (k, 1), . . . , (k, t)). We let
t̂sj,i denote the prefix of the transcript prior to making the (j, i) query. We let |sj,i〉 denote the solver
state respective to t̂sj,i, as guaranteed by Proposition 3.7. Notice that |s1,1〉 is the initial state state0

of B conditioned on t̂s0 = ŷ0.
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6. The output of the hybrid Sh then consists the following values, for all j ∈ [k]:

(a) The values ij , π(j).

(b) The quantum state in the beginning of the j-th run: |sj,1〉.
(c) The quantum state right before the ij-th query in the j-th sequence is made: |sj,ij 〉.
(d) The value xπ(j), which is the ij-th query in the j-th sequence if j > h.

(e) An answer (yπ(j), ŷπ(j)) computed as follows.

• If j > h then set (yπ(j), ŷπ(j)) = (yj,ij , ŷj,ij ) (i.e. the (y, ŷ)-part of the (j, ij)-th triple in t̂s).

• Otherwise generate (yπ(j), ŷπ(j)) as B̂(1λ, 1t(j−1)+ij , xπ(j), |sj,ij−1〉)y,ŷ.

In what follows, we will prove that the distributions induced by the first and last hybrids are close in
trace distance, as formalized below.

Lemma 5.3. It holds that TD(S0,Sk) ≤ k
√
`/(2t).

Before proving Lemma 5.3, we argue that it implies the validity of Theorem 5.1. Indeed, we observe
that the output of the simulator SimMemless can be extracted from S0 by simply outputting all of the pairs
((x1, y1), . . . , (xk, yk)). Applying the same extraction procedure on the last hybrid Sk will lead to a sequence
((x1, y1), . . . , (xk, yk)) in which yπ(j) = B(1λ, 1t(j−1)+ij , xπ(j), |sj,ij−1〉)y. However, in the hybrid Sk, the

transcript t̂s, and therefore all states |sj,i〉, are generated independently of ~x. Therefore, for every values of
π, t̂s one could define a memoryless adversary B′ = (B′

π,t̂s
, ∅), defined by

B′
π,t̂s(1

λ, 1j , x, ∅) = B(1λ, 1t(j
′−1)+ij′ , x, |sj′,ij′−1〉)y , (6)

with j′ = π−1(j). Note that the sequence of states is hard-wired into B′ and it does not require to propagate
a state throughout the execution.

We therefore indeed have that the solver B′ is a distribution over memoryless solvers indicated by sampling
π, t̂s from their respective distributions and executing B′

π,t̂s
. Since B is (p, η)-persistent, we have that with

probability 1 − η over t̂s, all invocations of B(1λ, 1t(j
′−1)+ij′ , x, |sj′,ij′−1〉) have value p ± η, which would

imply that (B′
π,t̂s

, ∅) is (p, η)-persistent. Therefore, the distribution B′ is also, by definition, (p, η)-persistent.

The proof of Lemma 5.3 will follow from a standard hybrid argument, given by the following lemma.

Lemma 5.4. For all h ∈ {0, 1, . . . , k − 1} it holds that

TD(Sh,Sh+1) ≤
√
`/(2t) . (7)

Proof. We will show that the lemma holds true even when conditioning both Sh,Sh+1 on any value for t̂sh,1
(the (h · t)-prefix of the transcript t̂s).

We will show that the lemma follows from the following claim.

Claim 5.5. Conditioning on any value of t̂sh,1 for both Sh,Sh+1, the joint distribution of:

(ih, t̂sh,ih , |sh+1,1〉 , (xπ(h), yπ(h), ŷπ(h))) (8)

is within trace distance
√
`/(2t) between Sh,Sh+1.

Given Claim 5.5, Lemma 5.4 follows since all other elements of the two distributions Sh,Sh+1 can be
sampled given t̂sh,1 and (ih, t̂sh,ih , |sh+1,1〉 , (xπ(h), yπ(h), ŷπ(h))), as follows.

1. Sample the permutation π and the query vector ~x conditioned on the value xπ(h).

2. For very j ∈ [k] \ {h}, sample ij uniformly in [t].
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3. For all j < h, the transcript prefix t̂sh,1 determines all states |sj,i〉 (for all i ∈ [t]), which in turn,
together with ~x, determines the distribution of yπ(j), ŷπ(j) for all j < h (since this distribution is
specified by applying the solver B on xπ(j) with quantum state that is determined by the h-prefix).

4. For all j > h the outputs of both Sh,Sh+1 are determined as the outcomes of an identical quantum
process applied to the state |sh+1,1〉 (the initial state of the (h + 1)-th sequence), considering that π
and ~x have been determined.

We now proceed to prove Claim 5.5, and focus on the distribution of (ih, t̂sh,ih , |sh+1,1〉 , (xπ(h), yπ(h), ŷπ(h)))

in the two hybrids, given that t̂sh,1 is fixed. The claim follows straightforwardly from our information
theoretic Plug-In Lemma (Lemma 2.3), where the classical values yi in the lemma corresponds to pairs
(zh,i, yh,i, ŷh,i) generated in the h’th round in the hybrid experiment. Note that since we fixed t̂sh,1, the dis-
tribution over these classical values is also fixed, and indeed the value s = |sh+1,1〉 depends on this sequence
of t values. The triple (xπ(h), yπ(h), ŷπ(h)) differs between Sh and Sh+1 since in the former it is exactly equal
to the ih+1 element in the h-th sequence, and in the latter it is sampled from the marginal distribution of
this element. We can therefore apply the plug-in lemma directly to obtain the

√
`/(2t) bound on the trace

distance as Claim 5.5 requires. This completes the proof of the claim and thus also of the lemma.

6 Memoryless Solvers To Stateless Solvers

Theorem 6.1. There exists a polynomial-time oracle-aided simulator SimStateless with the following prop-
erties. Let B be a (p, η)-persistent memoryless solver for a falsifiable non-interactive assumption P and
let {Dλ}λ be an efficiently samplable distribution ensemble over k-tuples of P instances. Let δ be some
parameter.

Then there exists a (p, η)-persistent (but possibly inefficient) stateless solver B′′ = B′′δ = (B′′, ∅) for P
such that the following holds. Consider sampling ~x← Dλ, and let B′′(1λ, ~x) be the transcript of the process
that feeds the elements of ~x into B′′ (i.e. executes B′′(1λ, xi, ∅) for all xi). Then SimStatelessB(1λ, 11/δ, ~x)
makes non-adaptive black-box access to B and produces a distribution that is within at most δ statistical
distance from B′′(1λ, ~x).

Proof. The simulator SimStatelessB runs as follows. Given ~x as input, it generates a query vector ~x′ of length
t = k2 as follows. It samples, without repetitions, k indices i1, . . . , ik and sets x′j = xij . All other values of
x′ are set to 0 (or some other fixed value).

After making the queries in ~z to B and receiving an output vector ~y′, the simulator sets yj = yij returns
((x1, y1), . . . , (xk, yk)).

Let us now define the stateless adversary B′′. On input x, B′′(1λ, x) samples j ← [t] uniformly, and
outputs y = B(1λ, 1j , x, ∅)y. The solver B′′ is also (p, η)-persistent; indeed, its value is the average of values,
which are all η-close to p. (Recall Remark 3.4 about persistent values for stateless and memoryless solvers.)

To bound the statistical distance between SimStatelessB(1λ, 11/δ, ~x) and B′′(1λ, ~x), we consider the case
where in the course of the execution of B′′(1λ, ~x), all j’s that are sampled are distinct. This happens with
probability at least 1 − k2/t = 1 − δ. Conditioned on this event, B′′(1λ, ~x) is identically distributed as
SimStatelessB(1λ, 11/δ, ~x). It follows that in general the statistical distance is bounded by δ.

We conclude with a corollary that combines Theorem 5.1 and Theorem 6.1.

Corollary 6.2. There exists a polynomial-time simulator Sim with the following properties. Let B be a
(p, η)-persistent `-stateful solver for a falsifiable non-interactive assumption P and let {Dλ}λ be an efficiently
samplable distribution ensemble over k-tuples of P instances. Finally, let δ be some parameter.

Then there exists a (p, η)-persistent (but possibly inefficient) distribution over stateless solvers B′′ =
B′′`,D,δ = (B′′, ∅) for P . Consider sampling ~x∗ ← Dλ, and let B′′(1λ, ~x∗) be the transcript of the process that

feeds the elements of ~x∗ into B′′ (i.e. executes B′′(1λ, x∗i , ∅) for all x∗i ). Then SimB,D(1λ, 1`, 11/δ, ~x∗) makes
non-adaptive black-box access to B and produces a distribution that is within at most δ statistical distance
from B′′(1λ, ~x∗).
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Proof. The simulator SimB,D(1λ, 1`, 11/δ, ~x∗) runs as follows. Set δ′ = δ/2.

1. Define an efficiently samplable distribution D′ over sequences of P instances as follows. Consider the
non-adaptive black-box simulator SimStateless from Theorem 6.1. Start by sampling ~x ← D. Run
SimStateless(·)(1λ, 11/δ′ , ~x) up until the point where it generates its sequence of oracle queries ~x′ (note
that to this end there is no need to actually have any access to the solver itself). Let ~x′ be the sample
of D′.

2. Start an execution SimStateless(·)(1λ, 11/δ′ , ~x∗), until the point where the sequence of queries ~x′∗ is
generated.

3. Consider the non-adaptive black-box simulator SimMemless from Theorem 5.1. Execute the simulator

SimMemlessB,D
′
(1λ, 1`, 11/δ′ , ~x′∗) to obtain a transcript ts.

4. Resume the execution of SimStateless from step 2, plugging in the responses from ts as the solver
outcome. Produce the output of SimStateless as the output of Sim.

To analyze, we first note that by definition ~x′∗ is sampled from the distribution D′. Theorem 5.1
implies that there exists a distribution B′ over memoryless adversaries such that the transcript ts is withing
δ′ statistical distance from having been produced by B′(1λ, ~x′∗). It therefore follows that the output of

SimB,D(1λ, 1`, 11/δ, ~x∗) is within statistical distance δ′ from SimStatelessB
′
(1λ, 11/δ′ , ~x∗). We can now apply

Theorem 6.1 to deduce that for each memoryless solver B′0 in the support of B′, the latter is within δ′

statistical distance from some B′′0 (1λ, ~x′) where B′′0 is stateless. This therefore induces a distribution over
stateless solvers. Applying the union bound we get that SimB,D(1λ, 1`, 11/δ, ~x∗) is within statistical distance
at most 2δ′ = δ from B′′(1λ, ~x′) as required.

By definition, with probability 1−η over the sampling of the memoryless solver B′0 from the distribution,
B′0 itself is (p, η)-persistent, this property carries over to B′′0 . Therefore, the distribution B′′ is by definition
(p, η)-persistent.

7 Classical Non-Adaptive Reductions and Quantum Solvers

In this section, we show that a wide class of classical reductions can be translated to the quantum setting.
Specifically we start from any non-adaptive black-box reductions from classically solving P with a verifiably-
polynomial image (Definition 3.2), to classically solving Q. We transform it into a quantum reduction from
quantumly solving P to quantumly solving Q.

Theorem 7.1. Assume there exists a classical non-adaptive black-box reduction from solving a non-interactive
assumption Q to solving a non-interactive assumption P with a verifiably-polynomial image. Then there ex-
ists a quantum reduction from solving Q to quantumly solving P . This reduction is durable if the original
classical reduction has positive advantage.

Proof. Let R be a classical non-adaptive black-box reduction from solving a non-interactive assumption Q =
(GQ, VQ, cQ) to solving a non-interactive assumption P = (GP , VP , cP ). We present a quantum reduction R′
from solving Q to quantumly solving P . We start by describing and analyzing R′ with a one-shot advantage,
and then extend it to address durability in the case that R has positive advantage. We assume w.l.o.g that
R never makes the same query twice to its oracle function (see Remark 3.8).

Recalling Definition 3.12, R′ takes as input (1λ, 1t, xQ, state), where xQ ∈ {0, 1}nQ is potentially an
instance of Q, and its initial state is state′0 = (state0, B, 1

1/ε, 1T ), where we are guaranteed that B =
(state0, B) is a P solver with advantage at least ε that runs in time at most T .

We let ε′ denote the advantage of R in solving Q when given access to an oracle that solves P with
advantage at least ε/2. We are guaranteed that ε′ = poly(ε, λ−1). We set δ = ε′/2 and η = min{ε/4, ε′/2}.

We define a distribution D over ({0, 1}nP )k as the distribution over the set of oracle queries produced by
first sampling a uniform r′Q and using it to generate x′Q = GQ(1λ, r′Q), and finally executing R(1λ, 14/ε, x′Q)
to produce a k-tuple of P -instances.
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Having all of these definitions in place, we can now introduce the execution of R′(1λ, 10, xQ, state
′
0).

Namely, we start by analyzing the one-shot execution of R′ (the case t = 0).

1. Let R,S be the state restoration algorithms with respect to P as guaranteed by Theorem 4.1, with
parameter η as defined above. Set (state∗0, p

∗)← SB(state0). Define B0 = R∗ = (RB , state
∗
0) and recall

that B0 is (p∗, η)-persistent, and that E[p∗] = p.

2. Execute R(1λ, 13/ε, xQ) to obtain the sequence of queries ~x.

3. Recall the simulator Sim guaranteed by Corollary 6.2. Execute SimB0,D(1λ, 1`, 11/δ, ~x) to obtain a
transcript ts.

4. Extract the responses to ~x from ts and resume the execution R from step 2 with these responses. Once
the execution of R completes and a value yQ is output, output yQ as the output of R′.

To analyze the one-shot value and advantage of R′, we start by analyzing the performance of R′ condi-
tioned on obtaining a fixed value p∗ in step 1 of the execution. In this case B0 is (p∗, η)-persistent, and we can
invoke Corollary 6.2 to conclude that there exists a (p∗, η)-persistent distribution over stateless adversaries

B′′p∗ s.t. the output of R′ is within statistical distance δ from the execution of RB
′′
p∗ (1λ, 14/ε, xQ).

In turn, the execution of RB
′′
p∗ (1λ, 10, xQ, state

′
0) is equivalent to executing RB′′(1λ, 14/ε, xQ), where B′′

is a distribution over stateless solvers defined as follows. First sample p∗ from its designated distribution,
then sample B′′p∗ from the (p∗, η)-persistent distribution of stateless solvers. Recall that with probability
1− η over the sampling of B′′p∗ , it holds that the outcome is a (single) (p∗, η)-persistent stateless solver and

therefore that
∣∣valP [0,B′′p∗

]
− p∗

∣∣ ≤ η. It follows that with probability at least 1− η:

|E[valP [0,B′′]]− p| =
∣∣E [valP [0,B′′p∗

]
− p∗

]∣∣
≤ E

[ ∣∣valP [0,B′′p∗
]
− p∗

∣∣ ]
≤ η .

It follows that B′′ has advantage at least ε − 2η ≥ ε/2 in solving P . We have therefore that RB′′ has
advantage at least ε′ in solving Q. Since the output of R′ is within δ = ε′/2 statistical distance from RB′′ ,
we conclude that R′ has advantage at least ε′/2. We therefore established the one-shot value of R′.

It remains to extend the definition of R′ beyond t = 0 in order to establish that it is durable when R
has positive advantage. The basic idea is to propagate the final state of B0 at the end of step 4 as the initial
state of the next execution, and use the persistence of B0 in order to execute steps 2-4 anew for each input.

In order to formalize the above intuition, we require the following definitions. We define a “shifted
execution” of a solver as follows. Letting B = (B, state0) be a solver. We define the solver B+j = (B+j , state0)
via B(1λ, 1t, x, state) = B(1λ, 1t+j , x, state). Namely, B+j simply executes B but with a fixed offset in the t
input. A second notation that we require is for the maximal number of B0 calls that are made in steps 2-4
of the execution above. We denote this value by M and note that it is w.l.o.g a polynomial in λ, ε−1 that
does not depend on the value of xQ.

Our durable reduction is therefore as follows:

• We extend the execution of R′ for t = 0 defined above as follows. First, we ensure that steps 2-4 make
exactly M queries to B0, by inserting dummy queries if needed. Second, we specify the output state
of the execution to be the output state of B0 after the last call that has been made.

• For a value of t > 0 the execution of R′(1λ, 1t, x, state) is by executing steps 2-4 above (with the
padding to M queries), but using the shifted solver B0+tM instead of B0. The output state is again
the final output state of the solver B0+tM .

Note that B0 is (p∗, η)-persistent with respect to some purification B̂0. We can consider a corresponding

purification R̂′ of R′. We note that in an extended interaction AR̂
′

z , letting ε∗ = |p∗− cP |, it holds that with
probability 1− η, for every i:

valQ[i, AR̂
′

z ] ≥ cQ + ε′ ,
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where ε′ ≥ 0 and if ε∗ − η ≥ ε/4, then ε′ ≥ poly(ε∗ − η, λ−1).
Indeed, since B0 is (p∗, η)-persistent, in the i-th underlying invocation of B′′p∗ , its value as a P -solver is

η-close to p∗, and hence its advantage in the corresponding invocation of R(xQ, 1
λ, 14/ε) is at least ε∗− η. If

ε∗− η ≥ ε/4, R is guaranteed to have positive advantage poly(ε∗− η, λ−1), in which case the corresponding
value is cQ + poly(ε∗ − η, λ−1).

It is left to argue that
E[ε′] ≥ poly(ε, λ−1) .

This follows from an averaging argument. With probability at least ε/2, ε∗ ≥ ε/2. In particular with
probability at least ε/2− η ≥ ε/4 it holds that ε∗ − η ≥ ε/4, in which case ε′ ≥ poly(ε/4, λ−1).

8 An Impossibility Result for Search Assumptions

Our result in Section 7 transforms a classical non-adaptive reduction R from solving Q to classically solving
P into a reduction R to quantumly solving P . It is restricted to assumptions P with a verifiably-polynomial
image. While this captures a large class of assumptions, such as all decision assumptions, it certainly does
not capture all assumptions of interest. In particular, it does not capture search assumptions where the
number of possible solutions per instance could be super polynomial, such as say the hardness of inverting
a one-way function where the preimage size could be super-polynomial.

In this section we show that this is somewhat inherent. We prove that for search assumptions, such a
transformation cannot exist as long as the resulting reduction R′ is explicit in the assumptions P,Q. In
particular, it may obtain as input the code of the algorithms describing P,Q, but does not get any implicit
non-uniform advice regarding these assumptions. Indeed, the transformation in 7 as well as the Persistence
Theorem 4.1 on which it relies, the resulting quantum reduction R′ is in fact black-box in the assumptions
P,Q, and in particular explicit.

Definition 8.1 (Assumption Pair Colletion). An assumption pair collection PQ consists of pairs of assump-
tions (P,Q), each given by its corresponding (possibly non-uniform) algorithms (GP , VP , cP ) and (GQ, VQ, cQ).

Definition 8.2 (Explicit Reduction). An explicit quantum reduction for assumption pair collection PQ is an
efficient algorithm R with the following guarantee. For any (P,Q) ∈ (P,Q) and any quantum solver BP =
(BP , state0) for P with one-shot advantage ε and running time T , let state′0 = (state0, (P,Q), BP , 1

1/ε, 1T ).
Then BQ = (R, state′0) is a solver for Q with one-shot advantage poly(ε, T−1, λ−1) and running-time
poly(T, ε−1, λ).

We say that the reduction is strongly explicit, instead of being given the explicit description of (P,Q) as
part of its input, it is given oracle access to its corresponding algorithms.

Note that in the above definition state′0 is formally a sequence

state′0,λ = (state0,λ, (P,Q)λ, BP,λ, 1
1/ε(λ), 1T (λ)) ,

where (P,Q)λ consist of their corresponding algorithms (possibly along with their corresponding non-uniform
advice) restricted to security parameter λ (w.l.o.g circuits).

Restating our result from Section 7, we proved that for any pair collection PQ, if for any (P,Q) ∈ P,Q,
P has verifiably-polynomial image, and there exists a classical non-adaptive black-box reduction RP,Q from
solving Q to solving P , then there also exists a strongly explicit quantum reduction R′ for PQ. We prove
that if P does not have a verifiably-polynomial image this may not be the case.

Theorem 8.3. There exists an assumption pair collection PQ, such that for any (P,Q) ∈ P,Q, there exists
a classical non-adaptive black-box reduction RP,Q from solving Q to solving P , but there is no strongly explicit
reduction R′ for PQ. Assuming also post-quantum indistinguishability obfuscation, there also does not exist
and explicit reduction R′.
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We will restrict extension to ruling out explicit reductions based on indistinguishability obfuscation. The
result for strongly explicit reductions is a direct extension.

The Collection PQ. The collection is associated with a particular signature scheme (Gen,Sig,Ver), with a
corresponding message spaceM = (Mλ)λ∈N. Each pair of assumptions (P,Q) ∈ PQ has the following form:

1. For i ∈ {P,Q}, Pi = (Gi, Vi, 0), Gi is a uniform generator and Vi is a non-uniform verifier.

2. GP takes as input 1λ and outputs a random message x ← Mλ, whereas GQ takes as input 1λ and
outputs two random and independent messages x1, x2 ←Mλ.

3. VP and VQ have the same pk ∈ Gen(1λ) hardwired into their description.

VP takes as input (1λ, x, σ) and outputs 1 if and only if Ver(pk, x, σ) = 1, whereas VQ takes as input
(1λ, x1, x2, σ1, σ2) and it outputs 1 if and only if Ver(pk, x1, σ1) = Ver(pk, x2, σ2) = 1.

Claim 8.4. For any signature scheme (Gen,Sig,Ver) and corresponding collection PQ, there exists an ef-
ficient solver-aided algorithm R such that for every (P,Q) ∈ PQ, R is a classical non-adaptive black-box
reduction from solving P to solving Q.

Proof. We describe the reduction R. On input (1λ, (x1, x2)), R queries the solver with x1 and x2, and
obtains σ1 and σ2. It outputs (σ1, σ2). To complete the proof, we note that given any stateless classical
P -solver B with advantage ε, RB has advantage ε2 in solving Q, as desired.

We now proceed to show that for an appropriately chosen signature scheme (Gen,Sig,Ver) there is no
explicit quantum reduction R′ for the collection PQ.

Tokenized Signature Schemes. A tokenized signature scheme [BS16] is a classical signature scheme
(Gen,Sig,Ver), with message space M = {Mλ}λ∈N, with two additional efficient quantum algorithms
(TokenGen,TokenSig). TokenGen takes as input a secret key sk and outputs a quantum state |tk〉, referred to
as a signing token, and TokenSig takes as input a signing token |tk〉 and a message m ∈ M and outputs a
signature, with the guarantee that for every message m ∈M,

Pr[Ver(pk,m, σ) = 1] = 1,

where the probability is over (sk, pk)← Gen(1λ), |tk〉 ← TokenGen(sk) and σ ← TokenSig(|tk〉 ,m).

Definition 8.5. A tokenized signature scheme (Gen,Sig,Ver,TokenGen,TokenSig) is secure if for any efficient
quantum adversary A there exists a negligible function µ such that for every λ ∈ N,

Pr

[
m1 6= m2,

Ver(pk,mi, σi) = 1 ∀i ∈ [2]

∣∣∣∣ (m1,m2, σ1, σ2)← A(pk, |tk〉)
]

= µ(λ) ,

where the probability is over (sk, pk)← Gen(1λ) and |tk〉 ← TokenGen(sk).

We rely on the following result by Coladangelo et a..

Theorem 8.6 ([CLLZ21]). There exists a secure tokenized signature scheme assuming the existence of a
post-quantum secure (classical) indistinguishability obfuscation scheme.

Claim 8.7. Let (Gen,Sig,Ver,TokenGen,TokenSig) be a secure tokenized signature scheme, and let PQ be
the corresponding collection PQ. Then there exist no explicit quantum reduction for PQ.

Proof. Assume toward contradiction that there exists an explicit reduction R′ for PQ, we show how an
adversary A can use it to reakthesecuity of the tokenized signatures (Definition 8.5).

For security parameter λ, A is given a public key pk and token |tk〉. A samples x1, x2 ←Mλ and invokes:

R′((x1, x2), state′0 = (|tk〉 , (P,Q)λ, BP , 1
1/ε, 1T ) ,

where:
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• (P,Q)λ are the circuits describing the assumption corresponding to pk.

• BP is the quantum algorithm that given (x, |tk〉), applies TokenSig to generate a signature σ on x.

• ε = 1.

• and T is the polynomial running time of BP .

A obtains back from the reduction two signatures σ1, σ2 and outputs (x1, σ1, x2, σ2).
To see that A breaks the security of the tokenized signature (namely manages to generate signatures

on two different messages. Note that BP , state0 = |tk〉 constitute a solver for P (which generates one good
signature) with probability 1, accordingly the reduction R′ manages to solve Q with noticeable probability,
generating two signatures σ1, σ2.

The above indeed relies on indistinguishability obfuscation to instantiate the tokenized signature scheme.
To get an unconditional impossibility, but which only rules out strongly explicit reductions, we can rely on
the following result of Ben-David and Sattath.

Theorem 8.8 ([BS16]). There exists a classical oracle distribution relative to which there exist (information
theoretically) secure tokenized signature schemes.

The proof is a direct extension of the proof above.

9 Proving the Plug-In Lemma

We recall the formal statement of the lemma.

Lemma 9.1 (Lemma 2.3, restated). Let ~Y = (Y1, . . . , Yt) be a vector of arbitrarily jointly distributed classical

random variables. Let ~y be distributed according to ~Y . Let s be an `-qubit random variable that has arbitrary
dependence on ~y. We let ~yi denote the prefix ~yi = (y1, . . . , yi) for 1 ≤ i ≤ t, and ~y0 is the empty vector (and

likewise for ~Y ). Let J be the uniform distribution over [t] and let j ← J . Define y′ ← YJ |(~Yj−1 = ~yj−1).
Then it holds that

TD((j, ~yj−1, yj , s), (j, ~yj−1, y
′, s)) ≤

√
`/(2t) . (9)

We prove the lemma using tools from (quantum) information theory. We recall the basic notions below
and refer to [NC16, Wat18] for additional reference. We let H(·) denote the entropy function both in the
classical case (Shannon entropy) and in the quantum case (von Neumann entropy).

We denote the mutual information function by I(· : ·) both in the classical and in the quantum setting.
We note that entropy or mutual information are only well defined for variables that have a well-defined joint
density matrix.6

Let X and Y be variables with a joint density matrix ρXY . We say that Y is a classical random variable
if its reduced density matrix is diagonal. If Y is a classical variable then

ρXY =
∑
y

pyρX|y ⊗ |y〉 〈y| . (10)

In this case we refer to ρX|y as the conditional density matrix of X given Y = y, and refer to X|y as the
variable with this density matrix. In such a case it holds that

H(X|Y ) = E
y
[H(X|y)],

6Recall the following information-theoretic identities that hold both in the classical and quantum settings. Mutual informa-
tion: I(X : Y ) = H(X)+H(Y )−H(X,Y ). Conditional entropy: H(X|Y ) = H(X,Y )−H(Y ). Conditional mutual information:
I(X : Y |Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z) = H(X|Z)−H(X|Y, Z).
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where y is distributed according to the classical distribution of Y . We provide a proof for the sake of
completeness.

Proposition 9.2. Let X,Y be random variables with density matrix ρXY =
∑
y αyρX|y ⊗ |y〉 〈y|. Then it

holds that H(X|Y ) = Ey∼Y [H(X|y)].

Proof. As stated in [NC16, Theorem 11.8 (5)], it holds that H(X,Y ) = H(Y ) + Ey∼Y [H(X|y)]. Recalling
that H(X|Y ) = H(X,Y )−H(Y ), the proposition follows.

Corollary 9.3. Letting X,Y be as in Proposition 9.2 then H(X|Y ) ≥ 0.

Proof. The corollary follows since for each y it holds that X|y is just a quantum variable and therefore it
has non-negative entropy. The expectation over non-negative values remains non-negative.

The following simple application of the chain-rule will be useful for us.

Lemma 9.4. Let ~y = (y1, . . . , yt) be a vector of arbitrarily distributed classical random variables, and let s
be an `-qubit random variable that has arbitrary dependence on ~y. Recall that we denote ~yi = (y1, . . . , yi) for
1 ≤ i ≤ t, and ~y0 is the empty vector. Then for a uniformly distributed J ← [t],

I(s : yJ |~yJ−1, J) ≤ `

t
. (11)

Proof. We have that

I(s : yJ |~yJ−1, J) = E
j
[I(s : yj |~yj−1)] (12)

=
1

t

∑
j∈[t]

I(s : yj |~yj−1) (13)

(By definition) =
1

t

∑
j∈[t]

(H(s|~yj−1)−H(s|~yj)) (14)

(Telescopic sum) =
1

t
(H(s)−H(s|~y)) (15)

(Corollary 9.3) ≤ H(s)

t
(16)

(s is `-qubits) ≤ `

t
. (17)

Proposition 9.5. Let Z be a classical variable and let X,Y be quantum variables with arbitrary dependence
on Z. Then it holds that

TD(XZ, Y Z) = E
z∼Z

[TD(X|z, Y |z)] . (18)

Proof. Since Z is classical, the density matrices of XZ and Y Z can be written as block-diagonal: ρXZ =∑
z pzρX|z ⊗ |z〉 〈z| and ρY Z =

∑
z pzρY |z ⊗ |z〉 〈z|, where pz = Pr[Z = z].

Recall that the `p norm of a block-diagonal matrix is simply the sum of norms of the blocks (since each
block can be individually diagonalized). We therefore have

TD(XZ, Y Z) = 1
2‖ρXZ − ρY Z‖1 (19)

= 1
2‖
∑
z

pz(ρX|z − ρY |z)⊗ |z〉 〈z| ‖1 (20)

= 1
2

∑
z

pz‖ρX|z − ρY |z‖1 (21)

= E
z∼Z

[TD(X|z, Y |z)] . (22)
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We use the following lemma which follows straightforwardly from quantum Pinsker inequality.

Lemma 9.6. Let X,Y be arbitrary quantum variables with a joint density matrix ρXY and reduced density
matrices ρX , ρY respectively.7 Then

TD(ρXY , ρX ⊗ ρY ) ≤
√

ln(2)
2 · I(X : Y ) ≤

√
I(X : Y )/2 , (23)

where TD denotes the trace distance.

Proof. This is a direct application of quantum Pinsker inequality [Wat18, Theorem 5.38], when bearing
in mind the connection between quantum divergence and mutual information as expressed in [Wat18,
Eq. (5.110)].

We can finally prove the plug-in lemma.

Proof of Lemma 2.3. For convenience, we denote y′j = y′. We start by noticing that by definition, condi-
tioned on j, ~yj−1, the value (y′j , s) is simply the product distribution of the marginals of (yj , s).

Thus,

TD((j, ~yj−1, yj , s), (j, ~yj−1, y
′
j , s)) = E

j,~yj−1

[
TD((s, yj)|(j, ~yj−1), (s, y′j)|(j, ~yj−1))

]
(Proposition 9.5) ≤ E

j,~yj−1

[√
1
2I(s|(j, ~yj−1) : yj |(j, ~yj−1))

]
(Lemma 9.6) ≤

√
1
2 E
j,~yj−1

[I(s|(j, ~yj−1) : yj |(j, ~yj−1))]

(Convexity (Jensen’s Inequality)) =
√

1
2I(s : yj |j, ~yj−1)]

(Lemma 9.4) ≤
√
`/(2t) .
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[KS20] Juliane Krämer and Patrick Struck. Encryption schemes using random oracles: From classi-
cal to post-quantum security. In Post-Quantum Cryptography - 11th International Conference,
PQCrypto 2020, Paris, France, April 15-17, 2020, Proceedings, pages 539–558, 2020.

[KYY18] Shuichi Katsumata, Shota Yamada, and Takashi Yamakawa. Tighter security proofs for GPV-
IBE in the quantum random oracle model. In Advances in Cryptology - ASIACRYPT 2018 - 24th
International Conference on the Theory and Application of Cryptology and Information Security,
Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II, pages 253–282, 2018.

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum fiat-shamir. In Advances in Cryptology
- CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part II, pages 326–355, 2019.

30



[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Dan Boneh, editor, Advances in
Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer
Science, pages 96–109. Springer, 2003.

[NC16] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press, 2016.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 84–93. ACM, 2005.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the fujisaki-okamoto
and OAEP transforms. In Theory of Cryptography - 14th International Conference, TCC 2016-B,
Beijing, China, October 31 - November 3, 2016, Proceedings, Part II, pages 192–216, 2016.

[Wat18] John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018.

[YZ21] Takashi Yamakawa and Mark Zhandry. Classical vs quantum random oracles. In Anne Canteaut
and François-Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 - 40th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, October 17-21, 2021, Proceedings, Part II, volume 12697 of Lecture Notes in
Computer Science, pages 568–597. Springer, 2021.

[Zha12] Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2012. Proceedings, pages 758–775, 2012.

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability.
In Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II, pages 239–268, 2019.

31


	Introduction
	Our Main Results
	Our Techniques and Additional Contributions
	Other Related Work

	Preliminaries and Tools
	The Plug-In Lemma

	Assumptions, Stateful Solvers, and Reductions
	Non-Interactive Assumptions
	Stateful Solvers
	Reductions

	Persistent Solvers in the Quantum Setting
	Stateful Solvers To Memoryless Solvers
	The Simulator SimMemless
	Proving Theorem 5.1

	Memoryless Solvers To Stateless Solvers
	Classical Non-Adaptive Reductions and Quantum Solvers
	An Impossibility Result for Search Assumptions
	Proving the Plug-In Lemma

