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Abstract

We present two attacks targeting the Proof-of-Stake (PoS) Ethereum consensus proto-
col. The first attack suggests a fundamental conceptual incompatibility between PoS and
the Greedy Heaviest-Observed Sub-Tree (GHOST) fork choice paradigm employed by PoS
Ethereum. In a nutshell, PoS allows an adversary with a vanishing amount of stake to pro-
duce an unlimited number of equivocating blocks. While most equivocating blocks will be
orphaned, such orphaned ‘uncle blocks’ still influence fork choice under the GHOST paradigm,
bestowing upon the adversary devastating control over the canonical chain. While the Latest
Message Driven (LMD) aspect of current PoS Ethereum prevents a straightforward applica-
tion of this attack, our second attack shows how LMD specifically can be exploited to obtain
a new variant of the balancing attack that overcomes a recent protocol addition that was in-
tended to mitigate balancing-type attacks. Thus, in its current form, PoS Ethereum without
and with LMD is vulnerable to our first and second attack, respectively.

1 Introduction

The currently proposed Proof-of-Stake (PoS) Ethereum consensus protocol [7, 5, 6] is constructed
from an application of the finality gadget Casper FFG [2] on top of the fork choice rule LMD
GHOST, a variant of the Greedy Heaviest-Observed Sub-Tree (GHOST) [20] rule which considers
only each participant’s most recent vote (Latest Message Driven, LMD). Subsequently, we refer as
validators to participants with stake that allows them to vote as part of the protocol. A slightly
simplified and analytically more tractable variant of the proposed PoS Ethereum protocol is given
by the Gasper protocol [3]. The protocol is recapitulated on a high level in Section 2.
This report continues a sequence of earlier works [16, 12, 13, 19, 18, 4, 10, 11, 17] that high-

lighted security vulnerabilities in PoS Ethereum and the constituent protocols Casper FFG and
LMD GHOST. More specifically, we report two new attacks.
The first attack, called avalanche attack and described in Section 3 (cf. [14]), suggests a

fundamental conceptual incompatibility between PoS on the one hand and the GHOST fork
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choice paradigm on the other hand. In a nutshell, ‘orphaned‘ so called ‘uncle blocks’ off the
canonical chain still influence the fork choice in GHOST. In Proof-of-Work (PoW), for which
GHOST is secure [9], this does not create a problem because the number of uncle blocks which
the adversary controls and by which it can influence the fork choice is bounded by the PoW
mechanism. PoS, on the other hand, allows the adversary to equivocate, i.e., for each block
production opportunity the adversary can produce an unlimited amount of equivocating blocks
extending different parent blocks of the block tree. As a result, GHOST’s way of accounting for
uncle blocks in fork choice gives the adversary much more influence over fork choice in PoS than
in PoW, casting doubt over whether GHOST should be used with PoS at all.
The LMD aspect of current PoS Ethereum interferes with a naive application of the avalanche

attack to PoS Ethereum. However, our second attack, described in Section 4 (cf. [15]), shows
how the LMD feature specifically can be exploited to obtain a new variant of the balancing attack
[12, 13]. This new attack also overcomes ‘proposer boosting’ [1], a recent protocol addition that
was intended to mitigate balancing-type attacks.
Thus, in its current form, PoS Ethereum without LMD is vulnerable to our first attack

(avalanche attack), and PoS Ethereum with LMD is vulnerable to our second attack (new LMD-
specific variant of earlier balancing attack).

2 Proof-of-Stake Ethereum Consensus Protocol

Let Ledgerti denote the transaction ledger output by honest validator i at time t. Security of a
consensus protocol such as PoS Ethereum is comprised of safety and liveness:

• Safety: For any given times t, t′ and honest validators i, j, either Ledgerti is a prefix of
Ledgert

′
j , or vice versa. Less formally, the ledgers output by two honest validators at two

points in time are consistent with each other.

• Liveness: If a transaction tx is received by all honest validators by some time t, then tx
appears in Ledgert

′
i for any time t′ ≥ t + Tconf and for any honest validator i, where Tconf

is the protocol’s confirmation time. Less formally, transactions get confirmed in honest
validators’ ledgers with at most Tconf time delay.

We first describe a simplified version of PoS Ethereum without the LMD rule, reduced to
the relevant fork choice mechanics. Although we present a self-contained description, familiarity
with the protocols GHOST [20] and Gasper [3], as well as with the beacon chain’s fork choice
specification [7] and proposal weights2 [1] are useful for a deeper understanding of this section.
In the consensus protocol (also called Committee-GHOST), time proceeds in synchronized slots

of duration 2∆, since it is assumed that message delay between honest validators is bounded by
∆. For each slot, one proposer and a committee of W validators are drawn independently and
uniformly at random (without replacement for the committee members) from the N validators.
We say a slot is honest or adversarial if the corresponding block proposer is honest or adversarial,
respectively. The following fork-choice rule is used in the view of validator i at slot t to determine
a canonical block and its prefix of blocks as the canonical chain:

2https://github.com/ethereum/consensus-specs/pull/2730
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• Starting at the genesis block b0, sum for each child block b the number of unique valid
votes for that block and its descendents. Here, unique means counting only one vote per
committee member in each slot s < t. Valid means that the vote from a committee member
of slot s < t was cast for a block produced in a slot s′ ≤ s. Ties are broken by the adversary.

Add a proposal boost of Wp to the score of b if b or one of its descendants is a valid
proposal from the current slot t. Here, valid means that the block is not from a future slot,
was produced by the proposer of slot t, and that proposal time slots along block chains are
strictly increasing.

• Pick the child block b∗ with highest score (cf. GHOST rule [20]), breaking ties adversarially.

• Recurse (b0 ← b∗) until reaching a leaf block. Output that block.

At the beginning of each slot, the slot’s proposer determines a block using the fork-choice rule
and extends it with a new proposal. Half way into each slot (i.e., ∆ time after the proposal
and after the beginning of the slot), the slot’s committee members determine a block using the
fork-choice rule in their local view and vote for it. The unit of time is a time slot. A block from
slot t and its prefix are confirmed and output as the ledger if and only if at time t+Tconf +

1
2 (i.e.,

at the time of voting in slot t + Tconf), the block is in the chain determined by the fork-choice
rule in the view of the respective honest validator. Here, Tconf is the confirmation time.
For simplicity, we assume a fraction β such that (a) for any given slot the probability of the

block proposer being adversarial is at most β, and (b) the fraction of adversarial validators in
any committee is at most β throughout the protocol’s execution.

The LMD rule modifies the above protocol as follows. Every validator keeps a table of ‘latest
votes’ received from the other validators, in the following manner: When a valid vote from a
validator is received, then the table entry for that validator is updated, if and only if the new
vote is from a slot strictly later than the current entry. Hence, when a validator observes a slot-t
vote from the committee member i of some slot t, it records this vote and ignores all subsequent
slot-t′ votes for t′ ≤ t by i. Thus, if a validator receives two equivocating votes from the same
validator for the same time slot, the validator counts only the vote received earlier in time.

3 Avalanche Attack on Proof-of-Stake GHOST

We describe a generic attack on PoS GHOST variants. This points to conceptual issues with the
combination of PoS and GHOST, awareness of which might be of interest beyond PoS Ethereum
fork choice design. PoS Ethereum, as it stands, is not susceptible to this attack (due to LMD,
which comes with its own problems, see Section 4).
We assume basic familiarity with GHOST [20] and Gasper [3]. For details, we refer the inter-

ested reader to the beacon chain’s fork choice specification [7] and earlier attacks [12, 13].

3.1 High Level Description

The avalanche attack on PoS GHOST combines selfish mining [8] with equivocations. The ad-
versary uses withheld blocks to displace an honest chain once it catches up in sub-tree weight
with the number of withheld adversarial blocks. The withheld blocks are released in a flat but
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Figure 1: First, the adversary withholds its flat-but-wide sub-tree of k = 6 withheld blocks, while
honest nodes produce a chain. (Green and red indicate honest and adversarial blocks
respectively, and the numbers on blocks indicate which block production opportunity
of honest/adversary they correspond to.)

wide sub-tree, exploiting the fact that under the GHOST rule such a sub-tree can displace a long
chain. Only two withheld blocks enter the canonical chain permanently, while the other withheld
blocks are subsequently reused through equivocations to build further sub-trees to displace even
more honest blocks. The attack exploits a specific weakness of the GHOST rule in combina-
tion with equivocations, namely that an adversary can reuse ‘uncle blocks’ in GHOST, and thus
such equivocations contribute to the weight of multiple ancestors. This casts doubt over whether
GHOST should be used with PoS at all.
We also provide a proof-of-concept implementation for vanilla PoS GHOST and Committee-

GHOST.3 By ‘vanilla PoS GHOST’, we mean a one-to-one translation of GHOST [20] from proof-
of-work lotteries to proof-of-stake lotteries. In that case, every block comes with unit weight. By
‘Committee-GHOST’ we mean a vote-based variant of GHOST as used in PoS Ethereum, where
block weight is determined by votes and potentially a proposal boost [1]. Subsequently, we first
illustrate the attack with an example, then provide a more detailed description, and finally show
plots produced by the proof-of-concept implementation.

3.2 A Simple Attack Example

We illustrate the attack using a slightly simplified example where the adversary starts with k = 6
withheld blocks and does not gain any new blocks during the attack. In this case, the attack
eventually runs out of steam and stops. (In reality, the larger the number of withheld blocks,
the more likely the attack continues practically forever, and even for low k that probability is
not negligible.) Still, the example illustrates that k = 6 blocks are enough for the adversary to
displace 12 honest blocks—not a good sign.
First, the adversary withholds its flat-but-wide sub-tree of k = 6 withheld blocks, while honest

3Source code: https://github.com/tse-group/pos-ghost-attack
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Figure 2: Once honest nodes build a chain of length k = 6, the adversary releases the withheld
blocks, and displaces the honest chain.
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Figure 3: Note that the adversary can reuse its blocks 3, 4, 5, 6. Honest nodes build a new chain
on top of 2 → 1 → Genesis. Once that new chain reaches length 4, the adversary
releases another displacing sub-tree.
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Figure 4: Finally, note that the adversary can reuse its blocks 5, 6. Honest nodes build a new
chain on top of 4 → 3 → 2 → 1 → Genesis. Once the new chain reaches length 2, the
adversary releases the last displacing sub-tree.

nodes produce a chain (cf. Figure 1). (Green and red indicate honest and adversarial blocks
respectively, and the numbers on blocks indicate which block production opportunity of hon-
est/adversary they correspond to.) Once honest nodes build a chain of length k = 6, the adversary
releases the withheld blocks, and displaces the honest chain (cf. Figure 2). Note that the adver-
sary can reuse its blocks 3, 4, 5, 6. Honest nodes build a new chain on top of 2 → 1 → Genesis.
Once that new chain reaches length 4, the adversary releases another displacing sub-tree (cf.
Figure 3). Finally, note that the adversary can again reuse its blocks 5, 6. Honest nodes build
a new chain on top of 4 → 3 → 2 → 1 → Genesis. Once the new chain reaches length 2,
the adversary releases the last displacing sub-tree (cf. Figure 4). Honest nodes now build on
6 → 5 → 4 → 3 → 2 → 1 → Genesis. All honest blocks so far have been displaced. Overall,
with this strategy, the adversary gets to displace Θ(k2) honest blocks with k withheld adversarial
blocks.

3.3 Attack Details

Selfish mining and equivocations can be used to attack PoS GHOST (using an ‘avalanche of
equivocating sub-trees rolling over honest chains’—hence the name of the attack). The following
description is for vanilla PoS GHOST, but can be straightforwardly translated for Committee-
GHOST. Variants of this attack work for Committee-GHOST with proposer boosting [1] as well.
Suppose an adversary gets k block production opportunities in a row, for modest k. This

eventually happens with considerable probability. The adversary withholds these k blocks, as
in selfish mining (cf. Figure 1 above). On average, more honest blocks are produced than
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adversary blocks, so the developing honest chain eventually ‘catches up’ with the k withheld
adversarial blocks. In that moment, the adversary releases the k withheld blocks. However, not
on a competing adversarial chain (as in selfish mining for a Longest Chain protocol), but on a
competing adversarial sub-tree of height 2, where all but the first withheld block are siblings, and
children of the first withheld block. Due to the GHOST weight counting, this adversarial sub-tree
is now of equal weight as the honest chain—so the honest chain is abandoned (cf. Figure 2 above).
At the same time, ties between equal-weight sub-trees are broken such that honest nodes from
now on build on what was the second withheld block. This allows the adversary to reuse in the
form of equivocations the withheld blocks 3, 4, ..., k on top of the chain 2→ 1→ Genesis formed
by the first two withheld adversarial blocks, which is now the chain adopted by the honest nodes.
As an overall result of the attack so far, the adversary started with k withheld blocks, has used

those to displace k honest blocks, and is now left with equivocating copies of k − 2 adversarial
withheld blocks that it can still reuse through equivocations (cf. Figure 3 above). In addition,
while the k honest blocks were produced, the adversary likely had a few block production op-
portunities of its own, which get added to the pool of adversarial withheld blocks. Note that
the attack has renewed in favor of the adversary if the adversary had two new block production
opportunities, making up for the two adversarial withheld blocks lost because they cannot be
reused. The process is now repeated (cf. Figure 4 above): The adversary has a bunch withheld
blocks; whenever honest nodes have built a chain of weight equal to the withheld blocks, then the
adversary releases a competing sub-tree of height 2; the chain made up from the first two released
withheld blocks is adopted by the honest nodes, the other block production opportunities can
still be reused in the future through equivocations on top of it and thus remain in the pool of
withheld blocks of the adversary.
If the adversary starts out with enough withheld blocks k, and adversarial stake is not too

small, then the adversary gains 2 block production opportunities during the production of the k
honest blocks that will be displaced subsequently, and the process renews (or even drifts in favor
of the adversary). No honest blocks enter the canonical chain permanently—a liveness failure.
Also, all honest blocks are eventually removed from the canonical chain, after increasing amount
of time—a safety failure for any fixed confirmation time.

3.4 Proof-of-Concept Implementation

For illustration purposes, we plot a snapshot of the block tree resulting after 100 time slots in
our proof-of-concept implementation—see Figure 5 for PoS GHOST and Figure 6 for Committee-
GHOST.4 The attack is still ongoing thereafter, and as long as the attack is sustained, no honest
blocks remain in the canonical chain permanently.

3.5 Applicability to PoS Ethereum

Section 2 gives a description of the Committee-GHOST protocol based on the consensus protocol
of PoS Ethereum, albeit without the LMD aspect. The avalanche attack works on this protocol
as well. In particular, an adversary controlling any positive fraction of validators can still replace
Θ(k2) honest blocks with k withheld blocks in this protocol.

4Source code: https://github.com/tse-group/pos-ghost-attack
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Figure 5: Snapshot of the block tree resulting after 100 time slots in our proof-of-concept im-
plementation of the avalanche attack on PoS GHOST (adversarial blocks: red, honest
blocks: green; adversarial stake: 30%, initially withheld adversarial blocks: 4)
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Figure 6: Snapshot of the block tree resulting after 100 time slots in our proof-of-concept im-
plementation of the avalanche attack on Committee-GHOST (adversarial blocks: red,
honest blocks: green; adversarial stake: 20%, initially withheld adversarial blocks: 12)

PoS Ethereum’s LMD (Latest Message Driven) aspect interferes with this attack, but comes
with its own challenges, as shown in Section 4. Nevertheless, the avalanche attack suggests a
fundamental conceptual incompatibility between PoS (which enables equivocations) and GHOST
(where equivocating uncle blocks disproportionately influence fork choice) and casts doubt over
whether GHOST should be used with PoS at all.

4 LMD-Specific Balancing Attack on PoS Ethereum

Proposal weights (also called ‘proposer boosting’) were suggested [1] and implemented5 to mitigate
earlier balancing attacks [12, 13]. However, we show that the LMD aspect of PoS Ethereum’s fork
choice enables balancing attacks even with proposal weights. This is particularly dire because
PoS GHOST without LMD is susceptible to the avalanche attack, as described in Section 3. A
version of PoS Ethereum with the LMD rule is described in Section 2.

4.1 Preliminaries

Recall the following from earlier discussion of balancing-type attacks [12, 13]:

• On a high level, the balancing attack consists of two steps: First, adversarial block pro-
posers initiate two competing chains—let us call them Left and Right. Then, a handful of
adversarial votes per slot, released under particular circumstances, suffice to steer honest
validators’ votes so as to keep the system in a tie between the two chains and consequently
stall consensus.

• It is quite feasible for an adversary to release two messages to the network in such a way
that roughly half of the honest validators receive one message first and the other half of
the honest validators receives the other message first. This certainly holds in the setting of
adversarial network propagation delay [12] but also in the weaker setting of random network
propagation delay [13].

5https://github.com/ethereum/consensus-specs/pull/2730
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• The LMD rule deals with equivocating votes in the following way. Under LMD, every
validator keeps a table of the ‘latest message’ (here, each message is a vote) received from
each other validator, in the following manner:6 When a valid vote from a validator is
received, then the ‘latest message’ table entry for that validator is updated if and only if
the new vote is from a time slot strictly later than the current ’latest message’ table entry.
Thus, if a validator observes two equivocating votes from the same validator for the same
time slot, the validator considers the vote received earlier in time.

4.2 High Level Description

The LMD rule gives the adversary a remarkable power in a balancing attack: Once the adversary
has set up two competing chains, it can equivocate on them. The release of these equivocating
votes can be timed such that the vote for Left is received by half of honest validators first, and
the vote for Right is received by the other half of honest validators first. Honest validators are
split in their views concerning the ‘latest messages’ from adversarial validators. Even though all
validators will soon have received both votes, the split view persists for a considerable time due
to the LMD rule, and since the adversarial validators release no votes for later slots.

As a result, half of the honest validators will see Left as leading, and will vote for it; half
will see Right as leading, and will vote for it. But since the honest validators are split roughly
in half, their votes balance, and they continue to see their respective chain as leading. (The
adversary might have to release a few votes every now and then to counteract any drift stemming
from an imbalance on the chains different honest validators see as leading.) This effect is so
stark, that it could only be overcome using proposer boosting if the proposal weight exceeds the
adversary’s equivocating votes (which is some fraction of the committee size) by more than a
constant factor. Otherwise, if the adversary leads that constant factor number of slots, it can
surpass the proposer boost again. In that case, the proposer effectively overpowers the committees
by far, thus eliminating the purpose of committees.

4.3 A Simple Example

Let W = 100 denote the number of validators per slot. Suppose the proposal weight is Wp =
0.7W = 70, and the fraction of adversarial validators is β = 0.2. Furthermore, for simplicity,
assume that the attack starts when there are five consecutive slots with adversarial proposers.
During the first four slots, the adversary creates two parallel chains Left and Right of 4 blocks

each, which are initially kept private from the honest validators. Each block is voted on by the 20
adversarial validators from its slot. Thus, there are equivocating votes for the conflicting blocks
proposed at the same slot. For the fifth slot, the adversary includes all equivocating votes for
the Left chain into a block and attaches it on the Left chain; and all the equivocating votes for
the Right chain into an equivocating block and attaches it on the Right chain. With this, votes
are ‘batched’ in the following sense. The adversary releases the two equivocating blocks from the
fifth slot in such a way that roughly half of the honest validators see the Left block first (call
HLeft that set of honest validators) and with it all the equivocating votes for the Left chain; and
half of the honest validators see the Right block first (call HRight that set of honest validators)

6https://github.com/ethereum/consensus-specs/blob/72d45971310a24f6e5ecfb149d23c9fac4c7878a/

specs/phase0/fork-choice.md#update_latest_messages
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Figure 7: By the LMD rule, validators in HLeft and HRight believe that Left and Right have 80
votes, respectively. They also believe that the respective other chain has 0 votes (as
the later arriving votes are not considered due to LMD).

and with it all the equivocating votes for the Right chain. (Note that this trick is not needed
in networks with adversarial delay, where the release of equivocating votes can be targeted such
that each honest validator either sees all Left votes first or all Right votes first.) By the LMD rule,
validators in HLeft and HRight believe that Left and Right have 80 votes, respectively. They also
believe that the respective other chain has 0 votes as the later arriving votes are not considered
due to LMD (cf. Figure 7).
Now suppose the validator of slot 6 is honest and from set HLeft. Then, it proposes a block

extending Left. Left gains a proposal boost equivalent to 70 votes (cf. Figures 8 and 9). Thus,
validators in HLeft see Left as leading with 150 votes and vote for it. Validators in HRight believe
that Left has 70 votes while Right has 80 votes, so they vote for Right. As a result, their vote is
tied—Left increases by roughly half of honest votes and Right increases by roughly half of honest
votes (cf. Figure 10). At the end of the slot, the proposer boost disappears. In the view of each
honest validator, both chains gained roughly the same amount of votes, namely half of the honest
validators’ votes. Assuming a perfect split of |HLeft| = |HRight| = 40, Left:Right is now 120:40 in
the view of HLeft and 40:120 in the view of HRight (up from 80:0 and 0:80, respectively).
This pattern repeats in subsequent slots, with the honest validators in HLeft and HRight solely

voting for the chains Left and Right, respectively, thus maintaining a balance of weights the in
global view and perpetuating the adversarially induced split view—In the LMD view of each
validator, they keep voting for the chain they see leading, and ‘cannot understand’ why other
honest validators keep voting for the other chain. (cf. Figure 11)
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Figure 8: Suppose the validator of slot 6 is honest and from set HLeft. Then, it proposes a block
extending Left, which gains a proposal boost equivalent to 70 votes.
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Figure 10: As a result of the split view, the vote of slot 6 is tied—Left increases by roughly half
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Figure 11: At the end of slot 6, the proposer boost disappears. In the view of each honest
validator, both chains gained roughly the same amount of votes, namely half of the
honest validators’ votes. Assuming a perfect split of |HLeft| = |HRight| = 40, Left:Right
is now 120 : 40 in the view of HLeft and 40 : 120 in the view of HRight (up from
80 : 0 and 0 : 80, respectively). The pattern of Figures 7–11 repeats in subsequent
slots, with the honest validators in HLeft and HRight solely voting for the chains Left
and Right, respectively, thus maintaining a balance of weights (in global view–in the
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perpetuating the adversarially induced split view.
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