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Abstract. One of the most significant challenges is the secure user authentication. If it becomes breached,

confidentiality and integrity of the data or services may be compromised. The most widespread solution for
entity authentication is the password-based scheme. It is easy to use and deploy. During password registration

typically users create or activate their account along with their password through their verification email, and

service providers are authenticated based on their SSL/TLS certificate. We propose a password registration
scheme based on identity-based cryptography, i.e. both the user and the service provider are authenticated by

their short-lived identity-based secret key. For secure storage a bilinear map with a salt is applied, therefore

in case of an offline attack the adversary is forced to calculate a computationally expensive bilinear map for
each password candidate and salt that slows down the attack. New adversarial model with new secure password

registration scheme are introduced. We show that the proposed protocol is based on the assumptions that

Bilinear Diffie-Hellman problem is computationally infeasible, bilinear map is a one-way function and Mac is
existentially unforgeable under an adaptive chosen-message attack.

1. Introduction

Information systems are only as secure as their weakest point. Entity authentication is based on possession
of secret information, known or verified only by the entities participating in the process. Many authentication
systems depend on a password, which is a string of characters used to verify the identity of a user. Since it
is easy to use and deploy, password usage is a widespread form of user authentication. Passwords are applied
in many cryptographic schemes and systems, e.g. password authentication schemes or Password-Based Key
Derivation Function (PBKDF)[18, 19, 20, 21].

Furthermore, in certain cases passwords serve as authentication data for key exchange protocols. The basic
setting takes two parties into account that share the same password with the goal of establishing shared master
or session keys. Such model, known as Password-Authenticated Key Exchange (PAKE), was first studied by
Bellovin and Merritt [22] and later formalized by Bellare et al. [23] in the game-based indistinguishability
approach but several PAKE protocols were also recommended [17, 14, 15, 16].

In practice, passwords are often used for Single Sign-On (SSO) [24, 25] or the Kerberos authentication protocol
[26]. These solutions are usually centralized and their main advantage is that users only need to authenticate
themselves once. However, there are some disadvantages, including the Single Point of Failure, the Multi-User
Computer Risks or Potential Data Leaks, which can pose serious threats if an attacker successfully compromises
a user or service provider and it can break the security of multiple accounts [42, 41].

Even though the remote registration of passwords is probably one of the most important aspects of security
and the initial step of any remote password-based protocol, it receives insufficient attention. In cryptographic
password-based protocols, password registration is often skipped assuming that the passwords are set securely
and known to the parties before the protocol is executed and implemented. During the implementation of
registration, the chosen passwords are transmitted to the server through a secure channel (e.g. TLS channel)
and users create or activate their account with their password through the verification email. Nevertheless, the
TLS implementations are rather complex with the use of certifications as the users need to manage and update
them. Registrations may be incomplete, and one of the shortcomings is when the TLS channel is not used, it
may lead to a breach and leakage of confidential data (which is in conflict with the GDPR).

Moreover, the vulnerabilities of password schemes are well-known. Users may choose ”weak” passwords or
not change the default passwords, which are easy for attackers to guess. Another criticism of passwords is that if
any site where a certain password is reused becomes compromised and the system administrators do not follow
the best industry practices, the participants’ other accounts may also become compromised by the attacker who
can guess the password with an offline attack. Several attacks aim to figure out passwords, applying dictionary,
rainbow tables or brute-force attack. An attacker conducting an offline attack hashes each password guess.
While many common hashing algorithms were designed to make execution quicker, certain hashing algorithms
were deliberately designed to be slow in order to hobble attackers conducting an offline attack. For example
the bcrypt hashing scheme [43] can be configured with a cost factor that exponentially increases its execution
time by requiring a sequential series of computations. Besides the password, usually a salt value is also used.
Salt is a short (12 - 48 bits) random piece of data that is concatenated with the password before hashing. It is
then stored with the hash of password information. An attacker who succeeds in stealing the password file or
database is forced to run an exhaustive, computationally expensive offline attack to find the users’s passwords
from the salted hashes. Another way to make cracking of hashed passwords more complicated is to iterate the
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hash calculation [38]. Even with a very strong hardware an attacker would be able to crack only a small number
of passwords in a given time frame. However, password cracking methods and the algorithm speed improved.
The ”password-cracking tools” can be very efficient (such as Hashcat [4] and John the Ripper [5]) and it can
be assumed that the hash values of the leaked password are not safer than plain passwords when compromised
by an attacker [3, 2, 1].

Additional solutions could also be applied for improving password security (and increasing password entropy),
such as password meters, pre-assigned strong passwords, and salts. An alternative login method could be used
where smart cards perform the authentication, however, these methods include another set of flaws [13, 11, 12,
10]. The password policies serve to rule out potentially weak passwords and by this contribute to the protection
of IT systems. When implementing a web-based password authentication mechanism, typically a password
registration is applied with the password policy determined by the server. The corresponding compliance check
of the password is performed either by the client or on the server side and depends on the available trust
assumptions. Another drawback of registrations is that the client’s password is revealed to the server, which
means clients need to trust the server to process and store the received password. However, server compromise
attacks are often based on plain password databases where passwords are easily revealed, thus they must be
protected (e.g. by password hashing). On the server side the hash of the password is stored for each user in a
password file or database. During login, passwords usually appear in cleartext at the server, and security can
be harmed if the TLS channel is established with a compromised server’s public key (a major concern given
today’s common Public Key Infrastructure failures). When PKI becomes compromised, the software does not
verify certifications correctly and users accept invalid or suspicious certifications.

To improve the security of password registration, Kiefer and Manulis introduced a new family of protocols
called Blind Password Registration (BPR) for Verifier-Based Password-Authenticated Key Exchange (VPAKE)
[8] and two-server PAKE [9]. They proposed Zero-Knowledge Password Policy Checks (ZKPPC) which enables
blind registration. Users register their chosen password with a server and prove that it suits the password
policy without revealing any information about the password, which prevents password leakage from the server.
BPR protocol can be executed over the TLS channel established between the client and the server. They
define a security model for stand-alone blind password registration protocols which fulfil policy compliance and
dictionary attack resistance requirements.

An alternative to certificate-based cryptography and TLS is the identity-based cryptography, which was
first proposed by Shamir in 1984 [7]. The basic idea of identity-based cryptography involves an identity-based
asymmetric key pair where an arbitrary string can be used as a user public key. For this, a trusted authority
or Private Key Generator (PKG) is required to generate private keys from public keys and a master secret key.
The PKG also publishes public information required for all encryption, decryption, signature, and verification
algorithms in the system. This is referred to as Identity-Based Cryptography (IBC) and Boneh and Franklin
[6] formalized the notion of Identity-Based Encryption (IBE), which uses bilinear pairings over elliptic curve
groups. In the IBE setting, the public key of a user can be any arbitrary string which is typically an e-mail
address. There is no need for Bob to go to the Certificate Authority to verify Alice’s public key. In this way,
an IBE can greatly simplify certificate management. However, Identity-Based Cryptography has a well-known
disadvantage. If the PKG is corrupted and PKG’s secret key is revealed, all messages and secret keys are
compromised. Our proposed scheme provides password secrecy even when PKG is attacked. A cross-platform
identity-based system using Webassembly is suggested in [44]. They recommend an efficent library, called
CryptID, which is an opensource IBC implementation for desktops, mobiles, and IoT platforms.

1.1. Our contribution. In this paper, an identity-based password registration scheme is proposed, which
aims to register users to service providers. Identity-Based Cryptography is well applicable whenever unique
identification data can be assigned to an entity in a controlled way. In an enterprise environment for example,
after the employees provide their personal data they are delegated a unique enterprise email address. Another
example can be when we buy a car, as the owner of the car is assigned a number-plate. The importance of
registration is shown by the fact that in modern cars, manufacturers provide the possibility to connect vehicles
to the owner through a user account. These accounts also require the user to register a traditional password.

In our case, Identity-Based Cryptography is only used for password registration, where the master secret
key is changed daily. This way, the new entrant receives a short-lived secret key from the PKG server, thus
eliminating vulnerability of the secret key in Identity-Based Cryptography. Corruption of the secret key does
not result in the change of the public key, with new system parameters new secret keys are generated.

We assume that the server has an extra secret key besides the identity-based key pair. This secret key ensures
secrecy and prevents the attacker from accessing the password information from the earlier registration even
when the PKG becomes corrupt. In this system, PKG may be distributed, which can further increase security
and applying the scheme can suit distributed systems.

In our scheme, a device (e.g. smart card) or an application is required, which generates the salt value. It
also checks the password which is chosen by the user. We assume that the password policy, which is demanded,
is applied on the client side (such as JavaScript API or other application). This device is used by the user
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only once during the process of registration. During transmission, mutual authentication of participants and
confidentiality of the password and the salt are ensured by applying the temporary identity-based key pair. The
server calculates the result of the bilinear map of the password and the salt, and stores the calculated value
along with the salt.

Our registration scheme can be applied for standard user login applications, the server receives the password
in the usual way, then performs the bilinear mapping with the salt and compares it with the stored value. Our
scheme also fits to those authentication processes, when the bilinear mapping is performed on the client side,
and the value is sent to the server for verification. The proposed protocol is suitable for the registration phase
of the two-factor or one-factor password-based authentication process, depending on whether the device is used
for authentication or not.

Note that our proposed registration is also fully blind, as users’ passwords and temporary PKG secret key
are not known by the server during the registration and subsequent authentication.

In contrast to traditional registration solutions, our solution does not require a TLS channel and can also
omit the associated certificate management, which can be efficiently implemented in a corporate or educational
institution. According to our implementation, our protocol is more cost-effective than the above-mentioned
TLS-based and the other blind solutions ([8], [9]). It is not necessary to manage certificates or execute costly
cryptographic primitives (digital signature).

For password verification and storage, bilinear mapping is used, which meets the requirements of password
storage (one-way function). In addition, the bilinear mapping applied for password storage is a ”slow” function
and it can be extended for multi-rounds.

The registration we recommend is flexible, which is optimal for SSO and Kerberos, but it is also suitable for
systems where different passwords must be applied for each service. The bilinear map of the password and the
salt can be used as a long-lived symmetric key and applied for entity authentication or session key generation.

Comparison Certificates Blind Interactions
BPR - two server yes yes 3
BPR - VPAKE yes yes 3
TLS-based yes no 4
Our proposition no yes 2

We have also formalized the security analysis of the registration protocol. Unlike other schemes ([8], [9])
besides the password hashing scheme we also consider the interactions, when the password information is sent
securely. Consequently, we prove that our solution is secure against online attacks as well. We introduce the
definition for a secure password registration scheme, provide an adversarial model and show that our scheme is
provably secure. Security of the proposed registration protocol is based on the assumptions that Bilinear Diffie-
Hellman problem is computationally infeasible, the bilinear map is a one-way function and Mac is existentially
unforgeable under an adaptive chosen-message attack in the Random Oracle Model.

Comparing the offline part of our scheme to [8] and [9], our protocol is still resistant against offline attacks
even when the server is corrupted and the client is weakly corrupted.

1.2. Outline of article. In Section 2, we describe the necessary preliminaries and demonstrate the steps of the
protocol between a user and a server. In Section 3, we present a security analysis, which includes the security
model with the security requirements. We also formalize the adversarial model, and security proofs. Section 4
contains implementation issues that is followed by our conclusion in Section 5.

2. Our proposed registration protocol

In this section, we introduce a password registration protocol with password and salt confirmation, i.e. the
client is able to confirm that the server knows the map of the correct password and the salt.

The protocol consists of a Setup and a Registration phase. During the Setup system parameters and keys
are generated for the participants, during the Registration phase the client sends its password information to
the server and confirms that the server has received the verification value. The protocol fulfils all the necessary
requirements, such as password secrecy, mutual authentication and resistance against offline attacks.

2.1. Preliminaries. Let us review the definition of the admissible bilinear map [31].

Definition 1. Let G additive and GT multiplicative be two groups of order q for some large prime q. A map
ê : G×G→ GT is an admissible bilinear map if satisfies the following properties:

(1) Bilinear: We say that a map ê : G×G → GT is bilinear if ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G and
all a, b ∈ Z.

(2) Non-degenerate: The map does not send all pairs in G × G to the identity in GT. Since G, GT are
groups of prime order, if P is a generator of G then ê(P, P ) is a generator of GT.

(3) Computable: There is an efficient algorithm to compute ê(P,Q) for any P,Q ∈ G.
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The Weil and Tate pairings prove the existence of such constructions. Typically, G is an elliptic-curve group
and GT is the multiplicative group of a finite field. The Bilinear Diffie-Hellman Problem is strongly related to
the bilinear map.

Definition 2. Bilinear Diffie-Hellman Problem. Let ê : G × G → GT be a bilinear map on (G,GT). Given
(P, aP, bP, cP ) for some a, b, c ∈ Z∗

q , compute ê(P, P )abc.

Definition 3. One-way Pairing [35]. Let ê : G × G → GT be a bilinear map on (G,GT). We say that ê is a
one-way pairing if for any polynomial time (in a security parameter κ) algorithm A that takes as input G ∈ G
and g ∈ GT and produces as output an element of G the probability Pr[ê(G,A(G, g)) = g] is negligible. The
probability is taken over the possible values of G and g.

Definition 4 (Computational Diffie-Hellman Problem). Let q be a prime a, b ∈ Z∗
q and G be a multiplicative

group of order q. For a given (g, ga, gb) (with g ∈ G) compute gab.

Lemma 1. Let ê : G × G → GT be a bilinear map defined as in Definition 1. Let ⟨G⟩ = G and ⟨g⟩ = GT

be any elements such that ê(G,G) = g. If the Computational Diffie-Hellman (CDH) Problem is infeasible for
g, ga, gb ∈ GT with any a, b ∈ Z∗

q then ê is a one-way pairing.

Proof. Let G be a generator of G and g, ga, gb ∈ G be given as was described in the lemma. Suppose now that
ê is not one-way, thus we can find (in polynomial time) G1, G2 ∈ G such that ê(G,G1) = ga and ê(G,G2) = gb.
Since G is a generator in G, we can write G1 = xG and G1 = yG with some integers x, y. However since ê is
bilinear, x = a and y = b must be true. Thus ê(G1, G2) = ê(aG, bG) = ê(G,G)ab = gab which contradicts the
infeasibility of the CDH problem. □

Since our password hashing scheme uses bilinear pairings on elliptic curves, we need an efficient way to map
passwords first into Zp (with p given in the appendix), then these points of Zp into a point on the curve.
Mapping passwords into Zp can be done easily by concatenating the ASCII value of each character, then taking
the result mod p. For mapping messages (passwords) from Zp to an elliptic curve over Zp it is desirable to
choose an ”almost always” injective encoding. A similarly good property would be that the mapping is efficiently
computable and reversible, so we can easily obtain both the encoded message from an (almost) arbitrary element
of Zp and also our initial message (password) from (almost) any given curve point. Finally for cryptographic
algorithms it is also desirable that the mapping is surjective, since otherwise our possible message (password)
space is unnecessarily limited. Unfortunatley general encodings which fulfills these requirements are very scarce,
however in [34] the authors provide such a mapping.

Since the results in [34] are formulated in a more general form, stating them here is out of the scope of the
present paper, thus we only provide their main result in a simplified form and for the exact technical details we
refer to [34] Sections 1 and 2. From this point let p be an odd prime congruent to 3 modulo 4 and E : y2 = f(x)

is an elliptic (hyperelliptic) curve over Zp with f(x) being an odd monic polynomial. Denote by
(

·
p

)
and
√
·

the Legendre symbol and the square root over Zp. Finally let ε(x) =
(

f(x)
p

)
. The proposed encoding is

tr : Zp −→ E

x 7→
(
ε(x) · x, ε(x)

√
ε(x) · f(x)

)
Since ε(x) ∈ {−1, 0, 1} and for every x ∈ Zp f(−x) = −f(x) then it is clear that (ε(x)

√
ε(x) · f(x))2 = f(ε(x)·x)

holds. Let T denote the set of roots in Zp of f(x) and W the set of Weierstrass points of E. In [34] the authors
proved that the encoding tr induces a bijection Zp\T −→ E \W . In our case the elliptic curve is E : y2 = x3+x
over Zp, where the prime p is given in the appendix. It can be verified that both requirements stated in [34]
are fulfilled thus the theorem holds for E. For this curve |T | = 1 and since it is genus 1, then |W | ≤ 4. Thus
based on the results stated in [34] tr is ”almost always” a bijection.

It can also be seen that this mapping is efficiently reversible, because for any point P = (x, y) ∈ E the
numerical value of the original message (password) is either x or −x.

The only thing what remains is to prove that tr can be efficiently computed. In Section 3.2 of [34] the authors
provide an algorithm (Algorithm 1. in the cited paper) to calculate tr without calculating the Legendre symbol
and the square root by using only a single exponentiation and several multiplications. Thus it can be concluded
that tr satisfies every requirement stated above.

2.2. Description of cryptographic primitives. Before we prove the security properties of the proposed
protocol, the necessary security assumptions for the basic primitives are detailed.

Definition 5. A message authentication code (or Mac) is a tuple of polynomial-time algorithms (Key,Mac, V er)
such that:

(1) The key-generation algorithm Key takes as input the security parameter 1κ and outputs a key K with
|K| ≥ κ. Key is probabilistic.
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(2) The tag-generation algorithm Mac takes as input a key K and a message m ∈ {0, 1}∗, and outputs a
tag t. We write this as t := MacK(m). We assume that Mac is deterministic.

(3) The verification algorithm V er takes as input a key K, a message m, and a tag t. It outputs a bit b,
with b = 1 meaning valid and b = 0 meaning invalid. We assume without loss of generality that V er is
deterministic, and so write this as b := V er(m, t).

Consider the experiment for a message authentication code (Key,Mac, V er), an adversary A, and security

parameter κ, as follows. The message authentication experiment ExpeforgeMac (A):
(1) A random key K is generated by running Key(1κ).
(2) The adversary A is given input 1κ and oracle access to MacK(.). The adversary eventually outputs a

pair (m, t).
(3) The output of the experiment is defined to be 1 if and only if V erK(m, t) = 1 and m was never asked

from the oracle MacK(.) before.

Definition 6. A message authentication code (Key,Mac, V er) is existentially unforgeable under an adaptive

chosen-message attack, if for all probabilistic polynomial-time adversaries A, Pr[ExpeforgeMac (A) = 1] is negligible.
(Note that the attacker cannot choose Key.)

2.3. Setup. We differentiate two participants: A client (C) requesting registration and a server (S). During
the setup, all system parameters and keys are generated for the identity-based environment. A Private Key
Generator (PKG) generates the identity-based secret keys for the participants. We denote the set of all binary
strings of finite length by {0, 1}∗. A security parameter k and the descriptions of groups G,GT of order q are
given, where q is a large prime, and the bilinear map ê : G × G → GT and the function tr from Section 2.1
are made publicly available. The descriptions include polynomial time (in k) algorithms to compute the group
operations in G,GT as well as ê.

We build up the identity-based environment as follows. Let P be a generator of G. Choose a random α ∈ Z∗
q

and generate parameters P, αP . The master secret key for the system is α and the system parameters par are
given by par = (G,GT, ê, tr, P, αP,H,Mac), where H : {0, 1}∗ → {0, 1}ι is a cryptographic hash function, where
ι is the size of the long-lived key being exchanged and Mac : {0, 1}∗ → {0, 1}ν is a Message Authentication
Code function, where ν, ι are not necessarily different. System parameters par are publicly known.

Identities (e.g. e-mail address) denoted by IDC and IDS are generated for the participants. Public keys are
derived, i.e. PKC = QC = tr(IDC) and PKS = QS = tr(IDS). The PKG calculates the participants’ secret
keys SKC = αQC and SKS = αQS . The server randomly generates x ∈ Z∗

q , and sends (QS , xαP ) to the PKG.

2.4. Registration phase. In the registration phase, a client (C) registers to the server (S) and sends the
chosen salted password securely with the salt. An identity-based setting is applied, all the benefits of Identity-
Based Cryptography are utilized, i.e. we leave the chain of trust (long certificate chains) and the Public Key
Infrastructure. We take advantages of the characteristics of the bilinear map ê including bilinearity and one-way
function. In this phase, mutual authentication between the client and the server is processed. Moreover, at
the end of this phase S stores the identity of C, the salt and the salted password securely received from C. A
long-lived key K is also exchanged. Figure 1 shows the process of registration between the client and the server.

Client (C) P, αP, xαP Server (S)
QC = tr(IDC) QS = tr(IDS)
αQC αQS , x
z ∈ Z∗

q random, psw password
R = tr(psw)
m = ê(QS , zxαP + αQC) · ê(zP,R)
K = H(ê(zP,R))
V = H(ê(QS , zxαP + αQC)||K)

QC ,zP,m,V−−−−−−−−−−−−−−−→
x · zP
K = m · ê(αQS , xzP +QC)
K ′ = H(K)

V
?
= H(ê(αQS , xzP +QC)||K ′)

r ∈ Z∗
q random

MacK′(r)
QS ,MacK′ (r),r←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

MacK′(r)
?
= MacK(r)

Store: QC , ê(zP,R), zP

Figure 1. Password registration protocol
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During the setup, system parameters including P, αP , the public keys QC , QS and (QS , xαP ) are made
public.

• C chooses a random value z ∈ Z∗
q which serves as a salt and a password psw. C computes the encoding

from Section 2.1 to get R = tr(psw). Subsequently, C creates a message m = ê(QS , zxαP + αQC) ·
ê(zP,R) and a verification value V = H(ê(QS , zxαP + αQC)||K), where || denotes the concatenation
of the messages. K = H(ê(zP,R)) serves as a key that is transferred with the server. Values QC , m,
V and zP are sent to server S. Value zP is the salt and stored in the server’s password database. The
salt is needed for S to verify the validity of ê(zP,R). Authentications of the client and the message are
based on the short-lived identity-based secret key αQC and the correctness of V .

• After receiving the registration request message (QC ,m, V, zP ) from C, S computesK = m·ê(αQS , xzP+
QC), where αQS is S’s short-lived secret key. Then S computes the value V ′ = H(ê(αQS , xzP +
QC)||K ′), where K ′ = H(K) and checks whether V = V ′ holds. If they are equal, then S is sure of the
authenticity of the client and the validity of the other values K and zP . S stores QC , ê(zP,R) and zP
in the database. Thereafter S generates a random value r ∈ Z∗

q and computes a Mac value MacK′(r).
S sends a response (QS ,MacK′(r), r).

• C receives the S message and calculates the Mac value applying K = H(ê(zP,R)). If MacK(r) is
correct, then C is successfully authenticated by S, and C also confirms that server S knows ê(zP,R).

In the proposed password registration protocol, the client chooses a password (psw) and the salt (z) is
generated. The bilinear map - a one-way map - of the password and the salt (ê(zP,R)) is securely sent and
stored on server side. The authenticity of message ê(zP,R) and zαP is verified by the server as follows. The
identity of the sender is verified by calculating ê(zP,R) from message m and xzP , applying secret server key
αQS . Data integrity of the messages is verified by checking the correctness of V . The salt information (zP ) is
sent randomized to provide its confidentiality. Confidentiality of ê(zP,R) is assured. Value ê(QS , zxαP +αQC)
randomized by x is multiplied by ê(zP,R).

The client is able to confirm that the server has received and stored the correct password and salt information
by checking the correctness of the MacK′(r) value. In order to prevent replay attacks, value r ensures that the
Mac value is fresh for every registration. Considering the time complexity, this password registration is very
efficient, since there is only one bilinear map calculation on user side and one bilinear mapping on server side
besides the Mac, hash operations and point multiplication by a scalar.

3. Security analysis

In this section first we define the security model, then we present the definition for a secure password
registration protocol. Finally we state that our proposed scheme is a secure password registration protocol.
First we review informally the security requirements.

For a secure password registration protocol basic requirements are mutual authentication of the participants,
password secrecy during transmission and resistance against offline attacks. Secure mutual authentication of
participants prevents adversaries to impersonate a legal user or server. During the password registration, the
newly generated password is confidential, an adversary should not have any information about it. It is essential
that password information should be stored on server side in a way that it should be secure against offline
attacks (e.g. dictionary attack, rainbow tables). By the end of the protocol the client is able to verify that the
server knows and stores the proper password information.

3.1. Security Model. In 1993 M. Bellare and P. Rogaway proposed an indistinguishability-based model (see
[27], [28]). The basic concept of this security model is applied for password registration protocols [37] and [36].

In [36] authors consider the dictionary attack resistance property, i.e. server learns nothing about the
password in the verifier. Passive attacks are considered in which the adversary must not be able to retrieve
the password from the password verifier faster than with a brute-force attack. In their security model three
oracles are listed. The Execute(C,S) oracle models a passive attack that executes the protocol. It returns the
protocol transcript and the state of the server instance S. Oracle Send(C, S,m) models an active attack that
sends message m from client instance C, to server instance S. It returns the server’s answer m if there exists
any. Oracle Finalise(C,S,psw) takes a client, server pair (C, S) and a password pw as input, and returns 1
iff there exists a server instance that accepted password verifier information for pw.

In [37] the adversary has access to oracles Setup, Send, Execute and Corrupt for interaction with the
protocol participants. Password blindness is defined by a distinguishing experiment where the attacker, after
interacting with the oracles, outputs a challenge comprising of two passwords, two clients, and a pair of servers.
After a random assignment of passwords to the two clients, the adversary interacts with the oracles again and
has to decide which client possesses which password.

We provide a security model that considers online attacks in addition to resistance against offline attacks.
Our proposed model takes the whole registration process into account unlike [37] and [36]. We have regard
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to all communication messages between the client and the server as well. Hence mutual authentication of the
participants and password secrecy are also studied during transmission. We define security goals for password
registration protocols that consider the whole registration process assuming the minimum requirements.

We detail the security model. Let 1κ denote the string consisting of κ consecutive 1 bits, where κ ∈ N
is a security parameter. ID is the union of the finite, disjoint, nonempty sets Client = {1, 2, . . . , T1(κ)} and
Server = {1, 2, . . . , T2(κ)}, where Ti(κ), i ∈ 1, 2 is a polynomial bound on the number of participants in κ for

some polynomial function Ti. Each participant is modelled by an oracle
∏l

I,J , which simulates a participant I
executing a protocol session in the belief that it is communicating with another participant J for the lth time,
where l ∈ {1, . . . , T3(κ)} for some polynomial function T3. Oracles keep transcripts, which contain all messages
they have sent and received and the queries they have answered. Each participant holds an identity-based
key pair generated by the PKG oracle during the setup. The final output of the registration is the password
information denoted by psw dataC that is necessary to verify the identity of C.

A registration protocol run is considered to be successful, if the participants confirm the password information.
Participants’ oracle instances are terminated when they finish a protocol run. An oracle can be in state accepted
before it is terminated. The server is in state accepted, if it decides to store the password information psw dataC .
The client is in state accepted, if it confirms that server stores the correct psw dataC , after receipt of properly
formulated messages.

We give the definition of a registration protocol as follows. In general a protocol determines what step a
participant instance should take as a response to the adversarial message.

Definition 7. A registration protocol is a pair P = (Π,Γ) of probabilistic polynomial time (in the security
parameter κ) computable functions, where Π specifies how (honest) players behave and Γ generates key pairs for
the participants.
Π takes as input:
κ: the security parameter;
I: identity of the sender;
J : identity of the intended recipient;
pkI , skI : identity based key pair of I;
pkJ : identity based public key of J ;
tran: ordered set of messages transmitted and received

by I in this run of the protocol;

Π(κ, I, J, pkI , skI , pkJ , tran) outputs a triple (m, δ, η), where:
m ∈ {0, 1}∗ ∪ {∗}: the next message to be sent from I

to J (∗ indicates no message is sent);
δ ∈ {Accept, Reject, ∗}: C ′s current decision

(∗ indicates no decision yet reached);
η ∈ {psw dataC , ∗}: client’s password information

stored by the server,
(∗ indicates no password information is stored);

3.2. Adversarial model. We assume that the adversary is A /∈ ID, i.e. neither a user nor a server. A is a
probabilistic polynomial time Turing Machine with an access to the participants’ oracles, i.e. it has a query
tape where oracle queries and their answers are written. A is able to relay, modify, delay or delete messages. A
is allowed to make the following queries that model adversarial attacks.

Send(
∏i

I,J ,M): : This oracle query models an active attack. A sends the message M to oracle
∏i

I,J that

returns a message m, which is sent by the user instance as a response to M . Besides m oracle
∏i

I,J also

provides information whether the oracle is in state (δ) Accepted, Rejected or ∗. The query enables

A to initiate a protocol run between participants I and J by query Send(
∏i

I,J , κ).

Corrupt(
∏i

I,J): : This oracle query models the corruption of participant I. This oracle query models

an adversary hacks into the machine. Replying to this oracle query a participant oracle
∏i

I,J provides
information about I’s asymmetric secret keys and state, i.e. all the values calculated and stored by
participant I. If I is a server, then both its secret key and psw dataC are returned. If I is a client, the
password itself and the salt are given as well.

Reveal(
∏i

I,J): : This models an insecure usage of a password. If oracle
∏i

I,J is in state accepted, holding
a password psw, then this query returns psw to A. This query models the attacks, when the adversary
persuades a participant to leak the password, e.g. via a social engineering attack.

Test(
∏i

I,J): : This oracle query models the semantic security of the password. It is allowed to be asked
only once in a protocol run. If participant I is in state accepted, then a coin b is flipped. If b = 1, then
psw is returned to the adversary, if b = 0, then a random value from the distribution of the password
is returned.
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We define A’s advantage, the probability that A can distinguish the password held by the queried
oracle from a random string, as follows:

AdvA(κ) = |Pr[guess correct]− 1/2|.
Execute(C, S): : This oracle models a passive attack. It takes new unopened client and server instances

and proceeds honest executions of the protocol. If there is a record for client C on server S then it
aborts, otherwise it outputs the transcript of the protocol and S’s states after the execution, i.e. all
values including password verification information and the salt are stored.

Finalise(C, S, psw): : This oracle query models the verification of a password psw. Takes a client, server
pair (C, S) and a password psw as input, and returns 1 iff there exists a server instance that is in state
accepted and stores (C, psw dataC), where psw dataC is the verification data of the input psw. We
assume that no Send was queried for (C, S). Otherwise, return 0.

An oracle is opened or corrupted, if it has answered a query Reveal(
∏i

I,J) or Corrupt(
∏i

I,J), respec-
tively. We differentiate strong and weak corruption models. In the case of the weak corruption model only
the asymmetric keys are transferred, the adversary does not completely compromise the machine. Other values
generated and stored during the protocol run are not revealed. A model is called strong corruption model if
asymmetric keys and the state (including the password) are also revealed. This is the case when the state is
revealed via a malware installed on the machine. Applying these secret values the adversary is able to calculate

messages that might be sent to a participant oracle with query Send(
∏i

I,J ,M).
The output of the oracle Execute with query Finalise makes it possible to model dictionary-like attacks.

Oracle Finalise models the attack, when the adversary verifies a client’s password stored on server side. We
emphasize that Send is not queried, since a passive attack is formalized. This refers to the attack when an
adversary has access to the transcripts of the protocol and the password database or files. Oracle Execute is
queried to model the generation of transcript and password data. We consider honest executions, but partici-
pants might be corrupted. While modelling offline attacks we assume that the client is weakly corrupted. We
note that the success of a password extraction via an online attack is measured by oracle Test.

There are concurrent and non-concurrent security models. The concurrent model assumes that several copies
of the protocol can be processed concurrently, i.e. several instances of the same participant can be active
simultaneously. For the non-concurrent model at most one participant instance can be active per participant.

During the attack an experiment of running a protocol P = (Π,Γ) in the presence of an adversary A
is examined. First Γ is run to generate keys, system parameters for all participants, then A initializes all

participant oracles and asks polynomially number of oracle queries including Send(
∏i

I,J ,M), Reveal(
∏i

I,J),

Corrupt(
∏i

I,J) to the participant oracles and queries Execute(C, S) and Finalise(C, S, psw). Finally A asks

a Test(
∏i

I,J) query.
In order to give the definition of a secure registration protocol, we need to review the definition of conversation

and matching conversation from [30]. They were also formalized in [27].
Matching conversation formalizes real-time communication between entities I and J , it is necessary to define

authentication property of a protocol. We give the definition of the event No-MatchingA(κ) where definition is
given in [30].

Definition 8. Consider an adversary A and a participant oracle
∏s

I,J . We define the conversation Cs
I,J of∏s

I,J as a sequence of

Cs
I,J = (τ1, α1, β1), (τ2, α2, β2), . . . , (τm, αm, βm),

where τi denotes the time when oracle query αi and oracle reply βi are given (i = 1, . . . ,m).

Naturally τi > τj , iff i > j. A terminates after receiving the reply βm, i.e. does not ask more oracle queries.
During a conversation the initiator and responder oracles are differentiated.

∏s
I,J is an initiator oracle if α1 = κ,

otherwise it is a responder. Consider the definition for matching conversation when the number of protocol
flows is odd.

Definition 9. Running protocol P in the presence of A, we assume that the number of flows is R = 2ρ − 1,
for a positive integer ρ,

∏s
I,J is an initiator and

∏t
J,I is a responder oracle that engage in conversations C and

C ′, respectively.
C ′ is a matching conversation to C, if there exist τ0 < τ1 < · · · < τR−1 and α1, β1, . . . , βρ−1, αρ such that C is
prefixed by:

(τ0, λ, α1), (τ2, β1, α2), . . . , (τ2ρ−2, βρ−1, αρ),

and C ′ is prefixed by:
(τ1, α1, β1), (τ3, α2, β2), . . . , (τ2ρ−3, αρ−1, βρ−1).

C is a matching conversation to C ′, if there exist τ0 < τ1 < · · · < τR and α1, β1, . . . , βρ−1, αρ such that C ′ is
prefixed by:

(τ1, α1, β1), (τ3, α2, β2), . . . , (τ2ρ−3, αρ−1, βρ−1), (τ2ρ−1, αρ, ∗),
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and C is prefixed by:
(τ0, λ, α1), (τ2, β1, α2), . . . , (τ2ρ−2, βρ−1, αρ).

If C is a matching conversation to C ′ and C ′ is a matching conversation to C, then
∏s

I,J and
∏s

J,I are said to
have had matching conversation.

Matching conversation formalizes real-time communication between entities I and J , it is necessary to define
authentication property of a protocol. We give the definition of the event No-MatchingA(κ) given in [30].

Definition 10. No-MatchingA(κ) denotes an event when in a protocol P in the presence of an adversary A
assuming there exist a participant oracle

∏s
I,J which is accepted, but there is no other oracle

∏t
J,I having a

matching conversation with
∏s

I,J .

We review the definition of min-entropy for a dictionary from [36]. Passwords are considered as character
strings, where the distribution of characters depends on the used character set Σ, character positions and the
password string itself.

Definition 11. Let Dn denote the dictionary, from which the passwords with length n are chosen. Let DΣ

denote the probability distribution in password psw of characters from a character set Σ. Min-entropy for Dn

containing passwords psw = (c0, . . . , cn−1) is defined as

βDn
= − max

psw∈Dn

n−1∑
i=0

DΣ(ci)log2DΣ(ci)

A password registration scheme is secure if the values stored on the server-side leak as little information as
possible on the password, i.e. an attacker can not retrieve the password from the password verification value
more efficiently than by performing a brute-force attack over the dictionary.

We give the definition of benign adversary.

Definition 12. An adversary is called benign if it is deterministic, and restricts its action to choosing a tuple
of oracle containing one client and one server oracle, and then faithfully conveying each flow from one oracle
to the other, with the client oracle beginning first.

Definition 13. A protocol is a secure registration protocol if

• Online resistance:
(1) In the presence of the benign adversary the client and the server oracle communicating with the

client always accept. The server stores the password verification value confirmed by the client.
and for every adversary A
(2) If there is an uncorrupted client oracle having matching conversations with an uncorrupted server

oracle then they always accept. The server stores the password verification value confirmed by the
client;

(3) For uncorrupted server and client oracles the probability of No-MatchingA(κ) is negligible;
(4) For the tested oracle AdvA(κ) is negligible. If it is a client oracle, then it is unopened;

• Offline resistance:
(5) If for all dictionaries Dn adversary A generates at most t tuples (C, S, psw), then

Pr[Finalise(C, S, psw) = 1] ≤ t

2βDn · tpre
+ µ(κ),

where µ(n) is negligible and tpre denotes the computational cost to calculate the input value of the
one-way function from the password.

A function µ is negligible if for every positive polynomial p(.) there exists an N such that for all integers
n > N it holds that µ(n) < 1

p(n) .

In the definition above only necessary security assumptions are given. According to element (3), we assume
that participants do not disclose their secret keys in order to assure mutual authentication of the participants.
To provide semantic security of the password, it is assumed that the client does not reveal the password. In the
case of offline attacks, we assume that besides having access to the transcripts and password information stored
on server side, the adversary also gains the secret keys of the server and the client. We do not assume that the
server and the client are uncorrupted. We only assume that the client is unopened, and does not reveal the
password.

We define two security models. In the case of client-server protocols, clients usually are assumed to be
malicious, i.e. they deviate form the steps of the protocol, they apply any type of strategy to attack. The
servers providing some service are usually considered to be honest, meaning they do not launch any attack or
honest-but-curious, i.e. they initiate only passive attacks, not leaving any trace of the attack. Depending on
whether the server is honest or honest-but-curious, we differentiate honest and honest-but-curious models.
In [37] and [36] honest models are used.
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3.3. Security proof. Protocol security is considered in an extended random-oracle model, hash functions and
the bilinear map are replaced with random mapping.

Theorem 2. The proposed password registration protocol is resistant against online attacks in the honest-but-
curious model, assuming Mac is existentially unforgeable under an adaptive chosen-message attack, Bilinear
Diffie-Hellman is computationally infeasible, moreover the bilinear map and the hash functions are considered
as random oracles.

Proof. Proving conditions 1 and 2 of the Definition 13 is trivial, since the steps of the protocol are followed. Let
us consider condition 3. Condition 3 holds, if the assumption that the Mac is existentially unforgeable under an
adaptive chosen-message attack and the Bilinear Diffie-Hellman Problem holds. Moreover the hash functions
and the bilinear map are random oracles. Let us see it in details.

Consider an adversary A and suppose that Pr[No-MatchingA(κ)] is non-negligible. There are two cases:
either the server, or the client oracle is accepted.

• Case 1
Let A succeeds denote the event that in A’s experiment there is a server oracle

∏
S,C that is accepted,

but there is no client oracle
∏

C,S having matching conversation to
∏

S,C .
We assume that

Pr[A succeeds] = nS(κ),

where nS(κ) is non-negligible.
We construct a polynomial time adversary F that for given aP, bP, cP,P calculatesBDH(aP, bP, cP,P) =

e(P,P)abc. F randomly picks C ∈ Client and S ∈ Server. Let ∆ = {C, S} denote the identities of
protocol participants.

∏
S,C denotes the server oracle that communicates to the client C. F also

chooses randomly a particular session t ∈ {1, . . . , T3(κ)}. Given security parameter κ, adversary F
sets par = (G,GT, ê, tr,P, cP, H,Mac), for calculating hash values, encodings and bilinear map F calls
hash oracles, tr oracle and ê oracle, respectively. F also sets public keys QS = aP, QC = bP, whenever
tr(IDS) or tr(IDC) are asked F answers QS = aP, QC = bP, respectively. F randomly chooses value
x̄ ∈ Z∗

q and sets x̄cP as a server public value. Value x̄cP is sent to oracle PKG. F runs A and answers
A’s queries as follows.
(1) F answers H hash tr encoding and ê bilinear map oracle queries at random (like a real random

oracle would), except if IDS or IDC is asked.
(2) F answers Corrupt queries according to Π, reveals secret keys, internal states and secret values.

Queries to the current server and the client oracles are refused.
(3) F answers Reveal queries as specified in Π. This query is refused if it is asked from

∏
S,C , since∏

S,C does not hold the password.

(4) If A does not involve
∏

C,S as a client oracle which communicates to the server oracle
∏

S,C , then F
gives up. If A does not invoke

∏
C,S as an initiator oracle, then F gives up. Otherwise A generates

a password psw and a random t̄ value, and calculates zP and R. Eventually A asks bilinear map
oracle queries ê(.) to get ê(QS , zx̄cP+ cQC) and ê(zP,R), F answers these queries. A calculates
m, where m = ê(QS , zx̄cP+ cQC) · ê(zP,R). A asks hash oracle query H(.) of ê(zP,R) from F
to get key K. If K is a previously used value, then F gives up. A asks hash oracle query H(.) to
get V , where V = H(ê(QS , zx̄cP+ cQC)||K). F answers the hash query and if V is a previously
used value, then F gives up. A asks query Send(

∏
S,C ,M), where

M = QC ||zP||m||V.
Since F knows ê(zP,R), F calculates K and answers QS ||MacK(r)||r), where r is random. If
some later time A does not ask the Send(

∏
C,S , QS ||MacK(r)||r), then F gives up, otherwise

∏
S,C

gets accepted. F calculates and outputs ê(QS , zx̄cP+ cQC) · ê(QS , cP)−zx̄) = ê(P,P)abc.
(5) F answers Execute and Finalise queries as specified in Π. Query Finalise is refused if Send

was queried before.
Assume that A is successful, event A succeeds happens with nS(κ) non-negligible probability. We
show that F wins its experiment with non-negligible probability. For the analysis the probability
that F chooses the correct participants ∆, session t and succeeds ξ1(κ) is calculated:

ξ1(κ) =
nS(κ)

T1(κ)T2(κ)T3(κ)
− λ(κ),

where λ(κ) denotes the probability that F previously calculated the flow. ξ1(κ) is non-negligible, if
nS(κ) is non-negligible, Ti(κ) (i=1,. . . ,3) is polynomial in κ and λ(κ) is negligible. That contradicts
the security assumption of the BDH problem, hence nS(κ) must be negligible.

• Case 2.
Let A succeeds denote the event that in A’s experiment there is a client oracle

∏
C,S that is accepted,
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but there is no server oracle
∏

S,C having matching conversation to
∏

C,S . There are two cases: either
F is able to proceed an existential forgery against Mac under an adaptive chosen message attack, or we
will show how to construct BDH problem solver F that uses an adversary A.

– Case 2.1
We assume that

Pr[A succeeds] = nC21
(κ),

where nC21
(κ) is non-negligible. We construct a polynomial time adversary F that is able to

proceed an existential forgery against Mac under an adaptive chosen message attack. F ’s task is
to generate a valid (m, t) message-tag pair, where m was never asked from the oracle MacK(.). F
picks the protocol participants and a session t ∈ {1, . . . , T3(κ)}, let ∆ = {C, S} denote identities.
Let

∏
C,S denote the client and

∏
S,C the server oracle. F sets par = (G,GT, ê, tr, P, αP,H,Mac),

where α chosen randomly and simulates the key generation Γ as follows. F sets public keys as
QS = tr(IDS), QC = tr(IDS), and αtr(IDS) or αtr(IDC), respectively. F answers A’s oracle
queries as follows.
(1) F answers queries to oracles H(.), tr(.), ê, Corrupt, Reveal in the same way as in Case 1.
(2) F answers Send queries according to Π with the generated random values z, s. If A does

not involve
∏

S,C as a server oracle which communicates to the client oracle
∏

C,S , then F
gives up. If A does not invoke

∏
C,S as an initiator oracle, then F gives up, otherwise A asks

oracle query Send(
∏

C,S , λ). F responses

M1 = QC ||zP ||m||V

with m = ê(QS , zxαP + αQC) · ê(zP,R) and V = H2(ê(QS , zxαP + αQC)||K), where z is
random and R is generated with the tr oracle. The αQC secret key is calculated by F .
If some later time A does not ask the MacK(.) oracle queries, then F gives up. Otherwise
F answers these queries using oracle MacK(.). Eventually A creates

M2 = QS ||t||m

and calls Send(
∏

C,S ,M2). If m was asked to oracle MacK(.) before, then F gives up. If

t ̸= MacK(r), then F gives up, otherwise
∏

C,S gets accepted. F responses (m, t) to the
challenger. If A succeeds with non-negligible probability, then F outputs a valid forgery
(m, t), where m was never asked to oracle MacK(.) before.
Assume that A is successful, event A succeeds happens with nC21

(κ) non-negligible proba-

bility. Hence following the algorithm above F calculates a valid (m̄, t̄) pair. We show that F
wins its experiment with non-negligible probability. The probability that F chooses correct
participants ∆, session t and succeeds is

ξ21(κ) =
nC21

(κ)

T1(κ)T2(κ)T3(κ)
− λ(κ),

where λ(κ) denotes the probability that F previously calculated the flow. Since nC21
(κ)

is non-negligible, Ti(κ) (i=1,. . . ,3) is polynomial in κ and λ(κ) is negligible thus ξ21(κ) is
non-negligible. That contradicts the security assumption of Mac, hence nC21

(κ) must be
negligible.

– Case 2.2
Let A succeeds denote the event that in A’s experiment there is a client oracle

∏
C,S that is

accepted, but there is no server oracle
∏

S,C having matching conversation to
∏

C,S . We assume
that

Pr[A succeeds] = nC22
(κ),

where nC22
(κ) is non-negligible. In this case we can construct a polynomial time adversary that

for given P, aP, bP, cP, calculates ê(P,P)abc.
F picks the protocol participants and a session t ∈ {1, . . . , T3(κ)}, let ∆ = {C, S} denote identities.∏

C,S denotes the client and
∏

S,C the server oracle. F sets par = (G,GT, ê, tr,P, cP, H,Mac) and
simulates the key generation Γ similarly to Case 1., hence QS = aP, QC = bP and randomly
chooses values x̄, z̄ ∈ Z∗

q and sets x̄cP as a server public value and computes z̄P. Value x̄cP is sent
to oracle PKG. F answers A’s oracle queries as follows.
F answers queries to oracles H(.), tr(.), ê, Corrupt, Reveal in the same way as in Case 1.
F answers Send queries as follows. If A does not involve

∏
S,C as a server oracle which communi-

cates to the client oracle
∏

C,S or
∏

C,S is not an initiator oracle, then F gives up. Otherwise A
asks oracle query Send(

∏
C,S , λ). F responses

M1 = QC ||z̄P||m1||V1
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with m1 ∈ GT chosen randomly and V1 is a fresh random value chosen by the random oracle as a
hash value.
A eventually asks oracle e(.) to calculate values ê(aP, z̄x̄cP+ cbP) and ê(z̄P, R) for some random
value R and the hash oracle for ê(z̄P, R). If these oracle queries were asked before, then F gives up,
otherwise answers the queries. F multiplies ê(aP, z̄x̄cP+ cbP) and ê(z̄P, R) and verifies whether
the result is m1. If the result is not m1, then F gives up. Otherwise if some time later oracle H(.)
is asked for ê(aP, z̄x̄cP+ cbP)||H(ê(z̄P, R)), then V1 is answered. A generates a random value rS
and calculates MacK(rS) and asks query Send(

∏
C,S ,M2), where

M2 = QS ||MacK(rS)||rS .

If M2 is not valid or not asked, then F gives up, otherwise
∏

C,S gets accepted.

Since A asked ê(z̄P, R) from oracle H(.), F is able to coutput m1 · ê(z̄P, R)−1 · ê(aP, cP)−z̄x̄ =
ê(P,P)abc.
Assume thatA is successful, eventA succeeds happens with nC22

(κ) non-negligible probability. F
outputs the solution of BDHP. We show that F wins its experiment with non-negligible probability.
The probability that F chooses the correct participants ∆, session t and succeeds is calculated:

ξ3(κ) =
nC22

(κ)

T1(κ)T2(κ)T3(κ)
− λ(κ)

where λ(κ) is the probability that the flow was already calculated before. Similarly to Case 2.1
ξ3(κ) is non-negligible, if nC22

(κ) is non-negligible, Ti(κ) (i=1,. . . ,3) is polynomial in κ. That

contradicts the assumption of Bilinear Diffie-Hellman, hence nC22
(κ) must be negligible.

We turn to condition 4. Consider an adversary A and suppose that AdvA(κ) is non-negligible.
• Case 3.

Let A succeeds against
∏s

C,S denote the event that A asks Test(
∏s

C,S) query and outputs the
correct bit. Hence

Pr[A succeeds] =
1

2
+ n(κ),

where n(κ) is non-negligible.
Let Aκ denote the event that A picks either a server or a client oracle

∏s
C,S and asks its Test query

such that oracle
∏s

C,S has had a matching conversation to
∏t

S,C .

Pr[A succeeds] = Pr[A succeeds|Aκ]Pr[Aκ]

+Pr[A succeeds|Aκ]Pr[Aκ]

According to the previous section Pr[Aκ] = µ(κ), where µ(κ) ∈ {nC21
(κ), nC22

(κ), nS(κ)} and Pr[Aκ] =

1− µ(κ), where µ(κ) is negligible, hence

1

2
+ n(κ) ≤ Pr[A succeeds|Aκ]Pr[Aκ] + µ(κ)

and we get
1

2
+ n1(κ) = Pr[A succeeds|Aκ],

for a non-negligible n1(κ). We have two cases.
Let Bκ denote the event that for given QC , QS , xαP, zP, αP, P,m, V adversary A asks K to oracle

H(.), where K = e(zP,R) with R = tr(psw) for password psw. This is the case of 2.2 (nC22
(κ)), where

we showed how to construct BDH problem solver F that uses an adversary A. Moreover F also breaks
the one-wayness of the bilinear map given in Definition 3 with A, since R is asked from oracle ê(.).

Pr[A succeeds|Aκ] = Pr[A succeeds|Aκ ∧Bκ]Pr[Bκ|Aκ]

+Pr[A succeeds|Aκ ∧Bκ]Pr[Bκ|Aκ]

Since Pr[A succeeds|Aκ ∧Bκ] =
1
2 ,

1

2
+ n1(κ) ≤ Pr[A succeeds|Aκ ∧Bκ]Pr[Bκ|Aκ] +

1

2
,

hence Pr[Bκ|Aκ] is non-negligible. We construct a polynomial time adversary F that for given
QC , QS , xαP, zP, αP, P,m, V calculates psw.

ξ4(κ) =
n1(κ)

T1(κ)T2(κ)T3(κ)
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that is non-negligible if n1(κ) is non-negligible, Ti(κ) (i=1,. . . ,3) is polynomial in κ and denotes the
same as in Case 2.2. This contradicts to the BDHP assumption, hence n1(κ) and AdvA(κ) must be
negligible.

Let see the other case when Cκ denotes the event that A is able to recover K itself, and thus carries
out Mac existential forgery. This is the case of 2.1. Moreover A also calculates psw having K and zP ,
i.e. breaks one-wayness of the bilinear map.

Pr[A succeeds|Aκ] = Pr[A succeeds|Aκ ∧ Cκ]Pr[Cκ|Aκ]

+Pr[A succeeds|Aκ ∧ Cκ]Pr[Cκ|Aκ]

Since Pr[A succeeds|Aκ ∧ Cκ] =
1
2 ,

1

2
+ n1(κ) ≤ Pr[A succeeds|Aκ ∧ Cκ]Pr[Cκ|Aκ] +

1

2
,

hence Pr[Cκ|Aκ] is non-negligible. F proceeds Mac existential forgery non-negligibly and also breaks
F one-wayness of the bilinear map with non-negligible probability.

We construct a polynomial time adversary F that for given QC , QS , xαP, zP, αP, P,m, V calculates
K and psw.

ξ5(κ) =
n1(κ)

T1(κ)T2(κ)T3(κ)

that is non-negligible if n1(κ) is non-negligible, Ti(κ) (i=1,. . . ,3) is polynomial in κ and denotes the
same as in Case 2.1. This contradicts to the Mac or the one-way pairing assumption, hence n1(κ) and
AdvA(κ) must be negligible.

□

Theorem 3. The proposed password registration protocol is resistant against offline attacks in the random
oracle model, if the bilinear map is a one-way pairing and the client is weakly corrupted.

Proof. Let A succeeds against
∏

S,C denote the event that
∏

S,C is accepted and A is able to output a valid

(S,C, psw) tuple. Hence

Pr[A succeeds] = nd(κ),

where nd(κ) is non-negligible. We construct an efficient algorithm that breaks one-wayness of the bilinear map,
for given P, zP, ê(zP, R) outputs R.
F picks the protocol participants ∆ = {C, S} and a session s ∈ {1, . . . , T3(κ)}. F sets

par = (G,GT, ê, tr,P, αP, H,Mac) and simulates the key generation Γ similarly to Case 1. F answers A’s
oracle queries as follows.
F answers H(.) hash oracle query at random. For Corrupt query F answers secret keys of the participant

oracles and the state of the server oracle. F refuses oracle queries Reveal and Send.
F answers to the Execute oracle the transcripts generated by honest executions of the protocol with the

help of the secret keys and reveals password information and the salt values stored by the server oracle. After
polynomial number of executions, either for the given transcript values (αQS , x, zP,m = ê(QS , zxαP+ αQC) ·
ê(zP, R)) or for the given password information stored by the server (ê(zP, R), zP) adversary A eventually
generates valid (C, S, psw). F outputs R = tr(psw). The following probability is calculated

ξ6(κ) =
nd(κ)

T1(κ)T2(κ)T3(κ)
− t

2βDn · tpre
,

where t

2βDn ·tpre
denotes the probability that A finds psw by trying t number of (C, S, psw) tuples, where

βDn is the min-entropy for dictionary Dn and tpre denotes the computational cost to calculate the input value
of the bilinear map from the password. Since t is polynomially bounded in κ and nd(κ) is non-negligible ξ6(κ)
is non-negligible, that contradicts to the bilinear pairing one-wayness assumption.

□

4. Efficiency

In order to confirm the results obtained we implemented the protocol for performance evaluation. The
implementation was created in Python, which version is 3.9., and performed on an average personal computer
with an AMD Ryzen 5 2600 processor, which has 6 cores and 12 threads with a clock rate of 3.4 GHz to 3.9GHz,
16 GB of 3600MHz RAM, and an M.2 NVMe SSD with 3200 MB/s writing and 3500 MB/s reading speed. In
the appendix the elliptic curve and its parameters can be checked.
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4.0.1. Computation cost. The following table summarizes the numbers of the main operations on both server
and client side. We can realize that the most applied operation - the hash - is also the fastest operation in the
registration. We note that our registration implementation is single threaded. The reason for not implementing
a multithreaded version is that the bottleneck in the implementation of the underlying computation of Tate
pairings and scalar multiplications, which we did not focus in our work. However, even so the runtime of our
protocol is convincing and registering multiple users at the same time can be extremely fast.

Operation User Server
Hash 5 3

EC scalar mult. 3 2
Bilinear pairing 3 2

Table 1. Number of operations

Table 2 shows the average execution time of the protocol’s main operations. The operations run 10000 times
to make the run time more accurate. The bilinear pairing is the most expensive operation, but still its run time
is under 0.01 seconds.

Operation Time
HMac 0,0000011

EC scalar mult. 0,002880
Bilinear pairing 0,007043

Table 2. Execution time of protocol’s operation)

4.0.2. Comparison with other Schemes. The performance evaluation is based on the running time of the protocol
compared to two other available solutions, to the Blind Registration Protocol and to the TLS handshake. Table
3 shows the result of comparison. All of our tests are repeated 100 times to make sure to get a precise result. The
performance tests of the BPR protocols were completed on a laptop with an Intel Core Duo P8600 at 2.40GHz.
We provide the computational time for pnly the TLS protocol run, the registration process takes more time,
since an e-mail-based verification is also needed. Our comparison shows that our registration protocol efficiency
achieves a better solution.

Scheme Client Server Full
BPR- two server 1,4 s 0,68 s 2,76 s
BPR - VPAKE 0,72 s 0,67 s 1,5 s

TLS 0,168 s
Our proposition 0,072 s 0,023s 0,095 s

Table 3. Execution time of protocols

5. Conclusion

We have designed a password registration protocol, that could be an ideal alternative for the traditional
registration method (email or TLS/SSL connection). It is important to note that during the registration we use
the bilinear mapping, Mac and hash function hence we achieve good results in computational time. We have
introduced a new definition for secure password registration protocols that considers security requirements for
the password transmission and storage, as well. We give a detailed security analysis, and we prove that our
proposed protocol is a secure based on the assumptions that Bilinear Diffie-Hellman problem is computationally
infeasible, bilinear map is a one-way function and Mac is existentially unforgeable under an adaptive chosen-
message attack.
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Appendix

• The used elliptic curve: y2 = x3+x which is a supersingular curve over Zp with p = 7313295762564678553220399414112155363840682896273128302543102778
21058411810144462486413246228592183502383911176278505421042514024101
8649354445745491039387

• In Z∗
q and in G,GT we use q = 730750818665451459101842416358141509827966402561
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