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Abstract

Interactive Oracle Proofs (IOPs) are a new type of proof-system that combines key properties of
interactive proofs and PCPs: IOPs enable a verifier to be convinced of the correctness of a statement
by interacting with an untrusted prover while reading just a few bits of the messages sent by the
prover. IOPs have become very prominent in the design of efficient proof-systems in recent years.

In this work we study succinct IOPs, which are IOPs in which the communication complexity is
polynomial (or even linear) in the original witness. While there are strong impossibility results for
the existence of succinct PCPs (i.e., PCPs whose length is polynomial in the witness), it is known
that the rich class of NP relations that are decidable in small space have succinct IOPs. In this work
we show both new applications, and limitations, for succinct IOPs:

• First, using one-way functions, we show how to compile IOPs into zero-knowledge proofs, while
nearly preserving the proof length. This complements a recent line of work, initiated by Ben Sas-
son et al. (TCC, 2016B), who compile IOPs into super-succinct zero-knowledge arguments.
Applying the compiler to the state-of-the-art succinct IOPs yields zero-knowledge proofs for
bounded-space NP relations, with communication that is nearly equal to the original witness
length. This yields the shortest known zero-knowledge proofs from the minimal assumption of
one-way functions.

• Second, we give a barrier for obtaining succinct IOPs for more general NP relations. In par-
ticular, we show that if a language has a succinct IOP, then it can be decided in space that is
proportionate only to the witness length, after a bounded-time probabilistic preprocessing. We
use this result to show that under a simple and plausible (but to the best of our knowledge,
new) complexity-theoretic conjecture, there is no succinct IOP for CSAT.
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1 Introduction
The study of proof-systems has played an incredibly influential role in the development of theoretical
computer science at large and complexity theory and cryptography in particular. Some of the most
important results, concepts and open problems in this field revolve around efficient proof-systems. These
include the P

?
= NP question, results such as the IP = PSPACE and PCP theorems, and the notion of

zero-knowledge proofs.
Interactive Oracle Proofs (IOP) [BCS16, RRR21], are a recently proposed type of proof-system that

is playing an important role in the development of highly efficient, even practical, proofs. An IOP can
be viewed as an interactive analogue of a PCP, that is, an interactive protocol in which the prover can
send long messages, but the verifier only reads a few bits from each of the prover’s messages. A recent
exciting line of research initiated by Ben Sasson et al. [BCS16] (following [Kil92, Mic00]) compiles highly
efficient IOPs into highly efficient zero-knowledge argument-systems that are now also being developed
and deployed in practice.

One of the intriguing aspects of IOPs is that, by leveraging interaction, they allow us to circumvent
some inherent efficiency barriers of PCPs (in which the interaction is just a single message). In particular,
it has been known for over a decade [KR08, FS11] that SAT (the Boolean satisfiability problem) does not
have a PCP whose length is polynomial only in the length of the original satisfying assignment (assuming
the polynomial hierarchy does not collapse). In contrast, Kalai and Raz [KR08] showed that SAT (and
more generally any bounded depth NP relation) does have a succinct IOP.1 A more recent work of Ron-
Zewi and Rothblum [RR20] gives such a succinct IOP for SAT, and more generally any bounded-space
relation, in which the communication approaches the length of the unencoded witness.

In this work, we aim to better understand the limitations, and applications, of succinct IOPs. In
particular we would like to understand the following two questions:

1. The results of [KR08, RR20] give succinct IOPs for either bounded-space or bounded-depth rela-
tions. But what about general2 NP relations? For example, does the circuit satisfiability problem
(CSAT) have a succinct IOP, or is the limitation to small depth/space in [KR08, RR20] inherent?

2. So far the applicability of succinct IOPs has been limited. This seems to mainly be due to the fact
that the main bottleneck in the compilers of IOPs to efficient arguments is not the communication
complexity.3 This begs the question of what other applications can succinct IOPs be used for?

1.1 Our Results
1.1.1 Succinct Zero-Knowledge Proofs from Succinct IOPs

As our first main result, we show how to compile IOPs into zero-knowledge proofs, under the minimal
[OW93] assumption of one-way functions. We consider IOPs which consist of two phases: there is
an interaction phase where the prover sends messages and the verifier only replies with random coins
(without reading anything), then there is a local computation phase where the verifier queries the prover
messages and applies a decision predicate on those query values (see Definitions 2.3 and 2.4). Our compiler
transforms IOPs into zero-knowledge proofs in a way that preserves the communication complexity up
to an additive factor which depends on the size of the verifier’s decision predicate (as well as the security
parameter).

Theorem 1.1 (Informally Stated, see Theorem 5.1). Suppose the language L has an IOP with commu-
nication complexity cc and where the verifier’s decision predicate has complexity γ. If one-way functions
exist, then L has a zero-knowledge proof of length cc+poly(γ, λ), where λ is the security parameter. The
zero-knowledge proof has perfect completeness and negligible soundness error.

1Actually, [KR08] consider the model of interactive PCP, which in modern terminology, is a special-case of an IOP.
2Note that even though SAT is NP-complete, a succinct IOP for SAT does not automatically yield a succinct IOP for

every NP relation, because the Cook-Levin theorem produces a formula whose length is polynomial in the complexity of
the original NP relation, rather than just its witness

3The key bottlenecks seem to be the prover’s runtime and the communication complexity of the resulting argument-
system. The IOP’s communication complexity is a lower bound on prover runtime. The argument’s communication
complexity only has a logarithmic dependence on the IOPs communication.
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The proof of Theorem 1.1 is a relatively simple extension of the classical “notarized envelpoes” tech-
nique of Ben-Or et al. [BGG+88]. Indeed, our main contribution is in observing that this technique can
be adapted to the IOP setting in a manner that very nearly preserves the communication complexity.

Using the compiler of Theorem 1.1, we are able to derive the shortest known zero-knowledge proofs
that are based on one-way functions. In particular, the aforementioned work of Ron-Zewi and Rothblum
[RR20] gives an IOP construction with proof length that approaches the witness length for any bounded
space NP relation. This class of relations includes a large variety of natural NP relations such as SAT,
k-Clique, k-Coloring, etc. We show that their IOP has very low verifier decision complexity. Applying the
transformation of Theorem 1.1 to it we obtain a zero-knowledge proof for any bounded space NP relation,
where the communication complexity in this zero-knowledge proof approaches the witness length.

Corollary 1.1 (Informally Stated, see Theorem 5.3). Let R be an NP relation that can be computed
in polynomial time and bounded polynomial space. If one-way functions exist, then for any constants
β, γ ∈ (0, 1), there exists a (public-coin) zero-knowledge proof for R with perfect completeness, negligible
soundness error and proof length (1 + γ) · m + nβ · poly(λ), where n is the instance length, m is the
witness length and λ is the security parameter.

Corollary 1.1 constitutes the shortest known general-purpose zero-knowledge proofs under the mini-
mal assumption of one-way functions. Prior to our work, the shortest zero-knowledge proofs, that were
based on one-way functions, had communication complexity Õ(m) [IKOS09, GKR15]. In contrast, un-
der the much stronger assumption of fully-homomorphic encryption, Gentry et al. [GGI+15] constructed
zero-knowledge proofs that are better than those of Corollary 1.1 in two ways: first, they achieve an even
shorter communication complexity of m + poly(λ) and second, the result holds for any4 NP relation,
whereas Corollary 1.1 is restricted to bounded-space relations.

The fact that the transformation from Theorem 1.1 can potentially work on other succinct IOP
constructions, further motivates the study of succinct IOPs, their capabilities and limitations.

1.1.2 Limitations of Succinct IOPs

Given the succinct IOP constructions of [KR08, RR20], as well as known limitations of standard in-
teractive proofs, it is natural to wonder whether the restriction of the [KR08, RR20] succinct IOPs to
bounded depth/space relations is inherent. That is, does a succinct IOP for a given relation imply that
the relation can be decided in small space?

The immediate, albeit highly unsatisfactory, answer to the above question is (most likely) negative:
the class BPP has a trivial succinct IOP (in which the prover sends nothing and the verifier decides
by itself) but is conjectured not to be contained in any fixed-polynomial space. So perhaps succinct
IOPs are limited to relations computable in small-space or for which the corresponding language is in
BPP? Unfortunately, the answer is again (likely) negative: consider the NP relation R = {(x,w) : x ∈
L∧(x,w) ∈ RSAT}, where L is some P-complete problem.5 Using [RR20], it is clear that R has a succinct
IOP despite the fact that it is unlikely to be solvable in small space and the corresponding language is
unlikely to be in BPP (assuming NP ⊈ BPP).

We show that the above example essentially serves as the limit of succinct IOPs. This negative result
is based on a complexity-theoretic conjecture, which, while to the best of our knowledge is new, seems
quite plausible.

In more detail, we prove that if an NP relation RL, corresponding to a language L (i.e., L = {x :
∃w, (x,w) ∈ RL}), has a succinct IOP, then there exists a small space algorithm with probabilistic bounded
time preprocessing that can decide L.

Theorem 1.2 (Informally stated, see Theorem 4.1). If a language L has a k-round IOP with communi-
cation complexity cc and query complexity qc, then L can be decided by a O(cc+k log cc)-space algorithm
with probabilistic

(
2qc · poly(n, 2k log(cc))

)
-time preprocessing.

By a s-space algorithm with t-time (probabilistic) preprocessing, we mean a (probabilistic) Turing
machine that first runs in time t and outputs some intermediate state c (of size at most t). From there on

4For this result, [GGI+15] need full-fledged (rather than leveled) fully-homomorphic encryption, which are known only
assuming a circular-security assumption on LWE (see, e.g., [Bra19]) or via indistinguishibility obfuscation [CLTV15].

5As usual, by P-completeness we refer to log-space reductions. Such languages are conjectured not to be solvable in
small space, see [Sma14] for further discussion.
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a second Turing machine, which uses s-space, can continue the computation, viewing c as its (read-only)
input tape (see Definition 4.1 for the formal definition). We emphasize that the restriction on the second
machine is only that it runs in s space (and in particular can run for 2s time).

Infeasibility of succinct IOP for NP. Using Theorem 1.2, we argue that the existence of succinct
IOPs for all of NP would have unexpected, and (arguably) unlikely, repercussions.

For example, consider the relation RCSAT, consisting of all satisfiable Boolean circuits and their
corresponding satisfying assignment. Given Theorem 1.2, the existence of a succinct IOP for RCSAT

with, say, constant rounds and logarithmic query complexity, would mean that the satisfiability of a
circuit of size n on m input bits, can be decided by an algorithm that first runs in time poly(n,m)
time but from there can do arbitrary poly(m)-space computations. We find the existence of such an
algorithm unlikely and in particular point out that the straightforward decision procedure for CSAT
enumerates all possible assignments, which takes space m, but also needs to check that each assignment
satisfies the given circuit, which, in general, seems to require additional space n, which our poly(m)-space
algorithm does not have at this point. In other words, the straightforward algorithm needs to evaluate
the circuit for each one of the candidate assignments, whereas our preprocessing model only allows for a
polynomial number of evaluations (which happen a priori). Taking things a little further, we conjecture
that even probabilistic quasi-polynomial time preprocessing would not be sufficient, and taking things
to an extreme, it is (arguably) unlikely that

(
2o(m) · poly(n)

)
-time preprocessing is sufficient. A more

elaborate discussion can be found in the full version [NR22]. A parameterized version of our conjecture
is stated below:

Conjecture 1.2. For a function class T , the conjecture states that CSAT for circuits of size n over
m input bits cannot be solved by an algorithm that uses poly(m) space and t(n,m)-time probabilistic
preprocessing, for any t ∈ T .

We get stronger bounds on succinct IOPs as we make the function class larger. Three interesting
regimes are stated in the following corollary (ordered from the weakest bound):

Corollary 1.3. Assuming Conjecture 1.2 we have:

• With t(n,m) = poly(n), there is no succinct IOP for RCSAT with a constant number of rounds and
O(log n) query complexity.

• With t(n,m) = 2polylog(m) · poly(n), there is no succinct IOP for RCSAT with a polylog(m) rounds
and polylog(m) +O(log n) query complexity.

• With t(n,m) = 2o(m) · poly(n), there is no succinct IOP for RCSAT with a o
(

m
logm

)
rounds and

o(m) +O(log n) query complexity.

1.2 Related Works
Lower bounds for IPs and IOPs. Goldreich and Haståd [GH98] showed how to transform IPs to prob-
abilistic algorithms that run in time exponential in the bits sent by the prover. Goldreich et al. [GVW02]
showed limits on the communication complexity of interactive proofs. In particular, their results show
that it is unlikely that NP-complete languages have interactive proofs with communication that is sig-
nificantly shorter than the witness length. Berman et al. [BDRV18] showed that extremely short zero-
knowledge proofs imply the existence of public-key encryption. Chiesa and Yogev [CY20] show that if a
language has an IOP with very good soundness relative to its query complexity then it can be decided
a by small space algorithm. This result is incomparable to Theorem 1.2, which shows that languages
which have IOPs with short communication can be computed in small space (with preprocessing).

Minimizing communication in zero-knowledge proofs. Significant effort has been put into min-
imizing the proof length of zero-knowledge. Under the assumption of one-way functions, Ishai et
al. [IKOS09] constructed “constant-rate” zero-knowledge proofs for all NP relations, i.e., the proof length
is constant in the size of the circuit that computes the relation. For AC0 circuits, [IKOS09] presents
a zero-knowledge proof that is quasi-linear in the witness length and [KR08] presents a zero-knowledge
proof that is polynomial in the witness length for constant depth formulas. Goldwasser et al. [GKR15]
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significantly improved the latter and showed a similar result for all of (log-space uniform) NC, again
under the minimal assumption of one-way functions. As previously mentioned, using fully-homomorphic
encryption, Gentry et al. [GGI+15] constructed zero-knowledge proofs with communication that is larger
than the witness by only a small additive factor.

Another approach to minimize the proof length is to relax the notion of soundness and settle for
computationally-sound proof systems, known as arguments. Kilian [Kil92] and Micali [Mic00] con-
structed extremely efficient zero-knowledge argument systems in which the communication is merely
poly-logarithmic in the witness size. Improving the latter protocol has been the focus of a major line of
research in recent years. However, we stress that in this work, we focus on proof systems with statistical
soundness - that is, soundness is guaranteed even against computationally unbounded cheating provers.

1.3 Our Techniques
First, in Section 1.3.1 we discuss our compiler for zero-knowledge proofs from IOPs. In Section 1.3.2, we
discuss our techniques for compiling IOPs to small space algorithms with bounded time preprocessing.

1.3.1 ZKPs from IOPs

Notarized Envelopes. The zero-knowledge proof of Theorem 1.1 is constructed using the “notarized
envelopes” technique, first introduced in [BGG+88]. We start with a high-level overview of their compiler
from interactive proofs to zero-knowledge proofs. The compiler, which is applicable to any public-coin
interactive proof, proceeds by emulating the original protocol but instead of having the prover send its
messages in the clear (which would likely violate zero-knowledge), the prover sends (statistically binding)
commitments to its messages. Leveraging the fact that the protocol is public-coin, the verifier does not
have to read the prover messages before responding with its own random coins and so the interaction
can progress.

At the end of the interaction phase, the verifier would like to actually read the messages that the
prover committed to and to compute some predicate on the transcript. The key observation is that the
latter is an NP statement: since the verifier is a polynomial-time machine and the computation in the end
is deterministic (since the coins have been tossed already), then the commitments to the prover messages
and the verifier’s randomness define an NP statement, with the NP witness being the decommitments of
those messages; given those decommitments, it is straightforward to decide the predicate.

At this point [BGG+88] use the fundamental zero-knowledge proof for NP [GMW86], so that the
prover does not have to actually decommit (and reveal its messages) in order to prove the correctness
of the NP statement. Rather can convince the verifier in zero-knowledge that had it indeed revealed the
messages, the verifier would have accepted.

Locally Notarized Envelopes. The overhead of using the notarized envelopes technique depends on
the overhead that the commitments introduce as well as the cost of the zero-knowledge proof for the
final NP statement. When applied to a traditional interactive proof, this overhead depends on the total
length of communication from the prover to the verifier.

For IOPs though, the overhead can be much smaller; the IOP verifier is not interested in the entire
transcript but instead only in the locations of its queries. Therefore, if the prover uses a commitment
that allows for a local decommitment for each bit, then, intuitively at least, the size of the NP statement
should depend only on the number of queries (and the security parameter).

In the computationally-sound setting such a succinct commitment with local openings is obtained by
using a Merkle tree. In our context however, we need a statistically binding commitment. To minimize
the overhead of the commitment and achieve the desired locality, we use a pseudo-random function (PRF)
as a a stream cipher. In more detail, the prover first commits to the PRF seed and then uses the PRF
as a pseudorandom one-time pad to all of the messages. This yields a length preserving commitment
scheme that is also statistically binding, where the overhead is merely the additional commitment to the
PRF seed. Although this commitment scheme does not support local openings, it allows us to define an
NP statement that depends only on the (short) seed and the desired bits which the verifier would like to
query.
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IOP Compactness. The size of the NP statement depends also on the size of the computation that the
verifier performs once it receives the queries. Naively, we can say that the size of the mentioned verifier
computation is bounded by the running time of the verifier, and thus the NP statement is polynomially
related to the running time of the verifier. However, we distinguish between the total running time of
the verifier and the size of the computation it performs offline after receiving the answers to its queries.
We refer to the size of the offline computation as the “compactness” of the IOP (verifier). We show that
the additive overhead of using the locally notarized envelopes technique with IOPs is polynomial in the
compactness of the IOP and the security parameter, thus presenting a potentially efficient transformation
from IOPs to ZKPs.

We also analyze an IOP for bounded space NP relations from a previous work [RR20] and show that
it is indeed very compact, thus achieving a very efficient ZKP for bounded space NP relations as per
Corollary 1.1.

1.3.2 Infeasibility of Succinct IOPs

To show lower bounds for succinct IOPs, it is tempting to utilize existing lower bounds for either inter-
active proofs or PCPs. Trying to do so we run into the following difficulty. First, observe that CSAT has
a very succinct interactive proof - the prover simply sends the witness! Thus, we cannot employ generic
lower bounds for interactive proofs (such as IP ⊆ PSPACE and similar extensions). Likewise, we cannot
use the known lower bounds for succinct PCPs since, for example, the main lower bound that is known,
due to Fortnow and Santhanam [FS11], also rules out a PCP for SAT, whereas by [KR08, RR20] we know
that SAT has a succinct IOP.

Nevertheless, our approach is inspired by Fortnow and Santhanam [FS11], who showed that a succinct
PCP for SAT collapses the polynomial hierarchy. Their proof goes through an interesting intermediate
step: they show that a succinct PCP for any language implies a special kind of reduction for that language,
called instance compression, and then prove that if SAT is instance compressible then the polynomial
hierarchy collapses.

Interactive Proofs and Small Space Algorithms. There is a well established relationship between
interactive proofs and small space algorithms, which stems from the fact that the optimal prover strategy
can be computed in space that is proportional to the length of the transcript of the interactive proof,
if given oracle access to the verifier’s decision procedure.6 This way, we can compute the probability
that the verifier accepts against the optimal prover strategy and decide accordingly. Notice that this
reduction does not require the interactive proof to have perfect completeness, but rather only a gap
between completeness and soundness.

So the problem now boils down to bounding the space needed to emulate the verifier’s decision
procedure. The problem is that the verifier’s decision procedure can take space that is polynomial in the
instance length. This means that if we look at the overall space used, it may very well be dominated by
the verifier’s decision procedure (making the succinctness of the proof irrelevant).

IOPs and Small Space Algorithms. When it comes to IOPs, we can leverage the fact that the verifier
queries a small number of bits from the prover messages. For simplicity, we first consider a non-adaptive
IOP which means that after the interaction is over, the verifier generates a predicate and a set of query
locations (both of which depend only on the instance and the random coins) and outputs the evaluation
of the predicate on the query values. If we can compute the predicates and query locations for all
possible random coins of the verifier, then the verifier’s decision procedure can be emulated by simple
oracle access to those queries and predicates - which does not add any substantial amount of space to
our computation. Let’s analyze the time it takes to generate all such predicates and queries: assuming
the verifier uses rc random coins, we need to iterate over 2rc possibilities and emulate the verifier on
each of them. This takes 2rc · poly(n) time. Extending this approach to general adaptive IOPs is not
difficult: the predicates and query sets are simply replaced by decision trees. Computing each decision
tree now requires us to iterate over all possible query values, so we get a total of 2rc+qc · poly(n) time
complexity, where qc is the query complexity of the IOP. This yields the following lemma:

6See, e.g., [Gol08, Chapter 9]
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Lemma 1.4 (Informally stated, see Lemma 4.4). If a language L can be decided by a public coin IOP
where the query complexity is qc and the randomness complexity is rc. Then all of the verifier’s decision
trees can be computed in 2rc+qc · poly(n) time.

This approach presents another problem: computing all possible decision trees requires time that is
exponential in the randomness complexity. Note that the exponential dependence on the query complex-
ity does not bother us for two reasons: the number of queries in common IOP constructions tends to be
small and, moreover, for non-adaptive IOPs this factor vanishes.

Randomness Reduction for IOPs. To address the problem of exponential dependence on the ran-
domness complexity, we present a transformation that reduces the randomness complexity of IOPs, at
the expense of having a single long verifier message at the beginning of the interaction.

We remark that a similar type of randomness reduction is known in many contexts, such as commu-
nication complexity [New91], property testing [GS10, GR18], interactive proofs [AG21], and likely many
other settings as well. Nevertheless we point out the following key feature of our transformation, which
to the best of our knowledge is novel: we reduce the randomness complexity during the interaction so
that it does not even depend logarithmically on the input size. This is crucial in our context since a
logarithmic dependence on the input size, would translate into a polynomial dependence in the reduction.

The technique, as usual in such randomness reductions is subsampling. In more detail, for a public-
coin IOP, in each round, the verifier simply chooses a random string from some set U and sends it to
the prover. The randomness complexity required to uniformly choose a string from U is rc = log |U |.
Imagine if a proper subset S ⊂ U was chosen a priori and made known to both the prover and the
verifier, such that the verifier now samples a uniform random string from S instead of U . This reduces
the randomness complexity to log |S|.

But does any subset S preserve the completeness and soundness properties? For perfect completeness,
the answer is yes; any string that the verifier chooses would make it accept (a “yes” instance), therefore
any subset S would preserve that property. Preserving soundness, on the other hand, is more challenging;
there is a prover strategy and a fraction of random strings that would make the verifier accept a “no”
instance, and if S contains only such strings, then the soundness property is not preserved.

Nevertheless, we show that if the verifier generates the set S at random by choosing poly(cc) strings
(where cc is the prover-to-verifier communication complexity) from U , then the soundness property is
preserved with overwhelming probability. The result is informally stated below.

Lemma 1.5 (Informally stated, see Lemma 3.3). If L has a public-coin IOP where the prover sends cc
bits in total and the verifier uses rc random coins, then L has a public-coin IOP where the verifier first
sends a random string of length rc · poly(cc) and all subsequent verifier random messages are of length
O(log cc). If the original IOP has perfect completeness, then so does the resulting IOP.

At first glance, it may seem that we have not gained anything. After all, sampling a multi-set S
from U requires more randomness than sampling a single string from U . However, we observe that this
reduction moves up most of the randomness to the first round, while reducing the randomness complexity
in all subsequent rounds.

Small Space with Probabilistic Preprocessing. Assume L has an IOP and assume for simplicity
that the IOP has perfect completeness.7 We sketch how we can combine Lemmas 1.4 and 1.5 to get a
small space algorithm with probabilistic polynomial time preprocessing that decides L. First, we apply
Lemma 1.5 on the IOP and get an IOP where each verifier message, except the first one, has length
O(log cc). The preprocessing algorithm starts by sampling the first verifier message S, and the computes
all of the decision trees conditioned on S being the first verifier message. We note that, overall, the
decision tree can be encoded using a string of length 2qc+k log cc.

Denote by k the number of rounds in the IOP. Given all of the decision trees, the bounded space
algorithm can emulate the optimal prover strategy in O(cc + qc + k · log(cc)) space, since the length of
the remaining transcript is O(cc+ k · log(cc)) and the queries to the decision trees can be computed in
O(qc + k log cc) space. The algorithm then returns 1 if there exists a strategy that makes the verifier
always accept.

7This assumption is not necessary to achieve the result, see Section 4.
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Since we assume that the original IOP has perfect completeness, then so does the new IOP and
specifically, for any x ∈ L and any sampled message S, there exists a prover strategy that makes the
verifier accept.

We move on to analyzing soundness. By Lemma 1.5, the IOP produced by the randomness reduction
in step is sound, so we can assume it has some constant soundness error ε > 0. Let x be a “no” instance.
Soundness error ε implies that at most ε fraction of the possibilities for the first message might result in
a “doomed state” (i.e., the verifier accepts with probability 1 after that first message). Therefore, with
probability at least 1 − ε over the sampled S, for any residual prover strategy, there exists a strictly
positive probability (over the verifier’s randomness) that the verifier rejects. This means that with
probability 1 − ε, the small-space algorithm would not a find a prover strategy that always makes the
verifier accept and therefore would reject the instance x. This yields the desired small-space algorithm
with probabilistic preprocessing as stated in Theorem 1.2.

1.4 Organization
Section 2 includes the preliminaries, definitions and notations. In Section 3, we formally state randomness
reduction for IOPs. In Section 4, we prove that any language that has an IOP can be decided in space that
is proportionate to the communication complexity after some bounded-time preprocessing. In Section 5,
we present the compiler from IOPs to zero-knowledge proofs and apply it to the IOP of [RR20]. In
Appendix A, we elaborate more on Conjecture 1.2. Finally, Appendix B contains a sketch of the proof
that the IOP of [RR20] is indeed compact (as per Definition 2.5).

2 Preliminaries
For any positive integer n ∈ N, we denote by [n] the set of integers {1, . . . , n}.

2.1 Basic Complexity Notations and Definitions
2.1.1 NP relations

For a language L ∈ NP, we denote by RL an NP relation of L. The relation RL consists of pairs (x,w)
such that x ∈ L and w is a witness that allows one to verify that x is indeed in L in polynomial time.
It holds that x ∈ L if and only if ∃w such that (x,w) ∈ RL. We denote by n the instance size |x|, and
by m the witness size |w|. Throughout this work, we implicitly assume that m ≤ n.

We extend the definition of NP relations and languages to general relations and their respective
languages.

Definition 2.1 (Languages and Relations). Let R be a binary relation and assume that there exists a
function m(n) such that if the first element has length n, then the second element has length m = m(n).
We call m the witness length and n the instance length of the relation. We define L(R) = {x : ∃y ∈
{0, 1}m(|x|) s.t. (x, y) ∈ R} and we call L(R) the the language of the relation R.

2.1.2 Circuit-SAT

In the Circuit-SAT (CSAT) problem, the instance is a Boolean circuit and we say that it is in the
language if there exists an assignment that satisfies that circuit. We define the natural relation RCSAT

as the satisfiable Boolean circuits and their satisfying assignments.

2.2 Interactive Proofs and Oracle Proofs
We use the definition and notations of interactive machines from [Gol04].

Definition 2.2. (Interactive proof) A pair of interactive machines (P,V) is called an interactive proof
system for a language L if V is a probabilistic polynomial-time machine and the following conditions
hold:
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• Completeness: For every x ∈ L,

Pr [⟨P,V⟩ (x) = 1] = 1.

• Soundness: For every x /∈ L,
Pr [⟨P∗,V⟩ (x) = 1] ≤ 1

2
.

When the language L is an NP language and x ∈ L, it is standard to give the prover as an input a
witness w such that (x,w) ∈ RL. In this case, the completeness and soundness requirements are stated
as follows:

• Completeness: For every (x,w) ∈ RL,

Pr [⟨P (w) ,V⟩ (x) = 1] = 1.

• Soundness: For every x /∈ L and w∗ ∈ {0, 1}∗,

Pr [⟨P∗ (w∗) ,V⟩ (x) = 1] ≤ 1

2
.

Definition 2.3. (Interactive Oracle Proof) A public-coin interactive oracle proof (IOP) for a language
L is an interactive protocol between a prover P and a probabilistic polynomial-time machine V. On a
common input x of length |x| = n, the protocol consists of two phases:

1. Interaction: P and V interact for k(n) rounds in the following manner: in round i, P sends an
oracle message πi and V replies with a random string ri. Denote r = r1...rk and π = π1...πk.

2. Query and Computation: V makes bounded number of queries to the oracles sent by the prover
and accepts and rejects accordingly.

We require:

• Completeness: If x ∈ L then
Pr [⟨P,V⟩(x) = 1] = 1.

• Soundness: If x /∈ L then for every prover P∗ it holds that

Pr [⟨P∗,V⟩(x) = 1] ≤ 1

2
.

Parameters of IOP. We call cc := |π| and rc := |r| the communication complexity and randomness
complexity of the IOP, respectively. The bound on the number of queries is denoted by qc and called
the query complexity of the IOP. The round complexity is the total number of rounds k = k(n) in the
interaction phase.

Non-adaptive IOPs. Most IOP construction have the useful property of being non-adaptive, that is,
the query locations do not depend on the answers to the previous queries. Formally:

Definition 2.4 (Non-adaptive IOP). An IOP is called non-adaptive if the query and computation phase
can be split into the two following phases:

1. Local Computation: V deterministically (based on r and x) produces a vector q⃗lx,r ∈ [|π|]qc of
qc queries and a circuit that evaluates a predicate ϕx,r : {0, 1}qc → {0, 1}.

2. Evaluation: V queries π on the locations denoted by q⃗lx,r and plugs the values into the predicate

and outputs ϕx,r

(
π
[
q⃗lx,r

])
.
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Compactness. By definition, the size of the predicate (meaning the circuit that evaluates the predi-
cate) produced by the non-adaptive IOP verifier is bounded by the running time of the verifier. However,
many concrete IOP constructions have a predicate that is much shorter than the total running time of
the verifier, and we leverage that property in order to construct succinct proofs. The following definition
captures this property:

Definition 2.5. (α-uniform γ-compact IOP) For any time-constructible 8 functions α(n), γ(n), we say
that the IOP is α-uniform γ-compact if for every input x ∈ {0, 1}n and all random coins r, the size of
the circuit that evaluates the predicate ϕx,r is O(γ(n)). Furthermore, the circuit can be produced in time
O(α(n)) given x, r. For simplicity, if α = poly(n), we say that the IOP is γ-compact.

We use “the size of ϕ” and “the size of the circuit that evaluates ϕ” interchangeably, and denote that
value by |ϕ|.

IOPs for relations. Given a binary relation R, we define an IOP for R as an IOP that decides L(R),
where the prover additionally receives the witness as a private input. In these constructions, the prover
is usually required to be efficient, since it has the witness as an input.

Succinct IOPs. An IOP for an NP relation RL is called succinct if the communication complexity
(which can be thought of as the proof length) is polynomial in the witness size, that is cc = poly(m).
Formally:

Definition 2.6. Let L ∈ NP be a language and RL be a corresponding NP relation with instance size n
and witness size m. An IOP for RL is called a succinct IOP if the communication complexity is poly(m).

2.3 Computational Indistinguishability
We say that a function f : N→ R is negligible if for every polynomial p(·) it holds that f(n) = O(1/p(n)).

Definition 2.7. Let {Dn}n∈N , {En}n∈N be two distribution ensembles indexed by a security parameter
n. We say that the ensembles are computationally indistinguishable, denoted Dn

c
≈ En, if for any

(non-uniform) probabilistic polynomial time algorithm A, it holds that following quantity is a negligible
function in n: ∣∣∣∣ Pr

x←Dn

[A(x) = 1]− Pr
x←En

[A(x) = 1]

∣∣∣∣ .
We use some basic properties of computational indistinguishability such as the following:

Fact 2.8 (Concatenation). Let H,H ′, G and G′ be any efficiently sampleable distribution ensembles such
that H

c
≈ H ′ and G

c
≈ G′. Then (H,G)

c
≈ (H ′, G′).

Fact 2.9 (Triangle Inequality). Let H1, H2, H3 be any distribution ensembles. If H1
c
≈ H2 and H2

c
≈ H3

then H1
c
≈ H3.

Fact 2.10 (Computational Data-Processing Inequality). Let H and H ′ be any distribution ensembles
and A be any PPT algorithm. If H

c
≈ H ′ then A(H)

c
≈ A(H ′).

2.4 Cryptographic Primitives
2.4.1 Commitment Scheme in the CRS model

A commitment scheme in the common reference string model is a tuple of probabilistic polynomial time
algorithms (Gen,Com, V er) where Gen outputs a common random string r ∈ {0, 1}∗. The commit
algorithm Com takes a message to be committed and the random string r and produces a commitment
c and a decommitment string d. The verification algorithm takes the commitment c, the decommitment

8A function f(n) is time-constructible if given there exists a Turing machine that given 1n outputs the binary represen-
tation of f(n) in O (f(n)) time.
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string d, an alleged committed value y and the random string r and outputs 1 if and only if it is
“convinced” that c is indeed a commitment of y. We require the commitment to be computationally
hiding and perfectly binding with overwhelming probability over the common random string r. All of
the algorithms also take a security parameter λ ∈ N (in unary representation). We formally define the
commitment scheme:

Definition 2.11 (Commitment Scheme). A commitment scheme in the common reference string model
is a tuple of probabilistic polynomial time algorithms (Gen,Com, V er) that with the following semantics:

• r ← Gen
(
1λ

)
where r is referred to as the common reference string.

• For any string y ∈ {0, 1}∗: (c, d)← Com
(
1λ, r, y

)
.

• For any strings c, d, y ∈ {0, 1}∗: {0, 1} ← V er
(
1λ, r, c, y, d

)
.

The scheme must satisfy the following requirements:

• Correctness: V er always accepts in an honest execution, i.e., for any string y and any security
λ

Pr
r←Gen(1λ)

(c,d)←Com(1λ,r,y)

[
V er

(
1λ, r, c, y, d

)
= 1

]
= 1.

• Hiding: For any two strings y1, y2 ∈ {0, 1}∗ and any common reference string r, the distribution
of the commitment of y1 and y2 are computationally indistinguishable, i.e., if we denote by Comc

only the commitment part of Com then:
{
Comc

(
1λ, r, y1

) }
λ∈N

c
≈

{
Comc

(
1λ, r, y2

) }
λ∈N.

• Binding: For any λ, with probability at least 1 − 2−λ over the common reference string, any
commitment c∗ has at most one value y that can be accepted by V er, i.e.,

Pr
r←Gen(1λ)

∃y1, y2, d1, d2 ∈ {0, 1}∗ : ∧
i∈{1,2}

V er
(
1λ, r, c∗, yi, di

)
= 1

 < 2−λ.

In this work, we refer to commitment schemes in the CRS model simply as commitment schemes.
We note that due to [Nao91], we have such a commitment scheme under the standard cryptographic
assumption of one-way functions.

2.4.2 Pseudorandom Function

We denote by Fn the set of all functions {0, 1}n → {0, 1}. In what follows, by a truly random function,
we mean a function that is sampled uniformly at random from Fn.

Definition 2.12. (Pseudorandom Function) A function F : {0, 1}λ × {0, 1}n → {0, 1} is a pseudoran-
dom function if for any probabilistic polynomial time oracle machine A, every polynomial p(·) and all
sufficiently large λ it holds that∣∣∣∣∣∣ Pr

s
$←−{0,1}λ

[
AF (s,·) (1n) = 1

]
− Pr

U
$←−Fn

[
AU(·) (1n) = 1

]∣∣∣∣∣∣ < 1

p (λ)
.

For convenience, we denote F (s, x) = Fs(x).

Pseudorandom One-Time Pad. We mat refer to any function f : {0, 1}n → {0, 1} as a string.
For any collection of indices i1 < i2 < ... < iq, we use the notation f [I] := f(i1) ◦ ... ◦ f(iq) where
I = {i1, ..., iq}. When it is clear from context, we may write f(x) for any integer x ≥ 0 and it should
be understood as applying f on the binary representation of x. In this work, we will use pseudorandom
functions to encrypt messages, so for any PRF F and string y ∈ {0, 1}ℓ (where ℓ ≤ 2n), the expression
FS

[
[ℓ]
]
⊕ y represents encrypting y with a pseudorandom one-time pad obtained from F with seed S.
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A PRF allows us to implement a stream cipher, e.g. if we want to encrypt the messages y1, y2 ∈ {0, 1}ℓ
then we can use the values FS(1), ..., FS(ℓ) to encrypt y1 and FS(ℓ+ 1), ..., FS(2 · ℓ) to encrypt y2.

The following fact implies that the pseudorandom one-time pad reveals no information about the
encrypted string (to any computationally bounded adversary):

Fact 2.13. Let F : {0, 1}λ × {0, 1}n → {0, 1} be a PRF. For any set I ⊆ {0, 1}n, the distribution
ensemble

{
s

$←− {0, 1}λ : Fs(I)
}
λ∈N is computationally indistinguishable from uniform random strings of

length |I|.

As mentioned above, this property immediately implies that for any string y, the encryption of y
using F with key/seed S yields a pseudorandom string.

2.5 Zero-Knowledge Proofs
In this section, we formally define zero-knowledge proofs (ZKP) for NP languages. In this paper, we focus
on computational zero-knowledge. This notion of ZKP relies on computational indistinguishability be-
tween distribution ensembles as per Definition 2.7. These ensembles are indexed by a security parameter
λ which is passed to the prover and verifier of the ZKP as an explicit input (in unary representation).
We also require that the zero-knowledge property holds even if the verifier is given some auxiliary in-
formation. Loosely speaking, this means that any (malicious) verifier does not learn anything from the
interaction with the honest prover P even if the verifier is given some additional a priori information.
For any verifier V∗, input x ∈ {0, 1}∗ and auxiliary input z ∈ {0, 1}∗ (that might depend on x), we
denote by V iew

P(w)
V∗(z)(x, λ) the view of V∗ in the interaction ⟨P(w),V∗(z)⟩

(
x, 1λ

)
. The view consists of

the random coins tossed by V∗ and the messages it received from the prover (alongside the inputs x, z
and λ).

Definition 2.14. (Zero-knowledge proofs) Let (P,V) be an interactive proof system for some language
L ∈ NP with security parameter λ. The proof-system (P,V) is computational zero-knowledge w.r.t. auxil-
iary input if for every polynomial-time interactive machine V∗ there exists a probabilistic polynomial-time
machine Sim∗, called the simulator, such that for all x ∈ L and any auxiliary input z ∈ {0, 1}poly(|x|),
the following distribution ensembles are computationally indistinguishable:

•
{
V iew

P(w)
V∗(z) (x, λ)

}
λ∈N

where (x,w) ∈ RL.

•
{
Sim∗

(
z, x, 1λ

)}
λ∈N.

Remark 2.15. W.l.o.g., we can assume that the malicious verifier V ∗ is deterministic, since coin tosses
can be passed as auxiliary input.

Throughout this manuscript, we refer to computational zero-knowledge proofs w.r.t. auxiliary input
simply as zero-knowledge proofs. When the security parameter λ is clear from context, we may omit it
from the notation.

2.6 Hoeffding’s Inequality
Hoeffding’s inequality [Hoe63] is a classical concentration inequality which is widely used in theoretical
computer science.

Theorem 2.1. Let X1, ..., Xn be real random variables bounded by the interval [0, 1] and denote their
sum by S := X1 + ...+Xn. If X1, ..., Xn are independent then for any ε > 0 it holds that

Pr
[∣∣S − E [S]

∣∣ > ε
]
< 2e−2

ε2

n .

3 Randomness Reduction
In this section, we show how to reduce the randomness used by an IOP verifier. While we view this result
as being of independent interest, we note that this randomness reduction will also be useful later on in
Section 4 when we convert IOPs to bounded-space algorithms with probabilistic time preprocessing.
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The procedure that we introduce achieves a relaxed notion of randomness reduction: the verifier can
use a large (but still polynomial) amount of randomness only in the first round of interaction, then uses
only O(log cc) random bits in each subsequent round, where cc is the communication complexity of the
original IOP. Alternatively, we can view this as if before the interaction begins, a trusted setup samples
a uniform random string and then the prover and verifier run an IOP, where they both have explicit
access to that random string. Moreover, as shown in the full version [NR22], this common random string
can also be fixed as a non-uniform advice.

The following definition captures this special type of IOP:

Definition 3.1. A protocol (P,V) is a IOP in the common reference string model (CRS IOP) for a
language L ⊆ {0, 1}∗ with CRS-error µ if (P,V) is an IOP as per Definition 2.3 with the following
modifications:

• Additional Input: In addition to the instance x ∈ {0, 1}n, both the prover and the verifier get an
input ρ ∈ {0, 1}∗.

• Completeness: For any x ∈ L, , with probability 1− µ over ρ
$←− {0, 1}∗, P makes V accept with

probability at least 1− εc over the verifier’s coin tosses:

Pr
ρ∈{0,1}∗

[
Pr

[
⟨P,V⟩(ρ, x) = 1

]
≥ 1− εc

]
≥ 1− µ.

• Non-adaptive Soundness: For any x ̸∈ L and every prover strategy P∗, with probability 1 − µ

over ρ
$←− {0, 1}∗, P∗ makes V accept with probability at most εs over the verifier’s coin tosses.

Formally, for every x ̸∈ L and P∗

Pr
ρ∈{0,1}∗

[
Pr

[
⟨P∗,V⟩(ρ, x) = 1

]
≤ εs

]
≥ 1− µ.

We emphasize that the external probability 1−µ is only over the choice of CRS ρ whereas the internal
probabilistic statement is over all of the verifier’s other coin tosses.

Remark 3.2. We say that the CRS IOP has perfect completeness if for any x ∈ L and any ρ ∈ {0, 1}∗
it holds that Pr

[
⟨P,V⟩(ρ, x) = 1

]
= 1.

The following lemma shows how to transform any IOP into a CRS IOP with small randomness com-
plexity:

Lemma 3.3. (Randomness Reduction for IOPs) Let L be a language that has a k-round public-coin
IOP with constant completeness and soundness errors εc, εs and communication complexity cc. For any
λ and constant ϵ0 be some constant. Then L has a CRS IOP with CRS-error 2−λ, completeness error
εc + ϵ0 and soundness error εs + ϵ0. The CRS length is poly(cc, rc, λ), the randomness complexity is
O
(
k · log(cc · λ)

)
, and the query complexity, communication complexity and number of rounds are the

same as in the original IOP. Furthermore, if the original IOP has perfect completeness then the CRS IOP
has perfect completeness.

The idea that underlies the proof of Lemma 3.3 is to use the CRS to shrink the probability space
and then argue that the resulting space is a good representative of the original space. To formalize this
idea, we make use of the game tree of a proof system defined by Goldreich and Håstad [GH98]. The CRS
defines an approximation of the tree, and both parties interact with respect to the approximated tree.
We extend the original definition of [GH98], which was for interactive proofs, to public-coin IOPs:

Definition 3.4. Let (P,V) be an IOP for some language L and x ∈ {0, 1}n be some instance for L.
The game tree Tx is a leveled tree with 2k + 1 levels, where k is the number of interaction rounds of
the IOP on instance x, and each node in Tx corresponds to a prefix of a possible interaction transcript.
The root, defined to be at level 0, represents the empty transcript ⊥. For each i = 0, 1, ..., k − 1, we call
nodes in level 2i prover nodes and nodes in level 2i+1 verifier nodes. The edges going from prover nodes
correspond to possible prover messages given the transcript so far, and the edges going from verifier nodes
correspond to the randomness that V sends in the current round of interaction. The leaves correspond to
a full transcript, after which the verifier is ready to decide.

14



Any (partial or full) transcript τ corresponds to a path in Tx (or a node) and vice versa, therefore
we use “transcript” and “node” interchangeably. We associate with any such τ a value Xτ ∈ [0, 1] which
is defined recursively as follows: given a full transcript τ , the value (of the corresponding leaf) Xτ is 1
if V accepts given τ as the transcript 9 and 0 otherwise. For a partial transcript τ that corresponds to
a verifier node, Xτ is defined as the average of all of its children in the tree. For a partial transcript τ
that corresponds to a prover node, Xτ is defined as the maximum of all of its children in the tree. The
value of Tx, denoted as val(Tx), is defined as X⊥, the value of the root.

Remark 3.5. The value of Tx is an upper bound on the probability that V accepts when interacting
with any prover, and the bound is achieved by an optimal prover that always chooses the message
that maximizes V’s acceptance probability. Consequently, the soundness error of the IOP is equal to
maxx/∈L val(Tx).

With the notion of a game tree in hand, we are ready to prove Lemma 3.3.

3.1 Proof of Lemma 3.3
Let (P,V) be an IOP for some language L ⊆ {0, 1}∗ with perfect completeness and soundness error 1

2 .
Denote the number of rounds by k and the communication complexity by cc. For any i = 1, ..., k, denote
by rci the number of random bits sent by V in round i and by cci the length of P’s message in that same
round.

Our goal is to construct a CRS IOP (P ′,V ′) for L with small randomness complexity, by using the
CRS to sample a subset of the edges going out of verifier nodes. Let t ∈ N be a parameter to be set later.
This parameter will correspond to the number of edges that we sample from verifier nodes in each level
(round). The larger t is, the closer the approximated tree is to the original tree, but also the larger the
CRS and the randomness complexity.

Let x ∈ {0, 1}n be an instance for L. We proceed to describe (P ′,V ′) using an additional CRS string
ρ. The two parties use ρ to sample k multisets S1, ..., Sk, each of size t, where Si =

{
r
(1)
i , ..., r

(t)
i

}
such

that each r
(j)
i is sampled uniformly and independently from {0, 1}rci . Then in each round i = 1, ..., k, the

prover sends a message πi as it usually does and V ′ chooses r′i
$←− Si uniformly at random (rather than

sampling uniformly from {0, 1}rci). Note that V ′ can do so using only ⌈log t⌉ randomness in each round,
as opposed to rci, and thus we get a total randomness complexity of O(k · log t). Eventually, V ′ simulates
the local computation phase of V on randomness r = r′1 ◦ ... ◦ r′k. That is, it produces the corresponding
query set Qx,r and decision predicate ϕx,r. The verifier then accepts if and only if ϕx,r(π[Qx,r]) = 1.

We note that this construction trivially satisfies most of the properties required by Lemma 3.3,
independently of the parameter t which we are yet to choose. We state those properties in the following
proposition:

Proposition 3.6. The protocol (P ′,V ′) has the same the number of rounds, number of queries and
communication complexity as (P,V). Furthermore, if (P,V) has perfect completeness then (P ′,V ′) has
perfect completeness.

It remains to prove that if we choose a suitable t, we get the desired randomness complexity and
non-adaptive soundness. Indeed, this is where the definition of a game tree (see Definition 3.4) comes
into play.

Fix x /∈ L and let ρ ∈ {0, 1}∗ denote a random variables that represents the CRS. Let Tx be the tree
of the original IOP on input x, i.e., the tree that represents the interaction ⟨P,V⟩(x). For a fixed CRS
ρ = (S1, . . . , Sk), denote by T ′x,ρ the game tree that we get from pruning all edges that are inconsistent
with S1, ..., Sk. That is, for every verifier node, we remove the edges labeled by {0, 1}rci\Si and their
corresponding subtrees. Similarly, for any i ∈ [k − 1] and any fixed S := S1, ..., Si, denote by T ′x,S the
tree that is consistent with S (with no pruning after round i). Observe that, by definition, T ′x,ρ is the
interaction tree of ⟨P ′,V ′⟩(ρ, x), i.e., the interaction of (P ′,V ′) on x with ρ as a CRS. Define T ′x to be
the distribution over game trees obtained by sampling ρ at random and taking T ′x,ρ.

In what follows, whenever we say transcript we refer to either a full or partial transcript of the protocol.
For each transcript τ that remains in the tree T ′x, we denote by Yτ the value of its corresponding node

9Recall that the transcript includes all of the verifier’s randomness, since it is a public-coin protocol
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where the values of prover and verifier nodes are defined recursively in a similar fashion to Xτ (but with
respect to the tree T ′x). Just as T ′x is a distribution over trees, the values Yτ are all random variables
with respect to the choice of ρ (in contrast to the values Xτ which are just fixed constants). For any
ρ, the value Y⊥ is equal to the probability (over the coins of V ′) that ⟨P ′,V ′⟩(ρ, x) accepts. We next
turn to bounding this quantity, thus proving that the soundness error is preserved with overwhelming
probability over ρ. For any

The following lemma gives a bound on the distance of Xτ and Yτ when τ is a verifier node:

Lemma 3.7. Fix a round i ∈ [k] and multisets S := S1, ..., Si−1, and let τ be a verifier node for round
i in the tree T ′x,S. Assume that there exist ε′ ≥ 0 and δ′ ∈

[
0, 1

2t

]
such that for all ri ∈ {0, 1}rci it holds

that
Pr

Si+1,...,Sk

[|Yτri −Xτri | > ε′] ≤ δ′,

where τri is the prover node obtained by selecting the edge ri from the node τ . Then, for any ε > ε′

Pr
Si,...,Sk

[|Yτ −Xτ | > ε] < t · δ′ + 4e−2t(ε−ε
′)2 .

Proof. Fix i ∈ [k], multisets S = S1, . . . , Si−1 and a transcript τ as in the statement of Lemma 3.7. We
say that “Si is good” if for all r(j)i ∈ Si it holds that |Y

τr
(j)
i
−X

τr
(j)
i
| ≤ ε. By the law of total probability:

Pr
Si,...,Sk

[|Yτ −Xτ | > ε] ≤ Pr
Si,...,Sk

[
|Yτ −Xτ | > ε

∣∣ Si is good
]
+ Pr

Si,...,Sk

[
Si is not good

]
. (1)

We turn to bounding the two terms in the RHS of Eq. (1), from which Lemma 3.7 will follow.

Proposition 3.8. PrSi,...,Sk

[
Si is not good

]
≤ t · δ′.

Proof. Recall that by assumption, for all ri ∈ {0, 1}rci , it holds that

Pr
Si+1,...,Sk

[|Yτri −Xτri | > ε′] ≤ δ′.

Therefore,

Pr
Si,...,Sk

[
Si is not good

]
= Pr

Si,...,Sk

[
∃r(j)i ∈ Si : |Yτr

(j)
i
−X

τr
(j)
i
| > ε′

]
= E

Si

[
Pr

Si+1,...,Sk

[
∃r(j)i ∈ Si : |Yτr

(j)
i
−X

τr
(j)
i
| > ε′

] ]
≤ E

Si

[
t∑

j=1

Pr
Si+1,...,Sk

[
|Y

τr
(j)
i
−X

τr
(j)
i
| > ε′

]]
≤ t · δ′.

■

Proposition 3.9. PrSi,...,Sk

[
|Yτ −Xτ | > ε

∣∣A]
< 4 · e−2t(ε−ε

′)
2

.

Proof. We prove Proposition 3.9 using Hoeffding’s Inequality on the sum of the variables X
τr

(1)
i

, ..., X
τr

(t)
i

.

Denote X̄ = 1
t

∑
r
(j)
i ∈Si

X
τr

(j)
i

and recall that Si =
{
r
(j)
i

}
j∈[t] was sampled as a uniformly random

(multi-) subset of {0, 1}rci and that the value of each X
τr

(j)
i

only depends on r
(j)
i (which was sampled

independently of all other r
(j)
i′ ), therefore there variables are independent and we can apply Hoeffding’s

Inequality (see Theorem 2.1) and get

Pr
Si,...,Sk

[∣∣∣X̄ − E
Si,...,Sk

[
X̄
]∣∣∣ > ε− ε′

]
< 2e−2t(ε−ε

′)
2

. (2)
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Thus, it remains to relate the LHS of Eq. (2) to PrSi,...,Sk

[
|Yτ −Xτ | > ε

∣∣A]
. First, observe that by

definition of the value of a verifier node, Yτ = 1
t

∑
r
(j)
i ∈Si

Y
τr

(j)
i

and that when conditioned on A, it

holds that Y
τr

(j)
i
≤ X

τr
(j)
i

+ ε′ for each r
(j)
i ∈ Si. Therefore, it holds that Yτ = 1

t

∑
r
(j)
i ∈Si

Y
τr

(j)
i
≤

ε′ + 1
t

∑
r
(j)
i ∈Si

X
τr

(j)
i

= ε′ + X̄. Therefore, we get

Pr
Si,...,Sk

[
|Yτ −Xτ | > ε

∣∣A]
≤ Pr

Si,...,Sk

[∣∣X̄ −Xτ

∣∣ > ε− ε′
∣∣A]

. (3)

To get rid of the conditioning on A in the RHS of Eq. (3), we use Proposition 3.8 along with our
assumption that δ′ ≤ 1

2t to get that Pr[A] ≥ 1
2 and therefore:

Pr
Si,...,Sk

[∣∣X̄ −Xτ

∣∣ > ε− ε′
∣∣A]

≤
PrSi,...,Sk

[∣∣X̄ −Xτ

∣∣ > ε− ε′
]

PrSi,...,Sk
[A]

≤ 2 · Pr
Si,...,Sk

[∣∣X̄ −Xτ

∣∣ > ε− ε′
]
,

where the first inequality follows from elementary probability theory and the second from the fact that
Pr[A] ≥ 1/2.

Next, we show that the expectation of X̄ is Xτ . Consider uniformly sampling t values R1, ..., Rt from
{0, 1}rci . By the definition of Si =

{
r
(j)
i

}
j∈[t], each Rj has an identical distribution to r

(j)
i . Therefore,

E
Si,...,Sk

[
X̄
]
= E

Si,...,Sk

1

t

∑
r
(j)
i ∈Si

X
τr

(j)
i


=(∗) E

Si

1

t

∑
r
(j)
i ∈Si

X
τr

(j)
i


= E

R1,...,Rt

1

t

∑
j∈[t]

XτRj


=(∗∗) Xτ .

The equality (∗) follows from the fact that the value of each X
τr

(j)
i

only depends on Si and not on the
subsequent Si+1, . . . , Sk and the equality (∗∗) follows from the fact that Xτ = ERj

[XRj
] by definition of

Xτ when τ is a verifier node. Finally, this gives us

Pr
Si,...,Sk

[
|Yτ −Xτ | > ε

∣∣A]
≤ 2 · Pr

Si,...,Sk

[∣∣∣X̄ − E
Si,...,Sk

[
X̄
]∣∣∣ > ε− ε′

]
< 4e−2t(ε−ε

′)
2

,

and Proposition 3.9 follows. ■

Plugging Propositions 3.8 and 3.9 into Eq. (1), we get

Pr
Si,...,Sk

[|Yτ −Xτ | > ε] ≤ Pr
Si,...,Sk

[
|Yτ −Xτ | > ε

∣∣ S is good
]
+ Pr

[
S is not good

]
< 4e−2t(ε−ε

′)
2

+ t · δ′,

and Lemma 3.7 follows. ■

The next lemma gives a bound on the distance of Xτ and Yτ when τ is a prover node:

Lemma 3.10. Fix a round i ∈ [k] and multisets S := S1, ..., Si−1, and let τ be a prover node for round
i in the tree T ′x,S. If for all πi ∈ {0, 1}cci it holds that PrSi,...,Sk

[|Yτπi
−Xτπi

| > ε] < δ then it follows
that PrSi,...,Sk

[|Yτ −Xτ | > ε] < 2cci · δ
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Proof. The lemma follows from the union bound, details follow. Recall that by the definition of the
value of a prover node, it holds that Yτ = maxπi∈{0,1}cci Yτπi

and Xτ = maxπi∈{0,1}cci Xτπi
. Therefore,

Pr [|Yτ −Xτ | > ε] = Pr [∃πi ∈ {0, 1}cci : |Yτπi −Xτ | > ε]

≤ Pr [∃πi ∈ {0, 1}cci : |Yτπi −Xτπi | > ε]

≤ 2cci · δ.

■

Having bounded the growth in difference between Xτ and Yτ for both prover and verifier nodes, we
can now bound the actual difference between Xτ and Yτ via induction, thus bounding the difference
between X⊥ and Y⊥ (the values of the trees Tx and T ′x).

Lemma 3.11. For any ε > 0 and t = Ω̃
(
cc · k · ε−2

)
, it holds that

Pr
ρ
[|Y⊥ −X⊥| > k · ε] < 2cc+k · tk · e−2tε

2

.

Proof. Fix ε, t as stated in the lemma. We prove the lemma by induction over the levels of the interaction
tree. Namely, we prove the following claim:

Proposition 3.12. For all i ∈ [k] and any verifier node τ in round i and any prover node τ ′ := τ, ri
which is a child of τ it holds that

Pr [|Yτ −Xτ | > (k − i+ 1) · ε] < 2
∑k

j=i+1 ccj · 2k−i+1 · tk−i+1 · e−2tε
2

,

Pr [|Yτ ′ −Xτ ′ | > (k − i) · ε] < 2
∑k

j=i+1 ccj · 2k−i · tk−1 · e−2tε
2

.

Proof. (of Proposition 3.12) By reverse induction on i. First note that the assumption t = Ω̃
(
cc · k · ε−2

)
guarantees that 2cc+k · tk · e−2tε2 ≤ 1

2t .

Base: For a full transcript τ ′k, the corresponding nodes in both trees Tx and T ′x are leaves, therefore
Yτ ′

k
= Xτ ′

k
which trivially implies Pr[|Yτ ′

k
−Xτ ′

k
| > 0] = 0 ⇒ Pr[|Yτ ′

k
−Xτ ′

k
| > 0] < e−2tε

2

. In addition,
for all τk which is a parent of a leaf, we can directly apply Lemma 3.7 with ε′ = 0, δ′ = e−2tε

2

(indeed
δ′ < 2cc+2k · tk · e−2tε2 ≤ 1

2t ) and get PrSk
[|Yτk −Xτk | > ε− 0] < t · e−2tε2 + 4 · e−2tε2 ≤ 2 · t · e−2tε2 .

Hypotheses: Fix i ∈ {1, . . . , k − 1}. Assume that for all verifier nodes τi+1 in round i + 1 and all
prover nodes τ ′i+1 := τri+1 it holds that:

Pr
[
|Yτi+1 −Xτi+1 | > (k − i) · ε

]
< 2

∑k
j=i+2 ccj · 2k−i · tk−i · e−2tε

2

,

Pr
[
|Yτ ′

i+1
−Xτ ′

i+1
| > (k − i− 1) · ε

]
< 2

∑k
j=i+2 ccj · 2k−i−1 · tk−i−1 · e−2tε

2

.

Step: Let τi in round i. For any ri, define τ ′i := τri. For any πi+1, the node τi+1 := τ ′iπi+1 is a verifier
node for round i+ 1, therefore by the induction hypotheses, it holds that

Pr
[
|Yτi+1

−Xτi+1
| > (k − i) · ε

]
< 2

∑k
j=i+2 ccj · 2k−i · tk−i · e−2tε

2

.

Therefore, we can apply Lemma 3.10 on τ ′i and get:

Pr
[
|Yτ ′

i
−Xτ ′

i
| > (k − i) · ε

]
< 2cci+1 · 2

∑k
j=i+2 ccj · 2k−i · tk−i · e−2tε

2

= 2
∑k

j=i+1 ccj · 2k−i · tk−i · e−2tε
2

.
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Denote δ′ = 2
∑k

j=i+1 ccj · 2k−i · tk−i · e−2tε2 ≤ 2cc+2k · tk · e−2tε2 ≤ 1
2t and apply Lemma 3.7 on τ with

ε′ = (k − i) · ε and δ′:

Pr [|Yτ −Xτ | > (k − i+ 1)ε] < t · 2
∑k

j=i+1 ccj · 2k−i · tk−i · e−2tε
2

+ 4 · e−2tε
2

≤ 2 · t · 2
∑k

j=i+1 ccj · 2k−i · tk−i · e−2tε
2

= 2
∑k

j=i+1 ccj · 2k−i+1 · tk−i+1 · e−2tε
2

,

and the claim follows. ■

We apply Proposition 3.12 on i = 1 and get that for any transcript τ consisting only of a first prover
message, it holds that Pr [|Yτ −Xτ | > k · ε] < 2

∑k
j=2 ccj · 2k · tk · e−2tε2 . We can apply Lemma 3.10 on

the root ⊥ (which is a prover node) and get that

Pr [|Y⊥ −X⊥| > k · ε] < 2cc1 · 2
∑k

j=2 ccj · 2k · tk · e−2tε
2

= 2cc+k · tk · e−2tε
2

.

This concludes the proof of Lemma 3.11. ■

We are now ready to prove the main result of this section.

Proof. (of Lemma 3.3.) Let (P,V) be an IOP for L as stated in the lemma, denote the CRS IOP that
we get by using the CRS to prune the game tree by (P ′,V ′). By Proposition 3.6, we have the desired
completeness and the same query complexity, communication complexity and number of rounds as in
(P,V). Next, we use Lemma 3.11 with parameters ε =

εgap

3k , t = 27
ε2gap

(λ+ cc) · k3. Using this, we get the
following:

Pr
[
|Y⊥ −X⊥| >

εgap
3

]
< 2cc+k · tk · e−2tε

2

= 2cc+k+k log t · e−6k(λ+cc)

< 2cc+k+k log t · 2−6k(λ+cc)

= 2cc+k+k log(λ+cc)+3k log k · 2−6k(λ+cc)

<(∗) 2k log(λ+cc)+3k log k · 2−5k(λ+cc)

<(∗∗) 2−k(λ+cc)

< 2−λ,

where inequality (∗) follows from the fact that cc + k < k(cc + λ) and inequality (∗∗) follows from
k log(λ + cc) + 3k log k < 4k(cc + λ). This means that for any x /∈ L and P∗, with probability 1 − 2−λ

over the choice of ρ, the probability that ⟨P∗,V ′⟩(ρ, x) accepts is εS + εgap over the coins of V ′.
Similarly, we can prove that and the randomness that V ′ uses in each round is ⌈log t⌉ = O

(
log(λ ·cc)

)
.

This concludes the proof of Lemma 3.3. ■

Remark 3.13. Goldreich and Haståd [GH98] prove a similar result for standard interactive proofs
using the pruning technique, but their application is transforming interactive proofs into probabilistic
algorithms. This section demonstrates that the technique can be used to reduce the per-round randomness
of the interactive (oracle) proof, in the form of transforming any (public-coin) IOP to a (public-coin)
CRS IOP with small randomness complexity. In addition, our proof presents a slight improvement in
parameters over that in [GH98]. Namely, our sample size t only depends linearly on the prover-to-verifier
communication complexity cc, whereas the proof in [GH98] has t = Ω(cc4).

3.2 Non-Uniform IOPs with Small Randomness
We demonstrate how we can use Lemma 3.3 to get an IOP with small randomness complexity which is
sound in the traditional sense, i.e., for all x /∈ L and any prover strategy P∗, the verifier accepts with
probability at most 0.5. The resulting IOP is non-uniform. Loosely speaking, a non-uniform IOPs is an
IOP in which the prover and the verifier receive (polynomial) non-uniform advice.
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Corollary 3.14. Let L be any language. If L has a k-round IOP with communication complexity cc then
L has a non-uniform k-round IOP with communication complexity O(cc) and randomness complexity
O(k · log(n · cc)).

Proof. By Lemma 3.3, there exists a CRS IOP for L with CRS-error
(
2−n−1

)
and soundness error 0.6,

where the communication complexity is cc and the randomness complexity is O(k · log(n · cc)). Denote
this CRS IOP by (P,V).

By the non-adaptive soundness of the CRS IOP, for any x /∈ L and any prover strategy P∗, with
probability 1 − 2−n−1 over ρ, the prover P∗ succeeds in making V accept with probability at most 0.6.
This is equivalent to saying that with probability 1 − 2−n−1 over ρ, every prover strategy can make V
accept with probability at most 0.6. Formally:

Pr
ρ

$←−{0,1}poly(n)

[
∀P∗ : Pr

[
⟨P∗,V⟩(ρ, x) = 1

]
≤ 0.6

]
= 1− 2−n−1.

By a union bound over all “no” instances of length n, it holds that

Pr
ρ

$←−{0,1}poly(n)

[
∀x ∈ {0, 1}n \ L,∀P∗ : Pr

[
⟨P∗,V⟩(ρ, x) = 1

]
≤ 0.6

]
= Pr

ρ
$←−{0,1}poly(n)

[
∃x ∈ {0, 1}n \ L,∀P∗ : Pr

[
⟨P∗,V⟩(ρ, x) = 1

]
> 0.6

]
≤ 2n · 2−n−1

=
1

2

for a sufficiently large n. Therefore, there exists a specific ρ for which Pr
[
⟨P∗,V⟩(ρ, x) = 1

]
≤ 0.6 for all

x ∈ {0, 1}n \ L and all prover strategies P∗ - this ρ is the non-uniform advice of our non-uniform IOP.
The length of the advice is indeed poly(n), and the soundness error can be reduced to 0.5 by parallel
repetition. ■

4 Limitations of Succinct IOPs
In this section, we show limitations on the expressive power of succinct IOPs. Here we consider general,
adaptive IOPs (which only strengthens the negative result).

Loosely speaking, we show that if a language has an IOP then it can be decided by a bounded-
space algorithm with bounded-time preprocessing. The amount of space used is closely related to the
communication complexity of the IOP. When applying this result to a succinct IOP for an NP relation
RL (as per Definition 2.6) with instance length n and witness length m we get a poly(m)-space algorithm
with poly(n)-time preprocessing that decides the language L.

We start by formally defining what it means for a relation to be decidable by a bounded-space
algorithm with a bounded-time preprocessing:

Definition 4.1. Let R be a relation with instance length n and witness length m and L = L(R) the
corresponding language (see Definition 2.1). We say that R can be decided in s(n,m)-space with t(n,m)
preprocessing with soundness error εs and completeness error εc if there exists a t(n,m)-time probabilistic
algorithm A1 and a s(n,m)-space (deterministic) algorithm A2 such that:

• If x ∈ L then Pry←A1(x)

[
A2(y) = 1

]
≥ 1− εc.

• If x /∈ L then Pry←A1(x)

[
A2(y) = 1

]
≤ εs.

In what follows we refer to A1 as the preprocessor and A2 as the decider. We also note that, as
usual, the soundness error can be reduced by repetition, while increasing the time (and space) complex-
ities accordingly. Observe that we can reduce it to negligible simply by repeating the preprocessing a
polynomial number of times, while almost preserving the space used by the decider.

The main result shown in this section is the following theorem:
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Theorem 4.1. If a language L has a k-round IOP with communication complexity cc, query complexity
qc and verifier run-time TV , then L can be decided in O(cc + k · log cc)-space with

(
2qc+O(k·log cc) ·

TV
)

preprocessing with completeness and soundness errors 2−cc. Furthermore, if the IOP has perfect
completeness, then the algorithm has perfect completeness as well.

As an immediate corollary, we obtain the following:

Corollary 4.2. Let RL be an NP relation with instance size n and witness size m. If RL has a
succinct constant-round IOP with perfect completeness and O(log n) query complexity then L can be
decided in poly(m)-space with poly(n) preprocessing. Similarly, if RL has a succinct o

(
m

logm

)
-round IOP

with perfect completeness and o(m) +O(log n) query complexity then L can be decided in poly(m)-space
with 2o(m) · poly(n) preprocessing. The soundness error in both algorithms is 2−poly(m).

4.1 Handling Small Randomness
Given an IOP and an input x, each string of random coins r defines a decision tree of the verifier, which
dictates which queries to make and what value to output. The idea is to encode all of these decision
trees, and generate a large string that represents all of them. This string can be used to implement the
verifier in very small space, simply by reading a few locations of the string to determine what queries to
make (to prover messages) and decide the output. This resulting verifier runs in very small space, and
the final step is to convert this resulting IOP to a small-space algorithm using the following fact10:

Fact 4.3. For any IP (P, V ) there exists an algorithm A1 s.t. A1(x) = Pr[(P, V )(x) = 1] for any
x ∈ {0, 1}∗. In addition, A1 runs in O(cc+ rc+S) space, where cc is the communication complexity, rc
is the randomness complexity and S is the verifier’s space complexity.

Hence, going back to the terminology of Definition 4.1, the preprocessor is responsible for generating
the string and the decider is simply an algorithm for computing the probability that the verifier accepts
and deciding according to that probability. The following lemma captures the main property of the
preprocessor:

Lemma 4.4. Let (P,V) be an IOP with communication complexity cc, randomness complexity rc,
query complexity qc and verifier run-time TV > log cc. Then there exists a function f : {0, 1}n →
{0, 1}O(2rc+qc·log cc) that can be computed in O (TV · 2rc+qc) time s.t. for any x, the query and computa-
tion phase of V can be implemented in O(rc+ qc+ log cc) space given f(x).

Proof. (of Lemma 4.4) Let (P,V) be an IOP as stated in the lemma. Denote by k the number of
communication rounds in the IOP, and for all i ∈ [k] let cci and rci be the length of the prover message
and verifier message in round i, respectively.

Encoding a computation path: On input x ∈ {0, 1}n and randomness r ∈ {0, 1}rc, the verifier V
performs a local deterministic computation that depends on x, r and the values of the queries it makes.
Fixing x and r, a function fr(x) computes a decision tree for the possible executions of the verifier by
feeding it every possible value of each query it makes (one by one, since the verifier might be adaptive).
Since there are qc binary queries, then the decision tree is a binary tree with depth qc, where each
internal node contains location of the next query and each leaf contains the verifier’s output given the
values of the queries. Each query location can be represented using log cc bits, so the tree can be encoded
using a string of length O(2qc · log cc). Each leaf in the tree (along with the path leading to it) takes at
most TV time to produce. Therefore, it can be produced in O(2qc · TV) time. In total, the function f(x)
computes fr(x) for each r ∈ {0, 1}rc, so the size of the string that contains all of the decision trees is
O(2rc+qc · log cc), and it can be computed in O(2rc+qc · TV) time.

Space-efficient construction of the verifier: Given this string, we can build an IOP verifier Vs
that interacts the prover the same way that V does. However, in the query and computation phase, Vs
does not have to preform any actual computation. Instead, Vs looks at f(x) whenever it makes a query

10See, e.g., [Gol08, Chapter 9]
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to the prover messages and finally outputs the value of the leaf it reaches in the decision tree. The total
space used by Vs is the space required to make the queries to f(x) and prover messages π1, ..., πk, which
is O(rc+ qc+ log cc).

Correctness: For any x, it is easy to see that for any random coins r and any prover messages π,
both V and Vs make the same decision: the decision tree of V is encoded in f(x), and Vs simply behaves
according to the instructions in f(x). ■

4.2 Handling Larger Randomness
Looking at Lemma 4.4, we note that the time it takes to compute f(x) grows exponentially with the
randomness complexity of the IOP, so for an IOP with ω (log n) randomness complexity, the running
time jumps to super polynomial. In order to solve this problem, we use the randomness reduction stated
in Lemma 3.3. After getting the input x, we let the preprocessor sample a random CRS ρ, and then
apply Lemma 4.4 on both of x and ρ and the IOP that takes them as an input. By setting λ = cc in
Lemma 3.3, we get the following properties:

1. The preprocessor that computes f(x) would run in 2qc · TV · poly(cc)k time.

2. The string f(x) would have length 2qc · poly(cc)k.

3. If the original IOP has probability p < 1 of accepting an input x, then with probability 1− 2−cc of
the CRS, the new IOP has probability p − ϵ0 < p′ < p + ϵ0 of accepting x. If p = 1 then the new
IOP accepts x with probability 1 as well.

We are now ready to prove Theorem 4.1 using Lemma 4.4 and Fact 4.3.

Proof. (of Theorem 4.1) Let (P,V) be an IOP for the language L as stated in the theorem, and assume
without loss of generality that the completeness and soundness errors are 0.3. By applying Lemma 3.3
with λ = cc and ϵ0 = 0.1, there exists a CRS IOP (P ′,V ′) for L with CRS-error 2−cc and completeness
and soundness errors 0.4. On any input x, the preprocessor A1 generates a random CRS which we de-
note by ρ. By Lemma 4.4, there exists a function f : {0, 1}n+|ρ| → {0, 1}O(2qc·poly(cc)k) s.t. the query
and computation phase of V ′ with the fixed ρ can be implemented by an oracle machine Vs that has
oracle access to f(x, ρ) and runs in O(qc+ k · log cc) space. The preprocessor A1 computes and outputs
this f(x). With probability 1 − 2−cc over ρ, it holds that if x ∈ L then Pr[(P ′,V ′)(ρ, x) = 1] ≥ 0.6
and if x /∈ L then Pr[(P ′,V ′)(ρ, x) = 1] ≤ 0.4. By Fact 4.3, the value Pr[(P ′,V ′)(ρ, x) = 1] can be
computed in O(qc+ cc+ k log cc) = O(cc+ k log cc) space. The decider algorithm A2 simply computes
p = Pr[(P ′,V ′)(ρ, x) = 1] and accepts if and only if p ≥ 0.6. ■

5 Succinct Zero-Knowledge Proofs from OWF
In this section we show how to construct succinct zero-knowledge proofs from succinct IOPs. Intuitively,
the idea is to run an “encrypted” version of the communication phase of the IOP, where the prover sends
a commitment of each oracle, instead of the oracle itself, and the verifier replies with the usual random
coins. At the end of the interaction, rather than having the prover “reveal” the queries that the verifier
asks, the prover proves in zero-knowledge that if it would have revealed the queries then the original
IOP verifier would have accepted.

The technique of committing to messages in a public-coin protocol and then proving in zero-knowledge
that revealing them would make the verifier accept dates back to [BGG+88]. This technique is called
“notarized envelopes”, where we can think that each bit of the messages is put in a secure envelope and
then a “notary” proves something about the contents of those envelopes without actually opening them.
But here, we leverage the fact that the verifier only cares about the values of its queries rather than
the entire transcript. Therefore, the statement which the prover has to prove in zero-knowledge is much
smaller than the IOP transcript and, in fact, depends mainly on the complexity of the IOP verifier.
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Leveraging the small query complexity of the IOP is inspired by [Kil92, Mic00]: there, the notarized
envelopes technique is applied to PCPs to achieve very efficient computationally sound interactive proofs,
i.e., protocols that are only sound against computationally-bounded cheating provers. In Section 5.1,
we modify this approach in two ways: we apply the notarized envelopes to IOPs instead of PCPs and
we achieve unconditional soundness instead of computational soundness. We can think of this as a
transformation from IOPs to ZKPs. Our contribution is implementing this transformation in a way that
preserves the original communication complexity of the IOP up to an additive overhead. More precisely,
the additive overhead depends on the security parameter and the complexity of the IOP verifier (or
more precisely, its “compactness”, see Definition 2.5). Furthermore, we do so under the minimal [OW93]
cryptographic assumption of one-way functions.

In Section 5.2, we apply the transformation to the succinct IOP of [RR20]. This yields a succinct zero-
knowledge proof for a rich sub-class of NP relations. Namely, for bounded-space relations, we construct
zero-knowledge proofs with communication complexity that is arbitrarily close to the witness length -
with the small additive overhead we mentioned earlier.

5.1 Communication Preserving ZKP
In this subsection, we prove the following general theorem that shows how to construct a ZKP from an
IOP while nearly preserving the communication complexity, i.e., the transformation discussed above:

Theorem 5.1. Assume the existence of one-way functions. Let L ∈ NP. If (PIOP, VIOP) is a TV -
uniform γ-compact IOP for L, with soundness error εIOP, communication complexity cc = cc(n) and query
complexity qc = qc(n) where the prover runs in TP time given the witness for x, then L has a public-coin
zero-knowledge proof with soundness error εIOP+2−λ and proof length cc+poly(λ, γ, log cc), where λ > 0
is the security parameter. Furthermore, the running time of the ZKP verifier is TV + poly(λ, γ, log cc)
and the running time of the prover is TP + poly(λ, γ).

5.1.1 The Transformation

The existence of one-way functions implies the existence of the following cryptographic tools:

• A pseudorandom function F : {0, 1}λ × {0, 1}∗ → {0, 1} [GGM86, HILL99].

• A commitment scheme (Gen,Com, V er) [Nao91, HILL99] as defined in Section 2.4.

• For any security parameter λ > 0, a public-coin ZKP with an efficient prover for any language
L ∈ NP with perfect completeness, soundness error 2−λ and proof length poly(λ, n) [GMW86].

We describe how to use those components to transform (PIOP, VIOP) to a pair of interactive machines
(P, V ).

Let x be the input. For ⟨PIOP(w), VIOP⟩(x), denote by k the number of rounds and by πi (resp. ri)
the prover message (resp. verifier public-coins) sent in round i. Recall that at the end of the interaction
phase of the IOP, the verifier VIOP has an oracle access to the prover messages π = (π1, ..., πk) and full
access to its own random coins r = (r1, ..., rk). In the local computation phase, VIOP produces a predicate
ϕx,r : {0, 1}qc → {0, 1} and query locations Qx,r ∈ [cc]qc and it accepts if and only if ϕx,r (π [Qx,r]) = 1.

As discussed above, rather than sending πi, the prover P sends a commitment αi to the message πi.
The commitment is computed as follows: first, P commits to a PRF seed S, then uses FS to encrypt
each πi using FS as a pseudorandom one-time pad. The prover P then convinces V , in zero-knowledge,
that if the query locations of the messages were revealed then VIOP would have accepted. In particular, P
proves that it knows some seed S such that the decryption of α w.r.t. FS in the query locations specified
by Qx,r would satisfy the predicate ϕx,r.

For that purpose, we define the language L′, consisting of tuples
(
ϕ, ρ,Q, y, c

)
, where ϕ : {0, 1}qc → {0, 1}

is a predicate, ρ ∈ {0, 1}poly(λ) is a (common reference) string, Q ⊆ [cc] is a set of qc query loca-
tions, y ∈ {0, 1}qc is a vector of encrypted query values (supposedly taken from the transcript) and
c ∈ {0, 1}poly(λ) is the commitment of some seed. The tuple is in the language if and only if there exists
a seed S ∈ {0, 1}λ that can be revealed from c and ρ such that the decryption of y w.r.t. S and Q
satisfies the predicate. For simplicity, we assume that the security parameter λ can be inferred from ρ
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Communication Preserving ZK Protocol

1. V generates a reference string ρ← Gen
(
1λ+1

)
for the commitment scheme and sends it to P .

2. P generates a random PRF seed S ∈R {0, 1}λ, commits to it using (com, dec) ← Com
(
1λ+1, ρ, S

)
and sends the commitment com to V .

3. P initializes ℓ← 0, p = FS([cc]) then performs with V the following “encrypted” version of the IOP:
For i = 1, . . . , k:

• P sends an encryption of the ith PIOP’s message πi by XORing it with fresh bits from p, i.e.,
sends αi = p[ℓ, .., ℓ+ |πi| − 1]⊕ πi and updates ℓ← ℓ+ |πi|.

• The verifier replies with the usual random coins ri as in the IOP.

Denote α = (α1, . . . , αk) and r = (r1, ..., rk).

4. P and V emulate (PL′ , VL′) with
(
ϕx,r, ρ,Qx,r, α [Qx,r] , com

)
as common input and where PL′ further

uses (S, dec) as its witness, with security parameter λ+ 1 and V answers accordingly.

Figure 1: The ZK protocol from Theorem 5.1

and furthermore, is polynomially related to |ρ| (which is indeed the case in [Nao91]). For simplicity, we
refer to FS as a string and use the notation FS [Q] to access the Q coordinates from FS . Formally:

L′ =
{(

ϕ, ρ,Q, y, c
)
: ∃d, S s.t. V er(1λ, ρ, c, S, d) = 1 and ϕ(y ⊕ FS [Q]) = 1

}
.

The length of an instance (ϕ, ρ,Q, y, c) is |ϕ|+ poly(λ) + qc ·O(log cc). The language L′ is clearly in
NP since given S and d (which have poly(λ) length), a verifier can verify that V er(1λ, ρ, c, S, d) = 1 in
poly(λ) time, compute y ⊕ FS [Q] in poly(λ, qc, log cc) time and verify ϕ (y ⊕ FS [Q]) = 1 in O(|ϕ|) time.
Therefore, L′ has a ZKP with an efficient prover which we denote by (PL′ , VL′). Thus, the final step of
the protocol is to have P and V emulate (PL′ , VL′) to prove (in zero-knowledge) that the tuple is in L′.
Note that P can perform this step efficiently since it has the NP witness S, d. The protocol is presented
in Fig. 1.

We prove the protocol is a zero-knowledge proof in two steps: first we prove that it is an interactive
proof for L with the desired complexity properties and then we prove that it is computational zero-
knowledge w.r.t. auxiliary input. This is captured by the following two lemmas:

Lemma 5.1. The protocol in Fig. 1 is a public-coin interactive proof for L. The proof length is cc +
poly(λ, γ, log cc), the soundness error is εIOP + 2−λ, the verifier runs in time T + poly(λ, γ, log cc) and
the prover runs in time TP + poly(λ, γ).

Lemma 5.2. The protocol in Fig. 1 is computational zero-knowledge w.r.t. auxiliary input.

5.1.2 Proof of Lemma 5.1

We start by proving the completeness and soundness of the protocol, then move on to establishing the
complexity bounds.

Completeness. Let x ∈ L. By the correctness of (Gen,Com, V er), the decommitment string dec and
the seed S that the honest prover have satisfy the first condition of L′, i.e., V er

(
1λ+1, ρ, com, dec, S

)
= 1.

In addition, α1, . . . , αk are the encryptions of the honest IOP verifier messages π1, ..., πk, so for y = α[Qx,r]
we get that y⊕FS [Qx,r] = π[Qx,r]. Since x ∈ L and (PIOP, VIOP) has perfect completeness, we get that the
second condition of L′ is satisfied, i.e., ϕx,r(y⊕FS [Qx,r]) = 1. Therefore, (ϕx,r, ρ,Qx,r, α[Qx,r], com) ∈ L′.
By the perfect completeness of (PL′ , VL′), the verifier accepts in step 4.

Soundness. Let x /∈ L and P ∗ be a fixed cheating prover strategy. In step 2, P ∗ sends an alleged
commitment com∗ of a seed S, then in the step 3, P ∗ sends k messages α∗ = α∗1, .., α

∗
k. In step 4, P ∗
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tries to convince V that (ϕx,r, ρ,Qx,r, α
∗ [Qx,r] , com

∗) ∈ L′, i.e., that there exists a dec∗, S such that
V er

(
1λ+1, ρ, com∗, dec∗, S

)
= 1 and ϕx,r (α

∗ [Qx,r]⊕ FS [Qx,r]) = 1. The idea is that the committed
values do not satisfy the predicate (with high enough probability) by the soundness of the IOP, and
the probability that the prover can reveal different values is negligible by the binding property of the
commitment scheme. This is formalized in the following claim:

Claim 5.2.1. Pr
[(
ϕx,r, ρ,Qx,r, α

∗ [Qx,r] , com
∗) ∈ L′] ≤ εIOP + 2−λ−1.

Proof. We say that a string S is consistent with com∗ if there exists some decommitment string dec∗

s.t. V er
(
1λ, ρ, S, com∗, dec∗

)
= 1. Denote by A1 the event that no S is consistent with com∗, by

A2 the event that exactly one S is consistent with com∗ and by A3 that more than one value is con-
sistent with com∗. These three events partition the probability space. Denote by B the event that(
ϕx,r, ρ,Qx,r, α

∗ [Qx,r] , com
∗) ∈ L′. By the binding property of the commitment scheme, the probability

over ρ← Gen
(
1λ

)
of A3 happening is at most 2−λ−1. Assuming that there is exactly one valid value S

that can be revealed, i.e., that event A2 happens, we get that the decryption of the messages α1, ..., αk

w.r.t. that S constitutes a prover strategy for the IOP. By the soundness of (PIOP, VIOP), the probability
over the random coins of VIOP that this strategy succeeds is at most εIOP. Finally, assuming A1, the
probability of B happening is 0. So in total,

Pr
[(
ϕx,r, ρ,Qx,r, α

∗ [Qx,r] , com
∗) ∈ L′]

= Pr
[
A1 ∧B

]
+ Pr

[
A2 ∧B

]
+ Pr

[
A3 ∧B

]
≤ Pr

[
B

∣∣A2

]
+ Pr

[
A3

]
≤ εIOP + 2−λ−1,

where the probability is over ρ and r. This completes the proof of the claim. ■

Assuming (ϕx,r, ρ,Qx,r, α
∗ [Qx,r] , com

∗) /∈ L′, the verifier V rejects with probability at least 2−λ−1

by the soundness of (PL′ , VL′). Thus, overall, the verifier accepts with probability at most 2−λ−1+εIOP+
2−λ−1 = εIOP + 2−λ

and soundness follows.

Proof length. We analyze the length of the prover messages for each step:

1. In step 1, the prover does not send any messages.

2. In step 2, the prover commits to a seed S ∈ {0, 1}λ with security parameter λ + 1 which requires
poly(λ) bits of communication.

3. In step 3, the number of bits that the prover sends is exactly cc.

4. In step 4, the communication depends on (PL′ , VL′). The communication complexity is polynomial
in the size of the tuple (ϕx,r, ρ,Qx,r, α [Qx,r] , com) as well as S and dec. We recall that (PIOP, VIOP)
is γ-compact, therefore |ϕx,r| = O(γ(n)). In addition, the size of the predicate bounds the number
of queries, i.e., qc = O(γ(n)). The query set Qx,r can be represented using qc · O(log cc) bits
and the commitment com, decommitment dec, seed S and CRS ρ have poly(λ) size. In total, the
communication complexity used in (PL′ , VL′) is poly(λ, γ, log cc).

Therefore, the total number of bits sent by the prover is cc+ poly(λ, log cc, γ).

Public-coin. The protocol is public-coin since the underlying IOP and ZKP are both public-coin and
the verifier can just send the random coins it used in Gen to generate ρ.

Verifier time. The verifier runs Gen(1λ+1) in step 1 and then simulates VIOP until it computes
ϕx,r, Qx,r. This takes T+poly(λ) times. In step 4, the verifier simulates VL′ which takes poly(λ, γ, log cc).
In total, the running time of the verifier V is T + poly(λ, γ, log cc).
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Prover time. The prover P runs Com
(
1λ+1, ρ, S

)
and then simulates PIOP (while encrypting each

message using FS) and PL′ . Running Com requires poly(λ) time. Simulating PIOP can be done in TP

time, and simulating PL′ is done in polynomial time since P has the witness S, d, that is poly(λ, γ, log cc).
Note that log cc = o(TP ) since TP includes generating and sending all of the IOP prover messages which
have length cc. In total, the prover P runs in TP + poly(λ, γ).
This completes the proof of Lemma 5.1.

5.1.3 Proof of Lemma 5.2

We now move on to proving that the protocol (P, V ) of Fig. 1 is computational zero-knowledge w.r.t.
auxiliary input.

By definition of zero-knowledge, we need to show a simulator for the interaction (P, V ∗), where V ∗

is an arbitrary (malicious) verifier. The idea is to simulate the IOP phase by replacing the honest prover
messages with truly random messages and simulate the ZKP phase using the simulator for (PL′ , VL′).

In the following discussion, for readability, we often omit the security parameter λ from the notation.
However, formal claims and proofs that follow do mention the security parameter explicitly.

Let V ∗ be a polynomial time verifier as per Remark 2.15, and denote by V ∗L′ the residual verifier strat-
egy11 that V ∗ uses in step 4. Let x ∈ L be an instance, z ∈ {0, 1}poly(|x|) be some auxiliary input and w be
the NP witness for x. The view of V ∗ when interacting with the prover P on common input x and prover
input w, denoted by V iewV ∗(z)(x) := V iew

P (w)
V ∗(z)(x), consists of x,z, the commitment com, the encrypted

messages α and the view of V ∗L′ in step 4, denoted by V iew′ (ϕx,r, ρ,Qx,r, α[Qx,r], com, zL′ , (S, dec)) :=

V iew
PL′ (S,dec)
V ∗
L′ (zL′ )

(ϕx,r, ρ,Qx,r, α[Qx,r], com) where zL′ = (x, z, r, α) is the auxiliary input for V ∗L′ and S, dec

are the witness for tuple being in L′. Since zL′ contains α and the instance contains com that is,
everything in the view of V ∗ up to that point, we can assume that

V iewV ∗(z)(x) = V iew′ (ϕx,r, ρ,Qx,r, α[Qx,r], com, zL′) .

By the zero-knowledge property of (PL′ , VL′), there exists a simulator Sim′V ∗
L′

that can simulate
V iew′ with auxiliary input zL′ . We observe that w.l.o.g., the input of Sim′V ∗

L′
can simply consist of

(x, r, z, α, ρ, com) - this is due to the fact that Sim′V ∗
L′

can compute ϕx,r and Qx,r on its own and
there is no need to pass the bits α [Qx,r] twice. Recall that we assume (PIOP, VIOP) has perfect com-
pleteness, therefore for any verifier messages ρ, r and honestly generated prover messages com and α,
it holds that (ϕx,r, ρ,Qx,r, α [Qx,r] , com) ∈ L′. Therefore, it holds that Sim′V ∗

L′
(x, r, z, α, ρ, com) and

V iew′(ϕx,r, ρ,Qx,r, α[Qx,r], com, zL′) are computationally indistinguishable.
We now describe a simulator SimV ∗(x, z) that simulates V iew

P (w)
V ∗(z)(x). We start with a high-level

description. Given as input x, z, the simulator emulates step 1 of of the protocol from Fig. 1 exactly as
V ∗ would, namely, it runs V ∗(x, z) to generate the CRS ρ. For step 2, the simulator commits to a string
of zeros and “sends” the commitment to V ∗, leveraging the hiding property of the commitment scheme.
For step 3, the simulator “sends” random messages to V ∗, this time leveraging the pseudorandomness
of the PRF. Finally, for step 4, the simulator simply runs Sim′V ∗

L′
on the instance that V ∗ sees - which

includes the commitment to zeros and the subsequent random messages. Since the output of Sim′V ∗
L′

includes its input, specifically the auxiliary input, then SimV ∗ can just output the output of Sim′V ∗
L′

.
The simulator SimV ∗ is formally described in Fig. 2.

At first glance, the zero-knowledge property of (PL′ , VL′) does not necessarily hold in this case since
the “mock” instance on which we run Sim′V ∗

L′
is (almost definitely) not a “yes” instance. However,

we observe that this “mock” instance and a “yes” instance are computationally indistinguishable; the
commitment to zeros is indistinguishable from that of a randomly generated seed due to the hiding
property of the commitment scheme and the truly random messages are indistinguishable from the
encrypted messages used in the protocol due to the pseudorandomness of the PRF. Therefore, we can
apply the computational data processing inequality (as stated in Fact 2.10) to deduce that the outputs
of Sim′V ∗

L′
on both instances are indistinguishable, which are in turn indistinguishable from the view VL′ .

This yields the following proposition:
11This strategy might depend on the view of V ∗ up to that point, but this can be passed to V ∗

L′ as an auxiliary input as
we show later on.
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ZK Simulator for Theorem 5.1
Input: x ∈ L, z ∈ {0, 1}∗, 1λ

1. Generate a reference string ρ← V ∗(x, z).

2. Compute a commitment to zeros (c0, d0)← Com
(
1λ, ρ, 0λ

)
. “Send” c0 to V ∗.

3. For i = 1, .., k: Generate a random βi and “send” it to V ∗ and get in response ri.

4. Output Sim′
V ∗

(
x, r, z, β, ρ, c0, 1

λ
)
.

Figure 2: The simulator SimV ∗ for Theorem 5.1

Proposition 5.3. For all x ∈ L and auxiliary input z ∈ {0, 1}poly(|x|),{
SimV ∗

(
x, z, 1λ

)}
λ∈N

c
≈

{
V iewV ∗(x, λ)

}
λ∈N

.

Recall that SimV ∗ applies the simulator Sim′V ∗
L′

on a “mock” instance instead of a “yes” instance.
The following proposition states that the parts in which the “mock” instance differs from a “yes” instance
are computationally indistinguishable:

Proposition 5.4. Let x ∈ L and π ∈ {0, 1}cc be any string. For any CRS ρ ∈ {0, 1}poly(λ), the following
distribution ensembles are computationally indistinguishable:

•
{(

β, c0, 1
λ
)}

λ∈N
where β

$←− {0, 1}cc, and (c0, d0)← Com(1λ+1, ρ, 0λ).

•
{(

α, cS , 1
λ
)}

λ∈N
where S

$←− {0, 1}λ, α← FS([|π|])⊕ π and (cS , dS)← Com(1λ+1, ρ, S).

Proof. (of Proposition 5.4) We prove the claim using a hybrid argument. Denote the first and second
ensemble by H and H ′, respectively. We define the intermediate hybrid I =

{(
α, c0, 1

λ
)}

λ∈N
, where

(c0, d0)← Com(1λ+1, ρ, 0λ) and α = FS([|π|])⊕π. We note that I is defined similarly to H ′ except that
instead of committing to the PRF seed S ∈ {0, 1}λ, we commit to 0λ. Observe that by the computa-
tional hiding property of (Gen,Com, V er), the commitments are computationally indistinguishable and
therefore I

c
≈ H ′. By Fact 2.13, the string α = FS([|π|])⊕ π is pseudorandom, i.e., it is computationally

indistinguishable from the random string β and therefore H
c
≈ I. We get that H

c
≈ H ′, and the propo-

sition follows. ■

We are now ready to prove Proposition 5.3.

Proof. (of Proposition 5.3) Fix x ∈ L and some auxiliary input z ∈ {0, 1}poly(x). Recall that V ∗ is
deterministic, therefore we can assume a fixed CRS ρ that V ∗ sends as its first message when interacting
with P over x and auxiliary input z.

Let S
$←− {0, 1}λ be a random variable that denotes a seed. We look at the following distributions

that depend in S:

• The commitment cS of S relative to the CRS ρ.

• The transcript (π, r) of the interaction between PIOP and a verifier that responds according to the
messages that V ∗ sends, when given as input also the commitment cS as well as explicit access to
the encryption of each prover message in each round.

We also let β be a uniform distribution over {0, 1}cc and c0 be the distribution of the commitment
Com(1λ+1, ρ, 0λ) and denote α = FS([|π|])⊕ π. Now, we define the following distribution ensembles:

• H =
{
Hλ =

(
x, r, z, β, ρ, c0, 1

λ
)}

λ∈N
.
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• H ′ =
{
H ′λ =

(
x, r, z, α, ρ, cS , 1

λ
)}

λ∈N
.

By Proposition 5.4, the distribution ensembles
{
(β, c0, 1

λ)
}
λ∈N and

{
(α, cS , 1

λ)
}
λ∈N are computa-

tionally indistinguishable. Since H,H ′ are mere extensions of those ensemble (obtained by concatenating
the identical distributions x, r, z, ρ), we get that H

c
≈ H ′. By Fact 2.10, Sim′V ∗

L′
(H)

c
≈ Sim′V ∗

L′
(H ′). Note

that H is a distribution of “mock” inputs for Sim′V ∗
L′

(that SimV ∗ passes to Sim′V ∗
L′

). By the perfect
completeness of (PIOP, VIOP), for any verifier messages r and honestly generated prover messages π, it
holds that (ϕx,r, ρ,Qx,r, α[Qx,r], cS) ∈ L′, therefore H ′ is a distribution of “yes” inputs for Sim′V ∗

L′
.

Leveraging the fact that H ′ corresponds to “yes” instances for L′ with auxiliary input zL′ = (x, r, α, ρ),
we can use the zero-knowledge property of (PL′ , VL′) and get that:{

V iew′
(
ϕx,r, ρ,Qx,r, α[Qx,r], cS , zL′ , λ

)}
λ∈N

c
≈ Sim′V ∗

L′
(H ′)

c
≈ Sim′V ∗

L′
(H). (4)

On the other hand, by the construction of SimV ∗ , its output is exactly:{
SimV ∗

(
x, z, 1λ

) }
λ∈N = Sim′V ∗

L′
(H). (5)

Putting Eq. (5) and Eq. (4) together, we get that{
SimV ∗

(
x, z, 1λ

)}
λ∈N

c
≈

{
V iew′

(
ϕx,r, ρ,Qx,r, α[Qx,r], com, zL′ , λ

)}
λ∈N

.

Finally, recall that the view of V ∗ is:

V iewV ∗(z)(x, λ) = V iew′ (ϕx,r, ρ,Qx,r, α[Qx,r], com, zL′ , λ) .

So in total, {
SimV ∗

(
x, z, 1λ

)}
λ∈N

c
≈

{
V iewV ∗(x, λ)

}
λ∈N

and the proposition follows. ■

Proof. (of Lemma 5.2) Let x ∈ L and w be the corresponding witness. Fix some polynomial time veri-
fier V ∗ and auxiliary input z. By Proposition 5.3, the output of the simulator SimV ∗ on input (x, z, 1λ)
is computationally from the view V iew

P (w)
V ∗(z)(x, λ). In addition, SimV ∗ runs in polynomial time because

it only generates random strings of polynomial size and runs the polynomial time algorithms V ∗, Com
and Sim′V ∗ . This gives us the zero-knowledge property of the protocol. ■

In total, Lemma 5.1 and Lemma 5.2 complete the proof of Theorem 5.1.

5.2 Constructing Succinct ZKPs
Our next step is to use Theorem 5.1 to construct succinct zero-knowledge proofs for NP relations that
can be verified in bounded space. We rely on the following result by [RR20]:

Theorem 5.2. (Extension of [RR20]) Let L ∈ NP with corresponding relation RL in which the in-
stances have length m and witnesses have length n, where m ≥ n, and such that RL can be decided
in time poly(m + n) and space s ≥ logm. For any constants β, γ ∈ (0, 1), there exists a β−O(

1
β )-

round IOP for L with soundness error 1
2 and (γβ)−O(

1
β ) query complexity. The communication consists

of a first (deterministic) message sent by the prover of length (1 + γ) · m + γ · nβ bits followed by
poly

(
nβ , (γβ)−

1
β , s

)
additional communication. In addition, the IOP is

(
Õ(n) + poly

(
nβ , (γβ)−

1
β , s

))
-

uniform poly
(
nβ , (γβ)−

1
β , s

)
-compact and the prover runs in poly(n) time.
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Remark 5.5. The theorem statement in [RR20] does not include the compactness property. Nevertheless,
it is relatively straightforward to show that the construction is indeed compact. In addition, [RR20]
assumes that the instance length is polynomially related to the witness length and as a result, the length
of the fist message only depends on the witness length, whereas we do not make that assumption and
therefore Theorem 5.2 introduces a small dependence on the instance length. In our context, we can
afford this dependence since it will anyhow appear in our ZKP construction due to the compactness
property. Given these differences, for completeness, Theorem 5.2 is proved in the full version [NR22].

The soundness error in Theorem 5.2 can be reduced by parallel repetition while observing that since
the first prover message is deterministic, so it does not need to be repeated. In addition, if we choose a
sufficiently small β and the space s in which we can decide RL is sufficiently small (but still polynomially
related to n), then we get the following corollary:

Corollary 5.6. There exists a fixed constant ξ > 0 such that the following holds. Let L ∈ NP with a
corresponding relation RL in which the instances have length n and witnesses have length m such that
m ≤ n and RL can be decided in poly(n) time and nξ space. Then for any constants γ ∈ (0, 1) and any
function ε = ε(m) ∈ (0, 1) there exists a constant β′ such that for any β ∈ (0, β′) there exists an IOP for
L with communication complexity (1+γ) ·m+O

(
log 1

ε

)
·γ ·nβ, query complexity O(log ε) and soundness

error ε. In addition, the IOP is Õ(n)-uniform nβ-compact and the prover runs in poly(n) time.

Corollary 5.6 captures a rich class of NP relations (e.g. SAT or any other relation that can be decided
in polynomial time and polylogarithmic space). We now apply Theorem 5.1 on the IOP from Corollary 5.6
and get a succinct ZKP for all languages in that class. This yields our main theorem:

Theorem 5.3. There exists a fixed constant ξ > 0 such that the following holds. Let RL be an NP
relation, in which the instances have length n and witnesses have length m such that m ≤ n, that can be
decided in poly(n) time and nξ space. Assuming one-way functions exist, then for any constant γ ∈ (0, 1)
and security parameter λ > 1, there exists a constant β′ such that for any β ∈ (0, β′) there exists a public-
coin zero-knowledge proof for RL with (1 + γ) ·m+γ ·nβ ·poly(λ) proof length, perfect completeness and
soundness error 2−λ. Furthermore, the verifier runs in time Õ(n) + nβ · poly(λ) and the prover runs in
poly(n) time.

Proof. The relation RL satisfies the premise of Corollary 5.6. Therefore for any constant γ0 ∈ (0, 1)
and any function ε = ε(n) ∈ (0, 1) there exists a constant β′0 ∈ (0, 1) such that for any β0 ∈ (0, β′0)
there exists a Õ(n)-uniform nβ-compact IOP for the corresponding language L with soundness error ε,
constant query complexity, communication complexity (1 + γ) ·m + O

(
log 1

ε

)
· γ · nβ and prover time

poly(n), if given the witness. Assuming one-way functions exist and choosing ε = 2−λ−1, we can apply
Theorem 5.1 with security parameter λ+1 on the previous IOP to get a public-coin ZKP for L with the
following properties:

• Soundness error 2−λ−1 + 2−λ−1 = 2−λ.

• Proof length (1 + γ0) ·m+O (λ) · γ0 · nβ0 + poly
(
λ, nβ0 , log n

)
.

• The verifier runs in Õ(n) + poly
(
λ, nβ0 , log n

)
.

• The prover runs in poly(n) time.

By choosing a sufficiently small β′0 and γ0 = γ, we get (1 + γ) ·m+ γnβ · poly (λ, log n) proof length
and Õ(n)+nβ ·poly (λ, log n) verifier time. Since polylog(n) = O(nβ), we can drop the log n and get the
desired proof length and verifier time. ■
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A More on Conjecture 1.2
In this section, we elaborate further on Conjecture 1.2. We start by recalling it:

Conjecture 1.2. For a function class T , the conjecture states that CSAT for circuits of size n over
m input bits cannot be solved by an algorithm that uses poly(m) space and t(n,m)-time probabilistic
preprocessing, for any t ∈ T .

Circuit Value Problem. The circuit value problem (CVAL) is the computational problem in which you
are given the description of a Boolean circuit C and an input x and need to output C(x). CVAL is known
to be P-complete under log-space reductions. Under the widely believed conjecture that P ̸⊆ Space(log)
it holds that CVAL cannot be solved in logarithmic space. But little has been achieved in solving CVAL
even in sub-linear space; in particular, the most space-efficient algorithm known to date, which follows the
so-called “pebbling” approach yields a O

(
n

logn

)
-space algorithm [HPV77] where n is the size of the circuit.

It was later proved that for general circuits, the pebbling approach cannot do much better [PTC77], i.e.,
there is a space lower bound of Ω( n

logn ) for solving CVAL using pebbling. Since the number of variables in
a circuit can be much smaller than its size, and in particular, the circuit size can be super-polynomial in
the number of variables, we believe it is reasonable to assume that a general circuit cannot be evaluated
in space that is polynomial in the number of variables.

Connection to CSAT. Observe that CVAL is a much easier problem than CSAT. Beyond the fact that
CSAT is NP complete whereas CVAL is in P, there is a log-space reduction from CVAL to CSAT. Therefore
if CVAL cannot be solved in space s > log n then CSAT cannot be solved in space s. But the connection
between those two problems seems even stronger: the natural way to decide if a Boolean circuit of size
n over m variables is satisfiable is by enumerating all possible assignments and running the best CVAL
algorithm wrt each assignment.

Connection to Conjecture 1.2 If a circuit of size n over m variables can be solved in poly(m) space
with some non-trivial time probabilistic preprocessing (say poly(n)) then this would imply that either
it can be solved in a single phase; in poly(m) space or non-trivial time, or it would imply a surprising
interplay between space and time complexities and in particular, yield an interesting space-time trade-off
for CSAT.

B IOP for small space relations
In this section, we prove Theorem 5.2, which states that there exists a succinct IOP for NP relations that
can be verified in small space. This result is a small extension of the main result of [RR20] and uses the
same IOP construction from that paper.

Theorem 5.2. (Extension of [RR20]) Let L ∈ NP with corresponding relation RL in which the in-
stances have length m and witnesses have length n, where m ≥ n, and such that RL can be decided
in time poly(m + n) and space s ≥ logm. For any constants β, γ ∈ (0, 1), there exists a β−O(

1
β )-

round IOP for L with soundness error 1
2 and (γβ)−O(

1
β ) query complexity. The communication consists

of a first (deterministic) message sent by the prover of length (1 + γ) · m + γ · nβ bits followed by
poly

(
nβ , (γβ)−

1
β , s

)
additional communication. In addition, the IOP is

(
Õ(n) + poly

(
nβ , (γβ)−

1
β , s

))
-

uniform poly
(
nβ , (γβ)−

1
β , s

)
-compact and the prover runs in poly(n) time.

The difference between Theorem 5.2 and the main result of [RR20] is the IOP is compact, as well
as the fact that we do not require the instance and witness lengths to be polynomially related. Since
Theorem 5.2 is a minor extension of a previous work, we opt to give an overview of that work. We
start by defining the key ingredients that are used in the proof, formally state the results that we rely
on and discuss the main ideas behind the proofs of these results. Finally, in Appendix B.2, we prove
Theorem 5.2.

33



B.1 Summary of Previous Work
B.1.1 Preliminaries

The protocol we discuss relies on a variant of interactive oracle proofs called interactive oracle proofs of
proximity (IOPP). Loosely speaking, this is an IOP in which the verifier only has oracle access to the
input and accepts if the input is in the language and rejects if the input is “far” from the language. The
notion of distance that we use is relative Hamming distance. Formally, for any x ∈ {0, 1}∗, language
L ≠ ∅ and parameter δ ∈ (0, 1), we say that x is δ-far from L if the relative Hamming distance between
x and any x′ ∈ L is at least δ. IOPPs are formally defined as follows.

Definition B.1. A public-coin IOPP w.r.t. proximity parameter δ > 0 and soundness error ε > 0 for a
language L is a pair (P,V) of probabilistic algorithms that satisfy the following requirements:

• Input: P receives x ∈ {0, 1}n as input and V has oracle access to x.

• Interaction phase: P and V interact for k(n) rounds in the following manner: in round each i,
P sends a message πi and V replies with a random string ri. Denote r = r1...rk and π = π1...πk.

• Local computation phase: V deterministically (based on r) produces a query vector q⃗lr ∈ [|x|+
|π|]q of q queries and a predicate Vr : {0, 1}q → {0, 1}.

• Evaluation phase: V queries π and x, plugs the values into the predicate and outputs Vr
(
(x ◦ π)

[
q⃗lr

])
.

• Completeness: If x ∈ L then V outputs 1 with probability 1.

• Soundness: If x is δ-far from L then for any prover strategy P∗, when V interacts with P∗, it
accepts with probability at most ε.

A key ingredient in optimizing the communication complexity is a property of error-correcting codes
called local decomposability. Roughly speaking, a code that has this property allows us to compute any
coordinate in the encoding of a message m by making a constant number of queries to encodings of
sub-strings of m. This is particularly useful when a verifier has a large portion of the string, say an NP
instance x, the prover has the remaining part, say the corresponding NP witness w, and the protocol
dictates that the prover sends an encoding of x◦w. In this case, the verifier can compute the encodings of
the sub-strings corresponding to x and the prover can send the encoding of w. The property is formally
defined below.

Definition B.2 (Locally decomposable code). Let C : {0, 1}n → {0, 1}n
′

be an error-correcting code,
and let ℓ be an integer that divides n. We say that C is locally ℓ-decomposable if there exists a base
code C0 : {0, 1}

n
ℓ → {0, 1}∗ and a deterministic oracle machine A such that the following holds. For

any m(1), . . . ,m(ℓ) ∈ {0, 1}
n
ℓ , given oracle access to the codewords C0

(
m(1)

)
, . . . , C0

(
m(ℓ)

)
and explicit

access to i ∈ [n′], the machine A makes at most O(1) queries to each oracle and outputs the i-th coordinate
of C

(
m(1) ◦ · · · ◦m(ℓ)

)
.

The proof of Theorem 5.2 closely follows that of [RR20, Theorem 3.1]. Roughly speaking, [RR20,
Theorem 3.1] states that NP relations that can be verified in polynomial time and small space have an
IOP with communication complexity that is very close to the witness length. We fully state their man
result next.

Theorem B.1. ([RR20, Theorem 3.1]) Let L ∈ NP with corresponding relation RL in which the in-
stances have length m and witnesses have length n, where n and m are polynomially related and m ≥ n,
and such that RL can be decided in time poly(m) and space s ≥ logm. Let γ = γ(m) ∈ (0, 1) and
β = β(m) ∈ (0, 1) be nice functions such that poly

(
1
β

)
≤ logm and γ ≥ n−O(β). Then there exists a

β−O(
1
β )-round IOP for L with soundness error 1

2 . The query complexity is (γβ)−O(
1
β ) and the communi-

cation consists of a first (deterministic) message sent by the prover of length (1 + γ) ·m bits followed by
poly

(
nβ , (γβ)

− 1
β , s

)
additional communication. In addition, the IOP is prover-efficient and the verifier

runs in Õ(n) + poly
(
nβ , (γβ)

− 1
β , s

)
.

Remark B.3. [RR20] actually handles some sub-constant values of β, γ. In our context, it is enough
to handle constant values.
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Overview of proof of [RR20, Theorem 3.1]. The proof uses an IOPP to construct an IOP and
then uses locally decomposable codes to optimize the communication complexity.

From IOPPs to IOPs. Let L ∈ NP and let RL be the corresponding NP relation. Fixing an error-
correcting code E, we define a language of pairs that consist of an encoded instance and a corresponding
witness (that remains unchanged), that is:

L′ = {(E(x), w) : (x,w) ∈ RL} .

Assuming there exists an IOPP for L′ (note that the pair (E(x), w) is an implicit input to the verifier
and there is no explicit input), we can construct an IOP for L in the following manner: given x ∈ L,
the prover sends the witness w to the verifier who computes E(x) on its own, then both parties run the
IOPP to decide whether (E(x), w) is in L′. The key observation here is that if indeed x ∈ L then there
exists a w that would make the IOPP verifier accept. However, if x /∈ L and the code has a large enough
distance, then for any w, the pair (E(x), w) would be far from L′ and the IOPP verifier would reject
by the soundness of the IOPP. The communication of this IOP consists of a first prover message that
contains w followed by the communication of the IOPP.

Optimizing the communication complexity To achieve an even shorter communication, we utilize
the fact that the verifier has explicit access to a large portion of the input, namely E(x) (recall that this
is not the case for IOPP verifiers). Suppose that there exists a code C such that the first message that
the IOPP prover sends is the non-systematic part of C(E(x), w). If the code C is locally ℓ-decomposable
w.r.t. some base code C0 for ℓ =

⌊
n′+m
m

⌋
. Then we can chop (E(x), w) to ℓ chunks of length m: y1, . . . , yℓ

where yℓ = w and simulate every query to C(E(x), w) by making a constant number of queries to each
of C0(yi). Since the verifier has computed E(x), then it can simulate the queries to C0(yi) for all i < ℓ
independently of the prover. This means that the prover only has to send C0(yℓ) = C0(w) as the first
message, instead of C(E(x), w) in its entirety. This is formally stated in the following lemma:

Lemma B.4. ([RR20, Lemma 9.1]) Let L ∈ NP with corresponding relation RL, in which the instances
have length n and witness have length m where m and n are polynomially related and m ≤ n. Let
E =

{
En : {0, 1}n → {0, 1}n

′}
n∈N

be a code ensemble with relative distance δ > 0 and quasi-linear time

encoding. Let C0 =
{
C

(n)
0 : {0, 1}n → {0, 1}n

′}
n∈N

be a code ensemble with rate 1 − η and quasi-linear

time encoding. Let ℓ =
⌊
n′+m
m

⌋
and suppose that C =

{
C(m·ℓ) : {0, 1}(m·ℓ) → {0, 1}∗

}
n∈N

is a systematic
locally ℓ-decomposable code w.r.t. base code C0.

Let L′ = {(E(x), w) : (x,w) ∈ RL} and suppose that L′ has a q-query r-round IOPP w.r.t. proximity
parameters δ

2 and soundness error ε with the following properties:

• The first message in the IOPP is the non-systematic part of C(E(x), w).

• The rest of the communication in the IOPP is of length cc.

• The IOPP verifier runs n time TV and the IOP prover runs in time TP .

Then L has an O(q(n′ +m))-query r(n′ +m)-round IOP with soundness error ε(n′ +m). The commu-
nication consists of a first message sent by the prover of length m′ = 1

1−η ·m bits followed by cc(n′ +m)

additional communication. The IOP verifier runs in time Õ(n) + TV (n
′ +m) and the IOP prover runs

in time Õ(n) + TP (n
′ +m).

We now look at the particular IOPP used in the proof of [RR20, Theorem 3.1], which is presented in
the following lemma:

Lemma B.5. ([RR20, Lemma 8.1]) Let L be a language computable in time poly(n) and space s ≥ log n.
Then for any constants β, γ ∈ (0, 1) the following holds. There exists an IOPP for L with respect
to proximity parameter δ > 0 with communication complexity γ · n + poly

(
nβ , (γβ)−

1
β , 1

δ , s
)
, query

complexity poly
(
(γβ)

− 1
β , 1

δ

)
, round complexity βO(− 1

β ) and soundness error 1
2 .

Moreover,
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• The verifier’s running time is poly
(
nβ , (γβ)

− 1
β , 1

δ , s
)
.

• The prover’s running time is poly(n).

• There exists a systematic code C =
{
Cn : {0, 1}n → {0, 1}n

′}
n∈N

of rate at least 1
1+γ such that

the communication phases consists of a single prover’s message of length γ · n which is the non-
systematic part of Cn followed by a two-way communication of length poly

(
nβ , (γβ)

− 1
β , 1

δ , s
)
.

Furthermore, Cn is locally O
(
n1−β)-decomposable w.r.t. a base code C0 of rate at least 1− γ that

is encodable in quasi-linear time.

B.2 Proof of Theorem 5.2
We now prove our two extensions over [RR20, Theorem 3.1].

B.2.1 Achieving compactness

Showing compactness is straightforward, we simply keep track of the size of the predicate produced by
the IOP verifier. In particular, we note that the predicate produced by the IOP verifier in [RR20, Lemma
9.1] depends on the running time of the IOPP verifier which it simulates.

Proposition B.6. The IOP from [RR20, Lemma 9.1] is Õ(n)+TV (n
′+m)-uniform TV (n

′+m)-compact.

Proof. Recall that the IOP verifier computes E(x) on its own and then runs the IOPP verifier on input
(E(x), w) and simply answers accordingly. This means that in the local computation phase, the IOP
verifier produces the same predicate that is produced by the IOPP verifier. Therefore, the size of the
circuit that evaluates the predicate is bounded from above by the running time of the IOPP verifier which
is TV (n

′+m). In addition, the running time of the IOP verifier is Õ(n)+TV (n
′+m). The claim follows

by definition Definition 2.5. ■

By choosing a sufficiently small β in [RR20, Lemma 8.1] and plugging it into [RR20, Lemma 9.1]
with Proposition B.6, we get [RR20, Theorem 3.1] with the desired compactness property as stated in
Theorem 5.2.

B.2.2 Handling smaller witness size

As for removing the polynomial relation assumption between the instance and witness lengths, we take
a closer look at the communication of the IOP from [RR20, Lemma 9.1] and show how we can utilize the
property of local decomposability even if the instance and witness lengths are not polynomially related.
This costs us an additive factor of nβ in the communication complexity for some small constant β, but
this is a price we are willing to pay in our context.

Proposition B.7. For any instance size n, witness size m and constant β ∈ (0, 1), if the code C is
locally ℓ-decomposable code w.r.t. base code C0 where ℓ = O

(
n1−β), then the first prover message in the

IOP from [RR20, Lemma 9.1] can be modified to have length 1
1−η ·m+ η

1−η ·O
(
nβ

)
, where 1− η is the

rate of C0.

Recall that optimizing the first prover message is done in [RR20, Lemma 9.1] by utilizing that the
code C is locally

⌊
n′+m
m

⌋
-decomposability and taking advantage of the fact that there exists a constant

c > 1 such that n′ = O(mc), therefore by setting β = 1
c in [RR20, Lemma 8.1], the IOP prover can simply

send C0(w) instead of C(E(x), w). What we have here is slightly different, but the same technique can
still be applied. Assuming that n = ω(mc) for every constant c > 1 (and therefore n′ = ω(mc)), it
follows that n′β = ω(m). Since C is locally ℓ-decomposable, then we can still split the string (E(x), w)
into O

(
n1−β) sub-strings of size O

(
nβ

)
each and w would only be contained in the last sub-string y ◦w,

where y is a suffix of x of length O
(
nβ

)
. The prover sends the encoding of that last sub-string, allowing

the verifier to simulate each query to C(E(x), w) by making O(1) queries to the encoding C0(y ◦ w). In
fact, the prover only has to send the non-systematic part of C0(y ◦ w) as well as w. The correctness
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of [RR20, Lemma 9.1] is preserved, and the only change is that the length of the first message is now
1

1−η ·m+ η
1−η ·O

(
nβ

)
. Proposition B.7 follows.

Combining Proposition B.6 with Proposition B.7 yields Theorem 5.2 which is, as mentioned above,
a mild extension of [RR20, Theorem 3.1].

37


	Introduction
	Our Results
	Related Works
	Our Techniques
	Organization

	Preliminaries
	Basic Complexity Notations and Definitions
	Interactive Proofs and Oracle Proofs
	Computational Indistinguishability
	Cryptographic Primitives
	Zero-Knowledge Proofs
	Hoeffding's Inequality

	Randomness Reduction
	Proof of lem:randReduction
	Non-Uniform IOPs with Small Randomness

	Limitations of Succinct IOPs
	Handling Small Randomness
	Handling Larger Randomness

	Succinct Zero-Knowledge Proofs from OWF
	Communication Preserving ZKP
	Constructing Succinct ZKPs

	More on hyp:smallSpaceWithPre
	IOP for small space relations
	Summary of Previous Work
	Proof of succicntIopForBoundedSpace


