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Abstract. We present here the design and implementation of ecGFp5, an elliptic

curve meant for a speci�c compute model in which operations modulo a given 64-bit

prime are especially e�cient. This model is primarily intended for running operations

in a virtual machine that produces and veri�es zero-knowledge STARK proofs. We

describe here the choice of a secure curve, amenable to safe cryptographic operations

such as digital signatures, that maps to such models, while still providing reasonable

performance on general purpose computers.

1 EcGFp5 Definition
Let p = 2

64 −232 + 1. This is a 64-bit prime integer; computations modulo p can be relatively

e�ciently implemented on a variety of platforms. It has high 2-adicity (p − 1 is a multiple of

a large power of 2, here 2
32

) which makes it convenient for STARK proofs[4]. 32-bit integer

operations can also be expressed overGF (p) since, for instance, the product of two unsigned

32-bit integers is at most (232 − 1)2, which is lower than p. The Miden VM[13] is an open-

source implementation of a virtual machine whose internal opcodes work over elements of

GF (p) and can be used to generate and verify STARK proofs over arbitrary program execu-

tions. Miden is currently funded by Polygon for blockchain-related purposes, but it can be

used in a larger spectrum of situations. Moreover, other projects may want to use the same

modulus p, especially but not necessarily in conjunction with zero-knowledge proofs. For the

de�nition of ecGFp5, we consider the abstract and interesting problem of de�ning a secure

prime order group, based on an elliptic curve, amenable to cryptographic operations such

as digital signatures, and e�ciently implementable in the compute model incarnated by the

Miden VM. In that model, all elementary operations in GF (p) have the same unit cost; this

includes additions, subtractions, multiplications, and, crucially, divisions.

The chosen curve has the following parameters. We �rst de�ne the �nite �eld extension

GF (p5) = GF (p) [z]/(z5 − 3), i.e. the ring of polynomials (in the symbolic variable z) with

coe�cients inGF (p), and all operations performed modulo the irreducible polynomial z5−3.

Every element ofGF (p5) can be represented as �ve elements ofGF (p), corresponding to the

�ve coe�cients of a polynomial of degree at most 4.

We de�ne, over GF (p5), an elliptic curve of equation:

y2 = x(x2 + 2x + 263z)
This is a double-odd curve[16], with equation constants a = 2 and b = 263z; its order is

2n for the 319-bit prime integer:

n = 106799351671714695104148491657179270274505774058

1727230159139685185762082554198619328292418486241



EcGFp5 is then formally de�ned as the groupG of points of that curve which are not points

of n-torsion. The neutral element of the group is the point N = (0, 0) (the only point of

order 2 on the curve). The sum in the group of two elements P and Q is de�ned as the curve

point P + Q +N . As explained in [16], this yields a group with the proper characteristics for

de�ning cryptographic operations such as digital signatures or key exchange:

– The groupG has prime order n.

– Elements of G can be uniquely encoded into a �eld element; the decoding process is

unambiguous and inherently veri�es that the provided encoding was valid and canonical.

– Group operations can be computed with e�cient complete formulas.

Several systems of coordinates can be used. In general, it is recommended to use (x, u)
coordinates, in which u = x/y for element (x, y) (for the neutral N , we use u = 0). If both

x and u are expressed as fractions (denoted X/Z and U/T , respectively), then general point

addition formulas have a cost of 10 multiplications in the �eld (denoted 10M), and specialized

formulas for sequences of doublings have a per-doubling cost of 2M+5S (two multiplications

and �ve squarings in the �eld). As will be detailed in the next sections, though, within the

target compute model, it is in fact more e�cient to switch to a�ne Weierstraß coordinates

and formulas.

In the next sections, we will:

– justify the choice of a degree-5 �eld extension;

– describe the implementation of �eld and curve operations in the target compute model

(thereafter called “in-VM”);

– formalize the choice criteria for the curve parameters;

– provide some details on the implementation of the curve when not working in the VM

(i.e. the “out-of-VM” situation).

A copy of this paper, a test implementation in Python that emulates the VM model to

measure costs, and a reference implementation in Rust, are provided at:

https://github.com/pornin/ecgfp5/

2 Choice of Field
Since p is a 64-bit integer, we need to work in a �eld extensionGF (pk) in order to have a �eld

large enough to obtain a curve with adequate security. We aim at the usual “128-bit security”

level. For such a level, we need a �eld with at least a 256-bit order, hence k ≥ 4. Robustness

of elliptic curve discrete logarithm in extension �elds has been studied in various articles. A

rough summary is the following:

– If the extension degree k is composite, then Weil descent attacks may apply, using a tower

of �eld extensions to turn the problem into a discrete logarithm in a higher genus curve

on a smaller �eld[9,3]. To avoid such issues, a prime degree is highly recommended. Diem

showed that if k is prime and not lower than 11, then such attacks cannot work[6].

– A related attack using Gröbner bases was described by Gaudry[8]; its complexity was

further analyzed by Joux and Vitse, along with some possible variants[12].

2

https://github.com/pornin/ecgfp5/


For performance reasons, we would like to have k as small as possible; k = 11 would lead

to a 704-bit �eld where computations would be too expensive. Using k = 4 would allow the

known attacks on quartic extension �elds[3], with complexity aboutO(p3/2) ≈ 2
96

. Though

this value is quite larger than what can practically be implemented, it still falls short of the

expected “128-bit” level. Thus, we need at least k = 5.

With k = 5, Gaudry’s attack entails computing about p2−2/5 ≈ 2
102.4

systems of polyno-

mial equations, and obtaining a Gröbner basis for each of them. Each system would contain

5 equations with 5 unknowns, and a total degree 2
k−1 = 16; it is expected that obtaining the

basis will require using the FGLM algorithm[7] with complexityO(kD3), with k the number

of unknowns (here, k = 5) andD the degree of the underlying ideal, which should be close to

2
k(k−1) = 2

20
. The involved matrix should be mostly empty and a lower complexity might be

achieved, but even with very optimistic assumptions, it is unlikely to go belowO(D2) ≈ 2
40

.

This leads to a total theoretical complexity of at least 2
142

, well beyond the target 128-bit level.

Joux and Vitse’s variant has costO(Cp2) for some constantC that depends on k, again above

the 128-bit level.

We can thus claim that a degree-5 extension �eld, GF (p5), is su�cient to achieve 128-bit

security against all known attacks on discrete logarithm on elliptic curves.

All �nite �elds with the same cardinality are isomorphic to each other; we can thus choose

whatever de�nition of that �eld provides the best performance. Field extensions of degree k
are classically de�ned as the quotient of the ring of polynomials in the base �eld, by a given

unitary irreducible polynomial M of degree k. Since multiplications in the extension �eld

will involve reductions modulo M, performance should be best if using an M of minimal

Hamming weight, and with non-zero coe�cients as close to 1 or -1 as possible; moreover,

a modulus with format z5 − c for some constant c makes the Frobenius operator especially

inexpensive. Among polynomials in GF (p) [z], none of the following polynomials happens

to be irreducible: z5, z5 ± 1, z5 ± zi ± 1 for any i ∈ [1; 4], z5 ± 2. The next best choices are

z5 − 3 and z5 + 3, which are both irreducible; we thus choose M = z5 − 3.

3 In-VM Implementation
3.1 VM Opcodes
We assume here that the following opcodes are o�ered by the target compute model, and all

have cost exactly 1 cycle:

– add, sub, mul and div perform respectively addition, subtraction, multiplication and

division in GF (p). Division fails if the divisor is zero; it is up to the caller to make sure

that this situation does not happen. Negation has a speci�c opcode (neg) but could also

be implemented with a subtraction from zero.

– and, or, xor and not perform operations on Boolean values. A “true” is represented as

the GF (p) element 1, while a “false” is 0. Any other value triggers a failure. Opcodes

eq and neq compare two GF (p) elements and return such Boolean value if the two

operands, are, respectively, equal to each other, or di�erent from each other.

– select applied on three values x, y and c returns x if c = 0, or y if c = 1. The control

value c must have a Boolean 0-or-1 value.
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– add32, sub32, mul32, div32, shl32, shr32, and gte32 implement operations on

32-bit values (for addition, subtraction, multiplication, division, shift left, shift right,

and greater-or-equal comparisons, respectively). Addition and subtraction are computed

modulo 2
32

and have carry/borrow support for both input and output. Multiplication

yields a 64-bit output (which always �ts in a GF (p) element). Shifts and comparisons

operate on unsigned values; the left shift truncates its output to 32 bits. Moreover, shift

counts must be �xed constants. All 32-bit opcodes assume that the operands are in the

proper range (0 to 2
32 − 1).

The names above do not exactly match the names used by the Miden VM assembly spe-

ci�cation[14]; for instance, what we call here add32 is known as u32addc.unsafe in the

speci�cation document.

The compute model should be understood as a general circuit emulation in which only

arithmetic gates have a cost, while data routing is free, provided that it can be resolved stat-

ically. In the context of a VM executing a program consisting of opcodes, this means that

function calls, loop control, reading from memory and writing to memory are all free (their

cost is zero); however, this does not extend to data-dependent conditional jumps, and array

accesses at data-dependent indexes. These operations are possible in Miden but very expen-

sive; in the context of this paper, we simply consider them to be forbidden. In a sense, we use

a compute model which is close to constant-time implementations, although for di�erent

reasons.

3.2 Field Operations
An element x of GF (p5) is represented as �ve coe�cients x0 to x4, such that x = x0 + x1z +
x2z2 + x3z3 + x4z4. Addition and subtraction are simply done coe�cient-wise; thus, an addi-

tion in GF (p5) boils down to �ve add opcodes, for a cost of 5.

Multiplication. Multiplication in GF (p5) (d← a + b) can be done in a straightforward

way:

d0 ← a0b0 + 3(a1b4 + a2b3 + a3b2 + a4b1)
d1 ← a0b1 + a1b0 + 3(a2b4 + a3b3 + a4b2)
d2 ← a0b2 + a1b1 + a2b0 + 3(a3b4 + a4b3)
d3 ← a0b3 + a1b2 + a2b1 + a3b0 + 3a4b4
d4 ← a0b4 + a1b3 + a2b2 + a3b1 + a4b0

The multiplications by 3 come from the reduction modulo the polynomial z5 − 3. Any con-

stant inGF (p) other than 3 would yield the same overall cost, except 0, 1 or−1, which would

be cheaper; however, polynomials z5, z5 + 1 and z5 − 1 are not irreducible, and do not yield a

proper �eld.

Overall multiplication cost is 49. Other techniques such as Karatsuba or Toom-Cook may

reduce the number of multiplications, but at the cost of a higher number of additions and

subtractions; in our compute model, these do not seem to provide overall cost reductions.

Squaring can be done with lower cost since, for instance, product a0b1 and a1b0 yield the

same value when a = b. The cost of a squaring operation is then 34.
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Inversion. Inversion inGF (p5) can be computed very e�ciently thanks to a method �rst

described by Itoh and Tsujii[11]. De�ne the integer r = 1 + p + p2 + p3 + p4. The following

holds:

p5 − 1 = (p − 1)r
Therefore, for any non-zero x in GF (p5), we have:

xp
5−1 = 1 = (xr)p−1

Thus, xr is a root of the polynomial X p−1 − 1. Since the roots of that polynomial are exactly

the non-zero elements of GF (p), this implies that xr ∈ GF (p) for any x in GF (p5). We can

thus write the inverse of x as:

1

x
=
xr−1

xr
which can be computed as the product of xr−1 (an element of GF (p5)) by the inverse of xr
(an element of GF (p)).

Values xr−1 and xr can furthermore be computed with appropriate use of the Frobenius

operator. De�ne ϕ1 (x) = xp for any x ∈ GF (p5); this is a �eld automorphism, i.e. ϕ1 (x+ y) =
ϕ1 (x) + ϕ1 (y), and ϕ1 (xy) = ϕ1 (x)ϕ1 (y) for any x and y. Thus, if x =

∑
i xizi , then:

ϕ1 (x) =
4∑
i=0

ϕ1 (xi)zpi

=

4∑
i=0

xi (3 bpi/5c)zpi mod 5

which boils down to multiplying each coe�cient by a precomputed constant, and possibly

reordering them. In our case, p = 1 mod 5, which means that zpi mod 5 = zi , and there is no

reordering; also, one of the �ve precomputed constants is 3
0 = 1. The cost of the Frobenius

operator is thus only 4 cycles. We similarly de�ne ϕ2 (x) = ϕ1 (ϕ1 (x)), which is also computed

in cost 4 (we will also call ϕ2 a “Frobenius operator”).

With the Frobenius operator, we compute xr−1 as:

xr−1 = xp+p
2+p3+p4

= ϕ1 (x)ϕ1 (ϕ1 (x))ϕ2 (ϕ1 (x)ϕ1 (ϕ1 (x)))
which entails three Frobenius operators and two multiplications inGF (p5). Once xr−1 is ob-

tained, xr is computed by multiplying that value with x; since xr is known to be inGF (p), we

only need to compute the �rst coe�cient, with cost 10.

Inversion in GF (p) has cost 1 (this is a single div opcode); however, we have to add a

small corrective action to avoid a division by zero, in case the input x was equal to zero: before

inverting y = xr , we compare it with zero (eq opcode), then add the Boolean result (a GF (p)
element with value 0 or 1) to y. Thus, if x = 0, we end up inverting y′ = 1 instead of y = 0,

and the division opcode does not fail. This corrective action has cost 2.

Final multiplication of xr−1 by the resulting x−r is done in �ve mul opcodes. The overall

cost of inversion inGF (p5) is 128 cycles (it would be 126 if the div opcode tolerated a divisor

equal to 0). Note that if x = 0, the inversion process described above does not fail; instead, it

returns 0. This is a feature; it simpli�es some operations later on.

General division is the combination of a multiplication and an inversion, with cost 177.
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Legendre Symbol. We de�ne the Legendre symbol of x as the value x (p5−1)/2; it is equal

to 0 if x = 0, to 1 if x is a non-zero quadratic residue, or −1 if x is not a square in GF (p5).
Again using the value r = 1 + p + p2 + p3 + p4, we �nd that:

x (p
5−1)/2 = (xr) (p−1)/2

Thus, the Legendre symbol of x ∈ GF (p5) is equal to the Legendre symbol of xr inGF (p). As

in the case of inversion, the computation of xr is e�cient. InGF (p), we note that (p− 1)/2 =
2
63 − 231, leading to the following process:

1. y← xr (result is in GF (p))
2. y31 ← y231 (with 31 mul opcodes)

3. y63 ← y232
31

(with 32 mul opcodes)

4. t ← y63/y31 (one div opcode)

The overall cost is 186.

Square Root. We can use, again, the Frobenius operator to speed up square roots, by

noticing that, for x ≠ 0 in GF (p5):

√
x =

√
xr

xr−1

=

√
xr

x (r−1)/2

since r − 1 = p + p2 + p3 + p4, which is an even integer. We can compute x (r−1)/2 as:

x (r−1)/2 = xp(1+p
2) (p+1)/2

= ϕ1 (x (p+1)/2ϕ2 (x (p+1)/2))

We can write x (p+1)/2 = x263+1/x231 , allowing the computation of that value with 63 squar-

ings, one multiplication and one inversion inGF (p5). Once we obtained x (p+1)/2, we use it to

compute x (r−1)/2 as shown above, with two Frobenius operators and one multiplication. We

can furthermore derive xr from x (r−1)/2 with a squaring (to get xr−1) then a multiplication by

x; the latter only needs to compute the lowest coe�cient, since xr ∈ GF (p).
At that point, we have to compute the square root of y = xr in GF (p). Moduli with

high 2-arity are known to be inconvenient for computing square roots. We use the following

process, which really is the Tonelli-Shanks algorithm, specialized to our compute model in

which data-dependent conditional jumps are forbidden, but multiplications are inexpensive:

1. Let n = 32 and q = 2
32 − 1, so that q is odd and p = q2n + 1. Let g be a primitive 2

n
-th

root of unity in GF (p) (we can use g = 7
q
mod p, since 7 is a non-QR in GF (p)). We

precompute values gi = g2
i

for i = 0 to n − 1.

2. (u, v) ← (y(q+1)/2, yq)
3. For i = n − 1 down to 1:

(a) w← v2i−1 (with i − 1 squarings)
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(b) If w = −1 mod p, then: (u, v) ← (ugn−i−1, vgn−i) (the new (u, v) are always com-

puted, but kept with select opcodes only if an eq opcode declares that the com-

puted w is indeed equal to −1)

4. If v = 0or 1, then ywas indeed a square, andu contains one of its square roots. Otherwise,

y was not a square, and thus x was not a square either; in that case, we arrange to set v to

zero (e.g. with an extra select).

The algorithm above entails (n − 1) (n − 2)/2 = 450 squarings, and some other operations,

for a total of 659 cycles for the square root in GF (p). Combined with the computations of

x (r−1)/2 and xr , and �nally putting together the values, we compute a square root in GF (p5)
in a total of 3261 cycles. The routine returns two values, the square root itself, and a Boolean

value reporting the success of the process; if the input value was not a square, the returned

“square root” is zero, and the Boolean is zero.

Cost Summary. We obtain the following costs for in-VM operations in GF (p5):
Operation Cost (cycles)
addition 5

subtraction 5

multiplication 49

squaring 34

inversion 128

division 177

Legendre symbol 186

square root 3261

An important point here is that inversions in GF (p5) are quite inexpensive: the cost of an

inversion is only about 2.57 times the cost of a multiplication. This is not the usual situa-

tion when dealing with elliptic curve implementations; it impacts the strategy we will use, in

particular the point addition formulas.

3.3 Curve Formulas
Since inversions in GF (p5) are quite e�cient (their cost is lower than three times the cost of

a multiplication in GF (p5)), the most e�cient formulas for computing point additions and

doublings are obtained by working with the short Weierstraß equation and a�ne coordinates.

Moreover, any elliptic curve over GF (p5) can be expressed as a short Weierstraß curve with

a suitable change of variable; thus, no curve type will be any better or worse than any other,

e�ciency-wise, for in-VM computations.

Change of Variable. A double-odd curve such as ecGFp5 has equation y2 = x(x2+ax+
b) for two constants a and b (for ecGFp5, a = 2 and b = 263z). It can be converted to the

short Weierstraß equation:

Y 2 = X3 + AX + B
with constants:

A = (3b − a2)/3
B = a(2a2 − 9b)/27
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using the following change of variable:

(X, Y ) = (x + a
3

, y)

This change of variable is very inexpensive: it su�ces to add a single constant to the x coordi-

nate. Moreover, that constant is inGF (p) for ecGFp5, leading to an addition in a single cycle

in the VM.

EcGFp5, however, is not exactly the elliptic curve with equation y2 = x(x2+ax+b), but a

subset thereof, consisting of (exactly) the points which are not the double of any other point.

In order to perform computations on the short Weierstraß curve, we also need to map into the

subgroup of points ofn-torsion on the short Weierstraß curve, which entails adding the point

N . This can be done while still on the original equation, since (x, y) + N = (b/x,−by/x2).
Another method, which is even simpler, is to combine the addition of N with the decoding

process. Given an encoded point w (nominally equal to y/x for the ecGFp5 element (x, y)),

compute the following:

1. e← w2 − a
2. Δ← e2 − 4b
3. (x1, x2) ← ((e +

√
Δ)/2, (e −

√
Δ)/2) (if Δ is not a square, then either w = 0, in which

case the point isN and should be decoded as the point-at-in�nity in the short Weierstraß

curve; or w ≠ 0, and there is no solution, w is not a validly encoded point)

4. If x1 is a quadratic residue, then set x = x1; otherwise, set x = x2
5. Return (X, Y ) = (x + a/3,−wx)

Step 4 is where processing diverges from normal decoding in double-odd curves, where

we would have chosen the x value which is not a quadratic residue instead. This decoding

process works because a given w = y/x value is shared by two points on the curve, P + N
(which is in ecGFp5) and −P (which is in the subgroup of points of n-torsion); here, we

simply use the latter, and take the negation into account by computing y = −wx instead of

y = wx.

It shall be noted that if w = 0, then the decoding above computes Δ = a2 − 4b, which

is not a quadratic residue. Moreover, in that case, the “point-at-in�nity” should be returned,

and that point does not have de�ned (X, Y ) coordinates. In a practical implementation, a

point in a�ne coordinates on the short Weierstraß curve really is a set of three values: the co-

ordinatesX andY , which are inGF (p5), and a Boolean �ag I which, when non-zero, indicates

that the point is the point-at-in�nity, and the values of X and Y should be ignored.

Point Addition. The sum of two points (X1, Y1) and (X2, Y2) is the point (X3, Y3) with:

λ =
Y2 − Y1
X2 − X1

X3 = λ2 − X1 − X2

Y3 = λ(X1 − X3) − Y1

Famously, these formulas are not complete; if X1 = X2 then either Y1 = −Y2, in which case

the sum is the point-at-in�nity (sum of a point and its opposite); or Y1 = Y2, which means
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that the point is added to itself, and λ must instead be computed as:

λ =
3X2

1
+ A

2Y1

A complete routine that supports all cases looks like this:

1. Inputs are points (X1, Y1) (with in�nity �ag I1) and (X2, Y2) (with �ag I2).

2. Compare X1 with X2, yielding a Boolean sx with value 1 if they are equal, 0 otherwise.

This entails �ve eq opcodes, and four and opcodes, for a cost of 9. Similarly, compare Y1
with Y2, yielding sy.

3. Set λ0 toY2−Y1 if sx = 1, or to 3X2

1
+A if sx = 0 (both values are computed, and select

opcodes are used to keep the right one, depending on the value of sx).

4. Set λ1 to X2 − X1 if sx = 1, or to 2Y1 if sx = 0.

5. λ← λ0/λ1
6. X3 ← λ2 − X1 − X2

7. Y3 ← λ(X1 − X3) − Y1
8. I3 ← sx and sy
9. If I1 ≠ 0, then replace (X3, Y3, I3) with (X2, Y2, I2)

10. If I2 ≠ 0, then replace (X3, Y3, I3) with (X1, Y1, I1)

This routine handles all edge cases (point doublings, point-at-in�nity as input or output

operand) with a �xed cost of 387 cycles in the VM. This cost is about 7.9 times the cost of a

single multiplication: this is faster than the best know curve point adding formulas that do

not involve any inversion.

Optimizations are possible in some cases:

– When it is a priori known that the addition is not an edge case, then we can avoid in par-

ticular the squaring involved in computing λ0 for a point doubling, and all the select
opcodes, leading to a routine with cost 290.

– For explicit point doublings, the select opcodes can also be skipped, since the double

of a non-in�nity n-torsion point cannot be the point-at-in�nity; we can simply keep the

in�nity �ag unchanged, and apply the doubling formulas on the coordinates. This leads

a point doubling in 326 cycles.

Point Multiplication. In the speci�c case of the multiplication of a point P by a scalar

v, the following process can be used:

1. Reduce the scalar v modulo n, then add n to get a value k in the n to 2n − 1 range.

2. Split the scalar into chunks d321/we of w bits, for a given window width w (experimen-

tally, w = 4 seems to be the best choice here). Each chunk ci yields a signed digit di with

the following:

(a) Initialize a carry m to 0.

(b) For each chunk ci (in least-to-most signi�cant order), add m to the value of ci . If

m + ci ≤ 2
w−1

, then set di to that value, and set m to zero; otherwise, set di to

m + ci − 2w, and set m to 1.
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All digits are between−2w−1+ 1 and+2w−1; moreover, with the chosen parameters, it can

be shown that the top digit is necessarily greater than or equal to 1. Since the VM works

with unsigned 32-bit integers (mapped to GF (p) elements), the sign and absolute value

of each digit may be returned separately.

3. Fill an array W with points iP for i = 1 to 2
w−1

. This is called the “window”. For an

index value d between −2w−1 and +2w−1, the point dP can be recovered with a lookup

process (detailed below).

4. For all digits di , starting with the second-to-top digit down to d0:

(a) Multiply Q by 2
w

with w successive doublings.

(b) Lookup point diP from the window, and add it to Q.

It can be shown that in this process, if input P was not the point-at-in�nity, then for all

digits except the last two (d1 and d0), the addition of the looked-up point diP to the current

Q cannot be an edge case of the point addition formulas; thus, each of these additions can

be the specialized routine with cost 290; only the last two iterations need to use the generic

routine with cost 387.

All these operations, including the building of the window, can be performed assuming

that the input P is not the point-at-in�nity; it su�ces to combine (with a Boolean or) the

initial �ag IP with the current �ag IQ to obtain a proper result even in case the input P is the

point-at-in�nity. Note that window building can then use the specialized point addition, and

the in�nity �ag of each window element needs not be stored.

The window lookup for digit value d is done as follows:

1. Initialize variables X and Y to copies of XP and YP .

2. For indices i = 2 to 2
w−1

, replaceX andY with the coordinates of iP (from the window)

if and only if |d| = i.
3. If d < 0, then replace Y with −Y .

4. Set the �ag I to 1 if d = 0, or to 0 otherwise.

Lookup cost increases with window size, with an overhead of 11 cycles per extra point.

Overall cost of the point multiplication function, including the addition of n to v and

the split into digits, and the building of the window, was measured to be 138482 cycles.

Key Pair and Signature Generation. A special case of point multiplication is when

the point to multiply is the conventional generator pointG. This is the main curve operation

in public/private key pair generation, as well as signature generation. In that case:

– The window can be precomputed.

– Since there is no cost for window building, a larger window may o�er better perfor-

mance, although lookup costs will dominate with large windows.

– Several windows for precomputed multiples of G may be used conjointly, in order to

reduce the number of loop iterations and doubles. For instance, with 8 windows for all

2
40iG (with i = 0 to 7), 7/8th of the point doublings can be avoided, leading to a con-

siderable speed-up.

There are many possible trade-o�s between window size, number of windows, and code

size. When generating or verifying STARK proofs, the whole implementation can be con-

ceptually unrolled, and large tables of constants used; other situations might call for more

compact implementations.
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Signature Verification. Veri�cation of a Schnorr signature entails checking that dG +
eQ = R for some scalars d and e (obtained from the signature itself, and some hashing),

conventional generator G, public key Q, and the point R whose encoding is the �rst half

of the signature. In general, there are many optimizations that can be applied on signature

veri�cation:

– The size of the two scalars can be about halved by using the Antipa et al method[1],

usually with Lagrange’s algorithm for lattice reduction[15].

– Scalar representation as signed digits can use the w-NAF representation, in which most

digits are zero and all the non-zero digits are odd, leading to fewer and faster window

lookups.

– Several veri�cations can be performed simultaneously with a randomized batch veri�ca-

tion process, allowing important cost sharings.

Unfortunately, most of these optimizations require conditional execution of some kind,

depending on the involved data. This is usually not a problem (signature veri�cation nomi-

nally happens only over public data), but in the VM compute model, conditional execution

is quite inconvenient.

Computation of dP + eQ for two points P and Q, and two scalars d and e, can still use

Straus’s algorithm[18] (often known in cryptography as “Shamir’s trick”) to mutualize point

doublings, i.e. perform about 320 doublings in total, instead of 640 as would be obtained

with two separate point multiplication operations.

4 Curve Parameters Selection
As we saw in section 3.3, in-VM curve operations will preferably use a short Weierstraß equa-

tion and a�ne formulas. Any elliptic curve is amenable to such a representation; moreover,

the speci�c values of the Weierstraß constants A and B have little to no incidence on in-VM

performance:A is only used in an addition overGF (p5) as part of the doubling formulas, and

B is not used at all in the formulas. Thus, the in-VM compute model does not imply any con-

straint on the curve equation type we will use. We are free to select a curve type that favours

out-of-VM performance, as long as it provides the required security characteristics.

For proper security in arbitrary protocols, we need a prime-order group with a unique,

canonical and veri�able encoding[5]. In practice, this restricts our choice to the following:

– A curve with a prime order. This requires using the generic short Weierstraß equation.

Encoding output consists of the x coordinate, along with a single “sign” bit for y to des-

ignate which square root of y2 is intended.

– A double-odd curve[16], with order 2n for a prime n. An element of the prime order

group is encoded as a single �eld element.

– A Montgomery or twisted Edwards curve, of order 4n or 8n for a prime n, along with

the Decaf/Ristretto encoding process[10,2].

All three kinds o�er division-less complete formulas for safe out-of-VM processing. The

formulas for prime-order short Weierstraß curves[17] are somewhat slower than for the other

two (12M for general addition, 8M+3S for doubling). Twisted Edwards curves have the fastest

general addition formulas (8M), and point doubling with cost 4M+4S (an alternate choice

11



of representation called “inverted coordinates” o�ers addition in 9M+1S and doubling in

3M+4S). However, double-odd curves have better doubling formulas (2M+5S per-doubling

overhead); the encoding/decoding process of double-odd curves is also somewhat simpler

than that of Decaf/Ristretto, and allows for e�cient validation that a point is decodable and

canonical (with only a Legendre symbol). We will thus choose a double-odd curve.

There are several representations for double-odd curves; in general, it is recommended

to use fractional (x, u) coordinates, for which complete formulas are known. A point is rep-

resented as a quadruplet (X :Z:U :T ), which is such that x = X/Z and u = x/y = U/T .

Point addition formulas on that representation entail some multiplications by the equation

constants a and b, and also the constants α = (4b − a2)/(2b − a) and β = (a − 2)/(2b − a).
Choosing a = 2 implies that α = 2 and β = 0, which is convenient.

If a = 2, which is an element of GF (p) (the base �eld), we must choose b outside of

GF (p); otherwise, the curve over the base �eld would be a subgroup of the curve overGF (p5),
and it would not be possible to obtain total curve order 2n for a prime n. To speed up multi-

plications by b, we will still want to use a constant b equal to bizi for some i ∈ [1; 4], and bi
as small as possible as an integer (in absolute value). We thus use the following search process:

1. c← 1

2. For i = 1 to 4:

(a) If curve y2 = x(x2 + 2x + czi) has order 2n with n prime, then return b = czi .
(b) If curve y2 = x(x2 + 2x − czi) has order 2n with n prime, then return b = −czi .

3. c← c + 1
4. Loop to step 2.

As explained in [16], a curve of equation y2 = x(x2 + ax + b) may be double-odd (i.e.

order 2n for an odd integer n) only if neither b nor a2 − 4b is a quadratic residue; this gives a

fast test that allows skipping most of the expensive point counting operations in the process

described above.

Using the process above, the �rst usable curve is obtained for b = 263z. This yields the

curve whose parameters were given in section 1.

While the curve selection process is not known to induce any bias or select a curve with

uncommon properties, we still checked that its embedding degree is large. For a curve de�ned

over a �nite �eld GF (q) and with a subgroup of prime order n (that does not divide q), the

embedding degree is the smallest integer e > 0 such that n divides qe − 1 (or, said otherwise,

e is the multiplicative order of q modulo n). If e is very small, then the Weil, Tate and similar

pairings can be computed, reducing the discrete logarithm in the curve into the discrete log-

arithm over the multiplicative group of invertible elements in GF (qe). A randomly selected

curve should have a very large embedding degree e (about the same size asn); a low embedding

degree does not necessarily imply a weakness (except if e is so small that the discrete logarithm

in GF (qe) can be computed more e�ciently than in the curve itself), but it would hint at

some unexpected internal structure. In the case of ecGFp5, we checked that e = (n − 1)/5,

i.e. a 317-bit integer, close to the size of n itself, as is expected of a randomly selected curve.

To perform this check, notice that e is necessarily a divisor of n − 1; thus, we can factor n − 1
to try all values (n − 1)/r for any prime r that divides n − 1. The factorization of n − 1 is:

n − 1 = 2
5 · 5 · 163 · 769 · 1059871
· 253243826720162431254857814100127
· 198400523053184002814403536918162724916343842520561
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5 Out-of-VM Implementation
EcGFp5 was designed to match the abilities of the target VM compute model, not the abili-

ties of any speci�c concrete CPU such as modern x86 or ARM. Out-of-VM performance is

thus expected to be lower than what is usually expected from fast elliptic curves with 128-bit

security, for two reasons:

– Operations inGF (p) have some overhead. The speci�c value of p = 2
64 − 232 + 1 allows

for some fast reduction techniques, but fast reduction is still more expensive than no

reduction at all.

– GF (p5) is a 320-bit �eld, 1.25 times larger than a 256-bit �eld. Point multiplication has

a cost cubic in the size of the �eld (with commonly used �eld sizes); thus, as a very rough

approximation, we should expect a cost factor 1.253 ≈ 1.95 compared to a usual curve

with 128-bit security.

We implemented ecGFp5 in the Rust programming language. The implementation is

constant-time and e�cient; it is nonetheless fully portable (it uses only the core library; it

includes no inline assembly, no architecture-speci�c intrinsics, and no unsafe code). We still

achieve the following performance on an Intel i5-8259U “Co�ee Lake” CPU (using Rust

compiler version 1.57.0, with extra �ags “-C target-cpu=native” to allow the compiler to use

opcodes available on that CPU, in particular mulx):

Operation Cost (cycles)
GF (p) addition 4.02

GF (p) subtraction 3.02

GF (p) multiplication 10.18

GF (p) inversion 737.39

GF (p) Legendre symbol 714.20

GF (p) square root 5430.19

GF (p5) addition 8.80

GF (p5) subtraction 5.78

GF (p5) multiplication 94.03

GF (p5) squaring 68.63

GF (p5) inversion 1069.75

GF (p5) Legendre symbol 1042.20

GF (p5) square root 12410.38

ecGFp5 point addition 1328.50

ecGFp5 point doubling 985.37

ecGFp5 point doubling ×5 3971.39

ecGFp5 point multiplication 363168.03

ecGFp5 generator multiplication 109516.20

ecGFp5 mul+add veri�cation 336952.88

In this table, an average per-operation time is reported for a long sequence of dependent

operations: the output of each operation is used as part of the input to the next one. When

some operations do not depend on each other, they may be run concurrently by the CPU to

some extent; this is how, for instance, a subtraction inGF (p) costs 3 cycles, but a subtraction

in GF (p5) can be done in less than 6 cycles instead of 15.
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“Point doubling×5” means �ve successive point doublings. The fractional (x, u) formu-

las on double-odd curves include optimizations for long sequences of successive doublings,

for a cost of 2M+1S+j(2M+5S) for j doublings; this is why that sequence cost is only about

four times the cost of a single doubling, instead of �ve times.

5.1 Field Operations
There are several possible representations of integers modulo p. In our implementation, we

chose to use Montgomery representation: an element x ∈ GF (p) is represented as2
64x mod p,

normalized as an integer in the [0; p − 1] range. This representation is coupled with Mont-
gomery multiplication, which, given x and y in GF (p), computes xy/264 mod p. Hence, the

Montgomery multiplication of 2
64x and 2

64y yields 2
64xy, which is the Montgomery rep-

resentation of the product xy. The cornerstone of this support is the reduction function,

which, given a 128-bit input x (lower than 2
64p = 2

128 − 2
96 + 264) returns x/264 mod p.

This reduction is implemented in Rust as follows:

const fn montyred(x: u128) -> u64 {
let xl = x as u64;
let xh = (x >> 64) as u64;
let (a, e) = xl.overflowing_add(xl << 32);
let b = a.wrapping_sub(a >> 32).wrapping_sub(e as u64);
let (r, c) = xh.overflowing_sub(b);
r.wrapping_sub(0u32.wrapping_sub(c as u32) as u64)

}

This reduction works as follows:

– The input x is split into two 32-bit words and one 64-bit word: x = x0+232x1+264x2 with

x0 and x1 being unsigned 32-bit integers, and x2 being 64-bit. Note that the assumption

on the range of the function input implies that x2 < p.

– The third function line adds 2
32x0 to 2

32x1 + x0, with a carry in e. We thus obtain:

a = −264e + 232 (x0 + x1) + x0

– On the fourth line, we compute:

b = −264e + 232 (x0 + x1) + x0 + 232e − (x0 + x1) − e
= 2

32 (x0 + x1) − x1 − ep
= 2

32x0 + (232 − 1)x1 − ep

If x0 + x1 < 2
32

, then e = 0 and this value is bounded as:

0 ≤ b = 2
32x0 + (232 − 1)x1 = x0 + (232 − 1) (x0 + x1) ≤ 2

32 − 1 + (232 − 1)2 < p

Otherwise, if x0 + x1 ≥ 2
32

, then e = 1, and:

0 = 2
64 − (232 − 1) − p ≤ b = 2

32 (x0 + x1) − x1 − p ≤ 2
32 (233 − 2) − 1 − p < p

In both cases, the computed value indeed �ts in the variable b without truncation, and

we know that b < p.
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– Since 1 = 2
32 − 264 mod p, we know that:

x0 + 232x1 = 2
32x0 − 264x0 + 264x1 − 296x1 mod p

= 2
64x0 − 296x0 − 264x0 + 264x1 − 296x1 mod p

= −264 (232 (x0 + x1) − x1) mod p
= −264b mod p

Therefore, x/264 = x2 − b mod p. At that point, we have both x2 (in xh) and b (in b),

and both are in the [0; p − 1] range; thus, we only have to do a single subtraction, and

potentially add back p if this subtraction yields a negative result. This is what is done in

the last two lines of the function. Speci�cally, a subtraction is done with result in r and

borrow �ag in c. If the borrow is 1, then we subtract it from zero with a 32-bit wrapping

operation, which then yields 2
32 − 1 = −p mod 2

64
. We then subtract that value from

r, which is equivalent to adding p (modulo 2
64

). It is easily seen that if there were no

borrow (c is zero), then the last line does not change the value of r. In both cases, the

correctly reduced output value is computed.

Using Montgomery representation has the bene�t of producing strictly normalized val-

ues in the [0; p− 1] range, which allows fast subtractions and additions. Subtraction modulo

p is implemented just like the last two lines of the reduction function, described above; it has

an expected latency of 3 cycles, which is corroborated by the benchmarks.

Montgomery multiplication is a 64×64→ 128multiplication followed by Montgomery

reduction. On recent Intel x86 CPUs, this multiplication uses the mulx opcode, which yields

the low half of the result in 3 cycles (4 cycles for the upper half). Following operations involved

in the Rust code above, we may expect that an optimal implementation will yield the result in

a total of 10 cycles (assuming that all non-compute data movements are “free”, as well as the

zero-extension of a 32-bit value to 64 bits); again, this is what we achieve in the benchmarks.

For multiplications and squarings in GF (p5), it is bene�cial to mutualize Montgomery

reductions. For instance, the computation of the low coe�cient of a product is performed as

follows:

fn mul_to_k0(&self, rhs: &Self) -> GFp {
let pp0 = (self.0[0].0 as u128) * (rhs.0[0].0 as u128);
let pp1 = (self.0[1].0 as u128) * (rhs.0[4].0 as u128);
let pp2 = (self.0[2].0 as u128) * (rhs.0[3].0 as u128);
let pp3 = (self.0[3].0 as u128) * (rhs.0[2].0 as u128);
let pp4 = (self.0[4].0 as u128) * (rhs.0[1].0 as u128);
let zhi = (pp0 >> 64) + 3 * ((pp1 >> 64)

+ (pp2 >> 64) + (pp3 >> 64) + (pp4 >> 64));
let zlo = ((pp0 as u64) as u128) + 3 * (

((pp1 as u64) as u128)
+ ((pp2 as u64) as u128)
+ ((pp3 as u64) as u128)
+ ((pp4 as u64) as u128));

GFp(GFp::montyred(zlo + (zhi << 32) - zhi))
}

15



We recognize the �ve products (for a0b0, a1b4,...), each yielding a 128-bit output. The

full linear combination could be up to 132 bits in length, which exceeds what can be stored

in a u128 variable. To keep to sizes for which Rust has portable types, and to avoid some

contention on carry �ags, we do the linear combination twice, on the low and high halves

separately; the �nal expression which assembles zlo and zhi is a partial reduction (using the

fact that 2
64 = 2

32 − 1 mod p) which outputs a value that �ts on 100 bits, well in range of

the Montgomery reduction function.

For inversions, Legendre symbols and square roots, methods described in section 3.2 still

apply, but since divisions in GF (p) are much more expensive than multiplications (in out-

of-VM architectures), inversions in GF (p5) are not as fast as inside the VM. We obtain an

inversion in about 11.4 times the cost of a multiplication in GF (p5), which is very fast com-

pared with the situation in prime �elds, but still not fast enough to contemplate use of a�ne

coordinates on the short Weierstraß curve.

5.2 Curve Operations
Using fractional (x, u) coordinates, we obtain generic point addition in 10M, and generic

point doubling in 4M+5S; however, some optimizations can be applied to sequences of dou-

blings, making it worthwhile to organize operations such that doublings happen in such long

sequences.

We use window optimizations, similar to in-VM operations (see section 3.3). Inversions in

GF (p5) are fast enough to allow normalization of window points to a�ne coordinates; mixed

addition (addition between a point in fractional (x, u) and a point in a�ne (x, u) coordinates)

has cost 8M instead of 10M. Conversion of t points from fractional to a�ne coordinates in-

volves inverting 2t �eld elements, which can be done in a single inversion and 3(2t − 1) mul-

tiplications in GF (p5) (using Montgomery’s trick of computing 1/u and 1/v as (1/uv)v and

(1/uv)u, respectively, and applying it recursively). With a 5-bit window, 64 point additions

are needed, and using a�ne points saves 128 multiplications inGF (p5), while the normaliza-

tion involves one inversion and 93 extra multiplications, making the operation worthwhile.

Moreover, using a�ne coordinates for window points makes these points smaller in RAM,

which speeds up constant-time window lookups. It is expected that the optimal window size

will be 4 or 5 bits, depending on the target architecture; on the test x86 system, 5-bit windows

seem slightly better.

For the special case of multiplying the conventional generator, multiple windows can be

used (in our implementation, eight windows are used, for G, 2
40G, 2

80G,...) and they are

precomputed, thereby avoiding the cost of conversion to a�ne coordinates. This operation

is used when generating a new key pair, and when producing a Schnorr signature.

For signature veri�cation, we apply the Antipa et al optimization[1] with Lagrange’s lat-

tice reduction algorithm[15]; the latter algorithm is implemented in about 20400 cycles on

average. Veri�cation is nominally on public values, and thus needs not be constant-time; we

use direct array accesses for lookups. However, we do not use w-NAF representation of scalars,

because a regular addition schedule favours long sequences of sequential doublings, for which

performance is better than isolated doublings.
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6 Conclusion
We presented an elliptic curve designed for a speci�c compute model. Although we use the

Miden VM as a representative of that model, we expect this curve to be generally useful for

other projects related to zero-knowledge proofs; curve design and implementation is also an

interesting problem in its own right. As a general-purpose curve, ecGFp5 performance is not

on par with the fastest standard curves (e.g. Curve25519), but is still decent enough: a single

core on a laptop computer or a smartphone can generate or verify thousands of signatures

per second.
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