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Abstract. Commit-and-open Σ-protocols are a popular class of protocols for constructing non-
interactive zero-knowledge arguments and digital-signature schemes via the Fiat-Shamir transfor-
mation. Instantiated with hash-based commitments, the resulting non-interactive schemes enjoy
tight online-extractability in the random oracle model. Online extractability improves the tight-
ness of security proofs for the resulting digital-signature schemes by avoiding lossy rewinding or
forking-lemma based extraction.
In this work, we prove tight online extractability in the quantum random oracle model (QROM),
showing that the construction supports post-quantum security. First, we consider the default case
where committing is done by element-wise hashing. In a second part, we extend our result to Merkle-
tree based commitments. Our results yield a significant improvement of the provable post-quantum
security of the digital-signature scheme Picnic.
Our analysis makes use of a recent framework by Chung et al. [CFHL21] for analysing quantum
algorithms in the QROM using purely classical reasoning. Therefore, our results can to a large
extent be understood and verified without prior knowledge of quantum information science.

1 Introduction

Some interactive proofs come with amazing properties like zero-knowledge which intuitively allows a
prover to convince a verifier that she knows the witness to an NP-statement without giving away any
information about this witness. Such zero-knowledge proofs of knowledge are some of the most fascinating
objects in cryptography, and possibly in all of theoretical computer science. One might suspect that their
“magic” is rooted in the fact that the prover and verifier run an interactive protocol with each other, and
that this interaction causes the verifier to be convinced. Surprisingly, if the interactive proof is of suitable
form, e.g. a Σ-protocol (i.e. a 3-round public-coin protocol), the Fiat-Shamir transformation [FS87]
provides a natural way to remove the interaction from such protocols while preserving (most of) the
security properties, resulting in non-interactive zero-knowledge proofs (NIZKs). The idea is to compute
the challenge c as a hash c = H(a) of the first message, rather than letting the verifier choose c. If
the original Σ-protocol has additional soundness properties, the resulting NIZK after the Fiat-Shamir
transformation is ideally suited to be turned into a digital-signature scheme, simply by hashing the
message m to be signed together with the first message a in order to obtain the challenge c. The
candidates Picnic [CDG+17] and Dilithium [DKL+18] in the ongoing NIST post-quantum cryptography
competition follow this design paradigm.

This intuitive preservation of security properties under the Fiat-Shamir transformation can be for-
malized in the random-oracle model (ROM), where the hash function H is treated as a uniformly random
function, and the security reduction gets enhanced access to anybody who queries the random oracle,
by seeing which values are queried, and by possibly returning (random-looking) outputs. While this
situation is conveniently easy to handle in a non-quantum world, complications arise in the context of
post-quantum security. When studying the security of these non-quantum protocols against attackers
equipped with large-enough quantum computers, it is natural to assume that such attackers have access
to the public description of the employed hash function, and can therefore compute it in superposition
on their quantum computers. Therefore, the proper notion of post-quantum security for random oracles



is the quantum-accessible random-oracle model (QROM) as introduced in [BDF+11]. Due to the diffi-
culty of recording adversarial random-oracle queries in superposition (also referred to as the recording
barrier), establishing post-quantum security in the QROM has turned out to be quite a bit more difficult
compared to the regular ROM.

Previous results in [DFMS19] (and concurrently in [LZ19b]) establish that for any interactive Σ-
protocol Π that is a proof of knowledge, the non-interactive FS[Π] is a proof of knowledge in the
QROM. [DFM20] simplified the technical proof and extended these results to multi-round interactive
proofs. However, the most desirable property from such a proof of knowledge is online extractability.
Indeed, online extractability avoids rewinding, which typically causes a significant loss in the security
reduction (see later for a comparison) and has other disadvantages. Thus, online extractability allows for
the tightest security reductions.

Chailloux was the first to aim for showing online extractability of the Fiat-Shamir transformation in
the QROM when considering the relevant class of commit-and-open (C&O) Σ-protocols and modelling
the hash function used for the commitments (and for computing the challenge) as a random oracle.
Indeed, the Fiat-Shamir transformation of such C&O Σ-protocols are known to be online extractable
in the classical ROM (see e.g. discussion in [Fis05]). In a first attempt [Cha19], Chailloux tried to lift
the argument to the quantum setting by means of Zhandry’s compressed-oracle technique [Zha19], which
offers a powerful approach for re-establishing ROM results in the QROM, that has been successful in many
instances. Unfortunately, this first attempt contained a subtle flaw, which turned out to be unfixable,
and despite changing the technical approach, the latest version [Cha21] of this work still contains an
open gap in the proof, which is put as an assumption.1

In a recent article [DFMS21], online extractability of interactive C&O Σ-protocols Π in the QROM is
established; the result applies as soon as Π satisfies some liberal notion of special soundness, which is typ-
ically satisfied. As pointed out in Appendix E of [DFMS21], one can use previous results from [DFMS19,
LZ19b, DFM20] to reduce the extractability of the resulting non-interactive protocol FS[Π] to the ex-
tractability of the interactive protocol Π. However, the resulting extraction error still scales as O(ε/q2),
which results in a prohibitive loss for digital-signature schemes (see Table 1), leaving open the main
question originally posed by Chailloux:

How to establish tight security reductions of the Fiat-Shamir transformation for commit-and-open
Σ-protocols in the QROM?

As the technical quantum details of Zhandry’s compressed-oracle technique are rather complicated and
only accessible for experts, a recent article by Chung, Fehr, Huang and Liao [CFHL21] attempts to give
a comprehensive exposition of Zhandry’s technique. In addition, they establish a framework that allows
researchers without extensive quantum knowledge to still deploy the compressed-oracle technique (in
certain cases), basically by reasoning about classical quantities only. In short, the punchline of [CFHL21]
is that, if applicable, one can prove quantum query complexity lower bounds (think of collision finding,
for instance) by means of the following recipe, which is an abstraction of the technique developed in a
line of works started by Zhandry [Zha19, LZ19a, CGLQ20, HM21]. First, one considers the corresponding
classical query complexity problem, analyzing it by simulating the random oracle using lazy sampling
and showing that the database, which keeps track of the oracle queries and the responses, is unlikely to
satisfy a certain property (e.g. to contain a collision) after a bounded number of queries. Then, one lifts
the analysis to the quantum setting by plugging certain key observations from the classical analysis into
generic theorems provided by the [CFHL21] framework.

1.1 Our Contributions

In this work, we slightly extend the framework from [CFHL21], and use it in a conceptually new (and
arguably roundabout) way to establish strong and tight security statements for a large, popular class of
1 Informally, quoting from [Cha21], the considered Assumption 2 is that the random oracle can be replaced with
a random function of a particular form “without harming too much the studied scheme”. More formally, the
security loss caused by the considered replacement is assumed to remain bounded by a given function of the
number of oracle queries. This assumption is rather ad-hoc and non-standard in that it is very much tailored to
the scheme and its proof. Furthermore, even though Assumption 2 is an assumption that could potentially be
proven in future work, it is hard to judge whether proving the assumption is actually any easier than proving
the security of the considered scheme directly, avoiding Assumption 2—as a matter of fact, in this work we
show that the latter is feasible, while Assumption 2 remains open.
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non-interactive zero-knowledge proofs and digital signature schemes. In broad strokes, our contributions
are threefold.

Online extractability for a class of NIZKs in the QROM. We prove online extractability of the
Fiat-Shamir transformation in the QROM for (a large class of) C&O Σ-protocols. This solves the problem
considered and attacked by Chailloux. In more detail, we prove that if the considered C&O Σ-protocol
satisfies some very liberal notion of special soundness, then the resulting NIZK is a proof of knowledge
with online extractability in the QROM, i.e., when the hash function used for the commitments and the
Fiat-Shamir transformation is modeled as a quantum-accessible random oracle. Our security reduction
is tight: Whenever a prover outputs a valid proof, the online-extractor succeeds, except with a small
probability accounting for collision and preimage attacks on the involved hash functions. For previous
reductions, the guaranteed extraction success probability was at least by a factor of q2 smaller than the
succes probability of the prover subjected to extraction (see Table 1). This is our main technical contri-
bution, see Theorem 4.2. Our result also applies to a variant of the Fiat-Shamir transformation where
a digital signature scheme (DSS) is constructed. It thereby, for the first time, enables a multiplicatively
tight security reduction for, e.g., DSS based on the MPC-in-the-head paradigm [IKOS07], like Picnic
[CDG+17], Banquet [BdSGK+21] and Rainier [DKR+21], in the QROM.

A more efficient Unruh transformation. When a Σ-protocol does not have the mentioned C&O
structure, a non-interactive proof of knowledge with online extractability in the QROM can be obtained
using the Unruh transformation [Unr15]. For technical reasons, the Unruh transformation requires the
hash function to be length preserving, which may result in large commitments, and thus large NIZKs
and digital signature schemes. We revisit this transformation and show, by a rather direct application
of our main result above, that the online extractability of the Unruh transform still holds when using a
compressing hash function. The crucial observation is that the Unruh transformation can be viewed as
the composition of a pre-Unruh transformation, which makes use of hash-based commitments and results
in a C&O protocol, and the Fiat-Shamir transformation. By applying our security reduction, we obtain
the tight online extractability without requiring the hash function to be length preserving.

More efficient NIZKs via Merkle tree based commitments. In real-world constructions based
on C&O protocols, like e.g., the Picnic digital signature scheme, commitments and their openings are
responsible for a significant fraction of the signature/proof size. For certain parameters, this cost can
be reduced by using a collective commitment mechanism based on Merkle trees. This was observed in
passing, e.g. in [Fis05], and is exploited in the most recent versions of Picnic. We formalize Merkle-
tree-based C&O protocols and extend our main result to NIZKs constructed from them (see Theorem
5.2). Applications of this result include a security reduction of Picnic 3, the newest version of the Picnic
digital signature scheme, that is significantly tighter than existing ones: An adversary against the Picnic 3
signature scheme in the QROM with success probability ε can now be used to break the underlying hard
problem with probability ε, up to some additive error terms, while previous reductions yielded at most
ε5/q10, where q is the number of random oracle queries. We outline this reduction in Section 5.3.

We compare our reductions in detail to existing techniques in Table 1.

1.2 Technical Overview

Our starting point is the fact that the compressed-oracle technique can be appreciated as a variant
of the classical lazy-sampling technique that is applicable in the QROM. Namely, to some extent and
informally described here, the compressed-oracle technique gives access to a database that contains the
hash values that the adversary A, who has interacted with the random oracle (RO), may know. In
particular, up to a small error, for any claimed-to-be hash value y output by A, one can find its preimage
x by inspecting the database (and one can safely conclude that A does not know a preimage of y if
there is none in the database). Recalling that a C&O Σ-protocol Π is an interactive proof where the first
message consists of hash-based commitments, and exploiting that typically some sort of special soundness
property ensures that knowing sufficiently many preimages of these commitments/hashes allows one to
efficiently compute a witness, constructing an online extractor for the Fiat-Shamir transformation FS[Π]
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2-s⇒PoK PoKFS⇒NIZK-PoK,
PoKFS⇒UF-NMA DSS

2-sFS⇒NIZK-PoK,
2-sFS⇒UF-NMA DSS

Unruh rewinding [Unr12]
+ generic FS [DFMS19] O(ε3) O(ε/q2) O(ε3/q6)

Σ-protocol OE [DFMS21]
+ generic FS [DFMS19] ε− g(q, r, n) O(ε/q2) O(ε/q2)− g(q, r, n)

this work:
NIZK OE - - ε − h(q, r, n)

Table 1. Comparison of the losses of different reductions for the construction of a NIZK proof of knowledge
(NIZK-PoK) from a special-sound (Merkle tree based) C&O protocol with constant challenge space size C using
r-fold parallel repetition and the Fiat-Shamir transformation. “OE” stands for online extraction, 2-s for special
soundness, UF-NMA for plain unforgeability and DSS for digital signature scheme. If the content of a cell in row
“security property A ⇒ security property B” is f(ε), this means that an adversary breaking property B with
probability ε yields an adversary breaking property A with probabilty f(ε). Grey text indicates results that do
not apply to Merkle-tree-based C&O protocols like the one used to construct the digital signature schemes Picnic
2 [KZ20] and Picnic 3 [CDG+19b]. The additive error terms are g(q, r, n) = C−r + O(rq2−n/2) +O(q32−n) and
h(q, r, n) = O(q32−n) + O(q2C−r), where n is the output length of the random oracles, and q is the number of
adversarial (quantum) queries to the random oracle. Finally, we note that the constants hidden by the big-O in
h(q, r, n) are reasonable, see Theorems 4.2 and 5.2.

then appears straightforward: The extractor E simply runs the (possibly dishonest) prover P ∗, answering
RO queries using the compressed oracle. Once P ∗ has finished and outputs a proof, E measures the
compressed-oracle database and classically reads off any preimages of the commitments in the proof.
Finally, E run the special soundness extractor that computes a witness from the obtained preimages.
It is, however, not obvious that the database contains the preimages of the commitments that are not
opened in the proof, or that these preimages are correctly formed. Intuitively this should be the case:
the RO used for the Fiat-Shamir transformation replaces interaction in that it forces the prover to chose
a full set of commitments before knowing which ones need to be opened. The crux lies in replacing this
intuition by a rigorous proof.

The main insight leading to our proof is that the event that needs to be controlled, namely that
the prover succeeds yet the extractor fails, can be translated into a property SUC (as in “adversarial
SUCcess” ) of the compressed-oracle database, which needs to be satisfied for the event to hold. It is
somewhat of a peculiar property though. The database properties that have led to query complexity lower
bounds in prior work, e.g. for (multi-)collision finding [LZ19a, HM21, CFHL21] and similar problems
[Zha19, CGLQ20, BLZ21], require the database to contain some particular input-output pairs (e.g. pairs
that collide), while the database property SUC additionally forbids certain input-output pairs to be
contained.

Indeed, the framework from [CFHL21] is almost expressive enough to treat our problem. So, after a
mild extension, we can apply it to prove that it is hard for any query algorithm to cause the compressed-
oracle database to have property SUC. Analyzing the relevant classical statistical properties of SUC is
somewhat tedious but can be done (see the proof of Lemma 5.1). The resulting bound on the probability
for the database to satisfy SUC then gives us a bound on the probability of the event that the prover
succeeds in producing a valid proof while at the same time fooling the extractor.

Whenever it is advantageous for communication complexity, a Merkle tree can be used to collec-
tively commit to all required messages in a C&O protocol. This collective commitment is one of the
optimizations that improve the performance of, e.g. Picnic 2 [KZ20] over Picnic [CDG+17]. As the
above-described argument for the extractability of C&O protocols already analyses iterated hashing (the
hash-based commitments are hashed to compute the challenge), it generalizes to Merkle-tree-based C&O
protocols without too much effort. We present this generalization in Section 5, and obtain similar bounds
(see Theorem 5.2).

1.3 Additional Related Work

Besides the already mentioned work above, we note that Chiesa, Manohar and Spooner [CMS19] consider
and prove security of various SNARG constructions, while we consider the Fiat-Shamir transformation
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of C&O protocols with a form of special soundness. Similar in to [CFHL21], they also provide some tools
for deducing security of certain oracle games against quantum attacks by bounding a natural classical
variant of the game.

2 Preliminaries

Our main technical proofs reliy on the recently introduced framework by Chung, Fehr, Huang, and
Liao [CFHL21] for proving query complexity bounds in the QROM. This framework exploits Zhandry’s
compressed-oracle technique but abstracts away all the quantum aspects, so that the reasoning becomes
purely classical. We give here an introduction to a simplified, and slightly adjusted version that does not
consider parallel queries. We start with recalling (a particular view on) the compressed oracle. Along the
way, we also give an improved version of Zhandry’s central lemma for the compressed oracle.

Before getting into this, we fix the following standard notation. For any positive integer ` > 0, we set
[`] := {1, 2, . . . , `}, and we let 2[`] denote the power set of [`], i.e., the set of all subsets of [`]. We write
{0, 1}≤` for the set of bit strings of size at most `, including the empty string denoted ∅; similarly for
{0, 1}<`. Concatenation of two bit strings v ∈ {0, 1}m and w ∈ {0, 1}n is denoted by v‖w ∈ {0, 1}m+n.

Finally, for any finite non-empty set Z, C[Z] denotes the Hilbert space C|Z| together with a basis
{|z〉} labeled by the elements z ∈ Z.

2.1 The Compressed Oracle—Seen as Quantum Lazy Sampling

With the goal to analyze oracle algorithms that interact with a RO H : X → Y, consider the set D
of all functions D : X → Y ∪ {⊥}, where ⊥ is a special symbol. Such a function is referred to as a
database. Later, we will fix X = {0, 1}≤B and Y = {0, 1}n. For D ∈ D, x ∈ X and y ∈ Y ∪ {⊥},
D[x 7→ y] denotes the database that maps x to y and otherwise coincides with D, i.e., D[x 7→ y](x) = y
and D[x 7→y](x̄) = D(x̄) for all x̄ ∈ X \ {x}.

Following the exposition of [CFHL21], the compressed-oracle technique is a quantum analogue of
the classical lazy-sampling technique, commonly used to analyze algorithms in the classical ROM. In
the classical lazy-sampling technique, the (simulated) RO starts off with the empty database, i.e., with
D0 = ⊥, which maps any x ∈ X to ⊥. Then, recursively, upon a query x, the current database Di is
updated to Di+1 := Di if Di(x) 6= ⊥, and to Di+1 := Di[x 7→y] for a randomly chosen y ∈ Y otherwise.
This construction ensures that |{x |Di(x) 6=⊥}| ≤ i; after i queries thus, using standard sparse-encoding
techniques, the database Di can be efficiently represented and updated.

In the compressed-oracle quantum analogue of this lazy-sampling technique, the (simulated) RO also
starts off with the empty database, but now considered as a quantum state |⊥〉 in the |D|-dimensional
state space C[D], and after i queries the state of the compressed oracle is then supported by databases
|Di〉 for which |{x |Di(x) = ⊥}| ≤ i.2 Here, the update is given by a unitary operator cO acting on
C[X ] ⊗ C[Y] ⊗ C[D], i.e., on the query register, the response register, and the state of the compressed
oracle. With respect to the computational basis {|x〉} of C[X ] and the Fourier basis {|ŷ〉} of C[Y], cO is a
control unitary, i.e., of the form cO =

∑
x,ŷ |x〉〈x|⊗ |ŷ〉〈ŷ|⊗cOx,ŷ, where cOx,ŷ is a unitary on C[Y ∪{⊥}],

which in the above expression is understood to act on the register that carries the value of the database
at the point x. More formally, cOx,ŷ acts on register Rx when identifying C[D] with

⊗
x∈X C[Y ∪{⊥}] by

means of the isomorphism |D〉 7→
⊗

x∈X |D(x)〉Rx . We refer to Lemma 4.3 in the full version of [CFHL21]
for the full specification of cOx,ŷ; it is not really relevant here.

The compressed oracle is tightly related to the purified oracle, which initiates its internal state with
a uniform superposition

∑
h |H〉 ∈ C[D] of all functions H : X → Y, and then answers queries “in

superposition”. Indeed, at any point in time during the interaction with an oracle quantum algorithm A,
the joint state of A and the compressed oracle coincides with the joint state of A and the purified oracle
after “compressing” the latter.3 Formally, identifying C[D] with

⊗
x∈X C[Y∪{⊥}] again, the compression

2 This means that the density operator that describes the state of the compressed oracle has its support contained
in the span of these |Di〉.

3 The terminology is somewhat misleading here; the actual compression takes place when invoking the sparse
encoding (see below).
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of the state of the purified oracle works by applying the unitary Comp to each register Rx, where

Comp : |y〉 7→ (|y〉+
1√
|Y|

(|⊥〉 − |0̂〉)

for any y ∈ Y, and Comp : |⊥〉 7→ |0̂〉. Here, |0̂〉 is the 0̂-vector from the Fourier basis {|ŷ〉} of C[Y].
Similarly to the classical case, by exploiting a quantum version of the sparse-encoding technique,

both the internal state of the compressed oracle and the evolution cO can be efficiently computed.
Furthermore, for any classical function f : D → T that can be efficiently computed when given the
sparse representation of D ∈ D, the corresponding quantum measurement given by the projections
Pt =

∑
D:f(D)=t |D〉〈D| can be efficiently performed when given the sparse representation of the internal

state of the compressed oracle. In particular, in Lemma 2.1 below, the condition y = D(x) for given x
and y can be efficiently checked by a measurement. See Appendix A in (the full version of) [CFHL21],
or Appendix B in [DFMS21] for more details on this technique.

In the classical lazy-sampling technique, if at the end of the execution of an oracle algorithm A,
having made q queries to the (lazy-sampled) RO, the database Dq is such that, say, Dq(x) 6= 0 for any
x ∈ X , then A’s output is unlikely to be a 0-preimage, i.e., an x that is hashed to 0 upon one more query.
A’s best chance is to output an x that he has not queried yet, and thus Dq(x) = ⊥, and then he has
a 1/|Y|-chance that Dq+1(x) := Dq[x 7→ y](x) = 0, given that y is randomly chosen. Something similar
holds in the quantum setting, with some adjustments. The general statement is given by the following
result by Zhandry.

Lemma 2.1 (Lemma 5 in [Zha19]). Let R ⊆ X ` × Y` × Z be a relation, and let A be an oracle
quantum algorithm that outputs x ∈ X `, y ∈ Y` and z ∈ Z. Furthermore, let

p = p(A) := Pr[y=H(x) ∧ (x,y, z)∈R]

be the considered probability when A has interacted with the standard RO, initialized with a uniformly
random function H, and let

p′ = p′(A) := Pr[y=D(x) ∧ (x,y, z)∈R]

be the considered probability when A has interacted with the compressed oracle instead and D is obtained
by measuring its internal state (in the basis {|D〉}D∈D). Then

√
p ≤

√
p′ +

√
`

|Y|
.

Remark 2.2. This bound is particular useful in case Z = ∅ (or R does not depend on its third input z),
since then p′ is bounded by Pr[∃ x̃ : (x̃, D(x̃))∈R] and the latter is determined solely by the evolution
of the compressed oracle (when interacting with A) and does not depend on the actual output of A.

In Section 2.3, Corollary 2.8, we will give an alternative such relation between the success probability
of an algorithm interacting with the actual RO, and probabilities obtained by inspecting the compressed
oracle instead. Strictly speaking, the results of Lemma 2.1 and Corollary 2.8 are incomparable, but in
typical applications the latter gives a significantly better bound.

2.2 The Quantum Transition Capacity and Its Relevance

The above discussion shows that, in order to bound the success probability p of an oracle algorithm A,
it is sufficient to bound the probability of the database D, obtained by measuring the internal state of
the compressed oracle after the interaction with A, satisfying a certain property (e.g., the property of
there existing an x such that D(x) = 0).

To facilitate that latter, Chung et al. [CFHL21] introduced a framework that, in certain cases, allows
to bound this alternative figure of merit by means of purely classical reasoning. We briefly recall here
some of the core elements of this framework, which are relevant to us. Note that [CFHL21] considers the
parallel-query model, where in each of the q (sequential) interactions with the RO, an oracle algorithm
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A can make k queries simultaneously in parallel with each interaction. Here, we consider the (more)
standard model of one query per interaction, i.e., setting k = 1. On the other hand, we state and prove
a slight generalization of Theorem 5.16 in [CFHL21] (when restricted to k = 1).

A subset P ⊆ D is called a database property. We say that D ∈ D satisfies P if D ∈ P, and the
complement of P is denoted ¬P = D \ P. For such a database property P, [CFHL21] defines

q
⊥ q

=⇒ P
y

as the square-root of the maximal probability of D satisfying P when D is obtained by measuring the
internal state of the compressed oracle after the interaction with A, maximized over all oracle quantum
algorithms A with query complexity q, i.e., in short

q
⊥ q

=⇒ P
y

:= max
A

√
Pr[D ∈ P] . (1)

In the context of Lemma 2.1 for the case Z = ∅ (see Remark 2.2), we can define the database property
PR := {D∈D | ∃x∈X ` : (x, D(x))∈R} induced by R, and thus bound

p′(A) ≤ Pr[(x, D(x))∈R] ≤ Pr[D ∈ PR] ≤
q
⊥ q

=⇒ PR
y2 (2)

for any oracle quantum algorithm A with query complexity q.
Furthermore, Lemma 5.6 in [CFHL21] shows that for any target database property P and for any

sequence P0,P1, . . . ,Pq with ¬P0 = {⊥} and Pq = P,

q
⊥ q

=⇒ P
y
≤

q∑
s=1

q
¬Ps−1→ Ps

y
, (3)

where, for any database properties P and P′, the definition of the quantum transition capacity
q

P→ P′
y

is recalled in Definition 2.3.
The nice aspect of the framework of [CFHL21] is that it provides means to manipulate and bound

quantum transition capacities using purely classical reasoning, i.e., without the need to understand and
work with the definition. Indeed, for instance Theorem 2.4 below, which is a variant of Theorem 5.17 in
(the full version of) [CFHL21], shows how to bound

q
P→ P′

y
by means of a certain classical probability;

furthermore, to facilitate the application of such theorems, [CFHL21] showed that the quantum transition
capacity satisfies several natural manipulation rules, like

q
P → P′

y
=

q
P′ → P

y
(i.e., it is symmetric),

and
q

P ∩ Q→ P′
y
≤ min

{q
P→ P′

y
,
q

Q→ P′
y}

and

min
{q

P→ P′
y
,
q

P→ Q′
y}
≤

q
P→ P′ ∪ Q′

y
≤

q
P→ P′

y
+

q
P→ Q′

y
,

(4)

which allow to decompose complicated capacities into simpler ones. Therefore, by means of the above
series of inequalities with p from Lemma 2.1 on the left hand side, it is possible (in certain cases)
to bound the success probability of any oracle quantum algorithm A in the QROM by means of the
following recipe: (1) Choose suitable transitions Ps−1 → Ps, (2) decompose the capacities

q
¬Ps−1→ Ps

y

into simpler ones using manipulation rules as above, and (3) bound the simplified capacities by certain
classical probabilities, exploiting results like Theorem 2.4. We will closely follow this recipe.

In order to state and later use Theorem 2.4, we need to introduce the following additional concepts. As
explained above, there is no need to actually spell out the definition of the quantum transition capacity
in order to use Theorem 2.4; for completeness, and since it is needed for the proof of Theorem 2.4, we
do provide it below.

For any database D ∈ D and any x ∈ X ,

D|x := {D[x 7→y] | y ∈ Y ∪ {⊥}}

denotes the set of all databases that coincide withD outside of x. Furthermore, for a database property P,

P|D|x := {y ∈ Y ∪ {⊥} | D[x 7→y] ∈ P} ⊆ Y ∪ {⊥}

denotes the set of values y for which D[x 7→y] satisfies P. Following the convention used in [CFHL21], we
identify the subset P|D|x ⊆ Y ∪ {⊥} with the projector P|D|x =

∑
y |y〉〈y| acting on C[Y ∪ {⊥}], where

the sum is over all y ∈ P|D|x .
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Definition 2.3 (Def. 5.5 of [CFHL21], case k = 1). Let P,P′ be two database properties. Then, the
quantum transition capacity (of order 1) is defined as

q
P→ P′

y
:= max

x,ŷ,D
‖P′|D|x cOx,ŷ P|D|x‖

where the max is over all x ∈ X k, ŷ ∈ Ŷk, and D ∈ D.

The following is a variation of Theorem 5.17 in (the full version of) [CFHL21], obtained by restricting
k to 1. On the other hand, we exploit and include some symmetry that is not explicit in the original
statement. The proof is a small adjustment to the original proof.

Theorem 2.4. Let P and P′ be database properties with trivial intersection, i.e., P ∩ P′ = ∅, and for
every D ∈ D and x ∈ X let

Lx,D :=

{
P|D|x if ⊥ ∈ P′|D|x
P′|D|x if ⊥ ∈ P|D|x ,

with Lx,D being either of the two if ⊥ 6∈ P|D|x ∪ P′|D|x .4 Then

q
P→ P′

y
≤ max

x,D

√
10P

[
U ∈Lx,D

]
,

where U is uniform over Y, and the maximization can be restricted to D ∈ D and x ∈ X for which both
P|D|x and P′|D|x are non-empty.

Remark 2.5. Both, P|D|x and P′|D|x , and thus also Lx,D, do not depend on the value of D(x), only on
the values of D outside of x.

Proof. For any D ∈ D and x ∈ X , we observe that

‖P′|D|x cOx,ŷ P|D|x‖ = ‖P|D|x cOx,−ŷ P′|D|x‖ ,

and so it is sufficient to argue for the case when Lx,D is set to P′|D|x . By the disjointness requirement, as
subsets of Y ∪ {⊥}, the complement of Lx,D = P′|D|x is a superset of P|D|x . Thus, as projections acting
on C[Y ∪{⊥}], P|D|x ≤ I−Lx,D. Therefore, the above norm is upper bounded by ‖Lx,D cOx,y (I−Lx,D)‖.
Given that ⊥ 6∈ Lx,D, the square norm ‖Lx,D cOx,ŷ (I− Lx,D)‖2 can be upper bounded exactly as in the
proof of Theorem 5.17 in [CFHL21] by 10P

[
U ∈Lx,D

]
, giving the claimed bound. ut

2.3 An Improved Variant of Zhandry’s Lemma

We show here an alternative to Zhandry’s lemma (Lemma 2.1), which offers a better bound in typical
applications. To start with, note that Lemma 2.1 considers an algorithm A that not only outputs x =
(x1, . . . , x`) but also y = (y1, . . . , y`), where the latter is supposed to be the point-wise hash of x;
indeed, this is what is being checked in the definition of the probability p, along with (x,y, z) ∈ R. This
requirement is somewhat unnatural, in that an algorithm A for, say, finding a collision, i.e., x1 6= x2
with H(x1) = H(x2), does not necessarily output the (supposed to be equal) hashes y1 = H(x1) and
y2 = H(x2). Of course, this is no problem since one can easily transform such an algorithm A that does
not output the hashes into one that does, simply by making a few more (classical) queries to the RO at
the end of the execution, and then one can apply Lemma 2.1 to this tweaked algorithm Ã.

We show below that if we anyway consider this tweaked algorithm Ã, which is promised to query the
RO to obtain and then output the hashes of x = (x1, . . . , x`), then we can actually improve the bound
and avoid the square-roots in Lemma 2.1. On top, the proof is much simpler than Zhandry’s proof for
his lemma.

At the core is the following lemma; Corollary 2.8 below then puts it in a form that is comparable to
Lemma 2.1 and shows the improvement.

4 By the disjointness requirement, ⊥ cannot be contained in both.
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Lemma 2.6. Let A be an oracle quantum algorithm that outputs x = (x1, ..., x`) ∈ X ` and z ∈ Z. Let
Ã be the oracle quantum algorithm that runs A, makes ` classical queries on the outputs xi to obtain
y = H(x), and then outputs (x,y, z). When Ã interacts with the compressed oracle instead, and at the
end D is obtained by measuring the internal state of the compressed oracle, then, conditioned on Ã’s
output (x,y, z),

Pr[y=D(x)|(x,y, z)] ≥ 1− 2`

|Y|
.

Proof. Consider first Ã interacting with the purified (yet uncompressed) oracle. Conditioned on Ã’s
output (x,y, z), the state of the oracle is then supported by |H〉 with H(xi) = yi for all i ∈ {1, . . . , `},
i.e., the registers labeled by x1, ..., x` are in state |y1〉 · · · |y`〉. Given that the compressed oracle is obtained
by applying Comp to all the registers, we thus have that

Pr[yi=y′i|(x,y, z)] =
∣∣〈yi|Comp|yi〉

∣∣2 =
∣∣∣〈yi|(|yi〉+ 1√

|Y|
(|⊥〉 − |0̂〉)

)∣∣∣2
=
∣∣∣1− 1√

|Y|
〈yi|0̂〉

∣∣∣2 =
∣∣∣1− 1

|Y|

∣∣∣2 ≥ 1− 2

|Y|
.

Applying union bound concludes the claim. ut

The following generalization of Lemma 2.6 follows immediately by enhancing A so that it computes and
outputs all the values x that need to be queried in order to compute FH(z), and then apply Lemma 2.6
above.

Corollary 2.7. Let A be an oracle quantum algorithm that produces an arbitrary output z ∈ Z, and let
F be an arbitrary classical `-query oracle algorithm. Let Ã := F ◦ A be the oracle quantum algorithm
that first runs A to obtain z, then F to obtain y := FH(z), and finally outputs (y, z). When Ã interacts
with the compressed oracle instead, and at the end D is obtained by measuring the internal state of the
compressed oracle, then, conditioned on Ã’s output (y, z),

Pr[y=FD(z)|(y, z)] ≥ 1− 2`

|Y|
.

The following corollary of Lemma 2.6 is put in a form that can be nicely compared with Lemma 2.1,
understanding that typically Lemma 2.1 is applied to Ã.

Corollary 2.8. Let R ⊆ X ` ×Y` ×Z be a relation. Let A be an oracle quantum algorithm that outputs
x ∈ X ` and z ∈ Z, and let Ã be as in Lemma 2.6. Let

p◦(A) := Pr[(x, H(x), z) ∈ R]

be the considered probability when A has interacted with the RO. Furthermore, let p(Ã), p′(Ã) and p′′(Ã)
be defined as in Lemma 2.1 (but now for Ã). Then

p◦(A) = p(Ã) ≤ p′(Ã) +
2`

|Y|
.

For convenience, we recall that

p′(Ã) = Pr[y=D(x) ∧ (x,y, z)∈R] ≤ Pr[(x, D(x), z)∈R] .

Proof. The equality holds by construction of Ã. For the first inequality, we observe that

p′(Ã) = Pr[y=D(x)|(x,y, z)∈R] Pr[(x,y, z)∈R]

≥
(
1− 2`

|Y|
)

Pr[(x,y, z)∈R] ≥
(
1− 2`

|Y|
)
p(Ã) ≥ p(Ã)− 2`

|Y| ,

where the first inequality is by Lemma 2.6. The second and last inequality in the statement holds trivially
by definition of p′. ut
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3 Some Background on (Non-)Interactive Proofs

Throughout this and later sections, we consider a hash function H : X → Y, to be modeled as a RO
then. For concreteness and simplicity, we assume that all relevant variables are encoded as bit strings,
and that we can therefore choose H : {0, 1}≤B → {0, 1}n for sufficiently large B and n.5

Let {Iλ}λ∈N and {Wλ}λ∈N be two families of sets, with the members being labeled by the security
parameter λ ∈ N. Let Rλ ⊆ Iλ ×Wλ be a relation that is polynomial-time computable in λ. w ∈ Wλ is
called a witness for inst ∈ Iλ if Rλ(inst, w), and Lλ := {inst ∈ Iλ | ∃w ∈ Wλ : Rλ(inst, w)}.

Below, we recall some concepts in the context of interactive and non-interactive proofs for such
families {Rλ}λ∈N of relations. We start by discussing the aspired security definition for non-interactive
proofs.

3.1 Non-interactive Proofs and Online Extractability

An non-interactive proof in the random-oracle model for a family {Rλ}λ∈N of relations consists of a pair
(P,V) of oracle algorithms, referred to as prover and verifier, both making queries to the RO H : X → Y.
The prover P takes as input λ ∈ N and an instance inst ∈ Lλ and outputs a proof π ∈ Πλ, and V takes
as input λ ∈ N and a pair (inst, π) ∈ Iλ×Πλ and outputs a Boolean value, 0 or 1, or accept or reject.
The verifier V is required to run in time polynomial in λ, while, per-se, P may have unbounded running
time.6

By default, we require correctness and soundness, i.e., that for any λ ∈ N and any inst ∈ Lλ

Pr
[
VH(λ, inst, π) : π ← PH(λ, inst)

]
≥ 1− εcor(λ),

while for any λ ∈ N and any oracle quantum algorithm P∗ (a dishonest prover) with query complexity q

Pr
[
inst 6∈ Lλ ∧ VH(λ, inst, π) : (inst, π)← P∗H(λ)

]
≤ εsnd(λ, q, n)

for certain εcor and εsnd, respectively referred to as correctness error and soundness error. The fact that
the instance inst, for which P∗ tries to forge a proof, is not given as input to P∗ but is instead chosen
by P∗ is referred to as P∗ being adaptive.

We now move towards defining online extractability (for adaptive P∗). For that purpose, let P∗ be a
dishonest prover as above, except that it potentially outputs some additional auxiliary (possibly quantum)
output Z next to (inst, π). We then consider an interactive algorithm E , called online extractor, which
takes λ ∈ N as input and simulates the answers to the oracle queries in the execution of VH ◦ P∗H(λ),
which we define to run (inst, π, Z) ← P∗H(λ) followed by v ← VH(λ, inst, π); furthermore, at the end,
E outputs w ∈ Wλ. We denote the execution of VH ◦ P∗H(λ) with the calls to H simulated by E , and
considering E ’s final output w as well, as (inst, π, Z; v;w)← VE ◦ P∗E(λ).

Definition 3.1. A non-interactive proof in the (quantum-accessible) RO model (QROM) for {Rλ}λ∈N

is a proof of knowledge with online extractability (PoK-OE) against adaptive adversaries if there exists
an online extractor E, and functions εsim (the simulation error) and εex (the extraction error), with the
following properties. For any λ ∈ N and for any dishonest prover P∗ with query complexity q,

δ
(
[(inst, π, Z, v)]VH◦P∗H(λ), [(inst, π, Z, v)]VE◦P∗E(λ)

)
≤ εsim(λ, q, n)

and
Pr
[
v = accept ∧ (inst, w) 6∈ R : (inst, π, Z; v;w)← VE ◦ P∗E(λ)

]
≤ εex(λ, q, n) .

Furthermore, the runtime of E is polynomial in λ+ q+n, and εsim(λ, q, n) and εex(λ, q, n) are negligible
in λ whenever q and n are polynomial in λ.

Remark 3.2. In the classical definition of a proof of knowledge, the extractor E interacts with P∗ only,
and the verifier V is not explicitly involved, but would typically be run by E . Here, in the context of
online extractability, it is necessary to explicitly go through the verification procedure, which also makes
oracle queries, to determine whether a proof is valid, i.e., for the event v = accept to be well defined.
5 B and n may depend on the security parameter λ ∈ N. We will then assume that B and n can be computed
from λ in polynomial time (in λ).

6 Alternatively, one may consider a witness w for inst to be given as additional input to P, and then ask P to
be polynomial-time as well.
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3.2 (Commit-and-Open) Σ-Protocols

A Σ-protocol is a 3-round public-coin interactive proof (P,V) for a relation Rλ ⊆ Iλ ×Wλ, indexed by
the security parameter. From now on, we leave any dependencies on the security parameter implicit. We
therefore simply write R etc. By definition, a Σ-protocol has the following communication pattern. In
the first round, P sends a first message a; in the second round, V sends a random challenge c ∈ C; and
in the third round, P sends a response z (see Fig. 1). By a slight abuse of notation, we sometimes write
V(inst, a, c, z) for the predicate that determines whether V accepts the transcript (a, c, z) on input inst.

VP
a

c

z

V(inst, a, c, z) ∈ {accept, reject}

Fig. 1. A plain Σ-protocol, formally introduced in Section 3.2.

For the purpose of this work, a commit-and-open Σ-protocol, or C&O Σ-protocol or C&O protocol for
short, is a Σ-protocol Π = (P,V) of a special form, involving a hash function H that is modeled as a
RO.7 Concretely, in a C&O protocol, the transcript (a, c, z) is of the following form (see Fig. 2). The first
message a consists of commitments y1, . . . , y`, computed as yi = H(mi) for messages m1, . . . ,m` ∈ M,
and possibly an additional string a◦8. The challenge c is picked uniformly at random from the challenge
space C ⊆ 2[`], which is set to be a subset of 2[`]. Finally, the response z is given by mc = (mi)i∈c.
Eventually, V accepts if and only if H(mi) = yi for all i ∈ c and some given predicate V (inst, c,mc, a◦)
is satisfied.

For the above to be meaningful, we obviously need thatM⊆ X , i.e., the bit size of the possible mi’s
are upper bounded by B. Furthermore, the parameter n determines the hardness of finding a collision
in H (in the random oracle model), and thus the level of binding the commitments provide.

VP
a◦,y = H(m)

c

mc

∀i ∈ c : H(mi) = yi ∧ V (inst, c,mc, a◦)

c← C ⊆ 2[`]

Fig. 2. An (ordinary) C&O Σ-protocol, formally introduced in Section 3.2.

Remark 3.3. Looking ahead, we may also consider a generalization of the above notion of a C&O protocol,
where the first message is parsed as a single commitment y of the ` messages m1, . . . ,m` and where this
commitment is computed by means of an arbitrary “multi-message” commitment scheme involving H,
which has the property that any subset of m1, . . . ,m` can be opened without revealing the remaining
mi’s. The above component-wise hashing is then one particular instantiation, but alternatively one can
7 One could also refer to Σ-protocols that use non-hash-based commitments, and/or are analyzed in the standard
model, as C&O protocols, but this is not the scope here.

8 Note that mi ∈M may consist of the actual “message” (computed by the prover using the witness w), possibly
concatenated with randomness.
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for instance also compute y by means of a Merkle tree (see Section 5.1), and then open individual
mi’s by revealing the corresponding authentication paths. We stress that the concepts discussed below:
the notions of S-soundness and S-soundness∗ and the probability pStriv, do not depend on the choice
of commitment scheme, and thus remain unaffected when considering such a Merkle-tree-based C&O
protocol. To emphasize the default choice of the commitment scheme, which is element-wise hashing, we
sometimes also speak of an ordinary C&O protocol.

3.3 S-soundness of C&O Σ-Protocols

We briefly recall the notion ofS-soundness andS-soundness∗ for C&O protocols, as considered in [DFMS21],
which offers a convenient general notion of special soundness, or more generally k-soundness for C&O
protocols. A similar notion of S-soundness naturally exists for plain Σ-protocols, i.e., Σ-protocols in the
plain model. For completeness, we formalize the latter in Appendix A.

Here and below, given a C&O protocol Π with challenge space C ⊆ 2[`], we let S ⊆ 2C be an
arbitrary non-empty, monotone increasing set of subsets S ⊆ C, where the monotonicity means that
S ∈ S ∧ S ⊆ S′ ⇒ S′ ∈ S. We then also set Smin := {S ∈ S | S◦ ( S ⇒ S◦ 6∈ S} to be the minimal
sets in S.

For simplicity, the reader can consider S = Tk := {S ⊆ C | |S| ≥ k} for some threshold k, and thus
Smin = {S ⊆ C | |S| = k}. This then corresponds to the notion of k-soundness for C&O protocols, which
in turn means that the witness can be computed from valid responses to k (or more) distinct challenges
for a given first message y1, . . . , y`, assuming the messages m1, . . . ,m` to be uniquely determined by their
commitments.

Definition 3.4 ([DFMS21] Def. 5.1). A C&O protocol Π is S-sound if there exists an efficient de-
terministic algorithm ES(inst,m1, . . . ,m`, a◦, S) that takes as input an instance inst ∈ I, messages
m1, . . . ,m` ∈M∪{⊥}, a string a◦, and a set S ∈ Smin, and outputs a witness for inst if V (inst, c,mc, a◦)
for all c ∈ S.9

We note that Wikström [Wik18] also considers a general notion of special soundness (but then for multi-
round protocols); however, the notion in [Wik18] is more restrictive in that it requires some matroid
structure on top. For instance, the r-fold parallel repetition of a k-sound protocol does not fit into the
formalism by Wikström.

A slightly stronger condition than S-soundness is the following variant, which differs in that the
extractor needs to work as soon as there exists a set S as specified, without the extractor being given S
as input. We refer to [DFMS21] for a more detailed discussion of this aspect. As explained there, whether
S is given or not often makes no (big) difference.

For instance, when Smin consists of a polynomial number of sets S then the extractor can do a
brute-force search to find S, and so S-soundness∗ is then implied by S-soundness. Also, the r-fold
parallel repetition of a S-sound protocol, which by default is a S∨r-sound protocol (see [DFMS21]), is
automatically S∨-sound∗ if Smin is polynomial in size: the extractor can then do a brute-force search in
every repeated instance.

Definition 3.5 ([DFMS21] Def. 5.2). A C&O protocol Π is S-sound∗ if there exists an efficient
deterministic algorithm E∗S(inst,m1, . . . ,m`, a◦) that takes as input an instance inst ∈ I and strings
m1, . . . ,m` ∈ M ∪ {⊥} and a◦, and it outputs a witness for inst if there exists S ∈ S such that
V (inst, c,mc, a◦) for all c ∈ S.

As in [DFMS21], we define

pStriv :=
1

|C|
max
Ŝ 6∈S
|Ŝ| , (5)

capturing the “trivial” attack of picking a set Ŝ = {ĉ1, . . . , ĉm} 6∈ S of challenges ĉi ∈ C and then prepare
m̂ = (m̂1, . . . , m̂`) and a◦ in such a way that V (inst, c, m̂c, a◦) holds if c ∈ Ŝ. After committing to
m̂1, . . . , m̂`, the prover can successfully answer to challenges c ∈ Ŝ.
9 The restriction for S to be in Smin, rather than in S, is to avoid an exponentially sized input while asking ES
to be efficient.

12



3.4 The Fiat-Shamir Transformation of (C&O) Σ-Protocols

The Fiat-Shamir (FS) transformation [FS87] turns arbitrary Σ-protocols into non-interactive proofs in
the random oracle model by setting the challenge c ∈ C to be the hash of the instance and the first
message a. For this transformation to work smoothly, it is typically assumed that |C| is a power of 2 and
its elements are represented as bit strings of size log |C|, so that one can indeed set c to be (the first log |C|
bits of) the hash H(inst, a). The assumption on |C| is essentially without loss of generality (WLOG), since
one can always reduce the size of |C| to the next lower power of 2, at the cost of losing at most 1 bit
of security. However, for a C&O Σ-protocol, where a challenge space C is a (typically strict) subset of
2[`], there is not necessarily a natural way to represent c ∈ C as a bitstring of size log |C|. Therefore,
we will make it explicit that the challenge-set c ∈ C ⊂ 2[`] is computed from the “raw randomness”
H(inst, y1, . . . , y`, a◦) in a deterministic way as c = γ ◦H(inst, y1, . . . , y`, a◦) for an appropriate function
γ : Y → C, mapping a uniformly random hash in Y to a random challenge-set in C. Obviously, for
H(inst, y1, . . . , y`, a◦) to be defined, in addition toM ⊆ X we also need that I × Y` ⊆ X , which again
just means that B needs to be large enough. We write FS[Π] for the Fiat-Shamir transformation of a
(C&O) Σ-protocol Π.

Remark 3.6. Additionally, we need that n is sufficiently large, so that there is a sufficient amount of
randomness in the hash value H(inst, y1, . . . , y`) in order to be mapped to a random c ∈ C. The canonical
choice for γ is then the function that the interactive verifier applies to his local randomness to compute
the random challenge c ∈ C. To simplify the exposition, we assume that n is indeed sufficiently large.
Otherwise, one can simply set Y := {0, 1}n′ instead, for sufficiently large n′, and then let yi be H(mi)
truncated to the original number n of bits again. This truncation has no effect on our results.

Remark 3.7. We assume WLOG that the two kinds of inputs to H, i.e., mi and (inst, y1, . . . , y`, a◦), are
differently formatted, e.g., bit strings of different respective sizes or prefixes (this is referred to as domain
separation). In other words, we assume thatM and I × Y` are disjoint.

Remark 3.8. When considering the adaptive security of a Fiat-Shamir transformation FS[Π] of a C&O
protocol Π for a relation R, the additional string a◦, which may be part of the first message a of the
original protocol Π, may WLOG be considered to be part of the instance inst instead.

Indeed, any dishonest prover P∗ against FS[Π], which (by Definition 3.1) outputs an instance inst and
a proof π = (a◦, y1, . . . y`), can alternatively be parsed as a dishonest prover that outputs an instance
inst′ = (inst, a◦) and a proof π′ = (y1, . . . y`). Thus, P∗ can be parsed as a dishonest prover against
FS[Π ′], where the C&O protocol Π ′ works as Π, except that a◦ is considered as part of the instance,
rather than as part of the first message, and thus Π ′ is a C&O protocol for the relation ((inst, a◦), w) ∈
R′ :⇔ (inst, w) ∈ R.10 Therefore, security (in the sense of Definition 3.1) for FS[Π ′] implies that of FS[Π].

4 Online Extractability of the FS-Transformation:
The Case of Ordinary C&O Protocols

We now consider the Fiat-Shamir transformation FS[Π] of an ordinary C&O protocol Π. Our goal is to
show that FS[Π] admits online extraction. We note that by exploiting Remark 3.8, we may assumeWLOG
that the first message of Π consists of the commitments y1, . . . , y` only, and no additional string a◦. In
Section 5, we then consider the case of Merkle-tree-based C&O protocols.

Our analysis of the online extractability of FS[Π] uses the framework of Chung et al. [CFHL21],
discussed and outlined in Section 2. Thus, at the core of our analysis is a bound on a certain quantum
transition capacity. This is treated in the upcoming subsection.

4.1 Technical Preface

We first introduce a couple of elementary database properties (related to CoLlisions and the SiZe of the
database) that will be useful for us:

CL := {D | ∃x 6=x′ : D(x)=D(x′) 6=⊥} and SZ≤s := {D |#{z|D(z) 6=⊥} ≤ s}.
10 We do not specify the local computation of the honest prover P ′ in Π ′ = (P ′,V ′), i.e., how to act when a◦ is

part of the input, and in general it might not be efficient, but this is fine since we are interested in the security
against dishonest provers.
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Next, for an instance inst ∈ I, we want to specify the database property that captures a cheating prover
that succeeds in producing an accepting proof while fooling the extractor. For the purpose of specifying
this database property, we introduce the following notation. For a given database D ∈ D and for a
commitment y ∈ Y, we define D−1(y) to be the smallest x ∈ X with D(x) = y, with the convention that
D−1(y) := ⊥ if there is no such x, as well as D−1(⊥) := ⊥. We note that by removing collisions, we
ensure that there is at most one such x; thus, taking the smallest one in case of multiple choices is not
important but only for well-definedness.

The database property of interest can now be defined as

SUC :=

{
D

∣∣∣∣ ∃y ∈ Y` and inst ∈ I so that m := D−1(y) satisfies
V (inst, c,mc) for c := γ ◦D(inst,y) and

(
inst, E∗(inst,m)

)
6∈ R

}
. (6)

Informally, assuming no collisions (i.e., restricting to D 6∈ CL), the database property SUC captures
whether a database D admits a valid proof π = (y,mc) for an instance inst for which the (canonical)
extractor, which first computes m by inverting D and then runs E∗, fails to produce a witness.

Our (first) goal is to show that
q
⊥ q

=⇒ SUC ∪ CL
y
is small, capturing that it is unlikely that after

q queries the compressed database contains collisions or admits a valid proof upon which the extractor
fails. Indeed, we show the following, where pStriv is the trivial cheating probability of Π as defined in (5).

Lemma 4.1.
q
⊥ q

=⇒ SUC ∪ CL
y
≤ 2eq3/22−n/2 + q

√
10 max

(
q` · 2−n, pStriv

)
.

The formal proof is given below; we first give some informal outline here. In a first step, by using
(3) and union-bound-like properties of the transition capacity, and additionally exploiting a bound
from [CFHL21] to control the transition capacity of CL, we reduce the problem to bounding the quan-
tum transition capacity

q
SZ≤s\SUC → SUC

y
for s < q. Informally, this capacity is a measure of the

“likelihood” —but then in a quantum-sense—that a database D ∈ D that is bounded in size and not in
SUC turns into a database D′ that is in SUC, when D is updated to D′ = D[x 7→U ] with U uniformly
random in Y.

We emphasize that in the considered quantum setting, the state of the compressed oracle at any point
is a superposition of databases, and a query is made up of a superposition of inputs; nevertheless, due to
Theorem 2.4, the above classical intuition is actually very close to what needs to be shown to rigorously
bound the considered quantum transition capacity. Formally, as will become clear in the proof below, we
need to show that for any database D ∈ SZ≤s\SUC and for any x ∈ X with D(x) = ⊥, the probability
that D[x 7→U ] ∈ SUC is small. Below, this probability is bounded in the Case 2 and Case 3 parts of the
proof, where the two cases distinguish between x being a “commit query” or a “challenge query”.

Informally, for D with D(x) = ⊥, if x is a “commit query” then assigning a value to D(x) can only
make a difference, i.e., turn D 6∈ SUC into D[x 7→u] ∈ SUC, if u is a coordinate of some y ∈ Y` for which
D(inst,y) 6= ⊥ for some inst. Indeed, otherwise, D[x 7→u] does not contribute to a valid proof π that did
not exist before. Thus, given the bound s < q on the size of D, this happens with probability at most
q`/2n for a random u. Similarly, if x is a “challenge query”, i.e. of the form x = (inst,y), then assigning
a value u to D(x) can only make a difference if V (inst, c,mc) is satisfied for c = γ(u) and m = D−1(y),
while E∗(inst,m) is not a witness for inst. However, for a random u, this is bounded by pStriv.

But then, on top of the above, due to the quantum nature of the quantum transition capacity,11
Theorem 2.4 requires to also show the “reverse”, i.e., that for any D ∈ SUC and for any x ∈ X with
D(x) 6= ⊥, the probability that D[x 7→U ] ∈ SZ≤s\SUC is small; this is analyzed in Case 1 below.

Thus, by exploiting the framework of [CFHL21], the core of the reasoning is purely classical, very
closely mimicking how one would have to reason the classical setting with a classical RO. Due to the
rather complex definition of SUC, the formal argument in each case is still somewhat cumbersome.

11 At the core, this is related to the reversibility of quantum computing and the resulting ability to “uncompute”
a query.
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Proof. We first observe that, by (3) (which is Lemma 5.6 in [CFHL21]) and basic properties of the
quantum transition capacity as in (4),

q
⊥ q

=⇒ SUC ∪ CL
y
≤

q−1∑
s=0

q
SZ≤s\SUC\CL→ SUC ∪ CL ∪ ¬SZ≤s+1

y

≤
q−1∑
s=0

(q
SZ≤s\SUC\CL→¬SZ≤s+1

y
+

q
SZ≤s\SUC\CL→ CL

y

+
q

SZ≤s\SUC\CL→ SUC
y)

≤
q−1∑
s=0

(q
SZ≤s→¬SZ≤s+1

y
+

q
SZ≤s\CL→ CL

y
+

q
SZ≤s\SUC→ SUC

y)
. (7)

The first term,
q

SZ≤s→¬SZ≤s+1

y
, vanishes, while the second term was shown to be bounded as

q
SZ≤s\CL→ CL

y
≤ 2e

√
(s+ 1)/|Y| ≤ 2e

√
q/2n (8)

in Example 5.28 in [CFHL21]. Thus, it remains to control the third term, which we will do by means of
Theorem 2.4 with P := SZ≤s \ SUC and P′ := SUC.

To this end, we consider arbitrary but fixed D ∈ D and input x ∈ X . By Remark 2.5, we may assume
that D(x) = ⊥. Furthermore, for P|D|x to be non-empty, it must be that D ∈ SZ≤s, i.e., D is bounded
in size. We now distinguish between the following cases for the considered D and x.

Case 1: D ∈ SUC. In particular, ⊥ ∈ SUC|D|x = P′D|x . So, Theorem 2.4 instructs us to set L := PD|x ,
where we leave the dependency of L on D and x implicit to simplify notation. Given that D ∈ SUC, we
can consider inst and y as promised by the definition of SUC in (6), i.e., such that V (inst, c,mc) and(
inst, E∗(inst,m)

)
6∈ R for

c := γ ◦D(inst,y) and mi := D−1(yi) ,

where it is understood that m = (m1, . . . ,m`). Recall that D(x) = ⊥; thus, by definition of the mi’s, it
must be that x 6= mi for all i, and the fact that V (inst, c,mc) is satisfied for c as defined implies that
x 6= (inst,y). Furthermore,

u ∈ L ⇐⇒ D[x 7→u] ∈ P =⇒ D[x 7→u] 6∈ SUC =⇒ u ∈ {y1, . . . , y`} ,

where the last implication is easiest seen by contraposition: Assume that u 6∈ {y1, . . . , y`}. Then, also
recalling that x 6= mi, we have that mi = D−1(yi) = D[x 7→ u]−1(yi). But also c = γ ◦ D(inst,y) =
γ◦D[x 7→u](inst,y). Together, this implies that the defining property of SUC is also satisfied for D[x 7→u],
i.e., D[x 7→u] ∈ SUC, as was to be shown. Thus, we can bound

P [U ∈L] ≤ P [U ∈{y1, . . . , y`}] ≤
`

|Y|
. (9)

Case 2: D 6∈ SUC, and x is a “commit query”, i.e., x = m ∈ M. In particular, ⊥ 6∈ P′|D|x (by the
assumption that D(x) = ⊥) and so in light of Theorem 2.4 we may choose L := P′|D|x . We then have

u ∈ L ⇐⇒ D[x 7→u] ∈ P′ = SUC =⇒ ∃ inst,y, i : D(inst,y) 6= ⊥ ∧ u = yi . (10)

This final implication can be seen as follows. By definition of SUC, the assumption D[x 7→ u] ∈ SUC
implies the existence of inst and y = (y1, . . . , y`) with V (inst, c,mc) and

(
inst, E∗(inst,m)

)
6∈ R for

c := γ ◦D[x 7→u](inst,y) = γ ◦D(inst,y) and mi := D[x 7→u]−1(yi) ,

where the equality in the definition of c exploits that x is not a “challenge” query. With the goal to reach a
contradiction, assume that u 6= yi for all i. This assumption implies that D[x 7→u](x) = u 6= yi. But also
D(x) = ⊥ 6= yi, and hence for all ξ ∈ X and i ∈ {1, . . . , `}: D(ξ) = yi ⇔ D[x 7→u](ξ) = yi. Therefore,
mi = D[x 7→ u]−1(yi) = D−1(yi) for all i, and the above then implies that D ∈ SUC, a contradiction.
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Thus, there exists i for which u = yi; furthermore, D(inst,y) 6= ⊥ given that V (inst, u,mc) is satisfied
for c = γ ◦D(inst,y). This shows the claimed implication.

Thus, we can bound

P [U ∈L] ≤ P [∃ inst,y, i : D(inst,y) 6= ⊥ ∧ u = yi] ≤
s`

|Y|
≤ q`

|Y|
. (11)

Case 3: D 6∈ SUC, and x is a “challenge query”, i.e., x = (inst,y) ∈ I × Y`. Set m = (m1, . . . ,m`) for
mi := D−1(yi). Again, we have that ⊥ 6∈ SUC|D|x = P′D|x , and so by Theorem 2.4 we may set L := P′D|x .
Here, we can argue that

u ∈ L ⇐⇒D[x 7→u] ∈ P′ = SUC

=⇒ V (inst, u,mγ(u)) and
(
inst, E∗(inst,m)

)
6∈ R ,

where the final implication can be seen as follows. By definition of SUC, the assumption D[x 7→u] ∈ SUC
implies the existence of inst′ and y′ = (y′1, . . . , y

′
`) with V (inst′, u,m′c) and E∗(inst′,m′) 6= w for

c := γ ◦D[x 7→u](inst′,y′) and m′i := D[x 7→u]−1(y′i) = D−1(y′i) ,

where the very last equality exploits that x is not a “commit” query. With the goal to come to a
contradiction, assume that (inst′,y′) 6= (inst,y) = x. Then, c = γ ◦D[x 7→u](inst′,y′) = γ ◦D(inst′,y′),
and the above then implies that D ∈ SUC, a contradiction. Thus, (inst′,y′) = (inst,y) = x. In particular,
m′ = m and c = γ ◦D[x 7→u](inst′,y′) = γ ◦D[x 7→u](x) = γ(u). Hence, the claimed implication holds.

Thus, we can bound

P [U ∈L] ≤ P [V (inst, γ(U),mγ(U)) ∧ E∗(inst,m) 6= w]

≤ P [V (inst, γ(U),mγ(U)) ∧ S := {c |V (inst, c,mc)} 6∈ S]

≤ P [γ(U) ∈ S := {c |V (inst, c,mc)} 6∈ S]

≤ max
S 6∈S

P [γ(U) ∈ S]

≤ pStriv . (12)

By Theorem 2.4, we now get
q

SZ≤s\SUC\CL→ SUC
y
≤ max

x,D

√
10P

[
U ∈Lx,D

]
≤
√

10

√
max

(
`

|Y|
,
q`

|Y|
, pStriv

)
≤
√

10
√

max
(
q` · 2−n, pStriv

)
,

where we have used Equations (9), (11) and (12) in the second inequality. Combining with Equations
(8) and (7) yields the desired bound. ut

4.2 Online Extractability of the Fiat-Shamir Transformation

We are now ready to state and proof the claimed online-extractability result for the Fiat-Shamir trans-
formation of (ordinary) C&O protocols.

Theorem 4.2. Let Π be a S-sound∗ ordinary C&O protocol with challenge space Cλ and ` = `(λ) com-
mitments, and set κ = κ(λ) := maxc∈Cλ |c|. Then, FS[Π] is a proof of knowledge with online extractability
in the QROM (as in Definition 3.1), with εsim(λ, q, n) = 0 and

εex(λ, q, n) ≤ 2(κ+ 1) · 2−n +

(
2eq3/22−n/2 + q

√
10 max

(
q` · 2−n, pStriv

))2

≤ (22`+ 60)q32−n + 20q2pStriv .

The runtime of the extractor is dominated by running the compressed oracle, which has complexity O(q2)·
poly(n,B), and running E∗.
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We note that the above bound on εex is asymptotically tight, except for the factor `. Indeed, the binding
property of the hash-based commitment can be invalidated by means of a collision finding attack, which
succeeds with probability Ω(q3/2n). Furthermore the trivial soundness attack, which potentially applies
to a S-sound∗ C&O protocol Π, can be complemented with a Grover search, yielding an attack against
FS[Π] that succeeds with probability Ω(q2pStriv). The non-tightness by a factor of ` is very mild in most
cases. In particular, the number of commitments ` is polynomial in λ and thus in n. For the most common
case of a parallel repetition of a protocol with a constant number of commitments, using a hash function
with output length linear in λ (e.g. n = 3λ) results in ` = O(n) = O(λ).

Proof. We consider an arbitrary but fixed λ ∈ N. For simplicity, we assume that |c| is the same for all
c ∈ Cλ, and thus equal to κ = κ(λ). If it is not, we could always make the prover output a couple of
dummy outputs mi to match the upper bound on |c|. Let P∗ be a dishonest prover that, after making
q queries to a RO H, outputs (inst, π) = (inst,y,m◦) plus some (possibly quantum) auxiliary output Z.
In the experiment VE ◦ P∗E(λ), our extractor E works as follows while simulating all queries to H (by
P∗ and V) with the compressed oracle:

1. Run P∗(λ) to obtain (inst, π, Z) where π = (y,m◦) with m◦ = (m1, . . . ,mκ).
2. Run V(λ, inst, π) to obtain v. In detail: obtain h0 := H(inst,y) and hj := H(mj) for j ∈ {1, . . . , κ},

and set v := accept if and only if the pair consisting of x =
(
(inst,y),m1, . . . ,mκ

)
and h =

(h0, h1, . . . , hκ) satisfies the relation R̃, defined to hold if and only if

(h1, . . . , hκ) = yc ∧ V (inst, c,m◦) where c := γ(h0) .

3. Measure the internal state of the compressed oracle to obtain D.
4. Run E∗(inst,m) on input inst and m := D−1(y) to obtain w.

Note that in the views of both P∗ and V, the interaction with H and the interaction with E differ only
in that their oracle queries are answered by a compressed oracle instead of a real random-oracle in the
latter case. This simulation is perfect and therefore εsim(λ, q, n) = 0.

Considering P∗ as the algorithm A in Lemma 2.6, the additional classical oracle queries that V
performs in V ◦P∗ then match up with the algorithm Ã, with h0, . . . , hκ here playing the role of y1, . . . , y`
in Lemma 2.6. Thus,

Pr
[
h 6= D(x)

]
≤ 2(κ(λ) + 1) · 2−n .

Therefore, we can bound the figure of merit εex as

εex(λ, q, n) = Pr
[
v = accept ∧ (inst, w) /∈ R

]
= Pr

[
(x,h) ∈ R̃ ∧ (inst, w) /∈ R

]
≤ Pr

[(
x, D(x)

)
∈ R̃ ∧ (inst, w) /∈ R

]
+ 2(κ(λ) + 1) · 2−n

≤Pr[
(
x,D(x)

)
∈R̃∧(inst,w) /∈R|D 6∈SUC∪CL]+Pr[D∈SUC∪CL]+2(κ(λ)+1)·2−n.

Using the definition of R̃, understanding that c := γ ◦D(inst,y), we can write the first term as

Pr
[
D(m◦) = yc ∧ V (λ, inst, c,m◦) ∧ (inst, w) /∈ R |D 6∈ SUC ∪ CL

]
≤ Pr

[
V (λ, inst, c,mc) for m := D−1(y) ∧ (inst, w) /∈ R |D 6∈ SUC ∪ CL

]
≤ Pr

[
D ∈ SUC |D 6∈ SUC ∪ CL

]
= 0 ,

where the first equality exploits that D(m) = y iff m = D−1(y) for D 6∈ CL.
We may thus conclude that

εex(λ, q, n) ≤ (2κ(λ) + 1) · 2−n + Pr
[
D ∈ SUC ∪ CL

]
≤ (2κ(λ) + 1) · 2−n +

q
⊥ q

=⇒ SUC ∪ CL
y2
,

where the last inequality is by definition (1) of
q
⊥ q

=⇒ ·
y
. The claimed bound now follows from

Lemma 4.1. ut
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4.3 The Unruh-Transformation with a Compressing Hash Function

We conclude this section by showing an improvement to the Unruh transformation [Unr15], which follows
directly from our result above. At the core of the Unruh transformation is a generic technique to transform
any Σ-protocol into a C&O protocol. In [Unr15], this transformation is presented in combination with
parallel repetition and the Fiat-Shamir transformation as a means to construct (online-extractable) NIZK
proofs of knowledge in the QROM. The entire transformation was later dubbed the Unruh transformation.

In fact, the Unruh transformation was the first NIZK proof of knowledge in the QROM; the QROM
security of the Fiat-Shamir transformation was only established several years later [DFMS19, LZ19a].
Despite being significantly less efficient than the Fiat-Shamir transformation, the Unruh transformation
is still useful in certain cases because it puts weaker requirements on the underlying Σ-protocol.

Here, to allow for a modular analysis, we consider the first step of the Unruh transformation, i.e., the
transformation from a Σ-protocol into a C&O protocol, as an individual transformation, which we refer
to as the pre-Unruh transformation, formally defined below. We stress that we allow the RO H to be
compressing, i.e. |Y| < |X |, while the extraction technique of [Unr15] required H to be a length-preserving
RO. This obviously has a significant positive impact on the efficiency of the Unruh transformation.

Let Σ = (P◦,V◦) be a Σ-protocol. We write a◦ ← P◦ to denote the first message in Π◦ as produced
by P◦ (for a given instance inst). Furthermore, we write z(a◦, c) for P◦’s response then upon receiving
challenge c ∈ C.12

Definition 4.3 (Pre-Unruh transformation). Let Σ = (P◦,V◦) be a Σ-protocol as above. Then, the
pre-Unruh-transformation pU[Σ] = (P,V) of Π◦ is the C&O protocol with first message

a := (a◦, (yi)i∈C)

where a◦ ← P◦ and for each i ∈ C, yi := H(zi) for zi := z(a◦, i)), and with response z := zc upon
challenge c ∈ C. To verify, V runs V◦ on (a◦, c, z) and checks if H(z) = yc; if both are true, it accepts,
otherwise it rejects.

Clearly, pU[Σ] is only efficient if Σ has at most polynomially many possible challenges (which can always
be obtained by restricting the challenge space). As mentioned, the resulting C&O protocol can then
be repeated in parallel and made non-interactive using the Fiat-Shamir transformation. We will now
provide a fairly straightforward corollary to conclude the security of the more efficient variant of the
(full) Unruh transformation that allows for a compressing RO, given by the composition of the pre-
Unruh transformation introduced above, parallel repetition and the Fiat-Shamir transformation. In the
following, denote the r-fold parallel repetition of a (C&O) Σ-protocol Π by Πr and use the notation
Unrr[Σ] := FS [pU[Σ]r] for the Unruh transformation with r-fold parallel repetition.

Remark 4.4. A proof in Π = Unrr[Σ] can be generated in time TΠP = rTΣP + (`0r + 1)TH , and verified
in time TΠV = rTΣV + (1 + r)TH , where TΣP , T

Σ
V and TH are the prover and verifier runtime of Σ, and the

time required for computing one hash, respectively.

It is straightforward to verify that the pre-Unruh transformation does not harm most security properties
of the Σ-protocol. In particular, it tightly preserves soundness and honest-verifier zero-knowledge (in the
QROM). It also preserves S-soundness in a certain sense.

Proposition 4.5. Let Σ be an S-sound Σ-protocol with challenge space size ` = `(λ) with extractor
runtime T . Then Π := pU[Σ] is S-sound as a C&O protocol with extractor runtime T ′ ≤ T + O(`).
Furthermore, suppose that membership in S is checkable in time TS. Then Π is S-sound∗ with extractor
runtime T ′′ ≤ T ′ + `2TS + `TV , where TV is the runtime of Π’s verification predicate V.

Proof. Let EΣ be the extractor for Σ guaranteed to exist by Definition A.1. Note that for Π = pU[Σ]
regarded as a C&O protocol, for each challenge exactly one of the commitments has to be opened. For
such protocols, we use c and {c} interchangeably (where c is a challenge in Π). We define an extractor
EΠ as follows. On input (inst,m1, ...,m`, a◦, S), run w = EΣ(inst, a◦, S, {mc}c∈S), then output w. The
only runtime overhead of EΠ results from having to parse its input and preparing the input for EΣ .
12 We note that z(a◦, c) may be a randomized function of a◦ and c. Furthermore, z(a◦, c) is typically computed

by P◦ by means of the randomness used to produce a◦.
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We continue to define an S-soundness∗ extractor E∗Π for Π as follows. On input (inst,m1, ...,m`, a◦),
compute bc = V(inst, a◦, c,mc) for all c ∈ C, and set Ŝ = {c ∈ C | bc = 1}. Using at most `(` + 1)/2
membership tests for S, find S ⊆ Ŝ such that S ∈ Smin. Finally, run w = EΠ(inst,m1, ...,m`, a◦, S) and
output w. The runtime statement is straightforward. ut

Using Proposition 4.5 above and Lemma 5.3 from [DFMS21] to argue S∨r-soundness∗ of the parallel
repetition of pU[Π], and using Theorem 4.2 to argue online extractability of its Fiat-Shamir transfor-
mation, we obtain the online-extractability of the Unruh transformation with computationally binding
commitments, i.e., when using a compressing hash function for the commitments.

Corollary 4.6. Let Σ be an S-sound Σ-protocol with challenge space size `0. Then Π := Unrr[Σ] =
FS[pU[Σ]r] is a proof of knowledge with online extractability in the QROM (as in Definition 3.1) with
εsim = 0 and

εex(λ, q, n) ≤ (22r`0 + 60)q32−n + 20q2
(
pStriv

)r
. (13)

The online extractor for Π runs in time TΠE ≤ rT
pU[Σ]
E +O(q2) · poly(n,B), where T pU[Σ]

E is the runtime
of pU[Σ]’s S-soundness∗ extractor as given in Proposition 4.5.

5 Online Extractability of the FS-Transformation:
The Case of Merkle-tree-based C&O Protocols

For an ordinary C&O protocol with reasonable concrete security (e.g., 128 bits), the number of commit-
ments ` might be considerable. In this case, the communication complexity of the protocol (and thus
the size of the non-interactive proof system, or digital-signature scheme, obtained via the Fiat-Shamir
transformation) can be reduced by using a Merkle tree to collectively commit to the ` strings mi. Such
a construction is mentioned in [Fis05], and it is used in the construction of the digital-signature schemes
Picnic2 and Picnic3 [KKW18, KZ20, CDG+19a]. The Merkle-tree-based C&O mechanism shrinks the
commitment information from ` · n to n, at the expense of increasing the cost of opening |c| values mi

by an additive term of about / |c| · n · log `.
The cost of opening can, in fact, be slightly reduced again, by streamlining the opening information.

When opening several leaves of a Merkle tree, the authentication paths overlap, so opening requires a
number of hash values less than h per leaf, where h is the height of the tree. This overlap was observed
and exploited in the octopus authentication algorithm which constitutes one of the optimizations of
the stateless hash-based signature scheme gravity-SPHINCS [AE18], as well as in Picnic2 and Picnic3
[KZ20]. In the following section, we formalize tree-based collective commitment schemes with “octopus”
opening.

5.1 Merkle-tree-based C&O Protocols

In line with Remark 3.3, we can consider C&O protocols with a different choice of commitment scheme,
compared to the default choice of committing by element-wise hashing. Here, we discuss a particular
choice of an alternative commitment scheme, which gives rise to more efficient C&O protocols in certain
cases when ` is large. Informally, we consider C&O protocols where m1, . . . ,m` is committed to by using
a Merkle tree, and individual mi’s are opened by announcing the corresponding authentication paths.

To make this more formal, we introduce the following notation. For simplicity, we assume that ` is a
power of 2, and thus ` = 2h for h ∈ N. We then consider the full binary tree Tree = {0, 1}≤h of depth
h, where the vertices are identified by bit strings. The root is denoted by ∅; the i-th leave is denoted by
lf(i) ∈ {0, 1}h and is given by the binary representation of i ∈ [`]. The authentication path for the i-th
leaf is the subtree that consists of all the ancestors of lf(i) and their siblings:

Auth(i) := Anc(lf(i)) ∪ {sib(v) | ∅ 6= v ∈ Anc(lf(i))} ,

where Anc(v) := {u ∈ Tree | ∃w :u‖w= v} and sib(u‖b) := u‖(1 − b) for any b ∈ {0, 1}. Finally, for any
subset c ⊆ {1, . . . , `}, we let Auth(c) :=

⋃
i∈c Auth(i) be the union of the authentication paths of the

considered leaves, and we define the octopus Octo(c) to be the restriction of Auth(c) to its leaves, but
excluding the leaves lf(i) for i ∈ c, i.e.,

Octo(c) := leaves(Auth(c)) \ {lf(i) | i ∈ c}
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where, for any subtree T of Tree, leaves(T ) := {v ∈ T | (v‖0), (v‖1) 6∈ T}.
Extending on the above notation, for a given hash function H : X → Y, where X = {0, 1}≤B and

Y = {0, 1}n for sufficiently large B, we define the Merkle tree of m = (m1, ...,m`) ∈ X ` to be the labeled
binary tree that has its leaves lf(1), . . . , lf(`) labeled by H(m1), ...,H(m`), respectively, and each internal
vertex is labeled by the hash of the labels of its two children. Formally,

MTreeH(m) :=
{(
v, lv(m)

) ∣∣ v ∈ Tree
}

with the labeling lv(m) recursively defined as

lv(m) := H
(
lv‖0(m)‖lv‖1(m)

)
for v ∈ {0, 1}<h

and
llf(i)(m) := H(mi) for i ∈ {1, . . . , `} ,

where we leave the dependency of the labeling on H, i.e., lv = lHv , implicit. We also write MRootH(m)
then for the root label l∅(m). In the same spirit, we write MAuthH(c,m) :=

{(
v, lv(m)

) ∣∣ v ∈ Auth(c)
}
for

the labeled authentication path and MOctoH(c,m) :=
{(
v, lv(m)

) ∣∣ v ∈ Octo(c)
}
for the labeled octopus,

using the same labeling function as for the Merkle tree.

y

H(m2) H(m3)H(m1) H(m4) H(m5) H(m6) H(m7) H(m8)

Fig. 3. The Merkle tree MTreeH(m) for m = (m1, . . . ,m8) with MRootH(m) = y. The yellow vertices mark the
octopus MOctoH({1},m), which is revealed (along with m1) when opening the commitment y to m1.

A Merkle-tree-based C&O protocol is now defined to be a variation of a C&O protocol, as hinted
at in Remark 3.3, where the first message of the protocol, i.e., the commitment of m = (m1, . . . ,m`),
is computed as y = MRootH(m), and the response z for challenge-set c then consists of the messages
mc = (mi)i∈c together with O = MOctoH(c,m). The verifier V then accepts if and only if mc and O
“hash down to” y and the predicate V (λ, inst, c,mc, a) is satisfied. More formally, the former means that
V computes MAuthH(c,m) from O∪{(lf(i), H(mi)) | i ∈ c} in the obvious way, and then checks whether
l∅(m) = y. This verification is denoted by OctoVerifyH(c, y,mc, O), see Fig. 4.

VP
a◦, y = MRootH(m)

c

mc, O = MOctoH(c,m)

OctoVerifyH(c, y,mc, O) ∧ V (inst, c,mc, a◦)

c← C ⊆ 2[`]

Fig. 4. A Merkle-tree based C&O Σ-protocol, formally introduced in Section 5.1.
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Looking ahead, we may also consider a variation where the verifier resamples the challenge c if the
resulting octopus is bigger than a given bound. Formally, this means that the challenge space of the
Merkle-tree-based C&O protocol is restricted to those challenges c ∈ [`] for which Octo(c) is not too
large.

5.2 Online Extractability of the Fiat-Shamir Transformation

The analysis in Section 4 can be generalized to the case of FS-transformed Merkle-tree-based C&O
protocols. To that end, we generalize the notation from that section as follows. Let Π be a Merkle-tree-
based C&O protocol with number of messages to be committed equal to ` = 2h where h is the height of
the commitment Merkle tree.13

For a given database D ∈ D, recall from Section 4 the definition of D−1; applied to a tuple y =
(y1, . . . , y`) ∈ Y` of commitments, D−1 attempts to recover the corresponding committed messages
m1, . . . ,m`. Here, in a similar spirit but now considering the Merkle-tree commitment, MRoot−1D attempts
to recover the committed messages from the root label of the Merkle tree.

In more detail, for a commitment y ∈ Y = {0, 1}n we reverse engineer the Merkle tree in the obvious
way (see Fig. 5 for an example); namely, accepting a small clash in notation with the labeling function
lv(m) defined for a tuple m ∈M`, we set the root label l∅(y) := y, and recursively define(

lv‖0(y), lv‖1(y)
)

:= split ◦D−1
(
lv(y)

)
∈ Y × Y

for ∅ 6= v ∈ {0, 1}≤h, where split maps any 2n-bit string, parsed as y1‖y2 with y1, y2 ∈ {0, 1}n, to the pair
(y1, y2) of n-bit strings, while it maps anything else to (⊥,⊥). Then, accepting a small clash in notation
again, we set

MTreeD(y) := {lv(y) | v ∈ {0, 1}≤h} ,
and finally

MRoot−1D (y) :=
(
D−1

(
llf(1)(y)

)
, . . . , D−1

(
llf(`)(y)

))
.

Following the strategy we used in Section 4, we define the database property

SUC :=

{
D

∣∣∣∣ ∃ y ∈ Y and inst ∈ I so that m := MRoot−1D (y) satisfies
V (inst, c,mc) for c := γ ◦D(inst, y) and

(
inst, E∗(inst,m)

)
6∈ R

}
,

and our first goal is to show that
q
⊥ q

=⇒ SUC ∪ CL
y
is small.

Lemma 5.1. Let Π be an S-sound C&O protocol with pStriv as defined in (5). Then

q
⊥ q

=⇒ SUC ∪ CL
y
≤ 2eq3/22−n/2 + q

√
10 max

(
q` · 2−n+1, pStriv

)
.

The proof works exactly as the proof of Lemma 4.1, accounting for some syntactic differences due to
the Merkle tree commitment. In particular, where in Case 1 and 2 of the proof of Lemma 4.1 we have to
exclude U from falling on one of the hash values y1, . . . , y` in order to keep the m that was constructed
from the database intact, we now have a similar restriction for U , but with respect to the whole tree
MTreeD(y).

Proof. As in the proof of of Lemma 4.1, we can bound

q
⊥ q

=⇒ SUC ∪ CL
y
≤

q−1∑
s=0

(q
SZ≤s\CL→ CL

y
+

q
SZ≤s\SUC→ SUC

y)
(14)

and use that q
SZ≤s\CL→ CL

y
≤ 2e

√
(s+ 1)/2n ≤ 2e

√
q/2n . (15)

Thus, it remains to control the second term, which we will do again by means of Theorem 2.4 with
P := SZ≤s\ SUC and P′ := SUC.

To this end, we consider arbitrary but fixed D ∈ D and input x ∈ X . By Remark 2.5, we may assume
that D(x) = ⊥. Furthermore, for P|D|x to be non-empty, it must be that D ∈ SZ≤s, i.e., D is bounded
in size. We now distinguish between the following cases for the considered D and x.
13 As in the previous section we assume that ` is a power of 2 for ease of exposition.
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Case 1: D ∈ SUC. In particular, ⊥ ∈ SUC|D|x = P′D|x . So, Theorem 2.4 instructs us to set L := PD|x ,
where we leave the dependency of L on D and x implicit. Given that D ∈ SUC, we can consider inst and
y as promised by the definition of SUC above, i.e., such that V (inst, c,mc) and (inst, E∗(inst,m)) /∈ R for

c := γ ◦D(inst, y) and m := MRoot−1D (y) . (16)

Note that, since D(x) = ⊥ and V (inst, c,mc) holds, which in particular means that c must be defined,
it must be that x 6= (inst, y). Therefore

γ ◦D(inst, y) = γ ◦D[x 7→ u](inst, y) . (17)

Our goal now is to show the final implication in

u ∈ L ⇐⇒ D[x 7→u] ∈ P =⇒ D[x 7→u] 6∈ SUC =⇒ u ∈ MTreeD(y) .

We will do this by showing that u /∈ MTreeD(y) implies

MRoot−1D (y) = MRoot−1D[x 7→u](y) . (18)

Indeed, the contraposition u /∈ MTreeD(y) ⇒ D[x 7→ u] ∈ SUC of the claimed implication then follows
from the fact that (17) and (18) together imply that c and m remain unchanged when replacing D by
D[x 7→u] in (16), and so D[x 7→u] ∈ SUC as well.

Towards showing (18), exploiting again that D(x) = ⊥, it follows by definition of the reverse engi-
neered labeling function lv(y) that x 6= (lv||0(y), lv||1(y)) for any v with lv||0(y) 6= ⊥ 6= lv||1(y), i.e., x
is not equal to any pair of siblings in MTreeD(y) with non-⊥ labeling (see Figure 5). Due to a similar
reasoning, x 6= mi for any i. It now follows by definition of the reverse engineered Merkle tree and of
MRoot−1 that if u /∈ MTreeD(y) then MTreeD(y) = MTreeD[x 7→u](y) and MRoot−1D (y) = MRoot−1D[x 7→u](y),
as claimed.

⊥ ⊥

y

D(m5) D(m6) ⊥ ⊥

Fig. 5. Example of a reverse engineered Merkle tree MTreeD(y), with the ⊥-children of the ⊥-labels omitted.
Since D(x) = ⊥, x 6= (lu(y), lw(y)) for any two siblings (u,w) in MTreeD(y), i.e., nodes with the same color.
Assuming that u 6∈ MTreeD(y) then implies that reprogramming D to D[x 7→ u] does not affect the reverse
engineered Merkle tree.

Thus, we can bound

P [U ∈L] ≤ P [U ∈MTreeD(y)] ≤ 2 · 2h − 1

|Y|
=

2`− 1

|Y|
. (19)

Case 2: D 6∈ SUC, and x is a “commit query”, i.e., x = m ∈ M or x = (lv‖0, lv‖1) for two labels
lv‖0, lv‖1 ∈ Y. In particular, ⊥ 6∈ P′|D|x (given that D(x) = ⊥) and so in the light of Theorem 2.4 we
may choose L := P′|D|x . We then have

u ∈ L ⇐⇒ D[x 7→u] ∈ P′ = SUC =⇒ ∃ inst, y : D(inst, y) 6= ⊥ ∧ u ∈ MTreeD(y)
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where final implication can be seen as follows. By definition of SUC, the assumption D[x 7→ u] ∈ SUC
implies the existence of inst and y with V (inst, c,mc) and

(
inst, E∗(inst,m)

)
6∈ R for

c := γ ◦D[x 7→u](inst, y) = γ ◦D(inst, y) and m := MRoot−1D[x 7→u](y) ,

where the equality in the definition of c exploits that x is not a “challenge” query. The fact that
V (inst, c,mc) is satisfied for this c thus implies that D(inst, y) 6= ⊥. Next, with the goal to reach a
contradiction, assume that u /∈ MTreeD(y). Then for all ⊥ 6= h ∈ MTreeD(y) we have that D−1(h) =
D[x 7→ u]−1(h) except if D(x) = h, but this cannot be since D(x) = ⊥. It follows that MTreeD(y) =
MTreeD[x 7→u](y) and MRoot−1D (y) = MRoot−1D[x 7→u](y). The above then implies that D ∈ SUC, a contra-
diction.

Thus, we can bound

P [U ∈L] ≤ P [∃ inst, y : D(inst, y) 6= ⊥ ∧ U ∈ MTreeD(y)] ≤ s(2`− 1)

|Y|
≤ q(2`− 1)

|Y|
. (20)

Case 3: D 6∈ SUC, and x is a “challenge query”, i.e., x = (inst, y) ∈ I ×Y. Set m := MRoot−1D (y). Again,
we have that ⊥ 6∈ SUC|D|x = P′D|x , and so by Theorem 2.4 we may set L := P′D|x . Here, we can argue
that

u ∈ L ⇐⇒D[x 7→u] ∈ P′ = SUC

=⇒ V (inst, γ(u),mγ(u)) and
(
inst, E∗(inst,m)

)
6∈ R ,

where the final implication can be seen as follows. By definition of SUC, the assumption D[x 7→u] ∈ SUC
implies the existence of inst′ and y′ with V (inst′, c,m′c) and

(
inst′, E∗(inst′,m′)

)
6∈ R for

c := γ ◦D[x 7→u](inst′, y′) and m′ := MRoot−1D[x 7→u](y
′) = MRoot−1D (y′) ,

where the very last equality exploits that x is not a “commit” query. With the goal to come to a
contradiction, assume that (inst′, y′) 6= (inst, y) = x. Then, c = γ ◦D[x 7→u](inst′, y′) = γ ◦D(inst′, y′),
and the above then implies that D ∈ SUC, a contradiction. Thus, (inst′, y′) = (inst, y) = x. In particular,
m′ = m and c = γ ◦D[x 7→u](inst′, y′) = γ ◦D[x 7→u](x) = γ(u). Hence, the claimed implication holds.

Thus, we can bound

P [U ∈L] ≤ P [V (inst, γ(U),mγ(U)) ∧
(
inst, E∗(inst,m)

)
6∈ R]

≤ P [V (inst, γ(U),mγ(U)) ∧ S := {c |V (inst, c,mc)} 6∈ S]

≤ P [γ(U) ∈ S := {c |V (inst, c,mc)} 6∈ S]

≤ max
S 6∈S

P [γ(U) ∈ S]

≤ pStriv . (21)

By Theorem 2.4, we now get

q
SZ≤s\SUC\CL→ SUC

y
≤ max

x,D

√
10P

[
U ∈Lx,D

]
≤
√

10

√
max

(
2`− 1

|Y|
,
q(2`− 1)

|Y|
, pStriv

)
≤
√

10
√

max
(
q` · 2−n+1, pStriv

)
,

where we have used Equations (19), (20) and (21) in the second inequality. Combining with Equations
(15) and (14) yields the desired bound. ut

Similarly to Theorem 4.2, we now obtain the following.
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Theorem 5.2. Let Π be an S-sound∗ Merkle-tree-based C&O protocol with challenge space Cλ. Then
FS[Π] is a proof of knowledge with online extractability in the QROM (as in Definition 3.1), with
εsim(λ, q, n) = 0 and

εex(λ, q, n) ≤ 2(κ log `+ 1) · 2−n+
(

2eq3/22−n/2+ q
√

10 max
(
q` · 2−n+1, pStriv

))2

≤ (22` log `+ 60) q32−n + 20q2pStriv

where κ = κ(λ) := maxc∈Cλ |c| and ` is the number of leaves of the Merkle-tree-based commitment.
The running time of the extractor is dominated by running the compressed oracle, which has complexity
O(q2) · poly(n,B), and by computing MRoot−1D (y) and running E∗.

Here again the proof follows exactly the outline of its counterpart from Section 4.2, with some minor
alterations to cope with the formalism of a Merkle-tree based C&O Σ-protocol. The difference in the
bound is simply due to the difference between Lemmas 4.1 and 5.1.

Proof. We consider an arbitrary but fixed λ ∈ N. Let P∗ be a dishonest prover that, after making q queries
to a random oracleH, outputs and instance inst and a proof π = (y,m◦, O) plus some (possibly quantum)
auxiliary output Z, where O is an authentication octopus as defined in Section 5.1. For simplicity, we
assume that |c| is the same for all c ∈ Cλ, and thus equal to κ. If it is not, we could always make the prover
output a couple of dummy outputs mi to match the upper bound on |c|. In the experiment VE ◦P∗E(λ),
our extractor E works as follows while simulating all queries to H (by P∗ and V) with the compressed
oracle:

1. Run P∗(λ) to obtain (inst, π, Z) with π = (y,m◦, O).
2. Compute v ← VH(inst, π), given by the truth value of

OctoVerifyH(c, y,m◦, O) ∧ V (inst, c,m◦) with c := γ(H(inst, y)) .

3. Measure the internal state of the compressed oracle to obtain D.
4. Run E∗ on input MRoot−1D (y) to obtain w.

Note that in the views of both P∗ and V, the interaction with H and the interaction with E differ
only in that their oracle queries are answered by a compressed oracle instead of a real RO in the latter
case. This simulation is perfect and therefore εsim(λ, q, n) = 0.

Considering P∗ as the algorithm A in Corollary 2.7, the composition V ◦ P∗ then matches up with
the algorithm Ã for F = V. Thus, noting that κ(log `+ 1) is an upper bound on the amount of queries
that OctoVerify makes,

Pr
[
v 6= VD(inst, π)

]
≤ 2(κ log `+ 1) · 2−n .

Therefore, we can bound bound the figure of merit εex as

εex(λ, q, n) = Pr
[
v = 1 ∧ (inst, w) /∈ R

]
≤ Pr

[
VD(inst, π) ∧ (inst, w) /∈ R

]
+ 2(κ log `+ 1) · 2−n

≤ Pr[VD(inst, π) ∧ (inst, w) /∈ R |D 6∈ SUC ∪ CL]

+ Pr[D ∈ SUC ∪ CL] + 2(κ log `+ 1) · 2−n .

Using the definition of VD(inst, π), understanding that c := γ ◦D(inst, y), we can write the first term as

Pr
[
OctoVerifyD(c, y,m◦, O) ∧ V (inst, c,m◦) ∧ (inst, w) /∈ R |D 6∈ SUC ∪ CL

]
≤ Pr

[
V (inst, c,mc) for m := MRoot−1D (y) ∧ (inst, w) /∈ R |D 6∈ SUC ∪ CL

]
≤ Pr

[
D ∈ SUC |D 6∈ SUC ∪ CL

]
= 0 ,

where the first equality exploits that D(m) = h iff m = D−1(h) for D 6∈ CL.
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We may thus conclude that

εex(λ, q, n) ≤ 2(κ log `+ 1) · 2−n · 2−n + Pr
[
D ∈ SUC ∪ CL

]
≤ 2(κ log `+ 1) · 2−n +

q
⊥ q

=⇒ SUC ∪ CL
y2
,

where the last inequality is by definition of
q
⊥ q

=⇒ ·
y
. The claimed bound now follows from Lemma 5.1.

ut

5.3 Discussion: Application to Picnic, and Limiting the Proof Size

Application to Picnic. A prominent use case of C&O protocols is the construction of digital signa-
ture schemes via the Fiat-Shamir transformation. An important example is Picnic [CDG+17] currently
under consideration as an alternate candidate in the NIST standardization process for post-quantum
cryptographic schemes [NIS]. On a high level, the design of Picnic can be described as follows. A C&O
Σ-protocol is constructed using the MPC-in-the-head paradigm [IKOS07]. Then, the Fiat-Shamir trans-
formation is applied in the usual way to obtain a digital signature scheme. There are three evolutions of
Picnic: Picnic-FS, Picnic 2 and Picnic 3.14 Picnic-FS uses plain hash-based commitments, while Picnic
2 and Picnic 3 use a Merkle-tree-based collective commitment.

All three evolutions enjoy provable post-quantum security when the hash function used for the Fiat-
Shamir transformation is modeled as a (quantum-accessible) RO. The best reduction applying to all
of them proceeds as follows. First, Unruh’s rewinding lemma [Unr12] is used to construct a knowledge
extractor for the underlying Σ-protocol based on an appropriate S-soundness notion. Then, the generic
QROM reduction for the Fiat-Shamir transformation from [DFMS19] is used to construct a knowledge
extractor for the signature scheme in the QROM from the extractor for the Σ-protocol. Finally, the
technique from [GHHM21] is used for simulating the chosen-message oracle to reduce breaking NMA
(no-message attack) security to breaking CMA (chosen-message attack) security. This final step connects
to the previous one because for the signature scheme the witness extracted from an NMA attacker is the
secret key.

The first two steps in this chain of reductions, i.e. Unruh’s rewinding and [DFMS19], are, however,
not tight: The former loses at least a fifth power in the Picnic case, and the latter a factor of q2, where q
is the number of RO queries. This means that an NMA attacker with success probability ε can be used
to break the underlying hard problem with probability Ω(ε5/q10) (or worse, depending on the Picnic
variant).

For Picnic-FS (only), when in addition modeling the hash function used for the commitments as a
RO, Unruh’s rewinding can be replaced with the tight online extraction technique from [DFMS21]. The
remaining loss due to the Fiat-Shamir reduction is of order ε/q2, up to some additive terms accounting
for search and collision finding in the RO, a sizable improvement over the above but still not tight.

By analyzing the Fiat-Shamir transformation of a C&O protocol (with or without Merkle tree com-
mitments) directly, our results provide a tight alternative to the above lossy reductions. Using Theorems
4.2 (for Picnic-FS) and 5.2 (for Picnic 2 and Picnic 3) we can avoid all multiplicative/power losses in
the reduction for NMA security. An NMA attacker with success probability ε can, in other words, be
used to break the underlying hard problem with probability ε, up to some unavoidable additive terms
accounting for search and collision finding in the RO.

An observation about octopus opening sizes. Depending on the parameters of the C&O protocol,
the octopus opening information, MOcto(c,m) can be significantly smaller than the concatenation of
the individual authentication paths. On the other hand, it is also variable in size (namely dependent
on the choice of the challenge c), and the variance can be significant (see e.g. the computations for
gravity SPHINCS in [AE18]). In the context of a digital signature scheme constructed via the Fiat-
Shamir transformation of a Merkle-tree-based C&O protocol, like, e.g., Picnic 2 and Picnic 3, this leads
to the undesirable property of a variable signature size, where signatures can be quite a bit larger in the
worst case than on average. This might, e.g., lead to problems when looking for a drop-in replacement
14 The original evolution also came with a variant using the Unruh transformation, Picnic-Ur. We restrict our

attention to the variants using the Fiat-Shamir transformation.
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for quantum-broken digital signature schemes for use in a larger protocol, where signatures need to be
stored in a data field of fixed size.

One option to mitigate this situation is to cut off the tail of the octopus size distribution, i.e. to restrict
the challenge space of the Merkle-tree-based C&O protocol to the set of challenges whose octopus is not
larger than some bound. This can be done before applying the Fiat-Shamir transformation, e.g. using
rejection sampling. In that way, one obtains a digital signature scheme with significantly reduced worst
case signature size, at the expense of a tiny security loss.

5.4 The Merkle-Tree-Based Unruh Transformation

The Merkle tree based commitment mechanism can replace plain RO based commitments in any ordinary
C&O protocol, in particular in Π := pU[Σ] for any Σ-protocol Σ. The result is a Merkle-tree-based C&O
protocol and we obtain a corollary analogous to Corollary 4.6.

Corollary 5.3. Let Σ be an S-sound Σ-protocol with challenge space size `0. Then FS[MPpUr[Σ]] is
online-extractable with

εex ≤ (22r`0 log (r`0) + 60) q32−n + 20q2
(
pStriv

)r
(22)

where MPpUr[Σ] is the Merkle-tree-based, Parallel-repeated, pre-Unruh transformation of Σ, i.e., the
Merkle-tree-based C&O protocol obtained by replacing the commitments of pU[Π]r with a Merkle-tree-
based collective commitment.
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APPENDIX

A S-Soundness for Plain Σ-Protocols

Similar to Definition 3.5, for plain Σ-protocols (i.e., Σ-protocols in the standard model) the standard
notion of special-soundness and k-soundness generalize as follows. Also here, S is a non-empty, monotone
increasing set of subsets S ⊆ C, and Smin := {S ∈ S |S◦ ( S ⇒ S◦ 6∈ S}, but now, a challenge c ∈ C is
not (necessarily) a subset of [`] anymore.

Definition A.1. A Σ-protocol Π is called S-sound if there exists an efficient deterministic algorithm
ES(inst, a, S, {zc}c∈S) that takes as input an instance inst, a first message a, a subset S ⊆ C of challenges,
and responses zc for c ∈ S, and it outputs a witness for inst if S ∈ Smin and V(inst, a, c, zc) for all c ∈ S.
15

The common notion of a special-sound Σ-protocol is then the special case of a S-sound Σ-protocol
with S := {S ⊆ C | |S| ≥ 2}, and similarly a k-sound Σ-protocol is a S-sound Σ-protocol with S :=
{S ⊆ C | |S| ≥ k}. Also here, using syntactically the same definition as in Equation (5),

pStriv :=
1

|C|
max
Ŝ 6∈S
|Ŝ|

then captures the “trivial” attack that may potentially (and typically does) apply to a S-sound Σ-
protocol, where the dishonest prover prepares a first message a so that he has valid responses z ready
for all the challenges c in some arbitrarily chosen set Ŝ 6∈ S.

15 We note the clash in terminology with Definition 3.4. However, Definition 3.4 applies exclusively to C&O
Σ-protocols in the (Q)ROM, whereas the definition here applies exclusively to Σ-protocol in the plain model;
so there should be no confusion. The two definitions are of course related: a S-sound C&O Σ-protocol becomes
a S-sound plain Σ-protocol when the commitments are instantiated with a perfectly binding commitment
scheme (rather than with a hash function).
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