A preliminary version of this paper appears in the proceedings of EUROCRYPT 2022. This is the
full version.

Efficient Schemes for
Committing Authenticated Encryption

MIHIR BELLAREi1 VIET TUNG HOANG[2

July 23, 2024

Abstract

This paper provides efficient authenticated-encryption (AE) schemes in which a ciphertext is
a commitment to the key. These are extended, at minimal additional cost, to schemes where the
ciphertext is a commitment to all encryption inputs, meaning key, nonce, associated data and
message. Our primary schemes are modifications of GCM (for basic, unique-nonce AE security)
and AES-GCM-SIV (for misuse-resistant AE security) and add both forms of commitment
without any increase in ciphertext size. We also give more generic, but somewhat more costly,
solutions.

! Department of Computer Science & Engineering, University of California San Diego, USA. Email:

mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/ mihir/. Supported in part by NSF grant CNS-1717640
and a gift from Microsoft.

2 Department of Computer Science, Florida State University, USA. Email: tvhoang@cs.fsu.edu. URL:
cs.fsu.edu/"tvhoang/. Supported in part by NSF grants CNS-2046540 (CAREER), CICI-1738912, and CRII-
1755539.

Contents

1 Introduction

2 Preliminaries

3 Committing AE Framework

4 Some Building Blocks

5 A Committing Variant of GCM

6 A Committing Variant of AES-GCM-SIV

7 Adding Key-Committing Security To Legacy AE
References

A Relations Among Committing Notions

B GHASH As a Weakly Regular Hash

C A Lower Bound on Multi-collision Resistance
D Proof of Lemma [4.1]

E Proof of Proposition 4.2

F Proof of Proposition 4.3

G Proof of Proposition

H An Attack on the ITP Construction

I Proof of Proposition

J Proof of Theorem [5.1]

K Proof of Theorem [5.1]

L Proof of Theorem [3.1]

M Proof of Theorem [3.2]

Proof of Proposition [6.1
Proof of Proposition [6.3
Proof of Proposition [6.4
Proof of Theorem [6.5

Proof of Theorem [6.6]

EEEHEEEEERBEREBEEEBB =

=

d B B B

I
23

S Proof of Theorem [7.2]

T Proof of Theorem [7.3]

1 Introduction

Symmetric encryption is the canonical primitive of cryptography, with which the field is often iden-
tified in the popular mind. Over time, the primitive has evolved. Failures of privacy-only schemes
lead to the understanding that the goal should be authenticated encryption [9,37]. The underlying
syntax, meanwhile, has gone from randomized or counter-based |7] to nonce-based [47, |46].

Recent attacks and applications |39} [29, 3, 26, 4] motivate another evolution. Namely, a cipher-
text should be a commitment to the key, and beyond that, possibly even to other or all the inputs
to the encryption process.

In this paper we contribute definitions and new schemes for such committing authenticated
encryption. Our schemes combine efficiency, security and practicality attributes that may make
them attractive for inclusion in cryptographic software libraries or for standardization.

BACKGROUND. In a nonce-based symmetric encryption scheme SE, encryption takes key K, nonce N,
associated data A and message M to deterministically return a ciphertext C' <— SE.Enc(K, N, A, M),
with decryption recovering via M < SE.Dec(K, N, A,C) [47, 46]. AE security asks for both pri-
vacy and authenticity of the message. In its most basic form, called UNAE (Unique-Nonce AE
security) this is under the assumption that nonces are unique, meaning never reused across encryp-
tions [47,46]. MRAE (Misuse-resistant AE security) is stronger, asking in addition for best-possible
security under any reuse of an encryption nonce [48|.

A central scheme is GCM [41]. It is a government standard [24] and is used in TLS [49).
Other standardized and widely-used schemes are XSalsa20/Poly1305 and ChaCha20/Poly1305 (16,
14}, 115]. All these are UNAE-secure. AES-GCM-SIV [50, |31] is a leading MRAE scheme poised for
standardization.

For both UNAE and MRAE, proofs are the norm, but the bar is now high: not only multi-
user (mu) security [12] —reflecting that deployment settings like TLS have millions of users— but
with bounds that are good, meaning almost the same as for the single-user setting. Dedicated
analyses show that GCM has such UNAE security [12, |40} 33|, and likewise for the MRAE security
of AES-GCM-SIV [19]. Henceforth when we refer to UNAE or MRAE, it means in the mu setting.

COMMITTING SECURITY. We formalize, in a systematic way, different notions of what it means for
a ciphertext C' < SE.Enc(K, N, A, M) to be a commitment. For the purposes of this Introduction,
we can confine attention to two notions, CMT-1 and CMT-4. The primary, CMT-1 notion asks
that the commitment be to the key K. In the game formalizing this, the adversary returns a
pair ((K1, N1, A1, My), (K2, Na, Aa, Ms)) satisfying Ky # Ks, and is successful if SE.Enc(K7, Ny,
A1, My) = SE.Enc(K3, No, Ay, Ms). Extending this, CMT-4 asks that the commitment be, not just
to the key, but to K, N, A, M, meaning to all the inputs to SE.Enc. The game changes only in
the requirement Ky # K3 being replaced by (K1, N1, A1, My) # (K2, No, A2, Ms). As a mnemonic,
think of the integer ¢ in the notation CMT-¢ as the number of inputs of SE.Enc to which we commit.

Clearly CMT-4 — CMT-1, meaning any scheme that is CMT-4-secure is also CMT-1-secure,
and the implication is strict. (There exist CMT-1-secure schemes that are not CMT-4-secure.)

In Section |3 we also consider CMT-3, simpler than, but equivalent to, CMT-4; we give alterna-
tive, decryption-based formulations of all these definitions but show the two equivalent for schemes
that, like all the ones we consider, satisfy the syntactic requirement of tidiness [43]; and finally we
extend the notions from 2-way committing security to s-way committing security for a parameter
s > 2 which will enter results.

Simple counterexamples show that neither UNAE nor MRAE security imply even CMT-1-
security. And the gap is real: attacks from [39, |4, 29] show that GCM, XSalsa20/Poly1305,
ChaCha20/Poly1305 and OCB [47] are all CMT-1-insecure.

PRIOR NOTIONS. The notion of key-committing (KC) security, asking that a ciphertext is a com-
mitment to the key, starts with Abdalla, Bellare and Neven (ABN) [3], who called it robustness
and studied it for PKE and IBE. Their definitions were strengthened by Farshim, Libert, Pater-
son and Quaglia [25]. Now calling it key-robustness, Farshi, Orlandi and Rgsie (FOR) [26] bring
it to randomized symmetric encryption. Albertini, Duong, Gueron, Koélbl, Luykx and Schmieg
(ADGKLS) [4] and Len, Grubbs and Ristenpart (LGR) [39] consider it for nonce-based symmetric
encryption, giving definitions slightly weaker than CMT-1.

Grubbs, Lu and Ristenpart (GLR) [29] consider committing to the header and message. CMT-4
is stronger in that it asks for the commitment to be not just to these but also to the key and nonce.
However, we do not consider or require what GLR [29] call compact commitment.

WHY COMMIT TO THE KEY? The canonical method for password-based encryption (PKCS#5 [36])
uses a symmetric encryption scheme SE, such as GCM, as a tool. In a surprising new attack,
LGR [39] show that absence of key-committing (KC) security in SE leads to a break of the overlying
password-based encryption scheme. This attack is circumvented if SE is CMT-1-secure.

Broadly, we have seen protocols failing due to absence of key-committing security in an underly-
ing encryption scheme and then fixed by its being added. ABN [3] illustrate this when the protocol
is PEKS [18]; they also note that when encryption strives to be anonymous, key-committing secu-
rity is necessary for unambiguous decryption. FOR, [26] illustrate the issue for an encryption-using
Oblivious Transfer protocol and note that encryption not being key-committing has lead to attacks
on Private Set Intersection protocols [38]. ADGKLS [4] describe in detail three real-world security
failures —the domains are key rotation, envelope encryption and subscribe-with-Google— arising
from lack of key-committing security.

WHY COMMIT TO EVERYTHING? CMT-4 is a simple, optimally-strong goal: we commit to every-
thing. This means all 4 of the inputs to the encryption algorithm: key, nonce, associated data and
message. Some motivation comes from applications; for example, GLR [29] show that committing
to header and message is needed for an AE scheme to provide message franking, a capability in
messaging systems that allows a receiver to report the receipt of abusive content. But the larger
benefit is to increase ease of use and decrease risk of error or misuse. An application designer is
spared the burden of trying to understand to exactly which encryption inputs the application needs
a commitment; with CMT-4, she is covered.

PATH TO SCHEMES. Our starting points are existing AE schemes. Given one such, call it SE,
we will modify it to a CMT-1 scheme SE-1 and then further into a CMT-4 scheme SE-4. These
modifications must of course retain AE security: for XX € {UN, MR}, if SE is XXAE-secure then
so are SE-1, SE-4. The ciphertext overhead (length of ciphertext in new scheme minus that in old)
is kept as small as possible, and is zero for our primary schemes. Computational overhead will
always be independent of the length of the message.

Proofs of AE security for our schemes are in the multi-user setting, with bounds as good as
those for the starting schemes. This requires significant analytical effort.

Modern encryption standards are purely blockcipher based, meaning do not use a cryptographic
hash function like SHA256; this allows them to most effectively exploit the AES-NI instructions
for speed, and also lowers their real-estate in hardware. We aim, as much as possible, to retain
this. For CMT-1, we succeed, reaching this without cryptographic hash functions. The extension to
CMT-4 however requires a function H that we would instantiate via a cryptographic hash function.

The step from CMT-1 to CMT-4 is done via a general, zero ciphertext-overhead transform,
called HtE, that we discuss next. Figure [I] summarizes the attributes of the different new schemes
that we give and will discuss below.

Scheme AE' Commi’Fting Ciphertext Starts

security security overhead from

CAU-C1 UNAE CMT-1 0 GCM

HtE[CAU-C1,] UNAE CMT-4 0 GCM
CAU-SIV-C1 MRAE CMT-1 0 AES-GCM-SIV
HtE[CAU-SIV-C1,:] || MRAE CMT-4 0 AES-GCM-SIV
UtCI[SE, ‘] UNAE CMT-1 1 block | any UNAE SE
HtE[UtC[SE, -],] UNAE CMT-4 1 block | any UNAE SE
RtC[SE, -,] MRAE CMT-1 1 block | any MRAE SE
HtE[RtC[SE, -,],:] || MRAE CMT-4 1 block | any MRAE SE

Figure 1: Summary of attributes of our schemes. Ciphertext overhead is length of ciphertext
in our scheme minus that in the scheme from which it starts. Computational overhead is always
independent of message length. A “” as an argument to a transform refers to some suitable
auxiliary primitive discussed in the text.

FroMm CMT-1 To CMT-4 via HtE. We give a generic way to turn a CMT-1 scheme into into a
CMT-4 one. (That is, once you can commit to the key, it is easy to commit to everything.)
The transform incurs no ciphertext overhead and preserves both UNAE and MRAE security. The
computational overhead involves processing only the nonce and associated data, and is independent
of message length.

We now give some detail. Given a symmetric encryption scheme SE-1, and a function H, our
HtE (Hash then Encrypt) transform defines the scheme SE-4 «<— HtE[SE-1, H] in which SE-4.Enc(K,
N,A, M) lets L + H(K,(N,A)) and returns SE-1.Enc(L, N,e, M). Here outputs of H have the
same length as keys of SE-1. There is no ciphertext overhead: ciphertexts in SE-4 have the same
length as in SE-1. The computational overhead, namely the computation of H, is independent of
message length. Theorem [3.1]shows that SE-4 is CMT-4 assuming SE-1 is CMT-1 and H is collision
resistant. Theorem [3.2| shows that if H is a PRF then (1) If SE-1 is UNAE then so is SE-4, and (2)
If SE-1 is MRAE then so is SE-4. All these results are with good bounds.

We stress that we avoid assuming H is a random oracle; we instead make the standard-model
assumption that it is a collision-resistant PRF. Section [3| discusses instantiations of H based on
HMAC (5], SHA256 or SHA3.

CAU scHEMES. GCM [41] is a UNAE scheme that, due to its standardization [24] and use in
TLS [49], is already widely implemented. Attacks [39, |4, 29] however show that it is not CMT-1-
secure. Making only a tiny modification to GCM, we obtain a new scheme, that we CAU-C1, that is
UNAE and CMT-1 secure. Theorem establishes CMT-1 security of CAU-C1, and Theorem
establishes UNAE security with good mu bounds.

CAU-C1 changes only how the last block GCM block is encrypted so that the tag is a Davies-
Meyer hash. (See Figure[d]) The locality and minimality of the change means that it should be easy
to modify existing GCM code to obtain CAU-C1 code, making CAU-C1 attractive for implementation.
With regard to performance, CAU-C1 incurs essentially no overhead; in particular, the ciphertext
size remains the same as in GCM.

We can obtain a UNAE and CMT-4-secure scheme, that we call CAU-C4, by applying our above-
discussed HtE transform to CAU-C1 and a suitable collision-resistant PRF H. Ciphertext overhead
continues to be zero: CAU-C4 ciphertexts have the same size as CAU-C1, and thus GCM, ones.

With the above, we have obtained CMT-1 and CMT-4 UNAE schemes that offer minimal

overhead, good quantitative security and ease of implementation. We now turn to MRAE, doing
the same. Here our starting point is AES-GCM-SIV [50, 31|, a leading MRAE scheme poised
for standardization. We give CAU-SIV-C1, a tiny modification of AES-GCM-SIV that is MRAE
and CMT-1-secure. Theorem establishes CMT-1 security of CAU-SIV-C1, and Theorem
establishes MRAE security with good mu bounds. Again, applying HtE to CAU-SIV-C1 yields a
MRAE and CMT-4 scheme CAU-SIV-C4 that continues to be a small modification of AES-GCM-SIV.
There is no growth in ciphertext size.

GENERIC TRANSFORMS. With the four schemes discussed above, we have obtained CMT-1 and
CMT-4 security for both UNAE and MRAE schemes, with zero ciphertext overhead and almost
zero computational overhead. These schemes however are intrusive, making small modifications to
GCM or AES-GCM-SIV. We now give ways to add committing security via generic transforms that
invoke the given scheme only in a blackbox way. The price we will pay is some ciphertext overhead.

We give a generic transform UtC that takes any UNAE scheme SE and returns a scheme SE
UtCISE, F] that is UNAE and CMT-1-secure. Here F is a committing PRF, a primitive we introduce
that generalizes the notion of a key-robust PRF from FOR [26]. We build a cheap committing PRF,
that we call CX, from (only) a blockcipher. Proposition proves its security with good bounds.
Theorem establishes CMT-1 security of SE, and also shows that SE inherits the mu UNAE
security of SE without degradation in the bound. Ciphertexts in SE are one block longer than
those in SE. Applying HtE to SE and a suitable collision-resistant PRF H, we obtain a UNAE
CMT-4 scheme, leaving ciphertext overhead at one block.

UtC however does not preserve MRAE security. We give a second generic transform, RtC, that
takes any MRAE scheme SE and returns a scheme SE < RtC[SE, F, H] that is MRAE and CMT-1-
secure. Here F as before is a committing PRF that we set to CX, and H is a collision-resistant
PRF that we instantiate via the Davies-Meyer method. Theorem establishes CMT-1 security
of SE, and also shows that SE inherits the mu MRAE security of SE without degradation in the
bound. Ciphertexts in SE are one block longer than those in SE. Again, applying HtE to SE yields
an MRAE CMT-4 scheme, leaving ciphertext overhead at one block.

EXTENSIONS AND REMARKS. For an integer parameter s > 2, we can extend CMT-1 to a notion
CMT;-1 of multi-input committing security. Here the adversary returns an s-tuple ((Ki, Ny, Aj,
M), ..., (K, Ng, Ag, My)) in which K7, ..., K, are all distinct, and is successful if SE.Enc(K7, Ny,
A1, My),...,SE.Enc(Ks, Ns, As, M) are all the same. CMT-4 is likewise extended to CMT,-4.

Clearly CMT-a implies CMT,-a (for all a € {1,4}). Our results however consider CMT;-a (not
just CMT-a) and prove bounds on its being violated that degrade quickly with s. This allows us
to give better guarantees for security against partitioning oracle attacks [39]. Namely, we can show
that, with use of one of our CMT-1 schemes, the probability that an attacker can speed up the
attack by a factor s decreases quickly as a function of s.

The instantiation of our constructions relies on collision-resistant hash functions of 128-bit
outputs, such as the Davies-Meyer method on AES. At the first glance, this seems vulnerable to
an offline attack of 264 operations: an adversary can perform a precomputation of 264 operations
to find collisions on the hash function, and then later attack en masse with constant cost per user.
While our CMT-1 notion is strong, allowing the adversary to pick both keys, in applications, one
key is randomly and honestly chosen and the adversary only gets to pick the other. This rules out
the offline attack above.

RELATED WORK. We start by noting a few “firsts.” (1) Prior nonce-based committing schemes
were only for UNAE. We are giving the first ones for MRAE. (2) We give the first schemes that
commit to all encryption inputs, meaning achieve CMT-4. (3) We give the first schemes (our four

CAU schemes) that have zero ciphertext overhead (4) We give analyses of multi-input committing
security with bounds that degrade quickly in the number s of inputs.

FOR [26] take a broad, systematic approach, giving general methods to build key-committing
primitives. Their key-committing encryption schemes however are randomized rather than nonce-
based. Also, they don’t show multi-user security with good bounds.

Many of the schemes of GLR [29] are randomized. Their leading nonce-based scheme, Commit-
ting Encrypt-and-PRF (CEP), has a block of ciphertext overhead, unlike our CAU schemes. CEP
also seems to fare somewhat more poorly than our schemes with regard to performance and extent
of software change. They don’t show good multi-user security.

The DGRW scheme [23] is randomized, not nonce-based. It uses a compression function that
is assumed collision resistant and RKA-PRF-secure [8]. Instantiating the latter via Davies-Meyers
yields a blockcipher-based scheme, but speed with AES-NI is reduced because the blockcipher
key changes with each message block. They incur ciphertext overhead, and don’t show good
multi-user security.

It should be noted that GLR [29] and DGRW [23] are targeting and achieving properties beyond
key-commiting security, as needed for message franking. In particular, their schemes, unlike ours,
produce a compact commitment to the message.

ADGKLS [4] consider nonce-based schemes and give a generic way to add key-committing
security to a UNAE scheme. Their transform uses a pair of collision-resistant PRFs. UtC generalizes
this, using instead our (new) committing PRF abstraction; instantiation with CX yields efficiency
improvements over ADGKLS. They also give a padding-based key-committing extension of GCM,
but, unlike our CAU-C1, it increases ciphertext size.

LGR [39] say “our results suggest that future work should design, standardize, and add to
libraries, AE schemes designed to be key-committing.” Our schemes are intended as a response.

2 Preliminaries

NOTATION AND TERMINOLOGY. Let € denote the empty string. For a string x we write |z| to refer
to its bit length, and z[i : j] is the bits ¢ through j (inclusive) of z, for 1 < ¢ < j < |z|. By
Func(Dom, Rng) we denote the set of all functions f: Dom — Rng and by Perm(Dom) the set of all
permutations 7w : Dom — Dom. We use L as a special symbol to denote rejection, and it is assumed
to be outside {0,1}*. In the context that we use a blockcipher E : {0,1}* x {0,1}" — {0,1}", the
block length of a string x, denoted as |z|,, is max{l, Hx|/n1 } If X is a finite set, we let x <—s X
denote picking an element of X uniformly at random and assigning it to x.

SYMMETRIC ENCRYPTION. A (nonce-based) symmetric encryption (SE) scheme SE specifies deter-
ministic algorithms SE.Enc : £ x A x {0,1}* x {0,1}* — {0,1}* and SE.Dec : £ x N x {0,1}* x
{0,1}* — {0,1}* U{L}. Here K, N are the associated key and nonce spaces. The encryption
algorithm takes as input a key K € K, a nonce N € N, associated data A € {0,1}* and a message
M € M, and returns a ciphertext C' <— SE.Enc(K, N, A, M). The decryption algorithm takes as
input K, N, A,C and returns either a message M € {0,1}* or the special symbol L indicating
invalidity or rejection. The correctness requirement says that decryption reverses encryption, nam-
ely if C' < SE.Enc(K, N, A, M) then SE.Dec(K, N, A,C) returns M. We assume that there is a
ciphertext-length function SE.len : N — N such that the length of SE.Enc(K, N, A, M) is exactly
SE.len(|M|) bits for all K, N, A, M.

We say that SE is tidy [43] if M < SE.Dec(K, N, A,C) implies that SE.Enc(K, N, A, M) re-
turns C'. Combining correctness and tidiness means that functions SE.Enc(K, N, A, -) and SE.Dec(K,
N, A,) are the inverse of each other. The schemes we consider will be tidy.

Game GL2I(A)

b <;$ANEVV,ENC,VF; return b’

New()
vev+ 1 Ky +sK
Enc(i, N, A, M)

Ifi ¢ {1,...,v} return L
C «+ SE.Enc(K;, N, A, M)

Game GLnd(A)

v %$ANEW,ENC,VF. return b’
NEW()

vev+1

Enc(i, N, A, M)

Ifig {1,...,v} return L

C s {07 1}SE.Ien(|M\)

Return C Return C

VF(i, N, A, C) VE(i, N, A, C)

Ifi ¢ {1,...,v} return L Ifig {1,...,v} return L
V « SE.Dec(K;, N, A,C); return (V # 1) return false

Figure 2: Games defining misuse-resistance security of a SE scheme SE.

AFE SECURITY. Let SE be a symmetric encryption scheme with key space K and nonce space N.
We now define its security as an authenticated encryption (AE) scheme in the multi-user setting,
following the formalization of [12]. The first, basic requirement, called unique-nonce AE (UNAE),
asks for security assuming encryption never repeats a nonce for any given user. The second,
advanced requirement, called misuse-resistant AE (MRAE) drops this condition. Consider games
GL2l(A) and GERI(A) in Fig. 2 We define the mrae advantage of an adversary A as
AdVEE(4) = Pr{GEE (A)] - PrIGE(A)]

To avoid trivial wins, we forbid the adversary from repeating a query to either its ENC or its VF
oracles. Moreover, if the adversary previously received C' < ENc(i, N, A, M) then later it is not
allowed to query VF(i, N, A,C). We can now recover UNAE security by restricting attention to
unique-nonce adversaries, these being ones that never repeat an (i, N) pair across their ENC queries.
(That is, a nonce is never reused for a given user.) We stress that there is no such restriction on
decryption queries. If A is a unique-nonce adversary, then we write its advantage as Advgg™®(A)
for clarity.

SYSTEMS AND TRANSCRIPTS. Following the notation from [32], it is convenient to consider inter-
actions of a distinguisher A with an abstract system S which answers A’s queries. The resulting
interaction then generates a transcript 6 = ((Xl,Yl), ol (Xq,Yq)) of query-answer pairs. It is
known that S is entirely described by the probabilities pg(f) that correspond to the system S
responding with answers as indicated by 6 when the queries in 6 are made.

We will generally describe systems informally, or more formally in terms of a set of oracles they
provide, and only use the fact that they define corresponding probabilities pg(#) without explicitly
giving these probabilities.

MULTI-COLLISION RESISTANCE. Let H : Dom — Rng be a function. Let s > 2 be an integer. An s-

way collision for H is a tuple (X7, ..., X;) of distinct points in Dom such that H(X;) = --- = H(Xj;).

For an adversary A, define its advantage in breaking the s-way multi-collision resistance of H as
Advﬁ_?g(A) = Pr[(Xy,...,Xs) is an s-way collision for H|

where the probability is over (X1,...,Xs) +s.A. When s = 2 we recover the classical notion of
collision resistance.

Game GP"(A) NEw () EVAL(i, M)

v 0; b+s{0,1} vev+1 Ifi¢g{1,...,v} return L

b s ANFWEVAL K, +s{0,1}* Cy + F(K;, M); Co <+ fi(M)
return (' = b) fv <3 Func(Dom, Rng) return Cj

Game G7P(A) NEW() EvAL(i, M)

v 0; b+s{0,1} veov+1 Ifig{1,...,v} return L

b ANEW.EvAL K, «+s{0,1}* Cy + E(K;,M); Cy«+ m(M)
return (b’ = b) Ty <—s Perm({0,1}") return Cj

Figure 3: Games defining PRF security of F and PRP security of E.

AXU HASHING. Let G : {0,1}" x {0,1}* x {0,1}* — {0,1}" be a keyed hash function. We say that
G is c-almost zor universal if for all (M, A) # (M', A") and all A € {0,1}",

) M’n+|A|nv|M,’n+|A,’n}
Pr [Gr(M. ApGr(M. A — Al < &l .
oy (KA OGO, 4) = 4] < on

PRFs AND PRPs. For a function F : {0,1}* x Dom — Rng and an adversary A, we define the
advantage of A in breaking the (multi-user) PRF security of F 6] as
AdvPT(A) = 2Pr[GPT(A)] -1,
where game G,Erf(.A) is shown in Fig. |3l For a blockcipher E : {0,1}* x {0,1}" — {0,1}" and an
adversary A, we define the advantage of A in breaking the multi-user PRP security of E as
AdvEP(A) =2Pr[GRP(A)] -1,

where game AdvpP(A) is defined in Fig. Mouha and Luykx [42] show that if we model F
as an ideal cipher then for any adversary making g evaluation queries and p ideal-cipher queries,
AdVEP(A) < (g2 + 2pq) /28 L.

3 Committing AE Framework

Let SE be a symmetric encryption scheme with key space K and nonce space N. We define
a hierarchy of levels of committing security CMTD-1 < CMTD-3 < CMTD-4, where the “D”
indicates these are decryption-based. For each ¢ € {1, 3,4} we also recast CMTD-/ as an encryption-
based notion CMT-¢ that is simpler but equivalent if SE is tidy. We give relations between the
notions, and then extend all this to s-way committing security for s > 2.

Think of ¢ here as indicating that we commit to the first £ inputs of the encryption algorithm.
Since popular schemes, and the ones in this paper in particular, are tidy, the CMT-¢ notions
become our focus moving forward. The Introduction had discussed only CMT-1 and CMT-4; here
we introduce the ¢ = 3 notions as simpler than, but equivalent to, the ¢ = 4 ones, something our
results will exploit.

This section concludes with a simple transform, called HtE, that promotes ¢ = 1 security to
¢ = 4 security with minimal overhead.

WHAT 1S COMMITTED? In asking that a ciphertext C' <— SE.Enc(K, N, A, M) be a committal, the
question is, to what? We consider this in a fine-grained way. We define a function WiC, (What
is Committed) that on input (K, N, A, M) returns the part of the input to which we want the

10

Game GZRtd=¢(4)

(C, (K1, N1, A1, My), (Ka, Na, Ay, My)) s A

Require: Wng(Kl,Nl,Al,Ml) # Wng(KQ,NQ,AQ,Mg)

Return ((M1 = SE.DEC(Kth,Al,C) and MQ = SE.DeC(K2,N2,A27C))

Game GZ2tf(A)

((K17N1;A17M1)7(K27N27A27M2)) <_$A

Require: Wng(Kl,Nl,Al,Ml) 7é WiC@(KQ,NQ,AQ,MQ)
Return (SE.Enc(Kl,Nl,Al,Ml) = SE.EI’]C(KQ,NQ,AQ,MQ))

¢ 1 3 4
WiC,(K,N,A, M) | K (K, N, A) (K,N, A, M)

CMTD-1 «— CMTD-3 «— CMTD-4

l l l

CMT-1 «—— CMT-3 «—> CMT4

Figure 4: Games defining committing security of a symmetric encryption scheme SE. Below them
are the associated what-is-committed functions WiC,, and then the relations between the notions.
The gray arrows hold for tidy SE.

ciphertext to be a commitment. It is defined as shown in the table in Figure Thus, when
¢ = 1, we are asking that we commit to the key; this corresponds to robustness [3], also called
key-robustness [26] or key-committing [4] security. When ¢ = 3, we commit to the key, nonce and
associated data. Finally ¢ = 4 means we commit, additionally, to the message, and thus to all the
inputs of SE.Enc.

THE D-NOTIONS. Let ¢ € {1,3,4} be an integer representing the level of committing security.
Consider game GEZP'4(A) in Fig. |4} and define the advantage of adversary A as Advigid*(A) =
Pr[Gg‘E‘td'é (A)]. In the game, the adversary provides a ciphertext C' together with a pair of tuples
(K1, N1, A1, M) and (Kg, No, Ao, Ms). (No entry of a tuple is allowed to be L.) The adversary
wins if both decryptions of C' equal the respective adversary-provided messages. The game requires
that the outputs of the WiC, function on the adversary-provided tuples be different, precluding
a trivial win. The only difference between the different levels indicated by £ is in the value of
WiCy(K,N, M, A) as given in the table. We denote the resulting notions by CMTD-/¢ for ¢ €
{1,3,4}.

Our CMTD-1 notion is stronger than the key-committing notion in prior work [4], since we
allow the adversary to specify different nonces N1 and Ns. In contrast, the key-committing notion
requires the two nonces to be the same.

On the other hand, achieving CMTD-4 security requires processing the associated data under
a collision-resistant hash function. To see why, note that in settings where messages are the empty
string, a ciphertext is a compact commitment of the associated data.

THE E-NOTIONS. Let ¢ € {1,3,4} be an integer representing the level of committing security.
Consider game GZE"!(A) in Fig. 4 and define the advantage of adversary A as AdvETi(A) =

11

Game G (A)

(C, (Kl, Nl,Al, Ml), ey (KS, Ns, As, MS)) s A

Require: WiCy(K1, N1, A1, M1),...,WiCy(Ks, Ns, A, M) are all distinct
Return (Vi : M; = SE.Dec(K;, N;, A;, C;))

Game Gg’éﬁts'e(.A)

((Kla N17 A17 M1)7 C) (K57 NS7AS7 Ms)) s A

Require: WiCy(K7, N1, A1, My), ..., WiCp(Ks, Ns, As, M) are all distinct
Return (SE.Enc(Kl,Nl,Al,Ml) == SE.Enc(KS,NS,As,MS))

CMTD;-1 «—— CMTD;-3 «— CMTD-4

l | l

CMT,-1 «—— CMT,-3 «—— CMT 4

Figure 5: Games defining s-way committing security of a symmetric encryption scheme SE for
s > 2. Below them are the relations between the notions. The gray arrows hold for tidy SE.

Pr[GgrEt'z(A)]. In the game, the adversary provides a pair of tuples (K1, N1, A1, My) and (K3, Na,
Ag, M3). (No entry of a tuple is allowed to be L.) The functions WiC, are unchanged. The game
returns true (the adversary wins) if the encryptions of the two tuples are the same. We denote the
resulting notions by CMT-/ for ¢ € {1, 3,4}.

RELATIONS. The bottom of Fig.] shows the relations between the notions of committing security.
An arrow A — B, read as A implies B, means that any scheme SE that is A-secure is also B-secure.
A gray arrow means the implication holds when SE is tidy. The relations in the picture are justified
in Appendix [A]

MULTI-INPUT COMMITTING SECURITY. The notions above considered an adversary successful if it
opened a ciphertext in two different ways (D) or provided two encryption inputs with the same
output (E). We now generalize from “two” to an integer parameter s > 2, the prior notions being the
special case s = 2. The games, in Figurep| are parameterized, as before, with symmetric encryption
scheme SE, but now also with s. Again there are “D” and “E” variants. The functions WiC, remain
as in Figure The advantages of an adversary A are defined as Advgrélf;"f(A) = Pr[GEEt(A)]
for x € {d,e} and £ € {1,3,4}. We denote the resulting notions by CMTX,-/ for X € {D,e} and
¢ € {1,3,4}. Their relations remain as before and for completeness are also illustrated in Figure

WHY GENERALIZE? It is easy to see that CMTX-¢ implies CMTX,-¢ for all s > 2 and X € {D, ¢},
meaning if a scheme SE is CMTX-{-secure then it is also CMTX,-¢ for all s > 2. So why consider
s > 27 The reason is that we can give schemes for which the bound on adversary advantage gets
better as s gets larger, indeed even decaying exponentially with s. Indeed, one can break CMT-1-
security of the scheme CAU-C1 in Section |5 in about 264 operations. However, for any adversary A
that spends at most 280 operations, the chance that it can break CMT3-1 security of CAU-C1 is at
most 2762 This allows us to offer a much stronger guarantee for situations like the Partitioning
Oracle attack [39]. Recall that here, breaking CMT;-1 security speeds up the time to find the
underlying password used for key derivation by a factor of s. Thus our results say that despite
investing 280 operations, A can at best speed up its password search by a factor of two.

12

SE.Enc(K, N, A, M) SE.Dec(K, N, A,C)

L+ H(K,(N,A)) L+ H(K,(N,A))
C + SE.Enc(L,N,e, M) M «+ SE.Dec(L, N,e,C)
Return C Return M

Figure 6: The scheme SE = HtE[SE, H] defined via the Hash-then-Encrypt transform applied to a
symmetric encryption scheme SE and a function H.

DiscussioN. Practical schemes tend to be tidy, and all the ones we consider are, so, moving forward,
we make tidiness an implicit assumption and focus on the E notions. Our primary focus is (s-way)
CMT-1 because this is already non-trivial, what was targeted in many previous works, and enough
for many applications. Below we give a generic way to promote CMT-1 security to CMT-4 security.

FroM CMT-1 To CMT-4. We give a way to turn CMT-1 security into CMT-4 security, for both
unique-nonce and misuse-resistance security. (That is, if you can commit to the key, it is easy to
commit to everything.) It takes the form of a transform we call HtE (Hash then Encrypt). The
ingredients are a base symmetric encryption scheme SE with key space {0,1}*, and a function
H :{0,1}* x {0,1}* — {0,1}*. The encryption and decryption algorithms of the scheme SE =
HtE[SE, H] are shown in Fig.[6] The key-space and nonce-space remain that of SE.

With regard to performance, HtE preserves ciphertext length, meaning we are promoting CMT-1
to CMT-4 without increase in ciphertext size. The computational overhead, which is the compu-
tation of H(K, (N, A)), is optimal, since achieving CMT-4 requires processing the associated data
with a collision-resistant hash function. In practice, associated data is often short (for example, IP
headers are at most 60B), and thus HtE typically incurs just a constant computational overhead
over the base scheme SE.

With regard to security, intuitively, if H is collision-resistant then the subkey L is a commitment
to the master key K, the nonce N and the associated data A. As a result, if the ciphertext is a
commitment to the subkey L then it is also a commitment to (K, N, A). Hence the CMT-1 security
of SE implies the CMT-3 security of SE, and thus, as per the relations in Figure |4} also its CMT-4
security. Furthermore we will show that HtE preserves both unique-nonce and misuse-resistance
security assuming H is a PRF.

We note that we do not assume H is a random oracle, instead making the standard-model
assumption that it is a collision-resistant PRF.We now give formal results confirming the intuition
above. The following shows that HtE indeed promotes CMT-1 security to CMT-4 security. The
proof is in Appendix

Theorem 3.1 Let SE be an SE scheme with key length k, and let H : {0, 1}F x {0,1}* — {0,1}*
be a hash function. Let SE = HtE[SE, H]. Fiz an integer s > 2 and let t = [\/s]. Then given an
adversary A, we can construct adversaries By and By such that

Advg'(A) < AdvP(Bo) + AdvEEy (By) .

FEach B; runs A and then runs H on s pairs (nonce, associated data) of A.

The next result shows that HtE preserves both unique-nonce and misuse-resistance security,
provided that H is a good PRF. The proof is in Appendix [M]

Theorem 3.2 Let SE be an SE scheme with key length k, and let H : {0,1}* x {0,1}* — {0, 1}*
be a hash function. Let SE = HtE[SE, H]. Then given an adversary A that makes at most q queries

13

of totally o bits for (nonce, AD) pairs and at most B queries per (user, nonce, AD) triples, we
can construct adversaries B and D such that

AdvEe(A) < AdvY(B) + AdvEE*(D) .
If A is unique-nonce then so is D, and we can rewrite the bound as
Advire(A) < AdvY (B) + AdvERe(D) .
Adversary B makes at most q queries on at most o, bits. Its running time is about that of A plus

the time to encrypt/decrypt A’s queries. Adversary D makes q queries of the total length as A, but
it makes only B queries per user. Its running time is about that of A plus O(cg4log(B)).

We now discuss the choice of H. If nonce length is fixed, one can instantiate H (K, (N, A)) via
HMAC-SHA256(K || N||A)[1 : k] or SHA3(K||N||A)[1 : k]. We stress that if one considers using
SHA256(K||N||A)[1 : k], one must beware of the extension attack, to avoid which one should only
use this if k = 128 [21].

4 Some Building Blocks

We give building blocks, technical results and information that we will use later. Some of the results
are interesting in their own right, and may have applications beyond the context of committing AE.

MuLti-USER PRP/PRF SWITCHING. Lemmabelow generalizes the classical PRP /PRF Switch-
ing Lemma [11] to the multi-user setting; see Appendix@] for a proof. If one uses a hybrid argument
on the standard single-user PRP/PRF Switching Lemma, one will obtain a weak bound uB2/2",
where u is the number of users. If there are O(g) users and some user makes O(q) queries then this
bound is in the order of ¢3/2", whereas our bound is just ¢2/2" in this case.

Alternatively, if one parameterizes on ¢ only, as in [40], one will end up with another weak
bound ¢%/2". In the setting where each user makes approximately B queries, this bound is even
weaker than the trivial bound uB?/2". Lemma instead uses a different parameterization to
obtain a sharp bound ¢B/2". The idea of using both B and ¢ as parameters in multi-user analysis
is first introduced in [19].

Lemma 4.1 (Multi-user PRP/PRF Switching Lemma) Let E : {0,1}* x {0,1}" — {0,1}"
be a blockcipher. For any adversary A, if it makes at most q evaluation queries in total, with at
most B queries per user, then

Bq

AdvPT(A) < AdvEP(A) + o

SIMPLIFYING UNAE/MRAE PROOFS. In UNAE/MRAE proofs, an adversary can adaptively in-
terleave encryption and verification queries. Proofs will be simpler if the adversary is orderly,
meaning that (i) its verification queries are made at the very end, and (ii) each verification query
does not depend on the answers of prior verification queries, but may still depend on the answers
of prior encryption queries. Proposition shows that one can consider only orderly adversaries
in UNAE/MRAE notions with just a small loss in the advantage; see Appendix [E| for a proof. The
idea of restricting to orderly adversaries has been used in prior works |19} [10]. They show that
one can factor an UNAE/MRAE adversary A into two adversaries By and B; attacking privacy
and authenticity respectively, where B; is orderly. Here we instead transform .4 to another orderly
UNAE/MRAE adversary B.

14

Figure 7: Hlustration of the cascade of the two hash functions Hy and H;.

Proposition 4.2 Let SE be a symmetric encryption scheme such that its ciphertext is at least
7-bit longer than the corresponding plaintext. For any adversary A that makes ¢, verification
queries, we can construct another orderly adversary B of about the same running time such that

AdvEE®(A) < AdvEE(B) + 22% .
Adversary B has the same query statistics as A. Moreover, if A is unique-nonce then so its B, and
thus in that case we can rewrite the bound as

AdVEE(A) < AdvEE(B) + 2
For both notions, if every ciphertext of SE is exactly 7-bit longer than its plaintext then the term
2, /27 can be improved to g, /27.

COMMITTING AE VIA COLLISION-RESISTANT HASH. Intuitively, from the definition of committing
AE, to achieve this goal, one needs to include the image of the key under some (multi)collision-
resistant hash function in the ciphertext. This connection has been recognized and explored in
prior works. For example, (i) the OPAQUE protocol [35] recommends the use of the Encrypt-then-
HMAC construction, (i) Albertini et al. [4] suggest using a hash-based key-derivation function to
add key-committing security into legacy AE schemes; and (iii) Dodis et al. [23] propose a hash-
based AE design for Facebook’s message franking. The definition was recalled in Section 2} We
now give some new fundamental results.

THE TRUNCATED DAVIES-MEYER CONSTRUCTION. A common way to build a collision-resistant
compression function from a blockcipher is the Davies-Meyer construction. Our paper makes ex-
tensive use of this construction to have a cheap commitment of the key for obtaining committing
security. It appears in both the AE schemes of Sections [5] and [6] While the collision resistance of
the Davies-Meyer construction is well-known [17], its multi-collision resistance has not been studied
before. Moreover, in our use of Davies-Meyer, we usually have to truncate the output, and even
ordinary collision resistance of truncated Davies-Meyer has not been investigated.

In particular, let E : {0,1}* x {0,1}" — {0,1}" be a blockcipher. Let m < n be an integer, and
define DM[E,m] : {0,1}* x {0,1}" — {0,1}™ via

DM[E,m|(X,Y) = (Ex(Y)8Y)[1:m)] .

We write DM[E] for the special case m = n (meaning there is no truncation). Proposition
below analyzes the multi-collision resistance of DM[E, m]; see Appendix [F| for a proof. The result
is in the ideal-cipher model, that is, the adversary is given oracle access to both E and its inverse,

15

and the number of ideal-cipher queries refers to the total queries to these two oracles.

Proposition 4.3 Let F : {0,1}* x {0,1}™ — {0,1}" be a blockcipher that we will model as an
ideal cipher. Let s > 2 and m < n be integers. For an adversary A that makes at most p < 2"~ 1 —s
ideal-cipher queries,

AdVCDOI\l/lI[E m] S(A) < 21—m + <p> ’ 2(1—m)(s—1) :
T s

For the case s = 2 and m = n, our bound is 2! =" +p(p—1) /2", which slightly improves the classical
bound p(p+1)/2" of Black, Rogaway, and Shrimpton [17]. For a general s, in Appendix we show
that for an ideal hash function on range {0,1}™, there is an attack on the s-way multi-collision

resistance of advantage
L (P gm(s)
4 \s ’

Thus the Truncated Davies-Meyer construction achieves essentially the best possible multi-collision
resistance that we can hope for the output length m.

THE ITERATIVE TRUNCATED-PERMUTATION CONSTRUCTION. Let F : {0,1}* x {0,1}"* — {0,1}"
be a blockcipher. Let r < n be a positive integer, and let m < 2n be a positive even integer. Let
pad : {0,1}" x {1,2} — {0,1}" be a one-to-one mapping. Define ITP[E,r,m] : {0,1}* x {0,1}" —
{0,1}?™ via

ITP[E,r,m|(K,X) = Ex(pad(X,1))[1 : m/2]||Ex(pad(X,2))[1:m/2] .

The ITP construction is used in the key-derivation function of AES-GCM-SIV, where r = 96 and
m =n = 128, and pad(X, i) is the concatenation of X and an (n —r)-bit encoding of i. For proving
the committing security of the variants of AES-GCM-SIV in Section [6] we need to show that in
using ITP to derive subkeys, one is also committing the master key and the nonce to one of the
subkeys. Proposition [£.4] below analyzes the multi-collision resistance of ITP; see Appendix [G] for
a proof. The analysis is difficult because ITP was not designed for collision resistance. This result
is in the ideal-cipher model, meaning that the adversary is given oracle access to both F and E~1,
and the number of ideal-cipher queries refers to the total queries to both oracles. Note that for
r < 3n/4 and m = n (which holds for the situation of AES-GCM-SIV), ITP has birthday-bound
security or better.

Proposition 4.4 Let m,r,n be positive integers such that r < n, and m < 2n is even. Let
E :{0,1}* x {0,1}™ — {0,1}" be a blockcipher that we will model as an ideal cipher. Let s > 2
be an integer. For an adversary A that makes at most p < 2”3 — s ideal-cipher queries,

B 4p° 2m/2+1 p
1l 1
Advf?P[E,r,m],s(A) <2774 5! . 9(m—2)(s—1) + g! . 9(m/24+n—r—-2)s

S

Compared to the lower bound (7;) - 27m(s=1) the ITP construction has some security degradation
due to the last term in the bound of Proposition .4 In Appendix [H] we give an attack that
matches this term, implying that the bound of Proposition [4.4] is tight.

MULTI-COLLISION RESISTANCE ON A CASCADE. Let ¢ > 2 be an integer. For each i € {0,...,c—1},
let H; : £L; Xx R; — Rng; be a hash function such that Rng; C R;;1. Define the cascade Hg o H

of Hy and H; as the hash function H such that H(X,Y,Z) = H; (Z, Hy(X, Y)); see Fig. [7| for an
illustration. The cascade Hgo---o H; of Hy,..., H; is defined recursively as (Hpo---o H;_1) o H;.

16

Cascading appears in AE schemes of Section [6] where one first commits the master key into a subkey,
and then includes a commitment of the subkey into the ciphertext. The following result shows how
to bound the multi-collision resistance of Hy o --- o H._1; see Appendix [I| for a proof.

Proposition 4.5 Let H be the cascade of hash functions Hy, Hy,...,H._1 as above. Let s > 2 be
an integer, and let ¢t = [/s]. Then for any adversary A, we can construct adversaries By, ..., Bq._1
such that

Advi(A) < Advi, (Bo) + -+ + Adv" | (Beo1) -

Each adversary B; runs A, and then runs the cascade of Hoy, ..., Hyjnfc—2,) on the s inputs of A.

5 A Committing Variant of GCM

In this section, we describe a close variant CAU-SIV-C1 of AES-GCM-SIV that achieves both CMT-1
and unique-nonce security with the same speed and bandwidth costs as GCM. In this entire
section, let E : {0,1}* x {0,1}"™ — {0,1}" be a blockcipher. Following Bellare and Tackmann [13],
we consider a generalization CAU of GCM. This scheme loosely follows the encrypt-then-MAC
paradigm, where the encryption scheme is the CTR mode, and the MAC is the Carter-Wegman
construction via an almost-xor-universal (AXU) hash function. (The name CAU is a mnemonic for
the use of the CTR mode and an AXU hash function.) In GCM, the function G is instantiated by
a 1.5-AXU hash GHASH.

TuHE SCHEME CAU. We now describe the scheme CAU. Let G : {0,1}" x{0,1}* x{0,1}* — {0,1}"
be an AXU hash function. Let A/ = {0,1}" be the nonce space, where r < n is an integer. In GCM,
n = 128 and r = 96. For a string N € N/, we write pad(N) to refer to N||0"~""1||1. Let 7 < n be
the tag length. The scheme CAU[E, G, 7] is specified in Fig. |8} it only accepts messages of at most
27" — 2 blocks. See also Fig. [9] for an illustration.

SPECIFICATION OF CAU-C1. The code of CAU-C1[E, G, 7] is shown in Fig. Like CAU, it only
accepts messages of at most 2" — 2 blocks. Compared to CAU, the change occurs in how we derive
the tag, as illustrated in Fig. [0l In particular, in CAU, one obtains the tag by using the Carter-
Wegman paradigm, applying a one-time pad Ex(pad(N)) to the output R of the AXU hash.
In contrast, in CAU-C1, we use a different Carter-Wegman flavor, enciphering V' < R®pad(V).
However, to ensure committing security, instead of using 7' < Ex(V)[1 : 7|, we employ the
Truncated Davies-Meyer method, outputting 7' <— DM[E, 7](K, V).

We note that if one instead computes T' <— DM[E, 7](K, R) then the resulting scheme will not
have unique-nonce security. In particular, once we obtain a valid ciphertext C' under nonce N and
associated data A, the pair (A, C) remains valid for any nonce N’; and thus breaking authenticity
is trivial. Xor’ing pad(N) to R ensures that the tag 7" depends on all of N, A, C.

Farshim, Orlandi, and Rosie [26] also point out that in Encrypt-and-MAC, if the encryption
scheme and the PRF can use the same key, and the PRF is committing, then the composition has
key-committing security. Their result is however for probabilistic AE, so it does not imply the
key-committing security of CAU-C1.

DiscussiON. Our CAU-C1 scheme has several merits. (1) The change to CAU is small, making it
easy to modify existing CAU code to get CAU-C1 code. (2) The speed of CAU-C1 is about the same as
CAU for moderate and large messages. Moreover, the absence of any ciphertext overhead over CAU
means there is no additional bandwidth cost. In contrast, prior proposed solutions |35, 4, 26, 23, |29]
have to sacrifice either speed or bandwidth. (3) As we will show later, for short tag length, CAU-C1
has much better UNAE security than CAU.

17

Enc(K,N, A, M)

//0 < |Mp,| <n and |M;| = n otherwise

Y < pad(N); My--- My, + M

// Encrypt with CTR mode and IVY +1

Fori+ 1tom—1do C; + M;®Ex(Y +1)

C Mm@EK(Y—i—m)[l : |Mm|], C+Cy---Cp
// Use Carter-Wegman on G

L+ Eg(0™); R+ Gr(A,C); T« Tag(K,Y,R)
Return C||T

Dec(K,N,A,C|T)

//0 < |Cy,| < nand |C;] = n otherwise

Y+ pad(N); Cy---Cp, + C

// Decrypt with CTR mode and IV Y + 1

Fori< 1tom—1do M; + C;®Ex(Y +1)

// Use Carter-Wegman on G

L+ EK(On); R+ GL(A, C), T Tag(K,Y,R)
If 7" # T then return L else return M

Tag(K,Y, R) //CAU | Tag(K,Y,R) // CAU-C1
S« Ex(Y)®R V<« Y®R, S+ Ex(V)oV
Return S[1 : 7] Return S[1 : 7]

Figure 8: The common blueprint for encryption (top) and decryption (middle) of CAU[E, G, 7| and
CAU-C1[E, G, 7]. The two schemes only differ on how they implement the internal procedure Tag,
as shown in the bottom panels.

It however does have some limitations. (1) Since it requires modifying CAU’s code, one may
not be able to use CAU-C1 in some legacy systems. (2) In the encryption algorithm of CAU-C1, the
blockcipher call for the tag must be computed strictly after all other blockcipher calls are completed.
In contrast, in CAU, all blockcipher calls can be done in parallel. This slowdown can be significant
for tiny messages.

CMT-1 securITY OF CAU-C1. The following Theorem [5.1|analyzes CMT-1 security of CAU-C1; the
proof is in Appendix[J| The result is in the standard model, although it relies on the multi-collision
of the truncated Davies-Meyer that is justified in the ideal-cipher model via Proposition 4.3

Theorem 5.1 Let CAU-C1[E, G, 7] be as above. Let s > 2 be an integer. Then for any adversary A,
we can construct an adversary B such that
- 1l
AdvERG ipp o5 (A) < Advig 4 (B) -

Adversary B runs A and makes s other calls on E.

DiscussiON. Note that an adversary can break the two-way CMT-1 security of CAU-C1[E, G, 7] by
using about 27/2 operations. If one aims for at least birthday-bound security and one’s application
requires two-way CMT-1 security, we must not truncate the tag, namely 7 must be 128. However, if
we only need to resist the Partitioning-Oracle attack and can tolerate a small speedup in adversarial
password search, we can use, say 7 = 96. From Proposition with 7 = 96, for any adversary B

18

By Ey Ey Tag
M4 A M, AN M, N
A C1 CZ C3 T
\ T /

Y CAU Y CAU-C1
R
EK EK
R N (E
\ MSB, / \ MSB, /
T T

Figure 9: A pictorial comparison of the encryption schemes of CAU and CAU-C1. The two scheme
have the same blueprint on the top panel. They however have different implementations for the
internal procedure Tag, illustrated in the bottom panels. Here the trapezoid MSB, outputs the
7-bit prefix of the input.

264

that spends at most operations, it can find a 5-way multi-collision on DM[E, 7] with probability

at most 279, and thus B can at best speed up its password searching by a factor of four.

UNIQUE-NONCE SECURITY OF CAU-C1. For the scheme CAU-C1[E, G, 7| to have unique-nonce se-
curity, in addition for the hash G to be AXU, we also need it to be weakly regular, a notion that
we define below.

Let G : {0,1}" x {0,1}* x {0,1}* — {0,1}"™ be a keyed hash function. We say that G is
weakly c-reqular if Gi(e,e) = 0" for every K € {0,1}", and for all Y € {0,1}" and (A, M) €

19

{0,1}* x {0,1}*\(e,¢),
K dppayn OK(AM) =Y] < = qM';f Aln)

Why does CAU-C1 need a weakly regular hash function? In CAU-C1, in each encryption, we encrypt
the i-th block of the message by running the blockcipher on pad(N)+i, and obtain the tag by calling
the blockcipher on V' < pad(IV)@ R, where R is the output of the hash G. The weak regularity of G
ensures that these inputs are different. In contrast, CAU obtains the tag by running the blockcipher
on pad(N), and thus does not need a weakly regular hash.

In Appendix [B] we show that the hash function GHASH of GCM is weakly 1.5-regular. The
following result confirms that CAU-C1 has good unique-nonce security. See Appendix [K]for a proof.

Theorem 5.2 Let CAU-CL[E, G, 1| be as above, building on top of a c-AXU, weakly c-regular hash
function G and a blockcipher E : {0,1}* x {0,1}* — {0,1}". Then for an adversary A that makes
at most q queries of o blocks and g, verification queries in total, with at most B blocks per user,
we can construct another B of at most o 4+ q queries such that
(4c+2)Bo + (2¢+ 2)Bgq N 2qy

2n 27
The running time of B is about that of A plus the time to use G on A’s messages and associated data.

unae rf
AdVERy cipan(A) < Advy (B) +

ON SHORT TAGS. When the tag length 7 is short, CAU-C1 has much better unique-nonce security
than CAU. In particular, Ferguson [27] gives a (single-user) attack of ¢, decryption queries, each
of ¢ blocks, to break the security of CAU with advantage ¢,¢/27. In contrast, CAU-C1 enjoys a
smaller term ¢, /27.

CAU-C4 FOR CMT-4-SECURITY. Applying the HtE transform of Section [3] with a suitable choice
of H, to CAU-C1, yields a CMT-4 and UNAE scheme that we call CAU-C4. There is no increase in
ciphertext size. The computational overhead, running H on the key, nonce and associated data, is
independent of the message length.

6 A Committing Variant of AES-GCM-SIV

In this section, we describe a close variant CAU-SIV-C1 of AES-GCM-SIV that achieves both CMT-1
and misuse-resistance security with the same speed and bandwidth costs as AES-GCM-SIV. In this
entire section, let n be an even integer, and let E : {0, 1}* x {0,1}" — {0,1}" be a blockcipher, with
k € {n,2n}. We will consider a generalization CAU-SIV of AES-GCM-SIV that we describe below.
The name CAU-SIV is a mnemonic for the use of (i) the classic SIV paradigm [48] in achieving
misuse-resistance security, (ii) (a variant of) the CTR mode and (iii) an AXU hash function. We
first recall the syntax and (multi-user) CPA security notion for IV-based encryption, which is needed
to analyze the CTR variant.

IV-BASED ENCRYPTION. An IV-based symmetric encryption scheme SE consists of two algorithms,
the randomized encryption algorithm SE.Enc and the deterministic decryption algorithm SE.Dec,
and is associated with a key space K and an initialization-vector (IV) length n.

The encryption algorithm SE.Enc : K x {0,1}* — {0,1}* takes as input a secret key K € K
and a message M. It then samples IV <—s {0, 1}", deterministically computes a ciphertext core C’
from (K, M,1V), and then outputs C' « IV||C’. If we want to enforce SE.Enc to use a specific
initialization vector IV, we will write SE.Enc(K, M;1V).

20

Game GId(A) NEW() Enc(i, M)

v 0; b+s{0,1} vev+1 Ifig{l,...,v} return L
b s ANEW,ENC K, «+sK C, +sSE.Enc(K;, M); Cj +s{0,1}¢]
return o’ return C

Figure 10: Game defining the multi-user chosen-plaintext security of an IV-based encryption
scheme SE.

The decryption algorithm SE.Dec : K x {0,1}* — {0,1}* U {L} takes as input a secret key
K € K and a ciphertext ', and returns either a message M or an error symbol L. For correctness,
we require that if C' <—s SE.Enc(K, M) then M < SE.Dec(K,C).

(MuLTI-USER) CPA SECURITY FOR IV-BASED ENCRYPTION. Let SE be an IV-based symmetric
encryption scheme with keyspace K. For an adversary A, define its advantage in breaking the
multi-user chosen-plaintext security of SE as

Advig (A) = 2Pr[GEE (A)] -1,
where game GI(A) is defined in Fig.

THE PRF GMACT. Like CAU, the scheme CAU-SIV is based on a c-AXU hash. As shown in [19),
the hash function POLYVAL of AES-GCM-SIV is 1.5-AXU. In CAU-SIV, the AXU hash function is
used to build a PRF that Bose, Hoang, and Tessaro [19] call GMACT. We begin with the description
of this PRF.

For strings X and Y such that |X| < |Y| = n, let X BY denote the string obtained by
setting the first bit of (0"~ 1X!|| X)®Y to 0. Let 7 < n be an integer, and let N' = {0,1}". Define
GMACH[E,G] : {0, 1} x N x {0,1}* x {0,1}* — {0,1}" via

GMACT[E, G|(Kin | Kout, N, A, M) = E(Kout, X) ,
where X «+ N B G(Kin, M, A). See Fig. 12| for an illustration of GMAC™.

THE KEY-DERIVATION FUNCTION KD1. In each encryption, CAU-SIV derives subkeys by applying
a key-derivation function (which we call KD1) on the given nonce. Specifically, KD1 is exactly
the ITP hash function in Section {4| with padding pad(V,i) = N||[i],—r, Where [i],—, denote an
(n — r)-bit encoding of an integer i. The code of KD1 is given in the second-top panel of Fig.
for completeness.

The core of the scheme KD1 is the Truncated-Permutation construction TP[E,m] : {0,1}* x
{0,1}" — {0,1}™ that TP[E,m|(K,z) = Ex(x)[1 : m], where m < n is a positive integer. Propo-
sition below gives a sharper bound on the PRF security of the Truncated-Permutation con-
struction than what can be obtained via the Multi-user PRP/PRF Switching Lemma. The proof,
which is in Appendix [N} is based on the Chi-Squared technique of Dai, Hoang, and Tessaro [22]. If
we ignore the PRP term then our bound is still meaningful even if ¢ > 2".

Proposition 6.1 Let £ : {0,1}* x {0,1}" — {0,1}" be a blockcipher. For any adversary A of q
queries in total and at most B < 2"~ ! queries per user, we can construct B of ¢ queries and about
the same running time such that

AdvRS 1 (A) < AdvRP(B) + min{2y/nBg - 2/*7", Bq/2"} .

In the single-user setting —mnamely when B = ¢— if we ignore the y/n factor and the PRP term then
our bound degenerates to min{B - 2"/2=" B2/2"}, which matches a classical result of Stam [51].

21

Enc(K, N, A, M)

Kin||[Kouwt <+ KD1[E, k + n|(K, N)
IV + Tag(Kin|| Kout, N, A, M)

C + CTR[E, add].Enc(Kout, M; V)

Dec(K, N, A,C)

Kin|| Kouwt < KD1[E, k 4+ n|(K, N)
M + CTR[E, add].Dec(Kou, C)
IV < Tag(Kin || Kout, N, A, M)

Return C If IV # C[1 : n] then return L
Return M

KD1[E, (K, N)
For i < 1 to 2¢/n do Y; + Ex(N||[i]n—r)[1 : n/2]
Return Y1 - - [|Yar/n

Tag(Kin|| Kouts N, A, M) // GMACT or GMAC2

X «+ NBG(K,, M, A); Y<—E(K°ut,X); Y+~ YpX
Return Y

CTR[E, add].Enc(K, M; V)
// 0 < |M,,| < m; other |M;| =n
My My, M
Fori=1tom—1do

C; + Ex(add(IV, i) @M,
Cr ¢ Ex (add(IV,m)) [1 : [M, || @M,
Return IV||Cy -+ - Cyp

CTR[E, add].Dec(K, C)
// 0 < |Cy,| < m; other |C;| =n
IV||Cy - Ch C
Fori=1tom—1do

M; + Eg (add(IV, 1)) ®C;
M, + Ex (add(IV,m)) [1 : |Cpn|] ®Crn
Return My --- M,

Figure 11: The schemes CAU-SIV and CAU-SIV-C1 whose encryption and decryption schemes are
given in the top-left and top-right panels, respectively. Procedure Tag implements GMACT (for
CAU-SIV) or GMAC2 (for CAU-SIV-C1); the latter contains the highlighted code, but the former
does not.

This single-user bound is recently shown to be asymptotically tight by Gilboa and Gueron [28§].

In the multi-user case, there is a matching attack, assuming that B > 2™/2. In particular, the
adversary A will attack u = ¢/B users, each of B queries. For each user 7, the adversary will run
the single-user attack in [28] to obtain a guess bit b;. Since this is a matching attack and B > om/2,
its advantage is ©(B) - 2"/2~™. From the definition of the PRF notion, if b is the challenge bit of

game G.’}r;[ﬂm] (A) then

Prlb = b] — % +O(B).2m/2n

Finally, A will output the majority of the bits by, ..., b, as its guess. As by,..., b, are independent
and identically distributed, by using Chernoff’s bound, one can show that the majority decision
will amplify the bias ©(B) - 2™/2~" by a factor of O(y/u) = ©(v/Bq). In other words,

AdvEL ;. (A) = O(/Bg) - ©(B) - 2> = ©(y/Bg) - 2> .

SECURITY OF KD1. From Proposition [6.1] it is straightforward that KD1 is also a good (multi-user)
PRF; the formal result is stated below for completeness.

Lemma 6.2 Let E : {0,1}* x {0,1}" — {0,1}™ be a blockcipher, and let £ be a multiple of n.
Define KD1[E, (] as above, and let t = ¢/n. Then for any adversary A of q queries in total and at
most B queries per user, we can construct an adversary B of about the same running time and 2qt
queries such that

Advie

kpis,q(A) < AdvP(B) + min{2t - V/nBq - 273" 4Bqt? /2"} .

22

A M A M
& ~ J . ~ J
GKin GKin
N] N (
Y
EKout EKout

X

NP

T T

Figure 12: The GMAC™ construction (left) and its variant GMAC2 (right).

CTR MODE. CAU-SIV is based on the following variant of the CTR mode. Let r < n be an integer.
(For AES-GCM-SIV, r = 96 and n = 128.) Let add be an operation on {0,1}" x {0,1,...,2" " —1}
such that
add(X,i) =1||X[2: r]|(X[r+1:n]+imod 2" ") .

The encryption and decryption schemes of CTR[E, add] are defined in the bottom panels of Fig.
They are essentially the same as the standard CTR mode, except that they use the add operation
instead of the modular addition in mod 2™.

The (multi-user) chosen-plaintext security of this CTR variant is already analyzed in the ideal-
cipher model by Bose, Hoang, and Tessaro [19]. The following result shows the standard-model
counterpart; the proof is in Appendix

Proposition 6.3 Let CTR be as above, and let E : {0,1}*¥ x {0,1}" — {0,1}" be the underlying
blockcipher. For an adversary A whose queries consist of totally ¢ blocks with at most B blocks
per user, we can construct an adversary B of about the same running time that makes at most o
queries such that

30B

Advicn'(l'iR[E,add] (A) < Advi”(B) + on

THE SCHEME CAU-SIV. The scheme CAU-SIV[E, G, add] is described in Fig. Informally, one
first uses KD1 on the given nonce to derive subkeys K;, € {0,1}" and Koy € {0,1}*. One then
follows the classic SIV paradigm [48] in building a misuse-resistant AE scheme: first use the PRF

23

GMAC™ on the triple (N, A, M) to derive an initialization vector IV, and then run CTR with that
particular IV to encrypt M. However, unlike the standard SIV with key separation, here both
GMAC™T and CTR use E on the same key K. There is, however, a domain separation in the use
of the blockcipher: GMAC™ will only run E on an input whose most significant bit is 0, whereas
CTR runs F on inputs of most significant bit 1.

THE CAU-SIV-C1 scHEME. We now show how to add CMT-1 security to CAU-SIV. Recall that
CAU-SIV internally uses a PRF GMACT that is based on an AXU, weakly regular hash function G.
The scheme CAU-SIV-C1 introduces an extra xor in GMACT, resulting in a new PRF construction
that we call GMAC2, and that is the only difference between the two AE schemes. In particular,

GMACT[E, G|(Kin || Kout, N, A, M) = E(Kout, X) ,
where X < N B G(Kj,, M,A). In contrast, GMAC2 employs the Davies-Meyer construction to
break the invertibility of F, namely,
GMAC2[E, G](Kin||Kout, N, A, M) = E(Kout, X)X .

See Fig. [12|for a side-by-side pictorial comparison of GMAC* and GMAC2. The code of CAU-SIV-C1
is given in Fig.

The difference of CAU-SIV-C1 and CAU-SIV is tiny, just a single xor. As a result, the speed and
bandwidth costs of CAU-SIV-C1 are about the same as CAU-SIV for all message sizes. While one

must intrusively modify CAU-SIV’s code to obtain CAU-SIV-C1, since CAU-SIV is new, we anticipate
that there will be very few legacy situations that one cannot adopt CAU-SIV-C1.

SECURITY OF GMAC2. The following result shows that GMAC2 is a good (multi-user) PRF; see
Appendix [P for a proof.

Proposition 6.4 Let GMAC2[E, G| be as above, building on top of a ¢-AXU hash function G and
a blockcipher E : {0,1}* x {0,1}™ — {0,1}". For an adversary A that makes at most ¢ queries in
total with at most B blocks per user, we can construct an adversary B of about the same running
time that makes at most ¢ queries such that
(2¢+1)¢B

AL '

Advhe

emaca(p,c)(A) < AdvisP(B) +

COMMITTING SECURITY OF CAU-SIV-C1. Theorem below confirms that the extra xor indeed
hardens CAU-SIV-C1, ensuring CMT-1 security. The proof is in Appendix [Q] Intuitively, the syn-
thetic IV of CAU-SIV-C1 is obtained by a two-step chain of hashing: (i) first use the Iterative
Truncated Permutation construction ITP[E, 7, n] to commit the master key K and the nonce N to
the n-bit prefix of the blockcipher subkey Kout, and then (ii) use the Davies-Meyer construction
DMIE] to commit Koyt. Thus from Proposition the CMT-1 security of CAU-SIV-CL1 is reduced
to the multi-collision resistance of ITP[E,r,n] and DM[E] that are justified in Propositions
and [4.4]

Theorem 6.5 Let SE = CAU-SIV-C1[E, G, add] be as described above, building on top of a block-
cipher E : {0,1}* x {0,1}™ — {0,1}*. Let r < n be the nonce length. Let s > 2 be an integer, and
lett = [\/E] Then for any adversary A, we can construct adversaries Dy and Dy such that

Advglllflfs_l (A) < Advlc'lqg[E,r,n],t(DO) + AdV(I:DOl%/II[E],t(Dl) :
Each of Dy and D1 runs A and then makes at most 6s other blockcipher calls.

24

Game GkF’fg‘d(A)

(K1, My,...,Ks, M) <s A /) (K1, My),...,(Ks, My) must be distinct
For i + 1 to s do (R,Lz) — F(KZ,ML)

Return (P, =--- = Ps)

Figure 13: Game defining the binding security of a committing PRF F.

MISUSE-RESISTANCE SECURITY OF CAU-SIV-C1. The following result shows that CAU-SIV-C1 also
has good misuse-resistance security; the proof is in Appendix [R]

Theorem 6.6 Let SE = CAU-SIV-C1[E, G, add] be as described above, building on top of a c-AXU
hash function G and a blockcipher E : {0,1}* x {0,1}" — {0,1}". Then for any adversary A that
makes at most q queries of totally o blocks with at most B blocks per (user, nonce) pair and D
queries per user, we can construct an adversary B of max{6q,o + q} queries such that
6vnDq ToB+ (2c+T)¢B

23n/4 on ’
The running time of B is at most that of A plus the time to encrypt/decrypt the latter’s queries.

AdvEE*(A) < 2. AdvP™P(B) +

CAU-SIV-C4 FOR CMT-4-sECURITY. Applying the HtE transform of Section [3| with a suitable
choice of H, to CAU-SIV-C1, yields a CMT-4 and MRAE scheme that we call CAU-SIV-C4. There
is no increase in ciphertext size. The computational overhead is independent of the message length.

7 Adding Key-Committing Security To Legacy AE

In this section, we describe two generic methods UNAE-then-Commit (UtC) and MRAE-then-
Commit (RtC) that transform an AE scheme SE into a CMT-1-secure one. The former preserves
unique-nonce security, whereas the latter preserves misuse-resistance security. As a stepping stone,
we define a new primitive that we call committing PRF, which we will describe below.

CoMMITTING PRFS. A committing PRF F is a deterministic algorithm, and associated with a
message space M and key space {0,1}*. It takes as input a key K € {0,1}* and a message
M € M, and then produces (P, L) € {0,1}* x {0,1}*. We refer to £ as the commitment length of F,
and A as the mask length of F.

We require that F be a good PRF, meaning that its outputs (P, L) are indistinguishable from
(P*,L*) <5 {0,1}* x {0,1}*. In addition, for an adversary A and an integer s > 2, we define the
advantage of A breaking the s-way binding security of F as

AdvEI(A) = PrGRI(A)] |
where game GEfgd(A) is defined in Fig. Informally, a committing PRF is a combination of
a PRF and a commitment scheme, where the string P is a commitment of the key K and the
message M.
For s = 2, our notion of committing PRF can be viewed as a PRF counterpart of the notion of

right collision-resistant PRG in [26]. We however will give practical instantiations via a blockcipher
whereas the construction in [26] is theoretical, using hardcore predicates.

AN EFFICIENT COMMITTING PRF. We now describe an efficient committing PRF Counter-then-
Xor (CX) that is built on top of a blockcipher E : {0,1}* x {0,1}" — {0,1}". Here the message

25

CX[E](K, M)

a< [£/n]; b+ [A\/n]

For i+ 1toa+bdo X; + pad(M,i); V; + Ex(X;)
Vi+ VieX,

P+ Vi Vo)1 :4); L+ (Vayr-Vagp)[l: Al
Return (P, L)

M |1 M |2 M |3 M |4
Ey Ey By Ey
s(H

P L

Figure 14: The committing PRF scheme CX[E,pad], illustrated for the case £ = A = 2n and
pad(M, 1) is the concatenation of M and an (n — m)-bit encoding of i.

space M = {0,1}™ and the key space is {0, 1}¥, with m < n. Let pad denote a one-to-one encoding
that turns a pair (M,q) € {0,1}™ x {1,...,2"7™} into an n-bit string. The commitment length
¢ > n and the mask length X satisfy [¢/n] + [A/n] < 2", The construction CX[E, pad] is shown
in Fig.

The following result shows that CX is a good committing PRF scheme. Part (a) is a straight-
forward application of the (multi-user) PRP/PRF Switching Lemma, with an observation that for
each query that Ay makes to CX, it translates to d = [£/n]+[\/n] PRP queries on the blockcipher.
For applications in this paper, d < 5. Part (b) is a direct corollary of Proposition since the
first block of P is obtained from the Davies-Meyer construction DM[E].

Proposition 7.1 Let CX[E, pad] be as above, and let s > 2 be an integer. Let d = [£/n] + [A\/n].
a) For any adversary Ay making ¢ queries in total with at most B queries per user, we can construct
an adversary B of about the same running time that makes at most dq queries such that
d? - Bq

n
b) For any adversary A;, we can construct another adversary B of about the same running time
and resources such that

rf T
AdVIéx[E,pad} (Ao) < AdviP(B) +

Advléi)r(lf%,pad},s("éll) < AdVBOnl/ll[E],s(B) :

TaE UNAE-THEN-COMMIT (UtC) TRANSFORM. Let SE be an AE scheme with key space {0, 1}*
and nonce space . Let F be a committing PRF scheme of message space N and mask length k. The
scheme UtC[F, SE] is shown in Fig. Informally, under UtC, a ciphertext contains a commitment P
of the master key K, ensuring CMT-1 security. The security of UtC[F, SE] is analyzed below; the
proof is in Appendix [S}

26

UtC[F, SE].Enc(K, N, 4, M) UtC[F, SE].Dec(K, N, A, P*|C)

(P,L)+ F(K,N) (P,L) < F(K,N)
C + SE.Enc(L,N, A, M) If P* # P then return L
Return P||C Else return SE.Dec(L, N, A, C)

Figure 15: The encryption (left) and decryption (right) schemes of the resulting AE scheme under
the UtC transform.

Theorem 7.2 Let SE and F be as above. Let s > 2 be an integer.
a) For any adversary Ay, we can construct an adversary By of about the same running time and
using the same resources as Ag such that

AdeJTéfé,SE],S(AO) < Advpi(By)

b) For any adversary Ay of at most B queries per (user, nonce) pair, we can construct an adversary
B1 and By such that

unae rf unae
Adv{icie g (A1) < Adve™ (B1) + Advg™(Bs) .

The running time of By is about that of Ay plus the time to encrypt/decrypt the queries of A; via
SE, and its queries statistics is the same as Ai. Adversary Bo has the same number of queries
and the total query length as A1, but it makes at most B queries per user. It has about the same
running time as Aj.

D1scUSSION. Albertini et al. [4] also give a generic transform. (An instantiation of this transform
is now deployed in the latest version of the AWS Encryption SDK, an open-source client-side
encryption library [1].) It can be viewed as a specific instantiation of UtC, in which the committing
PRF F is built on top of two collision-resistant PRFs. One of these two collision-resistant PRFs
however may have to provide up to 256-bit output (since this output is used as a key of the
legacy SE), obstructing an obvious instantiation via Davies-Meyer on AES. As a result, Albertini
et al. instantiate them via SHA-256. Not only is this instantiation slower than our Count-then-
Xor construction, but using it in UtC also requires an additional primitive in addition to AES.
In addition, we realize that UtC achieves CMT-1 security, whereas Albertini et al. only claim
key-committing security.

For unique-nonce security, using UtC actually improves the concrete security of SE, because
UtC uses an independent subkey for SE per (user, nonce). The same mechanism was used in
AES-GCM-SIV [31] to improve the concrete security of GCM-SIV [30]. The UtC transform can add
CMT-1 security to an existing AE scheme SE without being intrusive. This is an important benefit
if SE is a widely deployed scheme like GCM. However, a ciphertext in UtC is always, say 128-bit
longer than the corresponding ciphertext in SE; this bandwidth cost can be significant for some
applications.

We note that UtC does not preserve misuse-resistance security. In particular, the commitment P
depends only on the nonce N and the master key K. Thus even in the single-user setting, an
adversary can trivially break the misuse-resistance security of UtC[F, SE] by making two encryption
queries of the same nonce but different messages, and checking if the two ciphertexts have the same
£-bit prefix.

TuE MRAE-THEN-CoMMIT (RtC) TRANSFORM. Let SE be an AE scheme with key space {0,1}*
and nonce space N. Let F be a committing PRF scheme of message space N, key space {0,1}*,

27

RtC[F, SE, H].Enc(K, N, A, M) RtC[F, SE, H].Dec(K, N, A, T||C)

(P,L) + F(K,N) (P,L) + F(K,N)

C « SE.Enc(L,N, A, M) T* « H(P,C[1:n))

T« H(P,C[1:n]) If T # T* then return L
Return T||C Return SE.Dec(L, N, A, C)

Figure 16: The encryption (left) and decryption (right) algorithms of the scheme given by the RtC
transform.

commitment length ¢, and mask length A (that is also the key length of SE). Assume that each
ciphertext in SE is at least n-bit long. Let H : {0,1}¢ x {0,1}™ — {0,1}" be a collision-resistant
PRF. We can instantiate F via CX, and H via the Davies-Meyer construction. (The PRF security of
this particular choice of H can be trivially obtained from Lemma[4.1]) The scheme RtC[F,SE, H] is
shown in Fig. Intuitively, RtC creates a two-step chain of commitments K — P — T', where K
is the master key, P is the commitment generated by F, and T is the hash output, which is a
part of the ciphertext. This leads to an underlying cascade of two hash functions whose collision
resistance an adversary has to break in order to break the CMT-1 security of RtC[F,SE, H]. Thus
from Proposition the CMT-1 security of RtC[F,SE, H] is reduced to the committing security
of F and the collision resistance of H. The proof of the following is in Appendix [T]

Theorem 7.3 Let SE and F be as above.
a) Let s > 2 be an integer, and let t = [\/s|. For any adversary Ay, we can construct adversaries

By and By such that
AdV(ﬁTct[_Fl,SE,H],S(AO) < Adv@}4(By) + Advigh(B1) .

Fach of By and By runs Ag, and then runs RtC[F,SE, H] to encrypt one out of the s messages
that Ao outputs, and then evaluates F on s inputs.

b) For any adversary Ay of at most B queries per (user, nonce) pair and at most q queries, we can
construct adversaries By, By, and By such that
£ £ Bq
AVt sem (A1) < Advp™(Ba) + AdvsE™(Bs) + Advly (By) + o -

Adversary B has the same query statistics as Ay, and its running time is at most that of A1 plus
the time to use RtC to encrypt/decrypt the latter’s queries. Adversaries Bs and By have the same
number of queries and the total query length as Ay, but they make only B queries per user. The
running time of Bs is about that of Ay plus the time to run H on q inputs, and By has about the
same running time as Aj.

DiscussioN. The transform RtC also preserves unique-nonce security, but in this setting, it is
inferior to the UtC transform. For misuse-resistance security, using RtC also improves the concrete
security of SE, because RtC uses an independent subkey for SE per (user, nonce). The same
mechanism was used in AES-GCM-SIV [31] to improve the concrete security of GCM-SIV [30].

While the RtC transform can add key-committing security to an existing AE scheme SE without
being intrusive, its ciphertext is always, say 128-bit longer than the corresponding ciphertext in
SE. This bandwidth cost can be significant for some applications.

CONNECTION TO LIBSODIUM’S APPROACH. The libsodium library (2] suggests the following trans-
formation to add key-committing security to an AE scheme SE. Assume that a ciphertext of SE can
be parsed as a concatenation of a tag T and a ciphertext core C*. Let H : {0,1}* — {0,1}"™ be a

28

cryptographic hash function. To encrypt (N, A, M) under key K, let T'||C* < SE.Enc(K, N, A, M),
let T* <~ H(K||N||T), and output T*||T||C*. To decrypt (N, A, T*||T||C*) with key K, first check
if T* = H(K||N||T). If they agree then return SE.Dec(K, N, A, T'||C*), else return L.

The transform above works if we model the hash function H as a (programmable) random oracle.
The RtC transform can be viewed as a way to refine libsodium’s approach to (i) achieve security
in the standard model and (ii) instantiate the hash function via the Davies-Meyer construction
instead of SHA-256. While the libsodium’s transform is suggested for unique-nonce security, we
points out that RtC also works for misuse-resistance security.

Acknowledgments

We thank the EUROCRYPT 2022 reviewers for their careful reading and valuable comments, and
Johannes Hald for pointing out some typos.

References

[1] AWS Encryption SDK 2.0. https://docs.aws.amazon.com/encryption-sdk/latest/
developer-guide/introduction.html, 2020.

[2] The Sodium cryptography library (Libsodium). https://libsodium.gitbook.io/doc, 2021.
28

[3] M. Abdalla, M. Bellare, and G. Neven. Robust encryption. In D. Micciancio, editor, TCC 2010,
volume 5978 of LNCS, pages 480-497. Springer, Heidelberg, Feb. 2010.

[4] A. Albertini, T. Duong, S. Gueron, S. Kolbl, A. Luykx, and S. Schmieg. How to abuse and
fix authenticated encryption without key commitment. In K. R. B. Butler and K. Thomas,
editors, USENIX Security 2022, pages 3291-3308. USENIX Association, Aug. 2022. [0},

(L1} [I5} [I7 27

[5] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication.
In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 1-15. Springer, Heidelberg,
Aug. 1996. [0]

[6] M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited: The cascade
construction and its concrete security. In 87th FOCS, pages 514-523. IEEE Computer Society
Press, Oct. 1996.

[7] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric
encryption. In 38th FOCS, pages 394-403. IEEE Computer Society Press, Oct. 1997.

[8] M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-
PRFs, and applications. In E. Biham, editor, FUROCRYPT 2003, volume 2656 of LNCS,
pages 491-506. Springer, Heidelberg, May 2003.

[9] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and

analysis of the generic composition paradigm. In T. Okamoto, editor, ASIACRYPT 2000,
volume 1976 of LNCS, pages 531-545. Springer, Heidelberg, Dec. 2000.

29

https://docs.aws.amazon.com/ encryption-sdk/latest/developer-guide/ introduction.html
https://docs.aws.amazon.com/ encryption-sdk/latest/developer-guide/ introduction.html
https://libsodium.gitbook.io/doc

[10]

[11]

[12]

[20]

[21]

[22]

M. Bellare, R. Ng, and B. Tackmann. Nonces are noticed: AEAD revisited. In A. Boldyreva
and D. Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 235-265.
Springer, Heidelberg, Aug. 2019.

M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, FUROCRYPT 2006, volume 4004 of LNCS,

pages 409-426. Springer, Heidelberg, May / June 2006.

M. Bellare and B. Tackmann. The multi-user security of authenticated encryption: AES-GCM
in TLS 1.3. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 247-276. Springer, Heidelberg, Aug. 2016. [4] [9]

M. Bellare and B. Tackmann. Nonce-based cryptography: Retaining security when randomness
fails. In M. Fischlin and J.-S. Coron, editors, FUROCRYPT 2016, Part I, volume 9665 of
LNCS, pages 729-757. Springer, Heidelberg, May 2016.

D. Bernstein. Chacha, a variant of salsa20. In Workshop record of SASC, volume 8, pages 3-5,
2008. M

D. Bernstein. The salsa20 family of stream ciphers. In New stream cipher designs: The
eSTREAM finalists, Lecture Notes in Computer Science, volume 4986. Springer, 2008. [

D. J. Bernstein. The poly1305-AES message-authentication code. In H. Gilbert and H. Hand-
schuh, editors, FSE 2005, volume 3557 of LNCS, pages 32-49. Springer, Heidelberg, Feb. 2005.
4l

J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-based hash-
function constructions from PGV. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS,
pages 320-335. Springer, Heidelberg, Aug. 2002.

D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with
keyword search. In C. Cachin and J. Camenisch, editors, FEUROCRYPT 200/, volume 3027 of
LNCS, pages 506-522. Springer, Heidelberg, May 2004.

P. Bose, V. T. Hoang, and S. Tessaro. Revisiting AES-GCM-SIV: Multi-user security, faster key
derivation, and better bounds. In J. B. Nielsen and V. Rijmen, editors, FUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 468-499. Springer, Heidelberg, Apr. / May 2018.

21 23]

S. Chen and J. P. Steinberger. Tight security bounds for key-alternating ciphers. In P. Q.
Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 327-350.
Springer, Heidelberg, May 2014. [44]

J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgard revisited: How to
construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages
430-448. Springer, Heidelberg, Aug. 2005.

W. Dai, V. T. Hoang, and S. Tessaro. Information-theoretic indistinguishability via the chi-

squared method. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III, volume 10403
of LNCS, pages 497-523. Springer, Heidelberg, Aug. 2017.

30

23]

[36]

[37]

Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage. Fast message franking: From invisible
salamanders to encryptment. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 155-186. Springer, Heidelberg, Aug. 2018.

M. Dworkin. Recommendation for block cipher modes of operation: Galois/Counter Mode
(GCM) and GMAC. NIST Special Publication 800-38D, November 2007. [4] [f]

P. Farshim, B. Libert, K. G. Paterson, and E. A. Quaglia. Robust encryption, revisited. In
K. Kurosawa and G. Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 352-368.
Springer, Heidelberg, Feb. / Mar. 2013.

P. Farshim, C. Orlandi, and R. Rogie. Security of symmetric primitives under incorrect usage

of keys. JACR Trans. Symm. Cryptol., 2017(1):449-473, 2017.

N. Ferguson. Authentication weaknesses in GCM. Manuscript, available in NIST webpage,
2005.

S. Gilboa and S. Gueron. The advantage of truncated permutations. Discrete Applied Mathe-
matics, 294:214-223, 2021. 22]

P. Grubbs, J. Lu, and T. Ristenpart. Message franking via committing authenticated encryp-
tion. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS,

pages 66-97. Springer, Heidelberg, Aug. 2017. [[] [6

S. Gueron and Y. Lindell. GCM-SIV: Full nonce misuse-resistant authenticated encryption at
under one cycle per byte. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015, pages
109-119. ACM Press, Oct. 2015. 27], 2§

S. Gueron and Y. Lindell. Better bounds for block cipher modes of operation via nonce-based
key derivation. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS
2017, pages 1019-1036. ACM Press, Oct. / Nov. 2017.

V. T. Hoang and S. Tessaro. Key-alternating ciphers and key-length extension: Exact bounds
and multi-user security. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume
9814 of LNCS, pages 3-32. Springer, Heidelberg, Aug. 2016. [9]

V. T. Hoang, S. Tessaro, and A. Thiruvengadam. The multi-user security of GCM, revisited:
Tight bounds for nonce randomization. In D. Lie, M. Mannan, M. Backes, and X. Wang,
editors, ACM CCS 2018, pages 1429-1440. ACM Press, Oct. 2018. [4]

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13-30, 1963.

S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: An asymmetric PAKE protocol secure against
pre-computation attacks. In J. B. Nielsen and V. Rijmen, editors, FUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 456-486. Springer, Heidelberg, Apr. / May 2018.

15} [I7

B. Kaliski. PKCS #b5: Password-Based Cryptography Specification Version 2.0. RFC 2898,
Sep. 2000. https://datatracker.ietf.org/doc/html/rfc2898.

J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes of operation.
In B. Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 284—299. Springer, Heidelberg,
Apr. 2001. [4]

31

https://datatracker.ietf.org/doc/html/rfc2898

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[49]

[50]

[51]

M. Lambak. Breaking and fixing private set intersection protocols. Cryptology ePrint Archive,
Report 2016/665, 2016. https://eprint.iacr.org/2016/665.

J. Len, P. Grubbs, and T. Ristenpart. Partitioning oracle attacks. In The 30th Usenix Security
Symposium, 2021. [4 [} [6} [7]

A. Luykx, B. Mennink, and K. G. Paterson. Analyzing multi-key security degradation. In
T. Takagi and T. Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages
575-605. Springer, Heidelberg, Dec. 2017. [4]

D. A. McGrew and J. Viega. The security and performance of the Galois/counter mode (GCM)
of operation. In A. Canteaut and K. Viswanathan, editors, INDOCRYPT 2004, volume 3348
of LNCS, pages 343-355. Springer, Heidelberg, Dec. 2004. [4] [6]

N. Mouha and A. Luykx. Multi-key security: The Even-Mansour construction revisited. In
R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 209-223. Springer, Heidelberg, Aug. 2015.

C. Namprempre, P. Rogaway, and T. Shrimpton. Reconsidering generic composition. In P. Q.
Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 257-274.
Springer, Heidelberg, May 2014. [4

R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122-144, 2004.

J. Patarin. The “coefficients H” technique (invited talk). In R. M. Avanzi, L. Keliher, and
F. Sica, editors, SAC 2008, volume 5381 of LNCS, pages 328-345. Springer, Heidelberg, Aug.
2009. (4

P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor, ACM CCS
2002, pages 98-107. ACM Press, Nov. 2002. [4]

P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation
for efficient authenticated encryption. In M. K. Reiter and P. Samarati, editors, ACM CCS
2001, pages 196-205. ACM Press, Nov. 2001. [4]

P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. In
S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373-390. Springer,

Heidelberg, May / June 2006.

J. Salowey, A. Choudhury, and D. McGrew. AES Galois Counter Mode (GCM) Cipher Suites
for TLS. RFC 5288, Aug. 2008. https://datatracker.ietf.org/doc/html/rfc5288. [4 [f]

J. Salowey, A. Choudury, and D. A. McGrew. AES Galois Counter Mode (GCM) cipher suites
for TLS. RFC 5288, August 2008. [, [7

A. J. Stam. Distance between sampling with and without replacement. Statistica Neerlandica,
32(2):81-91, 1978.

32

https://eprint.iacr.org/2016/665
https://datatracker.ietf.org/doc/html/rfc5288

A Relations Among Committing Notions

The implications indicated by the leftward arrows are trivial. Below, we will justify the remaining
ones.

CMTD-3 — CMTD-4. Suppose A is an adversary that violates CMTD-4, outputting (C, (K1, N1,
Ay, My), (Ka, Na, A2, M>)) such that for each i € {1,2}, we have M; = SE.Dec(K;, N;, A;,C), but
(Kl, Nl,Al, Ml) 75 (KQ, NQ, AQ, MQ) If (Kl, Nl,Al) 75 (KQ, NQ, AQ) then A violates CMTD-3 and
we are done, so suppose (K, N1, A1) = (K2, N2, A2). But since SE.Dec is deterministic it must
be that SE.Dec(K7, N1, A1, C) = SE.Dec(K3, No, Ao, C'), meaning My = M, and thus (K7, Ny, 44,
M) = (K2, Na, A, My), which contradicts our assumption that these two tuples are distinct.

CMT-3 — CMT-4. Suppose A is an adversary that violates CMT-4, outputting ((K7, Ny, A1,
Ml), (KQ,NQ,AQ,MQ)) such that C; = Cs but (Kl,Nl,Al,Ml) # (KQ,NQ,AQ,MQ), where C; +
SE.Enc(Kj;, N;, A;, M;) for each i € {1,2}. If (K3, N1, A1) # (K2, Na, A2) then A violates CMT-3
and we are done, so suppose (K1, Ni, A1) = (K2, N3, As). From the correctness requirement,
M; = SE.Dec(K;, N;, A;, C;) for each i € {1,2}. Since C; = Cq and (K1, N1, A1) = (Ka, No, As),
the determinism of SE.Dec implies that M; = Ma, and thence (K5, N1, A1, M) = (K3, Na, Aa, M),
which contradicts our assumption that these two tuples are distinct.

CMTD-¢ — CMT-¢. Fix £ € {1,3,4}. Let A. be an adversary attacking the CMT-¢ security of
SE. We build an adversary Aq attacking the CMTD-/¢ security of SE as follows. Adversary Aq
runs ((Ky, N1, A1, My), (Ka, Na, Ag, Ms)) <3 A, and then sets C; < SE.Enc(K7, Ny, A1, M;) and
returns (Cl, (Kl, Nl, Al, Ml), (KQ, NQ, AQ, Mg))

To analyze the advantage of the adversaries, without loss of generality, assume that WiC,(K7, Ny,
A1, My) # WiCy(Ka, Na, Ag, Ma). Let Cy <— SE.Enc(K, Na, Aa, My). The correctness requirement
implies that for each i € {1,2}, we have M; = SE.Dec(K;, N;, A;,C;). If Ae wins then C; = Oy,
meaning that My = SE.Dec(K3, Na, A2, C1), and thus Aq also wins. Hence

AdvEET (Ae) < AdvEE' i (Ag)

CMT-¢ — CMTD-¢ FOR TIDY SCHEMES. Fix ¢ € {1,3,4}. Suppose that SE is tidy. Let Aq be an
adversary attacking the CMTD-/ security of SE. We build an adversary A, attacking the CMT-/
security of SE as follows. Adversary A runs (C, (K1, N1, A1, M1), (K2, No, Aa, Ms)) <—s Aq, and
returns ((Kl, Nl, Al, Ml), (KQ, NQ, AQ, MQ))

To analyze the advantage of the adversaries, without loss of generality, assume that WiCy(K7, Ny,
Al,Ml) ?é Wng(KQ,NQ,AQ,MQ). If .Ad wins then Mz = SEDeC(KZ,NZ,Al,C) for each ¢ € {1,2}
From the tidiness of SE, this means that C' = SE.Enc(K;, N;, 4;, M;), and thus A, also wins. Hence
Hence

AdvER(Ag) < AdvEE(AL)

B GHASH As a Weakly Regular Hash

DESCRIPTION OF GHASH. Let n > 2 be an even integer. Let IF be be a finite field of 2" elements,
meaning that we can interpret a string in {0, 1}" as an element of IF and vice versa. Assume that 0"
is the zero element in F, and the addition in F is the same as @ in {0,1}". Let o be the finite-field
multiplication in F. For a string x, let z0* denote x0P, where p > 0 is the smallest integer such
that |z| 4+ p is a multiple of n. For a number i > 0, we write [i]; to denote a t-bit representation
of i. The hash function GHASH[F] : {0,1}" x {0,1}* x {0,1}* — {0,1}" is defined in Fig. Note
that GHASH[F](K,e,e) = 0" for every K.

33

GHASH[F|(K, A, M)

tn/2 X« (A0")[|(M107) || [|A[],II[1p1],
Xi X X3 YO /)X =n
Fori+~1tomdoY «+ (Y®X,)e K
Return Y

Figure 17: The GHASH function.

WEAK REGULARITY OF GHASH. We now show that GHASH is weakly 1.5-regular. Fix (A, M) #
(e,e) and Y € {0,1}". Let

X = (A0")[[(Mo) || [|Al] N [1a1]],
where t = n/2. Parse X as X --- X,,, where each | X;| = n. Note that
m = |X|/n < |Alp + [M], + 1 < L5(|Aln + [M]n)
since |Aln, | M|, > 1. Let
flz)= (X, 0™ D(Xo 0™ N ---B(X,, 0 2)DY .

Note that f is a polynomial of degree at most m, and since (A, M) # (g,¢), f is non-zero. Hence f
has at most m roots. If we pick K <s{0,1}" then the chance that K is one of those m roots is at
most m/2" < 1.5(|M|,, + |Al)/2". Hence

Pr [GHASH[F|(K,A,M)=Y] = P K)=0"
K%{{n}n[SH[F](K, A, M) = Y] Kw{{)’l}n[f() =0"]
L5(| Ml + |A]n)
< o

and thus GHASH is weakly 1.5-regular.

C A Lower Bound on Multi-collision Resistance

To understand what we can expect for the multi-collision resistance of a hash function, in Propo-
sition below, we give an attack on a hash function H : Dom — Rng that we will model as a
random oracle.

Proposition C.1 Let H : Dom — Rng be a hash function that we model as a random oracle. Let

N = |Rng|. Let p be an integer such that 2s < p < N/6 and (f‘;) < N*~!. Then we can construct

an adversary A of O(plog(p)) time such that
Advyy (A) > (p)

S

N—(s—1)
S

Proof: The adversary A is as follows. It picks arbitrary, distinct Mj,..., M, € Dom and then
searches for X1,..., X, € {Mj,...,M,} such that (Xi,...,X;) is an s-way multi-collision for H.
To implement this in O(plog(p)) time, A computes V; < H(M;) for every i < p, sorts the list
(Vi,...,V,), and then looks for a sequence of s consecutive points in the sorted list that are the
same. (The running time of the adversary can be improved to O(p) at the cost of a failure rate 1/p
by using cuckoo hashing [44].)

To analyze the adversary’s advantage, we need the following inequality.

34

Lemma C.2 (Bonferroni’s inequality) For any events Ay,..., A,,

Pr[Alu---UAn]Z(iPr[Ai])—(3 Pr[A,-ﬁAj}) .

1<i<j<n

Back to the analysis of the adversary’s advantage, let
P _ 1
A= NP —
(£ =5
N-A

—(s—1)
AdvPli(A) > —= = (p) AN

We claim that

4 s 4
To justify this claim, we view each H(M;) as throwing a ball into N possible bins in a uniformly

random way, and the p throws are independent. For each i € {1,..., N}, let Bad; be the event
that there are at least s balls in the ¢-th bin. Note that

Pr(Bad;] > (i>]\1,s(1— Ly

() () e

for every i € {1,..., N}, where the third last inequality is due to the hypothesis that p < N/6,
and the second last inequality is due to the fact that (1 — 1/z)® > 1/4 for every integer z > 2.
Moreover, for every 1 <i < j < N,
Pr[Bad; N Bad;] < <p) (p -
S

S) N=2 < AZ
s
By Bonferroni inequality,

N

AdvPl(A) = Pr[U Badi}
i=1

N
> (ZPr[Badi])—(Z Pr[BadiﬂBadj})
i=1 1<i<j<N
BAN N(N—-1) o\ . (3 _N-A_ AN
= 42 =7 '<Z_ 2)— 4

This concludes the proof. |

D Proof of Lemma [4.1]

Consider games G1-Gg in Fig. By definition,

AdvRT(A) = Pr[Gy(A)] - Pr[Ge(A)]
whereas

Advlgp(A) = Pr[G1(A)] — Pr[G2(A)]

To justify the claim of this lemma, it suffices to show that

Pr[G2(A)] — Pr[Gg(A)] < % .

35

Game G1(A)
v 0; b ANPWEVAL return (b = 1)

EvaL(i, M)
Ifig{1,...,v} return L

NEW() C+ E(K;,M)
t
v v+l Ky es{0,1}k return ¢
Game G2(A) Evar(i, M)
v 0; b« ANPWEVAL peturn (B = 1) Ifig{1,...,v} return L
NEW() C + mi(M)
v v+1; m, s Perm({0,1}") return C
Games G3(A), G4(A) EvAL(i, M)
v 0: b « ANEW.EVAL. Loturm b =1) Ifig{1,...,v} return L
C +s{0,1}"

NEw()
viv+1; S, s

If C € S; then
bad + true; C +s{0,1}"\{C}
S; < S; U{C}; return C

Game G5(A) EvAL(i, M)
v 0; b+ ANEWEVAL: peturn (b = 1) Ifig{1,...,v} return L
NEw() C«+s{0,1}"
v v+l return C'
Game Gg(A) EvAL(i, M)
v 0; b ANPWEVAL peturn (0 = 1) Ifig{1,...,v} return L
NEW() C + fi(M)
return C'

vv+1; f,+sFunc({0,1}",{0,1}"™)

Figure 18: Games in the proof of Lemma Game Gg contains the corresponding highlighted
code but game (G4 does not.

In other words, the advantage of A in distinguishing the games Go and Gg is at most Bq/2". We
shall prove this for any (even computationally unbounded) adversary that makes totally at most ¢
queries to EVAL, with at most B queries per user. As we consider even computationally unbounded
adversaries, without loss of generality, assume that A is deterministic. Assume further that the
adversary will not repeat prior queries to EVAL.

We now explain the game chain from Gg to Gg. Game Gj is the same as Gg, but instead of eagerly
sampling a permutation 7; <—s Perm({0, 1}") for each user i, we lazily implement 7; by maintaining
a set S; of the current defined outputs of m;, and each call m;(M) is implemented via a uniform
sampling from {0,1}™\S;. Hence
Pr[Gy(A)] = Pr[Gs(A)] .

In game Gy, in each call 7;(M), we instead sample the answer C «s{0,1}". If C € S; then this
sets the flag bad to be true, but unlike game Gg, we will not resample C' from {0,1}"\S;. From
the Fundamental Lemma of Game Playing |11], the two games Gz and G4 are identical-until-bad,

36

and thus
Pr[G3(A)] — Pr[G4(A)] < Pr[G4(A) sets bad] .

We now bound the chance that game Gy sets bad to be true. For each query EVAL(i, M), the
current size of 5; is at most B, since there are at most B prior queries to user i. Thus if we pick
C <5 {0,1}" independent of S;, the chance that C' € S;, which is also the chance that this query
triggers bad to be true, is at most B/2"™. Summing this over at most ¢ queries, by the Union Bound,

B
Pr[G4(A) sets bad] < 2—3 ,
and thus
Bq
Pr{Gs(A)] — Pr[Ga(A)) < 52 .
Back to the game chain, game Gy is exactly the same as G4; we only simplify the code. Hence

Pr(G4(A)] = Pr[G5(A)] -

Finally, game Gg is the same as G5, but we now eagerly sample a function f; <—s Func({0,1}",{0,1}")
for each user ¢ instead of lazily implementing it. Therefore,

Pr[Gs(A)] = Pr[Gg(A)] .

Summing up,
5
Pr[Ga(A)] — Pr[Ge(A)] = Y Pr[G;(A)] — Pr[Git1(A)] < Bq

271
=2

as claimed.

E Proof of Proposition [4.2

The adversary B runs A, and acts as a proxy for NEw or ENC queries of A. For each verification
query of A, however, B3 stores that in a list L, and simply returns false to .A. When A terminates
with its guess ¥/, for each query (i, N, A,C) in L, if there is no prior encryption query C <
Enc(i, N, A, M) then B will query VF(i, N, A, C), otherwise it will terminate and return 1. If one
of those verification queries results in a true answer then B will return 1, otherwise it returns b'.
Note that B is orderly. Moreover, if A is nonce-respecting then so is B.

In the real world, if some verification query could result in a true-answer then B will answer 1

anyway (even if it can’t make this query due to the restriction). If all verification queries are

destined to give false answers then B correctly simulates Ggeé‘l(.%l), and it either gives the same

answer as A, or returns 1. Hence

Pr[GEE(B)] > Pr[GEE (A)] -
Let Bad be the event that in the ideal world, there is a verification query VF(i, N, A, C) and then
later there is an encryption query C' < ENc(i, N, A, M). If Bad doesn’t happen then B correctly

simulates GE4(A) and has the same answer as A, and thus

Pr[GEd(B)] < Pr[GEd(A)] + Pr[Bad] .
To bound Pr[Bad], note that for each verification query VF(i, N, A, C), it can be targeted by at

most
S
Z 2J < 9stl
=0

37

encryption queries where s = |C'|—7 is the maximum length of the corresponding message. However,
the chance that one those those 25%! encryption queries can result in C is at most

1 2
s, - _ =
2 2101 27 ¢
Summing this over ¢, verification queries,
2
Pr[Bad] < 2L
27‘
Hence
2
Pr{GE(B)] < Pr{GE(A)] + T2 |
and thus
2
AdvEE™(B) > AdvEE*(A) — 2i .

Moreover, recall that if A is nonce-respecting then so is B, and in that case the bound above can
be rewritten as
2

27
On the other hand, if every ciphertext in SE is always 7-bit longer than its plaintext then each
verification query VF(i, N, A, C) can be targeted by at most 2° (instead of 2571) encryption queries,
where s = |C| — 7 is the length of the corresponding message. As a result, the term 2¢, /2™ can be
improved to ¢,/27.

AdvEE©(B) > AdvEE(A)

F Proof of Proposition 4.3

Without loss of generality, assume that the adversary won’t make redundant queries. That is,
(i) it will not repeat a prior query, (ii) if it queries C' «— E(K, M) then later it will not query
E~YK,C), and (iii) if it queries M < E~1(K,C) then later it will not query E(K, M). We will
store the ideal-cipher queries of the adversary in a transcript, in the order of the queries are made.
For the i-th query of the adversary, if it is a forward query C «+ E(K, M) then we store an entry
(i, K, M, C,+). Otherwise, if it is a backward query M < E~!(K, C) then we store a corresponding
entry (i, K, M,C, —).
Let S be the collection of ordered subsets Z = (r1,...,75) in {1,...,p}, with r < -+ < rs.
For Z = (ry,...,7s) with (r;, K;, M;, C;, %) as the corresponding entry of the r;-th queries in the
transcript, let Bad(Z) be the event that
(CreM)[l:m]|=--- = (Cs&M;)[1:m] .
Let
Bad = | J Bad(Z) .
TeS
Ir Bad DOES NOT HAPPEN. We now show that if Bad doesn’t happen then the chance that the
adversary can produce an s-way multi-collision is at most 2'~". Suppose that Bad indeed does not

happen. Let ((Kl,Xl), R (KS,XS)) be the output of the adversary. We consider the following
cases.

Case 1: For each (K, X;), there is a corresponding entry (r;, K;, X;, C;, %) in the transcript. With-
out loss of generality, assume that r; < --- < rg,andlet Z = (rq,...,7s). Then (K1, X1,..., K, X5s)
is an s-way multi-collision if and only if Bad(Z) happens. As Bad does not happen, the adversary
does not create an s-way multi-collision.

38

Case 2: There is some (K, X;) such that there is no entry (x, K;, X;, *, *) in the transcript. Recall
that the output ((Kl, X1),...,(Ks, Xs)) forms an s-way multi-collision if

(BE(K1, X1)oX1)[1:m] = = (B(Ks, X5)®X,)[1:m] .
Now, as there is no entry (*, K;, X;,*,) in the transcript, given F (K1, X1),...,E(K;—1,Xi-1),
E(Kiy1,Xi+1),-.., E(Ks, Xs), the random variable Ex(X;) is uniformly distributed over a set of

at least 2" — p — s > 2"~ ! values. Thus the chance that A creates an s-way multi-collision is at
most 2"~™ /2"~ = 2l-m,

BOUNDING THE CHANCE THAT Bad HAPPENS. We claim that for each Z € S,
2371

This claim will be justified later. By the union bound,

Pr[Bad] = Pr[U Bad(I)]
ZesS

Py 251 _ (P 51-m)(s—1)
Y Pr[Bad(7)] < (s> o = <S> 2 .

ZeS
We now prove the claim in Equation . Fix Z = (r1,...,75) € S, and let (r;, K;, M;,C *) be
the corresponding entry of the r;-th queries in the transcript. Fix i € {2,...,s}. We consider the
following cases.

IN

Case 1: The r;-th entry is (r;, K;, M;, C;,+). Then given M; and all prior queries/answers before
the r;-th query, C; is uniformly distributed over a set of at least 2" —p > 2"~! values, and thus the
conditional probability that (C;@®M;)[1 : m] = (C1®M;)[1 : m] is at most 27~ /2n~1 = 21=m

Case 2: The ry-th entry is (r;, K;, M;, C;,—). Then given C; and all prior queries/answers before
the 7;-th query, M; is uniformly distributed over a set of at least 2" — p > 2"~! values, and thus
the conditional probability that (C;@M;)[1 : m] = (C1®M7)[1 : m] is at most 27~ /2"~ 1 = 21-m,

Multiplying these conditional probabilities for all i € {2,..., s}, we obtain
Pr[Bad(Z)] < 20~-D0-m)
justifying the claim in Equation .

WRAPPING THINGS UP. Summing up,

AdVEip) «(4) <277 + @ LU=

G Proof of Proposition 4.4

Let £ = m/2. For b € {1,2}, let b be the other element in {1,2}. We say that a query C < E(K, M)
or M + E~Y(K,C) is well-formed if M is of the form pad(X,b) with b € {1,2}. For a well-formed
query E(K,pad(X,b)), we will immediately grant the adversary the free query E(K,pad(X,b)).
Likewise, for a well-formed query pad(X,b) + E~1(K, C), we will immediately grant the adversary
the free query E(K,pad(X,b)). Totally there are at most 2p queries.

Without loss of generality, assume that the adversary won’t make redundant queries. That is,
(i) it will not repeat a prior query, (ii) if it queries C + E(K, M) then later it will not query
E~YK,C), and (iii) if it queries M + E~1(K,C) then later it will not query E(K,M). We will
store all ideal-cipher queries (including the granted ones) in a transcript, in the order of the queries

39

are made. For a forward query C <« E(K, M), we store an entry (K, M,C,+). Likewise, for a
backward query M < E~1(K,C), we store a corresponding entry (K, M, C, —).

We call a pair P = [(K, pad(X,b), C, %), (K,pad(X,b),C’, *)}—ordered by their appearance in the
transcript—a couple. A couple is positive if both its queries are forward ones, and is negative
otherwise. The child Child(P) of this couple is ITP[E,r,m|(K,X). In other words, Child(P) is
C[1:/4|C'[1: €] if b =1, and Child(P) = C'[1 : ¢]||C[1 : ¢] otherwise. Let Bad be the event that
there are s couples P, ..., Ps of the same child.

Ir Bad DOES NOT HAPPEN. We now show that if Bad doesn’t happen then the chance that the
adversary can produce an s-way multi-collision is at most 2'~™. Suppose that Bad indeed does not
happen. Let ((Kl,Xl), e (KS,XS)) be the output of the adversary. We consider the following
cases.

Case 1: For each (K, X;), there is a corresponding unordered couple
{(K’La pad(Xia 1)a Cia *)’ (K’La pad(Xia 2)a Czla *)}

in the transcript. Then ((Kl, X1),..., (Ks, XS)) is not an s-way multi-collision because Bad does
not happen.

Case 2: There is some (K;, X;) such that there is no couple

{(Kla pad(Xl) 1)’ CZa *)) (Kla pad(Xl) 2)5 Cva *)}
in the transcript. Thus given the queries/answers of the adversary and its output,
is (conditionally) uniformly distributed over a set of at least (2" — 2p — s)? > 22"~! values. Hence
ITPIE,r,m|(K;, X;) = E(K;,pad(X;,1))[1 : {]||E(K;, pad(X;,2))[1 : ¢] is (conditionally) uniformly
distributed over a set of at least 227~1/22"~™ = 2m~1 yalues. As a result, the chance that the
adversary creates an s-way multi-collision is at most 2'~™.

BOUNDING THE CHANCE THAT Bad HAPPENS. Let Bad,; be the event that (i) Bad happens, and

(ii) among its couples Py, ..., Py, there are exactly i positive couples, and s — i negative ones, and
(iii) Child(P;) = z. Then

S
Pr[Bad] < Pr [U Badm} < 3 S Pr[Bad, -
i z€{0,1}m i=0
Let U be the random variable for the number of positive couples. For each = € {0,1}™, let V, be
the random variable for the number of queries E~1(K, C) such that C[1 : £] € {x[1: £],z[(+1 : m]}.
Now, recall that the output of each query, given the prior queries and answers, is (conditionally)
uniformly distributed over a set of at least 2" —2p > 279 elements. Thus for each positive couple,
its child is (conditionally) uniformly distributed among a set of at least 22(n=05)/92n—m — gm-1
elements. Moreover, for each b € {1,2}, there are at most 2" strings in {0,1}" that are of form
pad(X,b). Consider the event that when we query E~1(K, (), it results in an answer of the form
pad(X,b), and the granted query ends up with an answer C” such that C'[1: ¢] = z[¢ + 1 : m] if
b=1,and C'[1:¢] = z[1 : £] if b = 2. This happens with probability at most 2"+1.2n~¢/22(n=05) —

or+1—£=n_ Then
Pr[Bad, ;| < EKU) o(l—m)i , < Va > 2(T+1fffn)(sfi)} '
S 2

1

40

By using the fact that () < a®/b! for every integer a,b > 0,

y U e (V) o
;Pr[Badx,i] < ;E[i!Q(l)'WQ(+1—t—n)()}

1 -E [zs: <S> Ui2(1—m)i . (Vx)s—iQ(r—&-l—Z—n)(s_i)}

s! A 7
=0

1 U V. s
sl E|:<2m71 + 22+n77"71) } :

By using the fact that (a+b)° < (2-max{a,b})® = 2° - max{a®, b*} for every a,b > 0, we can bound
the last expectation by

8| + ()| - B 4 B0

Summing up,

I~ EU°] | E[(Va)’]
Pr[Bad] S ; . 9(m—2)s 2(l+n—r—2)s

On the one hand,
> E[Uf]=2"-E[U]]<2"-p° .

On the other hand, as V, < p,
SIE((V)] < Y BV -p =BY V|

In the sum)V, each query can be counted up to 241 times, and thus
x

Taking expectation of both sides gives us
ZE[(V:E)S] < 2Z+1 ‘ps]
x

Summing up,
s ol+1 .
+

S

p
sl - 2(€+n—7"—2)s :

4p

PriBad] < —— 5

WRAPPING UP. Summing up,

4ps 2€+1 . ps

coll 1-m
AdvITP[ETmLS(A) < 2 + gl . 2(m=2)(s—1) + gl . 9U+n—r—2)s °

H An Attack on the ITP Construction

Let £ = m/2. Let Q = 2" and a = 20~ . 27=¢/(2" — 1). Let p be an integer such that
2s <p<Q/6 and

In this section, we give a multi-collision attack on ITP[E,r, m] for 2p ideal-cipher queries.

THE ATTACK. The adversary A picks arbitrary distinct keys K1,..., K, € {0, 1}]“. For each i < p,
it computes V; < E~1(K;,0"). If V; is of the form pad(Xj, 1) for some X; € {0,1}" then it computes

41

Z; «+ E(K;,pad(X;,2)). Note that
ITP[E, r,m](K;, X;) = 0°)| Zi[1: 4] .
The adversary then searches for s indices 1, ..., 75 such that Z;,, ..., Z;, have the same ¢-bit prefix.

This can be done in O(plog(p)) by sorting the pairs (i, Z;) by the ¢-bit prefix of Z;. It then outputs
(Kilei1)7 RRE) (Kistis)'

ANALYSIS. Let M = 2¢ — 1. For each i < p, view ITP[E,r,m](K;, X;) as throwing a ball into 2¢
bins, where the value of the bin corresponds to the number that the string Z;[1 : ¢] encodes. The p
throws are independent, but for each i, there is a non-zero chance that ball ¢ does not land into
any bin. This corresponds to the case that E~!(K;,Y;) doesn’t have a form pad(X;,1). For each i
and for any ¢t € {1,..., M}, the chance that ball ¢ lands to bin ¢t is a.

Let Bad; be the event that there are s balls that land into bin 7. There is an s-way multi-
collision if there is some bin that contains at least s balls, which happens with probability at least

Pr [Ug 1 Badz}. From the Bonferroni’s inequality as stated in Lemma |C.2

M M
Pr[U Badz} >3 Pr[Bad] ~ Y Pr[Bad;UBad] .
i=1 i=1 1<i<j<M

Note that for every i € {1,..., M},

s
_ Q/6
A.(l_l)p SzA.(l_l) / ZAE%)
Q Q 41/6 4
where the third last inequality is from the hypothesis that p < @/6, and the second last inequality
is from the fact that (1 — 1/z)* > 1/4 for every x > 2. In contrast,

Pr[Bad; N Bad;] < <p) (p B S) a*® < <p) <p> a2 — A2
S S S S

for every 1 <i < j < M. Hence

Pr[Bad;] > <p> a*(1—a)P™* = A(1 —)P~

v

3A-M M(M-1)-A°
4 2

A-M > (p> . 9t=3 9—(n+t-r)s :

Advf'lqg [E,r,m],s (‘A7 S)

Y

4 T \s
where the second inequality is due to the hypothesis that A < 27¢ and thus A(M — 1) < 1.

I Proof of Proposition 4.5

As a stepping stone, we first consider the multi-collision resistance on the cascade of two hash
functions Hy and Hi. However, we now consider a more general, parameterized bound, via the
to-way multi-collision of Hy and ¢1-way multi-collision of H;, with ¢t; = [s/(tg—1)], for any ¢y > 2.

Lemma I.1 Let H be the cascade of two hash functions Hy and Hy as illustrated in Fig. [Let
s >ty > 2 be integers such that t; = [s/(to —1)] > 2. Then for any adversary A, we can construct
adversaries By and By such that

AdviRi(A) < Advip, (Bo) + AdviR!, (By) .

Each adversary B; runs A, and then runs Hy on s inputs of A.

42

Proof: We first describe the adversaries By and By. Adversary By runs
((Xl, Yl’ Zl)a ey (X57 }/57 ZS)) —sA .

It then partitions (X1, Y1),..., (Xs,Ys) based on the outputs under Hy. We note that if (X;,Y;) =
(X;,Y;) then they are still treated as two pairs (of the same value). Let Pi,..., P, be the resulting
partitions. If there is a partition of at least tg pairs of distinct values then By will output those
pairs.

Adversary B; also runs
((Xl, Yl, Zl), N (Xs, Y;, Zs)) +—s A .

Let V; < Hy(X;,Y;) for every i < s. If there are ¢; pairs of distinct values in (V1, Z1),..., (Vs, Zs)
then By will output those pairs.

Assume that A succeeds in creating an s-way multi-collision. We will show that either By creates
a to-way multi-collision on Hy or B creates a ti-way multi-collision on Hy. We say that a value
(A, B) has degree d if there are exactly d pairs in (X1, Y1),...,(Xs,Ys) of this value. For each i,
let (A;, B;) be the value of maximum degree in P;, and let d; be the degree of (4;, B;). Assume
that By does not create a to-way multi-collision on Hy, meaning that every partition P; contains at
most ty — 1 pairs of distinct values. In other words,
> Ly
to—1

Let S; be the set of indices j such that (X}, Y;) has value (A4;, B;). Note that the sets Sy,...,5,
are disjoint, and each |S;| = d;. Then the pairs

{(Vjazj)lj€51U'“U5a}

have distinct values. Indeed, fix 4 and j in S;U--- U S,. If (X;,Y;) and (X;,Y;) are in different
partitions then V; # Vj. Otherwise, if (X;,Y;) and (j,Y;) are in the same partition, since A must
output distinct inputs for H, we must have (X;,Y;, Z;) # (X, Y}, Z;), and thus Z; # Z;. Hence

there are at least
Id
S| = d; > = >t —1
Z‘ = Z 20_1 to—l 1

pairs of distinct values in (Vl, Z1)y ey (VS, Zs), and thus B; will succeed. 1

Back to the proof of Proposition let t' = [s/(t—1)] = [(/s)°' | = 2. Let H' be the cascade
of Hy,...,H. 1. Note that H is the cascade of Hy and H’. Using Lemma we can construct
adversaries By and B’ such that

AdvRi(A) < AdviR,(Bo) + Advi!, (B) .
Repeating the argument above to bound AdeOHt,(B’) eventually leads to the claimed bound on
Advco11 s(A). Each constructed adversary B; runs the cascade of Ho,..., Hyin{c—2,} On s inputs

of A.

J Proof of Theorem [5.1]

We construct an adversary B attacking the multi-collision resistance of DM[E, 7| as follows. It
runs ((Nl, Kl, Ml, Al), Cey (NS, Ks, MS, As)) —s A. Let CZHE be the Ciphertext of (Nz, Ai, Ml)
under CAU-C1 with key Kj, and suppose that T; < E(K;,V;)®V;. Adversary B then outputs
((Kl, Vi), .y (KS,VS)). Note that this output is legitimate since K7i,..., K, are distinct. If A

43

succeeds then T7 = --- = T, and thus B also can create an s-way multi-collision. Then
-1 1l
AdvERy s an.s(A) < AdvEyg ..(B) -

Note that B needs to get the hash keys to obtain V;. Thus it will need to run E(K;,0™") for every
1 < s.

K Proof of Theorem

Our proof is based on the H-coefficient technique of Patarin [45, 20], which we will recall below.

THE H-COEFFICIENT TECHNIQUE. The H-coefficient technique considers a deterministic distin-
guisher A that tries to distinguish a “real” system S from an “ideal” system Sy. The adversary’s
interactions with those systems define transcripts 7; and 7y, respectively. The following result
bounds the distinguishing advantage of A.

Lemma K.1 [45,20] Suppose we can partition the set of valid transcripts for the ideal system into
ps, (0)

Ps(0) = €
for every good transcript 8. Then, the advantage of A in distinguishing S1 and Sgy is at most

€ + Pr[Ty is bad] .

good and bad ones. Further, suppose that there exists a constant € > 0 such that 1 —

THE PROOF. Let CAU-C1[H, 7| be the idealized version of CAU-C1[E, H, 7] in which each call to
E(K;,-) is replaced by a corresponding call to a truly random function f; <—s Func({0, 1}",{0,1}").
Note that game GEaAIIS-Cl[Hrl (A) coincides with game GE?S_CI[B.H.7) (A). To bound the gap between
the real games, we construct the following adversary B attacking the PRF security of E. It runs A
and simulates game G?Xb_a[B,H.7] (A), but each call to E(Kj,-) is replaced by a corresponding call

to EVAL(7,). Then
£
Advy (B) = PriGERy.cip,m.(A)] — PrIGERY 1, (A)]
= Advgxbe—Cl[E,H,ﬂ (A) - AdVlcn/E\aS-cuH,ﬂ (A) .
Adversary B makes at most ¢ + ¢ queries, with at most 2B queries per user. From the Multi-user
PRP/PRF Switching Lemma,
2B(o + q)
AL '

We will use the H-coefficient technique to bound Adv%r;.‘aue_Cl[Hﬁ] (A), even for a computationally

AdvP(B) < Adv2P(B) +

unbounded A. The real system corresponds to game G?Eb-u[Hr] whereas the ideal system corre-

sponds to game Grca:&a[HA Since we consider computationally unbounded adversaries, without

loss of generality, assume that A is deterministic. From Proposition without loss of generality,
we can assume that A is orderly. This can cause a difference of at most ¢,/27 in the advantage;
we will account for this difference in the final bound. When the adversary finishes querying, in the
real world, we will grant it the hash keys of all users, and in the ideal world, we will give it fresh
uniformly random n-bit strings. This key revelation can only help the adversary.

DEFINING BAD TRANSCRIPTS. A transcript consists of the revealed hash keys L; and the following
information:

e For each query C||T < Enc(i, N,A, M), let M = My --- M,, and C = Cy - - - Cy,, with |M,,| =
|Crm| < n and |M;| = |Cj| = n otherwise. Let V' = H(L;, A,C)®pad(N) and for each j < m,
let P; = M;@Cj. If |M,,| = 0 then let P < Py--- Py,_1, otherwise P < P;---P,,, where

44

P, « fi(pad(N) + m) in the real world, and Py, < (Cp,®M,,)||Z with Z <s{0,1}"~Mnl in
the ideal world. We will store a corresponding entry (enc,i, N, A, M, C||T,V, P).

e For each query VF(i,N, A, C|T), we will store an entry (vf,i,N,A,C||T,V), where V <«
H(L;, A,C)®pad(N). Note that we do not need to keep track of the answers of the verifi-
cation queries, since for any valid transcript in the ideal world, the answers of all verification
queries must be false.

Entries are stored in the transcript in the order that the queries are made. A verification queries
(vf,i, N, A, C||T,V) is vacuous if there is another entry (enc,i, N, A, C||T*, V). Without loss of
generality, assume that A makes no vacuous verification queries, since it will get false answers in
either world.

A transcript is bad if one of the following happens:

(1) There are two (possibly the same) entries (enc,i, N, A, M,C||T,V, P, - -- Py,) and (enc, i, N*, A*,
M*, C*||T*,V*, P --- P/f) and an index t € {1,...,¢} such that V = pad(N*) + ¢. In the real
world, T'= (P;®V)[1 : 7], but this might not happen in the ideal world.

(2) There are two different entries (enc,i, N, A, M, C||T,V, P) and (enc, i, N*, A* M*, C*||T*, V*, P*)
such that V = V*. In the real world, T'= T, but this might not happen in the ideal world.

(3) There is an entry (enc,i, N, A, M,C||T,V, P) such that V' = 0". In the real world, T' = L;[1 : 7]
but this might not happen in the ideal world.

(4) There is an entry (vf,i, N, A,C||T,V) such that V' = 0™. This forces the correct tag for the
verification query to be L;[1 : 7] in the real world, but there is no constraint in the ideal world.

(5) There are two entries (enc,i, N, A, M,C||T,V, Py --- Py,) and (vf, i, N*, A* C*||T*,V*) and an
index t € {1,...,m} such that V* = pad(N) +¢. This forces the correct tag for the verification
query to be (P.@®V*)[1 : 7] in the real world, but there is no constraint in the ideal world.

(6) There are entries (enc,i, N, A, M,C||T,V, P) and (vf,i, N*, A* C*||T*, V*) such that V = V*.
This forces the correct tag for the verification query to be T in the real world, but there is no
constraint in the ideal world.

If a transcript is not bad and is valid for the ideal system then we say that it is good.

PROBABILITY OF BAD TRANSCRIPT. Let 7y be the random variable for the transcript in the ideal
world. We now bound the probability that 7y is bad. We will fix the queries and answers of the
adversary, but still treat the revealed keys as random. That is, we are dealing with the conditional
probability that 7g is bad, given a fixed choice of the queries and answers of the adversary. Our
bound holds for any such choice, and thus it also holds for the unconditional probability that 7q is
bad.

For each j € {1,...,6}, let Bad; be the set of transcripts that violate the j-th constraint of badness.
Then from the union bound,

6
Pr[7p is bad] = Pr[7; € Bady U---UBadg] < Y _Pr[Tg € Bad,] .
j=1

We first bound the probability that 7y € Bad;. Consider two (possibly the same) entries (enc,i, N, A,
M,C|T,V,Py---P,) and (enc,i, N*, A*, M*,C*|T*,V* Pf---P;). f A= M = ¢ then V =
pad(V) that is different from pad(N*) + ¢, for any ¢ € {1,...,2"7" —2}. If (A, M) # (,¢), since
H is weakly c-regular, the chance that there is t € {1,...,¢} such that V = H(L;, A, C)®pad(N)
equals to pad(N*) 4+t is at most
- ([Aln +1Cln) _ el Aln + [M]n)([A"]n + [M7]5)
2n - AL

45

Summing over all pairs of enc entries of the same user,
B
Pr[T € Bady] < an .
We now bound the probability that 7y € Bady. Consider two different entries (enc,i, N, A, M, C||T,
V,P) and (enc,i, N*, A*, M* C*||T*,V*, P*). If (A,C) = (A*,C*) then we must have N # N*,
otherwise that will lead to M = M¥, violating the definitional restrictions. Consequently, V =
H(L;,A,C)®pad(N) and V* = H(L;, A*,C*)®pad(N*) must be different. If (A,C) # (A*,C*)
then since H is ¢c-AXU, the chance that V = H(L;, A, C)®pad(N) and V* = H(L;, A*, C*)®pad(N*)
are the same is at most
¢ - max{|Aln + |Cln, [A"|n + |C*[n} < c(|Aln + [Mln + |A*[n + [M*]n)
2n - AL ’
Summing over all pairs of enc entries of the same user,
B
Pr[Tp € Bads] < 22 .

27’L

We now bound the probability that 7y € Bads. Consider an entry (enc,i, N, A, M,C||T,V, P). If
A =M = ¢ then V = pad(N) # 0™. If (A, M) # (e,¢), since H is weakly c-regular, the chance
V = H(L;, A,C)®pad(N) equals to 0™ is at most
¢ (|Aln +1Cn) _ c(|Aln + |M]n)
AL 2n ’

Summing over all enc entries,

co coB
Pr[7p € Bads] < on < o

We now bound the probability that 7y € Bady. Consider an entry (vf,i, N, A, C|T,V). If A =
C = ¢ then V = pad(N) # 0" If (A,C) # (e,¢), since H is weakly c-regular, the chance
V =H(L;,A,C)®pad(N) equals to 0™ is at most

¢ (|Aln +1Cln)
2n ’
Summing over all vf entries,
co _coB
Pr[7y € Bady] < on = om

We now bound the chance that 7y € Bads. Consider entries (enc,i, N, A, M,C||T,V, P, --- P,,) and
(vf, i, N*, A*, C*||T*,V*). If A* = C* = ¢ then V* = pad(N*) that is different from pad(NN) + ¢ for
any t € {1,...,2" " =2}, If (A*,C*) # (e,¢), since H is weakly c-regular, the chance that there is
t € {1,...,m} such that V* = H(L;, A*, C*)@pad(N*) equals to pad(N) + ¢ is at most
em - (|4 +1C%) _ e[Aln + [M]n)(|A"]n + [M]n)

2n - 2n ’

Summing over all pairs of enc and vf entries of the same user,
B
Pr[T € Bads] < - .
Finally, we bound the chance that 7y € Badg. Consider two entries (enc,i, N, A, M,C|T,V, P)
and (vf,i, N* A* C*||T*,V*). If (A,C) = (A*,C*) then since the adversary makes no vacuous
verification queries, we must have N # N*. As a result, V = H(L;, A,C)®pad(N) and V* =
H(L;, A*,C*)®pad(N*) must be different. If (A4, C) # (A*,C*) then since H is ¢-AXU, the chance
that V = H(L;, A,C)®pad(N) and V* = H(L;, A*,C*)®pad(NN*) are the same is at most
¢ - max{|Afn + |Cln, [A[n + |C*|n} < c(|Aln + [M|n + [A*[n + [M™|n)
on - on :

46

Summing over all pairs of enc entries of the same user,
cqB
PI‘[% S Bad(ﬂ § QT .
Summing up,
cB(40 + 2q)

Pr[7 is bad] < o

TRANSCRIPT RATIO. Fix a good transcript . Suppose that there are exactly u users in 6. Suppose
that the answers for encryption queries of user ¢ in 6 consist of totally IV; bits. For each user i,
partition the entries (vf,i, N, A, C||T, V) in 6 according to V', and let S; be the collection of those
partitions. For each P € S;, let Tags(P) denote the set of the corresponding tags T', and let V(P)
denote the corresponding value V. Note that

ZU:ZIPIS%-

1=1 PeS;

Let 71 and Tg be the random variables of the transcript of the interaction of the adversary with
systems S; and Sg, respectively. On the one hand, the event Tg = 0 is the composition of the
following independent events:

e When we sample u keys L; <—s {0,1}", they end up the same as the values defined in 6. This
happens with probability 277%.

e For each user i, the answers of its encryption queries end up the same as the values (of totally
N; bits) defined in 6. This happens with probability 27V:.

Hence

u
ps,(0) =Pr[To = 0] =27]2~ ™ .
i=1
On the other hand, since 6 is good, the event 71 = 6 is the composition of the following independent
events:

e When we sample u keys L; «—s {0,1}", they end up the same as the values defined in 6. This
happens with probability 27™*.

e For each user i, the (possibly truncated) answers of the distinct queries to the truly random
function f; end up the same as the values (of totally NNV; bits) defined in 6. This happens with
probability 27V,

e For each user i and each P € 5, if we query V(P) to the truly random function f;, the answer
R must satisfy (R®V (P))[1 : 7] € Tags(P). This happens with probability 1 — |Tags(P)|/27 >
1—|PJ/2".

Thus

ps, (0) =Pr(Ti = 6] > 27 (2™ [—1pl/20) .
i=1 PesS;

Hence
u

ps, (0) 21—[H (1—|P|/27) 21_2 Z |P|/2" > 1—¢q,/2" ,

Ps, (0) i=1 PES,; i—1 PeS,

where the second inequality is obtained by repeatedly using the fact that for every z,y € [0,1],
(I-—z)I—-y)=1-(z+y)

47

WRAPPING UP. From Lemma

cB(40+2q) ¢
AdveRU.cim(A) = ——— F *23 :
Hence

un rf B(4C + 2)0 + B(QC + 2)q Qv
Adveny ciip . (A) < Advy (B) + 5 +or -

If we remove the restriction that A is orderly, from Proposition
(dc+2)Bo + (2¢+2)Bq 2q,
2TL + 27’

unae rf
AdveRy cp g (A) < Advy (B) +

L Proof of Theorem 3.1

We first describe the adversaries By and B;. Adversary By runs
((K17N17A17M1)7 MR} (KS7NS7A87MS)) <_$A .

Due to the equivalence between CMT:-3 and CMT-4, without loss of generality, assume that
(Ky,N1, Ay), ..., (K, Ng, Ag) are distinct. Adversary By partitions (K7, N1, A1), ..., (Ks, Ns, Ag)
based on the outputs under H. Let Pi,..., P, be the resulting partitions. If there is a partition of
at least t elements then By will output those.

Adversary B; also runs

((Kl, Nl, Al, Ml), cey (KS,NS,AS, Ms)) —s A .
Let L; < H(K;, (N;, A;)) for every ¢ < s. If there are ¢ distinct subkeys in (L1, N1,¢e, M), ...,
(Ls, Ns,e, M) then By will output those tuples.

Let C; + SE(K;, N;, A;, M;); note that C; = SE.Enc(L;, N;,&, M;). Assume that A succeeds in
creating an s-way multi-collision, meaning that C; = --- = Cy. If there is a partition P; of at least ¢
elements then By creates a t-way multi-collision on H. Assume to the contrary that |P;| <t —1 for
every i € {1,...,a}. Then the number a of partitions is at least

[ﬂzw:t.

t—1
Thus among the subkeys Lq,..., L, there are at least t distinct ones, and B; can output the
corresponding tuples (L;, N;, e, M;) and wins. Hence

Advgr' T (A) < Advi7i(Bo) + AdvEE; (By)

as claimed.

M Proof of Theorem [3.2

Let Gy be game Gﬁ?lfl[SE,H] (A) and G be game ijltnE(%EvH] (A). Consider game G in Fig.

FroM Gy 10 G1. Game G is similar to Gy, but with the following differences.

e In an encryption query ENc(i, N, A, M), instead of generating a genuine subkey L, if there is a
prior verification query VF(i, N, A, C) then we reuse the same subkey. Otherwise we’ll pick L
at random.

e Inaverification query VF(i, N, A, C), if there is a prior query ENC(i, N, A, M) or VF¥(i, N, A, C*),
then we use the prior subkey L. Otherwise, we’ll generate a fresh subkey.

48

Game G1(A)
v~ 0: b/ <_$ANE\V,ENC,VI“
Return (b = 1)
Enc(i, N, A, M)
Ifi ¢ {1,...,v} then return L
If Users[i, N, A] = L then
NEw(); Users[i, N, A] < v
u < Users[i, N, A]; C <+ SE.Enc(L,, N,e, M)

NEw()
viv+1
L, <+s{0,1}*
VE(, N, A, C)
If ¢ ¢ {1,...,v} then return L
If Users[i, N, A] = L then
NEw(); Users[i, N, A] + v
u < Users[i, N, A]; M <« SE.Dec(L,,N,¢,C)

Return C Return (M # 1)

Figure 19: Game G in the proof of Theorem

Adversary DNFW.EVAL NEw

v 0; w4 0; b s ANEWENCVE vev+l
Return b’

Enc(i, N, A, M) VE(i, N, A,C)

Ifi ¢ {1,...,v} then return L
If Users[i, N, A] = L then
Users[i, N, A] + u <+ u+1; NEW()
u* < Users[i, N, A]
b+« Vr(u*,N,e,M); Return b

Ifi ¢ {1,...,v} then return L
If Users[i, N, A] = L then
Users[i, N, A] <~ u < u+1; NEW()
u* « Users[i, N, A]
C + Exc(u*,N,e,M); Return C

Figure 20: Constructed adversary D in the proof of Theorem

We bound the gap between Gy and G; by constructing an adversary B attacking the (multi-user)
PRF security of H. Adversary B runs A and simulates game Gg. However, each call to H(K;,-) is
replaced by the corresponding call to EVAL(¢,). Thus

Pr[Go(A)] — Pr[G1(A)] < AdvP(B) .

FroM G TO Go. We bound the gap between G and G by constructing an adversary D attacking

SE as in Fig. . Game GE2(D) corresponds to game G1(A), and game GERY(D) corresponds to
game Go(A). Hence

Pr[G1(A)] — Pr[Ga(A)] < AdvEre(D) .

We now briefly describe how to implement the map Users in O(o,log(B)) time. Tuples (i, N, A)
and their values u* are partitioned according to (i, N, |A|). Within a partition, the tuples are stored
in a binary search tree, with A as the key, and u* as the value. Let Pi,..., P; be the resulting
partitions, and let o; be the size of P, when A finishes querying. Since each binary search tree has
size at most B, the total cost of updates and look-ups in the trees is

d
Y O(o1log(B)) = O(a, log(B))
t=1
as claimed.

WRAP-UP. Summing up,
Adviisee (A = Pr[Go(A)] - PrGa(A)] < Adv' (B) + AdvEE™(D) .

49

If B is unique-nonce then so is D, and we can rewrite the bound as

unae rf unae
Adv™(A) < Advyy (B) + Advg™(D) .

N Proof of Proposition 6.1

We begin by giving a brief review of the Chi-Squared method of Dai, Hoang, and Tessaro [22].

THE CHI-SQUARED METHOD. Suppose that we want to bound the advantage of a computationally
unbounded adversary A in distinguishing a “real” system S; from an “ideal” system Sg. Without
loss of generality, assume that A is deterministic and makes exactly ¢ queries. Since the adversary
is deterministic, for any ¢ < ¢ — 1, the answers for the first ¢ queries completely determine the
first ¢ + 1 queries. For a system S € {S1,S¢} and strings z1,..., z;, let ps 4(21,...,2;) denote the
probability that the answers for the first ¢ queries that A receives when interacting with S are
21,2 I ps a(z1,...,2) >0, let pg a(2zit1 | 21, .., 2;) denote the conditional probability that
the answer for the (i + 1)-th query when A interacts with system S is z; 41, given that the answers
for the first ¢ queries are z1, ..., z; respectively.

Foreach Z = (21,...,24), let Z; = (21,. .., 2;) and let Zj be the empty string. We write pg a(- | Z;)
and pg a(- | Zo) to refer to probabilities pg (- | #1,...,2) and ps a(-) respectively. We require
that if pg, 4(Z;) > 0 then so is ps,, 4(Z;). For each i < ¢ and each vector Z;_1 = (21,...,2i-1),
define

2
(Ziy) = Z (Psy.A(zi | Zio1) — pso.alzi | Zi1))
) =
' = Pso,A(%i | Zi-1)
where the sum is taken over all z; such that pg, a(z; | Z;—1) > 0. Lemma below bounds the

statistical distance SD(psy,a(-),ps,,4(+)) between pg; a(-) and ps, a(-), namely the best possible
distinguishing advantage of A between S; and Sy.

)

Lemma N.1 (The Chi-Squared Lemma) /22, Lemma 3] Suppose whenever pg, 4(Z;) > 0 then
pSO,A(Zi) > 0. Then

SD(ps,.4():ps,.4(0)) < (3 S BLX: 1))
=1

where the expectation is taken over vectors X;_1 of the i — 1 first answers sampled according to the
interaction with Sq.

THE PROOF. Consider games G1-Ggs in Fig. Game G corresponds to game G%rf(A) with
challenge bit 1, and game Gg3 corresponds to game G%rf(A) with challenge bit 0. Thus
AdvP(A) = Pr[G1(A)] — Pr[G3(A)] .
Game Ggq is similar to game Gy, but each call to F(Kj,-) is replaced by another call to a truly
random permutation 7;(-). To bound the gap between G; and Gg, we construct a (multi-user)
PRP adversary B as follows. Adversary B runs A and forwards A’s queries to its corresponding
oracles. Finally, when A outputs a bit ¢/, so does B. Thus game G corresponds to game GY"(B)
with challenge bit 1, and game Go corresponds to game G,”(B) with challenge bit 0. Hence
Advh?(B) = Pr[Gy(A)] — Pr[Gz(A)] .
Next, we will use the Chi-Squared method to show that
Pr[Ga(A)] — Pr[Gs(A4)] < 2¢/nBg - 27/>" | (2)

50

Game G1(A) Game Gz(A) Game G3(A)

v+ 0; b ANEW’EVAL v 0; b ANEW’EVAL v+ 0; b ANEW’EVAL
Return (b’ =1) Return (b’ =1) Return (b’ =1)

NEw() NEwW() NEw()

vév+1 v uv+1 vev+1

K, +s{0,1}* 7, s Perm({0,1}") fv <sFunc({0,1}™,{0,1}™)
EvaL(i, X) EvaL(i, X) Evavr(i, X)

Ifig{l,...,0} return L Ifig{1,...,v} return L Ifig {1,...,v} return L
Return E(K;, X)[1 : m] Return 7;(X)[1 : m] Return f;(X)

Figure 21: Games in the proof of Proposition

On the other hand, since the difference between Gy and Gg is whether we truncate truly random
permutations or truly random functions, by using the Multi-user PRP/PRF Switching Lemma,
Pr[Ga(A)] — Pr[Gs(A)] < Bg/2"
and thus
Pr[Gy(A)] — Pr[G3(A)] < min{2\/nBq - 2™/>" Bq/2"} .
Summing up,

AdvPT(A) = Pr[Gi(A)] — Pr[Gs(A)]

< AdvDP(B) + min{2\/nBq - 2™/*" Bq/2"} .

We now justify the claim in Equation . Let S; be the system that implements game Gy and
Sp be the system that implements game Gs. Without loss of generality, assume that A makes
exactly ¢ queries. Let X = (Xy,...,X,) be the random variable for the ¢ answers in Sy, and let
X, = (Xyq,...,X;) for every i < q. Fix i < q. Let U; be the random variable for the user that the
i-th query targets. Let Q; be the number of queries for user U; before the i-th query is made, and
let H;, be the the number of those @); queries that end up with the answer x. Let N = 2" and
M = 2™. Then

R s =)
ze{0,1}m ‘
- S (@) s (@)
ze{0,1}m ze{0,1}m

where the inequality is due the fact that @Q; < B < N/2. Taking expectation of both sides, we

obtain
AM o) 2
2 7
X <5 3 B|(G-me)]
ze{0,1}m
Fix x € {0,1}". On the one hand, we will show that

. 2
Pr[(% - Hx> > 1.5nB} <7 (3)
On the other hand, as both Q;/M and H; , are smaller than B, we have

(&om) e

51

Thus
2

. 2 B
E[(% _ Hzx)] < 3 +15nB < 2B .

Hence from Lemma the distinguishing advantage of A against S; and Sy is at most

o) =S5 S sl(§om)])" =2

justifying Equation .

To prove the claim in Equation , it suffices to consider 7 > 1, as otherwise Q; = H; , = 0. We
will first give a much tighter bound in the single-user setting, showing that
, 2
Pr[(% - Hz) > 1.5nB} <gin
We will then obtain Equation for the multi-user case by applying a hybrid argument with a
blow-up factor ¢B < 22".

THE SINGLE-USER CASE. For the single-user setting,); =i — 1, and H;; has the hypergeometric
distribution HypGeo(i — 1, N/M, N)E| The following classic result gives a strong concentration
bound for hypergeometric variables.

Lemma N.2 [34] Let X be a random variable of distribution HypGeo(r, S, N), and let p = E[X] =
rS/N. Then for every A >0,

Pr[| X — p| > Ar] < 2e" 2T

Using Lemma [N.2{ for H;, with A = 1/1.5n/(i — 1), we obtain

Pr [QM ~ Hiu| > /T5n(i— 1)] <27 <274
Asi—1< B,
. 2 ;
Pr[(% —Hx> > 1.5nB} — Pr U% —H;,| > 1-5nB]

< Pr [‘% - Hi,a:

zm} <oin

THE MULTI-USER CASE. Consider the following games G4, with ¢t € {1,...,¢q} and s € {0,...,
B —1}. In game G, ,, one picks a random variable V; ; from the distribution HypGeo(s, N/M, N).
One wins this game if (V; s — s/M)? > 1.5nB.

In the multi-user setting, the adversary can be viewed as playing the ¢B games above simulta-
neously; in game Gy, it targets user U; = t with); = s queries. Note that the probability

2
Pr [((j\g/} — Hm) > 1.5nB] is at most the chance that the adversary wins some game. For each

fixed t and s, the chance the adversary wins the game G s, as shown in the single-user setting, is at
most 274", Hence by the union bound, the chance that the adversary wins some game is at most
qB/2*". Without loss of generality, assume that ¢B < 22", otherwise the claim in this theorem is

!The hypergeometric distribution HypGeo(r, S, N) describes the number of red balls when we sample uniformly
without replacement of r balls from a set of S red balls and N — S blue balls.

52

Game G1(A) Games Ga(A) , G3(A)
v+ 0; b s ANEW’ENC; Return (b =1) v 0; b s ANE\N,ENC; Return (b = 1)
NEW() NEW()
vev+1; K,<+s{0,1}F v v+ 1
Enc(i, M) ENc(i, M)
Ifig{l,...,v} return L Ifig{1,...,v} return L
My - My, < M; IV s {0,1}" My My, < M; IV +s{0,1}"
For j <~ 1 to m do For j < 1 tom do
Vi« add(lV,j); X « E(K;,V) V « add(IV, j); X «s{0,1}"
Cj « XM, If Tbi[i, V] # L then
Return IV|[Cy - O bad « true; | X < Tbl[i, V]
Thi[i, V] « X; Cj « XM,
Return IV||Cy -+ Cp,

Game Gy4(A) Enc(i, M)

v 0; b s ANEWENC Return (b = 1) Ifig{1,...,v} return L
NEw() C s {0,1}1MI; IV s {0,1}"
— Return IV||C

vi—v+1

Figure 22: Games G1—Gy4 in the proof of Proposition Game Go contains the corresponding
highlighted code, but game Gg does not.

moot. Then

Qi

2 B
Pr [(= 1.5nB] < 47 g

gin =

M

O Proof of Proposition 6.3

Without loss of generality, assume that for each query ENc(i, M), the length |M| is a multiple of
n. Indeed, a query ENc(i, M) with a fragmentary M can be simulated by (i) padding M to obtain
a full-block message M’, (ii) querying ENc(i, M'), and (iii) truncating the answer.

Consider games G1-Gy4 in Fig. From the definition,

AdVER (g adq (A) = Pr[Gi(A)] — Pr[Ga(A)] .

We now describe the game chain. In game Go, each call to E(Kj,) is replaced by a corresponding
call to a truly random function f; <—s Func({0,1}", {0, 1}"). These functions are lazily implemented
by maintaining a table Tbl of the defined points. To bound the gap between G; and Gg, we
construct the following adversary B attacking the PRF security E. Adversary B runs A and
simulates game G, but each call to E(Kj,-) is replaced by a corresponding query to EVAL(4,-).

Then B’s real world corresponds to game G, and its ideal world corresponds to game Go, and
thus

Adv2 (B) = Pr[G1(A)] — Pr[Ga(A)] .

Adversary B therefore makes at most o queries, with B queries per user. From the Multi-user

93

PRP/PRF Switching Lemma,
. B
AdvP(B) < AdvDP(B) + 2—;’ .
In game Gg, if there are two queries ENC(i, M) and ENC(i, M;) that internally call f;(IVo+4) and
fi(IV1 +j) respectively, and IVo+1i = IV] + j, then they will get the same answer. Instead, in game
Gg3, the answers are chosen independently. The two games are identical until the flag bad is set,

and thus from the Fundamental Lemma of Game Playing [11],
Pr[Ga(A)] — Pr[G3(A)] < Pr[Gs(A) sets bad] .
We now bound the chance that game Gg sets bad. Consider the j-th encryption query. Suppose
that it targets user ¢ and let L; be the block length of the message. Note that the adversary can
choose L; adaptively, and thus it is actually a random variable, depending on the output of the
game. This query leads to L; distinct calls to f;. Since (i) there are at most B prior calls to f;, (ii)
marginally, the (n — 1)-bit suffix of each call is uniformly random, and (iii) two calls from different
queries are independent, the probability that this query triggers bad is at most
B-E[Lj)
on—1 '

Summing this over all queries,

Pr[Gs(A) sets bad] < 2275 B[y L] <

J

2Bo
n
Game Gy is a simplification of game G, and thus
Pr[G4(A)] = Pr[Gs(A)] .
Summing up,
AdViCn'IqR[E,add] (A) = Pr[Gi(A)] — Pr[Gy(A)]
3

i=1

3Bo
on

P Proof of Proposition [6.4

Consider games G1—Gy4 in Fig. From the definition,
Advgmacoe,g)(A) = Pr[Gi(A)] — Pr[Gy(A)] .

We now describe the game chain. In game Go, each call to E(K_,,, -), where K{, is the blockcipher
subkey of the master key K;, is replaced by a corresponding call to a truly random function
fi s Func({0,1}",{0,1}"). These functions are lazily implemented by maintaining a table Tbl of
the defined points. To bound the gap between G; and Go, we construct the following adversary
B attacking the PRF security F. Adversary B runs A and simulates game Gq, but each call to
E(Kj,-) is replaced by a corresponding query to the oracle EVAL(Z,-) of 5. Then B’s real world
corresponds to game G1, and its ideal world corresponds to game Gg, and thus
Adv2 (B) = Pr[G1(A)] — Pr[Ga(A)] .
Adversary B therefore makes at most ¢ queries, with at most B queries per user. From the Multi-
user PRP/PRF Switching Lemma,
Bq

AdvP(B) < AdvEP(B) + o

o4

GaLGl(A) Games Ga(A) , G3(A)
v+ 0; b s .ANEW’EVAL v 0 b s ANEW,EVAL
Return (b’ = 1) Return (V' =1)
NEW() NEW ()
v v+l K, +s{01}Fn v v+ 1 K, <s{0, 1}k
EvaL(i, (N, A, M)) Evar(i, (N, A, M))
Kin”Kout — Kz' KinHKout <~ Ki
X« NBG(Ki,, M, A) X« NBG(Kn, M,A); V<«s{0,1}"
Y ¢ E(Kout, X)&X If Thi[i, X] # L then
Return Y bad < true; V < Tbl[i, X]
Thl[i, X] < V; YV «+ V&X; Return Y
Game Gy(A) Exc(i, (N, 4, M))
v 4 0; b s ANFWEVAL: Return (b = 1) Ifig{1,...,v} return L
NEW() Y +s{0,1}"
— Return YV
v—v+1

Figure 23: Games G1—Gy in the proof of Proposition Game Gg contains the corresponding
highlighted code, but game Gg does not.

In game Go, if there are two encryption queries on the same user ¢ that make the same call to f;
then the two answers are the same. In contrast, in game Gg, the two answers are independent.
The two games are identical until the flag bad is set, and thus from the Fundamental Lemma of
Game Playing [11],

Pr[Gy(A)] — Pr[Gs(A)] < Pr[G3(A) sets bad] .

We now bound the chance that game Gs sets bad, for a computationally unbounded adversary.
Note that what the adversary receives are simply independent, uniformly random n-bit strings.
Moreover, these strings are also independent of the event that game Gs sets bad. Since we consider
a computationally unbounded adversary, without loss of generality, assume that the adversary is
deterministic and non-adaptive (meaning all of its queries are created before seeing the outputs).
Consider two queries (i, (N, A, M)) and (i, (N*, M*, A*)) of the same user i. These queries make

the same call to f; if and only if
G(KL, A M)BN = G(K.,A*, M*)B N* .

A, M)®G(KE, A*, M*) is either (NON*)[[0"~"7||1 or (N®N)||0"". We

n’

In other words, G(K}

n’
consider the following cases.

Case 1: (A, M) # (A*, M*). Since G is ¢-AXU, the chance that the random variable
G(Ki, A M)®G(KL, A*, M*)

in» in»
is one of the two values above is at most
2¢ - max{|Al, + [M|n, |A*|n + |M*|,, } < 20 (|Aln + [Mln + [A*]n + [M]5)
omn — omn ’
Case 2: (A, M) = (A*, M*), and thus we must have N # N*. This case G(K},, A, M)®G(K?
0", but the two values above are non-zero.

A*, M*) =

95

Summing over every pair of queries on the same user,
2cqB

Pr[G3(A) sets bad] < on

Game (4 is a simplification of game Gg, and thus
Pr[G4(A)] = Pr[Gs(A)] .
Summing up,

Adveuacor,gl(A) = Pr[Gi(A)] — Pr[Ga(A)]

(2¢+1)¢B

3
= Y PHGHA] - PrGun (A] < AdvE(B) + =

Q Proof of Theorem (6.5

Define Hy via Ho(K,N) = Y1 --- Yoy, where Y; = E(K, [i],—)[1 : n/2]. Let Hi be the Davies-
Meyer construction DM[E]. Let h be the cascade of Hy and H; as illustrated in Fig. |7, Below, we
will construct an adversary B breaking the s-way multi-collision resistance of h.

Suppose that A outputs ((Ni, K1, M, A1), ..., (Ns, Ks, My, Ag)). Let T;||C; be the ciphertext of
(N, Aj, M;) under SE with key Kj, let L; be the corresponding subkey for the blockcipher, and
suppose that T; = DM[E](L;, X;). Note that L, = Ho(K;, N;) and T; < Hy(L;, X;). In other words,
T; = h(K;, N;, X;). If A wins then we must have 77 = --- = T, creating an s-way multi-collision
on h. We will use this observation to construct B.
Adversary B runs ((Nl, Ky, My, Ay),...,(Ng, Ks, Mg, As)) +s A. Then for each i < s, it computes
the internal X; that is used to derive the tag T; under the Davies-Meyer construction. Finally, B
outputs ((Kl,Nl,Xl), R (KS,NS,XS)). This output is legitimate since K7, ..., K, are distinct.
To obtain Xy, ..., X,, adversary B has to make 2s additional blockcipher calls to get the s hash
keys. If A wins then B successfully creates an s-way multi-collision on h, and thus
AV (A) < AdviZ(B)
From Proposition one can construct adversaries Dy and D; such that
Advi®l(B) < AdvR (Do) + Adv!,(Dy) .
Also, each of Dy and Dy runs B and then calls Hy on s inputs. Note that an s-way multi-collision
on Hj is also a multi-collision on ITP[E,r,n] with pad(N,j) = N||[j + 2],—-. Hence
AdV?I);l,KDO) < Advlc'?lFl’[E,r,n},t(DO) :
Summing up,
AdvEETH(A) < AdViTp (g, (Do) + AdVEy) (D1) -

Since a call to Hy leads to at most 4 blockcipher calls, each D; effectively runs A and then makes
at most 6s other blockcipher calls.

R Proof of Theorem [6.6]

From Proposition without loss of generality, we can assume that A is orderly. The difference
in the advantage of A is at most ¢/2"; we will account for this difference in the final bound.

Let CTR[f,add](M) be a variant of CTR[E, add](K, M) in which each call to Ex(-) is replaced by
a corresponding call to f(-). Let CTR[Perm({0,1}"),add] be the idealized version of CTR[E, add]

56

Game G1(A)
b s ANFWENCVE yeturn (B = 1)
NEw()

vé—v+1
KU<—${O,1}’€

ENc(i, N, A, M)

Kin||Kout +— KD1[E, k + n](K;, N)

IV + GMAC2[E, H)(Kin | Kout, N, A, M)
C + CTR[E, add].Enc(Kou, M; IV)
Return C

VE(i, N, A, C)

Ifi ¢ {1,...,v} return L

Kin||Kow +— KD1[E, k + n](K, N)

M + CTRI|E, add].Dec(Kou, C)

IV + GMAC2[E, H](Kin || Kout, N, A, M)

Game Gz(A)

Y s ANEWENCVE: poturn (b = 1)

NEw()

v+—v+1
For N € N do
KN s {0,137 KoY s {0, 1}

ENc(i, N, A, M)

Kin — Kii,;N; Kout A Kt?ujtv

IV < GMAC2|E, H](Kin | Kout, N, A, M)
C «+ CTR[E, add].Enc(Kou, M; IV)
Return C

Vr(i, N, A, C)

Ifi ¢ {1,...,v} return L

Kin <~ Kfr;N? Kout <~ Kéhjt\[

M «+ CTR[E, add].Dec(Koyt, C)

IV < GMAC2|E, H|(Kin|| Kout, N, A, M)

If IV # C[1 : n] then return L If IV # C[1 : n] then return L
Return M Return M

Figure 24: Games G and G in the proof of Theorem

in which each call to E(Kj,-) is replaced by a corresponding call to m; <—s Perm({0,1}"). Let
GMAC2[E, H|(Kin, N, A, M) be a variant of GMAC2[E, H|(Kin|| Kout, N, A, M) in which each call
to E(Kout,-) is replaced by a corresponding call to f(-). Let GMAC2[Perm({0,1}"), H] be the
idealized version of GMAC2[E, H] in which each call to F(K.,,-) is replaced by a corresponding

out»
call to m; <—s Perm({0,1}™).
Consider games G1-Gg in Fig. Fig. Game G corresponds to Gze:b-SIV-Cl[EHadd] (A), and
game Gg to game GrcaAnS-SIV-Cl[E,H,add} (A). Then

Ad"?/ﬁ?ﬁSlv-an,H,add} (A) = Pr[G1(A)] — Pr[Gg(A)] -

We now describe the game chain. In game Gg, instead of using KD1 to derive subkeys for each
(i, N), we pick the subkeys uniformly at random. To bound the gap between G; and Gg, we
construct an adversary D attacking the PRF security of KD1 as follows. Adversary D runs A and
simulates game Gi, but each call to KD1[E, k + n](Kj;,-) is replaced by a corresponding call to
EvAL(i,-). Then

rf
AdvﬁDl[E’kJrn] (D) = Pr[G1(A)] — Pr[Ga(A)] .
Adversary D makes at most g queries with at most D queries per user. Using Lemma [6.2] with

t =1+ [k/n] < 3, one can construct an adversary By making at most 6¢ queries with at most 6D
queries per user such that

6v/nDq

23n/4

rf T
AdvﬁDl[E’kJrn} (D) < AdvyP(By) +

In game Gg, each call to E (Kélff, -) is replaced by a corresponding call to a truly random function
fi,n <=3 Func({0,1}",{0,1}"). To bound the gap between Gy and Gg, we construct an adversary
By attacking the PRF security of E as follows. It runs A and simulates game Go, and keeps an
array Users that translates a pair (i, N) of A to its user index. In particular, in each encryp-
tion/verification query of A to user ¢ with nonce N, if Users[i, N] is not defined then B; creates a

57

Game G3(A)
b s ANFWENCVE yeturn (B = 1)
NEw()
vv+1
For N € N do
KN s {0,1}"
fi.n <sFunc({0,1}",{0,1}"™)

Enc(i, N, A, M)

IV < GMAC2[f; n, H|(K:N, N, A, M)
C < CTR[fin,add].Enc(M; V)
Return C

VF(i, N, A, C)

Ifig {1,...,v} return L

M <+ CTR|[fi n,add].Dec(C)

IV < GMAC2[f; n, H|(KLN, N, A, M)
If IV = C[1 : n] then return L
Return M

Game Gy4(A)

Y s ANEWENCVE: poturn (b = 1)

NEw()

veov+1
For N ¢ N/ do
K2N —s{0,1}"
fi.n <sFunc({0,1}",{0,1}")
gi,N <3 Func({O, 1}", {0, 1}”)
Enc(i, N, A, M)

IV < GMAC2[f; n, H|(K:N, N, A, M)
C « CTR[gi.x, add].Enc(M; V)
Return C

VF(i,N, A, C)

Ifig {1,...,v} return L

M «+ CTRJg;,n,add].Dec(C)

IV < GMAC2[f; n, H|(KLN, N, A, M)
If IV = C[1 : n] then return L
Return M

Figure 25: Games G3—Gy in the proof of Theorem

new user v via the NEW oracle and stores Users[i, N] <— v, otherwise B retrieves v < Users[i, N].
Moreover, each call to E(KZ,’UJX, -) is replaced by a corresponding call to EVAL(v,). Then
Adv2(B)) = Pr[Gy(A)] — Pr[Gs(A)] .

Adversary B makes at most ¢ + ¢ queries, with at most 2B queries per user. From the Multi-user
PRP/PRF Switching Lemma,
2B(0 + q)

2n)
We now have two adversaries By and B attacking the PRP security of . We can use the standard

hybrid argument to create a unified adversary B attacking F as follows. Adversary B tosses a fair
coin b <s{0,1}, and then runs B,. Then

T 1 T T
AdVEP(B) = 5 (Adv%p(Bo) + Adv%p(81)> .

AdvP(B)) < AdVEP(By) +

Back to the game chain, recall that in game Gs, each encryption/verification query on user i and
nonce N results in running GMAC2 and CTR on the same random function f; 5. However, due to
a domain separation, GMAC2 runs f; ; on inputs starting with 0, whereas CTR runs f; y on inputs
starting with 1. In game G4, we instead run GMAC2 and CTR on independent random functions
fi.n, gin <=3 Func({0,1}",{0,1}"). Thanks to the domain separation,

Pr[G4(A)] = Pr[Gs(A)] .
In game G, instead of using random functions f; , g; v <=3 Func({0,1}",{0,1}"), we use random
permutations m; n, 7} y =3 Perm({0,1}™). We make at most o+ ¢ calls to these permutations, with
at most 2B calls per user. From the Multi-user PRP/PRF Switching Lemma,
< 2B(;n+ q9)
In game Gg, instead of running GMAC2 to generate IVs, we use truly random functions that are

Pr[G4(A)] — Pr[Gs(A)]

58

Game G5(A) Game Gg(A)

b/ <_$ANEW’ENC,VF; return (b/ — 1) b/ s ANEW,ENC,VF; return (b/ _ 1)
NEW() NEW()
vev+1 vv+1l
For N € N do For N € N do
KN s {0,1}" KN s {0,1}"
Ty, N s Perm({0,1}"); 7 y s Perm({0,1}") Ty, N s Perm({0, 1}"); 7 x s Perm({0,1}")
Enc(i, N, A, M) ENc(i, N, A, M)
IV < GMAC2[m; v, HI(K:N N, A, M) IV «s{0,1}"; Tbl[i, N, A, M] + IV
C « CTR[n} y,add].Enc(M;1V) C « CTR[n} y,add].Enc(M;1V)
Return C Return C
VF(’L,N,A,C) VF(Z7N7A50)
Ifig {1,...,v} return L Ifi ¢ {1,...,v} return L
M < CTRI[r} y,add].Dec(C) M < CTRIr} y,add].Dec(C)
IV « GMAC2[m; v, H|(K:N, N, A, M) IV s {0, 1}"
If IV = C[1 : n] then return L If Tbl[i, N, A, M] # L then
Return M IV « Tbl[i, N, A, M]

Tbli, N, A, M] « IV
If IV = C[1 : n] then return L

Return M
Game G7(A) Game Gg(A)
b s ANEW.ENCVE peturn (B = 1) b s ANFW.ENGVE yeturn (B = 1)
NEw() NEw()
vev+1 vev+1
ENC(i, N, A, M) ENC(i, N, A, M)
Ifi ¢ {1,...,v} return L Ifi ¢ {1,...,v} return L
IV «s{0,1}" C <5 {0,1}IMI+n
C « CTR[n;} y,add].Enc(M;1V) Return C
Return C
VE(i, N, A,C) VE(i, N, A,C)
Ifi ¢ {1,...,v} return L Ifi ¢ {1,...,v} return L
Return false Return false

Figure 26: Games G5—Gg in the proof of Theorem

lazily implemented via keeping a table Tbl of defined points. To bound the gap between G and
Gg, we will generate an adversary B attacking the PRF security GMAC2[Perm({0,1}"), H]. It
runs A and simulates game Gs, and keeps an array Users that translates a pair (i, V) of A to its
user v like By. Moreover, each call to GI\/IAC2(Kin;N, N, A, M) is replaced by a corresponding call
to EvAL(v, (N, A, M)). Then

AdVEacaperm((o3, (B2) = PrlGs(A)] — Pr[Ge(A)] .
Adversary B2 makes at most ¢ queries with at most B blocks per user. Then from Proposition

rf (20 + 1)qB
AdvEyacaperm((o,13m),) (B2) < —om -

In game G, each verification query will return false. To bound the gap between Gg and Gr,

99

consider a verification query VF(i, N, A,C) in game Gg. Let IV* be the initialization vector in C,
and let M be the tentative decrypted message by running CTR on C'. This query can return true
if and only if IV* is the same as the targeting IV.

e If there is no prior query ENc(i, N, A, M) then the chance that IV* = IV is at most 1/2".

e If there is a prior query C" «— ENC(i, N, A, M) then IV is the initialization vector of C’. Moreover,
due to the restriction on A, we must have C' # C’. Since C' # C and decrypting them under
CTR yields the same message, their initialization vectors IV and IV* must be different.

Hence in all cases, the chance that this verification query can return true is at most 1/2". Summing
this over at most g verification queries,
q
Pr(Go(A)] ~ Pr{Gr(A)] < o

In game Gg, for each query ENc(i, N, A, M), we simply return a fresh random C' s {0, 1}/MI+n,
To bound the gap between Gr and Gg, we will generate an adversary Bs attacking the chosen-
plaintext security of CTR[Perm({0,1}"),add]. Adversary Bs runs A and simulates game Gz, and
keeps an array Users that translates a pair (i, V) of A to its user v like By. In addition, each call
to CTR[7} 5, add].Enc is replaced by a corresponding call to ENC(v,). Then

AdviCn'IqR[Perm({O,l}"),add] (B3) = Pr[G7(A)] — Pr[Gs(A)] .
Adversary Bs’s queries consists of at most o blocks with at most B blocks per user. Thus from
Proposition
Adv T Rperm({0.13) add] (B3) < ?);—TB :
Summing up,
6vnDq ToB+ (2¢+5)¢B +q
93n/4 omn ’
If we remove the restriction that the adversary is orderly,
6vnDq ToB+ (2¢+5)gB + 2q

AdVErT siv-ci(p, madg) (A) < 2- AdvEP(B) +

AdVeATsiv-ci(p, madd(A) < 2-AdvpP(B) +

23n/4 on
6vnDq ToB+ (2c+ 7)¢B
prp
< 2-Adv;"(B) + D3/ o :

S Proof of Theorem [7.2]

a) We construct the adversary By as follows. It runs

((Nl,Kl,Ml,Al), ceey (NS,KS,MS,AS)) 3 AO .
Adversary By then outputs (K7, ..., Ks). Let P;||C; be the ciphertext by encrypting (N;, A;, M;)
under UtC[F, SE] with key K;, where (P;, L;) + F(K;, N;). If Ay wins then we must have P; ==
Py, meaning that By also breaks the binding security of F. Hence Advf}?&,{sa’ <(Ao) < Adv,]é’f?d(l’j’o)
as claimed.
b) Consider games Go—Go in Fig. Game G corresponds to ijefcl[F,SE] (A1), and game Gy to
game ij‘tncc%,: SE] (A1). Thus

AQVEE oo (Ar) = Pr{GolAr)] — PriGa(Ar)] -
Below, we will describe the transition in the game chain.

In game Gq, each call to F(Kj,-) is replaced by a call to a corresponding truly random function

60

Game Go(A;)

v 0; b/<_$A11\IEW,E1\‘C,VF

Return (b = 1)

NEw()

v v+ 1; K, +s{0,1}F
ENcC(i, N, A, M)

Ifi ¢ {1,...,v} return L
(P,L) + F(K;,N)

C + SE.Enc(L,N, A, M)
Return P||C
VF(i, N, A, P*||C)

Ifi g {1,...,v} return L
(P,L) + F(K;,N)

If P* # P then return false
V « SE.Dec(L, N, A, C)
Return (V # 1)

Game G1(A;)

.o NEw,ENC,VF
v 0; Vs A

Return (b’ =1)

NEw()

v v+ 1; Ky +s{0,1}F

ENC(i, N, A, M)

Ifi ¢ {1,...,v} return L

P+s{0,1}*; L<s{0,1}*

If Keys[i, N] # L then (P, L) < Keys[i, N]
Keys[i, N] < (P,L); C < SE.Enc(L, N, A, M)
Return P||C

VF(i, N, A, P*||C)

Ifi ¢ {1,...,v} return L

P<+s{0,1}%; L+s{0,1}F

If Keys[é, N] # L then (P, L) + Keys[i, N]
Else Keys[i, N] < (P, L)

If P* # P then return false

V + SE.Dec(L, N, A,C); Return (V # 1)

Game Ga(A;)

NeEw,ENC,VF
v 0; b s APTENOM

Return (b’ = 1)
Enc(i, N, A, M)

Ifi ¢ {1,...,v} return L
C —s {07 1}SE4|en(|1W\)

P +5{0,1}*; Return P||C

NEw()
véi—v+1

VFE(i, N, A, P*||C)

Ifi g {1,...,v} return L
Return false

Figure 27: Games Go—Gg in the proof of Theorem

fi <3 Func({0,1}7,{0,1}* x {0,1}*); the latter is lazily implemented by keeping an array Keys of
defined points. To bound the gap between Gy and G, we construct an adversary B; attacking
the PRF security of F as follows. It runs 4; and simulates game Gy, but each call to F(K,) will
be replaced by a call to B;’s oracle EVAL(,-). When A; outputs its guess, B; outputs the same
guess. Then By’s real world corresponds to game Gg, and its ideal world corresponds to game Gj.
In other words,

AdvP(B)) = Pr[Go(A;)] — Pr[G1(A1)] -

To bound the gap between G and Go, we construct the following adversary Bs. It runs A4; and
simulates game G, and keeps an array Users that translates a pair (i, N) of A; to its user index.
In particular, in each encryption/verification query of A; to user ¢ with nonce N, if Users[i, N] is
not defined then Bj creates a new user v via the NEwW oracle and stores Users[i, N] <— v, otherwise
By retrieves v «+— Users[i, N|. Moreover, for each encryption query (i, N, A, M) of As, the call to
SE.Enc in game G will be replaced by a query (v, N, A, M) to the ENC oracle of By. Likewise, for
each verification query (i, N, A, C) of Aj, instead of calling SE.Dec and checking if the decrypted
message is L as in game Gy, adversary Bs queries (v, N, A, C) to its VF oracle.

61

We note that By does not query C < ENc(v, N, A, M) first and then query VF¥(v, N, A, C'). Assume
to the contrary that Bs violates this restriction. This can only happen if A; first queries P||C <+
ENc(i, N, A, M) and then queries VF(i, N, A, P*||C') with P* # P. However, in that case By’s
implementation of the verification oracle of A; will first retrieve the same prior P, and then return
false (due to the failure of the checking P* # P) without calling SE.Dec, leading to a contradiction.

Thus game Greal(Bg) corresponds to game G1, and game Grand (B3) corresponds to game Go. Hence
Advunae(Bg) = Pr[G1 (Al)] - Pr[Gg(Al)} .
Summing up,

Advijicrse (A1) = Pr{Go(A1)] - Pr{Ga(A)]

1
= Y PrGi(A)] — Pr[Gip1 (A)] = AdvE" (B) + AdvEEe(By)
=0

as claimed.

T Proof of Theorem [7.3]

a) Let G : {0,1}* x N — {0, 1}* be the hash function that G(K, N) = P, where (P, L) + F(K, N).
Let h be the cascade of G and H as in Fig. |7l Below, we will construct an adversary A’ attacking
the multi-collision resistance of h.

Suppose that Ay outputs ((Nl,Kl,Ml,Al),...,(NS,KS,MS,AS)). Let T;||C; be the ciphertext
when one encrypts (N;, A;, M;) under RtC[F, SE, H] with key K;. Let (P;, L;) < F(K;, N;). Then
T; = h(K;, N;,C;[1 : n]). Note that if Ay wins then T} = --- = Ty, leading to an s-way multi-
collision on h.

Adversary A’ first runs ((Nl, K1, My, Ay),...,(Ns, Ks, Mg, AS)) s Ag. It then encrypts (N1, M1, Ay)
via RtC[F,SE, H] under key K, obtaining the ciphertext T3 ||C;. It then outputs

((Kl,Nl,Cl[l : n]), ey (KS,NS,Cl[l : n])) .

Note that the same C; is used in all s triples. This output is legitimate because K1, ..., K, are
distinct. If Ag wins then C; = --- = (s, and thus h(K;, N;, C1[1 : n]) = h(K;, N;,C;[1 : n]) = T,
and A’ successfully creates an s-way multi-collision on h. Hence

AV se s (Ao) < Adviti(A)
From Proposition one can construct adversaries By and By such that
Advcoll(A/) < AdVCOH<B(),) + Advcoll<B))

Note that attacking the multi-collision resistance of G is the same as attacking the binding security
of F, and thus

Summing up,
AdVRtC[F se),s(Ao) < AdvPyd(By) + Advi(By) .

Each of By and By runs A’ and then runs G on s inputs. Thus effectively, each of them runs A and
then uses RtC[F, SE, H] to encrypt one of the s messages of Ag, and then runs F on s inputs.

b) Consider games Go—Gy in Fig. [28 and Fig. Game G corresponds to game Gl;ftzaLCl[F,SE,H] (Ay),
and game Gy to game GE%%F SE, H] (Ay). Thus

AdVgiclr se m) (A1) = Pr{Go(A1)] = Pr{Ga(A1)] -

62

Game Go(A;)

v 0; b/<_$A11\IEW}E1\‘C7VF

Return (b = 1)

NEw()

v v+ 1; K, +s{0,1}F
ENC(i, N, A, M)

Ifi ¢ {1,...,v} return L
(P,L) + F(K;,N)

C + SE.Enc(L,N, A, M)
T+« H(P,C[1:n])
Return T||C
Vr(i, N, A, T||C)

Ifig {1,...,v} return L
(P,L) + F(K;,N)

T* + H(P,CI[1:n))

If T # T then return false
V < SE.Dec(L, N, A, C)
Return (V # 1)

Game G1(A;)

N NEw,ENC,VF
v 0; Vs A

Return (b’ =1)

NEw()

vv+1

ENC(i, N, A, M)

Ifi ¢ {1,...,v} return L

P+s{0,1}%; L+«s{0,1}*

If Keys[i, N] # L then (P, L) < Keys[i, N]
Keys[i, N] < (P, L); C < SE.Enc(L, N, A, M)
T «+ H(P,C[1:n]); Return T||C
VF(i, N, A, T|C)

Ifi ¢ {1,...,v} return L

P<+s{0,1}%; L+s{0,1}*

If Keys[é, N] # L then (P, L) + Keys[i, N]
Keysli, N] < (P,L); T* « H(P,C[1 : n])
If T # T then return false

V + SE.Dec(L, N, A,C); Return (V # 1)

Figure 28: Games Gy

and G in the proof of Theorem

Game Ga(A;)

v O; b'<—$A11\IEW"ENC’VF

Return (b' =1)

New()

v v+ 1; K, s {0,1}F
Ifig{1,...,v} return L

P «+s{0,1}*

If Keys[i, N] # L then P «+ Keysli, N]
Keys[i, N] - P; C s {0, 1}3Elen(IM])
T <+ H(P,C[1:n])

Return T'||C

Vr(i, N, A, T||C)

Ifi ¢ {1,...,v} return L

Return false

Games G3(A1), G4(A1)

v 0; b/ <;$A11\]EVV,ENC,VF

Return (b' =1)
NEw()
v v+ 1; K, +s{0,1}F
ENc(i, N, A, M)
Ifi ¢ {1,...,v} return L
C s {07 1}SE.|en(|M|)
R+ C[l:n]; T+s{0,1}"
If Tbl[i, N, R] # L then

bad « true; T <+ Tbl[i, N, R]
Tbl[i, N, R] + T; return T||C
VF(i, N, A, T|C)
Ifig{1,...,v} return L
Return false

Figure 29: Games Go—Gy4 in the proof of Theorem [7.3
but game G4 does not.

Game G3 contains the highlighted code,

Below, we will describe the transition in the game chain.

In game G, each call to F with a master key K; is replaced by a call to a corresponding truly
random function f; <—s Func(N, {0,1}* x {0,1}"); the latter is lazily implemented by keeping an

63

array Keys of defined points. To bound the gap between Gy and Gi, we construct an adversary
B attacking the PRF security of F as follows. It runs A; and simulates game G, but each call to
F(K;,-) will be replaced by a call to the oracle EVAL(4,-). When A; outputs its guess, Bs outputs
the same guess. Then Bs’s real world corresponds to game (g, and its ideal world corresponds to
game 1. In other words,

AdvP(By) = Pr[Go(A1)] — Pr[G1(A)] -

In game Gg, instead of running SE.Enc to generate a genuine ciphertext C, we will sample a truly
random string of the same length. In addition, instead of running SE.Dec and comparing the
decrypted message to L, we will instead return false. As a result, the oracle VF will always return
false, and the code can be simplified accordingly.

To bound the gap between Gi and Geo, we construct the following adversary Bs attacking the
misuse-resistance security of SE. It runs A; and simulates game G, and keeps an array Users
that translates a pair (i, N) of A; to its user index. In particular, in each encryption/verification
query of A;j to user ¢ with nonce N, if Users[i, N] is not defined then Bs creates a new user v via
the NEw oracle and stores Users[i, N| < v, otherwise Bs retrieves v < Users[i, N]. Moreover, for
each encryption query (i, N, A, M) of Aj, the call to SE.Enc in game G; will be replaced by a
query (v, N, A, M) to the ENC oracle of Bs. Likewise, for each verification query (i, N, A, C) of A;,
instead of calling SE.Dec and checking if the decrypted message is | as in game G, adversary Bs
queries (v, N, A, C) to its VF oracle.

We note that Bs does not query C < ENC(v, N, A, M) first and then query VF¥(v, N, A, C). Assume
to the contrary that Bs violates this restriction. This can only happen if A; first queries T'||C <+
Enc(i, N, A, M) and then queries VF(i, N, A, T'||C) with T" # T. However, in that case Bs’s
implementation of the verification oracle of A; will first recompute 7" and then return false (due to
the failure of the checking 7" # T') without calling SE.Dec, leading to a contradiction.

Thus game GE2!(B2) corresponds to game G, and game GERY(B,) corresponds to game Go. Hence

Advgléae(Bg) = PI‘[Gl(.Al)] — Pr[Gg(Al)] .

In game Gg, each call to H under an ENC query for user ¢ and nonce N is replaced by a call to a
truly random function f; y <—s Func({0,1}", {0, 1}"); the latter is lazily implemented by keeping an
array Tbl of defined points. To bound the gap between game Go and game Ggs, we will construct
another adversary By attacking the PRF security of H. It runs 4; and simulates game Go,
and also keeps an array Users that translates a pair (i, N) of A; to its user v like adversary Bs.
In the implementation of ENc(i, N, A, M), instead of calling H, adversary By will retrieve the
corresponding user v < Users[i, N|, and then runs EVAL(v,). Then By’s real world corresponds to
game (o, and its ideal world to game Gj. In other words,

AdVP (By) = Pr[Ga(A;)] — Pr[Gs(A)]
Recall that in game Gg, for two ENC queries of the same user and nonce, if their ciphertexts Tp||Co
and T1||Cy satisfy Cp[l : n] = C1[1 : n] then we must have Ty = T3. In contrast, in Gy, each string

T is sampled independent of prior ones. Games Gz and G4 are identical until the flag bad is set,
and thus from the Fundamental Lemma of Game Playing [11],

Pr[Gg(Al)] — PT[G4(.A1)] < PT[G4(A1) sets bad] .

We now bound the chance that game Gy sets bad. For each ENC query, because (i) there are at
most B prior ENC queries of the same user and nonce, and (ii) the ciphertexts of the queries are
uniformly and independently sampled, the chance that this query triggers bad is at most B/2".

64

Summing up over at most g encryption queries, by the union bound,

B
Pr[G4(A1) sets bad] < 2—3 .
Summing up,

Adviiclrse (A1) = Pr{Go(A1)] — Pr{Ga(A)]

3
= Y Pr(Gi(A)] - Pr[Gigi(A)]
i=0
prf mrae prf Bgq
< Advg (B2) + Advgg™(Bs) + Advl; (By) + o
as claimed.

65

	Introduction
	Preliminaries
	Committing AE Framework
	Some Building Blocks
	A Committing Variant of GCM
	A Committing Variant of AES-GCM-SIV
	Adding Key-Committing Security To Legacy AE
	References
	Relations Among Committing Notions
	GHASH As a Weakly Regular Hash
	A Lower Bound on Multi-collision Resistance
	Proof of Lemma 4.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3
	Proof of Proposition 4.4
	An Attack on the ITP Construction
	Proof of Proposition 4.5
	Proof of Theorem 5.1
	Proof of Theorem 5.1
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Proposition 6.1
	Proof of Proposition 6.3
	Proof of Proposition 6.4
	Proof of Theorem 6.5
	Proof of Theorem 6.6
	Proof of Theorem 7.2
	Proof of Theorem 7.3

