
Non-interactive Mimblewimble transactions, revisited

Georg Fuchsbauer1 and Michele Orrù2

1 TU Wien, Austria
2 UC Berkeley, USA

first.last@{tuwien.ac.at,berkeley.edu}

Abstract. Mimblewimble is a cryptocurrency protocol that promises to overcome notorious
blockchain scalability issues and provides user privacy. For a long time its wider adoption
has been hindered by the lack of non-interactive transactions, that is, payments for which
only the sender needs to be online. Yu proposed a way of adding non-interactive transactions
to stealth addresses to Mimblewimble, but we show that it is flawed. Building on Yu and
integrating ideas from Burkett, we give a fixed scheme and provide a rigorous security
analysis in a strenghtening of the previous security model from Eurocrypt’19. Our protocol
is considered for implementation by MimbleWimbleCoin and a variant is now deployed as
MimbleWimble Extension Blocks (MWEB) in Litecoin.

1 Introduction

Mimblewimble (MW) is a cryptocurrency protocol that addresses the problem of ever-growing
blockchain data that needs to be stored by full nodes in the system. While in all other crypto-
currencies, such as Bitcoin, the full transaction history must be kept for ever,1 in MW, coins can
be deleted after having been spent while maintaining public verifiability of the ledger. Instead of
growing linearly (like Bitcoin [Nak08], whose blockchain is now > 400 GB)2, MW-based currencies
only need to store the currently existing coins (the UTXO set) plus some small data per transaction.

Mimblewimble achieves this by cleverly combining three ideas that were initially envisioned
for Bitcoin: (1) Confidential transactions [Max15] hide the transacted amount by only containing
commitments to the amounts of the inputs and outputs and giving proofs that the sum of the input
values equals the sum of the output values, showing that the transaction is “balanced”. Thus, no
transaction creates fresh money (apart from coinbase transactions, which create money explicitly).
Confidential transactions are now implemented e.g. in Monero.3

(2) CoinJoin [Max13a] is the idea of merging (or aggregating) several transactions into one big
transaction, in a way that makes it impossible to associate the inputs and outputs of the original
transactions. In Bitcoin, this can only be done by having the creators of the transactions interact
in order to merge them before being included in the blockchain. In contrast, in MW merging can be
done a posteriori without involving the original creators. The result is that in a MW blockchain all
transactions are merged into one huge transaction, and there is no information about which inputs
led to which outputs.

(3) Transaction cut-through [Max13b] is the idea that if a transaction spends an output (which
corresponds to a “coin” in the system) txo1 and creates txo2, which is then spent by another
transaction creating txo3, then this should be equivalent to a “cut-through” transaction spend-
ing txo1 and directly creating txo3. While in Bitcoin this could only be done for “unconfirmed
transactions”, i.e., ones not yet included in any block, MW allows cut-through to be done after
confirmation, which is what enables MW’s space-efficiency improvements. As every spent coin is

1 An exception are recent proposals building on more speculative technology such as recursive zk-SNARKs; cf.
https://minaprotocol.com/lightweight-blockchain

2 https://www.blockchain.com/charts/blocks-size
3 https://www.getmonero.org/resources/moneropedia/stealthaddress.html

https://minaprotocol.com/lightweight-blockchain
https://www.blockchain.com/charts/blocks-size
https://www.getmonero.org/resources/moneropedia/stealthaddress.html

removed, the result is that the huge transaction representing a MW ledger only has inputs that are
the coinbase transactions and outputs that are the unspent coins. In addition, this greatly improves
user privacy, as the blockchain reveals neither the transacted amounts nor the transaction graph
defining how coins are being transferred (in Bitcoin all this can be inferred from the blockchain).

The main shortcoming of Mimblewimble is that the sender and the receiver(s) of a transaction
need to compute the transaction in an interactive protocol. It is thus not possible for a sender
to simply transfer money to a destination address without any involvement of the owner of that
address, which is the standard setting in all major cryptocurrencies.

Mimblewimble (MW) was first proposed by an anonymous author in 2016 [Jed16]. After being
initially investigated by Poelstra [Poe16], a formal model and an analysis of MW were provided
by Fuchsbauer, Orrù and Seurin (FOS) [FOS19] in 2019. In 2020, Burkett [Bur20] proposed an
extension of Mimblewimble supporting non-interactive transactions, later refined by Yu [Yu20]. We
will refer to this extension as MW-Yu. In this work, we first asses the security of MW-Yu [Yu20,
§2.1] and describe discovered vulnerabilities. We then fix the scheme, also integrating an idea from
a more recent proposal by Burkett [Bur21] and give security proofs that our scheme satisfies (an
appropriate adaptation of) the rigorous FOS [FOS19] security model for aggregate cash systems.

MimbleWimbleCoin plans to implement the protocol by year-end 2022.4 A variant of our proto-
col is used in the MimbleWimble Extension Blocks (MWEB), which are now supported by Litecoin
(one of the top cryptocurrencies with a market capitalization of > 4 billion USD).5

The Mimblewimble protocol. MW uses a group G (which we denote additively) of prime order
p with two generators G and H. As with confidential transactions [Max15], a coin is a Pedersen
commitment C = Cmt(v, q) := vH+qG to its value v using some randomness q ∈ Zp, together with
a so-called range proof π guaranteeing that v is contained in some interval of admissible values.
In MW, knowledge of the opening q of the commitment enables spending the coin. Similarly to
Bitcoin, a transaction in MW contains a list of input coins C ∈ Gn and output coins Ĉ ∈ Gn̂,
where

Ci = viH + qiG for i ∈ [n] and Ĉi = v̂iH + q̂iG for i ∈ [n̂] .

Leaving fees and coinbase (a.k.a. minting) transactions aside, a transaction is balanced if and only
if
∑
v̂−

∑
v = 0 (where for a vector v = (v1, . . . , vn), we let

∑
v :=

∑n
i=1 vi). For coins as defined

above, this is equivalent to ∑
Ĉ −

∑
C = (

∑
q̂ −

∑
q)G ,

a quantity called the kernel excess E ∈ G in MW. If the transaction is balanced, then knowledge
of the openings q̂ and q of all involved coins implies knowledge of the discrete logarithm logE
(to base G) of the excess. Intuitively, if the producer of the transaction proves knowledge of logE
then, together with the binding property of Pedersen commitments, this should guarantee that the
transaction is balanced. In MW this is done by generating a signature σ under public key E, using
its discrete logarithm

∑
q̂ −

∑
q as the signing key.

FOS [FOS19] prove that when using Schnorr signatures (and assuming the range proofs are
simulation-extractable; cf. Section 5), balancedness follows from the hardness of computing discrete
logarithms in G in the random-oracle model. FOS also show that as long as a user owning a coin C
in the ledger keeps the opening private, no one can steal C (i.e., create a transaction that spends C).

Transactions in Mimblewimble can easily be merged non-interactively, in a similar way to Coin-
Join [Max13a]. Consider two transactions tx1 = (Ĉ1,C1,π1, E1, σ1) and tx2 = (Ĉ2,C2,π2, E2, σ2).
The aggregate transaction tx is defined as the concatenation (denoted by “∥”) of inputs and outputs,
that is,

tx =
(
Ĉ1∥Ĉ2,C1∥C2,π1∥π2, E1∥E2, σ1∥σ2

)
.

4 https://www.mwc.mw/mimble-wimble-coin-articles/mimblewimble-non-interactive-transactions-review
5 https://blog.litecoin.org/litecoin-core-v0-212-release-282f5405aa11 and
https://twitter.com/DavidBurkett38/status/1555100039822954496

2

https://www.mwc.mw/mimble-wimble-coin-articles/mimblewimble-non-interactive-transactions-review
https://blog.litecoin.org/litecoin-core-v0-212-release-282f5405aa11
https://twitter.com/DavidBurkett38/status/1555100039822954496

A transaction of the form tx = (C, Ĉ,π,E,σ) is valid if all π’s and σ’s verify and if∑
Ĉ −

∑
C =

∑
E . (0)

Outputs in one transaction that also appear as inputs in the other cancel out in Equation (0)
for their aggregation tx. They can therefore simply be removed from the input and output list
(together with their range proofs), while validity of tx will be maintained. This has been called
transaction cut-through in the literature [Max13b]. In MW, the ledger is defined as the cut-through
of the aggregation of all transactions. Since every spent coin (a.k.a. “transaction output”, TXO)
is removed by cut-through, the outputs in the ledger are precisely the unspent TXOs (UTXO),
representing the current state of the ledger. FOS [FOS19] also remark that if the used signature
scheme supports aggregation, then σ1∥σ2 can be replaced by their aggregation to further save space.
Then the only trace of a transaction whose outputs have been spent in the ledger is the value E.

Even if the lists of inputs and outputs in an aggregate transaction tx are shuffled, one can still
link inputs and outputs that come from the same component transaction, because tx contains an
excess value Ei that equals the difference between the sum of the outputs and inputs of the original
transaction. This can be prevented by using kernel offsets [Dev20b], where E is replaced by E+ tG
for a random t ←$ Zp and t is included in the transaction; the aggregate of two transactions with
(E1, t1) and (E2, t2) then contains (E1∥E2, t1 + t2). A consequence of kernel offsets is that, given
an aggregated transaction, nothing can be deduced about which inputs and outputs belonged to
the same original transaction. This is implied by our notion of transaction privacy (Section 6.6),
which we prove our scheme to satisfy.

We stress that our analysis concerns the application layer, and we do not provide network-
level privacy guarantees. Network adversaries that observe transactions being broadcast, or traffic
analysis in general, constitute an entirely different problem that we consider outside the security
of the Mimblewimble protocol per se. In practice, protocols like Dandelion [VFV17] and Tor6 can
help mitigating attacks at the network level. See for instance their adoption in Grin7.

Non-interactive transactions. The key
∑
q̂−

∑
q for the signature σ contained in a transac-

tion depends on the openings of the receiver’s and the sender’s coins. Most implementations of MW
therefore create new transactions via an interactive protocol between sender and receiver to pro-
duce σ.8 FOS [FOS19] proposed a transaction protocol, where the sender creates all output coins,
and so she can compute σ on her own. She then sends the receiver (through a separate private
channel) the transaction along with the secret key associated to one of the outputs. The receiver
creates a transaction spending this coin, merges it with the received transaction and broadcasts
the aggregate transaction to the miners. The downside of this approach is that there is a window
of time in which both sender and receiver can spend a coin, which can lead to deniability issues for
payments.

In 2020, Yu [Yu20] posted on ePrint an extension of MW for achieving non-interactive trans-
actions by adding stealth addresses [vS13,Tod14]. Each user has a wallet (or stealth address)
(A,B) ∈ G2. Given a destination wallet, a sender can derive a one-time address, unique for every
transaction, to which she sends the money. These one-time addresses are unlinkable to the wallet
they correspond to, yet the owner of the wallet is (the only one) able to derive the secret key for
it. In detail, the sender chooses a uniform element r ←$ Zp and defines the one-time key for stealth
address (A = aG,B = bG) as P = H(rA) ·G+B, where H is a cryptographic hash function. Being
provided R := rG, the owner of (A,B) can derive the secret key logP as H(aR) + b.

6 https://www.torproject.org/
7 https://docs.grin.mw/wiki/miscellaneous/dandelion/
8 For instance, in Grin this is documented in the grin-wallet documentation: https://raw.githubusercontent.
com/mimblewimble/grin-wallet/master/doc/transaction/basic-transaction-wf.png.
In Beam, this is documented in the developer documentation: https://github.com/BeamMW/beam/wiki/

Cryptographic-primitives.

3

https://www.torproject.org/
https://docs.grin.mw/wiki/miscellaneous/dandelion/
https://raw.githubusercontent.com/mimblewimble/grin-wallet/master/doc/transaction/basic-transaction-wf.png
https://raw.githubusercontent.com/mimblewimble/grin-wallet/master/doc/transaction/basic-transaction-wf.png
https://github.com/BeamMW/beam/wiki/Cryptographic-primitives
https://github.com/BeamMW/beam/wiki/Cryptographic-primitives

Integrating stealth addresses into MW is not straightforward, as the protocol itself has no
concept of addresses. Yu’s proposal [Yu20] builds on top of Burkett’s [Bur20], and after receiving
feedback from the community, Yu further updated it with notes describing possible attacks and
countermeasures. In essence, the idea is to extend a MW transaction output (C, π) by a one-time
key P chosen by the sender, as well as an ephemeral key R that allows the receiver to compute
the secret key for P (and when spending the output, a signature under signature-verification key
P is required). To prevent the value P in a transaction from being modified (which would steal
the output from the receiver), a signature ρ on P under key R (of which the sender knows the
logarithm) is added. An output is thus of the form (C, π,R, ρ, P).

The mechanism for letting the receiver derive the secret key for P can also be used to let
the receiver derive the opening q of the commitment C (and Yu [Yu20, §2.1.1] does this by setting
q = H(H(rA)G+B)). Note that knowing the so-called “view key” (a,B) of stealth address (aG,B),
one can derive from R both P (and thus check if the payment is for that address) and q (and thus
check if C commits to a given amount).

Commonly in cryptocurrencies, when spending an output linked to a key P , the transaction
is signed with the secret key of P . In Mimblewimble however, aggregation of transactions should
hide which inputs and outputs come from the same component transaction, which can therefore
not be signed. Yu proposes to use the logarithms of the values P in the inputs and of the values
R in the outputs, denoted R̂ for outputs, to “authenticate” the spending by proving knowledge of
the logarithm of

∑
R̂ −

∑
P (similarly to how the openings of the input coins authenticate the

output coins via Equation (0) in MW).
Yu proposes to simply arrange the R̂ values so that the above difference equals the excess E

(defined as
∑
Ĉ −

∑
C). However, this is only possible if one of the outputs Ĉi goes back to the

sender (who can choose the corresponding value q̂i arbitrarily); for all other coins, R̂j (together with
the stealth address) defines q̂j , which defines E, for which R̂j has to be chosen, which is infeasible.

We therefore modify the scheme and introduce a stealth excess X :=
∑
R̂−

∑
P , under which we

add (as for E) a signature to the transaction. Our scheme then supports transactions for which all
outputs are sent to destination addresses. At the time of writing, the core proposal in [Yu20, §2.1]
is still affected by further issues. The ones known before our analysis are the following:

– As illustrated in [Yu20, §2.9.1], MW-Yu is susceptible to a rogue-key attack [Yu20, §2.9.3]. A
fix was also proposed, which requires adding one signature per transaction input, namely under
the P value. The security and correctness of this proposed change are not argued further.

– Mixing NIT with non-NIT transactions, as envisaged in [Yu20], leads to correctness issues within
the balance equations.9 No argument for why the security is preserved is given, especially w.r.t.
[Yu20, Eq. 2]. (We do not considered “mixed transactions” in our scheme.)

A major drawback of Yu’s and our scheme (and MWEB) is the lack of support for transaction
cut-through. Since an output is associated with a value R̂i and an input is associated with a value
Pj , if an output is spent via an input in an aggregated transaction, these values do not cancel

out, and removing them would thus change the stealth excess
∑
R̂ −

∑
P (we discuss this in

detail in Section 4.3). We note that in practice, nodes would only store and check validity of the
most recent excesses and perform cut-trough for coins that have been spent in the past beyond a
so-called horizon (cf. [Bur21, §4]). As we show, cut-through enables attacks by miners, who could
modify outputs of transactions (and violate our notion of transaction-binding, see below). This is
however only relevant for recent transactions; once a transaction is in a block beyond the horizon,
it is “protected” by the consensus mechanism (a security layer that is outside of our model).

Differences to MWEB. The variant used by Litecoin [Bur21] differs in how exactly the secrets
for an output are derived from a stealth address (A,B): In our scheme, from a Diffie-Hellman (DH)

9 https://forum.mwc.mw/t/non-interactive-transaction-and-stealth-address/32

4

https://forum.mwc.mw/t/non-interactive-transaction-and-stealth-address/32

share R = rG, we derive (k, q) := H(rA), which defines the one-time address as P := kG + B
and the coin as C := vH + qG. Outputs in [Bur21] have an additional element Ke (in addition to
Ks, which corresponds to our R) used as the Diffie-Hellman share (deriving its randomness from
logKs). A symmetric key, derived from the DH-shared key, is then used to encrypt v and derive q.
Our variant is arguably simpler, which facilitates our formal analysis.

Our contributions

Scheme. We propose a new protocol for non-interactive transactions, greatly inspired by Yu
[Yu20] and using an idea by Burkett [Bur21] to overcome the found issues. (In Section 4 we discuss
further issues that emerged after the publication of [Yu20].) A variant of our protocol is now already
being used by Litecoin in its MimbleWimble Extension Blocks.

Model. We propose a security model that strengthens the one from [FOS19], which did not
protect against a malleability attack by miners and had weak privacy guarantees (discussed below).
We only consider non-interactive transactions, which greatly simplifies the security notions. We
define security experiments that capture the following attacks:

(i) creating money other than via coinbase transactions (inflation resistance)
(ii) stealing someone else’s output in the ledger (theft resistance)
(iii) changing an output of a transaction not yet included in the ledger (transaction-binding)
(iv) learning anything about the transacted amounts, the destination addresses or the relations of

the inputs and outputs in an aggregated transaction (transaction privacy)

Inflation resistance and theft resistance are straightforward adaptations of the notions from [FOS19,
Def. 10 and 11], which become simpler for non-interactive transactions. Transaction privacy is
stronger than FOS’s privacy notion [FOS19, Def. 12], which only guarantees that amounts are hid-
den (FOS’s scheme does not use kernel offsets, which means one can “disaggregate” transactions).
To concisely capture all anonymity, privacy and confidentiality guarantees, we define a simulation-
based notion requiring that a transaction can be simulated without knowledge of any information
that transactions are supposed to hide.

We introduce transaction-binding, a notion that protects users against malicious miners by
guaranteeing that no outputs can be removed from a transaction. In particular, after a transaction
tx that spends some output txo was broadcast, no one can create a transaction tx∗ that spends
txo but does not include all outputs of tx. We note that theft resistance [FOS19, Def. 11] (which
deals with interactive transactions) only guarantees the following: a user that engages in a protocol
with the adversary spending coins C and creating change C ′ for herself is guaranteed that C ′ are
included in the ledger as soon as any of the coins from C is spent.

Proof. We prove the security of our protocol by following the provable-security methodology
and giving security reductions of the different security notions to standard computational hardness
assumptions in idealized models.

In our security proofs, we assume that the discrete logarithm problem is hard in the underlying
group G and for transaction privacy we additionally make the decisional Diffie-Hellman (DDH)
assumption. Our main building block is a zero-knowledge proof system for proving knowledge of
discrete logarithms that satisfies strong simulation-extractability (defined in Section 5).

We show that the Schnorr signature scheme, and a variant thereof, which we use to improve
efficiency of our scheme, satisfy these notions in the combination of the algebraic group model
[FKL18] and the random oracle model without making any computational assumptions. Finally, we
assume that the used range proofs are merely proofs of knowledge10 and do not require that they
are simulation-extractable as in previous analyses [FOS19].

10 This is in some sense minimal, since for Pedersen commitments the language (see Section 2) is trivial; cf. Section 6.1.

5

2 Preliminaries

We let ε denote the empty string and [a] the set {1, . . . , a} (for a ∈ N). We assume the existence
of a group G of prime order p and two “nothing-up-my-sleeve” generators G,H ∈ G (that is, the
discrete logarithm of H to base G is not known to anyone). The length of the prime p is the security
parameter λ. (A typical choice could be the group Secp256k1 and hence λ = 256.) For X ∈ G, we
let logX denote the discrete logarithm of X to base G, that is, logX = x with X = xG.

Proofs of possession. We consider a cryptographic hash function which we model as a random
oracle and denote by H(·). We use (key-prefixed) Schnorr signatures (see also Figure 2, page 15),
which are unforgeable under the DL assumption in the random oracle model (ROM), and whose
security has been extensively studied in the literature [PS00,Seu12]. We interpret Schnorr signatu-
res as (zero-knowledge) proofs of knowledge of the secret key, that is, if X = xG ∈ G is the public
key then a Schnorr signature is a proof of knowledge of x = logX.

We generalize this to a proof of knowledge of two logarithms that has the same size as a
Schnorr signature. Interpreting knowledge of logX as “possessing” X, we call the proof system
PoP for “proof of possession”. More formally, PoP is a proof system for the following NP-relation
(whose statements contains a part m, sometimes called a “tag”), defined w.r.t. a group description
(p,G, G): {(

(X,Y,m), (x, y)
)
: X = xG ∧ Y = yG ∧ m ∈ {0, 1}∗

}
.

A proof for a statement (X,Y,m) ∈ G2 × {0, 1}∗ is computed via PoP.P using the witness (x, y)
by picking a uniform r ←$ Zp, defining R := rG, computing (c, d) := H(X,Y,m,R) and re-
turning a proof (R, s) ∈ G × Zp with s := r + c · x + d · y mod p. The verification algorithm
PoP.V((X,Y,m), (R, s)) computes (c, d) := H(X,Y,m,R) and checks whether s·G = R+c·X+d·Y
(see also Figure 3, page 16).

We also use PoP to prove knowledge of a witness x ∈ Zp for statements (X = xG,m) by
performing Schnorr signing and verification (defined like above but setting y := 0). A proof of
possession of X with tag m is thus a Schnorr signature on m under public key X. We use PoP
proofs for different types of values (proofs ψ for (P,D), proofs σ for excesses (E,X) and proofs ρ
for R). We assume that these are “domain-separated”, which can easily be achieved by including
the type in the tag of the statement. We also assume that random oracles H used elsewhere in the
scheme (e.g. to derive the value q) are domain-separated from H used for PoP.

In Section 5 we show that in the algebraic group model [FKL18] combined with the ROM, the
proof system PoP is a strongly simulation-sound zero-knowledge proof of knowledge of logarithms,
a property that will be central in the security analysis of our protocol. Zero-knowledge means
that there exists a simulator (which here controls the random oracle) that can simulate proofs for
any statements without being given a witness that are indistinguishable from honestly generated
proofs. Proof of knowledge (PoK) means that there exists an extractor that from any prover (which
here is assumed to be algebraic; see Section 5) that produces a proof ψ for a statement (X,m)
(or (X,Y,m)) can extract the witness logX (or (logX, log Y)). Proofs are simulation-sound (also
called simulation-extractable (SE) for PoKs) if a witness can be extracted from a prover even if
the prover can obtain simulated proofs ψi for statements (Xi,mi) of its choice (except the one it is
proving). For strong SE the only restriction is that the prover’s pair ((X,m), ψ) must be different
from all query/response pairs ((Xi,mi), ψi).

Pedersen commitments. We employ Pedersen commitments, which are homomorphic w.r.t.
the committed values and the used randomness. A value v ∈ Zp is committed by sampling q ←$ Zp

and setting

C = Cmt(v, r) := vH + qG .

6

A commitment is opened by sending v and q and verified by checking C
?
= vH + qG. Pedersen

commitments are perfectly hiding (i.e., no information about the value is leaked) and computation-
ally binding (i.e., under the discrete logarithm (DL) assumption, no adversary can change its mind
about a committed value, that is, find a commitment and two openings (v, q), (v′, q′) with v ̸= v′

to it).

Range proofs. We require a proof system for statements on commitments, namely for the NP
language defined by the following relation asserting that a committed value is contained in an
admissible interval: {(

C, (v, r)
)

: C = Cmt(v, r) ∧ v ∈ [0, vmax]
}

We assume a zero-knowledge proof-of-knowledge system RaP for the above language. (Note that we
do not assume RaP to be simulation-sound [FOS19, Def. 8], whereas FOS required this in their proof
of theft resistance [FOS19, Theorem 14]; our scheme could thus be potentially instantiated with a
more efficient range proof system.) We denote the prover algorithm by π ← RaP.P(C, (v, r)) and the
verifier by b ← RaP.V(C, π). A typical choice of proof system for RaP are Bulletproofs [BBB+18],
which do not introduce any new trust assumption (as its parameters are random group elements,
as for Pedersen commitments, and it is secure under DL in the ROM).

3 Proposal for MW with non-interactive transactions

We start with presenting the scheme and then discuss the rationale for our design choices, such as
adding stealth excesses (Section 4.1), doubling keys (which prevent a sub-exponential-time attack;
Section 4.2) and epochs (Section 4.4).

3.1 Data structures

The extension of Mimblewimble to non-interactive transactions introduces the notion of addresses.

A stealth address is a pair (A = aG,B = bG) ∈ G2, for which we call (a,B) ∈ Zp ×G the view
key and (a, b) ∈ Z2

p the spend key.

A transaction in MW-NIT is composed of (see also Figure 1):

– A list of outputs: tuples of the form txo = (Ĉ, π̂, R̂, ρ̂, P̂ , χ̂), each implicitly associated to an
output address (A,B), composed of:
• an ephemeral key R̂ = r̂G ∈ G, chosen by the sender, which defines two keys from Zp as

(k̂, q̂) := H(r̂A)

(note that (k̂, q̂) can be computed from R̂ and the view key, since r̂A = aR̂)
• a commitment Ĉ := v̂H + q̂G to the output value v̂, using randomness q̂
• a range proof π̂ proving knowledge of an opening (v, q) of Ĉ, with v ∈ [0, vmax]
• a one-time output public key P̂ ∈ G, computed from k̂ as P̂ := B̂ + kG (note that the

spend key is required to compute log P̂)
• a proof of possession ρ̂ of R̂ with tag Ĉ∥π̂∥P̂∥χ̂ (i.e., a proof for statement (R̂, Ĉ∥π̂∥P̂∥χ̂))
• an epoch χ̂ in which the output was created

– A list of inputs of the form (P,D, ψ) where
• P ∈ G is the one-time public key of the transaction output being spent (each value P is

only allowed once in the ledger)
• D ∈ G is the one-time doubling key, chosen by the sender, that “doubles” P
• ψ is a proof of possession of P and D with tag the transaction output being spent

7

inputs outputs

txo1 ← P1, D1, ψ1 Ĉ1, π̂1, R̂1, ρ̂1, P̂1, χ1

txo2 ← P2, D2, ψ2 Ĉ2, π̂2, R̂2, ρ̂2, P̂2, χ2

...
...

s, f, t, y, E,X, σ

inputs outputs

txo1 ← P1, D1, ψ1 Ĉ1, π̂1, R̂1, ρ̂1, P̂1, χ1

txo2 ← P2, D2, ψ2 Ĉ2, π̂2, R̂2, ρ̂2, P̂2, χ2

...
...

ct, s, f, t, y,E,X,σ

Fig. 1. Left: Visualization of a (simple) MW-NIT transaction. Inputs consist of a value Pi contained in a previous
transaction output, a “doubling key” Di and a proof of possession (PoP) ψi of Pi and Di. Outputs consist of a
commitment Ĉi to their value, an associated range proof π̂i, an ephemeral key R̂i, a signature (or PoP) ρ̂i under R̂i,
the one-time address P̂i and an epoch χi. The kernel consists of the supply s, the fee f , the offsets t and y and the
PoP σ of E and X. The excess E and the stealth excess X can be computed as in (1) and (2). Right: Visualization
of an aggregated MW-NIT transaction. It additionally contains a cut-through list ct, and lists of excesses, stealth
excesses and corresponding PoPs.

– The kernel, which is composed of:
• the supply s ∈ [0, vmax], indicating the amount of money created in the transaction
• the fee f ∈ [0, vmax], indicating the fee paid for the current transaction
• the offset t ∈ Zp

• the excess E ∈ G, defined as the difference between the commitments in the outputs
(including the fee) and the inputs (including the supply), shifted by the offset. If Ci is the
i-th input commitment, that is, the value contained in the output in which Pi appears, then

E :=
∑
Ĉ + fH −

∑
C − sH − tG , (1)

which can be seen as E := E′− tG in terms of the true excess E′ :=
∑
Ĉ+fH−

∑
C− sH

• the stealth offset y ∈ Zp

• the stealth excessX ∈ G, defined as the difference between the ephemeral keys R̂i from the
outputs and the doubling one-time keys Di from the inputs, shifted by the stealth offset y

X :=
∑
R̂−

∑
D − yG (2)

• a proof of possession σ of E and X (with empty tag ε)

A (simple, i.e., non-aggregated; see below) transaction is thus of the form:

tx =
(
(P ,D,ψ), (Ĉ, π̂, R̂, ρ̂, P̂ , χ̂), (s, f, t, y, σ)

)
3.2 Transaction creation

Consider a transaction output txo = (C, π,R, ρ, P, χ) spent to an address (A′, B′).

– Given the corresponding view key (a′, B′), one can compute the shared keys k and q (the opening
for the commitment C) as

(k, q) := H(a′R) .

– Given the corresponding spend key (a′, b′), one can compute the secret key for P as p := b′ + k.

To create a transaction that in epoch χ̂ spends transaction outputs txoi of values vi with one-time
keys Pi, for i ∈ [n], and creates outputs of values {v̂i}i∈[n̂] for destination addresses {(Ai, Bi)}i∈[n̂],
creating an amount s of new money and paying f in fees so that v̂1, . . . , v̂n̂, s, f ∈ [0, vmax] and∑

v̂ + f =
∑
v + s (if this is not the case, then abort), do the following:

– for each input index i ∈ [n]:
• compute all values qi and pi := logPi, for i ∈ [n], as described above

8

• if Ci ̸= viH + qiG (with Ci from txoi) or if Pi ̸= piG then abort
• sample a random di ←$ Zp and define Di := diG
• compute a proof of possession

ψi ← PoP.P((Pi, Di, txoi), (pi, di))

– for each output index i ∈ [n̂]:
• sample a random r̂i ←$ Zp and define ephemeral key R̂i := r̂iG
• compute the shared secrets for the destination address (Ai, Bi)

(k̂i, q̂i) := H(r̂iAi) (3)

and from them compute the output commitment and the one-time key

Ĉi := v̂iH + q̂iG (4)

P̂i := B̂i + k̂iG (5)

• compute a range proof π̂i ← RaP.P(Ĉi, (v̂i, q̂i))
• compute a proof of possession of the ephemeral key

ρ̂i ← PoP.P((R̂i, Ĉi∥π̂i∥P̂i∥χ̂), r̂i) (6)

– sample a random t←$ Zp and compute

e :=
∑
q̂ −

∑
q − t = logE

with E as in (1)
– sample a random y ←$ Zp and compute

x :=
∑
r̂ −

∑
d− y = logX

with X as in (2).
– compute a proof of possession of E and X with empty tag: σ ← PoP.P((E,X, ε), (e, x))

The final transaction is

tx :=
(
(Pi, Di, ψi)i∈[n], (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χ̂)i∈[n̂], (s, f, t, y, σ)

)
. (7)

3.3 Transaction aggregation

Aggregate transactions are essentially concatenations of the composing transactions. In contrast to
Jedusor’s [Jed16] and FOS’ [FOS19] protocols, MW-NIT does not perform any cut-through, as this
is insecure, as we show in Section 4.3. Outputs of one transaction that are spent as inputs of another
one in the aggregation are therefore kept in a cut-through list ct, which stores the concatenation
of the output and the input spending the latter.

While simple transactions do not (need to) contain the (stealth) excesses (displayed in light
gray in Figure 1), aggregate transactions (also displayed in Figure 1) contain lists of excesses E,
stealth excesses X and associated proofs σ. An aggregated transaction is thus of the form

tx =
(
(Pi, Di, ψi)i∈[n], (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χ̂i)i∈[n̂], (ct, s, f, t, y, (Ei, Xi, σi)i∈[n̄])

)
(8)

where ct :=
(
C ′
i, π

′
i, R

′
i, ρ

′
i, P

′
i , χ

′
i, P

′
i , D

′
i, ψ

′
i

)
i∈[n′]

. A simple transaction (7) can be cast as (8) by

setting ct := (), n̄ = 1 and computing E and X as in Equations (1) and (2). Given transactions
tx1 and tx2, assuming w.l.o.g. that they are of the form (8), their aggregation tx is computed as
follows:

– define txi as the concatenation of the inputs of tx1 and tx2, and txo as the concatenation of
their outputs, ct as the concatenation of their cut-through lists and ker as the concatenation
of their lists of excesses, stealth excesses and associated signatures σ.

9

– if the same value P appears in two entries of txi ∥ ct, or if the same value P appears in two
entries of txo ∥ ct, then abort

– if a P value appears in an entry (Pi, Di, ψi) of txi and in an entry txoj of txo, do the following:
if PoP.V((Pi, Di, txoj), ψi) = true then remove (Pi, Di, ψi) from txi, remove txoj from txo and
include txoj ∥ (Pi, Di, ψi) in ct; else abort.

– sort each list txi, txo, ct and ker lexicographically (required to hide which inputs and outputs
come from which transaction)

– compute the aggregated supply, fee, offset, and stealth offset (from the supplies si, etc., of txi)

s := s1 + s2 f := f1 + f2 t := t1 + t2 y := y1 + y2

– return tx := (txi, txo, (ct, s, f, t, y,ker)).

3.4 Output verification

We define when a view key (a,B) accepts a transaction output. Given an amount v and an output
txo = (Ĉ, π̂, R̂, ρ̂, P̂ , χ̂), compute (k, q) := H(aR̂), and accept txo if it has not been previously
received in epoch χ̂ and if

Ĉ = vH + qG and P̂ = B + kG .

3.5 Transaction verification

Simple transactions. A transaction

tx =
(
(Pi, Di, ψi)i∈[n], (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χ̂i)i∈[n̂], (s, f, t, y, σ)

)
,

is valid w.r.t. a list of (previous) outputs txo with txoi = (Ci, πi, Ri, ρi, Pi, χi), for i ∈ [n], if

(i) for all i ∈ [n], the value Pi in tx is unique and the value Pi in txoi are the same
(ii) all input proofs are valid for all i ∈ [n] : PoP.V((Pi, Di, txoi), ψi) = true
(iii) all range proofs are valid for all i ∈ [n̂] : RaP.V(Ĉi, π̂) = true
(iv) all proofs of possession of R̂ are valid for all i ∈ [n̂] : PoP.V(R̂i, Ĉi∥π̂i∥P̂i∥χ̂i, ρ̂i) = true
(v) the excess proof of possession is valid PoP.V((E,X, ε), σ) = true, for

E :=
∑
Ĉ −

∑
C + (f − s)H − tG (9)

X :=
∑
R̂−

∑
D − yG (10)

Aggregate transactions. An aggregate transaction

tx =
(
txi, tx̂o, (ct, s, f, t, y,E,X,σ)

)
as in (8), with txi = (Pi, Di, ψi)i∈[n], tx̂o = (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χ̂i)i∈[n̂], ct = (txo′i∥txi′i)i∈[n′] is verified
w.r.t. previous outputs txo as follows:

Check that txi, tx̂o and ct are sorted lexicographically, then re-arrange the cut-through terms:
set the overall outputs being spent and the inputs spending them, as well as the freshly created
outputs, as

txo∗ := txo ∥ txo′ = (Ci, πi, Ri, ρi, Pi, χi)i∈[n+n′]

txi∗ := txi ∥ txi′ = (Pi, Di, ψi)i∈[n+n′]

tx̂o∗ := tx̂o ∥ txo′ = (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χ̂i)i∈[n̂+n′]

(Note that the last n′ elements of txo∗ and tx̂o∗ are equal but denoted differently). Verify the
transaction (txi∗, tx̂o∗, (s, f, t, y,E,X,σ)) w.r.t. txo∗: check (i)–(iv) as for simple transactions,
and the following instead of (v):

10

(v′) for all i ∈ [n̄] : PoP.V((Ei, Xi, ε), σi) = true
(vi′) additionally, the following “balance equations” are checked:∑

E =
∑
Ĉ −

∑
C + (f − s)H − tG (11)∑

X =
∑
R̂−

∑
D − yG (12)

(Note that in (11) it suffices to sum the Ĉ only up to n̂ and the C only up to n, as the remaining
terms from ct cancel out.)

3.6 Inclusion of transactions in the ledger

A ledger Λ is simply an aggregated transaction of the form (8) that has no inputs (as the inputs of
any transaction added to Λ must spend existing outputs, these are moved to the cut-through list).

A transaction tx of the form (7) or (8) is included in Λ by aggregating (as defined in Section 3.3)
Λ and tx to Λ′, checking that Λ′ has no inputs (thus all inputs of tx were spent/cut through) and
checking validity (as defined in Section 3.5) of Λ′ w.r.t. an empty list txo. If any of the checks fail,
return ⊥, otherwise Λ′. (If Λ is known to be valid, it suffices to identify, for every input (Pj , Dj , ψj)
of tx, the ledger output txoij containing Pj , and check validity of tx is w.r.t. txoi1 , . . . , txoin .)

4 Fallacies in the initial proposal

We discuss the main issues found with Yu’s scheme, which motivated the design choices for our
scheme in Section 3. Originally [Yu20, §2.2.2], transactions did not include the values Di, nor the
stealth excess X with the respective offset y. Instead, a valid transaction had to satisfy

E + tG =
∑
R̂−

∑
P (13)

(in our notation) [Yu20, Eq. 2] instead of Equation (10), and ψ and σ only proved knowledge of
the discrete logarithms of P and E, respectively.

4.1 Correctness

Equation (13) can be made true if one of the outputs, say the i-th, goes back to the creator of the
transaction (e.g., because it is a “change output”). She can then set R̂i := E+ tG+

∑
P −

∑
j ̸=i R̂j

(for which she knows log R̂i) and sample qi uniformly. However, it is infeasible to create a transaction
whose outputs are all linked to destination addresses, e.g., a transaction with a single output: R̂
(together with the address) determines the coin opening q, which defines the value E; but (re-)
defining R̂ so that (13) holds would lead to a new value E. (In Yu’s notation [Yu20, Eq. 2], the
value ro depends on q, which in turn is computed from ro.)

In order not to restrict the format of transactions (and because it allows us to prove the scheme
secure), we introduced stealth excesses X, which along with the proof σ accounts for the “excess” in
stealth addresses. We also introduce a stealth offset to preserve privacy of aggregated transactions.

4.2 The Feed-Me attack

It turns out that merely adding a stealth excess leads to an attack (against transaction-binding,
see Section 6.5), which was first found by @south lagoon77, alias kurt.11 Consider the scheme
in Section 3 but without any D values, which are replaced by the corresponding P values in the
equations; in particular, the balance equation for one-time keys is

X =
∑
R̂−

∑
P − y∗G (10∗)

11 See: https://twitter.com/davidburkett38/status/1466460568525713413

11

https://twitter.com/davidburkett38/status/1466460568525713413

instead of Equation (10).
To explain the attack, it suffices to focus on non-aggregated transactions. Consider Alice, an

honest user with address (aG,B), that creates two transactions tx1 and tx2, both spending one one
output txo1 and txo2, resp., and creating one output each, transferring v1 to Bob and v2 > v1 to
Charlie (all supplies and fees are 0):

txo1 = (C1, . . .) ← P1, ψ1 | . . . , R̂1, ρ̂1, . . .
t1,y1,E1,X1,...

(tx1)

txo2 = (C2, . . .) ← P2, ψ2 | . . . , R̂2, ρ̂2, . . .
t2,y2,E2,X2,...

(tx2)

Both transaction are broadcast to the miners. A malicious miner can now forge a new two-output
transaction tx∗, transferring the amount v2 − v1 to himself, as follows:

txo2 ← P2, ψ2

∣∣∣∣ . . . , R̂1, ρ̂1, . . .
C∗, π∗, R∗, ρ∗, . . .

t1,y∗,E1,X1,...

(tx∗)

It combines the input of tx2 and the output and the excesses from tx1. A second output is computed
“honestly” by choosing r∗ ←$ Zp, setting R

∗ = r∗G and signing any value P ∗ (knowing logP ∗)
as ρ∗. The miner also creates the corresponding coin C∗, so that tx∗ satisfies Equation (11), by
setting C∗ := Cmt(v2−v1, q2−q1), where q1 and q2 are the openings of C1 and C2 (which the miner
can either obtain by knowing Al3ice’s view key, or by having sent the outputs txo1 and txo2 to Alice
in the first place.) Finally, the miner needs to compute y∗ so that tx∗ satisfies Equation (10∗), that
is,

y∗G = R∗ + R̂1 − P2 −X1 .

By validity of tx1, again from (10∗), we get 0 = −R̂1 + P1 + y1G + X1 and by adding the two
equations:

y∗G = R∗ + P1 − P2 + y1G . (14)

As per Equation (5), P1 and P2 are defined as Pi = B+kiG, where ki is obtained as in Equation (3).
The crucial observation now is that if the miner knows the values k1 and k2 (which it can either
obtain from Alice’s view key or by being the creator txo1 and txo2), then it knows the discrete
logarithm of P1−P2 = (k1− k2)G, as the value B from Alice’s address cancels out. The miner can
thus compute y∗ satisfying (14), thus completing the forged transaction tx∗ that transfers the value
v2 − v1 to the miner’s one-time key P ∗.

Fixes. To prevent this attack, our first fix was to derive the one-time keys multiplicatively, that is,
setting Pi = kiB in Equation (5). The term P1−P2 then becomes (k1−k2)B, which is non-zero with
overwhelming probability and therefore it becomes hard to compute y∗. More generally, we showed
that as long as the adversary cannot find distinct hash function outputs k1,1, . . . , k1,n1 , k2,1, . . . , k2,n2

in Equation (3) so that ∑
k1 −

∑
k2 = 0 , (15)

this variant of the scheme (without the D values) satisfies transaction binding.
However, Wagner’s k-list tree algorithm [Wag02] can be used to find such values in sub-

exponential time for sufficiently large n1 and n2. To be protected against active adversaries ready to
invest substantial computing power, a user would therefore need to limit the number of her pending
transactions at any point in time (which could degrade scalability of the system). To overcome this
downside, we follow David Burkett’s approach [Bur21] and introduce an additional group element
D in every transaction input, which replaces P in the balance equation (10∗), yielding (12). Since
the Di’s are chosen by the creator of the transaction (whereas the Pi’s are chosen by the previous
spender, who in Feed-Me types of attacks is malicious), the values corresponding to the ki,j above
are random, and thus the probability that (15) holds is negligible.

12

Since the D values are chosen by the honest user, the adversary in the Feed-Me attack does
not know log(D1 −D2) (after replacing P values by D values in (14)), so we just reverted to the
original format P := B + kG for one-time keys and prove this variant satisfies transaction-binding
in Section 6.5.

4.3 On transaction cut-through

Suppose that, in an aggregate transaction, an output (C, π,R, ρ, P, χ) of one transaction is spent as
input (P,D, ψ) of another transaction. One may wonder whether, as with original MW, cut-through
can be applied, that is, remove the spent output and the input referring to it from the aggregate
transaction.

While validity of the coin-balance equation (11) would be maintained, this is not the case for
the “address equation” (12). One may thus consider (as Yu does [Yu20, §2.1.1] for (sufficiently
old parts of) the ledger) adding a value Z defined as the sum of all removed R̂ values minus all
removed D values to the aggregated transaction. The check in Equation (12) would be replaced
by

∑
R̂ −

∑
D + Z =

∑
X + yG, where the sums are only over the indices that have not been

removed in the outputs (
∑
R̂) and the inputs (

∑
D).

However, since Z is not bound to anything, this scheme would be insecure. Consider a miner
that collects transactions and aggregates them. Then she simply replaces one of the remaining
R̂ values by a value of which she knows the discrete logarithm, puts a new P̂ value, produces a
corresponding proof ρ̂ and defines Z as

∑
X+yG+

∑
D minus the sum of the R̂ values including

her own. The result is a valid transaction of which the miner now owns one of the outputs (assuming
the miner knows the view key of the stealth address it stole the coin from; otherwise it made the
coin unspendable by its owner).

We suspect that Yu assumed all R and P values remain for each (possibly aggregated) trans-
action when included in the blockchain, since in [Yu20, Eq. 3], it says

SUM(R− P ′)spent at height

which suggests that all these values need to be present. In addition, we note that simply removing
cut-through inputs or outputs would make Equations 3 and 4 incorrect.

Example. We illustrate the attack against a scheme that allows cut-through and includes a value
Z to compensate for the removed terms. Consider two 1-input/1-output transactions tx2 and tx3
where tx2 spends some output txo1, creating one output, which is then spent by tx3 (assume that
all supplies and fees are 0).

txo1 = (C1, . . .) ← P1, D1, ψ1 | C2, π2, R2, ρ2, P2, χ2
t2,y2,E2,X2,σ2

(tx2)

← P2, D2, ψ2 | C3, π3, R3, ρ3, P3, χ3
t3,y3,E3,X3,σ3

(tx3)

(Note that we have PoP.V((P2, D2, tx2.out), ψ2) = true). Suppose tx2 and tx3 could be merged as

txo1 ← P1, D1, ψ1 | C3, π3, R3, ρ3, P3, χ3
t2+t3,y2+y3,(E2,E3),(X2,X3),(σ2,σ3),Z

which is valid if ψ1, π3, ρ3, σ2 and σ3 are valid and the following holds:

C3 − C1 = E2 + E3 + (t2 + t3)G

R3 −D1 + Z = X2 +X3 + (y2 + y3)G

Then a miner could simply choose r∗, p∗, χ∗
3 set R∗

3 := r∗G, P ∗
3 := p∗G, create ρ∗3 honestly, define

Z∗ := X2 +X3 + (y2 + y3)G−R∗
3 +D1 and create the (valid!) transaction

txo1 ← P1, D1, ψ1 | C3, π3, R
∗
3, ρ3, P

∗
3 , χ

∗
3 t2+t3,y2+y3,(E2,E3),(X2,X3),(σ2,σ3),Z∗

for which she knows the temporary spending key p∗.

13

On keeping ρ and ψ. One may wonder then if it is possible to keep the R and D values but
elide the proofs ρ and ψ, or at least one of them. Again, each of these removals would lead to an
attack. We start with considering removing ρ but keeping ψ, that is, an aggregated transaction
in the example above looks as follows:

txo1 = (C1, . . .) ← P1, D1, ψ1 | C3, π3, R3, ρ3, P3, χ3
ct,t2+t3,y2+y3,(E2,E3),(X2,X3),(σ2,σ3)

where ct = (R2, P2, D2, ψ2) and ψ2 is a valid proof for P2, D2 (note that the tag for proofs ψ must
change to account for removed information).

Intuitively, not having ρ2 means that P2 is not bound to R2 anymore, which the following
attack leverages, where given tx2 and tx3, the miner replaces tx3 by a transaction it owns: the
miner chooses p∗2, d

∗
2 and r∗3, sets D

∗
2 := d∗2G and R∗

3 := r∗3G, computes ψ∗
2 and ρ∗3 honestly and sets

X∗
2 := (r∗3 − d∗2 − y2)G and computes σ∗2 honestly. It also chooses p∗3, sets P

∗
3 := p∗3G, and creates a

proof ρ∗3 on it using r∗3, and computes X∗
3 and σ∗3 honestly. Then the following is a valid transaction

for which the miner knows the key to spend the output

txo1 = (C1, . . .) ← P1, D1, ψ1 | C3, π3, R
∗
3, ρ

∗
3, P

∗
3 , χ

∗
3 ct∗,t2+t3,y2+y3,(E2,E3),(X∗

2 ,X
∗
3),(σ

∗
2 ,σ

∗
3)

where ct∗ = (R2, P
∗
2 , D

∗
2, ψ

∗
2).

Finally, we show that removing ψ but keeping ρ also leads to attacks, similarly to the rogue-key
attack observed in [Yu20, §2.9.3]. In this scenario, the above aggregated transaction would look as
follows:

txo1 = (C1, . . .) ← P1, D1, ψ1 | C3, π3, R3, ρ3, P3, χ3
ct,t2+t3,y2+y3,(E2,E3),(X2,X3),(σ2,σ3)

where ct = (C2, π2, R2, ρ2, P2, χ2, D2); note that now C2, π2 and χ2 need to be kept for ρ2 to be
verifiable. Consider an honest transaction tx2

txo1 = (C1, . . .) ← P1, D1, ψ1 | C2, π2, R2, ρ2, P2, χ2
t2,y2,E2,X2,σ2

A miner can steal the output as follows (again, assuming it knows the view key of its holder and
thus the opening of C2).

The miner computes a fresh output (C3, π3, R3, ρ3, P3, χ3) honestly (i.e., knowing the logarithms
of R3 and P3), picks random R∗

2 and X3 (knowing the corresponding logarithms) and sets D∗
2 :=

R∗
2 + R3 −D1 −X2 −X3 − y2G. It signs P2 (as well as C2, and π2) under R

∗
2 as ρ∗2 and produces

σ3 under E3, X3. It then publishes the transaction

txo1 = (C1, . . .) ← P1, D1 | C3, π3, R3, ρ3, P3, χ3
ct∗,t2+t3,y2,(E2,E3),(X2,X3),(σ2,σ3)

where ct∗ := (C2, π2, R
∗
2, ρ

∗
2, P

∗
2 , χ2, D

∗
2). Note that the transaction is valid, since we have

R∗
2 +R3 −D1 −D∗

2 = X2 +X3 + y2G

and the miner knows the key to spend the output.

4.4 Replay attacks

Yu [Yu20, §2.9.2] explains a replay attack for MW that is a result of non-interactive transactions:
the adversary pays Alice via some output txo, which Alice later spends. Then the adversary pays
her again, creating the exact same output; if Alice accepts it, the adversary can replay Alice’s
previous spend, making her lose the money.

14

Sch.Setup(1λ)

(p,G, G)← GrGen(1λ)

fix H : {0, 1}∗ → Zp

return par := (p,G, G,H)

Sch.Sign(sk,m)

(p,G, G,H, x) := sk ; r ←$ Zp ; R := rG

c := H(xG,R,m) ; s := r + cx mod p

return σ := (R, s)

Sch.KeyGen(par)

(p,G, G,H) := par ; x←$ Zp ; X := xG

sk := par ∥x ; pk := par ∥X
return (sk,pk)

Sch.Ver(pk,m, σ)

(p,G, G,H, X) := pk ; (R, s) := σ

c := H(X,R,m)

return (sG = R+ cX)

Fig. 2. Key-prefixed Schnorr signature scheme PoP[GrGen] based on a group generator GrGen

A simple defense against replay attacks is requiring users to store all outputs ever received and
never accept the same output a second time. A more viable method is using time stamps (named
epochs and denoted χ), which Yu introduces in order to prevent rogue-key attacks. “Each Input
must attach its own proof for [Pi], as a second proof for the coin ownership” [Yu20, §2.9.2].

While it is not specified which message is signed, it is crucial that the entire output specifically
including the time stamp (and not just C) is signed. Otherwise, the above attack still works, as
the adversary can change the time stamp in the replayed transaction (so the user accepts it) and
recompute ρ, and send it to the user again. If the proof contained in the user’s spendings did not
authenticate the time stamp (or ρ), then the previous spend would still be valid on the replayed
transaction. This is why in MW-NIT we define ψ as a proof that involves the entire output.

Epochs. If a user only accepts outputs that correspond to the current epoch, she only needs to
compare a new output to those received in the same epoch; she can therefore delete all outputs
from previous epochs. The duration of an epoch is a global parameter of the system, where short
time intervals minimize data storage, while larger intervals yield better privacy (as there are more
transactions per epoch).

5 Simulation-extractability of Schnorr signatures

Before analyzing our scheme, we introduce and analyze its main building block. Key-prefixed
Schnorr signatures, formally defined in Figure 2, can be reinterpreted as zero-knowledge proofs
of knowledge of the secret key, with the statement also containing the message. To improve effi-
ciency, we generalize this to a “batch” version that enables proving knowledge of the logarithms of
two group elements, that is, proofs for the NP language defined w.r.t. a group description (p,G, G)
by the relation {(

(X,Y,m), (x, y)
)
: X = xG ∧ Y = yG ∧m ∈ {0, 1}∗

}
. (16)

The proof system PoP is defined in Figure 3. We also use it to prove statements (X,m) with witness
x by using standard Schnorr signatures, that is, PoP.P runs Sch.Sign and PoP.V runs Sch.Ver. The
witness relation for PoP is thus the union of (16) and {((X,m), x) : X = xG}.

We show that PoP satisfies strong simulation extractability in the algebraic group model [FKL18]
(see below) and the random oracle model (ideal models jointly used also in [FPS20] to show tight
security of Schnorr signatures under the discrete-logarithm assumption).

Simulation-extractability. Strong simulation extractability for the above language means that
from any adversary that returns a proof ψ∗ for a statement (X∗, Y ∗,m∗), the witness (logX∗, log Y ∗)

15

PoP.Setup(1λ)

(p,G, G)← GrGen(1λ)

fix H : {0, 1}∗→ Z2
p

return (p,G, G,H)

PoP.P
(
par, (X,Y,m), (x, y)

)
(p,G, G,H) := par

r ←$ Zp ; R := rG

(c, d) := H(X,Y,m,R)

s := r + cx+ dy mod p

return ψ := (R, s)

PoP.V
(
par, (X,Y,m), ψ

)
(p,G, G,H) := par

(R, s) := ψ

(c, d) := H(X,Y,m,R)

return (sG = R+ cX + dY)

Fig. 3. Zero-knowledge simulation-extractable Schnorr proof of two logarithms PoP[GrGen] based on a group generator
GrGen

can be extracted; and this holds even if the adversary gets access to an oracle that on inputs
(Xi, Yi,mi) returns simulated proofs ψi for these statements. The only restriction is that the re-
turned pair ((X∗, Y ∗,m∗), ψ∗) must be different from all query/response pairs ((Xi, Yi,mi), ψi).
Thus, forging a fresh proof ψ∗ on a queried statement is considered a break of strong simulation-
extractability if the extractor fails to extract a witness from ψ∗. (Note that this notion is stronger
than forms of related-key-attack security for signature schemes (like UNF-CRO as defined and
used in [FOS19]), where the adversary can only query signatures under keys for which it knows the
difference in secret keys w.r.t. the challenge key.)

The algebraic group model. In the algebraic group model (AGM) [FKL18], adversaries are
assumed to return a representation of any group element that they return. This means that, after
having received input group elements Z1, . . . , Zn, whenever the adversary returns a group element
X, it must also return coefficients ζ1, . . . , ζn so that X =

∑
ζiZi.

All our security proofs (except for the privacy notion) are reductions of solving the discrete
logarithm (DL) problem to breaking the analyzed security notion of our scheme MW-NIT, assuming
that PoP satisfies (strong) simulation-extractability (SE) in the AGM. The reduction thus receives
a DL challenge Z and simulates the security game to an adversary A, which we assume is algebraic.
To leverage SE of PoP in the AGM, the reduction must construct an algebraic SE adversary, that is,
one that accompanies each group-element output by their representations. However, the reduction
can only return representations in basis (G,Z), its own group-element inputs. In particular, the
reduction will run the adversary on some group elements X1, . . . , Xn, which it produces from its
inputsG and Z in an “algebraic” way (i.e., knowing representations in basis (G,Z)). The adversary’s
group-element outputs will thus be in basis X1, . . . , Xn, which the reduction can then translate into
the basis (G,Z).

For our reductions make use of simulation extractability, we must therefore strengthen the
notion and consider auxiliary inputs. In the SE game, the adversary receives, besides a description
of the underlying group, with generator G, and possible proof system parameters, an “auxiliary”
uniform group element Z. At the end of its execution, the algebraic adversary must accompany
each group element queried to the simulation oracle and output to the challenger (in particular,
group elements in the statements (Xi, Yi,m) for which the extractor must extract the witness) by
a representation in basis (G,Z).

Security of PoP. Extending the techniques for showing tight security of Schnorr signatures in
the AGM+ROM [FPS20], we show that in this model our proof system PoP is SE with auxiliary
inputs.

Claim 1 The proof system PoP in Figure 3 is strongly simulation-extractable with auxiliary group-
element input in the algebraic group model and the random oracle model.

16

Proof. The game is parametrized by a group (p,G, G) and a random oracleH, all provided to the ad-
versary, who also receives a random group element Z ←$ G. When the adversary queries simulation
of a proof for a statement (Xi, Yi,mi) ∈ G2×{0, 1}∗, the simulator chooses uniform ci, di, si ←$ Zp,
sets Ri := siG − ciXi − diYi and programs the random oracle so that H(Xi, Yi,mi, Ri) = (ci, di).
Since Ri is uniform and independent, the probability that the RO has already been defined for
this value is negligible. If this happens then the simulator aborts and the adversary wins. As the
adversary is algebraic, it needs to accompany its first query (X1, Y1,m1) by coefficients α1, β1, γ1, δ1
with X1 = α1G + β1Z and Y1 = γ1G + δ1Z. After receiving R1, its second query is accompanied

by γ
(2)
X , ζ

(2)
X , ρ

(2)
X , γ

(2)
Y , ζ

(2)
Y , ρ

(2)
Y with X2 = γ

(2)
X G+ ζ

(2)
X Z + ρ

(2)
X R1 and Y2 = γ

(2)
Y G+ ζ

(2)
Y Z + ρ

(2)
Y R1.

Since R1 = s1G− c1X1 − d1Y1, this yields X2 = α2G+ β2Z with

α2 := γ
(2)
X + ρ

(2)
X (s1 − c1α1 − d1γ1) and β2 := ζ

(2)
X + ρ

(2)
X (−c1β1 − d1δ1) ,

and analogous values γ2 and δ2 with Y2 = γ2G + δ2Z. In general, for every query answered with
(Ri, si) for (ci, di) = H(Xi, Yi,mi, Ri) we thus have

Ri = siG− ciXi − diYi = (si − ciαi − diγi)G− (ciβi + diδi)Z

= ΓiG−∆iZ with Γi := si − ciαi − diγi and ∆i := ciβi + diδi (17)

and from any representation

Xi = γ
(i)
X G+ ζ

(i)
X Z +

i−1∑
j=1

ρ
(i,j)
X Rj

we can recursively derive αi, βi so that Xi = αiG+ βiZ and similarly γi, δi for Yi = γiG+ δiZ.

Consider a proof (R∗, s∗) for a statement (X∗, Y ∗,m∗) output by the adversary together with
representations (α∗, β∗) for X∗ and (γ∗, δ∗) for Y ∗ so that

(X∗, Y ∗,m∗, R∗, s∗) ̸= (Xi, Yi,mi, Ri, si) for all i. (18)

Validity means

R∗ + c∗X∗ + d∗Y ∗ = s∗G with (c∗, d∗) = H(X∗, Y ∗,m∗, R∗) . (19)

Consider the point when H(X∗, Y ∗,m∗, R∗) gets defined. This must be during a random-oracle
query by the adversary, since a successful adversary cannot have made a simulation query for
(X∗, Y ∗,m∗) answered with R∗: as there is only one valid value s∗, this would mean that the
adversary returned the oracle’s response, i.e., (18) does not hold.

Let q be the number of simulation queries made before the random-oracle query (X∗, Y ∗,m∗, R∗).
Since the adversary is algebraic, it must accompany X∗, Y ∗ and R∗ by representations (γX , ζX , ξ),
(γY , ζY ,υ) and (γR, ζR,ρ), respectively with

X∗ = γXG+ ζXZ +

q∑
i=1

ξiRi
(17)
=

(
γX +

q∑
i=1

ξiΓi

)
G+

(
ζX −

q∑
i=1

ξi∆i

)
Z ,

Y ∗ =
(
γY +

q∑
i=1

υiΓi

)
G+

(
ζY −

q∑
i=1

υi∆i

)
Z and (20)

R∗ =
(
γR +

q∑
i=1

ρiΓi

)
G+

(
ζR −

q∑
i=1

ρi∆i

)
Z

17

where the equalities follow from (17). Substituting X∗, Y ∗ and R∗ in (19) by the above RHSs and
grouping the coefficients of Z and G yields

(
ζR −

q∑
i=1

ρi∆i + c∗
(
ζX −

q∑
i=1

ξi∆i

)
+ d∗

(
ζY −

q∑
i=1

υi∆i

))
Z

=
(
s∗ −

(
γR +

q∑
i=1

ρiΓi

)
− c∗

(
γX +

q∑
i=1

ξiΓi

)
− d∗

(
γY +

q∑
i=1

υiΓi

))
G . (21)

First consider the case where the representations of X∗ and Y ∗ in (20) are independent of Z,
that is

ζX −
q∑

i=1

ξi∆i ≡p 0 ≡p ζY −
q∑

i=1

υi∆i . (22)

The extractor can thus output the witness logX∗ = γX +
∑q

i=1 ξiΓi and log Y ∗ = γY +
∑q

i=1 υiΓi.
Otherwise, at least one of the terms in (22), which are the coefficients of c∗ and d∗ in (21),

is non-zero. The adversary chose the values αi, βi, δi, γi (which define Γi and ∆i) for all i ∈ [q]
when making simulation (or random-oracle) queries before making the query H(X∗, Y ∗,m∗, R∗).
Likewise, it must have chosen the values ζX , ζY , ζR and ξi, υi, ρi for all i ∈ [q] before making this
query. Therefore, (c∗, d∗) is chosen uniformly at random after all other values in (21) are defined,
and moreover at least one of c∗ and d∗ is not multiplied by 0. The probability that the coefficient
of Z in (21) is congruent to 0 modulo p is thus 1

p . From (21), the reduction can then efficiently
compute logZ with overwhelming probability, and from the representations of X∗ and Y ∗ in (20),
it can compute the witness (logX∗, log Y ∗). ⊓⊔

Note that for readability we assumed all queried statements and the one returned are of the
form (X,Y,m). However, the proof is easily extended to simultaneously allow for statements of the
form (X,m), noting that (a) the inputs to the random oracle of type (X,Y,m,R) and (X,m,R)
are disjoint and (b) extraction from a “simple” proof is done as from a proof for two elements by
setting d∗ = 0. This immediately yields the following:

Corollary 1. In the AGM and the ROM, Schnorr signatures (Figure 2) are proofs of secret keys
that are strongly simulation-extractable with auxiliary group-element input.

6 Security analysis of MW-NIT

6.1 Assumptions

In our security analysis of the protocol from Section 3, we assume that range proofs in RaP prove
knowledge of the committed value v and the opening q. (Note that for the employed Pedersen
commitment, a proof of language membership, that is not “of knowledge” is vacuous, as for any
C there always exists an opening e.g. (v = 0, q = logC).) We thus assume that there exists an
extractor that from (an adversary outputting) a range proof π for C ∈ G can extract the values
v ∈ [0, vmax] and q ∈ Zp.

We assume the existence of strongly simulation-sound (sSS) zero-knowledge (zk) proofs of knowl-
edge (PoK) of the discrete logarithm of group elements with tags. In Section 5, we showed that
in the combination of the random-oracle model and the algebraic group model [FKL18], Schnorr
signatures are adaptive sSS zk-PoKs of the logarithm of the public key, for which the message acts
as a tag. We furthermore extended this to proofs of knowledge of two logarithms, so that the proofs
are of the same size as Schnorr signatures.

Finally, we assume that the discrete logarithm (DL) problem is hard in the group underlying the
system, and for transaction privacy that the decisional Diffie-Hellman (DDH) assumption holds.

18

6.2 Syntax

We briefly review the syntax of an aggregate cash system ACS [FOS19] and describe the adaptations
required to capture addresses and non-interactive transactions.

The public parameters and an empty ledger are set up by (pp,Λ)← Setup(1λ, vmax), which takes
as input the security parameter λ in unary and a maximal coin value vmax. A ledger Λ specifies a
supply Λ.sply (also denoted s) representing the value stored in Λ and a list of transaction outputs
(TXOs) Λ.out. Users create addresses (or “wallets”) by running (pk, vk, sk) ← KeyGen(pp), which
returns a public key (the address), a view key and a spending key.

A transaction tx has three attributes: a supply tx.sply specifying the amount of money it cre-
ates, the fee tx.fees paid to miners and a list tx.out of outputs txoi. A transaction is created by
running tx← Send(pp, (txo,v, sk), (v̂,pk,χ), s, f) on vectors of transaction outputs txo = (txoi)i,
corresponding values v = (vi)i and spending keys sk = (ski)i; and vectors of output values v̂, des-
tination addresses pk, and epochs χ; as well as a supply s and a fee f . To aggregate transactions
tx1, . . . , txn, run tx← Agg(pp, (tx1, . . . , txn)) (which returns ⊥ if they are incompatible, e.g. having
an input in common).

Using a vector of view keys vk and a list of values v̂, one obtains the list of outputs of a
transaction tx belonging to these keys by running txo ← Rcv(pp, tx, v̂,vk). If tx does not spend
v̂i ∈ v̂ to vki ∈ vk, then txoi ∈ txo is set to ⊥. Finally, Λ′ ← Ldgr(pp,Λ, tx) returns an updated
ledger Λ′ including tx if it is valid and spends outputs present in the ledger, otherwise Λ′ := ⊥;

Correctness. We require the following straightforward correctness condition. Let (pkj , vkj , skj)j
be key triples generated by KeyGen, and for k ∈ [n] let tx′k be a transaction, v′

k a vector of
elements in [0, vmax], vk

′
k a vector of elements from vk (i.e., vk′

k = (vkji)i for some ji) and let
sk′

k be the corresponding spending keys (i.e., sk′
k = (skji)i). For all k ∈ [n], define txok ←

Rcv(pp, tx′k,v
′
k,vk

′
k).

Let (txoi)i := txo1 ∥ . . . ∥ txon and let I be an index set s.t. txoi ̸= ⊥ for all i ∈ I. Con-
sider v̂ ∈ [0, vmax]

∗, p̂k consisting of elements from pk, some χ and s, f ∈ [0, vmax] such that∑
i∈I v

′
i =

∑
v̂ + f − s. Then for tx ← Send(pp, ((txoi)i∈I , (v

′
i)i∈I , (sk

′
i)i∈I), (v̂, p̂k,χ), s, f) and

txo ← Rcv(pp, tx, v̂, v̂k) where v̂k corresponds to p̂k, we have ⊥ /∈ txo, that is, all outputs
are accepted.

Comparison to FOS. The syntax of Send and Rcv differs from the one in [FOS19] due to
the inclusion of addresses (as well as fees and epochs) and transactions being non-interactive. We
moreover simplified notation by merging their algorithm Mint, used for creating money, with Send
(which is now non-interactive and takes a supply as input). That is, Mint(pp, v̂,pk,χ) is an alias
for Send(pp, (), (v̂,pk,χ),

∑
v̂, 0).

6.3 Inflation resistance

Definition. Inflation resistance guarantees that the only way to create money in an aggregate
cash system, such as Mimblewimble, is explicitly via the supply contained in transactions. The
notion is defined by the following game, adapted from [FOS19, Def. 10].

The adversary is given the system parameters (for MW-NIT they contain the elements G and
H and potential parameters for the range proof), and its task is to produce a (valid) ledger and
a transaction tx∗ (accepted by the ledger) that spends an amount that exceeds the supply of the
ledger (plus its own supply). In addition to the output amounts v̂ of tx∗, the adversary must also
return view keys that accept the outputs of tx∗. Letting s denote the ledger supply, s∗ the supply
and f∗ the fee of tx∗, the adversary wins if

s <
∑

v̂ + f∗ − s∗ . (23)

19

Game INFLACS,A(λ, vmax)

(pp,Λ)← Setup(1λ, vmax)

(Λ∗, tx∗, v̂,vk)← A(pp,Λ)
return

(
⊥ /∈ Rcv(pp, tx∗, v̂,vk) // view keys accept outputs of tx∗

and Ldgr(pp,Λ∗, tx∗) ̸= ⊥ // tx∗ is accepted by the ledger

and Λ∗.sply <
∑

v̂ + tx∗.fees− tx∗.sply
)

// tx∗ spends more than there is in the ledger

Fig. 4. Game INFL for inflation resistance

The game is formalized in Figure 4.

Theorem 1. If the range-proof system RaP and the proof-of-possession system PoP are extractable
and if the discrete-logarithm assumption holds in the underlying group, then MW-NIT satisfies
inflation resistance.

Proof. Our analysis follows closely that of [FOS19, Theorem 13] for MW-FOS, since a ledger (or
transaction) in MW-NIT contains an MW-FOS ledger (or transaction). A small difference is that
FOS did not consider fees and kernel offsets, but these are easily added to the argument.

Consider a successful adversary that returns a ledger and a transaction

Λ∗ =
(
C,π,R,ρ,P ,χ, (ct, s, f, t, y,E,X,σ)

)
tx∗ =

(
(P ′

i , Di, ψi)i∈[n], (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χi)i∈[n̂], (ct
∗, s∗, f∗, t∗, y∗,E∗,X∗,σ∗)

)
together with output values (v̂i)i∈[n̂] and view keys (ai, Bi)i∈[n̂] that accept the outputs.

The reduction extracts all values vi and openings qi for all the output commitments Ci in Λ∗

from the respective range proofs πi; thus Ci = Cmt(vi, qi). Since the ledger is valid, from (11) we
have ∑

E =
∑

Cmt(vi, qi) + Cmt(f − s, 0)− Cmt(0, t) . (24)

We first show that the ledger must be balanced w.r.t. the values vi extracted from the output
commitments Ci, that is

s =
∑
v + f . (25)

From the kernel proofs σi in Λ∗, the reduction can extract ei := logEi. Since
∑
E = Cmt

(
0,
∑
e
)
,

we have that (0,
∑
e) is an opening of the right-hand side of (24). On the other hand, since Cmt

is homomorphic,
(∑

v + f − s,
∑
q − t

)
is also an opening. Thus if (25) did not hold then we

would have two openings for two different values. This represents a break of the binding property
of Pedersen commitments, which holds under the DL assumption. (This is formally proven by a
reduction that obtains a DL challenge H, which then plays the role of Z in the AGM proof of
extractability of PoP in Section 5.)

Let q̂i be openings of the commitments in the outputs of tx∗, derived from R̂i and the view
key (ai, Bi). Since the latter accepted the i-th output of tx∗, we have Ĉi = Cmt(v̂i, q̂i). Since Λ∗

accepted tx∗, all values P ′
i are in the ledger, that is, P ′ = (Pi)i∈I for some I ⊆ N. From validity of

tx∗ we further have ∑
E∗ =

∑
Ĉ −

∑
i∈I Ci + Cmt(f∗ − s∗, 0)− Cmt(0, t∗) . (26)

From σ∗i contained in tx∗, the reduction can extract e∗i := logE∗
i and, analogously to the above,

from (26) we get

Cmt
(
0,
∑
e∗
)
= Cmt

(∑
v̂ −

∑
i∈I vi + f∗ − s∗,

∑
q̂ −

∑
i∈I qi − t∗

)
. (27)

20

Game THFTACS,A(λ, vmax)

(pp,Λ)← Setup(1λ, vmax)

j := 0 ; Hon,Archv := ()

AKeygen,Send,Ledger(pp,Λ)

return (Hon ̸⊆ Λ.out)

Oracle Send((txo,v, I), (v̂,pk,χ), s, f)

if txo ̸⊆ Hon then return ⊥
tx← Send

(
pp, (txo,v, (ski)i∈I), (v̂,pk,χ), s, f

)
if tx = ⊥ then return ⊥
Hon := Hon− txo // remove spent outputs

return tx

Oracle Keygen()

j := j + 1

(pkj , vkj , skj)← KeyGen(pp)

return (j, pkj , vkj)

Oracle Ledger(tx, v̂, (ij)j)

Λ′ := Ldgr(pp,Λ, tx)

if Λ′ = ⊥ then return ⊥ else Λ := Λ′

// Check for new honest outputs in tx:

txo← Rcv(pp, tx, v̂, (vkij)j)

for i ∈ [|txo|] :
if txoi ̸= ⊥ and txoi /∈ Archv

Hon := Hon ∥ txoi ; Archv := Archv ∥ txoi
return Λ

Fig. 5. Game THFT for theft resistance

If the adversary outputs tx∗ satisfying (23), then we have

∑
i∈I vi ≤

∑
v + f

(25)
= s

(23)
<

∑
v̂ + f∗ − s∗ ,

and thus
∑

v̂ + f∗ − s∗ −
∑

i∈I vi ̸= 0 (since all terms are bounded by vmax and thus never
wrap around the modular representation). This means that the two sides in (27) are two different
openings of the commitment

∑
E∗, which represents a break of commitment-binding. ⊓⊔

6.4 Theft resistance

We define two notions that protect users from losing money. The first one is an adaptation of the
notion from [FOS19] to a scheme with non-interactive transactions. It guarantees that outputs in
the ledger belonging to a user can only be spent by that user.

The main difference between MW-FOS and MW-NIT is that the former relies on the coin
keys (the opening of the commitments) being kept secret, while in MW-NIT, the spender knows
(and defines) the openings of the receivers’ commitments.12 In MW-NIT, the security relies on the
secrecy of the “spend key” for the user’s stealth address. We assume that the view key is known
to the adversary (as delegating scanning for transactions should not endanger the security of these
transactions).

Definition. Resistance to theft means that for any output belonging to a user in the ledger
(that is, it was accepted by the user’s view key), no matter how it was received (e.g., sent by the
adversary), as long as the output has never been spent before and the user keeps her spend key
safe, no one except her can spend it (even if her view key is publicly known). This is formalized via
the following game, which is an adaptation of [FOS19, Fig. 8].

Honest users are simulated by the experiment and the adversary can create new users by
calling Keygen; the adversary can instruct users spend outputs they own (stored in the list Hon)
by calling Send; moreover it can submit any transactions to the ledger using its oracle Ledger.
If the transaction contains outputs that are accepted by honest users, these are added to Hon. As

12 Note that this is unavoidable for non-interactive transactions: knowing the (sum of) the receivers’ keys is necessary
to compute the excess proof σ.

21

users are not supposed to accept outputs they have already owned (cf. Section 4.4), the experiment
stores all outputs ever received in a list Archv; if an output is already in Archv, then Ledger does
not add it to Hon. The adversary wins the game if it spends any of the honest user’s outputs, that
is, if some output in Hon is not in the ledger. The game is formalized in Figure 5.

Remark. Note that the game in Figure 5 for a scheme with non-interactive transactions is a lot
simpler than [FOS19, Fig. 8], which had to take care of the interactive spending protocol. In
particular, this involves an instruction for the honest users to receive coins, and the definition of
the coins an honest user owns in [FOS19] is cumbersome, whereas for non-interactive transactions,
anything accepted by the honest user’s view key (and not previously owned) is considered belonging
to her. Note also that we do not require an oracle Mint, since the adversary can run Send with
an empty input list.

Theorem 2. If PoP is a simulation-sound proof of knowledge of discrete logarithms (cf. Section 5)
and the DL assumption holds in the underlying group, then MW-NIT satisfies theft-resistance.

Proof. Consider a user owning an output txo = (C, π,R, ρ, P, χ) with amount v in the ledger,
that is, txo is accepted (see Section 3.4) by her view key (a,B), meaning P = B + kG where
(k, q) = H(aR). Spending this coin requires proving possession of P with tag txo, but an honest
user, unless she spends that output, never proves possession of P with tag txo.

We formally use a theft to break the DL assumption assuming simulation-extractability of PoP.
The reduction receives a DL challenge B∗ ∈ G, chooses a∗ ←$ Zp, sets a random honest user’s
address to (A∗ := a∗G,B∗) and gives the adversary the view key (a∗, B∗).

Whenever the user is asked to spend an output txo′ = (C ′, π′, R′, ρ′, P ′, χ′) belonging to the
user, the reduction computes the transaction as specified, choosing a doubling key D′ := d′G for a
d′ ←$ Zp. As it does not know the logarithm of P ′ (since this requires knowledge of logB∗), it runs
the zero-knowledge simulator for a proof of possession ψ for (P ′, D′) with tag txo′.

Assume an output txo = (C, π,R, ρ, P, χ) belonging to the user is spent by the adversary. (If
the adversary attacked a different user, the reduction aborts.) Then the corresponding transaction
input must contain a proof ψ∗ of possession of (P,D∗) with tag txo for some D∗. By the definition
of the security game, the honest user has never spent txo before. This means that the reduction
has never simulated a proof for (P,D∗, txo). Therefore, by simulation-extractability (SE) of PoP,
the reduction can extract p = logP , and since P = B∗+ kG, for a value k known to the reduction,
it can compute the solution p− k to its DL challenge B∗.

Note that if extraction fails, we can construct a reduction that breaks SE of PoP, which is
algebraic if the adversary is: from the adversary’s representation of (P,D∗), the reduction against
PoP can derive a representation in basis (G,B∗), where B∗ is the auxiliary group element input;
likewise, it can give representations P ′ = B∗ + k′G and D′ = d′G of the elements for which it
queries simulated proofs. ⊓⊔

6.5 Transaction-binding

While the previous notion states that once a user owns an output in the ledger it cannot be stolen,
we also need to guarantee that nothing can be stolen from a transaction before it is even added to
the ledger (this protects against malicious miners, for example). In particular, if a user produces a
transaction tx then no one should be able to create a transaction that contains one of the inputs
of tx while not containing all its outputs (except for the owners of the outputs). Since transactions
can be aggregated, further inputs and outputs can also be added to the original transaction. Thus,
while theft-resistance protects the outputs of a transaction, transaction-binding protects the inputs.

Definition. We define transaction-binding via the following game. The experiment simulates all
honest users, which the adversary can create by calling Keygen, which creates a new address,

22

Game TXBNDACS,A(λ, vmax)

(pp,Λ)← Setup(1λ, vmax)

j := 0 ; HTxs := () // honest transactions

STxo := () // spent outputs

(Λ, tx∗, tx̂o, v̂, i)← AKeygen,Send,Ledger(pp,Λ) // Λ should contain the TXOs spent by tx∗

Λ∗ := Ldgr(pp,Λ, tx∗)

return
(
∃ tx ∈ HTxs : Ldgr(pp,Λ, tx) ̸= ⊥ // tx accepted by Λ, . . .

and Λ∗ ̸= ⊥ and Ldgr(pp,Λ∗, tx) = ⊥ // . . . but not after tx∗ was (accepted and) added

and tx̂o ∈ Rcv(pp, tx, v̂, vki) // tx̂o belongs to an honest user, . . .

and tx̂o /∈ STxo and tx̂o /∈ tx∗.out
)

// . . . and was not spent, and it is not in tx∗

Oracle Keygen()

j := j + 1

(pkj , vkj , skj)← KeyGen(pp)

return (j, pkj , vkj)

Oracle Send((txo,v, I), (v̂, p̂k, χ̂), s, f)

// Honest users never spend the same txo twice:

if txo ∩ STxo ̸= ∅ then return ⊥

tx← Send(pp, (txo,v, (ski)i∈I), (v̂, p̂k, χ̂), s, f)

HTxs := HTxs ∥ tx ; STxo := STxo ∥ txo
return tx

Fig. 6. Game TXBND for transaction-binding

for which the adversary receives the view key. The adversary can instruct honest users to spend
outputs of the adversary’s choice to addresses of the adversary’s choice; the experiment computes
the corresponding transaction using the users’ spending keys and gives it to the adversary. The
adversary’s goal is to create a transaction tx∗ which spends the same input as an honest transaction
tx, but one of the outputs in tx for an honest user is missing in tx∗ (and that user was not instructed
to spend it).

We formalize this by requiring the adversary to return a ledger Λ that must accept the attacked
honest transaction tx, but after tx∗ is included in Λ, the latter does not accept tx anymore (thus tx
and tx∗ have an input in common); the adversary also returns values and indices of honest users,
so that their view keys accept tx but do not accept tx∗ (thus one of the outputs of tx is missing in
tx∗). The game is formalized in Figure 6.

Remark. While it might seem restrictive that only stealing outputs of honest users is considered
a break of the notion, it is not. In aggregate cash systems like Mimblewimble an adversary can
always “steal” outputs it owns from any transaction tx: simply create a transaction that spends
these outputs and then merge it with tx; the result is a transaction in which some of the outputs of
tx have been replaced by new ones. Thus, we do not consider this an attack and transaction-binding
gives no guarantees against it.

Theorem 3. If PoP is a strongly simulation-sound proof of knowledge of discrete logarithms
(cf. Section 5) and the DL assumption holds in the underlying group, then MW-NIT satisfies
transaction-binding.

Proof intuition. As this is the most complex notion to prove, we start with a simplified sce-
nario. Consider an adversary A that creates two users via Keygen, computes an output txo =
(C, π,R, ρ, P, χ) for User 1 and calls Send so txo is spent to User 2, which creates a transaction

tx =
(
(P,D, ψ), tx̂o, (s, f, t, y, σ)

)
with tx̂o = (Ĉ, π̂, R̂, ρ̂, P̂ , χ̂) .

23

A makes no further oracle calls and returns a transaction tx∗ = ((P,D∗, ψ∗), txo∗, (s∗, f∗, t∗, y∗, σ∗))
that spends txo and creates an output txo∗ = (C∗, π∗, R∗, ρ∗, P ∗, χ∗) ̸= tx̂o (so tx∗ is a simple, i.e.,
non-aggregate transaction).

We first show that conditions (I)–(III) below must hold with overwhelming probability, and in
(IV) we show that when (I)–(III) hold, A can only win with negligible probability. We show all
four claims by reducing the DL problem to them, assuming strong simulation-extractability (SE)
of the proof-of-possession system PoP.

(I) D = D∗. Assume D ̸= D∗. By SE of PoP, this can be used to break DL by simulating the
game as in the proof of theft-resistance (Theorem 2):
Given a DL challenge B, the reduction embeds it into User 1’s address (aG,B) for a ←$ Zp. It
computes tx as prescribed, except that it simulates the proof ψ (as its witness depends on logB).
When A outputs a transaction with input (P,D∗, ψ∗), the witness (p, d∗) can be extracted from ψ∗,
as the only simulated proof was for a different statement (P,D, txo). Since P = B + kG, with k
derived from User 1’s view key per Equation (3), the reduction can return logB = p− k.
(II) R∗ ̸= R̂. Assume R∗ = R̂. Since txo∗ ̸= tx̂o, either the tag C∗∥π∗∥P ∗∥χ∗ for ρ∗, or ρ∗ itself
is different. As the statement/proof pair is different from the one created by User 1, logR∗ can be
extracted by strong SE (“strong”, since possibly only the proof differs):
Given a DL challenge R̂, the reduction embeds it in the output of tx. Not knowing log R̂, the
reduction can still compute (k̂, q̂) = H(a′R̂) from User 2’s view key (a′, B′) (who must be honest).
From this, the reduction computes Ĉ, π̂ and P̂ . The proofs ρ̂ and σ, whose witnesses depend on
log R̂, are simulated. If the adversary returns a transaction tx∗ with R∗ = R̂, then from ρ∗ the
reduction can extract log R̂ (since the tag or ρ∗ must be different), solving the DL challenge.

(III) X∗ ̸= X, that is, the stealth excess of tx∗ is different from that of tx. Assume X∗ = X. Then
from the definition of stealth excesses in Equation (2) we get R∗−D∗− y∗G = R̂−D− yG. By (I)
we have D∗ = D and thus R̂ = R∗ + (y − y∗)G. Since ρ∗ proves knowledge of logR∗, this means
the adversary must also know log R̂.
Formally, as in case (II), the reduction embeds a DL challenge as R̂ and simulates the proofs ρ̂ and
σ to compute tx. Since, R∗ ̸= R̂ by (II), the statement of ρ∗ is different from that of the simulated
proof ρ̂ and thus the reduction can extract r∗ = logR∗ from ρ∗. If X∗ = X then it can compute
log R̂ = r∗ + y − y∗.
(IV) Finally, we show that A cannot win the game when (I)–(III) hold. From (I) and (2), we
have X∗ := R∗ − D − y∗G. Since σ∗ contained in tx∗ proves knowledge of x∗ := logX∗ (since
X∗ ̸= X by (III)) and ρ∗ proves knowledge of r∗ := logR∗, this means that the adversary must
know logD = r∗ − y∗ − x∗.
The reduction embeds its DL challenge as D, the value in the input of tx, and simulates proofs
ψ and σ (whose DL depend on logD). All other components of tx are computed as prescribed. If
the adversary is successful, then from ρ∗ the reduction extracts r∗ (no ρ proofs were simulated),
and from σ∗ the reduction extracts x∗ (the simulated proof σ was under X ̸= X∗) and returns
r∗ − y∗ − x∗ = logD.

Proof (of Theorem 3). We generalize the above arguments, now considering the actual security
game. In particular, there can now be many honest transactions created by the game and the
adversary’s output tx∗ can be an aggregated transaction, whose stealth excesses might contain X
values from different honest transactions. Moreover, tx∗ can contain cut-through terms (in partic-
ular, the “stolen” output tx̂o could be in the cut-through of tx∗).

Let tx∗ and tx̂o be the adversary’s outputs and tx be the attacked transaction, that is, tx and
tx∗ have an input in common, and txo is an output of tx (accepted by an honest user) but not of tx∗.
We proceed by a sequence of hybrid games, each one introducing new abort conditions which make
the game return 0. The conditions in H1 correspond to (I) above and tx̂o being in the cut-through
of tx∗. The conditions in H2 correspond to (II) and (III), which we combine in the same hybrid as
they can be proved in one reduction.

24

H0 This is the original transaction-binding game.

H1 The first hybrid game aborts if one of the inputs in tx∗ spends the same txo as an honest
transaction, i.e., txo ∈ HTxs, but the associated D value is different (abort condition (A1a));
or if tx̂o ∈ ct∗, the cut-through of tx∗ (A1b).

H2 In addition, the second hybrid aborts if either the value R̂ in tx̂o appears in tx∗ (that is, either
in an output or in its cut-through) (A2a); or R̂ does not appear in tx∗ and among the stealth
excesses of tx∗ is the stealth excess X of tx (A2b).

Note to win H2, tx
∗ must share an input with tx (the attacked transaction), and moreover the

corresponding D values in tx∗ and tx must be the same (otherwise the game would abort because
of (A1a)). Also note that if tx∗ contains the stealth excess X of tx then H2 returns 0: if it does not
abort in (A2b) then R̂ must appear in tx∗, and thus it aborts in (A2a). Therefore, if the adversary
wins H2 then

(W1) one of the D values in tx∗ is from an input of tx

(W2) the stealth excess list X of tx∗ does not contain the stealth excess X of tx

Hybrid H0 to H1. We start by showing that the probability that H0 returns 1 but H1 does not
(because it aborts) is negligible by reducing the DL problem to the event (A1a) or (A1b) occurring,
assuming simulation-extractability (SE) of PoP.

Given a DL challenge Z ∈ G, the reduction embeds it into the addresses of all honest users:
it picks aj , bj ←$ Zp and defines the j-th user’s address as (ajG,Bj := Z + bjG). Note that this
is correctly distributed and the corresponding view key (aj , Bj) can be given to the adversary.
When the adversary calls Send, the reduction proceeds as prescribed, except that runs the zero-
knowledge simulator for the proof ψ (the only value that depends on logBj). Let (txoi)i = STxo
be the outputs queried to Send and let (Pi, Di, ψi) be the corresponding inputs of the transactions
created by Send. Thus, ψi are the simulated proofs for (Pi, Di, txoi). Since Send never accepts the
same txo twice, all txoi are distinct.

(A1a). Let tx∗ be the transaction returned by the adversary, and assume (A1a) occurs, i.e., tx∗

spends txoi∗ for some i∗, and the corresponding input is of the form (Pi∗ , D
∗, ψ∗) with D∗ ̸=

Di∗ . Since (Pi∗ , D
∗, txoi∗) ̸= (Pi∗ , Di∗ , txoi∗) and all txoi are distinct, we have (Pi∗ , D

∗, txoi∗) ̸=
(Pi, Di, txoi) for all i. This means that no proof for (Pi∗ , D

∗, txoi∗) has been simulated and by SE
of PoP, the reduction can extract the witness (pi∗ , d

∗) from ψ∗. Let j be the index of the user that
spent txoi∗ (i.e., the value in I associated to Txi∗ in the call to Send); then Pi∗ = Bj + kG for
k derived the view key (aj , Bj) as per (3). Since Bj = Z + bjG, we get logZ = pi∗ − bj − k, the
solution of the DL challenge.

(A1b). Now assume that (A1b) occurs, that is, tx̂o, the value returned by the adversary, is an
output of an honest transaction tx, and tx̂o /∈ STxo (otherwise the adversary did not win), and
the cut-through of tx∗ contains tx̂o ∥ (P̂ ,D∗, ψ∗) for P̂ in tx̂o and some D∗, ψ∗. Since P values are
derived from R values, which are uniform, the probability that P̂ is contained in some txoi ∈ STxo
is negligible. As the entries in STxo are precisely those for which ψ proofs were simulated and
tx̂o /∈ STxo, the reduction can extract from ψ∗ the witness (p̂, d∗). Since the i-th user (with i from
the adversary’s output) accepted tx̂o, we have P̂ = Bi + k̂G for k̂ derived from (ai, Bi) as per (3).
Since Bi = Z + biG, the reduction can thus again compute logZ = p̂− bi − k̂.

Hybrid H1 to H2. We next show that in a winning run of H2 the abort conditions (A2a) and
(A2b) can only occur with negligible probability. If any of them occurs, then there exist i and ι̂ so
that tx will be the i-th transaction and its ι̂-th output will be tx̂o, and one of the following hold:

(A2a) R̂ from tx̂o is contained in some txo∗ in tx∗ (either in an output or in its cut-through list
ct∗). (Note that we have tx̂o ̸= txo∗: otherwise, if tx̂o is an output then the adversary did not win,
and if tx̂o is in ct∗ then the game would have aborted because of (A1b)); or

25

(A2b) R̂ from tx̂o does not appear in tx∗ and the stealth excess X of tx is among the stealth excess
list of tx∗.

We define a reduction that makes a guess (i, ι̂), so that if the adversary wins H1 but not H2

(i.e., either (A2a) or (A2b) occur) and the guess is correct, then it breaks DL.
The reduction receives a DL instance Z ∈ G and guesses i and ι̂. The reduction simulates H1

as prescribed, except when creating the i-th transaction txi, in its ι̂-th output it sets Rι̂ := Z (and
thus does not know its discrete logarithm). It completes the transaction as follows: if the receiver
of txoι̂ is not honest, it aborts (and the guess (i, ι̂) was wrong). Otherwise, let (aj , Bj) be receiver’s
view key. The reduction computes

(kι̂, qι̂) := H(ajRι̂)

and, from this, Cι̂, Pι̂ and πι̂ as prescribed. It simulates a proof ρι̂ for (Rι̂, Cι̂∥πι̂∥Pι̂∥χι̂), which
completes txoι̂. To complete txi, it also simulates σ (whose witness depends on logRι̂).

(A2a). Assume that the reduction guessed correctly and that (A2a) occurs, that is, tx∗ contains
(C∗, π∗, Rι̂, ρ

∗, P ∗, χ∗) ̸= tx̂o = txoι̂. Thus, ρ
∗ is valid for (Rι̂, C

∗∥π∗∥P ∗∥χ∗) and (C∗∥π∗∥P ∗∥χ∗, ρ∗)
̸= (Cι̂∥πι̂∥Pι̂∥χι̂, ρι̂); otherwise we would have txo∗ = tx̂o. The statement for ρ∗ (or ρ∗ itself) is thus
different from the statement for the simulated ρι̂ (or ρι̂ itself). By strong SE of PoP, the reduction
can extract from ρ∗ the witness logRι̂ = logZ, the DL solution. (Recall that σ is also simulated,
but that different types of proofs are assumed to be domain-separated, cf. Section 2)

(A2b). Now assume that the reduction guessed correctly and that (A2b) occurs. This means that

tx∗ =
(
(P ∗,D∗,ψ∗), (Ĉ, π̂, R̂, ρ̂, P̂ , χ̂), ((C ′,π′,R′,ρ′,P ′,χ′,P ′,D′,ψ′), s∗, f∗, t∗, y∗,E,X,σ)

)
,

returned by the adversary, is such that X contains the stealth excess X of tx and neither R̂ nor
R′ contain Rι̂. By validity of tx, it satisfies the balance equation (12) and since Rι̂ = Z, we have

X =
∑

j ̸=ι̂Rj + Z −
∑
D − yG . (28)

All values rj = logRj , for j ̸= ι̂, and dj = logDj have been chosen by (and are thus known to) the
reduction. Moreover, since (A2b) occurred, for some J∗ with |J∗| =: m ≥ 1 we have Xj = X for all
j ∈ J∗ (the adversary could have included X multiple times in X). By validity of tx∗ (recall that
for aggregated transactions, Equation (12) also ranges over the cut-through terms) this yields∑

j /∈J∗ Xj +mX =
∑
R̂+

∑
R′ −

∑
D∗ −

∑
D′ − y∗G . (29)

From the proofs σj in tx∗, for j /∈ J∗, the reduction can extract the corresponding values xj = logXj

(since only σ for X was simulated and X /∈ (Xj)j /∈J∗). From the proofs ψ∗
j and ψ′

j the reduction can
extract the values d∗j = logD∗

j and d′j = logD′
j , since no ψ proofs are simulated (if the adversary

copied D and ψ from an honest transaction, the reduction knows logD). From the proofs ρ̂j and
ρ′j , the reduction can extract the values r̂j = log R̂j and r′j = logR′

j (and it knows the logarithms
of the ones copied from honest transactions). Recall that Rι̂ (for which ρι̂ was simulated) is not
among R̂ nor R′.

Plugging (28) into (29), taking the logarithm to base G and substituting all logarithms of group
elements known to the reduction thus yields

logZ ≡p
1
m

(
−
∑

j /∈J∗ xj +
∑
r̂ +

∑
r′ −

∑
d∗ −

∑
d′ − y∗

)
−
∑

j ̸=ι̂ rj +
∑
d+ y ,

meaning the reduction can solve the DL challenge.

Hybrid H2. It remains to show that H2 can only be won with negligible probability, where we
leverage that winning the game implies (W1) and (W2).

Again, we reduce solving DLs to winning H2, assuming SE of PoP. The reduction now embeds
a DL challenge Z ∈ G into all the D values chosen by the oracle Send. Whenever the adversary

26

calls Send, the reduction randomly samples d ←$ Zp, sets D := dZ and simulates proofs ψ for
(P,D, txo), as well as the excess proof σ (whose witnesses depend on logD). Let

tx∗ =
(
(P ,D,ψ), (Ĉ, π̂, R̂, ρ̂, P̂ , χ̂), ((C ′,π′,R′,ρ′,P ′,χ′,P ′,D′,ψ′), s, f, t, y,E,X,σ)

)
,

be the transaction returned by the adversary. By (W1) and (W2), D contains an input D from
an honest transaction tx, whose stealth excess X is not contained in X. In tx∗ we distinguish two
types of values in D ∥D′ and two types of stealth-excess elements:

– let D̄i be the values inD andD′ that appear in honest transactions and D∗
i be those that don’t

– let X̄i be the stealth excesses that appear in honest transactions and X∗
i be those that don’t

For all X̄i appearing in an honest transaction txi, let Di,j and Ri,j denote the values contained in
the inputs and outputs of txi and let yi be its stealth offset. By validity of txi we have

X̄i =
∑

j Ri,j −
∑

j Di,j − yiG .

As these values Di,j and the values D̄i contained in tx∗ were created by the reduction, we have
Di,j = di,j ·Z and D̄i = d̄i ·Z for values di,j and d̄i known to the reduction. Moreover, the reduction
knows the values ri,j := logRi,j , as it chose them. From the above, we thus have

log X̄i =
∑

j ri,j −
∑

j(di,j · logZ)− yi log D̄i = d̄i · logZ (30)

From the proofs ψi and ψ′
i in tx∗ corresponding to the values D∗

i and from σi corresponding
to X∗

i , the reduction can extract logD∗
i and logX∗ (since, by definition, D∗

i and X∗
i are values

that have not been created by the reduction and thus no proofs have been simulated for them).
Moreover, if any values R̂i or R

′
i in tx∗ were copied from an honest transaction, the reduction knows

their logarithms. For all other R̂i and R
′
i, from the proofs ρ̂i and ρ

′
i contained in tx∗, the reduction

can extract log R̂i and logR′
i (as no ρ proofs are simulated). The reduction thus knows the values

logD∗
i =: d∗i logX∗

i =: x∗i log R̂i =: r̂i logR′
i =: r′i (31)

Since tx∗ is valid, it satisfies the balance equation (12) for aggregated transactions, that is X =∑
R̂+

∑
R′−

∑
D−

∑
D′− yG. Since the lists X and X∗∥ X̄ contain the same elements, as do

D ∥D′ and D∗∥ D̄, this yields∑
X∗ +

∑
X̄ =

∑
R̂+

∑
R′ −

∑
D∗ −

∑
D̄ − yG .

Taking the logarithm to base G, and using (30) and (31) this yields:∑
x∗i +

∑∑
ri,j −

∑∑
(di,j · logZ)−

∑
yi ≡p

∑
r̂i +

∑
r′i −

∑
d∗i −

∑
(d̄i · logZ)− y . (32)

We argue that with overwhelming probability we have∑
d̄i −

∑∑
di,j ̸≡p 0 . (33)

Indeed, by (W1), at least one value d̄i∗ comes from tx. Moreover, by (W2) the stealth excess of tx
does not appear in tx∗, and thus tx is not among the transactions (txi) whose stealth excesses were
copied, and from which the values (di,j)i,j come. The value d̄i∗ is thus not among (di,j)i,j (except
with negligible probability if the reduction chose the same value twice). Since all values are chosen
at random by the reduction, the probability that (33) is not satisfied is thus 1/p, with p the order
of the group G. Whenever (33) is satisfied, the reduction can compute logZ from (32). ⊓⊔

27

6.6 Transaction privacy

We now consider an attacker that passively observes blocks of the underlying blockchain and at-
tempts to deduce information about the transaction graph or the transacted amounts. In Jedusor’s
original proposal [Jed16], no guarantee of privacy was given besides hiding transaction amounts, and
this was reflected in prior definitions [FOS19, Def. 12]. In the initial version of Mimblewimble one
can “disaggregate” transactions [Dev20a], that is, determine which inputs and outputs come from
the same original transaction. As a consequence, one could infer how money was being transferred
across the network.

Grin introduced transaction offsets, which enable stronger anonymity guarantees by preventing
disaggregation. To reflect this, we present a stronger privacy notion than the one in [FOS19]. Our
notion is tailored to non-interactive transactions. We stress that our analysis is limited to the
cryptographic properties of the scheme and it does not provide network-level privacy guarantees.

Definition. Our scheme provides three basic anonymity guarantees:

– a transaction hides the amounts contained in its inputs and outputs, as well as
– the destination addresses of the inputs and outputs, except to the receivers of the transaction;
– in an aggregated transaction, it is not possible to tell which inputs and outputs belonged to

the same component transaction except for what can be deduced via the receiver’s keys and the
epochs of the outputs.

The above are implied by the following simulation-based definition. The adversary has access to an
oracle that creates honest users and a challenge oracle that produces transactions, taking as input:

– lists refi = (refi,j)j , for i ∈ [ℓ], where refi,j is either a tuple (txoi,j , vi,j , ski,j) or an identifier idi,j
of a previously generated output, within the same or a previous oracle call (refi thus specifies
the list of inputs of the i-th transaction)

– lists (idi, (v̂i, p̂ki, χ̂i)), where idi,j serves as the unique identifier of the corresponding triple
value/address/epoch (this specifies the outputs of the i-th transaction)

– supplies si and fees fi (for the i-th transaction)

In the “real” world, the oracle does the following: for all i ∈ [ℓ], it creates txi by running Send
on the inputs referenced by (refi,j)j : these are either explicit output/value/spending-key triples; or

(refi,j)j = idi,j , where idi,j was associated to a previous output argument (v̂i,j , p̂ki,j , χ̂i,j) for which

p̂ki,j was generated by the “honest-user” oracle; in this case the output txoi,j of the transaction

previously generated for idi,j is used together with v̂i,j and ŝki,j , the spending key associated to
pki,j . (If the adversary wants to spend outputs for an address it controls, it can provide an explicit

output/value/spending-key triple.) The remaining arguments for Send are (v̂i, p̂ki, χ̂i), si and fi.
Using Agg, the oracle then aggregates tx1, . . . , txℓ to tx and returns tx.

Transaction privacy requires that the “real” oracle is indistinguishable from an oracle that
creates an aggregate transaction tx using a simulator Sim, which is only given:

– a list in of length the total number of inputs, whose elements are either an output txoi or an
identifier idi where idi ∈ îd from îd below (that is, it points to an output of a component
transaction); moreover, in is sorted lexicographically; it contains neither values nor keys

– a (sorted) list out = (îd, (v̂, p̂k, χ̂)) of output identifiers and triples which are either for adver-
sarial keys or which are of the form (⊥,⊥, χ̂i) if the output is for an honest user

– the total supply and fee s, f ∈ [0, vmax] and the number of transactions ℓ.

In addition to the simulated tx, the simulator also provides a list of the transaction outputs in
tx for the honest users together with their respective identifiers (to be used by the oracle when
compiling inputs in a subsequent call of the simulator). The game is formalized in Figure 7. The

28

Game TXPRVACS,A(λ, vmax)

b←$ {0, 1}
Pks,Txos := () // hash tables

(pp,Λ)← Setup(1λ, vmax)

b′ ← ATxb(pp,Λ)

return (b = b′)

Tx0

(
(refi, (îdi, (v̂i, p̂ki, χ̂i)), si, fi))i∈[ℓ]

)
// “real” game

// check for double and already used id’s:

if ∃ (i, j) ̸= (i′, j′) : îdi,j = îdi′,j′ or

Txos(îdi,j) ̸= ε then abort

for i ∈ [ℓ] // get ref’s to previous txo’s

ini := ()

for j ∈ [|refi|]
if refi,j =: id // refi,j is an id

if Txos(id) =: (txo, v, sk) ̸= ε

ini := ini ∥ (txo, v, sk)
if refi,j =: (txo, v, sk)

ini := ini ∥ (txo, v, sk)
else abort

txi ← Send(pp, ini, (v̂i, p̂ki, χ̂i), si, fi)

// store outputs for honest users in Txos:

for j ∈ [|îdi|]

if Pks(p̂ki,j) =: (v̂ki,j , ŝki,j) ̸= ε

// j-th recipient is honest

txoi,j ← Rcv(pp, txi, v̂i,j , v̂ki,j)

// if multiple transactions are . . .

// . . . found, store the subsequent . . .

// . . . one at each iteration

Txos(îdi,j) := (txoi,j , v̂i,j , ŝki,j)

tx← Agg(pp, tx1, . . . , txℓ)

return tx

Oracle Keygen()

(pk, vk, sk)← KeyGen(pp)

// add values to table Pks:

Pks(pk) := (vk, sk)

return pk

Oracle Tx1

(
(refi, (îdi, (v̂i, p̂ki, χ̂i)), si, fi))i∈[ℓ]

)
// “simulated” game

if ∃ (i, j) ̸= (i′, j′) : îdi,j = îdi′,j′ or

Txos(îdi,j) ̸= ε then abort

in := () ; out := () // simulator gets “aggregated” lists

for i ∈ [ℓ]

vali := 0 ; v̂ali :=
∑

j v̂i,j // sums of in and out values

for j ∈ [|refi|]
if refi,j =: id

if Txos(id) =: (txo, v) ̸= ε

in := in ∥ txo ; vali := vali + v

elseif ∃ i′ ∈ [i− 1], j : id = îdi′,j′

in := in ∥ id ; vali := vali + v̂i′,j′

if refi,j =: (txo, v, sk)

ini := ini ∥ (txo, v, sk) ; vali := vali + v

else abort

if v̂ali + fi ̸= vali + si : return tx := ⊥ // tx unbalanced

for j ∈ [|îdi|] // remove honest keys and values:

if Pks(p̂ki,j) = ε : out := out ∥ (îdi,j , (v̂i,j , p̂ki,j , χ̂i,j))

else out := out ∥ (îdi,j , (⊥,⊥, χ̂i,j))

in′ := Sort(in) ; out′ := Sort(out)

s :=
∑

i si ; f :=
∑

i fi

(tx, (id′, txo′))← Sim(in′,out′, s, f, ℓ)

// store outputs for honest users in Txos:

let i′, j′ such that id′
i = îdi′,j′

Txos(id′
i) := (txo′i, vi′,j′)

return tx

Fig. 7. Game TXPRV for transaction privacy

adversary gets access to an oracle that either returns real or simulated (aggregated) transactions,
and the adversary has to decide which is the case. If in a “real” query, the input and output values
are unbalanced, Send would return ⊥ and after aggregation, the oracle response would be ⊥. Since
the simulator does not get any values, the oracle in the “simulated” world checks balancedness
explicitly. The complexity of the formal game mainly stems from bookkeeping.

Remark. Since owners of addresses must be able to identify payments to them, privacy can only
hold for addresses for which the adversary does not know the view key. Hence, for outputs that
do not belong to honest users, the simulator receives the output addresses (and the corresponding
values) created by the adversary.

29

The simulator does not receive any amounts related to inputs or outputs for honest users;
therefore the transaction (which is indistinguishable from a simulated one) does not reveal any such
amounts (to a computationally bounded adversary). The simulator does not receive any destination
address apart from the ones owned by the adversary; the transaction can therefore not reveal any
honest recipients. Finally, the simulator does not get the input/output matching of the constituent
transactions, thus the aggregated transaction cannot be “disaggregated”.

Theorem 4. If the proof systems RaP and PoP are zero-knowledge and if DDH is hard in G, then
MW-NIT satisfies transaction privacy in the random oracle model.

Proof. We first define the Sim. It takes as input: a list in of length n, whose elements are of the
form txoi or idi; an n̂-element list for the outputs with elements of the form (îdi, (v̂i, p̂ki, χ̂i)) where
possibly (v̂i, p̂ki) = (⊥,⊥); total supply and fees s, f and the number of transactions ℓ.

Let Iid ⊆ n denote the set of indices for which ini = idi, that is, the references to outputs of the
transaction to be cut through; for i ∈ [n] \ Iid, the entries ini are explicit TXO’s. Further, let Îhon
be the indices i ∈ [n̂] for which (v̂i, p̂ki) = (⊥,⊥), that is, the indices of outputs for honest users.

(a) for each output index i ∈ [n̂] \ Îhon, sample r̂i ←$ Zp and use it to compute R̂i = r̂iG and P̂i

(using p̂ki = (Âi, B̂i)) and Ĉi (using v̂i) as prescribed in Send
(b) for each i ∈ Îhon, pick random values Ĉi, R̂i, P̂i ←$ G
(c) for each i ∈ [n̂], simulate the range proofs π̂i for statements Ĉi, and the proofs ρi for R̂i with

tag Ĉi∥π̂i∥P̂i∥χi. Let tx̂oi := (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χ̂i)
(d) define the honest outputs via id′ := (îd)i∈Îhon and txo′ := (tx̂oi)i∈Îhon

(e) for each input index i ∈ [n], pick a random value Di ←$ G
(f) for each i ∈ Iid, let ki be such that ini = îdki (if there is none, abort); set Pi := P̂ki with P̂ki

from (a) or (b); simulate ψi for the statement (Pi, Di, tx̂oki) with tx̂oki from (c)
(g) for each i ∈ [n]\Iid, with ini containing an explicit output txoi =: (Ci, πi, Ri, ρi, Pi, χi), simulate

ψi for the statement (Pi, Di, ini)
(h) define the cut-through ct as the (lexicographical) ordering of (tx̂oki , Pi, Di, ψi)i∈Iid
(i) define txi′ as the ordering of (Pi, Di, ψi)i∈[n]\Iid (i.e., cut-through terms removed)
(j) define txo′ as the ordering of (tx̂oi)i∈[n̂]\{ki}i∈Iid

(i.e., cut-through terms removed)

(k) compute the kernel: pick random values E2, . . . , Eℓ, X2, . . . , Xℓ ←$ G, as well as t, y ←$ Zp

(l) set E1 :=
∑
Ĉ −

∑
C + (f − s)H − tG−

∑ℓ
i=2Ei

and X1 :=
∑
R̂−

∑
D − yG−

∑ℓ
i=2Xi (note that we could have ℓ = 1)

(m) for each i ∈ [ℓ], simulate σi for (Ei, Xi) with tag ε

Set
tx =

(
txi′, txo′, (ct, s, f, t, y,E,X,σ)

)
,

and remove ct if it is empty, and remove E and X if ℓ = 1. Return (tx, (id′, txo′)).

We now show that in the random oracle model, assuming indistinguishability of simulated RaP
and PoP proofs and the DDH assumption, a real transaction is indistinguishable from a simulated
transaction. We start with a real transaction (as returned by Tx0) and consider a sequence of
hybrid games that turns it into a simulated transaction (as returned by Tx1).

H0 This is the “real” game, in which the adversary interacts with the oracle Tx0. The component
transactions are created as described (in Section 3.2) using the spending keys and they are then
aggregated (Section 3.3).

H1 In the first hybrid, all RaP proofs π and PoP proofs (cf. Section 5) ψ, ρ and σi are simulated.
By the zero-knowledge property of both primitives, this change is indistinguishable from the honest
computation of the range proofs and the proofs of possession.

30

H2 In this hybrid, when determining the outputs of the honest users to be added to Txos, instead
of running Rcv, the oracle simply sets txoi,j as the j-th output of the i-th transaction. By the
definition of the scheme, this does not change anything.
Note that in this hybrid, the part ai,j of the view key vki,j of an honest user is only used to compute
(ki,j , qi,j) := H(ai,jRi,j) when running Send on an honest input; moreover the value r̂i,j for honest

outputs is only used to compute (k̂i,j , q̂i,j) := H(r̂i,jAi,j) (since H1). Also, the spending key skι is
never used (since H1).

H3 For every output for an honest user in the generation of the key shares in Equation (3), the
argument r̂i,jAi,j of the hash function is replaced by a random value Zi,j ←$ G; when the output
is later spent then analogously ai,jR̂i,j is replaced by the same Zi,j . This is indistinguishable by
the DDH assumption, noting that all R̂i,j and Ai,j for such outputs are created by the reduction
and their logarithms are not used anywhere else in the game (the former because ρi,j and σi are
simulated; the latter because of the modification in H2 and since the address oracle does not reveal
any secret keys).

H4 The game aborts if the adversary queries Zi,j for any i, j to the random oracle. Since the
adversary has no information on Zi,j , the probability of aborting is negligible. Note that in H4, the

values k̂i,j and q̂i,j , derived from H(Zi,j) are uniformly random and independent.

Now that we have showed that the adversary’s return value can only change negligibly between
H0 and H4, it remains to argue that a transaction generated in H4 is distributed equivalently to
a transaction computed by the simulator, when interacting with the oracle Tx1. The transactions
produced in H4 and in Tx1 (by the simulator) are both of the form

tx =
(
txi, tx̂o, (ct, s, f, t, y,E,X,σ)

)
.

The supply and fee are defined as s :=
∑
si and fee f :=

∑
fi both in H4 (when running Agg)

and in Tx1. The values t, y are distributed uniformly at random both in H4 (where t :=
∑

i ti with
each ti ←$ Zp) and by the simulator in (k) (where t ←$ Zp). All range proofs RaP and the proof
of possession PoP are simulated both in H4 and by the simulator. We are left proving that all the
group elements in tx follow the same distribution.

Within a query to the transaction oracle, denote by Iid the set of indices (i, j) of the inputs
given as id values (and not an explicit triple) and let Ihon be the set of indices (i, j) for which p̂ki,j
is honest, that is, it was generated by the oracle Keygen.

In a transaction produced in H4, for honest outputs, the coin openings q̂i,j , for (i, j) ∈ Ihon,
are uniformly random and independent, and thus so are the elements Ĉi,j for (i, j) ∈ Ihon, which
is how the simulator creates them in (b). Similarly, the values k̂i,j , for (i, j) ∈ Ihon are uniformly
random and independent and thus so are the corresponding values P̂i,j , which is how the the
simulator produces them in (b). For adversarial outputs, the values Ĉi,j and P̂i,j for (i, j) /∈ Ihon
are computed by the simulator as prescribed by Send, which is what H4 does as well. Finally,
all values Di,j and R̂i,j are sampled uniformly random and independently both in H4 and by the
simulator.

By the definition of Agg, we have that in H4 the excesses E1, . . . , Eℓ are uniformly random
elements (since all ti’s are uniformly random values) conditioned on∑

Ei =
∑∑

Ĉi,j −
∑∑

Ci,j + (f − s)H − (
∑
ti)G .

This is exactly how the simulator produces these values in (k) and (l). Likewise, the values
X1, . . . , Xℓ are uniformly random conditioned on∑

Xi =
∑∑

R̂i,j −
∑∑

Di,j − (
∑
yi)G ,

which is exactly how the simulator picks them in (k) and (l).
Finally, the output/input pairs in the cut-through list of the simulator are those that Agg would

put there, and the ordering (lexicographic) is the same used in input, outputs, and cut-through
lists as per Agg. ⊓⊔

31

Acknowledgements. The first author is supported by the Vienna Science and Technology Fund
(WWTF) through project VRG18-002. We thank MWC and David Burkett for the fruitful col-
laboration; we are also grateful to the anonymous reviewers of ASIACRYPT’22 for their helpful
comments.

References

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In IEEE S&P
2018, pages 315–334. IEEE, 2018

Bur20. David Burkett. Offline transactions in Mimblewimble, 2020. https://gist.github.com/
DavidBurkett/32e33835b03f9101666690b7d6185203.

Bur21. David Burkett. One-sided transactions in Mimblewimble (consensus layer), 2021. https:
//github.com/DavidBurkett/lips/blob/master/lip-0004.mediawiki.

Dev20a. Grin Developers. Grin documentation: Intro, 2020. Availalable at: https://github.com/
mimblewimble/grin/blob/master/doc/intro.md.

Dev20b. Grin Developers. Grin documentation: Mimblewimble, 2020. Availalable at: https://
docs.grin.mw/wiki/introduction/mimblewimble/mimblewimble/#kernel-offsets.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its appli-
cations. CRYPTO 2018, Part II, LNCS 10992, pages 33–62. Springer, 2018.

FOS19. Georg Fuchsbauer, Michele Orrù, and Yannick Seurin. Aggregate cash systems: A crypto-
graphic investigation of Mimblewimble. EUROCRYPT 2019, Part I, LNCS 11476, pages
657–689. Springer, 2019.

FPS20. Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind Schnorr signatures and
signed ElGamal encryption in the algebraic group model. EUROCRYPT 2020, Part II,
LNCS 12106, pages 63–95. Springer, 2020.

Jed16. Tom Elvis Jedusor. Mimblewimble, 2016. Available at https://download.wpsoftware.
net/bitcoin/wizardry/mimblewimble.txt.

Max13a. Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world, August 2013. BitcoinTalk
post, https://bitcointalk.org/index.php?topic=279249.0.

Max13b. Gregory Maxwell. Transaction cut-through, August 2013. BitcoinTalk post, https:
//bitcointalk.org/index.php?topic=281848.0.

Max15. Gregory Maxwell. Confidential Transactions, 2015. Available at https://people.xiph.
org/~greg/confidential_values.txt.

Nak08. Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2008. Available at
http://bitcoin.org/bitcoin.pdf.

Poe16. Andrew Poelstra. Mimblewimble, 2016. Available at https://download.wpsoftware.

net/bitcoin/wizardry/mimblewimble.pdf.
PS00. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind

signatures. Journal of Cryptology, 13(3):361–396, June 2000.
Seu12. Yannick Seurin. On the exact security of Schnorr-type signatures in the random oracle

model. EUROCRYPT 2012, LNCS 7237, pages 554–571. Springer, 2012.
Tod14. Peter Todd. Stealth addresses, 2014. http://www.mail-archive.com/

bitcoin-development@lists.sourceforge.net/msg03613.html.
VFV17. Shaileshh Bojja Venkatakrishnan, Giulia C. Fanti, and Pramod Viswanath. Dandelion:

Redesigning the bitcoin network for anonymity. CoRR, abs/1701.04439, 2017.
vS13. Nicolas van Saberhagen. CryptoNote v 2.0, 2013. https://cryptonote.org/whitepaper.

pdf.
Wag02. David Wagner. A generalized birthday problem. CRYPTO 2002, LNCS 2442, pages 288–

303. Springer, 2002.
Yu20. Gary Yu. Mimblewimble non-interactive transaction scheme. Cryptology ePrint Archive,

Report 2020/1064, 2020. https://ia.cr/2020/1064.

32

https://gist.github.com/DavidBurkett/32e33835b03f9101666690b7d6185203
https://gist.github.com/DavidBurkett/32e33835b03f9101666690b7d6185203
https://github.com/DavidBurkett/lips/blob/master/lip-0004.mediawiki
https://github.com/DavidBurkett/lips/blob/master/lip-0004.mediawiki
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://docs.grin.mw/wiki/introduction/mimblewimble/mimblewimble/#kernel-offsets
https://docs.grin.mw/wiki/introduction/mimblewimble/mimblewimble/#kernel-offsets
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=281848.0
https://bitcointalk.org/index.php?topic=281848.0
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
http://bitcoin.org/bitcoin.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
http://www.mail- archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
http://www.mail- archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://ia.cr/2020/1064

	Non-interactive Mimblewimble transactions, revisited
	Introduction
	Preliminaries
	Proposal for MW with non-interactive transactions
	Data structures
	Transaction creation
	Transaction aggregation
	Output verification
	Transaction verification
	Inclusion of transactions in the ledger

	Fallacies in the initial proposal
	Correctness
	The Feed-Me attack
	On transaction cut-through
	Replay attacks

	Simulation-extractability of Schnorr signatures
	Security analysis of MW-NIT
	Assumptions
	Syntax
	Inflation resistance
	Theft resistance
	Transaction-binding
	Transaction privacy

