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Abstract

We consider the efficiency of protocols for secure multiparty computation (MPC) with a
dishonest majority. A popular approach for the design of such protocols is to employ prepro-
cessing. Before the inputs are known, the parties generate correlated secret randomness, which
is consumed by a fast and possibly “information-theoretic” online protocol.

A powerful technique for securing such protocols against malicious parties uses homomorphic
MACs to authenticate the values produced by the online protocol. Compared to a baseline
protocol, which is only secure against semi-honest parties, this involves a significant increase
in the size of the correlated randomness, by a factor of up to a statistical security parameter.
Different approaches for partially mitigating this extra storage cost come at the expense of
increasing the online communication.

In this work we propose a new technique for protecting MPC with preprocessing against
malicious parties. We show that for circuit evaluation protocols that satisfy mild security and
structural requirements, that are met by many standard protocols with semi-honest security,
the extra additive storage and online communication costs are both logarithmic in the circuit
size. This applies to Boolean circuits and to arithmetic circuits over fields or rings, and to
both information-theoretic and computationally secure protocols. Our protocol can be viewed
as a sublinear information-theoretic variant of the celebrated “GMW compiler” that applies to
natural protocols for MPC with preprocessing.

Our compiler makes a novel use of the techniques of Boneh et al. (Crypto 2019) for sublinear
distributed zero knowledge, which were previously only used in the setting of honest-majority
MPC.

1 Introduction

Protocols for secure multiparty computation (MPC) [Yao86, GMW87, BGW88, CCD88] enable
a set of parties with private inputs to compute a joint function of their inputs while revealing
nothing but the output. MPC protocols provide a general-purpose tool for computing on sensitive
data while eliminating single points of failure, and their asymptotic and concrete optimization has
been the subject of a large body of research.

∗A preliminary version of this work appeared in [BGIN21].
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A popular approach for the design of efficient MPC protocols is to employ preprocessing. Before
the inputs are known, the parties generate correlated secret randomness, which is consumed by a
lightweight and typically “information-theoretic” online protocol. This model, known also as the
offline/online model, is in particular appealing when no honest majority can be guaranteed, since it
allows to push the heavy “cryptographic” part of the protocol to the offline phase, minimizing the
cost of the online protocol. It also enables modular analysis, where security of the online protocol
can be treated independently given access to an idealized “dealer” who delivers the correlated
randomness from the offline phase. The dealer can then be emulated by the parties via a secure
preprocessing protocol for generating the correlated randomness. Alternatively, the dealer can be
directly realized by an external party or by trusted hardware, both of which are only used before
the protocol’s execution.

Originating from the work of Beaver [Bea91], who showed how to use “multiplication triples”
for secure arithmetic computation with no honest majority, many MPC protocols make extensive
use of correlated randomness [BDOZ11, DPSZ12, IKM+13, NNOB12, DKL+13, DZ13, DNNR17,
CDE+18, BGI19, BLN+21]. In particular, a powerful technique for securing such protocols against
malicious parties uses homomorphic MACs to authenticate the values produced by the online pro-
tocol [BDOZ11, DPSZ12].

Efficiency of MPC protocols with security against malicious parties is typically measured with
respect to the costs of the best known protocols with a “minimal” level of security, namely security
against semi-honest parties, who act as prescribed by the protocol but try to learn additional
information from messages they receive. In the case of MPC with preprocessing, two primary
efficiency metrics are:

i. overhead to the online communication cost; and

ii. overhead to the correlated randomness consumed by the online protocol.

Indeed, communication and storage costs (as opposed to computation) typically dominate the online
cost of concretely efficient MPC protocols in the preprocessing model. Minimizing both of these
measures simultaneously is instrumental for achieving a fast and scalable online protocol.

Current MPC with preprocessing protocols exhibit a trade-off between these two efficiency
goals that leaves much to be desired. For the case of evaluating an arithmetic circuit C with |C|
multiplication gates, some protocols [BDOZ11, NNOB12, DPSZ12, CDE+18] succeed to achieve
malicious security with minimal online communication overhead (sublinear in |C|), but with a large
correlated randomness overhead of O(|C|) field elements over large fields (roughly 2x compared
to the semi-honest baseline), or O(|C| · κ) for Boolean circuits or circuits over the rings Z2k ,
where κ is a statistical security parameter (roughly κ times the semi-honest baseline). Other
protocols [DZ13, CG20] manage to achieve O(|C|) correlated randomness size for Boolean circuits
(which asymptotically improves the storage cost), but at the expense of substantially increasing the
online communication cost and relying on algebraic geometric codes that hurt concrete efficiency.

This raises the following question about MPC with preprocessing:

Can we achieve malicious security with sublinear (in |C|) additive overhead in both the online
communication and amount of correlated randomness?

Further, can this be done without introducing any new assumption?
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1.1 Our Contribution

In this work, we answer the above question in the affirmative. We present a compiler from any MPC
protocol with preprocessing that satisfies mild security and structural requirements (met by most
standard protocols with semi-honest security), to one achieving standard security against malicious
adversaries, where the extra additive storage and online communication costs are both logarithmic in
the circuit size. This applies to Boolean circuits and to arithmetic circuits over fields or rings, and
to both information-theoretic and computationally secure protocols. In particular, the compiler
introduces no additional assumptions. Our compiler can be viewed as an information-theoretic
variant of the “GMW compiler” [GMW87] that applies to the setting of MPC with preprocessing,
and only incurs a sublinear additive cost in online communication and correlated randomness. This
can be contrasted with a similar compiler from [IOZ14], in which the extra costs are (at least) linear
in the circuit size.

Our compiler requires two properties from the underlying semi-honest secure protocol. First,
in the presence of malicious parties, the protocol must be secure up to additive attacks. This
strengthens the usual notion of semi-honest security by further requiring that the actions of a
malicious adversary reduce to the ability to inject additive errors to the circuit wires (independent
of secret values). This notion was formulated by [GIP+14], who showed that many semi-honest
protocols that are based on linear secret sharing (both in the honest- and the dishonest-majority
setting) satisfy this requirement. This in particular is true for standard semi-honest protocols in
the preprocessing model, which is what interests us in this work.

Our second requirement is a structural robustness property we refer to as “star-compliance.” We
observe that most natural semi-honest protocols with preprocessing exhibit the following structure.
The correlated randomness includes additive shares of a random mask rw for each wire w within the
circuit being evaluated; then, in the online phase, the parties iteratively compute the masked wire
values (xw − rw).1 Effectively, after an honest execution, each wire value xw is held in a particular
secret-shared form, which can be linearly reconstructed either by all parties together by adding to
the public masked value (xw− rw) their shares of the mask rw, or by any individual party together
with the dealer who knows rw—thus forming a “star” structure. Other than its robustness feature,
another useful feature of this form of star-sharing is being multiplicative [CDM00], in the sense that
shares of two secrets xw, xw′ can be locally converted to additive sharing of the product xw · xw′ .

Recall that the dealer is a physical or virtual entity that generates correlated randomness for
the online protocol. One of the ideas of this work, as we will see later, is that the dealer itself can
act as an additional honest party in the system, with the restriction that its actions must be fully
completed before the start of (and thus independently of) the online phase.

Our main result is summarized by the following theorem, which assumes only point-to-point
communication except for a final broadcast (of one bit) to enable security with unanimous abort.

Theorem 1.1 (Sublinear GMW-style compiler, informal) Let C be an arithmetic circuit of
size |C| (counting multiplication gates, inputs and outputs) over a ring R, where R is either a
finite field F or the ring Z2k . Then, every n-party MPC protocol Π in the preprocessing model that
computes C with additive security and is star-compliant can be compiled into a protocol Π′ that
computes C with security against malicious parties and has the following efficiency features.

1Note that xw may not be the correct wire value following an additive attack by the adversary. This is not an
issue in the context of our compiler.
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• Correlated randomness: Π′ uses the correlated randomness of Π and additional O(n ·
log |C| · κ) elements of R per party for a statistical security parameter κ;

• Online communication: In addition to the online communication of Π, each party in Π′

communicates O(log |C| · κ) elements of R.

Furthermore, the security of Π′ relies on the same computational assumptions (if any) as that of Π.

When R is a big field (of size > 2κ), the κ term in the asymptotic complexity bounds of the
theorem can be eliminated.

We use this theorem to derive concretely efficient protocols with malicious security, by applying
our compiler to semi-honest secure protocols based on multiplication triples [Bea91].

Using circuit-dependent preprocessing (where the correlated randomness in the underlying semi-
honest protocol can depend on the choice of the circuit C), we obtain a protocol where each
party sends (2 − 2

n) elements per multiplication gate, and the correlated randomness includes
|C|+O(n · log |C| · κ) ring elements given to one of the parties and O(n · log |C| · κ) elements given
to the remaining n− 1 parties (in addition to seeds to a Pseudo-Random Generator (PRG)).

Beginning with a semi-honest protocol with circuit-independent preprocessing (where the cor-
related randomness depends on the size of C, but not its topology), we obtain a protocol with the
same amount of correlated randomness but with twice the communication, namely, (4− 4

n) elements
per multiplication gate per party.

All of the above upper bounds match the best previously known bounds for the semi-honest
model. The (logarithmic size) extra correlated randomness introduced by our compiler does depend
on the structure of the circuit, and thus the resulting protocols in both cases are in the circuit-
dependent preprocessing model. However, we address both versions, as the semi-honest portion of
the correlated randomness is a dominant cost that can be generated more efficiently in the circuit-
independent case. In particular, this applies to generating oblivious transfer and multiplication
triple correlations via pseudorandom correlation generators (PCGs) [BCG+19b, BCG+20].2

Corollary 1.2 (Efficient MPC with preprocessing, informal) Let C be an arithmetic cir-
cuit of size |C| (counting multiplication gates, inputs and outputs) over ring R, where R is either
a finite field or the ring Z2k . Then there exist n-party MPC protocols in the preprocessing model
computing C with security against malicious parties, with the following efficiency features.

• Correlated randomness: 4 · |C| + O(n · log |C| · κ) R-elements per party, where κ is a
statistical security parameter. Settling for computational security and making a black-box use
of a pseudorandom generator, this can be compressed to |C|+O(n · log |C| · κ) R-elements to
one party and O(n · log |C| · κ) to the other n− 1 parties.

• Online communication:

– (2− 2
n) R-elements per party per gate (circuit-dependent preprocessing);

– (4− 4
n) R-elements per party per gate (multiplication triples preprocessing).

2PCG constructions also exist for more complex correlations, including circuit-dependent multiplication triples,
as well as authenticated multiplication triples [BCG+19b, BCG+20, OSY21, RS21]; however, these constructions
perform more poorly in terms of concrete efficiency, and most are restricted to the two-party case.

4



More concretely, the correlated randomness in the above protocols consists of shared multipli-
cation triples (i.e., additive shares of random a, b ∈ R, and a · b, where the shares of a, b and all but
one share of a ·b are directly compressible via black-box use of a pseudorandom generator), together
with additional O(n · log |C| · κ) (circuit dependent) R-elements resulting from our compiler.

Note that our improvement is particularly significant when the computation is carried out over
small fields or rings. For example, for Boolean circuits we are able to reduce the total storage
cost, which may be a practical bottleneck, by a factor of κ (from O(|C| · κ) to O(|C|)), without
substantially increasing the online communication as in previous works.

PCG-based compression. As noted above, by using a PCG to compress the multiplication
triples we can get the total storage complexity to be sublinear in |C|. In particular, for (semi-
honest) secure 2-party computation of Boolean circuits, each triple can be locally generated using
2 random OT correlations, where the latter can be efficiently compressed using fast PCGs for
OT [BCG+19b, BCG+19a, YWL+20].

For concretely efficient PCG-based protocols with n ≥ 3 parties, one can use a PCG for
OLE [BCG+20] for arithmetic circuits over big fields or a PCG for OT for Boolean circuits, though
the latter incurs an O(n2) multiplicative overhead to the online communication (see Remark 3.9).

Distributing the dealer. In Section 4 we discuss the cost of emulating the dealer in our proto-
cols by a secure preprocessing protocol involving the parties. Concretely, we show that given the
multiplication triples required by the semi-honest protocol, generating the (sublinear) extra cor-
related randomness reduces to securely evaluating an arithmetic circuit with roughly (4 + 2n)|C|
multiplications.

1.2 Our Techniques

The main technical building block in our compiler is a fully linear proof system [BBC+19], enabling
information-theoretic zero-knowledge proofs with sublinear communication, on secret-shared input
statements. In this setting, there is a prover who wishes to prove some statement over an input x
to a verifier. In each round of the protocol, the prover produces a proof which can be queried by
the verifier using linear queries only. Moreover, the verifier is allowed to also make linear queries
to the input x (this is what makes the proof system fully linear). It was shown in [BBC+19]
that for low-degree languages (i.e., languages for which membership can be checked using degree-d
multivariate polynomials, for some constant d), there exist zero-knowledge fully linear proof systems
with communication which is only logarithmic in the size of the input.

A central motivating application of such proof systems is for proofs over inputs which are
distributed or linearly secret-shared between two or more verifiers. As shown in [BBC+19], they
provide a means for the verifiers to be convinced that their shares combine to an input in the
language, while learning nothing else—including additional information about the input itself. This
was used by [BBC+19, BGIN19, BGIN20] as a tool to compile semi-honest protocols to malicious
security with sublinear communication cost in the honest-majority setting, leveraging the fact that
the statement to be proven in certain MPC protocols can be represented by low-degree polynomial
constraints on the values held secret shared or distributed across the parties.

However, there is one crucial property that these works all relied on: in the honest-majority
setting, the secret sharing of values across parties is robust, meaning that the shares held by the

5



honest parties determine all the other shares. For example, in protocols using Shamir secret sharing,
the honest parties’ shares can be interpolated to the entire secret sharing polynomial, yielding also
the corrupted parties’ share values. This robustness property is what prevents the corrupted parties
from cheating in the proof, since even if the prover colludes with some of the verifiers, they cannot
change the answers to the queries without being caught by the honest verifiers. Indeed, without a
form of robustness of the input, even the definition of soundness in the proof is not fully clear.

In the dishonest-majority setting, in contrast, simple secret sharing schemes cannot provide
this kind of robustness. After all, if the honest parties can reconstruct the value, then so can
the dishonest parties. Thus, at first glance, it seems that fully linear proof systems inherently
cannot be used in the setting where an honest majority is not guaranteed, without adding some
kind of authentication to all sharings held by the parties during the execution, thereby increasing
significantly the amount of correlated randomness.

Overcoming this challenge is one of the main conceptual ideas in this work. To summarize:
In the preprocessing model, one can view the dealer as an additional party in the protocol, but
who is guaranteed to be honest. Indeed, recall that the preprocessing model provides the parties
with an honestly generated sample from the dictated preprocessing correlation.3 From this view,
the star-sharing scheme discussed above actually forms a robust secret sharing! Recall that in
a star-sharing scheme, the dealer holds additive shares (ri)i∈[n] of a random mask r, and each
online (real) party Pi holds its respective share ri of the mask along with the public masked value
(x − r). Robustness holds since any honest party together with the trusted dealer determine the
shares held by the corrupted parties. Further, as noted above, the star-sharing scheme satisfies
the same multiplicative property as Shamir secret sharing satisfies in the honest-majority setting,
wherein parties can locally convert their shares of two secrets to additive shares of the product
of the two secrets. Combining these properties, in a sense, our new protocol is an analog of the
honest-majority protocols, but with the role of Shamir secret sharing replaced with star-sharing.

However, this new conceptual view does not follow directly. Recall that the actions of the
dealer must be completely determined in the preprocessing phase, before any of the online inputs
are known. This means the dealer’s abilities as a party are limited. In particular, to execute this
strategy, some parts of the protocol must be rearranged. We ensure that all messages sent by the
dealer during the verification protocol are a function of random data, and so we can let the dealer
precompute all its messages and commit to them before the start of the computation.

Ultimately, we show how to mimic the proof structure from [BGIN20], where each party locally
computes a share of a verification polynomial using its secret shares throughout the first part of
the protocol, and then proves to all other parties that it computed this value correctly. This takes
advantage of the fact that in a robust secret sharing scheme such as star-sharing, not only is the
secret payload robustly shared, but also each party’s share of the payload.

More concretely, for every input wire to an input gate, multiplication gate, or output gate
in the circuit, the parties will hold a star-sharing of the corresponding wire value as part of the
underlying semi-honest secure protocol. The verification polynomial is a (pseudo-)random linear
combination of roughly circuit-size-many degree-2 constraints on these values, ensuring that each
input wire to a multiplication or output gate, is computed as a correct degree-2 function of wires
from the previous level (i.e., input wires to previous multiplication or input gates). Each party

3As discussed, this in turn can be emulated via a targeted secure protocol, or directly realized by an external
party or trusted hardware.
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can locally compute an additive share of this verification polynomial, as a function of their star
shares of the given wire values, leveraging the multiplicative property of the star-sharing scheme.
This process itself is a degree-2 function of the shares. Then, each party robustly star-shares its
(short) share of the verification polynomial, and proves to the other parties that they performed
the degree-2 computation correctly. If all parties performed their computation correctly, then the
final verification polynomial can be revealed and checked whether it is equal to 0 as required.

Combined, our central technical contribution is a novel protocol with sublinear communication
to verify the correctness of a semi-honest computation, which builds upon any (zero-knowledge,
sublinear) fully linear proof system. In each step of the protocol, we carefully make sure that
each piece of information along the way is robustly shared across the parties and the dealer using
the star-sharing scheme, which is what eventually guarantees that any cheating will be detected.
When distributing the role of the dealer, this amounts to having the parties securely compute the
dealer’s messages, and then output an authenticated secret sharing of each message, which can be
later reconstructed by the parties. The main and final point here is that the proof size and the
public randomness in the verification protocol are both logarithmic in the size of the computed
circuit. This follows directly from the efficiency features of fully linear proof systems for simple
languages [BBC+19]. Thus, the amount of correlated randomness the dealer needs to generate is
also logarithmic in the size of the circuit, thereby achieving our main result.

We believe that our technique is quite broadly applicable and will open the door to new appli-
cations of fully linear proof systems in the dishonest majority setting, which is something that has
not been done prior to this work.

1.3 Related Work

A long line of works have used an authenticated variant of Beaver’s multiplication triple based
protocol [Bea91] to achieve malicious security [BDOZ11, DPSZ12, DKL+13, CDE+18, KOS16,
KPR18], without increasing the online communication cost beyond that of the semi-honest protocol.
These protocols use authenticated multiplication triples of the form (a ·∆, b ·∆, ab ·∆) for a random
secret ∆. The parties receives additive shares of each value in the authenticated triple as well as
shares of ∆ (and of course shares of a, b and ab, which are required for the semi-honest protocol).
These are used to authenticate the opening of the actual values. For authentication over a field
∆ ∈ F, the cheating probability is 1

|F| . Thus, for computations over a large field (for which a, b, ab ∈
F), this method doubles the amount of correlated randomness compared to that of the semi-
honest protocol. When computing over a small field, the authenticator value ∆, and thus the
authenticated triples, should be produced over a larger field to obtain negligible cheating probability,
thus increasing the size of correlated randomness. The situation is worse for rings, where the
cheating probability is 1/2 regardless of the size of the ring. Naively, this implies an overhead of
|C| ·κ for some statistical parameter κ. This is indeed the case for the TinyOT protocol [NNOB12,
BLN+21] for Boolean circuits.

However, some improvements were suggested over the years. The MiniMac protocol [DZ13]
(optimized and implemented in [DLT14]) focuses on reducing overall computation costs for circuits
over small fields (including the size of correlated randomness) at the expense of greater online
communication. Their idea is to batch the authentication via linear error-correcting codes (ECC).
However, the ECC used must have good minimal distance in order to provide security within mul-
tiplications of batched vectors; achieving this requires lower rate of the ECC encoding, translating
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to greater overhead in communication. A recent work by [CG20] suggested an alternative to the
linear ECC of MiniMAC, via “reverse multiplication friendly embeddings” for embedding (Fq)k-
vector multiplications into a single Fqk′ field multiplication [CCXY18, BMN18]. However, the gap
between k and k′ achievable within these embeddings again yields overheads in communication. In
addition, while this construction reduces the online work, it requires generating extra correlated
randomness in the preprocessing phase.

The MiniMac protocol and its followers offer a trade-off between the amount of correlated
randomness and online communication for computation over Boolean circuits. Their batching
ideas remove the κ multiplicative factor from the correlated randomness, but increase the online
communication. In any way, both the correlated randomness and the online cost do not match
those of the underlying semi-honest protocols.

Over a large ring Z2k , the SPDZ-2k protocol [CDE+18] introduced a way to reduce the extra
correlated randomness, without increasing communication. Specifically, they require adding κ bits
to the size of the authenticated triples instead of multiplying the size by κ. For large rings, this
amounts to doubling the size of the correlated randomness compared to fields.

A different approach for 2-party computation was suggested in the TinyTable protocol [DNNR17],
based on generating a permuted version of its truth table. The overhead of this protocol is O(|C|)
for both communication and the correlated randomness.

Finally, there are several other general compilation techniques from semi-honest to malicious
security in the dishonest majority setting, which can also be applied to (certain) protocols in
the preprocessing model [IPS08, IOZ14, HIMV19, HVW20]. All of these compilers incur at least
a constant multiplicative overhead in the online communication and correlated randomness, and
typically have a bigger overhead for Boolean circuits or circuits over rings.

Collectively, prior solutions all require Ω(|C|) additional cost in either online communication,
correlated randomness, or both.

2 Preliminaries

Notation. Let P1, . . . , Pn be the parties participating in the protocol. We use [n] to denote the
set {1, . . . , n}. Let R be a ring which is either a finite field F or the ring Z2k and let |R| be its size.
Finally, let κ be the security parameter.

2.1 MPC with Preprocessing

In our setting, there is a set of n parties who wish to jointly run some computation. We assume
that all parties are connected via secure point-to-point channels, which enable them to send private
messages to each other.

We begin with defining the meaning of an n-party protocol to compute a functionality in the
preprocessing model.

Definition 2.1 (MPC with preprocessing) Let F be a family of n-party functionalities and
let f ∈ F be a function description. A protocol Π to compute F consists of the PPT algorithm
NextMsg, which given (1κ, f, j, i, xi, ri, ~m) outputs a vector of messages sent by Pi in round j, based
on its input xi, randomness ri and vector ~m of messages sent to Pi in previous rounds. If the
output of NextMsg to Pi is of the form (out, y), then Pi outputs y and halts.
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We say that Π is a protocol with function-dependent preprocessing, if in addition to NextMsg,
it consists of a PPT algorithm D (called “the dealer”), which receives 1κ and f as an input, and
outputs correlated random strings r1, . . . , rn. We say that Π is a protocol with function-independent
preprocessing, if D receives only a bound 1S on the size of f as an input instead of f .

A protocol π = (NextMsg,D) computes any arithmetic circuit, when F is the class of arithmetic
circuits and f is a description of a ring R and a circuit C over R, with the size S being a description
of the ring and the number of output wires and multiplication gates in C.

To define what it means to securely compute a functionality, we follow the standard ideal-world
vs. real-world paradigm of MPC [Gol04, Can00]. Let A be an adversary who chooses a set of
parties before the beginning of the execution and corrupts them. There are two main types of
adversaries which are usually considered in the literature. A semi-honest adversary follow the
protocol instructions, but sees the input and randomness of the corrupted parties, and all the
messages they receive in the execution. A malicious adversary can also choose the messages sent
by the corrupted parties. We assume that the adversary is rushing, meaning that it first receives
the messages sent by the honest parties in each round, and only then determines the corrupted
parties’ messages in this round.

To formally define security, let realΠ,A,T (1κ, f, ~v) be a random variable that consists of the
view of the adversary A controlling a set of parties T , and the honest parties’ outputs, following an
execution of Π over a vector of inputs ~v to compute f with security parameter κ. Similarly, we define
an ideal-world execution with an ideal-world adversary S, where S and the honest parties interact
with a trusted party who computes f for them. We consider secure computation with selective
abort, meaning that S is allowed to send the trusted party computing f a special command abort.
Specifically, S can send an abort command instead of handing the corrupted parties’ inputs to
the trusted party (causing all parties to abort the execution), or, hand the inputs and then, after
receiving the corrupted parties’ outputs from the trusted party, send abortj for an honest party Pj ,
preventing it from receiving its outputs.4 We denote by idealF ,S,T (1κ, f, ~v), the random variable
that consists of the output of S and the honest parties in an ideal execution to compute f , over
a vector of inputs ~v, where S controls a set of parties T . The security definition states that a
protocol Π securely computes f with statistical error ε, if for every real-world adversary there
exists an ideal-world adversary, such that the statistical distance between the two random variables
is less than ε.

Definition 2.2 (Statistically-secure MPC with preprocessing) Let F be a family of n-party
functionalities and ε = ε(κ, f) be a statistical error bound. We say that a protocol Π = (NextMsg,D)
ε-securely computes F with abort in the preprocessing model, if for every real-world malicious
adversary A controlling a set of parties T with |T | ≤ n − 1, there exists an ideal-world adversary
S, such that for every f ∈ F , every κ and every vector of inputs ~v it holds that

SD (realΠ,A,T (1κ, f, ~v), idealF ,S,T (1κ, f, ~v)) ≤ ε

where SD(X,Y ) is the statistical distance between X and Y .

4It easy to modify our protocol so that the honest parties unanimously abort by running a single Byzantine
agreement at the end of the protocol. For simplicity, we omit the details from the description of our protocols.
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2.1.1 Secure computation of circuits up to additive attacks [GIP+14]

In this work, our protocol computes arithmetic circuits, which are defined in a natural way, using
addition and multiplication gates. We next define a notion of security for computing arithmetic
circuits that lies between semi-honest and malicious security, called “security up to additive attack”
(for brevity, sometimes “additive security”), which was introduced by Genkin et al [GIP+14]. In
this model the real-world adversary is malicious, but the ideal-world adversary S is given extra
power when interacting with the trusted party, to add errors to the values on wires of the circuit.
Specifically, we allow additive attacks on input wires to multiplication gates and on the circuit’s
output wires. The trusted party then determines the output of the honest parties by computing
the circuit over the parties’ inputs and the additive errors. We denote by idealaddF ,S,T (1κ, C,~v) the
random variable that consists of S’s and honest parties’ outputs in such an execution. Given this
new model of ideal-world execution, security is defined similarly to Definition 2.2.

Definition 2.3 (Additive-secure MPC with preprocessing) Let F be the family of n-party
functionalities represented by arithmetic circuits. We say that a protocol Π = (NextMsg,D) securely
computes F with abort and with additive security, in the pre-processing model, if for every real-world
malicious adversary A controlling a set of parties T with |T | ≤ n − 1, there exists an ideal-world
(additive-attack) adversary S, such that for every circuit C ∈ F , every κ, and every vector of inputs
~v it holds that realΠ,A,T (1κ, C,~v) ≡ idealaddF ,S,T (1κ, C,~v).

Instantiations. Many standard semi-honest protocols in the preprocessing model used in the
literature are in fact also additively secure (or can easily be converted into being so). Most no-
tably, the semi-honest protocol which uses the well-known Beaver’s method [Bea91] to compute
multiplication gates via random multiplication triples satisfies this definition. It is known that
MPC with preprocessing (including Beaver’s protocol) can benefit from circuit-dependent correla-
tions [DNNR17, Cou19, BGI19]. For completeness, in Appendix A.1 we present a variant of Beaver’s
protocol relying on circuit-dependent preprocessing (as in e.g. [KKW18, BBC+19, BNO19]), and
in Appendix A.2, the standard circuit-independent version.

2.1.2 The hybrid model

We use the hybrid model to prove security of our protocols. In this model, the parties run a
protocol with real messages and also have access to a trusted party computing a subfunctionality
for them. The modular sequential composition theorem of [Can00] states that it is possible to
replace the trusted party computing the subfunctionality with a real secure protocol computing the
subfunctionality. When the subfunctionality is g, we say that the protocol works in the g-hybrid
model.

2.2 Fully Linear Proof Systems

A main technical building block in our protocols is a fully linear proof system [BBC+19], which was
shown to enable information-theoretic sublinear-communication zero-knowledge proofs on secret-
shared input statements [BBC+19].

More concretely, we can use any (public-coin) zero-knowledge fully linear interactive oracle proof
(zk-FLIOP), as defined in Definition 2.4. In a nutshell, a zk-FLIOP is an information-theoretic proof
system in which a prover P wishes to prove that some statement about an input x to a verifier V .
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In each round of the protocol, P produces a proof which, together with x, can be queried by V
using linear queries only. Then, a public random challenge is generated and the parties proceed to
the next round. At the end, the verifier V accepts or rejects based on the answers it received to its
queries.

Definition 2.4 (Public-coin zk-FLIOP [BBC+19]) A public-coin fully linear interactive proof
system over R with ρ-rounds, `-queries and message lengths (u1, . . . , uρ) ∈ Nt, consists of a ran-
domized prover algorithm P and a deterministic verifier algorithm V . Let the input to P be x ∈ Rm
and let r0 = ⊥. In each round i ∈ [ρ]:

1. P outputs a proof πi ∈ Rui, computed as a function of x, r1, . . . , ri−1 and its private randomness.

2. A random public challenge ri is chosen uniformly from a finite set Si.

3. ` linear oracle queries qi1, . . . , q
i
` ∈ Rm+ui are determined based on r1, . . . , ri. Then, V receives

` answers (〈qi1, x||πi〉, . . . , 〈qi`, x||πi〉).

At the end of round ρ, V outputs accept or reject based on the random challenges and all the answers
to the queries.

Let L ⊆ Rm be a language. We say that ρ-round `-query interactive fully linear protocol
(PFLIOP,VFLIOP) over R is zero-knowledge fully linear interactive oracle proof system for L with
soundness error ε if it satisfies the following properties:

• Completeness: If x ∈ L, then VFLIOP always outputs accept

• Soundness: If x /∈ L , then for all P∗, the probability that VFLIOP outputs accept is at most 2−ε.

• Zero knowledge: There exists a simulator SFLIOP such that for all x ∈ L it holds that
SFLIOP ≡ view[PFLIOP(x),VFLIOP](VFLIOP) (where the verifier’s view view[PFLIOP(x),VFLIOP](VFLIOP) con-
sists of {ri}i∈[ρ] and {(qi1, . . . , qi`)}i∈[ρ]).

In this paper, we will use this tool for degree-d languages. That is, languages for which mem-
bership can be checked using a degree-d polynomial. The following theorem, which will be used
by us, states that for degree-d languages, there are zk-FLIOP protocols with communication and
round complexity that are sublinear in the size of the input and number of monomials.

Theorem 2.5 ([BBC+19]) Let q : Rm → R be a polynomial of degree-d with M monomials, and
let Lq = {x ∈ Rm | q(x) = 0}. Let ε be the required soudness error. Then, there is a zk-FLIOP for
Lq with the following properties:

• Constant rounds, d = 2: It has 1 round, proof length O(η
√
m), challenge length O(η) and the

number of queries is O(
√
m), where η = log|R|

(√
m
ε

)
when R is a finite field, and η = log2

(√
m
ε

)
when R = Z2k . The computational complexity is Õ(M).

• Logarithmic rounds, d ≥ 2: It has O(logM) rounds, proof length O(dη logM), challenge

length O(η logM) and the number of queries is O(d+ logM), where η = log|R|

(
d logm

ε

)
when R

is a finite field, and η = log2

(
d logm

ε

)
when R = Z2k . The computational complexity is O(dM).
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2.3 Ideal Functionalities

We now describe two ideal functionalities that will be used in our construction. We stress that
both of them are called sublinear number of times (in the size of the computed circuit), and so any
way to implement them will suffice.

Honest-dealer commitment with selective abort. We denote by F dealer
com an ideal functionality

which allows an honest dealer to commit to a value which is revealed to parties at a later stage.
Upon receiving a secret from the dealer, the functionality F dealer

com stores it. Then, upon receiving
a request from the honest parties to reveal it to parties in a set J , it lets the adversary decide for
each party in J , whether to send each party Pj in J the secret or the command abortj .

To implement it with information-theoretic security we can use information-theoretic MACs as
in [RB89, BDOZ11, DPSZ12]. Specifically, each party will hold an additive sharing of the secret
x, and in addition, will hold an additive sharing of a information-theoretic MAC over x computed
with each party’s key. Then, when opening the secret towards a party Pi, all parties send it their
additive shares of x and their additive shares of the MAC computed using Pi’s key. Since Pi knows
its own key, it can use it to check the correctness of x. If any party tries to cheat and change the
opened value, then over a field F, it will succeed without being caught with probability of 1

|F| . Over
a small field or a ring, we can have the MAC over an extension field or ring, to achieve a sufficiently
small error.

Broadcast with selective abort. Throughout the paper, when we say that a party broadcasts
x to the other parties, it means that it uses an ideal functionality Fbc which allows sending a
message to all parties, while, as before, giving the adversary the ability to cause any party to
abort. This can be implemented by having each party sending x to all other parties and then
having all parties echo-broadcast the message they received to the other parties. It is possible to
batch the second-round check for many messages together, by taking a random linear combination
of all received messages. The random coefficients can be derived from a single random element r,
by taking r, r2 . . . and so on. If the parties check m messages together, then the random linear
combination yields a polynomial of degree m, which is evaluated on a random point r. Thus, the
cheating probability in this case when working over a field F is, by the Schwartz-Zippel Lemma, m

|F| .
As before, to obtain a sufficiently small error over small fields or over rings, this check should be
run over a suitable extension field or ring.

3 The General Framework

In this section, we present a protocol to compute any arithmetic circuit with malicious security
and dishonest majority. Our protocol works by first computing the circuit using a secure-up-to-
additive-attack protocol, and then running a light verification step, where the parties verify the
correctness of the computation and abort if cheating was detected. Our protocol is statistically
secure in the preprocessing model, i.e., it relies on a trusted dealer D which provides correlated
randomness to the parties. We will discuss how to securely distribute the dealer in the next section.

Before proceeding, we define an additional property that will be required from our protocol.
Specifically, we require the parties to maintain an invariant over wires which we call “star-sharing”.
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Definition 3.1 (Star-sharing) We say that x ∈ R is star-shared across a set of parties P =
{P1, . . . , Pn} and a dealer D with shares x̂, (r1, . . . , rn), if each party Pi holds the pair (x̂, ri), D
holds {ri}ni=1, and moreover x̂ = x− r for r =

∑n
i=1 ri.

The main feature of this sharing scheme is that it is robust, in the sense that an honest party and
the dealer alone determine all the other values, and in particular the values held by the corrupted
parties. In addition, as we will see later, this scheme is multiplicative in the sense that it allows
a local conversion from star-sharing of x and y to an additive sharing of x · y. These two features
will play an important role in our constructions.

We next define what it means for a protocol to be “star-sharing compliant”.

Definition 3.2 (Star-sharing compliance) Let Π = (NextMsg,D) be a protocol with preprocess-
ing to compute any arithmetic circuit C, and let W denote the set of output wires and input wires
to multiplication gates in C. We say that Π is star sharing compliant if the following holds: if all
parties follow the protocol’s instructions, then the parties hold a star-sharing of the value on each
wire w ∈W .

Note that if a protocol is both secure-up-to-additive-attack and star-sharing compliant, then it
implies that the parties hold on each wire w ∈ W a star-sharing of either the correct value or of a
different value determined by the adversary’s additive attack.

3.1 Verifying Correctness via zk-FLIOP

In this section, we present our protocol to verify the correctness of the values the parties hold of
the circuit’s wires. Recall that we allow the adversary to add errors to wires of the circuit. The
protocol we describe in this section aims to detect such cheating.

The parties prove correctness of the values on all wires by checking only the input wires to each
multiplication gate and the output wires. Any input to a multiplication gate is a sum of the outputs
of other multiplication gates and of input wires. Therefore, an input to a multiplication gate is a
degree two polynomial in the inputs of other gates and in the circuit’s input wires. The precise
polynomial is determined by the circuit. Similarly, each output wire is a degree two polynomial in
inputs to the circuit and in inputs to multiplication gates. Verifying the consistency of all degree
two polynomials is made possible by the star sharing of all wire values, enabling the honest parties
to obtain a sharing of the correct output.

In more detail, let W be the set of the circuit’s output wires and multiplication gates’ input
wires. For each wire w ∈W , the parties need to verify that they hold a sharing of xw, the correct
value on w, given the shares they hold on wires that feed w. Specifically, let Gw be the set of
multiplication gates that feed w (i.e., that between their output wire and w there are no other
multiplication gates). For each g ∈ Gw, let xg1, x

g
2 be the two input wires to g. The parties thus

wish to verify for each w ∈W that

φ (xw, {xg1, x
g
2}g∈Gw) = xw −

∑
g∈Gw

xg1 · x
g
2 = 0.

Recall that the parties hold x̂w = xw − rw, x̂g1 = xg1 − r
g
1, x̂g2 = xg2 − r

g
2 on each wire, as well as

additive shares rw,i, r
g
1,i and rg2,i for each party Pi. The trusted dealer D knows the additive shares

of all parties and so knows the mask on each wire.
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In the protocol, instead of checking equality to 0 for each wire separately, the parties will batch
all the checks together, by taking a random linear combination of all φ(xw, {xg1, x

g
2}g∈Gw) for each

w ∈W . That is, the parties will check that

p = p ({αw}w∈W , {xw}w∈W ) =
∑
w∈W

αw · φ (xw, {xg1, x
g
2}g∈Gw) = 0.

Next, let W g` denote the set of wires w whose value is the output of a multiplication gate g`
and let γ` =

∑
w∈W g`

αw. Put differently, W g` includes exactly all the wires w such that g` ∈ Gw.

Letting mult be the set of all multiplication gates, we can thus write

p =
∑
w∈W

αw · xw −
∑

g`∈mult

γ` · (xg`1 · x
g`
2 )

=
∑
w∈W

αw · (x̂w + rw)−
∑

g`∈mult

γ` · ((x̂g`1 + rg`1 ) · (x̂g`2 + rg`2 ))

=
∑
w∈W

αw · x̂w +
∑
w∈W

αw · rw −
∑

g`∈mult

γ` · (x̂g`1 · x̂
g`
2 )

−
∑

g`∈mult

γ` · (x̂g`1 · r
g`
2 + x̂g`2 · r

g`
1 ) +

∑
g`∈mult

γ` · (rg`1 · r
g`
2 )

Now, letting

Λ =
∑
w∈W

αw · x̂w −
∑

g`∈mult

γ` · (x̂g`1 · x̂
g`
2 ),

Γi =
∑

g`∈mult

γ` · (x̂g`1 · r
g`
2,i + x̂g`2 · r

g`
1,i) (1)

and
Ω =

∑
w∈W

αw · rw +
∑

g`∈mult

γ` · (rg`1 · r
g`
2 )

we have that checking that p = 0 is equivalent to checking that

Λ−
n∑
i=1

Γi + Ω = 0.

Observe that the parties can locally compute Λ, each party can locally compute Γi and the dealer
can locally compute Ω. In our protocol, we will ask each Pi to compute Γi and share it to the
other parties via our robust star-sharing scheme. This can be done by having the trusted dealer
hand a random string si to Pi , which then sends Γ̂i = Γi− si to the parties. Similarly, the trusted
dealer can compute Ω and share it to the parties. Since now Γi for each i ∈ [n] and Ω are shared
in a robust way across the parties, and Λ is known, the parties can locally compute a robust secret
sharing of p, open it by unmasking the secret with the help of the dealer, and check equality to 0.
The only remaining problem is that a corrupt Pi may cheat and share an incorrect Γi. Here is
where the zk-FLIOP machinery becomes useful. Define the vector of inputs ~y ∈ F4|mult|+2 as:

~y = (y1, . . . , y4|mult|+2)

=

(
Γ̂i, si,

{
(γ` · x̂g`1 ), rg`2,i, (γ` · x̂

g`
2 ), rg`1,i

}
g`∈mult

)
(2)
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and consider the degree-2 polynomial c defined by

c(~y) = Γ̂i + si − Γi

= y1 + y2 −
|mult|∑
k=1

(
y[4(k−1)+3] · y[4(k−1)+4] + y[4(k−1)+5] · y[4(k−1)+6]

)
. (3)

If Pi star-shares the correct Γi then c(~y) is identically zero. To verify that this is the case is
sufficient to show that Eq. (1) holds. By Theorem 2.5, there exists a zk-FLIOP for proving the
satisfiability of this relation, i.e. that c(~y) is identically zero, with sublinear proof size and negligible
soundness error. We thus let each party Pi prove that it shared the correct value, by proving that
the output of the polynomial is 0. In particular, party Pi emulates the role of the prover in the
zk-FLIOP protocol, whereas the other parties emulate together the role of the verifier.

A crucial point that we rely upon in the protocol, is that each input to the polynomial is known
by either all parties or by Pi and the dealer. In detail, for all 1 ≤ k ≤ |mult|, all the parties know
y1, y4(k−1)+3 and y4(k−1)+5, while the dealer and Pi know y2, y4(k−1)+4 and y4(k−1)+6.

In the zk-FLIOP protocol, we ask the prover to star-share the proof that it generates in each step.
This implies that each piece of information (inputs and proof) is known by an honest participant
(i.e., an honest party or the trusted dealer). This fact prevents a cheating prover from convincing
the other parties that a false statement is correct.

As to the verifiers, who hold star-shares of both the proof and the input, they can make the zk-
FLIOP queries over their shares. Observe that here we crucially rely on the fact that in zk-FLIOP,
all the queries are linear, and so querying the star-shares of the proof or the input, will yield a
star-sharing of the answer. Then, the answers are revealed by having the trusted dealer reveal
its star-share of each answer (this share is essentially a random mask of the answer). Privacy is
maintained in this process, since the parties see in each round a masked proof which looks random
and answers to the linear queries, which by the zero-knowledge property of the zk-FLIOP, leak
no information on the inputs and can be simulated. Formally, our protocol works as follows (we
describe the protocol for finite fields and explain how to extend it to rings later):

Πvrfy: Let (PFLIOP,VFLIOP) be a zk-FLIOP protocol with ρ rounds, `-queries per round and message

length u1, . . . , uρ ∈ N for the polynomial in Eq. (3).

1. The trusted dealer D:

(a) Chooses a random si ∈ F for each i ∈ [n], and hands it to Pi.

(b) Chooses a random field element α ∈ F and hands it to the parties. Alternatively, α can be
chosen to be a random seed for a PRG.

(c) Chooses a random tij ∈ Fuj for each j ∈ [ρ] and i ∈ [n] and hands it to Pi.

(d) Computes αw from α for every wire w. If α ∈ F then regard w as a unique integer in the
range 1, . . . ,W and set αw = αw. Alternatively, if α is a seed for a PRG then expand it using
the PRG to |W | field elements deriving all the αw values. The dealer then computes Ω,
chooses a random µ ∈ F and hands Ω̂ = Ω− µ to the parties.

2. The parties set for each w ∈W : αw = αw (or use α as a seed to a PRG).
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3. Each party Pi locally computes Λ and Γi. Pi then proceeds to send Γ̂i = Γi − si to the other
parties.

4. For each i ∈ [n], party Pi proves that Γi was computed correctly:
Let ~yi be the vector of inputs for the proof of Pi (as defined in Eq. (2)). Let ~yPi be a vector of
elements generated by replacing all elements in ~yi which are not known to all parties by 0, and
let ~yDi be a vector of elements generated by replacing all elements in ~yi not known to D by 0.
Note that ~yi = ~yPi + ~yDi .

(a) For each round j of the zk-FLIOP:

i. If j = 1, party Pi lets πij = PFLIOP(~yi,⊥). Otherwise, it lets πij = PFLIOP(~yi, π
i
j−1, r

i
j−1).

ii. Pi broadcasts π̂ij = πij − tij to the other parties.

iii. The dealer D chooses a random challenge rij and hands it to the parties.

iv. The parties and the dealer let qij,1, . . . , q
i
j,` be the query vector determined by VFLIOP

based on rij . Then, the parties compute the answers

âij,1, . . . , â
i
j,` ← 〈qij,1, ~yPi ||π̂ij〉, . . . , 〈qij,`, ~yPi ||π̂ij〉.

Similarly, D computes his answers

ãij,1, . . . , ã
i
j,` ← 〈qij,1, ~yDi ||tij〉, . . . , 〈qij,`, ~yDi ||tij〉.

v. The Dealer D sends ãij,1, . . . , ã
i
j,` to the parties, who then compute

aij,1, . . . , a
i
j,` ← âij,1 + ãij,1, . . . , â

i
j,` + ãij,`.

(b) The parties run the decision predicate of VFLIOP on all the queries’ answers they received.
If any party received reject, then it outputs reject. Otherwise, the parties proceed to the
next step.

5. The parties locally compute p̂ = Λ−
∑n

i=1 Γ̂i + Ω̂. Then, the dealer D hands s = −
∑n

i=1 si + µ
to the parties.

6. The parties locally compute p = p̂+ s. If p = 0, then the parties output accept. Otherwise, they
output reject.

Proposition 3.3 Let ∆w be additive error on each wire w ∈ W (where W is the set of all output
wires and inputs to multiplication gates), and let (PFLIOP,VFLIOP) be a ρ-rounds, `-queries and
ε-soundness error zk-FLIOP protocol. Then, Πvrfy satisfies the following properties:

1. Correctness: If ∀w ∈ W : ∆w = 0 and all parties follow the protocol’s instructions, then the
honest parties always output accept.

2. Soundness: If ∃w ∈ W : ∆w 6= 0, then the honest parties output accept with probability of at
most |W ||F| + ε 5.

5This is true when αw is set by taking αw. When αw is generated via a PRG, it can be shown by the pseudorandom
assumption that soundness holds.
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3. Privacy: For every adversary A controlling a subset T of size ≤ n− 1, there exists a simulator
S, who receives {∆w, x̂w, {rw,i}i∈T }w∈W as an input, and outputs a transcript viewS , such that
viewS ≡ view

πvrfy
A .

Proof: Correctness. It is easy to see from the description of the protocol, that if no additive
errors were introduced and all parties acted honestly in the protocol, then p = 0. It remains to
show that the parties will output accept in the zk-FLIOP protocol. Given a proof πij , it holds that

πij = π̂ij + tij . Then, when the parties compute the answers to the linear queries, we have ∀l ∈ [`] :

aij,l = âij,l + ãij,l = 〈qij,l, ~yPi ||(πij − tij)〉+ 〈qij,l, ~yDi ||tij〉 = 〈qij,l, ~yi||πij〉

and so by the completeness of the zk-FLIOP protocol, they will hold the correct answer and output
accept.

Soundness. If ∃w ∈W : ∆w 6= 0, then the parties will output accept if p = 0. This can happen
if one of two events occur: (i) the random linear combination yield 0. since αw = αw for a random
α, we have that p =

∑
w∈W αw ·∆w =

∑
w∈W αw ·∆w and so, fixing all ∆w, this is a polynomial

of degree |W | evaluated on a random point α. Thus, by the Schwartz-Zippel lemma, p = 0 with

probability |W ||F| . (ii) the parties output accept in the zk-FLIOP, even though a corrupted party Pi
shared an incorrect Γi. By the soundness property of the zk-FLIOP protocol, this can happen with
probability of at most ε. Hence, by the union bound, the overall cheating probability is |W ||F| + ε.

Privacy. We construct a simulator S for our protocol and show that the view it generates
is distributed identically to the adversary A’s view in a real execution. The simulator S receives
{∆w, x̂w, {rw,i}i∈T }w∈W as an input, and then interacts with A playing the role of the honest parties
and the trusted dealer D. In particular, S works as follows:

1. Playing the role of D, it hands A a random si for each i ∈ T , a random seed α and a random tij
for each i ∈ T and j ∈ [ρ]. In addition, S chooses a random Ω̂ and hands it to A.

2. For each honest party Pi, it chooses a random Γ̂i and hands it to A.

3. S computes all αw and then, knowing all the corrupted parties’ inputs, it computes Γi for each
corrupted party Pi. In addition, knowing all x̂w, it computs Λ.

4. Upon receiving from A all {Γ̂i}ı∈T , the simulator S computes for each i ∈ T , Γ′i = Γ̂i + si.

5. Simulating the zk-FLIOP execution:

• The prover Pi is honest: In each round j ∈ [ρ], S chooses a random π̂ij and sends it to A.

Then, playing the role of D, it hands a random challenge rij to A. To simulate the opening of

the query answers, S run SFLIOP to receive aij,1, . . . , a
i
j,`. Then, for each l ∈ [`], it computes

âij,l (since it knows all the corrupted parties’ inputs and so all the values in ~yPi ) and then sets

ãij,l = aij,l − âij,l and hands the answers to A.

• The prover Pi is corrupted: In this case, S simply plays the role of the honest parties acting
as verifiers in this proof, and the role of D. Since it knows the corrupted parties’ inputs, it
knows the verifiers’ inputs to this proof, and so it can perfectly simulate this execution.
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6. S computes p =
∑
w∈W

αw ·∆w +
∑
i∈T

(Γ′i − Γi) and p̂ = Λ−
n∑
i=1

Γ̂i + Ω̂. Then it sets s = p− p̂ and

hands it to A.

Observe that the view of A in a real execution consists of three types of values:(i) masked data
which is distributed uniformly over F; (ii) the answers to the zk-FLIOP linear queries; (iii) and the
value of p which is determined by A (since it chooses the additive errors). In the simulation, values
of type (i) are chosen uniformly from F and so are distributed the same as in the real execution.
Type (ii) of data is distributed the same by the ZK property of the zk-FLIOP. Finally, since S
knows all the inputs held by A and the additive errors, it can compute the actual value of p and so
perfectly simulate the opening of this value. We conclude that the view generated by the simulation
is identically distributed to the view in the real execution. This concludes the proof.

Working over small fields. The soundness error of our protocol depends on the size of the field
F. When we compute the circuit over small fields, it is possible to run Πvrfy over an extension field
to reduce the error. This is carried-out by lifting each input to the verification protocol into the
extension field. Suppose that we want the error to be 2−ε. Then, one can choose an extension field
F̃ such that |W ||F̃| + ε1 ≤ 2−ε, where ε1 is the soundness error of the zk-FLOIP protocol over F̃.

Working over the ring Z2k . When the circuit is computed over the ring Z2k , then by Theo-
rem 2.5, we still have a zk-FLIOP with sublinear cost. However, the probability that p = 0 when
the random coefficients taken as r, r2, . . . , r|W | and so p is a polynomial of degree |W | evaluated on
a random point r, is constant regardless of the size of the ring. Nevertheless, since the cost of our
verification protocol is small, we can afford an “expensive” solution here, and run Πvrfy over the
extension ring Z2k [x]/f(x), i.e., the ring of polynomials with coefficients from Z2k modulo a polyno-
mial f(x) which is of the right degree and is irreducible over Z2. As shown in [BBC+19, BGIN19],
taking f of degree d, the number of roots of a polynomial of degree δ over Z2k [x]/f(x) is at
most 2(k−1)dδ + 1. Thus, the probability that p = 0 when r is chosen at random, is at most
2(k−1)d|W |+1

2kd
≈ |W |

2d
. Hence, by choosing d appropriately, we can achieve a desired soundness error.

From an active dealer to an offline dealer. In the above description we treated the dealer
as an active participant in the computation. Note however, that all the operations carried-out
by the dealer in our protocol, can be done offline before the start of the computation, because
they depend only on random data. These include operations over randomness it chooses for the
execution of Πvrfy, and operations over the prover’s random shares of the masks, which were chosen
by the dealer.

Now, there are two types of randomness that the dealer provides in the execution:
Type I: randomness given to a single party. This type of randomness can be handed to the

intended party before the beginning of the execution. This includes: (i) random masks si ∈ R and
{tij}j∈[ρ] where tij ∈ Ruj , given to each party Pi.

Type II: randomness given to all parties during the protocol. For each randomness of this type,

the dealer can precompute it and send it to F dealer
com before the beginning of the computation. Then,

whenever the parties reach the point where the randomness needs to be revealed, they can send
a reveal command to F dealer

com . This includes: (ii) a random seed α ∈ R given to all parties; (iii)
Ω̂ =

∑
w∈W αw ·rw+

∑
g`∈mult γ` ·(r

g`
1 ·r

g`
2 )−ν given to all parties, where each αw and γ` is expanded
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from α and ν ∈ R is random; (iv) a challenge rij ∈ R for each i ∈ [n] and j ∈ [ρ]; (v) the queries’

answers ãij,1, . . . , ã
i
j,`, for each j ∈ [ρ] and i ∈ [n] (which are computed over the random challenges

and prover’s inputs which are known to the dealer); and (vi) the random mask s.
Summing the above and given that the extension degree used in the verification protocol is d,

then the amount of correlated randomness is3 + n ·

 ρ∑
j=1

uj + ρ(1 + `)

 · d ring elements (4)

The main observation is that the amount of correlated randomness is logarithmic in the size of
the input to the verification subprotocol, i.e., logarithmic in |W |. This holds since by Theorem 2.5,
there exists a zk-FLIOP protocol, where the proof,

∑ρ
j=1 uj , the number of rounds ρ and the

number of queries ` · ρ are all of size log(M), with M being the number of distinct monomials in
the polynomial for which the proof takes place. As can be seen from Eq. (1), in our case, M equals
to 2|mult|. It follows that the amount of required correlated randomness is O(n · log |mult| · d).

Communication cost. The interaction in Πvrfy consists of having each party sending the proof
to the other parties in each round, and interaction with F dealer

com to reveal the public randomness.
Thus, the overall cost isn · ρ∑

j=1

uj

 · d+ (3 + n · (ρ+ ρ · `)) · d · F dealer
com ring elements (5)

which by Theorem 2.5, for the same reasoning explained above for the correlated randomness, is of
size O(n · log |mult| · d)

Computation cost. In Πvrfy, each party Pi first computes αw = αw for each w ∈ W and Λ and
Γi. Each of these computations consists of O(|W |) local multiplication operation. Then, the parties
run the zk-FLIOP protocol to prove the correctness of Γi for each i ∈ [n], where by Theorem 2.5,
the computational complexity is O(M), which means, as explained above, that the computation
complexity is O(n · |W |).

Summing the above, we obtain:

Proposition 3.4 Let ε be a statistical error bound. Then, Protocol Πvrfy has communication cost
O(log |mult| · κ) per party, computational cost O(n · |W |) per party and the amount of correlated

randomness required from the dealer is O(n · log |mult| · κ) per party, where κ = log|F|

(
|W |
ε

)
when

R is finite field, and κ = log2

(
|W |
ε

)
when R = Z2k (where W is the set of output wires and input

wires to multiplication gate in the verified circuit).

3.2 The Main Protocol

We are now ready to present the main protocol to compute any arithmetic circuits with malicious
security. Informally, Our protocol takes any secure-up-to-additive attack and star-sharing compliant
protocol, and compile it into malicious security, by adding a verification step, where the parties run
the protocol Πvrfy from Section 3.1. Formally:
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ΠMPC: Let C be the circuit to compute, defined over a ring R, let W be the set of C’s output
wires and input to multiplication gates and let ε be a desired statistical security bound. Let Πadd

mpc

be a protocol to compute C which is secure-up-to-additive-attack with star-sharing compliance.
Let R̃ be an extension ring of R defined as:

• If R is a finite field F, then set R̃ = Fκ, such that κ is the smallest number for which |W ||Fκ| ≤ ε/2.

• If R = Z2k , then set R̃ = Z2k [x]/f(x) where f is a polynomial of degree κ which is irreducible

over Z2, such that κ is the smallest number for which |W ||2κ| ≤ ε/2.

• Preprocessing: The dealer D hands the parties the following correlated randomness:

– For input wire k held by party Pi, it hands a random mask ski ∈ R to Pi and a random ski,j to

Pj such that ski =
∑n

j=1 s
k
i,j .

– It hands the parties the correlated randomness required by Πadd
mpc. This includes a random rw,i

for each party Pi and wire w.

– It hands the parties the correlated randomness required by Πvrfy as defined is Section 3.1
over R̃.

– For each output wire w, it sends the random mask rw of this wire to F dealer
com .

• The online protocol:

– Sharing the inputs: For each wire k, with input vki held by Pi, it broadcasts v̂ki = vki − ski
to the other parties.

– Circuit emulation: The parties compute the circuit C gate-by-gate in some predetermined
topological order, by running Πadd

mpc, using the correlated randomness received from the dealer,
up to and not including the output reconstruction step.

– Verification step: Let (x̂w, rw,i) be the pair held by each party Pi on each wire w ∈ W .
The parties lift

(
x̂w, {rw,i}i∈[n]

)
w∈W into R̃. Then, they run Πvrfy with a zk-FLIOP protocol

with soundness error ε/2 on the lifted values and on the correlated randomness received from
the dealer.
If any party outputs reject, then it sends abort to the other parties and aborts the protocol.
Otherwise, the parties proceed to the next step.

– Output reconstruction: For each output wire w, with output intended to party Pi, let
x̂w be the value held by the parties on this wire. Then, the parties send (w, i) to F dealer

com , who
sends rw to Pi. Finally, party Pi sets xw = x̂w + rw as its output.

We thus obtain the following proposition:

Proposition 3.5 Let f be a n-party functionality represented by an arithmetic circuit C over a
ring R and let ε be a statistical security bound. Then, if Πadd

mpc is star-sharing compliant and securely
computes f with additive security as defined in Definition 2.3, and (PFLIOP,VFLIOP) is public-coin
zk-FLIOP with soundness error ε

2 as defined in Definition 2.4, then ΠMPC ε-securely computes f
in the F dealer

com -hybrid model with abort in the preprocessing model.
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Proof: We describe a simulator S for our protocol. In the simulation, S plays the role of the
honest parties and the dealer D when interacting with the real-world adversary A, who controls
a set of parties T with |T | ≤ n − 1. The simulator S invokes A by handing it the correlated
randomness for the honest parties as would D do. Then, in the online protocol it works as follows:

• Input sharing step: The simulator S sends random elements to A as the masked inputs of the
honest parties. Upon receiving the masked inputs x̂k of the corrupted parties for each input wire
k from A, it extracts the corrupted parties’ inputs by computing xk = x̂k + rk.

• Circuit emulation: Let Sadd be the simulator for Πadd
mpc. The simulator S follows the instructions

of Sadd while interacting with A. Playing the role of Sadd, it extracts the additive attack ∆w for
each wire w ∈W .

• Verification: Let Svrfy be the simulator for Πvrfy from Theorem 3.3. The simulator S invokes
Svrfy on {∆w, x̂w, {rw,i}i∈T }w∈W , and follows its instructions. Let out be the output held by
the honest parties, played by S, at the end of the execution. If out = reject, then S sends
abort to the trusted party computing f and outputs whatever A outputs. Else, out = accept. If
∀w ∈ W : ∆w = 0, then S proceeds to the next step. Otherwise, ∃w ∈ W : ∆w 6= 0 and the
output is accept. In this case, S outputs fail and halts.

• Output reconstruction: The simulator S sends the corrupted parties’ inputs to the trusted party
computing f , to receive back their outputs. For each output wire w with output xw on it, S
sends to A the random mask rw = xw − x̂w. For each output intended to an honest party Pj , it
waits for A’s command to F dealer

com . If A sends abort to F dealer
com , then S sends abortj to the trusted

party. Otherwise, it sends continuej . Finally, S outputs whatever A outputs.

We show that A’s view in the simulation is statistically close to its view in the real execution.
First, observe that in the input sharing step, A sees random masked values in both executions.
In the circuit emulation step, by the definition of Πadd

mpc, the simulation has has at most statistical
distance from the real execution. In the verification step, by the privacy property of Πvrfy, the views
are distributed identically, except for the case S outputs fail. Note however that this event occurs
when the honest parties output accept even though ∃∆w 6= 0. From the soundness property of
Πvrfy, it thus follows that Pr[fail] = ε/2 + ε/2 = ε. To see why this holds, recall that R̃ was chosen

such that |W ||Fκ| ≤ ε/2 when R = F and |W |
|2κ| ≤ ε/2 when R = Z2k , and that the parties called the

zk-FLIOP protocol with parameter ε/2. By the soundness property of Πvrfy (Proposition 3.3), the

cheating probability is |W ||Fκ|+
ε
2 when R = F, and |W |2κ + ε

2 when R = Z2k , implying that it is bounded
by ε. Finally, given that the view until the reconstruction step are distributed similarly in both
executions, then the same applies for this step as well, since A sees only random values. Overall,
by a standard hybrid argument, we have that A’s view is distributed the same with statistical error
ε as allowed by the theorem. This concludes the proof.

Combining Proposition 3.4 and Proposition 3.5, we obtain the following theorem, which sum-
marize our main result in this work:

Theorem 3.6 Let f be a n-party functionality represented by an arithmetic circuit C of size |C|
(number of multiplication gates and output wires) over a ring R which is either a finite field or
the ring Z2k and let ε be a statistical security bound. Then, every protocol in the preprocessing
model which securely computes f with additive security and is star-compliant, can be compiled
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into a ε-secure protocol, with additional O(n · log |C| · κ) correlated randomness and O(log |C| · κ)

communication per party, where κ = log|F|

(
|C|
ε

)
when R is finite field, and κ = log2

(
|C|
ε

)
when

R = Z2k .

Concrete cost. To obtain the concrete cost of the entire protocol, one can simply take the cost
of the underlying semi-honest protocol and the cost of Πvrfy given at the end of Section 3.1 and add
them together.

Protocol instantiations. From our main theorem we derive the following corollaries. We apply
our construction on the well-known semi-honest protocol based on Beaver triples [Bea91]. First,
we obtain a protocol in the circuit-dependent preprocessing, where both the amortized communi-
cation cost and the amount of correlated randomness match the cost of the underlying semi-honest
protocol, for rings of any size:

Corollary 3.7 (Circuit-dependent preprocessing) Let C be a circuit with size |C| (which is
the number of multiplication gates, input and output wires in C) defined over a ring R which is
either a finite field F or the ring Z2k and let ε be a statistical error bound. Then, there exists a
protocol to ε-securely compute C with abort, with the following properties:

• Communication: each party sends (2 − 2
n) · |C|+ O(log |C| · κ) ring elements, where κ = κ(ε)

is defined as in Theorem 3.6.

• Correlated randomness: the circuit-dependent preprocessing outputs 4 · |C|+O(n · log |C| ·κ)
ring elements to each party. With PRG-based compression, this can be reduced to |C| + O(n ·
log |C| · κ) elements to one party, and O(n · log |C| · κ) elements to the other parties (in addition
to the PRG seed size).

Proof: Consider the semi-honest protocol described in Appendix A.1, which is the circuit-
dependent version of the well-known Beaver’s [Bea91] protocol, as described in [BGI19]. In this
protocol, the parties hold x̂w = xw − rw for each wire w, which is a circuit’s output wire or input
wire to a multiplication gate. In addition, they hold for each multiplication gate g with input
wires wgi1 and wgi2 and output wire wgo , an additive sharings of rgi1 , rgi2 , rgi1 · r

g
i2

and rgo . Then,
they use these to locally compute an additive sharing of masked output (masked with rgo) and
interact to reveal the masked output, by having each party sending 2 − 2

n ring elements. The
amount of correlated randomness in this protocol is 4 ring elements per multiplication gate without
compression. Alternatively, the dealer can hand each party a PRG seed from which its shares of
rgi1 , rgi2 and rgo are derived, thereby removing completely 3 · |C| elements of correlated randomness.
For rgi1 · r

g
i2

, the dealer can hand n− 1 parties a PRG seed from which their shares are expanded,
and give the remaining party one share for each gate. We remark that for each input, each party
needs to send one element (masked input) to all parties, while for each output wire, the dealer
sends the mask to one party. Thus, per party, the communication cost for an input/output wire is
bounded by the cost per multiplication.

The protocol is thus star-sharing compliant. In addition, as shown in Appendix A.1, the protocol
satisfies the property of additive security. Hence, by applying Theorem 3.6 on this protocol the
corollary follows.

22



In the circuit-independent model, we have a similar result. Here the communication is slightly
higher because the cost of the underlying semi-honest protocol is higher.

Recall that the (logarithmic size) extra correlated randomness introduced by our compiler does
depend on the structure of the circuit, and thus the resulting protocol is in the circuit-dependent
preprocessing model. However, as the semi-honest portion of the correlated randomness is a dom-
inant cost that can be generated more efficiently in the circuit-independent case (e.g., via the use
of highly efficient pseudorandom correlation generators (PCGs) [BCG+19b] in the 2-party setting),
we address this case as well.

Corollary 3.8 (Circuit-independent preprocessing) Let C be a circuit with size |C| (number
of multiplication gates, input and output wires in C) defined over a ring R which is either a finite
field F or the ring Z2k and let ε be a statistical error bound. Then, there exists a protocol to
ε-securely compute C with abort, with the following properties:

• Communication: each party sends (4− 4
n) · |C|+O(log |C| · κ) ring elements, , where κ = κ(ε)

is defined as in Theorem 3.6.

• Correlated randomness: the circuit-independent preprocessing outputs 3 · |C| ring elements
to each party, and there is an additional circuit-dependent preprocessing which outputs O(n ·
log |C| · κ) elements to each party. With PRG-based compression, this can be reduced to |C| +
O(n · log |C| · κ) elements to one party, and O(n · log |C| · κ) elements to the other parties (in
addition to the PRG seed size). With PCG-based compression of (n-wise) multiplication triples
over R, the entire correlated randomness can be reduced to O(n · log |C| ·κ) elements to each party
(in addition to the PCG seed size).

Proof: The proof is identical to the proof of Corollary 3.7, with the only difference being the
underlying protocol with additive security. Here we use the standard multplication with Beaver
triples shown in Appendix A.2. The parties interact for each multiplication’s input wire and thus
communication is doubled. The correlated randomness consists of additive sharings of the input
masks and their multiplication, and so the per gate each party stores 3 random ring elements.

As a final application of our main theorem, we consider an underlying semi-honest n-party pro-
tocol making use of pairwise-correlation preprocessing. Although this protocol requires even greater
online communication—on the order of O(n2|C|) compared to O(n|C|) total communication—once
again the benefit is that the preprocessing correlation is of a simpler form that admits highly efficient
generation procedures. More specifically, the correlation consists of several pairwise multiplication
triples (easily generated from pairwise OT/OLE correlations), as opposed to fewer but somewhat
more complex n-wise multiplication triples. Given these tradeoffs, this protocol will indeed be
competitive in certain settings with n ≥ 3. We refer the reader to Appendix A.3 for further details.

Remark 3.9 (Pairwise-correlation preprocessing) There exists an n-party protocol for ε-securely
computing an arithmetic circuit C as above, with the following properties:

• Communication: each party sends 2(n− 1) + (4− 4
n)|C| ring elements.

• Correlated randomness: the circuit-independent preprocessing outputs 3(n − 1) · |C| R-
elements per party (in the form of n(n−1) · |C| pairwise multiplication triples), and an additional
circuit-dependent preprocessing which outputs O(n · log |C| · κ) elements to each party.
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With efficient PCG-based compression of pairwise random OLE correlations over R (equivalent to
OT correlations when R = Z2), the entire correlated randomness can be reduced to O(n·log |C|·κ)
elements to each party.

where κ = κ(ε) is defined as in Theorem 3.6.

Remark 3.10 (Multicast vs. private channels) The communication cost presented in Corol-
laries 3.7 and 3.9 is achieved when only private channels between the parties exist. In case the
parties have access to a multicast channel, where sending one message to n parties has the same
cost as sending n private messages, then the communication cost is 1 ring element per multi-
plication gate per party in the circuit-dependent preprocesssing model, and 2 ring elements with
circuit-independent preprocessing.

3.3 Concrete costs with an instantiation of the zk-FLIOP

Based on the general constructions from [BBC+19], we describe in Appendix B, an implementation
of the zk-FLIOP protocol in our setting has the following parameters:

• Number of rounds: ρ = log(2|mult|)− 1

• Message length: uj = 3 for j ∈ [ρ− 1] and uρ = 8

• Number of linear queries per round: ` = 1

The concrete features of the realization we obtain are:

• Proof size: 3(log(2|mult|)− 1) + 8 elements broadcast by the prover.

• Computation: each verifier performs approximately 4|mult| local operations for prime fields.
When the original circuit was a Boolean circuit, this can be reduced to 3|mult|. In contrast,
the prover performs 8|mult operations over prime fields and 7|mult| operations if the computed
circuit is Boolean.

• Soundness error: When working over a finite field F, the soundness error is at most 4 log |mult|+1
|F| .

When working over the ring Z2k , and the verification protocol is carried-out over the extension
ring Z2k/f(x), where f is irreducible modulo 2 is of degree d, the soundness error is bounded

by 4 log |mult|+1
2d

.

Plugging-in the above numbers into Equation (4) and Equation (5), we obtain that Πvrfy has
the following concrete costs:

• Correlated randomness: (3 + 5n · log(2|mult|)) · d ring elements

• Communication cost: n · (log(2|mult|)+2) ·d+(3+2n · (log(2|mult|)−1)) ·d ·F dealer
com ring elements

where d is the extension degree.
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Concrete online computation cost. The concrete computational cost of the protocol is dom-
inated by ring multiplications. We give a bound on the number of these multiplications in the
important case that the ring is a field, thereby providing an estimate of the protocol’s computa-
tional cost.

The work of each party is divided into computing its share of Equation (1), proving in zk-FLIOP
that its share is correct, and verifying in zk-FLIOP that the share of every other party is correct.
For each of these stages, we bound the number of field multiplications as a function of the number
of multiplication gates |mult|.

To compute its share of Equation (1), each party first computes public random elements αw
for every wire w ∈ W . While it is possible to compute αw as powers of a random value α, it is
computationally cheaper in concrete terms to generate αw as an expansion of a random seed to a
long pseudo-random string, e.g. by using standard processors which incorporate AES instructions.
Then, each party computes Λ =

∑
w∈W αw · x̂w −

∑
g`∈mult γ` · (x̂

g`
1 · x̂

g`
2 ), and Γi =

∑
g`∈mult γ` ·

(x̂g`1 · r
g`
2,i + x̂g`2 · r

g`
1,i). If the field is a large prime field Fp then computing Λ requires 4|mult| field

multiplications and computing Γi requires 3|mult| field multiplications. However, if the original
circuit is a Boolean circuit and the field is F2k , i.e. an extension field, then computing Λ and Γi
does not require any field multiplications. The reason is that in each term of Λ and Γi there is
at most one actual field element (either αw or γ`) while all other elements are bits derived from
the circuit. Therefore, the total number of field multiplications per party to compute its share of
Equation 1 is 7|mult| if the field is Fp and zero if the field is F2k .

Based on the analysis in Appendix B, if the field is Fp then each party performs 8|mult| field
multiplications when it runs as a prover in the zk-FLIOP and 4|mult| multiplications when it runs
as a verifier, and if the field is F2k then the numbers are 7|mult| field multiplications for a prover and
3|mult| multiplications for a verifier. Since each party runs n−1 times as a verifier, the total number
of field multiplications per party in an n-party protocol over a field Fp is (15 + 4(n− 1))|mult|, and
over F2k the number of field multiplications is (7 + 3(n− 1))|mult|.

Cost comparison for online computation and communication. An important measure of
the efficiency of an MPC protocol is total online time, which depends on both communication and
computation in the online phase. The maliciously secure protocol we propose has negligible com-
munication overhead compared to the base semi-honest protocol, but non-negligible computational
overhead. This maliciously secure protocol is especially appealing when its computation requires
less time than the semi-honest protocol, in which the bottleneck is typically its online communica-
tion. We give concrete examples of parameter ranges for 2PC in which the dominant cost of the
whole protocol is the communication of the semi-honest portion of the protocol.

Consider 2PC for a Boolean circuit with |mult| multiplication gates. The zk-FLIOP for such a
circuit is executed over an extension field F2k , which is chosen to provide a desired soundness error.
We give examples of concrete computational cost for k = 64 and k = 128, which are chosen to take
advantage of hardware-based polynomial multiplication in modern processors. By the analysis in
the beginning of this section, the soundness error for k = 64 and almost any reasonable circuit size,
e.g. |mult| ≤ 230, is at most 2−57, and the soundness error for k = 128 and |mult| ≤ 230 is at most
2−121.

A field multiplication in F2k can be carried out in two stages, first a polynomial multiplication,
doubling the input size, and then a reduction of the result back to the base field. Polynomial mul-
tiplication can be efficiently implemented in modern x86 architectures using the PCLMULQDQ
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instruction. The computational cost of reducing to the base field depends on the irreducible poly-
nomial defining the field, and is lowest for specific choices of sparse polynomials.

With an appropriate choice of F264 and for sufficiently many multiplications, the polynomial
multiplication requires 0.13 cycles per byte [Gue15], which translates to roughly one cycle per
multiplication. In F2128 the cost of polynomial multiplication tends to 0.3 cycles per byte, as the
number of multiplications grows [GLL17], which is 4.8 cycles per multiplication. A good algorithm
for reduction modulo a sparse polynomial on an x86 architecture [BG15] requires at most 13 cycles
for F264 and 14 cycles for F2128 . Taken together, a large number of field multiplications requires 14
cycles per multiplication in F264 and 19 cycles per multiplication in F2128 .

To compare online communication and computation for 2PC of Boolean circuits, recall that
in the semi-honest protocol using multiplication triples each party sends two bits for every mul-
tiplication (AND) gate or 2|mult| bits for the whole circuit. Based on the previous analysis, the
online computational cost is dominated by 10|mult| field multiplications which require 140 cycles
per multiplication gate for F264 and 190 cycles for F2128 .

Running on a single core at 3.6 · 109 cycles per second, the communication in the semi-honest
protocol becomes the bottleneck for the whole protocol if the proof is in F264 (soundness error 2−57)
and network speed is at most 51 Mbps, or if the field is F2128 (soundness error 2−121) and network
speed is at most 37 Mbps. Assuming that the online computation can be easily parallelized, these
figures determine the number of cores required to ensure that online computation of the maliciously
secure protocol does not take more time than communication for the semi-honest protocol. For
example, two cores are sufficient if the field is F264 and network speed is 100 Mbps.

A different approach, which might be even more attractive, is to offload field multiplications to
a GPU, taking advantage of the inherent parallelism of the work of a prover and a verifier in our
protocol. One data point is the work of Ben-Sasson et al. [BSHST16] reporting a peak throughput
of 2.09 billion multiplications in F264 , implying that the communication of the semi-honest protocol
would be the bottleneck for such implementations with network speeds at most 4 Gbps.

4 Distributing the Dealer

In this section, we discuss the efficiency of securely distributing the role of the trusted dealer between
the parties. We consider here a baseline (additively-secure) protocol based on multiplication triples.
Our goal is to design a concretely efficient MPC protocol which outputs to each party the additional
correlated randomness required by our sublinear verification protocol. Our approach to this task
is to view the dealer’s work as computing an arithmetic circuit, and use a general MPC protocol
to compute this circuit by the parties. This is motivated by the fact that, as shown in Section 3.1,
the computational work of the dealer in the verification protocol, is O(n · |C|). This implies that
the computational work is asymptotically proportional to the size of the circuit (times the number
of parties).

We now show that the hidden multiplicative constants are actually quite small, which means
that the circuit computed by the dealer is not much bigger than the original circuit. We remind
the reader that standard general-purpose MPC protocols require interaction only for multiplication
operations and not for linear operations. Thus, we are only interested here in counting the number
of multiplication operations carried-out by the dealer.

When looking into our verification protocol Πvrfy, we identify three computations which require
multiplications:
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• Computing the random coefficients αw for each output wire or multiplication gate’s input wire w.
This computation is done by taking αw = αw for a random α ∈ R. Thus, for |W | wires, this
requires |W | multiplications. Assuming that the number of outputs is considerably smaller
compared to the number of multiplication gates, this amount to 2|C| multiplications.

• Computing Ω =
∑

w∈W αw ·rw+
∑

g`∈mult γ` ·(r
g`
1 ·r

g`
2 ). Recall that the random coefficients γ` are

computed as a summation of several αw coefficients, and so are computed without interaction.
Thus, the cost here is 2 multiplications for each multiplication gate g`, and so 2 · |C|.

• Computing the queries answers ãij,1, . . . , ã
i
j,` ← 〈qij,1, ~yDi ||tij〉, . . . , 〈qij,`, ~yDi ||tij〉 in each round of the

zk-FLIOP. The cost here depends of course on the way the zk-FLIOP is realized. When using the
logarithmic construction described in Appendix B, the parties need to compute approximately
2|mult| multiplications overall, and so 2|C| multiplications for each of the n calls to the zk-FLIOP.

Summing the above, we conclude that the size of the dealer’s circuit, measured by the number
of multiplications, is 4|C| + n · 2|C|. For the popular setting of 2-party secure computation, for
instance, this amount so 8 · |C| multiplications.

Thus, to securely compute this circuit, the parties can use any state-of-art general MPC pro-
tocols for computing arithmetic or Boolean circuits, such as the protocols from [CDE+18, KPR18,
HIMV19, BCG+20, BLN+21], depending on the type of underlying ring/field. Together with our
online protocol, this yields an offline-online protocol for arithmetic or Boolean circuits with low
storage cost (much lower than SPDZ in the case of Boolean circuits or circuits over rings), fast
online phase (comparable to SPDZ) and practically feasible offline phase.

4.1 Distributing the dealer with PRG/PCG-based protocols

The approach described above uses general-purpose MPC for emulating the entire generation of
the correlated randomness consumed by the online protocol. We now discuss how to modify this
approach for accommodating an additional compression of the correlated randomness using a PRG
or a PCG.

Consider first the case of a PRG-based compression. A natural approach for distributing the
dealer without securely evaluating the PRG is to let the parties locally expand their PRG seeds and
then feed the outputs to the MPC protocol that generates the rest of the correlated randomness.
To illustrate this, consider PRG compression in protocols based on multiplication triples (as in
Corollary 3.7 and 3.9). When the n parties emulate the dealer, each party chooses a PRG seed
from which it derives its shares of vectors a and b. In addition, all but one party derive their share
of c = a · b from their seed. Then, the parties run an MPC protocol to compute the share of c of
the remaining party from the 3n− 1 vectors, and finally the remaining correlated randomness (for
sublinear ZK verification). This implies overall storage complexity which is sublinear in |C| for all
but one party. Note that malicious parties may lie about the PRG outputs they feed into the MPC,
but this is equivalent to using incorrect values for their shares of the triples in the online protocol.

To achieve sublinear storage complexity for all parties, we can use pseudorandom correlation
generators (PCGs) [BCG+19b] to generate the baseline correlated randomness. Here each party
receives a short seed from which it locally derives its share of the desired correlation, which in our
case consists of multiplication triples. In particular, for secure 2-party computation of Boolean
circuits, each triple can be locally generated using 2 random OT correlations, where the latter can
be efficiently compressed using fast PCGs for OT [BCG+19b, BCG+19a, YWL+20, CRR21]. For
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concretely efficient PCG-based protocols for n ≥ 3 parties, one can use a PCG for OLE [BCG+20]
for arithmetic circuits over big fields or a PCG for OT for Boolean circuits, though the latter incurs
an O(n2) multiplicative overhead to the online communication.

Note, however, that unlike the previous cases, here the parties feed the general MPC protocol
with all the shares of the triple vectors a, b, c, which may lead to inconsistencies.

If that is the case, then the correlated randomness for the online verification protocol is in-
consistent with the semi-honest multiplication triples. It turns out that this may cause the online
protocol to be insecure: the adversary may be able to cheat in the online protocol, without being
caught.6 In particular, in the concrete instantiation we describe in Appendix B, breaking secu-
rity reduces to guessing a root for a random non-zero polynomial. However, when the adversary
may change the correlated randomness, it can generate a zero polynomial that will evaluate to 0
at any point. Therefore, we need a mechanism to make sure that the parties input the correct
multiplication triples into the MPC protocol that generates the remaining correlated randomness.

PCG-based compression for arithmetic circuits over large fields. When working over
large fields, the solution is simple. The parties take the triple shares derived from their PCG seeds,
and input them into an MPC protocol that first checks the consistency of these shares, and then,
if consistency holds, proceeds to compute the extra correlated randomness. More formally, given
shares ak,i, bk,i and ck,i of the triple (ak, bk, ak ·bk) held by party Pi, it inputs these to a protocol that
checks for each k that

∑n
i=1 ck,i = (

∑n
i=1 ak,i) · (

∑n
i=1 bk,i), and only if equality holds the protocol

proceeds to compute the correlated randomness for the online verification protocol. Observe that
if the adversary uses incorrect shares, then this is equivalent to adding errors ∆a,∆b and ∆c to
ak, bk and ck respectively. Thus, the check will pass only if ck + ∆c = (ak + ∆a) · (bk + ∆b), i.e.,
if ∆c − ak ·∆b − bk ·∆a −∆a ·∆b = 0. Since ak and bk are distributed uniformly over F, this can
hold only with probability 1

|F| .

Using PCGs for Boolean circuits. The above approach for large fields fails when using a
PCG for OT to evaluate Boolean circuits, as cheating will only be caught with probability 1

2 .
Since the event of being caught may be correlated with the secrets, this gives rise to a selective
failure attack. While the protocol obtained in this way still satisfies a meaningful notion of security
with “correlated abort,” which is good enough for some applications, it falls short of satisfying
the standard notion of security with abort. We sketch an approach for eliminating the selective
failure problem without hurting the online complexity or storage and without using general MPC
to emulate the full PCG expansion.

Current efficient PCGs for OT, following the blueprint of [BCG+19b], are based on a PCG for
a so-called “correlated OT” (COT) correlation, where the XOR of each pair of sender’s strings is
equal to the same (random) string ∆ ∈ {0, 1}λ. The COT is then converted into multiple instances
of standard (bit)-OT via local applications of a hash function h : {0, 1}λ → {0, 1} satisfying a
suitable notion of correlation robustness [IKNP03]. While authenticating the final OT correlation
cannot be done efficiently using current techniques, the COT correlation is easy to authenticate by
using a second copy of the correlation in which each pair of sender strings is multiplied by a secret
MAC key α ∈ F2λ , where α is also secret-shared between the parties. This second copy of the COT
correlation is generated using the same PCG for COT, except that ∆ is replaced by α∆. Given the
authenticated COT, the parties feed the offline MPC protocol with the following values: (1) the

6In the previous version of this paper it was incorrectly claimed that this cheating is harmless.

28



authenticated COT values, (2) the outputs of h on the COT values (which, if properly computed,
form random instances of bit-OT), and (3) a “proof” that the outputs of h are consistent with
the inputs (e.g., using intermediate values in a circuit computing h). The MPC protocol checks
that the authenticated COT values are valid (using the secret-shared α), then checks the proofs of
correct computation of h, and finally computes the correlated randomness for the online verification
protocol given the binary triples defined by the outputs of h. While this solution makes a non-black-
box use of the hash function h, this may not form an efficiency bottleneck when using a suitable
design of an MPC-friendly hash function. Note that the choice of hash function has marginal effect
on the efficiency of the online protocol (as it only affects the local PCG expansion) and has no
effect on the storage cost. We leave a more comprehensive concrete efficiency analysis to future
work.
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A Protocols With Security up to Additive Attacks

In this section, we present two instantiations for a protocol to compute an arithmetic circuit, which
is secure up to additive attack, as defined in Definition 2.3, and star-sharing compliant, as defined
in Defintion 3.2. Recall that the latter requirement is that for each multiplication gate or output
wire of the circuit, the parties will hold a masked value on this wire, plus an error that the adversary
added, which can be extracted by a simulator.
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A.1 Multiplication in the Circuit-Dependent Preprocessing Model [BGI19]

In this model, the structure of the circuit is known in advance. At the beginning of the protocol, the
parties hold two masked inputs x̂ = x− r1 and ŷ = y− r2. The parties wish to obtain ẑ = x ·y− r3.
Observe that

ẑ = x · y − r3 = (x̂+ r1)(ŷ + r2)− r3

= x̂ · ŷ + r1 · ŷ + r2 · x̂+ r1 · r2 − r3 (6)

and so if the parties are given an additive sharing of r1, r2, r1 · r2 and r3, they can locally compute
an additive sharing of ẑ. Note that in this approach, if a multiplication’s output wire is entering
multiple gates in the next layer, then we need to make sure that the same mask is used for the
input wires of the following gates. This is why the correlated randomness for this protocol is circuit-
dependent, i.e., depends on the structure of the circuit. The multiplication protocol thus works as
follows:

• Inputs: Each party Pi holds: x̂, ŷ, ri1, ri2, (r1 · r2)i and ri3.

• The protocol:

1. Each party Pi locally computes zi = ri1 · ŷ + ri2 · x̂+ (r1 · r2)i − ri3 and sends zi to P1.

2. Party P1 computes z′ =
∑n

i=1 z
i and broadcasts z′ to all the other parties.7

3. The parties compute ẑ = x̂ · ŷ + z′ and store the result as the output.

Recall that when P1 broadcasting z′, this amounts to sending z′ to all parties and then at the
end run a batch check with constant cost for the entire circuit, to assert that the same z′ was sent
to all parties in each gate (see Section 2.3). Thus, the overall communication cost in this protocol
is 2(n− 1) elements, and so each party sends 2− 2

n elements per multiplication gate. Note that for
2-party computation, this comes down to sending just a single element per party per multiplication.

Security up to an additive attack. The above protocol does not guarantee correctness; a
corrupted party can send incorrect values and cause the output to be incorrect. However, the only
attack that corrupted parties can carry-out is to add an error to the output. To see this, consider
a simulator that holds x̂, ŷ and the randomness of the corrupted parties. Such a simulator can
predict the messages sent by the corrupted parties. Thus, it can interact with the adversary by
sending it random values as the messages from the honest parties. Once it receives the messages
from the corrupted parties, it can compute the error by comparing the received messages and the
messages that should have been sent.

A.2 Multiplication in the Circuit-Independent Preprocessing Model [Bea91]

When the structure of the circuit to be computed is yet to be known, we view the preprocessing as
a service which produces random multiplication triples (i.e., Beaver triples). These triples are later

7Explicitly, each party sends z′ to all other parties, effectively emulating the first round of Broadcast with Selective
Abort (see Fbc in Section 2.3). The second (echo) round of this broadcast procedure will be efficiently batch-checked
together with all Broadcast with Selective Abort executions, by echoing a random linear combination of the collective
list of received values.
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consumed by the online computation. In this model, the parties interact to compute the masked
input for each multiplication gate or a circuit’s output wire. Then, they locally compute an additive
sharing of the multiplication’s output value. Addition gates which are between two multiplication
gates are locally computed over the additive sharing of wire values. The protocol works as follows:

• Inputs: Each party Pi holds: xi, yi, ri1, ri2 and (r1 · r2)i.

• The protocol:

1. Each party computes xi − ri1 and yi − ri2 and sends it to P1.

2. Party P1 computes x̂ = x − r1 =
n∑
i=1

(xi − ri1) and ŷ = y − r2 =
n∑
i=1

(yi − ri2). Then, it

broadcasts x̂ and ŷ to all the other parties.8

3. Each party Pi computes zi = ri1 · ŷ + ri2 · x̂+ (r1 · r2)i. Then, party P1 defines x̂ · ŷ + z1 as
its output share, where each Pi, with i 6= 1 defines zi as its output share.

Observe that the communication cost here is doubled compared to the multiplication protocol
in the circuit-dependent preprocessing model.

By the same reasoning which was used to compute the additive error for each multiplication gate
separately in the circuit-dependent model presented above, we can compute the additive error on
each multiplication’s input wire or circuit’s output wire, given the masked inputs to multiplication
gates which feed these wires and the corrupted parties’ randomness.

A.3 Computation in the Pairwise-Correlation Preprocessing Model

We describe an additional underlying semi-honest secure protocol based on pairwise-correlation
preprocessing, “GMW style” [GMW87]. Although the resulting protocol has higher online commu-
nication complexity than our previous two instantiations (which we do not attempt to concretely
optimize), we include this instance as an additional alternative, because the corresponding prepro-
cessing correlation admits particularly cheap generation, especially over R = Z2. More specifically,
the preprocessing correlation of this protocol consists of pairwise, two-party multiplication triples,
as opposed to the n-party multiplication triples from the previous sections. Although significantly
more such multiplication triples are required—n(n− 1) per multiplication gate, as opposed to one
n-wise triple—this means the protocol can take advantage of cheap and simple pseudorandom cor-
relation generators that exist in the two-party setting. For example, for R = Z2, highly efficient
“Silent OT” [BCG+19b] protocols enable generating a large number of pairwise-OT correlations,
which can be non-interactively converted into pairwise multiplication triples over Z2 (at the rate
of two OT instances per one multiplication triple).

The base version of the pairwise-correlation preprocessing protocol, à la [GMW87], computes
additive secret shares of each circuit wire gate by gate, using n(n−1) pairwise multiplication triples
to convert from shares of wire values x, y to shares of their product xy, via pairwise products xiyj
between the shares of x and the shares of y. This version of the protocol does not directly fit

8Explicitly, each party sends x̂, ŷ to all other parties, effectively emulating the first round of Broadcast with
Selective Abort (see Fbc in Section 2.3). The second (echo) round of this broadcast procedure will be efficiently
batch-checked together with all Broadcast with Selective Abort executions, by echoing a random linear combination
of the collective list of received values.
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into our compiler framework, since the values of the circuit are not star-shared; however, a simple
modification will suffice. Namely, the online protocol can be augmented with a one-round procedure
in which the collection of pairwise multiplication triples is converted into n-wise multiplication
triples, for every gate of the circuit, in parallel, in which case the protocol can proceed precisely
as the n-wise triple “Circuit-Independent Preprocessing Model” protocol as in Appendix A.2. The
resulting online communication is thus the sum of the (quadratic in n) communication of the
original pairwise-correlation semi-honest protocol for the multiplication triple conversion, plus the
(linear in n) communication of the protocol as described in the previous section, which makes use
of n-wise multiplication triples. It is likely this step can be improved; we leave optimization as a
future goal.

Note that one can alternatively choose to view this multiplication triple conversion step as
part of the preprocessing itself, i.e. simply as a means for effectively generating the n-wise multi-
plication triples for the Appendix A.2 protocol. However, the present view in combination with
existing constructions pseudorandom generators, provides a benefit in that entire size of the pre-
processing correlation (including the semi-honest correlation), and thus storage requirements from
preprocessing to online phase, can be compressed to sublinear—logarithmic!—in the circuit size |C|.

For completeness, we describe the pairwise-triple to n-wise triple conversion protocol. This
procedure is executed in parallel for every multiplication gate of the circuit C to be evaluated, on
random inputs xgi , y

g
i for each party Pi, for each gate, in conjunction with n(n− 1) sets of pairwise

multiplication triples. The values xgi , y
g
i are implicitly determined via expansion of a pseudorandom

generator, allowing their description in the preprocessing to be compressed to small size.

Overall Preprocessing:

• For every multiplication gate g in C, for every pair i 6= j ∈ [n] (order sensitive), parties Pi and

Pj are given shares of a pairwise multiplication triple:
(
agij , b

g
ij , (a

g
ij · b

g
ij)
)
∈ R3.

(Compressible to size logarithmic in |C| using pseudorandom correlation generators.)

• Each party Pi is given a seed si to a pseudorandom generator. (Used to generate pseudorandom
values (xg)i, (yg)i ∈ R for each gate multiplication gate g, held by respective party Pi.)

Pairwise-triple to n-wise triple conversion protocol (executed by all n parties):
//Convert n(n− 1) pairwise triples to one n-wise multiplication triple
//Makes use of Pairwise-Triple Multiplication Subroutine, specified below

• Inputs: Each Pi holds (pseudorandom) xi, yi, and (n−1) sets of shares
(
(aij)

i, (bij)
i, (aij · bij)i

)
j∈[n]\{i}.

• The protocol: Each party Pi performs the following steps.

1. For j 6= i: Pi executes (in parallel) an instance of the Pairwise-Triple Multiplication sub-
routine together with party Pj , using input

(
xi, yi,

(
(aij)

i, (bij)
i, (aij · bij)i

))
. Denote the

corresponding output share as (zij)
i.

2. Pi defines its share of the n-wise multiplication triple to be
(
xi, yi, zi

)
, where zi is computed

as zi =
∑

j 6=i(zij)
i.

//The n-wise triple is for values x :=
∑

i x
i and y :=

∑
i y
i, and their product xy.

Subroutine: Pairwise-triple multiplication (called by 2 parties Pi, Pj):
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• Inputs: Indices i, j ∈ [n] of the executing parties. Each party Pi holds: xi, yi, ri1, ri2 and (r1 ·r2)i.

• The protocol:

1. Each party Pi computes xi − ri1 and yi − ri2 and sends to the other party Pj .

2. Each party Pi computes x̂ = x−r1 = (xi−ri1)+(xj−rj1) and ŷ = y−r2 = (yi−ri2)+(yj−rj2).
Then, each party Pi computes zi = ri1 · ŷ + ri2 · x̂+ (r1 · r2)i. If i < j then Party Pi defines
x̂ · ŷ + zi as its output share; otherwise, if i > j then Pi defines zi as its output share.

B Proving Correctness via ZK-FLIOP – A Concrete Protocol

In this section, we present a concrete instantiation for a ZK-FLIOP protocol (see Definition 2.4),
with logarithmic number of rounds and logarithmic amount of correlated data, based on the general
construction in Section 5.1 in [BBC+19]. This instantiation was also used in [BGIN19, BGIN20] in
the honest majority setting. Then, we give a detailed description of how it is used in our verification
protocol by having each party prove that it behaved honestly.

B.1 A ZK-FLIOP Concrete Instantiation

Let P be the prover and V be the verifier. Assume that P holds a vector ~a ∈ Rm and wishes to
prove that the following statement is correct:

b−
m/2∑
k=1

a[2(k−1)+1] · a[2(k−1)+2] = 0.

The idea behind the protocol is to split the above expression into two parts. Let I1, I2 ∈ Rm/2 be
defined such that I1 = (~a1, . . . ,~am/2) and I2 = (~am/2+1, . . . ,~am). In addition, let g be a sub-circuit

that takes a vector ~a ∈ RM as an input and is defined as g(~a) =
∑M/2

k=1

(
a[2(k−1)+1] · a[2(k−1)+2]

)
.

This implies that P wishes to prove that b− (g(I1) + g(I2)) = 0 (setting M = m/2). To this end,
both the prover and the verifier define 1-degree polynomials f1, . . . , fm/2 such that ∀e ∈ [m/2] :
fe(1) is the eth input in I1 and fe(2) is the eth input in I2. In addition, the parties define another
polynomial q defined as q(x) = g(f1(x), . . . , fm/2(x)). By the definition of q, it holds that q is of
degree-2 (since g is a degree-2 circuit and each fe is a 1-degree polynomial), and that q(1) = g(I1)
and q(2) = g(I2). We thus ask the prover to compute q(1), q(2) and q(3) to hold enough points on q
(note that to compute q(3), the prover first compute fe(3) for each e using Lagrange interpolation).

In round 1 of the protocol, the proof π1 will simply be q(1)||q(2)||q(3). Given a random challenge
r ∈ R, the verifier V can now make linear queries to the input and the proof. Specifically, V will
want to test that q is defined correctly by the prover, by checking that q(r) = g(f1(r), . . . , fm/2(r)).
Hence, the linear queries are the Lagrange coefficients that correspond to this check. In addition, V
will want to check that b−(q(1)+q(2)) = 0 (which is equivalent to checking that b−(g(I1)+g(I2)) =
0). This check defines another linear query to the input and proof. Note that if we reveal the queries’
answers of the first test to V at this point, then this will result with linear amount of communication
in the protocol below (since the verifier is emulated by multiple parties which need to communicate
to reveal the answers). To solve this problem, the observation is that we can ask the prover P to
prove that q(r)− g(f1(r), . . . , fm/2(r)) = 0! This statement has exactly the same structure as the
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initial statement and the size of the input is reduced by half. We can thus continue recursively with
the above process, until the prover is left with small constant amount of inputs, where the check
can be done with constant cost. We remark that in the final step, there is an additional subtle
issue to handle: since the verifier sees in the clear q(r) and f1(r), f2(r) (at the final step we have
m = 4), we need to make sure that nothing is leaked. To prevent this, we add another random
point to each f polynomial, which makes f1(r), f2(r) be distributed uniformly over R. This means
that the degree of each f is 2, and so the degree of q is now 4, implying that the proof in the last
step consists of masked version of f1(0), f2(0) and masked version of 6 points on q: q(0), . . . , q(5).
Another optimization that we use is to perform a batch check for the second test. This is done by
taking a random linear combination of all checks from all rounds and check that the result equals
to 0.

Soundness error. If the prover P cheats and sends an invalid proof, then the polynomial p(x) =
q(x) − g(f1(x), . . . , fm/2) is not the zero-polynomial, and so the probability that q(r) = 0 for a

random point r is 2
|F| when R = F. This follows since the degree of p is at most 2, and so by the

Schwartz-Zippel Lemma, it has 2 roots when defined over a finite field. Given that there are logm
rounds and that in the last round p is of degree-4, it follows that the success cheating probability is
at most 4 logm

|F| . Observe that even if a cheating prover produces a valid proof to a false statement,
the verifier might still output accept in case the random linear combination of the second test
yield 0. This event happens with probability 1

|F| . Overall, the soundness error is therefore bounded

by 4 logm+1
|F| .

When the working over the ring Z2k , the verification protocol is carried-out over the extension
ring Z2k/f(x), where f is irreducible modulo 2. As shown in [BBC+19, BGIN19], if f is of degree d,
then the number of roots of a polynomial of degree δ over the extension ring is 2(k−1)·dδ+ 1. Thus,
the soundness error is bounded by 4 logm+1

2d
.

B.2 Proving Correctness via zk-FLIOP in Πvrfy

The above construction can be plugged as is in our verification protocol Πvrfy. For completeness,
we now present an explicit description of how it is used by each party to prove correctness in Step 4
of Πvrfy, where the role of the verifier is jointly emulated by the parties and the dealer. Recall that
in our protocol, a party Pi who holds a vector ~y of size 4|mult| + 2 wishes to prove that c(~y) = 0,
where

c(~y) = y1 + y2 −
2|mult|∑
k=1

(
y[2(k−1)+|W |+3] · y[2(k−1)+|W |+4]

)
.

The elements y1, {y[2(k−1)+|W |+3]}
2|mult|
k=1 are known to all parties, whereas the elements

y2, {y[2(k−1)+|W |+4]}
2|mult|
k=1 are known to the dealer D.

To emulate the verifier in the zk-FLIOP, we ask the prover to secret share the proof between
the other parties and the dealer. This is done by having the dealer hand the prover a mask for
each element in the proof, and then the prover sends the masked proof to the other parties. This
is indeed a star-sharing of the proof. As star-sharing is linear, it allows both the dealer and each
of the parties to query their own share of the proof, and then reconstruct the proof. The fact that
each piece of information is known by all parties or by the dealer, is what guarantees that the
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parties will obtain the correct answers and will be able to carry-out the tests, thereby detecting
any cheating (except for the soundness error computed above).

Formally, the protocol works as follows:

Initialization. The parties define:

M = |mult| and ρ = log(2|mult|)− 1.

The prover initializes a vector ~z0 ∈ F4|mult|+1 such that: z0[1] = y1 + y2 and ∀k ∈ [4|mult]| : z0[k] =
yk+2.
The parties initialize a vector ~̂z0 ∈ F4|mult|+1 such that: ẑ0[1] = y1 and ∀k ∈ [4|mult|] : ẑ0[k] = yk+2

if yk+2 is known to the parties and 0 otherwise.

The dealer initializes a vector ~̃z0 ∈ F4|mult|+1 such that: z̃0[1] = y2 and ∀k ∈ [4|mult|] : z̃0[k] = yk+2

if yk+2 is known to the dealer and 0 otherwise.

Note that for each k it holds that ~z0[k] = ~̂z0[k] + ~̃z0[k]
Finally, the dealer D chooses random π̃j ∈ F3 for each j ∈ [ρ− 1], π̃ρ ∈ F5 and s̃1, s̃2 ∈ F, and

hands it to the prover Pi.

For each round j = 1, . . . , ρ− 1:

• Local Computation:

1. The prover Pi:
(1) splits the input into two symmetric vectors:

I1 =
(
{zj−1[2(k − 1) + 1], zj−1[2(k − 1) + 2]}Mk=1

)
and

I2 =
(
{zj−1[M + 2(k − 1) + 1], zj−1[M + 2(k − 1) + 2]}Mk=1

)
.

(2) defines 2M degree-1 polynomials f1, . . . , f2M such that fe(1) is the eth input in I1 and
fe(2) is the eth input in I2.
(3) defines the polynomial q defined as q(x) = g(f1(x), . . . , f2M (x)). Note that q is a degree-2
polynomial.

2. The prover Pi locally computes fe(3) for each e ∈ [2M ], and then computes q(1), q(2), q(3).
Note that by definition q(1) = g(I1) and q(2) = g(I2)

3. Then, the prover sets πj = (q(1), q(2), q(3)).

4. The other parties define Î1, Î2 and f̂1, . . . , f̂2M analogously to the above (i.e., using ẑj−1

instead of zj−1).

The dealer defines Ĩ1, Ĩ2 and f̃1, . . . , f̃2M analogously to the above (i.e., using z̃j−1 instead of
zj−1).

• Communication:

1. The prover Pi broadcasts π̂j = πj − π̃j to the other parties

2. The Dealer D chooses a random challenge rj ∈ F and hands it the parties.
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• Query:

1. For each e ∈ [2M ], the prover computes fe(rj) via Lagrange interpolation.

2. The parties:
(1) compute f̂e(rj) for each e ∈ [2M ] via Lagrange interpolation.
(2) parse π̂j as q̂(1), . . . , q̂(3). Then, they locally compute q̂(rj) via Lagrange interpolation.

(3) set b̂j = ẑj−1[1]− (q̂(1) + q̂(2)).

3. The Dealer D:
(1) computes f̃e(rj) for each e ∈ [2M ] via Lagrange interpolation.
(2) sets q̃(1) = π̃j [1], . . . , q̃(3) = π̃j [3] and then computes q̃(rj) via Lagrange interpolation.

(3) sets b̃j = z̃j−1[1]− (q̃(1) + q̃(2)).

The prover defines ~zj ∈ F2M+1 such that zj [k] = fk(rj) for each k ∈ [2M ] and zj [0] = q(rj).

The parties define ~̂zj ∈ F2M+1 such that ẑj [k] = f̂k(rj) for each k ∈ [2M ] and ẑj [0] = q̂(rj).

The dealer defines ~̃zj ∈ F2M+1 such that z̃j [k] = f̃k(rj) for each k ∈ [2M ] and z̃j [0] = q̃(rj).
Finally, the parties and dealer set: L← L/2 and M ←M/2.

The last round (j = ρ). At the beginning of this step, M = 2.

The prover Pi holds ~zρ−1 ∈ F5, the parties hold ~̂zρ−1 ∈ F5 and the dealer D holds ~̃zρ−1 ∈ F5.
Then:

• Local computation:

1. The prover Pi:
(1) chooses random s1, s2 ∈ F. Then, it defines two degree-2 polynomials f1, f2 as: f1(0) =
s1, f2(0) = s2, f1(1) = zρ−1[1], f2(1) = zρ−1[2] and f1(2) = zρ−1[3], f2(2) = zρ−1[4].
(2) locally computes f1(3), f2(3) and f1(4), f2(4) via Lagrange interpolation.
(3) Let q be a 4-degree polynomial defined as q(x) = g(f1(x), f2(x)).
Then, it locally computes q(0), . . . , q(4) and sets πρ = (f1(0), f2(0), q(0), . . . , q(4))

• Communication:

1. The prover Pi broadcasts

π̂ρ = (f1(0)− s̃1, f2(0)− s̃2, q(0)− tiρ[1], . . . , q(4)− tiρ[4])

to the other parties.

2. The dealer D chooses random r ∈ F and hands it to the parties.

• Query:

1. The parties:

(a) parse π̂ρ as (f̂1(0), f̂2(0), q̂(0), . . . , q̂(4)). In addition, they define f̂1(1) = ẑρ−1[1], f̂2(1) =

ẑρ−1[2] and f̂1(2) = ẑρ−1[3], f̂2(2) = ẑρ−1[4].

(b) compute f̂1(r), f̂2(r) and q̂(r) via Lagrange interpolation.

(c) set b̂ρ = ẑρ−1[0]− (q̂(1) + q̂(2))
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2. The Dealer D:

(a) sets: for each k ∈ {0, . . . , 4}: q̃(k) = tiρ[k] and f̃0(1) = s̃1, f̃2(0) = s̃2, f̃1(1) =

z̃ρ−1[1], f̃2(1) = z̃ρ−1[2] and f̃1(2) = z̃ρ−1[3], f̃2(2) = z̃ρ−1[4].

(b) computes f̃1(r), f̃2(r) and q̃(r) via Lagrange interpolation.

(c) sets b̃ρ = z̃ρ−1[0]− (q̃(1) + q̃(2))

• Decision:

1. The dealer D:

(a) chooses random β1, . . . , βρ ∈ F and hands it to the parties.

(b) hands the parties B̃ =
∑ρ

j=1 βj · b̃j , f̃1(r), f̃2(r) and q̃(r).

2. The parties:

(a) compute B̂ =
∑ρ

j=1 βj · b̂j and then B = B̂ + B̃.

(b) compute ∀e ∈ [1]: fe(r) = f̂e(r) + f̃e(r) and q(r) = q̂(r) + q̃(r).

(c) Check that:
(1) B=0
(2) q(r) = f1(r) · f2(r).
If both equations hold, they output accept and otherwise, they output reject.

Communication cost. The prover broadcasts to the parties 3 elements in the first ρ− 1 rounds
and 8 elements in the last round. Overall, the communication is 3(log(2|mult|) − 1) + 8 elements
broadcast by the prover.

Prover’s optimized computational cost. We describe two optimizations of the prover’s work
and assuming that the circuit is defined over a field, we provide a bound on the number of field
multiplications that the prover performs. Since the prover’s computational work is dominated by
field multiplications, a bound on their number is a good estimate of the total computational cost
of the prover.

For the first optimization, note that every fe polynomial in the first ρ − 1 rounds is defined
by circuit values on two fixed points. These points can be chosen arbitrarily, and by choosing
them to be 0 and 1, the computational cost is minimized. A second optimization is to compute the
coefficient representation of each f polynomial and then evaluate it on additional points rather than
working directly with Lagrange interpolation. If a polynomial fe(x) = ax + b then b = f(0) and
a = f(1)−f(0) implying that the coefficients a, b can be computed without any field multiplication.

The field multiplications that the prover’s performs in each round are part of computing the
following: evaluating each fe polynomial on one additional fixed point in step 2 of the prover’s local
computation, evaluating each fe on one random point rj in step 1 of the query, and evaluating q
on three fixed points in step 2 of the prover’s local computation. We estimate the number of multi-
plications separately for the first round and for rounds 2, . . . , ρ− 1. The number of multiplications
in the last round is a small constant and is not taken into account here.

If the proof is over a large prime field Fp then the additional fixed point is 2 and if it is an
extension field F2k regarded as all polynomials of a variable z with binary coefficients, degree less
than k and operations modulo an irreducible polynomial h(z) then the additional point is z. In both
cases, evaluating f on the extra point requires shifting a by a single bit, adding b and subtracting
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the modulus conditioned on the most significant bit being 1. This computation is very fast and
does not require field multiplications.

Evaluating fe on a random field element rj requires computing arj + b with one multiplication
per polynomial. Since there are 2|mult| polynomials fe in the first round and their number is
halved in each round, the total number of multiplications for evaluating all polynomials on random
elements is 4|mult|. If both the circuit and the proof are defined over a large prime field then
each multiplication arj is a field multiplication. If the circuit is Boolean and the proof is over an
extension field F2k then there are only 3|mult| field multiplications. The reason is that in the first
round the input values that define every fe are{

(γ` · x̂g`1 ), rg`2,i, (γ` · x̂
g`
2 ), rg`1,i

}
g`∈mult

.

Half of the polynomials fe are defined by the values rg`1,i, r
g`
2,i, which in the first round are given by

wire values of the Boolean circuit and are thus either 0 or 1. It follows that in these polynomials
a ∈ {0, 1}, and computing arj does not require a field multiplication.

Evaluating q on three fixed points requires computing the sub-circuit g on each of these points.
In the first round, the sub-circuit has half the multiplication gates of the original circuit, i.e.
|mult| gates. However, the value of the sub-circuit on the first two fixed points 0 and 1 is already
computed as part of the circuit evaluation prior to generating the proof. Therefore, the number
of field multiplications required to evaluate q in the first round is |mult|. The sub-circuit’s size is
halved in each following round thus requiring 3/2i|mult| field multiplications in the i-th round for
i = 2, . . . , ρ− 1 to evaluate three fixed points on q in each round, for a total of at most 4|mult| field
multiplications in all rounds.

The total number of field multiplications for the prover is therefore 8|mult| for prime fields Fp
and 7|mult| for extension fields F2k .

Verifier’s (=Dealer’s) computational cost. The verifier’s work in each of the first ρ−1 rounds
is exactly to evaluate the fe polynomials on a random field element rj . It follows from the previous
discussion on the prover’s work that the cost of the verifier’s work is dominated by 4|mult| field
multiplications for prime fields Fp and by 3|mult| field multiplications for extension fields F2k .
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