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Abstract

A t-private circuit for a function f is a randomized Boolean circuit C that maps a randomized
encoding of an input x to an encoding of the output f(x), such that probing t wires anywhere in C
reveals nothing about x. Private circuits can be used to protect embedded devices against side-channel
attacks. Motivated by the high cost of generating fresh randomness in such devices, several works have
studied the question of minimizing the randomness complexity of private circuits.

The best known upper bound, due to Coron et al. (Eurocrypt 2020), is O(t2 · log ts) random bits,
where s is the circuit size of f . We improve this to O(t · log ts), including the randomness used by the
input encoder, and extend this bound to the stateful variant of private circuits. Our constructions are
semi-explicit in the sense that there is an efficient randomized algorithm that generates the private circuit
C from a circuit for f with negligible failure probability.

1 Introduction

The notion of private circuits, due to Ishai, Sahai, and Wagner (ISW) [ISW03], is a simple abstraction of
leakage-resilience computation. It is simple both in terms of the underlying computational model, namely
Boolean circuits, and in terms of the class of leakage attacks it should protect against.

ISW defined two flavors of private circuits: stateless and stateful. The former captures a one-time
computation that maps an encoded (or “secret-shared”) input to an encoded output, whereas the latter
captures an evolving computation that may update a secret internal state. We will start by considering the
simpler stateless model and later discuss an extension to the stateful case.

A (stateless) t-private circuit for a function f is defined by a triple (I, C,O), where I is a trusted,
randomized input encoder, mapping an input x to an encoded input x̂, C is a randomized Boolean circuit
mapping x̂ to an encoded output ŷ, and O is a trusted, deterministic output decoder mapping the encoding
ŷ to an output y. The natural correctness requirement is that for every input x, we have O(C(I(x))) = f(x)
(with probability 1). The security requirement asserts that an adversary who can probe any set of t wires
of C learns nothing about x. Moreover, it is required that I and O be universal in the sense that they
are independent of (and are typically much smaller than) C and may depend only on the input length and
t. This rules out trivial solutions in which I or O compute f . The default encoder I, referred to as the
canonical encoder, independently splits each input bit xi into t+ 1 random bits whose parity is xi.

The simplicity of the private circuits model makes it attractive as an object of theoretical study, enabling
a clean and rigorous analysis of the achievable tradeoffs between security and efficiency. On the downside,
the same simplicity that makes the model theoretically appealing also makes it a very crude approximation
of reality. In particular, the bounded probing attacks that private circuits are designed to protect against
are much too restrictive to capture real-life side-channel attacks.

Somewhat unexpectedly, private circuits have gained popularity as a practical method for “higher-order
masking” countermeasures that protect embedded devices against realistic side-channel attacks. A partial
theoretical explanation was given by Duc et al. [DDF14], who showed that the security of private circuits
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against probing attacks is enough to also guarantee security against a certain level of noisy leakage, which
independently leaks a small amount information about each wire.

Minimizing randomness complexity. A natural complexity measure for private circuits is their random-
ness complexity, measured by default as the total number of random bits used by the randomized circuit C.
(We will later also address the goal of minimizing the randomness used by the input encoder.) The question
of minimizing the randomness complexity of private circuits is not only a natural theoretical question, but
is also motivated by the high costs of generating fresh randomness on embedded devices.1 This question has
also found unexpected applications to efficiently mitigating selective failure attacks in secure computation
protocols based on garbled circuits [IKL+13].

The original ISW construction [ISW03] used O(t2) fresh random bits to compute each AND gate in a
circuit computing f . This gives an upper bound of O(t2 ·s) where s is the circuit size of f . Several subsequent
works obtained improvements to this bound, with the canonical encoder described above.

Ishai et al. [IKL+13], in the broader context of studying robust pseudorandomness generators, show how
to reduce the randomness complexity to O(t3+ε · log ts), for any ε > 0, thus making it almost independent of
the circuit size s. Beläıd et al. [BBP+16] focus on the randomness complexity of implementing a single AND
gate, for which they present a probabilistic construction of a gadget that requires only O(t log t) random bits,
compared to O(t2) in ISW. However, their technique does not efficiently extend to multiple gates, and their
construction is not composable in the sense of [BBD+16, CS20] (see Section 2 for further discussion). Faust
et al. [FPS17] present a practically-oriented approach for reusing randomness across multiple AND gadgets,
reducing the total amount of randomness for small values of t (t ≤ 7) by a constant factor. The current
state of the art was obtained by the recent construction of Coron et al. [CGZ20], which uses O(t2 · log ts)
random bits. This construction not only improves the bound of [IKL+13] by more than a factor of t, but
also eliminates the use of low-degree expander graphs that hurts concrete efficiency.

1.1 Our Contribution

In this work, we improve the best previous asymptotic bound of Coron et al. [CGZ20] by an additional factor
of t. Concretely, we show that any function f computed by a Boolean circuit of size s admits a t-private
circuit which uses only O(t · log ts) random bits.

Our construction is only semi-explicit in the sense that there is an efficient randomized algorithm that
generates C from a Boolean circuit for f with negligible failure probability. However, similarly to the
construction from [CGZ20] (and unlike the earlier construction from [IKL+13]), our construction does not
require the circuit C to use a good low-degree expander, and we do not see inherent barriers to good concrete
efficiency (which we did not attempt to optimize).

We also present the following additional extensions of our main result:

• Randomness-efficient input encoder. By using a randomness-efficient encoder I instead of the
canonical one, we can obtain the same O(t · log ts) bound even when counting the internal randomness
of the input encoder. This is optimal up to the logarithmic factor.

• Leakage-tolerant circuits. We can get the same bound in the (stronger) model of leakage-tolerant
private circuits [IKL+13]. In this model there are no trusted input encoder or output decoder, and an
adversary probing t wires of C is allowed to learn a similar number of input and output bits.

• Stateful private circuits. Finally, our O(t · log ts) bound applies also to the standard stateful model
of private circuits from [ISW03] (see Definition 12), counting the number of fresh random bits in each
invocation.

1Even if one settles for computational security, alternative approaches based on cryptographic pseudorandom generators
(PRGs) are also quite expensive, especially since the PRG computation itself is subject to leakage [ISW03].
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Open questions. We conjecture that our O(t · log ts) upper bound is asymptotically optimal in all of the
above settings, and leave open the question of proving (or disproving) this conjecture. We also leave open
the existence of a fully explicit variant of our constructions.

2 Technical Overview

In this section, we give a detailed technical overview of our main results, starting with some necessary
background.

Background: Leakage-resilient and Leakage-tolerant Private Circuits. In [ISW03], Ishai et al.
introduced the fundamental notion of private circuits. This notion comes in two flavors, a stateful variant
and a simpler stateless variant. Here we will start by focusing on the latter for simplicity, but will later show
how to extend our results to the stateful model.

Informally, for a function f , a private (stateless) circuit consists of an input encoder I, a compiled circuit
C, and an output decoder O. The compiled circuit C takes an encoded input x̂ generated by I(x) and
computes an encoded output ŷ such that O(y) = f(x). The security requires that any t wires in C should
be independent of the function input. This notion is also referred to as leakage-resilient private circuits. We
focus by default on the canonical encoder: I encodes each input bit xi by a vector of t + 1 random bits
with parity xi. (Later we will consider a different encoder, in the context of minimizing the randomness
complexity of the encoder.) As to the decoder, we consider by default a relaxation of the canonical decoder:
To decode each output bit, O takes the parity of a block of bits (which are not restricted to be t+ 1 bits).

• As noted in [IKL+13], without any requirement on I and O, a trivial solution is having I compute a
secret sharing of f(x) which is passed by C to the decoder.

• In this work, we focus on the additional randomness used in the compiled circuit C. We want to avoid
encoders which output a large amount of randomness.

We may also define the notion of leakage-tolerant private circuits. In this setting, the input and output
are not encoded. I.e., the encoder and the decoder are the identity function. The security requires that any
set of at most t wires in C can be simulated by the same number of input and output wires.

In this work, we show that for any function f with circuit size s, there is a (leakage-resilient) private
circuit which uses O(t · log ts) random bits.

Background: (Strong) t-wise Independent Pseudo-random Generator. Our construction makes
use of the notion of (strong) t-wise independent pseudo-random generators (PRG). Informally, a function
G : {0, 1}n → {0, 1}m is a t-wise independent PRG if any t bits in G(x) are independent and uniformly
random when the input x is uniformly distributed in {0, 1}n. Moreover, if any t bits in (x,G(x)) are
independent and uniformly random, then we say G is a strong t-wise independent PRG.

We say that G is linear if any output bit of G is equal to the XOR of a subset of its input bits. See
Section 3.2 for an explicit construction of a linear and strong t-wise independent PRG with input size
n = O(t · logm).

Limitations of Previous Approaches. We first recall the definition of robust t-wise independent PRGs
introduced in [IKL+13]. Intuitively, any probing attack towards a robust t-wise independent PRG is equiv-
alent to a probing attack towards the output bits. The following definition corresponds to the strong robust
t-wise independent PRGs in [IKL+13].

Definition 1 (Robust t-wise Independent PRGs [IKL+13]). A circuit implementation C of a function
G : {0, 1}m → {0, 1}n is a (t, k, q)-robust pseudo-random generator if the following holds. Let u be a vector
of m uniformly random bits, and r = G(u). For any set S of at most k wires in C, there is a set T of at
most q|S| output bits such that conditioned on any fixing of the values CS of the wires in S and rI , where
I = {i : ri ∈ T}, the values rĪ of the output bits not in T are t-wise independent.
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A generic approach of derandomizing a private circuit introduced in [IKL+13] works as follows:

1. First, derandomize a private circuit by assuming an access to t-wise independent random source. This
is achieved by considering the notion of randomness locality of a private circuit. The randomness
locality of a private circuit is the number of random bits that are used to compute each wire. If each
wire uses at most ` random bits (i.e., the randomness locality is `), then we may replace the uniform
random source by a (` · t)-wise independent random source to protect against t-probing attacks. It is
because any t wires depend on at most ` · t random bits, and therefore, the distribution of these t wires
when using uniform random source is identical to that when using (` · t)-wise independent random
source.

2. Then, replace the (` · t)-wise independent random source by a robust (` · t)-wise independent PRG.

In [IKL+13], Ishai et al. constructed a private circuit with randomness locality O(t2) based on the private
circuit constructed in [ISW03]. The recent work of Coron et al. [CGZ20] further improves the randomness
locality to O(t). Combined with a robust O(t2)-wise independent PRG from [IKL+13], this gives a private
circuit which uses only Õ(t2+ε)2 random bits, for any constant ε > 0. Moreover, they also show that
in their construction the robust O(t2)-wise independent PRG can be replaced by O(t) independent O(t)-
wise independent PRGs. This reduces the randomness complexity to Õ(t2) and results in better concrete
efficiency.

However, the approach of using randomness locality inherently requires Ω(t2) random bits. Intuitively,
the randomness locality of a private circuit cannot be smaller than t, or otherwise, an adversary may learn
extra information about the input by probing a wire and all random bits that are used to compute this wire.
It means that the random source should be at least t2-wise independent, which requires Ω(t2) random bits.

To overcome this bottleneck:

1. We first switch the view from computing secret shared wire values, the mainstream method in the
literature of private circuits [ISW03, IKL+13, CGZ20], to computing masked wire values. We note that
computing masked wire values is commonly used in the literature on secure multi-party computation.
However, to the best of our knowledge, this method was not used in the literature on private circuits.
We use this to bypass the limitation of using randomness locality and reduce the problem of constructing
a private circuit to that of constructing a leakage-tolerant private circuit for the XOR function, which
we refer to as a leakage-tolerant XOR gadget. Specifically, assuming the existence of a leakage-tolerant
XOR gadget, we construct a private circuit which uses Õ(t) random bits (excluding the randomness
used in the leakage-tolerant XOR gadgets).

2. Then, we focus on the leakage-tolerant XOR gadget. We start with a straightforward construction of a
leakage-tolerant XOR gadget assuming the access to correlated random bits. Then we use a special kind
of robust PRG, which we refer to as a robust parity sharing generator, to generate the correlated random
bits. Compared with [IKL+13], we extend the notion of robust PRGs in the following two directions:
(1) the output bits of the robust PRG should be correlated as required by the basic construction of
the XOR gadget, and (2) unlike the robust t-wise independent PRG [IKL+13], which only focuses on
the number of random bits on which the probed wires depend, we also take into account the concrete
dependence on the random bits induced by the construction of the XOR gadget. This more fine-grained
approach allows us to bypass the limitation of using randomness locality when constructing leakage-
tolerant XOR gadgets. By using probabilistic arguments, we obtain a semi-explicit construction of
a robust parity sharing generator which uses Õ(t) random bits. This yields a leakage-tolerant XOR
gadget with randomness complexity Õ(t).

Combining the above two steps, we obtain a private circuit in the plain model which uses Õ(t) random
bits. We note that a similar approach is used in [BBP+16] to reduce the randomness complexity of a single
multiplication gate. Concretely, Beläıd et al. [BBP+16] use probabilistic arguments and show the existence

2In this paper, we use Õ notation to hide logarithmic factors in either a PRG output size or a circuit size.
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of a t-private multiplication circuit, which takes shared inputs and produces shared output, with randomness
complexity O(t log t). However there are three key differences which make their technique difficult to work
for a general circuit (i.e., not restricting to a single multiplication gate):

• The solution in [BBP+16] only reduces the randomness complexity for a single multiplication gate.
However, to obtain our result, we have to reuse the randomness across all gadgets or otherwise the
randomness complexity will be proportional to the circuit size. It is unclear how their result can be
extended to reducing the randomness complexity for multiple multiplication gates. Our solution, on
the other hand, reuses the randomness across all leakage-tolerant XOR gadgets. See more discussion
in Remark 2.

• As discussed in Section 7.2 in [BBP+16], their private multiplication circuit is not composable. As a
result, Beläıd et al. [BBP+16] cannot obtain a private circuit for a general function from their private
multiplication circuit without affecting the achieved randomness complexity per gate.

• The construction in [BBP+16] takes shared inputs and computes shared output. As discussed above,
derandomizing shared wire values may require at least Ω(t2) random bits.

Extensions. Beyond the basic construction, we consider the following two extensions:

1. The first extension is replacing the canonical encoder by a randomness-efficient encoder. Note that the
canonical encoder requires t·ni random bits to encode ni input bits. We construct a randomness-efficient
encoder which reduces the randomness complexity to O(t · log ni). As a result, for any function with
circuit size s, we obtain a private circuit which uses O(t · log ts) random bits including the randomness
used in the encoder.

2. The second extension is to construct a private stateful circuit. A stateful circuit models the scenario
where the circuit has an internal state. In each invocation, the circuit computes the function which
takes as input its internal state and the external input, outputs the result of the function, and stores
its new internal state. The security of a private stateful circuit requires that an adversary, which has
control over the external input, cannot learn any information about the internal state of the circuit over
multiple executions of the circuit with the power of adaptively choosing a set of t internal wires before
each execution depending on the output values and the wire values observed in previous executions.
We show how to extend our basic construction to a private stateful circuit which uses O(t · log t|C|)
random bits for any stateful circuit C in each invocation.

More details can be found in Section 2.3.

2.1 Outer Construction: Private Circuits via Leakage-tolerant XOR Gadgets

For a boolean function f : {0, 1}ni → {0, 1}no , let C̃ denote a circuit that computes the function f . To
protect the wire values in C̃, our idea is to mask each wire value in C̃ by an output bit of a t-wise independent
PRG. Since any t output bits of a t-wise independent PRG are independent and uniformly distributed, any
t masked wire values in C̃ leak no information about the input.

In our construction, we choose to use a linear and strong 2t-wise independent PRG G : {0, 1}m →
{0, 1}|C̃|. Informally, this is because

• A probing attack can not only probe the masked wire values in C̃, but also the input random bits of
G. We need to protect the input random bits of G by using a strong 2t-wise independent PRG.

• A linear PRG allows us to compute each output bit of G by simply computing the XOR of a subset of
its input bits. As we will show later, our construction directly uses a leakage-tolerant XOR gadget to
compute each masked wire value. In this way, the implementation of G is hidden in the leakage-tolerant
XOR gadgets and we do not need to worry about the intermediate wires in the implementation of G.
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• As we will see later, our construction may leak at most 2t masked wire values within t probes. It
requires us to use a 2t-wise independent PRG.

We use u = (u1, u2, . . . , um) to denote the input of G and r = (r1, r2, . . . , r|C̃|) to denote the output of

G. Since G is linear, each output bit ri is the XOR of a subset of {u1, u2, . . . , um}. We refer to this set as
the support of ri, denoted by supp(ri). For the circuit C̃, all wires are denoted by g1, g2, . . . , g|C̃| (including

input wires and output wires). The goal is to compute gi ⊕ ri for all i ∈ {1, 2, . . . , |C̃|}. Note that we can
view {gi ⊕ ri}

⋃
supp(ri) as an additive sharing of gi since the XOR of the bits in supp(ri) is equal to ri.

We use [gi] to represent the set {gi ⊕ ri}
⋃
supp(ri). At first glance, one may think that our approach is

very similar to the generic approach of constructing private circuits in [ISW03, IKL+13, CGZ20] since the
latter also computes an additive sharing for each wire value. However, we would like to point out that there
are two key differences between our approach and the generic approach:

• First, for each additive sharing [gi] in our approach, the number of shares depends on the size of
supp(ri), which may vary for different i. On the other hand, the additive sharings in the generic
approach all have the same number of shares.

• Second, in our approach, the shares are reused among different additive sharings, which is not the case
in the generic approach.

As a result, our approach does not need to derandomize the shares of additive sharings since they reuse the
input random bits of the PRG G, which is of size O(t log |C̃|). It allows us to bypass the limitation of using
randomness locality.

In the outer construction, we assume the existence of a leakage-tolerant XOR gadget (or equivalently,
a leakage-tolerant private circuit for the XOR function). Recall that the input encoder is the canonical
encoder, which encodes each input bit xi by a vector of t+ 1 random bits with parity xi. We may view the
encoding of xi as an additive sharing of xi, denoted by [xi]. The outer construction works as follows:

1. We first transform the input encoding [xi] to the masked input bit. Let gi be the input wire of C̃ which
is initialized to xi. Then we want to compute gi⊕ri = xi⊕ri. This is done by using a leakage-tolerant
XOR gadget to XOR the bits in [xi]

⋃
supp(ri).

2. For each addition gate with input wires ga, gb and output wire gc in C̃, the masked output wire gc⊕ rc
is computed by using a leakage-tolerant XOR gadget to XOR the bits in [ga]

⋃
[gb]

⋃
supp(rc).

3. For each multiplication gate with input wires ga, gb and output wire gc in C̃, we first define [ga]⊗ [gb] =
{u · v : u ∈ [ga], v ∈ [gb]}. Note that ga = ⊕u∈[ga]u and gb = ⊕v∈[gb]v. Therefore

gc = ga · gb = (⊕u∈[ga]u) · (⊕v∈[gb]v) = ⊕u∈[ga],v∈[gb]u · v,

which means that gc is equal to the XOR of the bits in [ga]⊗ [gb]. The circuit first computes u · v for
all u ∈ [ga] and v ∈ [gb]. The masked output wire gc⊕ rc is then computed by using a leakage-tolerant
XOR gadget to XOR the bits in ([ga]⊗ [gb])

⋃
supp(rc).

4. For each output gate with input wire ga in C̃, we have computed ga ⊕ ra. Recall that [ga] = {ga ⊕
ra}

⋃
supp(ra) and the XOR of bits in [ga] is equal to ga. The circuit simply outputs bits in [ga].

Let C denote the circuit constructed above. The correctness of C is straightforward from the description.
The security follows from the following three facts:

• By the definition of leakage-tolerant private circuits, any probing attack towards a leakage-tolerant
XOR gadget is equivalent to a probing attack (that probes the same number of wires) towards the
input wires and the output wire of this gadget. Therefore, we only need to focus on two kinds of wires:
(1) the input wires of C, and (2) the rest of wires which excludes the internal wires of leakage-tolerant
XOR gadgets. The second kind contains the input bits of the PRG G and the masked wire values, i.e.,

{ui}mi=1

⋃
{gi ⊕ ri}|C̃|i=1, and the values in [ga]⊗ [gb] for all multiplication gate with input wires ga and

gb in C̃.
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• For input wires of C, since each input bit x is encoded by t+ 1 random bits with parity x, any t bits
are uniformly random. Therefore, the input wires are leakage resilient.

• For the second kind of wires, note that each value u · v ∈ [ga]⊗ [gb] can be computed by u ∈ [ga] and

v ∈ [gb]. Thus, any t wires can be determined by at most 2t values in {ui}mi=1

⋃
{gi ⊕ ri}|C̃|i=1. The

security follows from that G is a strong 2t-wise independent PRG.

We refer the readers to Section 4 for more details.

2.2 Inner Construction and Robust Parity Sharing Generator

Given the outer construction in Section 2.1, it is sufficient to move our focus to the construction of a leakage-
tolerant XOR gadget. Our main technical contribution is a new notion of robust PRGs which we refer to as
robust parity sharing generators.

Basic Construction of Leakage-Tolerant XOR Gadgets. We first introduce a straightforward con-
struction of leakage-tolerant XOR gadgets assuming access to ideal correlated random bits, which is adapted
from the basic MPC protocol for XOR of Kushilevitz and Mansour [KM97]. Let x1, x2, . . . , xn denote the
input bits of the gadget G. The goal is to compute the output ⊕ni=1xi. The circuit is given access to n
random bits r1, r2, . . . , rn with parity 0. (Note that here xi’s and ri’s are different variables from those in
Section 2.1.)

The basic construction works as follows:

1. For all i ∈ {1, 2, . . . , n}, the circuit computes gi := xi ⊕ ri in parallel. (Here too, gi is a different
variable from that in Section 2.1.)

2. Then the circuit computes the XOR of g1, g2, . . . , gn by using a dlog ne-depth addition circuit: In each
round, the addition circuit partitions the input bits into groups of size 2. For each group, the addition
circuit computes the XOR of the bits in this group. The output bits are provided as input bits to the
next round.

In fact, our construction works for any addition circuit with the same randomness complexity. Here we
choose to use the addition circuit with the smallest depth so as to minimize the depth of the private circuit.
In [KM97], the basic protocol computes ⊕ni=1gi by adding up {gi}ni=1 from g1 to gn.

We show that this simple construction is leakage-tolerant. First note that the input wires and output
wires of the gadget can always be simulated by having access to the corresponding wires. In the following,
we only focus on the intermediate wires in G.

We may divide the intermediate wires in G into two sets: (1) the first set contains the correlated random
bits r1, r2, . . . , rn, and (2) the second set contains all wires in the addition circuit, which is either gi for
some i ∈ {1, 2, . . . , n} or a linear combination of {g1, g2, . . . , gn}. If all probed wires are in the first set,
the simulator can simply sample the random bits r1, r2 . . . , rn with parity 0 and output the probed wires.
This requires no information about the input and output bits. Suppose at least one wire in the second set
is probed. The main observation is that, after mask xi by ri, g1, g2, . . . , gn are uniformly random bits with
parity ⊕ni=1xi. Thus, the simulator works as follows:

1. The simulator first queries the output bit ⊕ni=1xi, and then randomly samples g1, g2, . . . , gn with parity
⊕ni=1xi. In this way, any probed wire in the second set can be simulated.

2. For each wire ri in the first set, the simulator queries xi and computes ri = gi ⊕ xi.
Note that the number of input and output wires queried by the simulator is bounded by the number of
probed wires. The main issue of the basic construction is that it uses too many random bits: it requires
n−1 uniformly random bits to compute the XOR of n input bits. To reduce the randomness complexity, we
first analyse what kind of random source is sufficient for the basic construction. We note that the analysis
in [KM97] is specific to their order of computing {gi}ni=1 and appears difficult to generalize to other orders.
Our analysis uses a different argument, described below.
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Sufficient Conditions for the Random Source in the Basic Construction. First of all, the cor-
rectness of our construction requires that the random variables (r1, r2, . . . , rn) have parity 0. Now we want
to relax the requirement that r1, r2, . . . , rn are uniformly random bits with parity 0. Going forward, let
r1, r2, . . . , rn be arbitrary possibly correlated bits with parity 0. Let r̃1, r̃2, . . . , r̃n be uniformly random bits
with parity 0.

We observe that a direct sufficient condition is that the distribution of the probed wires when using
r1, r2, . . . , rn is identical to the distribution of the probed wires when using r̃1, r̃2, . . . , r̃n. This is because we
have shown that the basic protocol is leakage-tolerant when using uniformly random bits r̃1, r̃2, . . . , r̃n with
parity 0. With the above sufficient condition, we can simulate the probed wires in the same way as that for
the basic construction when replacing r̃1, r̃2, . . . , r̃n with r1, r2, . . . , rn.

More concretely, let r = (r1, r2, . . . , rn), x = (x1, x2, . . . , xn), and r̃ = (r̃1, r̃2, . . . , r̃n). For a set W of at
most t intermediate wires in G, the above sufficient condition requires that

Dist((x, r),W ) = Dist((x, r̃),W ),

where Dist((x, r),W ) refers to the distribution of W when instantiated by (x, r). We will reduce this to a
requirement on the random source r.

Recall that there are two sets of intermediate variables in G: (1) the first set contains the correlated
random bits r1, r2, . . . , rn, and (2) the second set contains all wires in the addition circuit, which is either
gi for some i ∈ {1, 2, . . . , n} or a linear combination of {g1, g2, . . . , gn}. Note that each bit in the second set
can be written as ⊕i∈Lgi = (⊕i∈Lxi)⊕ (⊕i∈Lri) for some set L ⊂ {1, 2, . . . , n}. Since x are fixed input bits,
it is sufficient to only consider the distribution of ⊕i∈Lri. Therefore, consider the set A defined as:

A = {r1, r2, . . . , rn}
⋃
{⊕i∈Lri : ⊕i∈Lgi is an intermediate wire in G}.

Each variable in A is a linear combination of {r1, r2, . . . , rn}. The sufficient condition above can be trans-
formed to that, for any set W of at most t variables in A, Dist(r,W ) = Dist(r̃,W ) holds.

We refer to A as the access structure of the random variables {r1, r2, . . . , rn}. Formally, an access
structure A of a set of variables {r1, r2, . . . , rn} is a set which satisfies that (1) for all i ∈ {1, 2, . . . , n},
ri ∈ A, and (2) every variable in A is a linear combination of (r1, r2, . . . , rn). One may think that a probing
attack can only probe variables in A.

Therefore, we can summarize the sufficient conditions for the distribution of the random source r in the
basic construction as follows:

1. The parity of (r1, r2, . . . , rn) is 0.

2. Let A be the access structure of (r1, r2, . . . , rn) as defined above. Let r̃ = (r̃1, r̃2, . . . , r̃n) be uniformly
random bits with parity 0. For any set W of at most t variables in A, Dist(r,W ) = Dist(r̃,W ).

Robust Parity Sharing Generator. Now we consider to use a robust PRG to generate the above
correlated random bits. We follow the notion of robust t-wise independent PRGs in [IKL+13] and define
what we refer to as robust parity sharing generators as follows.

Definition 2 (Robust Parity Sharing Generators). Let G : {0, 1}m → {0, 1}n be a function and A be an
access structure of the output bits of G. Let u be a vector of m uniformly random bits, and r = G(u). A
circuit implementation C of the function G is a (t, k, q)-robust parity sharing generator with respect to A if
the following holds:

• The parity of the output bits r is 0.

• Let r̃ ∈ {0, 1}n be uniformly random bits with parity 0. For any set S of at most k wires in C, there
is a set T of at most q|S| output bits such that for any set W of t variables in A and for any fixing of
the values CS of the wires in S and rI , where I = {i : ri ∈ T},

Dist(r|CS ,rI
,W ) = Dist(r̃|r̃I=rI

,W ),
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where Dist(r,W ) is the distribution of the variables in W when they are instantiated by r, r|CS ,rI
is

the random variable r conditioned on CS and rI , and r̃|r̃I=rI
is the random variable r̃ conditioned on

r̃I = rI .

Informally, a robust parity sharing generator outputs n random bits with parity 0. The output of a robust
parity sharing generator satisfies that any t variables in the access structure A have the same distribution
when these t variables are instantiated by n uniformly random bits with parity 0. As a robust t-wise
independent PRG, any probing attack towards a robust parity sharing generator is equivalent to a probing
attack towards the output bits. In Lemma 1, we formally prove that by replacing the randomness source by
a robust parity sharing generator in the basic construction, we obtain a leakage-tolerant XOR gadget in the
plain model.

Remark 1. The notion of robust parity sharing generators extends the notion of robust t-wise independent
PRGs in the following two directions: (1) the parity of the output bits should be 0, and (2) an adversary may
access to the output bits by learning not only a single output bit, but also a linear combination specified in
the access structure A.

If A only contains all the output bits, we may obtain a robust t-wise independent PRG from a robust
parity sharing generator by removing the last output bit.

Remark 2. Recall that the outer construction uses the leakage-tolerant XOR gadget to compute each masked
wire value. We note that if we use fresh randomness for each leakage-tolerant XOR gadget, then the total
number of random bits will depend on the circuit size. To solve it, our construction uses a single leakage-
tolerant private circuit for all XOR functions, which we refer to as a multi-phase leakage-tolerant XOR gadget,
to replace the leakage-tolerant XOR gadgets invoked in the outer construction. Note that it is sufficient for
our purpose since the number of probed wires is bounded by t in the whole circuit. Correspondingly, we also
extend the notion of robust parity sharing generators to what we refer to as multi-phase robust parity sharing
generators. We refer the readers to Section 5.2 for more details.

In the following, however, we still focus on robust parity sharing generators for simplicity. The idea can
be easily extended to the multi-phase version.

Construction of a Robust Parity Sharing Generator. Let u = (u1, u2, . . . , um) denote the input
random bits of the generator G. Our idea is to use a matrix M of size n × m to compute the output
correlated random bits r = (r1, r2, . . . , rn) = M · u. To compute ri,

1. For all w ∈ {1, 2, . . . ,m}, G computes Mi,w · uw in parallel. Here Mi,w is the entry at i-th row and
w-th column in M .

2. G computes the ri = ⊕mw=1Mi,w · uw by using a dlogme-depth addition circuit (See Section 2.2 for
more details about the addition circuit).

Requiring that the parity of r1, r2, . . . , rn is 0 is equivalent to requiring that
∑n
i=1Mi = 0.

Our idea is to use a random matrix M and show that the construction of G is a robust parity sharing
generator with high probability when m = O(t · log tn). Note that the structure of G is independent of
the matrix M . Although a probing attack can depending on M , the set of all possible probing attacks is
independent of M . This allows us to first analyse the probability that G is secure against a fixed probing
attack and then apply the union bound on all possible probing attacks.

Therefore, the problem becomes that for a fixed set S of at most k wires in G and a fixed set W of at
most t variables in A, there is a set T of at most q|S| output bits (where T only depends on S) such that
for any fixing of the values GS of the wires in S and rI , where I = {i : ri ∈ T},

Dist(r|CS ,rI
,W ) = Dist(r̃|r̃I=rI

,W ).

At a high-level, the proof works as follows:
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1. We first determine the set T . For each wire in S, if it is ri or an intermediate wire when computing
ri, we insert ri in T . Then T contains at most |S| output bits. Intuitively, T corresponds to the set of
output bits whose distributions are affected by the wires in S.

2. We note that if a variable w in W is a linear combination of other variables in W
⋃
T , then we can

safely remove w and only consider W\{w}. Note that if the argument holds for W\{w}, then it also
holds for W since w is fully determined by the variables in W

⋃
T\{w}. Therefore, our second step is

to find W̃ ⊂W such that no variable in W̃ is a linear combination of other variables in W̃
⋃
T .

3. Recall that W̃ ⊂ W ⊂ A and T ⊂ A. Thus, all variables in W̃
⋃
T are linear combinations of

r1, r2, . . . , rn. We show that the distribution Dist(r̃|r̃I=rI
, W̃ ) is the same as the distribution of

|W̃ | uniform bits. Therefore, the problem is reduced to analyse the probability that the distribution
Dist(r|CS ,rI

, W̃ ) is the distribution of |W̃ | uniform bits.

4. In Lemma 6, we prove that this is equivalent to showing that the probability that for all non-empty
subset X ⊂ W̃ and for all subset Y ⊂ S

⋃
T , the XOR of all bits in X

⋃
Y is uniformly distributed.

To this end, we first analyse the probability for fixed sets X,Y and then apply the union bound on all
possible X,Y .

5. Finally, we note that all variables in S
⋃
T
⋃
W̃ are linear combinations of the input random bits

u1, u2, . . . , um. Therefore, there exists a vector v(w) for all w ∈ S
⋃
T
⋃
W̃ such that w = v(w) · u.

The XOR of all bits in X
⋃
Y is uniformly distributed if and only if the summation of the vectors v(w)

for all w ∈ X
⋃
Y is a non-zero vector. Since M is a uniformly random matrix, we show that this

holds with overwhelming probability.

We refer the readers to Section 6 for more details. Combining all the components we construct, we have the
following theorem.

Theorem 1. Any function f with circuit size s and output size no admits a t-private implementation
(I, C,O) with the canonical encoder I and the decoder O which, for each output bit, takes the parity of a
block of bits (which are not restricted to t+ 1 bits), where C uses O(t · log ts) random bits. Moreover, there
exists a PPT algorithm which takes (C̃f , 1

t, 1λ) as input, where C̃f is a circuit of size s that computes f , and
outputs, except with ≤ 2−λ probability, a t-private implementation (I, C,O) such that C uses O(t · log ts+λ)
random bits.

In Section 7.3, we show how to construct a t-leakate-resilient private circuit with the canonical decoder
at the cost of O(t · log λ) extra random bits.

Randomness Complexity of t-Leakage-Tolerant Private Circuits. In Remark 3, we show that a t-
leakage-tolerant private circuit can be obtained from our outer construction with small modifications. When
the leakage-tolerant XOR gadgets are instantiated by a multi-phase leakage-tolerant XOR gadget, we have
the following theorem.

Theorem 2. Any function f with circuit size s admits a t-leakage-tolerant private implementation C, where
C uses O(t · log ts) random bits. Moreover, there exists a PPT algorithm which takes (C̃f , 1

t, 1λ) as input,

where C̃f is a circuit of size s that computes f , and outputs, except with ≤ 2−λ probability, a t-leakage-tolerant
implementation C such that C uses O(t · log ts+ λ) random bits.

2.3 Extensions

Replacing the Canonical Encoder with a Randomness-Efficient Encoder. We note that the canon-
ical encoder has already required t·ni random bits for the input in I. When ni ≥ t, it means that the encoding
of the input has already contained O(t2) random bits. It may lead to the following objection: a potential
solution may reuse the randomness output by the encoder and may even be deterministic due to the large
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amount of randomness output by the encoder. We show that we can replace the canonical encoder by a
randomness-efficient encoder, and achieve randomness complexity of O(t · log ts) including the input encoder.

We first construct an encoder which only requires O(t · log ni) random bits to encode ni bits by using a
linear and strong t-wise independent PRG G : {0, 1}m → {0, 1}ni . The construction works as follows:

1. The encoder Enc takes x ∈ {0, 1}ni as input and ρ ∈ {0, 1}m as randomness.

2. The encoder Enc first computes r = G(ρ). Then it computes x⊕ r.

3. The output of Enc is (ρ,x⊕ r).

Note that it follows the same idea as the outer construction. We then show that we can directly replace
the canonical encoder with this construction. Informally, this is because each input bit xi is equal to the
XOR of a subset of output bits of the encoder. To see this, since G is linear, each output bit ri of G is
equal to the XOR of a subset supp(ri) of bits of the input ρ. Therefore, each output bit xi is equal to the
XOR of the bits in supp(ri)

⋃
{xi ⊕ ri} which are all in the output of the encoder. Thus, we may define

[xi] = supp(ri)
⋃
{xi ⊕ ri} and we can use the same outer construction to transform the input encoding to

the masked input bits.
As a result, we have the following theorem. We refer the readers to Section 7.1 for more details.

Theorem 3. Any function f with circuit size s and input size ni admits a t-private implementation (I, C,O),
where I uses O(t · log ni) random bits and C uses O(t · log ts) random bits. Moreover, there exists a PPT
algorithm which takes (C̃f , 1

t, 1λ) as input, where C̃f is a circuit of size s that computes f , and outputs,
except with ≤ 2−λ probability, a t-private implementation (I, C,O) such that C uses O(t · log ts+λ) random
bits.

Private Stateful Circuit. We follow the same argument as [ISW03] to transform our basic construction
to a private stateful circuit. Concretely, in the first step, we extend our construction to support unprotected
input bits and output bits. The unprotected input bits and output bits are not encoded and can be observed
by the public. Note that for an unprotected input xi, we may set [xi] = {xi} so that we can continue to use
our basic construction.

In the second step, we use the randomness-efficient encoder Enc constructed above to encode the initial
state. In each invocation, we use the private circuit which takes as input the encoded state and the unpro-
tected external input, and outputs the encoded updated state and the external output. Note that since Enc

follows from the same idea as the outer construction, the encoded updated state produced by our private
circuit has the same form as that computed by Enc. Therefore, the encoded updated state produced by
our private circuit is stored and will be used in the next invocation. The security directly follows from the
private circuit that supporting unprotected input bits and output bits.

As a result, we have the following theorem. We refer the readers to Section 7.2 for more details.

Theorem 4. Any stateful circuit C with initial state s0 admits a t-private implementation C ′[s′0] which uses
O(t · log t|C|) random bits. Moreover, there exists a PPT algorithm which takes (C, s0, 1

t, 1λ) as input and
outputs, except with ≤ 2−λ probability, a t-private implementation C ′[s′0] such that C ′ uses O(t · log t|C|+λ)
random bits.

3 Preliminaries

3.1 Private Circuits

We start by defining the simple “stateless” variant of private circuits.

Definition 3 (Private Circuit [ISW03]). A private (stateless) circuit for f : {0, 1}ni → {0, 1}no is a triple
(I, C,O) where I : {0, 1}ni → {0, 1}n̂i is a randomized input encoder, C is a randomized boolean circuit with
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input x̂ ∈ {0, 1}n̂i , output ŷ ∈ {0, 1}n̂o , and randomness ρ ∈ {0, 1}m, and O : {0, 1}n̂o → {0, 1}no is an
output decoder, such that for any input x ∈ {0, 1}ni , we have

Pr[O(C(I(x),ρ)) = f(x)] = 1,

where the probability is over the randomness of I and ρ.

In this work, the term “private circuit” will refer to the above stateless notion by default. In Section 7,
we discuss the stateful variant and show how to extend our main result to this stronger model.

We will be interested in two different notions of security for private circuits: the standard notion of
leakage-resilience (against probing attacks) and a more refined notion of leakage-tolerance. We define both
notions below.

Leakage-resilient Private Circuit. In the setting of leakage-resilient private circuits, we consider the
canonical encoder: I encodes each input bit xi by a vector of t+1 random bits with parity xi. This is mainly
to avoid encoders which are function-dependent or provide large amount of randomness. For each input bit
x, we use [xi] to denote the set of bits in the encoding of xi. As to the decoder, we consider a relaxation
of the canonical decoder: To decode each output bit, O takes the parity of a block of bits (which are not
restricted to be t+ 1 bits).

We note that the canonical encoder consumes O(t · ni) random bits to encode an input x ∈ {0, 1}ni .
Later on, we will also consider a randomness-efficient encoder which only uses O(t log ni) random bits.

Definition 4 (t-leakage-resilient Privacy [ISW03]). We say that C is a t-leakage-resilient private imple-
mentation of f with encoder I and decoder O if for any x,x′ ∈ {0, 1}ni and any set P of t wires in C, the
distributions CP (I(x),ρ) and CP (I(x′),ρ) are identical, where CP denotes the set of t bits on the wires from
P .

In the following, whenever we say t-private circuit, we refer to a t-leakage-resilient private circuit.

Leakage-tolerant Private Circuit. In the setting of leakage-tolerant private circuits, we restrict the
encoder and the decoder to be the identity function. The security requires that any set of at most t wires in
C should leak at most the same number of input and output bits. Formally,

Definition 5 (t-leakage-tolerant privacy). We say that C is a t-leakage-tolerant private implementation of
f if there exists a simulator S = (S1,S2) such that for all x and any set P of at most t wires in C, S1(C,P )
outputs a set P ′ of |P | input and output wires in C such that

CP (x,ρ) = S2(C,CP ′(x,ρ)),

where CP (w.r.t. CP ′) denotes the set of bits on the wires from P (w.r.t. P ′).

We note that the input wires and output wires can be naively simulated by having access to those wires.
Therefore, it is sufficient to only consider the intermediate wires in C. We have the following equivalent
definition.

Definition 6. We say that C is a t-leakage-tolerant private implementation of f if there exists a simulator
S = (S1,S2) such that for all x and any set P of at most t intermediate wires in C, S1(C,P ) outputs a set
P ′ of |P | input and output wires in C such that

CP (x,ρ) = S2(C,CP ′(x,ρ)),

where CP (w.r.t. CP ′) denotes the set of bits on the wires from P (w.r.t. P ′).
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3.2 Strong t-wise Independent Pseudo-random Generator

Our work will make use of the following notion of (strong) t-wise independent pseudo-random generator.

Definition 7 ((Strong) t-wise Independent PRG). A function G : {0, 1}n → {0, 1}m is a t-wise indepen-
dent pseudo-random generator (or PRG for short) if any subset of t bits of G(x) is uniformly random and
independently distributed when x is uniformly sampled from {0, 1}n.

If any subset of t bits of (x,G(x)) is uniformly random and independently distributed when x is uniformly
sampled from {0, 1}n, then we say G is a strong t-wise independent PRG.

We say a (strong) t-wise independent PRG G is linear if any output bit of G(x) is equal to the XOR of
a subset of bits in x.

Generic Construction of Linear and Strong t-wise Independent PRGs. In [CGH+85], Chor et al.
introduce the notion of t-resilient functions. A t-resilient function Ext : {0, 1}n → {0, 1}n′

satisfies that the
output of Ext is uniformly random given any t bits from the input.

A generic approach of constructing a linear and strong t-wise independent PRG is to combine a linear
t-resilient function Ext : {0, 1}n → {0, 1}n′

and a linear t-wise independent PRG G′ : {0, 1}n′ → {0, 1}m.
Consider the function G : {0, 1}n → {0, 1}m which is defined to be G(x) = G′(Ext(x)). Since Ext and G′

are linear, G is also linear. Note that after fixing at most t bits in x, the output of Ext(x) is uniformly
distributed, which means that the output of G(x) = G′(Ext(x)) is t-wise independent. Therefore, any subset
of t bits of (x,G(x)) is uniformly random and independently distributed, which means that G is a linear and
strong t-wise independent PRG.

A Concrete Instance. For our purposes, it will suffice to use the following simple construction using
polynomial evaluation over a finite field F2k . We use α0, α1, . . . , α2k−1 to represent field elements in F2k . Let
r = (r0, r1, . . . , rt−1) ∈ F t2k . Consider the degree-(t − 1) polynomial hr(·) which satisfies that hr(αi) = ri
for all i ∈ {0, 1, . . . , t− 1}. That is

r = (hr(α0), hr(α1), . . . , hr(αt−1)).

If r is a uniform vector in Ft2k , then hr(·) is a random degree-(t − 1) polynomial, which means that any
t distinct evaluation points of hr(·) are uniformly random and independently distributed. Thus, for all
` ≤ 2k − t we may define G : Ft2k → F`2k by:

G(r) = (hr(αt), hr(αt+1), . . . , hr(α`+t−1)).

To see why G is a strong t-wise independent PRG, note that (r, G(r)) = (hr(α0), hr(α1), . . . , hr(α`+t−1)),
and any t distinct evaluation points of hr(·) are uniformly random and independently distributed when r is
uniformly sampled from Ft2k .

Since every element in F2k can be represented by k bits, it gives us a strong t-wise independent PRG
which takes as input t · k bits and outputs ` · k bits. Note that ` can be as large as 2k − t+ 1. Therefore, to
construct a strong t-wise independent PRG which outputs m bits, we only need to use a field of size O(m),
which means that the input size can be as small as O(t · logm).

We note that in the above construction, each output element hr(αi) can be written as a linear combination
of r. Since we are in an extension field of the binary field where addition is equivalent to coordinate-wise
XOR, it implies that every output bit of G is the XOR of a subset of its input. Therefore, for all m, we
obtain a linear and strong t-wise independent PRG which takes as input O(t · logm) bits.

4 Outer Construction: t-private Circuit via Leakage-tolerant XOR
Gadgets

For a boolean function f : {0, 1}ni → {0, 1}no , let C̃ denote a circuit that computes the function f . Let G

be a linear and strong 2t-wise independent PRG G : {0, 1}m → {0, 1}|C̃|. We use u = (u1, u2, . . . , um) to
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denote the input of G and r = (r1, r2, . . . , r|C̃|) to denote the output of G. Since G is linear, each output
bit ri is the XOR of a subset of the input bits in u1, u2, . . . , um. We refer to this set as the support of ri,
denoted by supp(ri).

Our idea is to compute a masked bit for each wire value in C̃ using the output bit of G. Concretely,
suppose all the wire values in C̃ are denoted by g1, g2, . . . , g|C̃| (including input wires and output wires). For

all i ∈ 1, 2, . . . , |C̃|, we want to compute gi ⊕ ri, where ri is the i-th output bit of G. Intuitively, any set of t
bits in {u1, u2, . . . , um, g1 ⊕ r1, g2 ⊕ r2, . . . , g|C̃| ⊕ r|C̃|} are uniformly random and independently distributed
and therefore can be simulated by simply choosing t uniform bits. Note that for each wire value gi, we can
view {gi ⊕ ri}

⋃
supp(ri) as an additive sharing of gi since the XOR of the bits in supp(ri) is equal to ri.

We use [gi] to represent the set {gi ⊕ ri}
⋃
supp(ri).

We will first construct a t-private circuit by using a t-leakage-tolerant private circuit for the XOR function,
which we referred to as a t-leakage-tolerant XOR gadget.

Intuitively, a leakage-tolerant XOR gadget satisfies that any probing attack towards the gadget is equiv-
alent to a probing attack (that probes the same number of wires) towards the input wires and the output
wire of this gadget. The construction of the circuit C works as follows.

1. The circuit C takes as input the input encoding [x1], [x2], . . . , [xni
] and the randomness ρ ∈ {0, 1}m.

We use ρ as the input of the PRG G.

2. Transforming Input Encoding: We first transform the input encoding to the masked input bits using
the corresponding output bits from G. For each input xi, let gi denote the input wire in C̃ that takes
xi as input. Then we want to compute the bit gi ⊕ ri in the circuit C. This is done by using a
t-leakage-tolerant XOR gadget G with input bits in [xi] and supp(ri).

3. Evaluating Addition Gates in C̃: For each addition gate in C̃ with input wires ga, gb and output wire
gc. Suppose we have constructed the circuit to compute ga ⊕ ra and gb ⊕ rb in C. To compute gc ⊕ rc,
we insert a t-leakage-tolerant XOR gadget G with input bits in [ga], [gb] and supp(rc).

4. Evaluating Multiplication Gates in C̃: For each multiplication gate in C̃ with input wires ga, gb and
output wire gc. Suppose we have constructed the circuit to compute ga⊕ra and gb⊕rb in C. Recall that
[ga] = {ga⊕ ra}

⋃
supp(ra) and [gb] = {gb⊕ rb}

⋃
supp(rb). Let [ga]⊗ [gb] := {u · v : u ∈ [ga], v ∈ [gb]}.

Then the XOR of all bits in [ga] ⊗ [gb] is equal to ga · gb = gc. Thus, to compute gc ⊕ rc, we first
compute u · v for all u ∈ [ga], v ∈ [gb] and then insert a t-leakage-tolerant XOR gadget G with input
bits in [ga]⊗ [gb] and supp(rc).

5. Transforming to Output Encoding: The last step is to transform each masked output bit to the encoding
of this output bit. For each output wire ga in C̃, suppose we have constructed the circuit to compute
ga ⊕ ra in C. Recall that [ga] = {ga ⊕ ra}

⋃
supp(ra). Therefore, the XOR of the bits in [ga] is equal

to ga. The circuit simply outputs the wires in [ga] as the encoding of the output bit ga.

Theorem 5. Assume G is a t-leakage-tolerant XOR gadget. The circuit C constructed above is a t-private
implementation of the function f .

Proof. Following the definition of the t-privacy in Definition 4, it is sufficient to show that, for any x,x′ ∈
{0, 1}ni and any set P of t wires in C, the distributions CP (I(x),ρ) and CP (I(x′),ρ) are identical, where CP
denotes the set of t bits on the wires from P . Since G is t-leakage-tolerant, any set of at most t intermediate
variables within G can be perfectly simulated by probing the same number of the input wires and the output
wire of G. Therefore, it is sufficient to only focus on the set of t wires in C that does not include intermediate
wires in the gadgets.

We first divide the wires in C (excluding the intermediate wires in the gadgets) into two disjoint sets:

1. The set of input wires of C: {[x1], [x2], . . . , [xni
]}.

2. The set of the rest of wires in C. It is consist of the random bits ρ ∈ {0, 1}m, the masked bits of the
wire values g1⊕ r1, g2⊕ r2, . . . , g|C̃|⊕ r|C̃|, and the bits in the set [ga]⊗ [gb] for each multiplication gate

in C̃ with input wires ga and gb.
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Note that the output wires are included in the second set. We strengthen the argument by allowing to choose
t wires in each of these two sets and show that these 2t wires can be simulated without knowing the input
and the output of f .

For the first set, note that each sharing of x1, . . . , xni
is a random additive sharing with t + 1 shares.

Therefore, any t shares in the first set are uniformly random. We can simulate the bits on the t wires chosen
in the first set by uniform values.

For the second set, let ρ = (u1, u2, . . . , um) ∈ {0, 1}m. Note that any wire u ·v ∈ [ga]⊗ [gb], where u ∈ [ga]
and v ∈ [gb], is determined by u and v. Therefore, any t wires in the third set are determined by at most
2t wires in the set T = {u1, u2, . . . , um, g1 ⊕ r1, g2 ⊕ r2, . . . , g|C̃| ⊕ r|C̃|}. Recall that (r1, r2, . . . , r|C̃|) is the

output of G on input ρ = (u1, u2, . . . , um) ∈ {0, 1}m. Since G is a strong 2t-wise independent PRG, when
ρ = (u1, u2, . . . , um) ∈ {0, 1}m is chosen uniformly, (u1, u2, . . . , um, r1, r2, . . . , r|C̃|) are 2t-wise independent.
Thus, we can simulate the bits on the t wires chosen in the third set by first sampling 2t random bits for
the wires in T that determine these t wires and then compute the bits on these t wires.

Remark 3. Recall that in the setting of leakage-tolerant private circuits, function input and output are not
encoded. We note that the above construction with small modifications gives a t-leakage-tolerant private
implementation of f : (1) for each input bit xi, we use [xi] = {xi} in the above construction; and (2) for
each output bit yi, we use an additional leakage-tolerant XOR gadget with bits in [yi] to compute yi.

Recall that in the setting of leakage-tolerant private circuits, the security requires that any set of t wires
in C can be simulated by the same number of input and output bits. To show security, we divide the wires
in C (after the modifications) into two disjoint sets: (1) the set of all input wires and output wires, and (2)
the set of the rest of wires. Note that the second set is consist of the random bits ρ ∈ {0, 1}m, the masked
bits of the wire values g1⊕ r1, g2⊕ r2, . . . , g|C̃|⊕ r|C̃|, and the bits in the set [ga]⊗ [gb] for each multiplication

gate in C̃ with input wires ga and gb. The simulator works by querying the corresponding input and output
wires in the first set and simulating the wires in the second set in the same way as described in the proof of
Theorem 5.

5 Inner Construction: Leakage-tolerant XOR Gadget

Following from Theorem 5, it is sufficient to construct a leakage-tolerant XOR Gadget. We first start with
a basic construction which is given access to correlated randomness.

5.1 Basic Construction via Correlated Randomness

Let x1, x2, . . . , xn denote the input bits of the gadget G. The goal is to compute the output ⊕ni=1xi. The
construction of the circuit works as follows:

1. The circuit takes as input n bits x1, x2, . . . , xn. The circuit is given an access to n correlated random
variables r1, r2, . . . , rn which are uniformly random bits with parity 0.

2. The circuit first computes gi = xi ⊕ ri for all i ∈ {1, 2, . . . , n} in parallel.

3. The circuit computes ⊕ni=1gi using a dlog ne-depth addition circuit. Concretely, in each iteration, all
input bits are divided into groups of size 2 and then, for each group, we compute the XOR of the two
bits in this group. The results are provided as input bits for the next iteration. Note that in each
iteration, we reduce the number of input bits by a factor of 2. The whole process will end after dlog ne
iterations.

We show that this simple construction is t-leakage-tolerant given the correlated random variables r1, r2, . . . , rn.
First note that there are two different kinds of intermediate variables: (1) the first kind contains the

correlated random variables {r1, r2, . . . , rn}, (2) the second kind contains the variables {g1, g2, . . . , gn} com-
puted in Step 2, and all intermediate variables when computing the addition circuit. Note that they are all
in the form of ⊕i∈Lgi where L ⊂ {1, 2, . . . , n}.
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For any set W of t1(≤ t) intermediate variables, we first determine the set T ⊂ {x1, x2, . . . , xn,⊕ni=1xi}
of size at most t1 that will be used to simulate the intermediate variables in W . We first define I to be a
subset of the indices {1, 2, . . . , n} such that for all ri ∈W , i ∈ I; or equivalently I := {i : ri ∈W}. Initially,
we set T to be an empty set.

• For all i ∈ I, we insert the i-th input bit xi in T .

• If W contains any intermediate variable of the second kind (i.e., an intermediate bit in the form of
⊕i∈Lgi where L ⊂ {1, 2, . . . , n}), we insert the output bit ⊕ni=1xi in T .

Note that the size of T is at most t1.
Now we show how to simulate the intermediate variables in W using the input bits and the output bit in

T . For all ri ∈W , we sample a random bit as ri. Since xi ∈ T , we also compute gi = xi⊕ ri. If W does not
contain any intermediate variable of the second kind, then we are done. Otherwise, the rest of variables in
W are all in the form of ⊕i∈Lgi where L ⊂ {1, 2, . . . , n}. If we can generate gi for all i ∈ {1, 2, . . . , n}, then
we can simulate the rest of variables in W . Since we have computed gi for all i ∈ I, it is sufficient to focus
on gi where i 6∈ I.

Recall that for all i ∈ I, we have xi ∈ T . Also recall that if W contains any intermediate variable of
the second kind, then ⊕ni=1xi ∈ T . Therefore, we can compute the parity of {xi : i 6∈ I} by ⊕i6∈Ixi =
(⊕i∈Ixi)⊕ (⊕ni=1xi). Note that {ri : i 6∈ I} are random bits with parity ⊕i 6∈Iri = ⊕i∈Iri. For all i 6∈ I, since
we use ri to mask the bit xi, {gi : i 6∈ I} are random bits with parity ⊕i6∈Igi. Thus, we first compute

⊕i 6∈Igi = (⊕i 6∈Ixi)⊕ (⊕i6∈Iri) = (⊕i∈Ixi)⊕ (⊕ni=1xi)⊕ (⊕i∈Iri).

Then, we sample n−|I| random bits with parity ⊕i 6∈Igi as {gi : i 6∈ I}. Finally, we compute the intermediate
variables of the second kind in W using {g1, g2, . . . , gn}.

5.2 Robust Parity Sharing Generator

Now, we consider to use a generation circuit G for correlated random variables r1, r2, . . . , rn in the basic
construction. In this case, an adversary can also probe wires in G. We first review the definition of robust t-
wise independent PRGs introduced in [IKL+13]. Then we will extend the notion of robust t-wise independent
PRGs to what we refer to as robust parity sharing generators. The following definition corresponds to the
strong robust t-wise independent PRGs in [IKL+13].

Definition 1 (Robust t-wise Independent PRGs [IKL+13]). A circuit implementation C of a function
G : {0, 1}m → {0, 1}n is a (t, k, q)-robust pseudo-random generator if the following holds. Let u be a vector
of m uniformly random bits, and r = G(u). For any set S of at most k wires in C, there is a set T of at
most q|S| output bits such that conditioned on any fixing of the values CS of the wires in S and rI , where
I = {i : ri ∈ T}, the values rĪ of the output bits not in T are t-wise independent.

Intuitively, any probing attack towards a robust t-wise independent PRG is equivalent to a probing attack
towards the output bits. In [IKL+13], Ishai, et al. show that a private circuit can be derandomized by the
following two steps:

1. First, derandomzie a private circuit by assuming an access to t-wise independent random source. This
is achieved by considering the notion of randomness locality of a private circuit. The randomness
locality of a private circuit is the number of random bits that are used to compute each wire. If each
wire uses at most ` random bits (i.e., the randomness locality is `), then we may replace the uniform
random source by a (` · t)-wise independent random source to protect against t-probing attacks. It is
because any t wires depend on at most ` · t random bits, and therefore, the distribution of these t wires
when using uniform random source is identical to that when using (` · t)-wise independent random
source.

2. Then, replace the (` · t)-wise independent random source by a robust (` · t)-wise independent PRG.
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However, this approach may inherently requires Ω(t2) random bits. Intuitively, the randomness locality of a
private circuit cannot be smaller than t, or otherwise, an adversary may learn extra information about the
input by probing a wire and all random bits that are used to compute this wire. It means that the random
source should be at least t2-wise independent, which requires Ω(t2) uniform random bits.

To overcome this bottleneck, our idea is to use a different approach to derandomize our basic construction
of the leakage-tolerant XOR gadget. We first analyse what random source we need in our construction.

Sufficient Conditions of the Random Source in the Basic Construction. First of all, the correctness
of our construction requires that the random variables (r1, r2, . . . , rn) should have parity 0. Now we want to
relax the requirement that (r1, r2, . . . , rn) are uniformly random bits with parity 0.

We use r to denote the random variables (r1, r2, . . . , rn) and x to denote the input bits (x1, x2, . . . , xn).
For a set W of intermediate variables in G, we use Dist((x, r),W ) to denote the distribution of the variables
in W when they are instantiated by (x, r). Let r̃ = (r̃1, r̃2, . . . , r̃n) be uniformly random bits with parity 0.
Since we have shown that G is a leakage-tolerant XOR gadget when using r̃ as random source, a straight-
forward sufficient condition of the distribution of r is that, for any set W of t1(≤ t) intermediate variables,
Dist((x, r),W ) = Dist((x, r̃),W ) holds for all x. With this condition, when using r as the random source
in G, we can simulate the intermediate variables in W by using the same way as that when the random
source is r̃.

Recall that in our construction, there are two kinds of intermediate variables: (1) the first kind contains
the random variables {r1, r2, . . . , rn}, (2) the second kind contains the variables {g1, g2, . . . , gn} computed in
Step 2, and all intermediate bits when computing the addition circuit, which are in the form of ⊕i∈Lgi where
L ⊂ {1, 2, . . . , n}. Note that ⊕i∈Lgi = (⊕i∈Lxi) ⊕ (⊕i∈Lri). Since x are fixed input bits, it is sufficient to
only consider the distribution of ⊕i∈Lri. Therefore, consider the set A defined as:

A = {r1, r2, . . . , rn}
⋃
{⊕i∈Lri : ⊕i∈Lgi is an intermediate wire in G}.

Each variable in A is a linear combination of {r1, r2, . . . , rn}. The sufficient condition above can be trans-
formed to that, for any set W of t1(≤ t) variables in A, Dist(r,W ) = Dist(r̃,W ) holds, where Dist(r,W )
refers to the distribution of the variables in W when they are instantiated by r. We refer to A as the
access structure of the random variables {r1, r2, . . . , rn}. Formally, an access structure A of a set of variables
{r1, r2, . . . , rn} is a set which satisfies that (1) for all i ∈ {1, 2, . . . , n}, ri ∈ A, and (2) every variable in A is
a linear combination of (r1, r2, . . . , rn). One may think that an probing attack can only probe variables in
A.

Therefore, we can summarize the sufficient conditions of the distribution of the random source r in the
basic construction as follows:

1. The parity of (r1, r2, . . . , rn) is 0.

2. Let A be the access structure of (r1, r2, . . . , rn) as defined above. Let r̃ = (r̃1, r̃2, . . . , r̃n) be uniformly
random bits with parity 0. For any set W of t1(≤ t) variables in A, Dist(r,W ) = Dist(r̃,W ).

Robust Parity Sharing Generator. Now we are ready to define the notion of robust parity sharing
generators.

Definition 2 (Robust Parity Sharing Generators). Let G : {0, 1}m → {0, 1}n be a function and A be an
access structure of the output bits of G. Let u be a vector of m uniformly random bits, and r = G(u). A
circuit implementation C of the function G is a (t, k, q)-robust parity sharing generator with respect to A if
the following holds:

• The parity of the output bits r is 0.

• Let r̃ ∈ {0, 1}n be uniformly random bits with parity 0. For any set S of at most k wires in C, there
is a set T of at most q|S| output bits such that for any set W of t variables in A and for any fixing of
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the values CS of the wires in S and rI , where I = {i : ri ∈ T},

Dist(r|CS ,rI
,W ) = Dist(r̃|r̃I=rI

,W ),

where Dist(r,W ) is the distribution of the variables in W when they are instantiated by r, r|CS ,rI
is

the random variable r conditioned on CS and rI , and r̃|r̃I=rI
is the random variable r̃ conditioned on

r̃I = rI .

Let G be the t-leakage-tolerant XOR gadget we constructed in Section 5.1 that uses correlated randomness.
Recall that (x1, x2, . . . , xn) are input bits, (r1, r2, . . . , rn) are random bits with parity 0, and gi = xi⊕ ri for
all i ∈ {1, 2, . . . , n}. Also recall that the access structure A of {r1, r2, . . . , rn} is defined by

A = {r1, r2, . . . , rn}
⋃
{⊕i∈Lri : ⊕i∈Lgi is an intermediate wire in G}.

We show how to construct a t-leakage-tolerant XOR gadget G′ in the plain model (i.e., without access to cor-
related randomness) by using a (t, t, 1)-robust parity sharing generator with respect to A. The construction
simply uses a (t, t, 1)-robust parity sharing generator with respect to A to generate correlated randomness
(r1, r2, . . . , rn) for G and then uses G to compute the output.

Lemma 1. The gadget G′ constructed above is a t-leakage-tolerant XOR gadget.

Proof. It is sufficient to show that for any t1 ≤ t and any set W of t1 intermediate variables, there exists a
subset T ⊂ {x1, x2, . . . , xn,⊕ni=1xi} of size at most t1 such that the t1 intermediate variables in W can be
perfectly simulated from the bits in T . In the following, we use G to denote the (t, t, 1)-robust parity sharing
generator.

We first divide the intermediate variables in G′ into two categories:

• The first category contains all the wires in G, including the input random source (u1, u2, . . . , um) and
the output correlated random variables (r1, r2, . . . , rn).

• The second category contains the rest of intermediate wires in G′. In other words, the second category
contains all intermediate wires in G except the correlated randomness (r1, r2, . . . , rn). For all i ∈
{1, 2, . . . , n}, let gi = xi⊕ ri. By the construction of G, each variable in the second category is a linear
combination of (g1, g2, . . . , gn).

Let S be the set of intermediate variables in W that belong to the first category, and W ′ be the set of
intermediate variables in W that belong to the second category. Then |W | = |S|+ |W ′|, and |S|, |W ′| ≤ t.

We first determine the set T ⊂ {x1, x2, . . . , xn,⊕ni=1xi} that is used to simulate the intermediate variables
in W . Let T ′ be the set of output bits of G in Definition 2. Then |T ′| = |S|. There are two cases.

• If W ′ = ∅, then T = {xi : ri ∈ T ′}. In this case |T | = |T ′| = |S| = |W | = t1.

• If W ′ 6= ∅, then T = {xi : ri ∈ T ′}
⋃
{⊕ni=1xi}. In this case, |T | = |T ′|+ 1 ≤ |S|+ |W ′| = |W | = t1.

Now we describe the simulation of intermediate wires in W .

• For all intermediate wires in S, we sample uniformly random bits as u1, u2, . . . , um and compute G by
taking u1, u2, . . . , um as input. Then we output the values associated with the intermediate wires in S.

• The following step is only done if W ′ 6= ∅. In this case, T = {xi : ri ∈ T ′}
⋃
{⊕ni=1xi}. Let I = {i :

ri ∈ T ′}. Then T is also equal to {xi : i ∈ I}
⋃
{⊕ni=1xi}

For all intermediate wires in W ′, let W̃ = {⊕i∈Lri : ⊕i∈Lgi is in W ′}. Then W̃ ⊂ A and |W̃ | = |W ′| ≤
t. Since G is a (t, t, 1)-robust parity sharing generator, by Definition 2,

Dist(r|GS ,rI
, W̃ ) = Dist(r̃|r̃I=rI

, W̃ ).
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Since (x1, x2, . . . , xn) are fixed input bits, we have Dist(r|CS ,rI
,W ′) = Dist(r̃|r̃I=rI

,W ′). Therefore,
it is sufficient to simulate the intermediate wires in W ′ by using correlated randomness r̃ subject to
r̃I = rI .

Recall that each variable in W ′ is a linear combination of (g1, g2, . . . , gn). Therefore, we first generate
g1, g2, . . . , gn and then compute the variables in W ′. For all i ∈ I, we compute gi = xi ⊕ r̃i. Note that
{r̃i : i 6∈ I} are uniformly random bits with parity ⊕i 6∈I r̃i = ⊕i∈I r̃i. Also note that we can compute the
parity of {xi : i 6∈ I} by (⊕ni=1xi)⊕(⊕i∈Ixi). Therefore, {gi = xi⊕ r̃i : i 6∈ I} are uniformly random bits
with parity (⊕i 6∈I r̃i)⊕ (⊕i 6∈Ixi). We generate uniformly random bits with parity (⊕i 6∈I r̃i)⊕ (⊕i6∈Ixi)
as {gi : i 6∈ I}. Now we can compute variables in W ′ by using (g1, g2, . . . , gn).

Multi-Phase Leakage-Tolerant XOR Gadget and Multi-Phase Robust Parity Sharing Gener-
ator. We note that if we use a robust parity sharing generator for each gadget G, then the total number
of random bits will depend on the circuit size. To solve it, we first consider what we call multi-phase
leakage-tolerant XOR gadgets, which can compute a bounded number of XOR functions. Formally,

Definition 8 (Multi-Phase Leakage-Tolerant XOR Gadget). Let p and n1, n2, . . . , np be positive integers.

For all j ∈ {1, 2, . . . , p}, the function f takes as input a sequence of nj bits x
(j)
1 , x

(j)
2 , . . . , x

(j)
nj and outputs

⊕nj

i=1x
(j)
i . We say G is a multi-phase t-leakage-tolerant XOR gadget if it is a t-leakage-tolerant private

implementation of f .

Note that it is strictly weaker than p compositions of t-leakage-tolerant XOR gadgets since a multi-phase
t-leakage-tolerant XOR gadget can only tolerate t probes across all phases while p compositions of t-leakage-
tolerant XOR gadgets can tolerate t probes for each gadget, i.e., p · t probes in total. However, a multi-phase
t-leakage-tolerant XOR gadget is sufficient to replace the t-leakage-tolerant XOR gadgets used in the outer
protocol (see Section 4) since the number of probed wires is bounded by t in the whole circuit.

To construct a multi-phase t-leakage-tolerant XOR gadget, we extend the t-robust parity sharing gener-
ator to the multi-phase version as follows.

Definition 9 (Multi-Phase Robust Parity Sharing Generators). Let p and n1, n2, . . . , np be positive integers,
G : {0, 1}m → {0, 1}n1 × {0, 1}n2 × . . . × {0, 1}np be a function, u be a vector of m uniformly random bits,
and r = (r(1), r(2), . . . , r(p)) = G(u), where r(j) ∈ {0, 1}nj for all j ∈ {1, 2, . . . , p}. For each r(j), let Aj
be an access structure of the output bits {r(j)

1 , r
(j)
2 , . . . , r

(j)
nj }. Let A =

⋃p
j=1Aj. A circuit implementation C

of the function G is a multi-phase (t, k, q)-robust parity sharing generator with respect to A if the following
holds:

• For all j ∈ {1, 2, . . . , p}, the parity of the output bits r(j) is 0.

• Let r̃ = (r̃(1), r̃(2), . . . , r̃(p)) ∈ {0, 1}n1 × {0, 1}n2 × . . . × {0, 1}np be uniformly random bits such that

for all j ∈ {1, 2, . . . , p}, the parity of {r̃(j)
1 , r̃

(j)
2 , . . . , r̃

(j)
nj } is 0. For any set S of at most k wires in C,

there is a set T of at most q|S| output bits such that for any set W of t variables in A and for any

fixing of the values CS of the wires in S and rI , where I = {(j, i) : r
(j)
i ∈ T} and rI is the vector that

contains all bits in {r(j)
i : (j, i) ∈ I},

Dist(r|CS ,rI
,W ) = Dist(r̃|r̃I=rI

,W ),

where Dist(r,W ) is the distribution of the variables in W when they are instantiated by r, r|CS ,rI
is

the random variable r conditioned on CS and rI , and r̃|r̃I=rI
is the random variable r̃ conditioned on

r̃I = rI .

Let G be the t-leakage-tolerant XOR gadget we constructed in Section 5.1 that uses correlated randomness.
We construct a multi-phase t-leakage-tolerant XOR gadget G′ as follows:

19



1. First, we use a multi-phase t-robust parity sharing generator G with respect to a proper access structure
A to prepare the correlated randomness for all phases.

2. Then, we use G to compute the XOR function in each phase.

The access structure A is defined as follows. For all j ∈ {1, 2, . . . , p}, let x(j) = (x
(j)
1 , x

(j)
2 , . . . , x

(j)
nj ) be the

input bits and r(j) = (r
(j)
1 , r

(j)
2 , . . . , r

(j)
nj ) be the random bits with parity 0, and g

(j)
i = x

(j)
i ⊕ r

(j)
i for all

i ∈ {1, 2, . . . , n}. We define the access structure Aj of {r(j)
1 , r

(j)
2 , . . . , r

(j)
nj } to be

Aj = {r(j)
1 , r

(j)
2 , . . . , r(j)

nj
}
⋃
{⊕i∈Lr(j)

i : ⊕i∈Lg(j)
i is an intermediate wire of G(x(j); r(j))}.

Then, the access structure A =
⋃p
j=1Aj . We show that this simple construction G′ is a multi-phase t-

leakage-tolerant XOR gadget.

Lemma 2. The gadget G′ constructed above is a multi-phase t-leakage-tolerant XOR gadget.

Proof. It is sufficient to show that for any t1 ≤ t and any set of t1 intermediate variables, there exists a

subset T ⊂
⋃p
j=1{x

(j)
1 , x

(j)
2 , . . . , x

(j)
nj ,⊕

nj

i=1x
(j)
i } of size at most t1 such that the t1 intermediate variables can

be perfectly simulated from the bits in T . In the following, we use G to denote the multi-phase (t, t, 1)-robust
parity sharing generator.

We first divide the intermediate variables in G′ into two categories:

• The first category contains all the wires in G, including the input random source (u1, u2, . . . , um) and

the output correlated random variables {(r(j)
1 , r

(j)
2 , . . . , r

(j)
nj )}pj=1.

• The second category contains the rest of intermediate wires in G′. In other words, the second category

contains all intermediate wires in G except the correlated randomness {(r(j)
1 , r

(j)
2 , . . . , r

(j)
nj )}pj=1. For all

j ∈ {1, 2, . . . , p} and i ∈ {1, 2, . . . , nj}, let g
(j)
i = x

(j)
i ⊕ r

(j)
i . By the construction of G, in the second

category, each variable of the j-th phase is a linear combination of (g
(j)
1 , g

(j)
2 , . . . , g

(j)
nj ).

Let S be the set of intermediate variables in W that belong to the first category, and W ′ be the set of
intermediate variables in W that belong to the second category. Then |W | = |S| + |W ′|, and |S|, |W ′| ≤ t.
We further divide W ′ into p parts: for all j ∈ {1, 2, . . . , p}, let W ′j be the set of intermediate variables of the
j-th phase in W ′. We have |W ′| = |W ′1|+ |W ′2|+ . . .+ |W ′p|.

We first determine the set T ⊂
⋃p
j=1{x

(j)
1 , x

(j)
2 , . . . , x

(j)
nj ,⊕

nj

i=1x
(j)
i } that is used to simulate the interme-

diate variables in W . Let T ′ be the set of output bits of G in Definition 9. Then |T ′| = |S|. Initially, we set
T = ∅.

1. For all r
(j)
i ∈ T ′, we insert x

(j)
i in T .

2. For all j ∈ {1, 2, . . . , p}, if W ′j 6= ∅, we insert ⊕nj

i=1x
(j)
i in T .

Note that the size of T is bounded by |T ′|+
∑p
j=1 |W ′j | = |W |.

Now we describe the simulation of intermediate wires in W .

• For all intermediate wires in S, we sample uniformly random bits as u1, u2, . . . , um and compute G by
taking u1, u2, . . . , um as input. Then we output the values associated with the intermediate wires in S.

• The following step is only done if W ′ 6= ∅. Let I = {(j, i) : r
(j)
i ∈ T ′}. For all j ∈ {1, 2, . . . , p}, let

Ij = {i : r
(j)
i ∈ T ′}.

For all intermediate wires in W ′, let W̃ = {⊕i∈Lr(j)
i : ⊕i∈Lg(j)

i is in W ′}. Then W̃ ⊂ A and |W̃ | =
|W ′| ≤ t. Since G is a multi-phase (t, t, 1)-robust parity sharing generator, by Definition 9,

Dist(r|GS ,rI
, W̃ ) = Dist(r̃|r̃I=rI

, W̃ ).
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Since {(x(j)
1 , x

(j)
2 , . . . , x

(j)
nj )}pj=1 are fixed input bits, we have Dist(r|CS ,rI

,W ′) = Dist(r̃|r̃I=rI
,W ′).

Therefore, it is sufficient to simulate the intermediate wires in W ′ by using correlated randomness r̃
subject to r̃I = rI .

For all j ∈ {1, 2, . . . , p} such that W ′j 6= ∅, recall that each variable in W ′j is a linear combination of

(g
(j)
1 , g

(j)
2 , . . . , g

(j)
nj ). Therefore, we first generate g

(j)
1 , g

(j)
2 , . . . , g

(j)
nj and then compute the variables in

W ′j . For all i ∈ Ij , we compute g
(j)
i = x

(j)
i ⊕ r̃

(j)
i . Note that {r̃(j)

i : i 6∈ Ij} are uniformly random

bits with parity ⊕i6∈Ij r̃
(j)
i = ⊕i∈Ij r̃

(j)
i . Also note that we can compute the parity of {x(j)

i : i 6∈ Ij} by

(⊕nj

i=1x
(j)
i )⊕ (⊕i∈Ijx

(j)
i ). Therefore, {g(j)

i = x
(j)
i ⊕ r̃

(j)
i : i 6∈ Ij} are uniformly random bits with parity

(⊕i 6∈Ij r̃
(j)
i )⊕ (⊕i 6∈Ijx

(j)
i ). We generate uniformly random bits with parity (⊕i6∈Ij r̃

(j)
i )⊕ (⊕i 6∈Ijx

(j)
i ) as

{g(j)
i : i 6∈ Ij}. Now we can compute variables in W ′j by using (g

(j)
1 , g

(j)
2 , . . . , g

(j)
nj ).

Randomness Complexity of Our t-Private Circuit. In Section 6, we will show the following theorem.

Theorem 6. For all positive integers p and n1, n2, . . . , np, let N =
∑p
i=1 ni and A be the access structure

defined above. There exists a PPT algorithm which takes (1t, 1λ,A) as input, and outputs a multi-phase
(t, t, 1)-robust parity sharing generator with respect to A with probability 1 − 2−λ such that the input size
m = O(t · log tN + λ).

The proof follows from Lemma 3 in Section 6.
We analyse the randomness complexity of our t-private circuit. Recall that f is the function we want to

compute and ni is the input size of f .

• Recall that in the outer construction, the random bits are used as input of a linear and strong 2t-wise
independent PRG G with output size |C̃|, where C̃ is a circuit that computes the function f . By
using the construction in Section 3.2, the number of random bits that are used in G is bounded by
O(t · log |C̃|).

• For the inner construction, we only need to use random bits to instantiate the multi-phase (t, t, 1)-
robust parity sharing generator in Theorem 6. To this end, we analyse the number of phases and the
input size of each phase.

In the outer construction, we invoke the leakage-tolerant XOR gadget for each wire in C̃. Therefore,
the number of phases p = |C̃|.
Recall that for each wire value gi in the outer construction, we use [gi] to represent the set {gi ⊕
ri}
⋃
supp(ri), where ri is the output bit of the 2t-wise independent PRG G that is associated with gi.

Since the input size of G is bounded by O(t · log |C̃|), the size of [gi] is also bounded by O(t · log |C̃|).
Note that:

– For an input wire which carries the value xi, the input size of the leakage-tolerant XOR gadget is
|[xi]|+ |supp(ri)| = O(t · log |C̃|).

– For an addition gate with input wires ga, gb and output wire gc, the input size of the leakage-
tolerant XOR gadget is |[ga]|+ |[gb]|+ |supp(rc)| = O(t · log |C̃|).

– For a multiplication gate with input wires ga, gb and output wire gc, the input size of the leakage-
tolerant XOR gadget is |[ga]⊗ [gb]|+ |supp(rc)| = O(t2 log2 |C̃|).

Therefore, N ≤ p ·max{n1, n2, . . . , np} = O(|C̃| · t2 log2 |C̃|). Thus, inner construction requires O(t ·
log(t|C̃| · t2 log2 |C̃|) + λ) = O(t · log t|C̃|+ λ) random bits.

In summary, the randomness complexity of our t-private circuit is O(t · log t|C̃|+ λ).
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Theorem 1. Any function f with circuit size s and output size no admits a t-private implementation
(I, C,O) with the canonical encoder I and the decoder O which, for each output bit, takes the parity of a
block of bits (which are not restricted to t+ 1 bits), where C uses O(t · log ts) random bits. Moreover, there
exists a PPT algorithm which takes (C̃f , 1

t, 1λ) as input, where C̃f is a circuit of size s that computes f , and
outputs, except with ≤ 2−λ probability, a t-private implementation (I, C,O) such that C uses O(t · log ts+λ)
random bits.

Randomness Complexity of t-leakage-tolerant Private Circuits. As we discussed in Remark 2, we
can obtain a t-leakage-tolerant private circuit from our outer construction with small modifications. As for the
randomness complexity, we need to invoke one more time of the leakage-tolerant XOR gadget for each output
bit and the input size of the XOR gadget is bounded by O(t·log |C̃|). When the leakage-tolerant XOR gadgets
are instantiated by a multi-phase leakage-tolerant XOR gadget, the number of phases p = |C̃|+no = O(|C̃|),
where no is the number of output bits of f , and N ≤ p ·max{n1, n2, . . . , np} = O(|C̃| · t2 log2 |C̃|). We have
the following theorem.

Theorem 2. Any function f with circuit size s admits a t-leakage-tolerant private implementation C, where
C uses O(t · log ts) random bits. Moreover, there exists a PPT algorithm which takes (C̃f , 1

t, 1λ) as input,

where C̃f is a circuit of size s that computes f , and outputs, except with ≤ 2−λ probability, a t-leakage-tolerant
implementation C such that C uses O(t · log ts+ λ) random bits.

Circuit Size. Our construction can be viewed as a composition of two parts:

• The computation of a multi-phase (t, t, 1)-robust parity sharing generator in the inner construction.

• The computation for input wires, addition gates, multiplication gates, and the leakage-tolerant XOR
gadgets (and for output wires in the leakage-tolerant variant).

For the first part, our construction of the multi-phase robust parity sharing generator has size O(m ·N),
where m is the input size of the generator, and N is the output size (see Section 6). Let s denote the circuit
size of C̃ that computes f . Thus, the first part has size O((t · log ts+λ) · t2s · log2 s) = O(t3s · log2 s · log ts+
λ · t2s · log2 s).

For the second part, for each input wire and addition gate (and output wire in the leakage-tolerant
variant), we use the leakage-tolerant XOR gadget with input size O(t · log s). For each multiplication gate,
we first compute O(t2 · log2 s) multiplications and then use the leakage-tolerant XOR gadget with input size
O(t2 · log2 s). Thus, the second part has size O(t2s · log2 s).

Thus, the overall circuit size is O(t3s · log2 s · log ts+λ · t2s · log2 s). Thus, assuming λ ≤ Õ(t), the circuit
size is Õ(t3s).

6 Construction of Multi-Phase Robust Parity Sharing Generator

In this section, we show that there exists a multi-phase (t, t, 1)-robust parity sharing generator with random-
ness complexity O(t · log tN), where N =

∑p
j=1 nj . In the following, addition and multiplication operations

are in the binary field Z2.
Let u = (u1, u2, . . . , um) denote the input of G. For all j ∈ {1, 2, . . . , p}, our idea is to use a matrix

M (j) ∈ {0, 1}nj×m to compute r(j) = (r
(j)
1 , r

(j)
2 , . . . , r

(j)
nj ) = M (j) · u. Specifically, to compute r

(j)
i ,

1. The circuit G first computes the coordinate-wise multiplication M
(j)
i ∗ u, where M

(j)
i is the i-th row

of M (j). That is, the circuit G computes M
(j)
i,w · uw for all w ∈ {1, 2, . . . ,m}.

2. Then, the circuit G computes r
(j)
i =

∑m
w=1M

(j)
i,w · uw by using a dlogme-depth addition circuit.
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The requirement that the parity of r
(j)
1 , r

(j)
2 , . . . , r

(j)
nj is 0 is equivalent to

∑nj

i=1M
(j)
i = 0.

Let A be the access structure defined in the construction of the multi-phase t-leakage-tolerant gadget in
Section 5.2. We will show that when using random matrices for {M (j)}pj=1 (with m = O(t log tN+log(1/ε)))

which are subject to
∑nj

i=1M
(j)
i = 0 for all j ∈ {1, 2, . . . , p}, with probability 1− ε, the above construction

is a multi-phase (t, t, 1)-robust parity sharing generator with respect to the access structure A.
To this end, for any set S of at most t wires in G, we first determine the set T of at most |S| output bits.

For each wire in S, if it is r
(j)
i or an intermediate wire when computing r

(j)
i , we insert r

(j)
i in T . Then, it is

clear that the size of T is bounded by |S|. We will prove the following argument.

Lemma 3. Let {M (j)}pj=1 be random matrices subject to
∑nj

i=1M
(j)
i = 0 for all j ∈ {1, 2, . . . , p}, and G

be the circuit constructed above. Let A be the access structure defined in the construction of the multi-phase
t-leakage-tolerant gadget in Section 5.2. For any set S of at most t wires in G, let T be the set of at most
|S| output bits defined above.

Then, when m = O(t log tN + log(1/ε)), where N =
∑p
j=1 nj, with probability 1− ε, for any set S of at

most t wires in G, any set W of t variables in A and for any fixing of the values GS of the wires in S and

rI , where I = {(j, i) : r
(j)
i ∈ T} and rI is the vector that contains all bits in {r(j)

i : (j, i) ∈ I},

Dist(r|GS ,rI
,W ) = Dist(r̃|r̃I=rI

,W ),

where Dist(r,W ) is the distribution of the variables in W when they are instantiated by r, r|GS ,rI
is the

random variable r conditioned on GS and rI , and r̃|r̃I=rI
is the random variable r̃ conditioned on r̃I = rI .

Proof. We first prove the following argument:

Lemma 4. For a fixed set S of at most t wires in G and a fixed set W of t variables in A, with probability

at least 1− 23t−m, for any fixing of the values GS of the wires in S and rI , where I = {(j, i) : r
(j)
i ∈ T} and

rI is the vector that contains all bits in {r(j)
i : (j, i) ∈ I},

Dist(r|GS ,rI
,W ) = Dist(r̃|r̃I=rI

,W ),

where Dist(r,W ) is the distribution of the variables in W when they are instantiated by r, r|GS ,rI
is the

random variable r conditioned on GS and rI , and r̃|r̃I=rI
is the random variable r̃ conditioned on r̃I = rI .

Jumping ahead, we will use Lemma 4 and the union bound to lower bound the probability for all set S
and W in Lemma 3. Recall that nj is the number of output bits for the j-th phase. The total number of
output bits of G is N =

∑p
j=1 nj . To compute each output bit in G, we use an addition circuit with m input

bits u = (u1, u2, . . . , um). Therefore, the number of wires in G is bounded by 3N ·m. Then the number of
possible set S is bounded by

∑t
i=1

(
3N ·m
t

)
≤ t · (3N ·m)t. Similarly, we can bound the size of |A| by 2N .

Then the number of possible set W is bounded by
(

2N
t

)
≤ (2N)t

By Lemma 4 and the union bound, the probability in Lemma 3 is bounded by

1− t · (3N ·m)t · (2N)t · 23t−m.

When m = O(t · log tN + log(1/ε)), this probability is at least 1− ε.

Proof of Lemma 4. For two sets W̃ and W , we say that W̃ and W are equivalent if Dist(r|GS ,rI
,W ) =

Dist(r̃|r̃I=rI
,W ) if and only if Dist(r|GS ,rI

, W̃ ) = Dist(r̃|r̃I=rI
, W̃ ). We first construct a new set W̃ which

is equivalent to W . The construction is done by the following three steps.

1. For all j ∈ {1, 2, . . . , p}, we set ij to be the first index such that r
(j)
ij
6∈ T . If such an index does not

exist, we set ij = 1. Recall that for all j ∈ {1, 2, . . . , p}, each variable w of the j-th phase in W is

the summation of a subset of {r(j)
1 , r

(j)
2 , . . . , r

(j)
nj }. We refer to this subset as the support of w, denoted

by supp(w). Let L(w) := {i : r
(j)
i ∈ supp(w)}. Since the parity of (r

(j)
1 , r

(j)
2 , . . . , r

(j)
nj ) is 0, we have

w =
∑
i∈L(w) r

(j)
i =

∑
i 6∈L(w) r

(j)
i .

We construct a set W (1) which is equivalent to W as follows:

23



• For all j ∈ {1, 2, . . . , p} and for all variable w of the j-th phase in W such that r
(j)
ij

is in the

support of w, we insert w′ =
∑
i6∈L(w) r

(j)
i in W (1). Note that we always have w = w′.

• For all j ∈ {1, 2, . . . , p} and for all variable w of the j-th phase in W such that r
(j)
ij

is not in the

support of w, we insert w in W (1).

It is clear that the distribution of the variables in W (1) is the same as that in W . Therefore, W (1)

is equivalent to W . Note that for all j ∈ {1, 2, . . . , p}, r(j)
ij

is not in the support of any variable w in

W (1).

2. We construct a set W (2) which is equivalent to W (1) as follows: For each variable w in W (1), we insert
in W (2) the variable w′ which is the summation of the variables in supp(w)\T . Since the bits in T ,
or equivalently the bits in the vector rI , are fixed, w′ − w is a fixed value. Therefore, the set W (2) is

equivalent to the set W (1) before changing. Note that for all (j, i) ∈ I, r
(j)
i is not in the support of any

variable w in W (2).

3. Finally, we construct a set W̃ which is equivalent to W (2) as follows:

(a) Initially, we set W̃ = ∅.
(b) Suppose W (2) = {w1, w2, . . . , w|W (2)|}. From i = 1 to |W (2)|, if wi cannot be written as a linear

combination of the variables in W̃ , we insert wi in W̃ .

Note that the variables in W (2)\W̃ can be written as linear combinations of the variables in W̃ , which
means that these variables are determined by the variables in W̃ . Thus, the set W̃ is equivalent to the
set W (2).

We claim that Dist(r̃|r̃I=rI
, W̃ ) is the same as the distribution of |W̃ | uniform bits. To prove it,

let r̃′ be the vector that contains all bits in {r̃(j)
i : i 6= ij and (j, i) 6∈ I}. Recall that for all j ∈

{1, 2, . . . , p}, (r̃(j)
1 , r̃

(j)
2 , . . . , r̃

(j)
nj ) are uniformly random bits with parity 0. Therefore, {r̃(j)

i : i 6= ij} are
uniformly random bits. Thus, all bits in r̃′ are uniformly random and independently distributed. Note that
each variable w ∈ W̃ can be written as a linear combination of the bits in r̃′. There exists a vector v(w)
such that w = v(w) · r̃′. Let V be the matrix that contains all the row vectors in {v(w) : w ∈ W̃}. Since
all variables in W̃ are linearly independent, V is row full rank. Since all bits in r̃′ are uniformly random
and independently distributed, all variables in W̃ are also uniformly random and independently distributed.

Finally, note that, since the variables in W̃ are independent of the variables in {r̃(j)
i : i = ij or (j, i) ∈ I}

Dist(r̃|r̃I=rI
, W̃ ) = Dist(r̃′, W̃ ). The claim holds.

Now we analyse the probability that Dist(r|GS ,rI
, W̃ ) is the same as the distribution of |W̃ | uniform

bits. We first prove that

Lemma 5. For a fixed non-empty set X of W̃ and a fixed set Y of S
⋃
T , with probability 1 − 2−m, the

summation of all variables in X
⋃
Y is uniformly random.

Proof. Let x be the summation of the variables in X. We first show that, there exists j ∈ {1, 2, . . . , p} and

i ∈ {1, 2, . . . , nj} such that (1) r
(j)
i is in the support of x, (2) i 6= ij , and (3) r

(j)
i 6∈ T . By the construction

of W̃ , for all r
(j)
i ∈ T , r

(j)
i is not in the support of any variable in W̃ . Also by the construction of W̃ , for all

j ∈ {1, 2, . . . , p}, r(j)
ij

is not in the support of any variable in W̃ . Therefore, it is sufficient to show that the

support of x is not a empty set. This follows from the fact that the variables in W̃ are linearly independent
(when instantiated by r̃′). We use j?, i? to denote these two indices. Note that in this case, we also have

r
(j?)
ij?
6∈ T .

By the construction of G, each wire is a linear combination of the input bits u = (u1, u2, . . . , um).
Therefore, for each variable in w ∈ supp(x)

⋃
S
⋃
T , there is a vector v(w) such that w = v(w) · u. Note
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that the vectors {v(w) : w ∈ S
⋃
T} are determined by the row vectors {M (j)

i : r
(j)
i ∈ T}. Consider the

following sampling process of the matrices {M (j)}pj=1.

1. We first randomly sampleM (j) ∈ {0, 1}nj×m which is subject to
∑nj

i=1M
(j)
i = 0 for all j ∈ {1, 2, . . . , s}

and j 6= j?.

2. For the matrix M (j?), we first randomly sample the row vectors with indices in {i : r
(j?)
i ∈ T}. Since

i? 6∈ {i : r
(j?)
i ∈ T}, the row vectors with indices in {i : r

(j?)
i ∈ T} are uniformly random. At this point

we have sampled all the row vectors {M (j)
i : r

(j)
i ∈ T}.

3. For the matrix M (j?), we randomly sample the rest of row vectors except the i?-th row and the ij? -th
row.

4. Now we randomly sample the i?-th row of M (j?). After sampling M
(j?)
i? , the vectors in {v(w) : w ∈

supp(x)
⋃
S
⋃
T} are fully determined. Note that there is exactly a single assignment to M

(j?)
i? such

that
∑
w∈supp(x)

⋃
Y v(w) = 0. SinceM

(j?)
i? is uniformly sampled, the probability that

∑
w∈supp(x)

⋃
Y v(w) =

0 is 1− 2−m.

5. The row vector M
(j?)
ij?

is computed by M
(j?)
ij?

= 0− (
∑
i6=ij? M

(j?)
i ).

Finally, note that the summation of the variables in X
⋃
Y is equal to

∑
w∈supp(x)

⋃
Y v(w) · u. Therefore,

the summation of the variables in X
⋃
Y is uniformly random if and only if

∑
w∈supp(x)

⋃
Y v(w) 6= 0, which

happens with probability 1− 2−m.

Note that |W̃ | ≤ |W | = t and |S
⋃
T | ≤ |S| + |T | ≤ 2|S| ≤ 2t. By Lemma 5 and the union bound,

the probability that the summation of all variables in X
⋃
Y is uniformly distributed for all non-empty set

X ⊂ W̃ and set Y ⊂ S
⋃
T is bounded by 1− 23t−m.

We conclude our proof by the following lemma. By taking X = W̃ and Y = S
⋃
T in Lemma 6, we can

show that the variables in W̃ are uniformly random given the variables in S
⋃
T , which is what we need.

Lemma 6. Let u1, u2, . . . , um be independent and uniformly random variables over {0, 1}. Let X and Y be
two sets of random variables where each random variable is a linear combination of {u1, u2, . . . , um}. Then,
given the random variables in Y , the random variables in X are uniformly random if and only if for all
non-empty set X̃ ⊂ X and for all set Ỹ ⊂ Y , the summation of the random variables in X̃

⋃
Ỹ is uniformly

distributed over {0, 1}.

Proof. We first prove that, if for all non-empty set X̃ ⊂ X and for all set Ỹ ⊂ Y , the summation of the
random variables in X̃

⋃
Ỹ is uniformly distributed over {0, 1}, then the random variables in X are uniformly

random given the random variables in Y .
Let Y ′ ⊂ Y be the largest set such that the random variables in Y ′ are linearly independent. Then any

random variable in Y can be written as a linear combination of the variables in Y ′. Therefore, the random
variables in Y are fully determined by the random variables in Y ′. It is sufficient to show that the random
variables in X are uniformly random given the random variables in Y ′. We will show an even stronger
statement that the random variables in X

⋃
Y ′ are uniformly random.

We first show that the random variables in X
⋃
Y ′ are linearly independent, which is equivalent to show

that any linear combination of random variables in X
⋃
Y ′ is not a constant 0. Note that a linear combination

of random variables in X
⋃
Y ′ is just the summation of the random variables in a subset Z of X

⋃
Y ′. There

are two cases:

• For all Z ⊂ Y ′, since the random variables in Y ′ are linearly independent, the summation of the
random variables in Z is not a constant 0.

• For all Z ⊂ X
⋃
Y ′ but Z 6⊂ Y ′, we have Z

⋂
X 6= ∅. Let X̃ = Z

⋂
X and Ỹ = Z

⋂
Y ′. By condition,

the summation of the random variables in Z = X̃
⋃
Ỹ is uniformly distributed over {0, 1}, which is

not a constant 0.
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Therefore, the random variables in X
⋃
Y ′ are linearly independent.

Suppose the random variables inX are denoted by {x1, x2, . . . , xn1} and the random variables in Y ′ are de-
noted by {y1, y2, . . . , yn2

}. Since each random variable in X
⋃
Y ′ is a linear combination of {u1, u2, . . . , um},

there exists a matrix M ∈ {0, 1}(n1+n2)×m such that (x1, . . . , xn1
, y1, . . . , yn2

) = M · (u1, . . . , um). Since the
random variables in X

⋃
Y ′ are linearly independent, the rank of M is n1 +n2. Therefore, there exists a set

I of n1 + n2 indices in {1, 2, . . . ,m} such that the columns of M with indices in I are linearly independent.
Let M I be the sub-matrix of M that contains the columns with indices in I, and M Ī be the sub-matrix
of M that contains the columns with indices in Ī = {1, 2, . . . ,m}\I. Similarly, let uI be the vector that
contains {uw : w ∈ I}, and uĪ be the vector that contains {uw : w ∈ {1, 2, . . . ,m}\I}. Then

(x1, . . . , xn1
, y1, . . . , yn2

) = M · (u1, . . . , um)

= M I · uI +M Ī · uĪ .

Note that M I is invertible. Given {uw : w ∈ {1, 2, . . . ,m}\I}, there is a one-to-one map between {uw : w ∈
I} and {x1, . . . , xn1

, y1, . . . , yn2
}. Thus the random variables in X

⋃
Y ′ are uniformly random.

Now we prove that, if the random variables in X are uniformly random given the variables in Y , for all
non-empty set X̃ ⊂ X and for all set Ỹ ⊂ Y , the summation of the random variables in X̃

⋃
Ỹ is uniformly

distributed over {0, 1}.
By condition, the random variables in X are uniformly distributed over {0, 1} given the random variables

in Y . Then for all non-empty subset X̃ ⊂ X, the random variables in X̃ are uniformly distributed over
{0, 1} given the random variables in Ỹ ⊂ Y . Therefore, the summation of the random variables in X̃

⋃
Ỹ is

uniformly distributed over {0, 1}.

7 Extensions

In this section, we discuss the following two extensions of our constructions:

1. We first focus on the input encoder I. We note that the canonical encoder has already required
t · ni random bits for the input in I. When ni ≥ t, it means that the encoding of the input has
already contained O(t2) random bits. It may lead to the following objection: a potential solution
may reuse the randomness output by the encoder and may even be deterministic due to the large
amount of randomness output by the encoder. We show that we can replace the canonical encoder by
a randomness-efficient encoder, and achieve randomness complexity of O(t · log ts) including the input
encoder, where s is the circuit size.

2. We then focus on the notion of t-private stateful circuits introduced in [ISW03]. A stateful circuit
models the scenario where the circuit has an internal state s0. The circuit may have external input.
In each invocation, the circuit computes the function which takes as input its internal state and
the external input, outputs the result of the function, and stores its new internal state. A t-private
stateful circuit requires that an adversary, which has control over the external input, cannot learn any
information about the internal state of the circuit over multiple executions of the circuit with the power
of adaptively choosing a set of t internal wires before each execution depending on the output values
and the wire values observed in previous executions. We show how to construct a t-private stateful
circuit using our construction.

3. Finally, we discuss how to construct a t-leakage-resilient private circuit with the canonical decoder.

7.1 Randomness-efficient Encoder

We say Enc : {0, 1}n → {0, 1}n̂, which takes ρ as random tape, is a linear and strong t-private encoder if for
all x ∈ {0, 1}n:
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1. Every output bit of Enc(x;ρ) is the XOR of a subset of the bits in x and ρ.

2. The output of Enc(x;ρ) contains the random bits ρ;

3. For each bit xi, there exists a subset of the output bits with parity xi;

4. Any t output bits are uniformly random and independent of the input x.

Since each xi is equal to the parity of a subset of the output bits, the decoder can be constructed in a
straightforward way.

We show that the canonical encoder is a linear and strong t-private encoder. For each input bit xi, the
canonical encoder will use a set of t fresh random bits in ρ, denoted by ρ(xi), and output the random bits
in ρ(xi) and the parity of the bits in ρ(xi)

⋃
{xi}. Therefore, each output bit is the XOR of a subset of the

bits in x and ρ, and the output of the canonical encoder contains all the random bits. For each bit xi, it is
the parity of the bits in ρ(xi)

⋃
{xi} which are all in the output of the canonical encoder. Since each xi is

shared by a fresh additive sharing with t+ 1 shares, any t shares are uniformly random and independent of
xi. Therefore, any t output bits are uniformly random and independent of the input x.

We observe that our construction can replace the canonical encoder by any linear and strong t-private
encoder. It follows from the following two facts:

1. From the third property, we can continue to use the leakage-tolerant XOR gadget to transform the
encoding of the input to the masked input bits.

2. As for the security, in Theorem 5, we rely on the fact that when using the canonical encoder, any t input
wires of C are uniformly random and independent of the function input. From the fourth property, we
can continue to use the same argument as Theorem 5 to show the security of our construction after
replacing the canonical encoder by any linear and strong t-private encoder.

Now we construct a randomness-efficient linear and strong t-private encoder. The encoder makes use of
a linear and strong t-wise independent PRG G : {0, 1}m → {0, 1}ni . The construction works as follows:

1. The encoder Enc takes x ∈ {0, 1}ni as input and takes ρ ∈ {0, 1}m as random tape.

2. The encoder Enc first computes r = G(ρ). Then the encoder computes x⊕ r.

3. The output of Enc is (ρ,x⊕ r).

Note that the construction of Enc follows the same idea as the outer construction in Section 4. We verify
that Enc is a linear and strong t-private encoder.

1. Since G is a linear and strong t-wise independent PRG, each output bit is equal to the XOR of a subset
of the bits in ρ. Since the output of Enc is (ρ,x⊕ r) where r = G(ρ), each output bit of Enc(x;ρ) is
the XOR of a subset of the bits in x and ρ.

2. The output of Enc(x;ρ) is (ρ,x⊕ r), which contains the random bits ρ.

3. For each bit xi, it is equal to (xi ⊕ ri)⊕ ri. Note that xi ⊕ ri is the output bit of Enc(x;ρ), and ri is
equal to the XOR of a subset of the bits in ρ. Therefore, there exists a subset of the output bits with
parity xi.

4. Since G is a strong t-wise independent PRG, when ρ is sampled uniformly, any t bits of (ρ, r) are
uniformly random. Therefore, any t bits of (ρ,x ⊕ r) are also uniformly random and independent of
the input x.

We can use the construction in Section 3.2 to instantiate G, which requires O(t · log ni) random bits.
Thus, we have the following theorem.
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Theorem 3. Any function f with circuit size s and input size ni admits a t-private implementation (I, C,O),
where I uses O(t · log ni) random bits and C uses O(t · log ts) random bits. Moreover, there exists a PPT
algorithm which takes (C̃f , 1

t, 1λ) as input, where C̃f is a circuit of size s that computes f , and outputs,
except with ≤ 2−λ probability, a t-private implementation (I, C,O) such that C uses O(t · log ts+λ) random
bits.

7.2 t-Private Stateful Circuit

We follow the definitions of memory cells, stateful circuits, and t-private stateful circuits in [ISW03].

Definition 10 (Memory Cells [ISW03]). A memory cell is a stateful gate with fan-in 1. On any invocation
of the circuit, it outputs the previous input to the gate, and stores the current input for the next invocation.

Definition 11 (Stateful Circuits [ISW03]). A stateful circuit C is a circuit with the extensions that (1)
C may contain memory cells, and (2) C may contain cycles as long as every cycle traverses at least one
memory cell. Let s0 be the initial state for the memory cells. We write C[s0] for the circuit C with memory
cells initially filled with s0. A stateful circuit C can also have external input and output wires.

Remark 4. Stateful circuits can have external input and output wires. One example in [ISW03] is an AES
circuit, where the internal memory cells contain the secret key, the input wires are the plaintext, and the
output wires are the corresponding ciphertext.

Definition 12 (t-Private Stateful Circuits [ISW03]). Let C[s0] be a stateful circuit C with an initial state s0.
A stateful circuit C ′[s′0] is a t-private implementation of C[s0] if it is secure against a t-limited interactive
adversary. Specifically, a t-limited interactive adversary is an adversary which is given access to C ′[s′0]. The
adversary may invoke C ′ multiple times. In each invocation, the adversary adaptively chooses an input and a
set of t wires based on the observed output values and wire values in previous invocations, and the adversary
learns the output values corresponding to the chosen input, and the values associated with the chosen wires.
The security requires the existence of a simulator S that can simulate the adversary’s view using only a
black-box access to C[s0], without the access to s0.

Supporting Unprotected Input and Output in t-Private Stateless Circuits. We first show that
our construction of the t-private (stateless) circuit can be modified so that certain input bits and output bits
are unprotected. The unprotected input bits and output bits are not encoded and can be observed by the
public. In this scenario, the security requires that any t wires can be perfectly simulated with the access to
the unprotected input bits and output bits.

The modifications work as follows. For each unprotected input bit xi, we set [xi] = {xi}, i.e., an additive
sharing of xi with a single share. Then we compute the masked input bit in the same way as that for
protected input bit. For each unprotected output bit yi, recall that all parties have obtained an additive
sharing of this value. All parties use the leakage-tolerant XOR gadget to compute yi.

Regarding the security, relying on the security of the leakage-tolerant XOR gadget, any attack is equiva-
lent to only probing wires in the following three sets: (1) the set of unprotected input and output wires, (2)
the set the rest of input wires, and (3) the set of the rest of wires. It is sufficient to show that any t wires
in the second set and any t wires in the third set can be simulated without having access to the input and
output of the function f . For the second set, note that it only contains encoded input bits, which are still
t-private. For the third set, note that it is consist of the random bits ρ ∈ {0, 1}m, the masked bits of the
wire values in C̃, g1 ⊕ r1, g2 ⊕ r2, . . . , g|C̃| ⊕ r|C̃|, and the bits in the set [ga] ⊗ [gb] for each multiplication

gate in C̃ with input wires ga and gb, where C̃ is a circuit which computes the function f . Any t wires in
the third set can be simulated in the same way as described in the proof of Theorem 5.

Constructing t-Private Stateful Circuits. We follow the approach in [ISW03] to construct t-private
stateful circuits. At the beginning, the state s0 is encoded by using the randomness-efficient linear and
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strong 2t-private encoder constructed in Section 7.1. The encoded state is denoted by s′0. We will maintain
the invariant that the memory cells of C ′ always store the encoded state of C ′ before each invocation.

In the i-th invocation, we view the circuit C[si−1] as a stateless circuit C̃ which takes as input the state
si−1 and the external input x, and outputs the updated state si and the external output y. We compile C̃ to
a 2t-private circuit C̃ ′ such that it takes as input the encoded state s′i−1 and the unprotected external input
x, and outputs the encoded state s′i and the unprotected output y. We note that since the construction of
the randomness-efficient encoder Enc in Section 7.1 follows from the same idea as our outer construction
in Section 4, the encoded state s′i produced by our private circuit has the same form as that computed
by Enc(si) (instantiated by a proper linear and strong 2t-wise independent PRG). Therefore, the encoded
state s′i produced by our 2t-private circuit is stored and will be used in the next invocation. The t-private
stateful circuit C ′[s′0] is constructed by using the memory cells to provide the encoded state s′i−1 and store

the encoded state s′i in C̃ ′.
As for the security, relying on the security of the leakage-tolerant XOR gadget, in each invocation, any

attack is equivalent to only probing wires in the following three sets: (1) the set of unprotected input and
output wires, (2) the set of wires of the encoded input state, and (3) the set of the rest of wires. Note that
the wires of the encoded output state are included in the third set. It is sufficient to show that any t wires
in the second set and any t wires in the third set can be simulated without having access to the input state
and output state.

For the second set, in the first invocation, since the initial state is encoded by a linear and strong 2t-
private encoder, any t wires are independent of the input state and output state of this invocation. Starting
from the second invocation, note that the encoded input state of the current invocation is the same as the
encoded output state of the last invocation since they are the encoding of the same state. Thus, it is sufficient
to show that, in each invocation, any 2t wires in the third set can be simulated without having access to the
input state and output state. Since we use a 2t-private circuit C̃ ′ for each invocation, any 2t wires in the
third set can be simulated in the same way as described in Theorem 5. In summary,

Theorem 4. Any stateful circuit C with initial state s0 admits a t-private implementation C ′[s′0] which uses
O(t · log t|C|) random bits. Moreover, there exists a PPT algorithm which takes (C, s0, 1

t, 1λ) as input and
outputs, except with ≤ 2−λ probability, a t-private implementation C ′[s′0] such that C ′ uses O(t · log t|C|+λ)
random bits.

Remark 5. We briefly analyse the depth of the private stateful circuit we construct. Recall that in each
invocation, we compute masked wire values in the the circuit. In each layer, given the masked input wire
values, we use the multi-phase leakage-resilient XOR gadget to compute the masked output wire values. Note
that all masked output wire values can be computed in parallel.

The multi-phase leakage resilient XOR gadget contains two parts: the first part is the multi-phase robust
parity sharing generator which outputs the random source used to compute the XOR functions, and the second
part computes the XOR function by following the basic construction in Section 5. Both parts use the addition
circuit whose depth is logarithmic in the number of input bits. For the first part, the number of input bits
is bounded by the number of random bits required in the multi-phase robust parity sharing generator, i.e.,
O(t · log t|C|+ λ). For the second part, the number of input bits is bounded by O(t2 log2 |C|) as analysed in
Section 5.2. Thus, the depth of the private stateful circuit is bounded by O(Depth(C) · (log t+ log log |C|)) =
Õ(Depth(C)) (ignoring the logarithmic factors).

7.3 Leakage-resilient Private Circuits with the Canonical Decoder

In this part, we show how to construct a t-leakage-resilient private circuit with the canonical decoder. Recall
that in Theorem 1, for each output bit of the function f , it is equal to the parity of a block of output bits
of the t-leakage-resilient private circuit. However, the number of bits in each block is not restricted to t+ 1.
To obtain a t-leakage-resilient private circuit with the canonical decoder, we will compute a block of t + 1
bits for each output bit of f .

To this end, we consider a new variant of parity sharing generators.

29



Strong Multi-phase Parity Sharing Generators.

Definition 13 (Strong Multi-phase Parity Sharing Generators). Let p and n1, n2, . . . , np be positive integers,
G : {0, 1}m → {0, 1}n1 × {0, 1}n2 × . . . × {0, 1}np be a function, u be a vector of m random bits, and
r = (r(1), r(2), . . . , r(p)) = G(u), where r(j) ∈ {0, 1}nj for all j ∈ {1, 2, . . . , p}. For each r(j), let Aj be

an access structure of the output bits {r(j)
1 , r

(j)
2 , . . . , r

(j)
nj }. Let A =

⋃p
j=1Aj. G is a strong multi-phase

t-resilient parity sharing generator with respect to A if the following holds:

• For all j ∈ {1, 2, . . . , p}, the parity of the output bits r(j) is 0.

• Let ũ be a vector of m uniformly random bits. Let r̃ = (r̃(1), r̃(2), . . . , r̃(p)) ∈ {0, 1}n1 ×{0, 1}n2 × . . .×
{0, 1}np be uniformly random bits such that for all j ∈ {1, 2, . . . , p}, the parity of {r̃(j)

1 , r̃
(j)
2 , . . . , r̃

(j)
nj }

is 0. For any set W of at most t variables in {u1, u2, . . . , um}
⋃
A,

Dist((u, r),W ) = Dist((ũ, r̃),W ),

where Dist((u, r),W ) and Dist((ũ, r̃),W ) denote the distributions of the variables in W when they
are instantiated by (u, r) and (ũ, r̃) respectively.

Note that a strong multi-phase parity sharing generator is not implied by a multi-phase robust parity
sharing generator:

• A strong multi-phase parity sharing generator requires that for all k ∈ {0, 1, . . . , t}, any k input bits
should be independent of any t− k output bits.

• On the other hand, a multi-phase robust parity sharing generator allows a set of input bits (the set S
in Definition 9) to be related to a set of output bits (the set T in Definition 9).

On the other hand, the requirement of the independence of the input bits can be achieved by using
a t-resilient function similarly to strong t-wise independent PRG (See Section 3.2). Therefore, a strong
multi-phase parity sharing generator can be constructed by combining a t-resilient function and a multi-
phase parity sharing generator (i.e., no intermediate wires are probed), where the latter is implied by a
multi-phase robust parity sharing generator.

For m ≥ 2t·log t, we can construct a linear t-resilient function with input size 2m by using a Vandermonde
matrix. Let ` = m/t. Consider the finite field F2` . Let α1, . . . , α2t be 2t distinct field elements in F2` . A
Vandermonde matrix M of size 2t× t satisfies that Mij = (αi)

j for all i ∈ {1, 2, . . . , 2t} and j ∈ {1, 2, . . . , t}.
It is well known that the transpose of M can be used as a linear t-resilient function Ext : F2t

2` → Ft2` : for
input x ∈ F2t

2` , Ext(x) = MT · x. Note that Ext is also linear in the binary field.
Thus, relying on Theorem 6, we have the following corollary.

Corollary 1. For all positive integers p and n1, n2, . . . , np, let N =
∑p
i=1 ni and A be the access structure

defined above. There exists a PPT algorithm which takes (1t, 1λ,A) as input, and outputs a strong multi-
phase t-resilient parity sharing generator with respect to A with probability 1− 2−λ such that the input size
m = O(t · log tN + λ).

In particular, since our construction of a multi-phase robust parity sharing generator in Section 6 is
linear, and the t-resilient function constructed above is also linear, we obtain a linear and strong multi-phase
parity sharing generator.

Construction. Let no denote the number of output bits of f , and let y1, . . . , yno
denote these bits.

Then in the t-leakage-resilient private circuit from Theorem 1, the output consists of no additive shar-
ings [y1], [y2], . . . , [yno

], where [yi] contains O(t log s) bits and s is the size of the circuit that computes f .
Let G be a linear and strong multi-phase t-resilient parity sharing generator which satisfies that

• The number of phases is no.
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• The number of output bits associated with each phase is t+1. I.e., for all j ∈ {1, 2, . . . , no}, the output

bits of the j-th phase r(j) = (r
(j)
1 , . . . , r

(j)
t+1).

• For all j ∈ {1, . . . , no}, letAj = {r(j)
1 , . . . , r

(j)
t+1} be the access structure of the output bits {r(j)

1 , . . . , r
(j)
t+1}.

G is a linear and strong multi-phase t-resilient parity sharing generator with respect to A =
⋃no

j=1Aj .
I.e., only the output bits of G can be accessed.

Note that for any t input and output bits of G, by Definition 13, the distribution of these t bits should be
the same as that when they are instantiated by (ũ, r̃). Since any t bits in ũ are uniformly random, and any
t bits in r̃ are also uniformly random (note that for each phase j, r̃(j) is a vector of t+1 random bits subject
to parity 0), any t input and output bits of G are uniformly random.

Our goal is to compute an additive sharing 〈yj〉 = (r
(j)
1 , . . . , r

(j)
t , r

(j)
t+1⊕yj). I.e., the additive sharing 〈yj〉

is the output bits of the j-th phase of G except that the last bit is equal to the XOR of r
(j)
t+1 with yj . Recall

that G is linear. Therefore, each output bit of G is equal to the XOR of a subset of the input bits of G.
After computing the t-leakage-resilient private circuit from Theorem 1 and obtaining [y1], [y2], . . . , [yno

],

for all i ∈ {1, 2, . . . , t} and for all j ∈ {1, 2, . . . , no}, we compute r
(j)
i by using the leakage-tolerant XOR

gadget with the proper subset of the input bits of G. For all j ∈ {1, 2, . . . , no}, we compute r
(j)
t+1 ⊕ yj by

using the leakage-tolerant XOR gadget with the proper subset of the input bits of G as well as the bits in
[yj ].

We show that the above construction (including the t-leakage-resilient private circuit from Theorem 1)
gives us a t-leakage-resilient private circuit with the canonical decoder. Let C denote the t-leakage-resilient
private circuit from Theorem 1, and C ′ denote the circuit that computes 〈y1〉, 〈y2〉, . . . , 〈yno

〉 from [y1], [y2], . . . , [yno
].

Then the above construction is the concatenation of C and C ′, denoted by C ′′ = C ◦C ′. It is clear that the
output of C ′′ can be decoded by a canonical decoder. It is sufficient to show that any t wires in C ′′ can be
simulated without having access to the input and output of the function f .

First note that for all set of at most t wires in the leakage-tolerant XOR gadgets, they can be simulated
by the same number of input and output wires of the leakage-tolerant XOR gadgets. Since all intermediate
wires of C ′ are in the leakage-tolerant XOR gadgets, we only need to focus on the input and output wires of
C ′ . The input wires of C ′ contains the bits in [y1], [y2], . . . , [yno

] and the input bits of G. The output wires
of C ′ contains the bits in 〈y1〉, 〈y2〉, . . . , 〈yno

〉. Recall that any t input and output bits of G are uniformly
random. Therefore, any t probings of the union of the input bits of G and the bits in 〈y1〉, 〈y2〉, . . . , 〈yno〉
are also uniformly random. For the bits in [y1], [y2], . . . , [yno ], they are a part of C and can be simulated
as described in Theorem 1. Thus, the above construction is a t-leakage-resilient private circuit with the
canonical decoder.

We briefly analyse the randomness complexity.

• By Corollary 1, the input size of G is O(t · log tno + λ).

• We also need to invoke one more time of the leakage-tolerant XOR gadget for each output bit and the
input size of the XOR gadget is bounded byO(t·log s+t·log tno+λ). Recall that in the t-leakage-resilient
private circuit C from Theorem 1, we need to invoke s times of the leakage-tolerant XOR gadget, and
for each invocation of the leakage-tolerant XOR gadget, the input size is bounded by O(t2 · log2 s).
Thus, when the leakage-tolerant XOR gadgets are instantiated by a multi-phase leakage-tolerant XOR
gadget, the number of phases p = s+no = O(s), and N ≤ p·max{n1, n2, . . . , np} = O(s·t2 log2 s+s·λ).
By Theorem 6 and Lemma 2, we need O(t log ts+ t log λ+ λ) random bits for a multi-phase leakage-
tolerant XOR gadget.

• Recall that we need O(t · log s) random bits for the linear and strong 2t-wise independent PRG in the
outer construction.

In total, the randomness complexity of our construction is O(t log ts+ t log λ+ λ) random bits.
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Theorem 7. Any function f with circuit size s admits a t-private implementation (I, C,O) with the canonical
encoder I and decoder O where C uses O(t · log ts) random bits. Moreover, there exists a PPT algorithm
which takes (C̃f , 1

t, 1λ) as input, where C̃f is a circuit of size s that computes f , and outputs a t-private
implementation (I, C,O) with probability 1− 2−λ such that C uses O(t · log ts+ t log λ+ λ) random bits.
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