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Abstract. Achieving adaptive (or proactive) security in cryptographic protocols is notoriously difficult
due to the adversary’s power to dynamically corrupt parties as the execution progresses. Inspired
by the work of Benhamouda et al. in TCC 2020, Gentry et al. in CRYPTO 2021 introduced the
YOSO (You Only Speak Once) model for constructing adaptively (or proactively) secure protocols in
massively distributed settings (e.g. blockchains). In this model, instead of having all parties execute
an entire protocol, smaller anonymous committees are randomly chosen to execute each individual
round of the protocol. After playing their role, parties encrypt protocol messages towards the the next
anonymous committee and erase their internal state before publishing their ciphertexts. However, a
big challenge remains in realizing YOSO protocols: efficiently encrypting messages towards anonymous
parties selected at random without learning their identities, while proving the encrypted messages are
valid with respect to the protocol. In particular, the protocols of Benhamouda et al. and of Gentry et al.
require showing ciphertexts contain valid shares of secret states. We propose concretely efficient methods
for encrypting a protocol’s secret state towards a random anonymous committee. We start by proposing
a very simple and efficient scheme for encrypting messages towards randomly and anonymously selected
parties. We then show constructions of publicly verifiable secret (re-)sharing (PVSS) schemes with
concretely efficient proofs of (re-)share validity that can be generically instantiated from encryption
schemes with certain linear homomorphic properties. In addition, we introduce a new PVSS with proof
of sharing consisting of just two field elements, which as far as we know is the first achieving this, and
may be of independent interest. Finally, we show that our PVSS schemes can be efficiently realized
from our encyption scheme.

1 Introduction

Cryptographic protocols traditionally rely on secure channels among parties whose identities are
publicly known. However, while knowing parties’ identities makes it easy to construct secure chan-
nels, it also makes it easy for an adaptive (or mobile) adversary to corrupt parties as a protocol
execution proceeds. Recently, an elegant solution for this problem has been suggested [2,16]: instead
of keeping secret state throughout the execution, parties periodically transfer their state to ran-
domly selected anonymous parties, potentially after computing on this state (as is the case of MPC).
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YOSO model: We say protocols with the aforementioned property are in the YOSO (i.e. You
Only Speak Once) model, since parties are only required to act in a protocol execution when se-
lected at random, which potentially only happens once. The YOSO model is especially interesting
in massively distributed settings (e.g. blockchains), where a huge number of parties are potentially
involved but it is desirable to have only smaller committees execute a protocol for the sake of
efficiency. Using small committees saves computation and communication, and since the identity of
parties in the committee currently holding secret states is not known, an adversary cannot do better
than corrupt random parties. Recent work [21] improves the work of [16] by achieving guaranteed
output delivery in a constant number of rounds without relying on trusted setup.

Role Assignment: At the core of protocols in the YOSO model is a scheme for encrypting mes-
sages towards roles rather than parties. A party randomly selected to perform a role can decrypt
the messages sent to that role. This allows for executing traditional secret sharing [2] or MPC [16]
protocols among roles that are performed by different parties as the execution proceeds. Besides
passing confidential messages among parties assigned to certain roles, it is also paramount to allow
parties to authenticate outgoing messages on behalf of the role they have just performed. This task
has been modeled [16] and realized [2,18] as a functionality that outputs public keys for a random
subset of anonymous parties in such a way that these parties can both decrypt messages encrypted
under these keys and prove they were the rightful receivers. However, existing methods for role
assignment [2,18,7] are still based on powerful primitives (e.g. FHE), incur too high costs and,
most importantly, are incompatible with efficient techniques for publicly proving that encrypted
secret shares are valid.

In this work we design schemes for role assignment that are not only efficient in sending mes-
sages to parties selected in the future but also amenable to the currently best techniques for publicly
proving that encrypted messages are valid shares of a secret state, which is central to protocols in
the YOSO model.

1.1 Related Works

Keeping Secrets: The seminal solution of [2] starts by selecting an auxiliary committee via an
anonymous lottery (e.g. based on a VRF). Each party in this committee generates an ephemeral
key pair and publishes the ephemeral public key and an encryption of the ephemeral secret key un-
der the long-term public key of a party they choose at random. Encrypting towards an anonymous
party can be done by encrypting under its ephemeral public key. However, since corrupted parties in
the auxiliary committee will always choose other corrupted parties while the honest parties choose
at random, this method needs a corruption ratio of 1/4 of the parties in order to arrive at an honest
majority committee.

RPIR: The constraint on corruption ratio of [2] was subsequently solved in [18] via random-
index private information retrieval (RPIR). RPIR allows a client to retrieve a random index from
a database in such a way that the servers holding the database do not learn what index was re-
trieved. The solution of [18] consists in running a RPIR protocol with a database holding the
public keys of all parties and having parties in a committee execute the client using MPC, out-
putting re-randomized versions of the public keys output by RPIR. While this solution allows for
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working in an honest majority scenario and achieves better asymptotic efficiency than [2], the con-
crete complexity is still quite high.

Encryption to the Future: A different approach is taken in [7], which constructs a primitive
called Encryption to the Future (ETF). Instead of having committees actively participate in se-
lecting future committees and help them receive their messages, ETF allows for non-interactively
encrypting towards the winner of a lottery that is executed as part of an underlying blockchain
ledger. Also, it allows for a party to prove it was the winner of this lottery (i.e. the receiver of a
ciphertext) without exposing whether it won future lotteries. Although this solution can be con-
structed from simple tools like garbled circuits and oblivious transfer (after a setup phase), each
encryption still requires communication and computational complexities linear in the total number
of parties.

The ETF construction of [7] relies on a relaxation of Witness Encryption called Witness En-
cryption over Commitments (cWE), where one can encrypt a message towards the holder of an
opening of a commitment to a valid witness of an NP relation. More specifically, we are interested
in the case of Encryption to the Current Winner (ECW), where the data needed to determine the
party selected to perform a role is already in the underlying blockchain (but still does not reveal
who the party is). In order to realize ECW, each party commits to a witness of a predicate showing
they win a lottery for the current parameter. A party encrypting towards a role simply encrypts
the message towards the party who has such a committed witness to winning the lottery for a cur-
rent parameter. A party who wins can decrypt the message encrypted towards the role using their
witness. They can perform Authentication from the Past (AfP) on a message by doing a signature
of knowledge on that message using their lottery winning witness.

The ETF constructions of [7] suffer from a major drawback: every encryption towards an anony-
mously selected party has communication complexity O(nκ) where n is the total number of parties
and κ is the security parameter. Even if preprocessing is allowed, these constructions still require the
sender to publish n cWE ciphertexts or to have the eligible receivers perform a round of anonymous
broadcast that is only usable for a single encryption. On the other hand, the AfP constructions
only have O(κ) communication complexity.

PVSS Compatibility: A drawback in current role assignment [2,18,7] is that they are not
amenable to publicly verifiable secret (re)sharing. Both in YOSO proactive secret sharing [2] and
YOSO MPC [16], the committees executing each round of the protocol do not simply send unstruc-
tured messages but shares of a secret that must be verified. While this can be done via generic
non-interactive zero knowledge proofs of encrypted shares validity, such a solution incurs very high
computational and communication costs.

Publicly Verifiable Secret Sharing (PVSS): An integral part of YOSO protocols is having
each committee perform PVSS towards the next committee. A PVSS scheme allows for any party
to check that an encrypted share vector is valid. A number of PVSS constructions are known
[29,12,28,3,26,20] that different techniques for proving that a vector of encrypted shares are valid
shares of a given secret. Recently, the SCRAPE [8] and ALBATROSS [9] PVSS schemes have
significantly improved on the complexity of such schemes by making the share validity check and
reconstructions procedures cheaper than previous works. While these works are based on number
theoretical assumptions, a recent work has shown how to efficiently build PVSS from lattice based
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assumptions [17]. These works are not fit for the YOSO model because they require the parties to
know the identities (or rather the public keys) of the parties receiving the shares when checking
share validity, precluding (re)sharing towards anonymous parties. A key part of this work is that
we explore the fact that the share validity check of SCRAPE can be modified to work regardless
of the public keys used to encrypt the shares.

1.2 Our Contributions

In this work we address the issue of constructing simple ECW schemes amenable to efficient publicly
verifiable secret (re)sharing (PVSS) protocols. Our contributions are summarized as follows:

Simple Encryption to Future (ECW): We construct a simple ECW scheme based on a mixnet
and an additively homomorphic public key encryption scheme. Our scheme requires a setup
phase where a mixnet is used but this setup can be either done once and reused for multiple
times (using our reusable AFP) or preprocessed so that future encryptions can be done non-
interactively. Our ECW ciphertexts have size linear only in the number of parties who open them.

Reusable Private Authentication from the Past (AFP): We show how to reuse our ECW
setup even when a party performs multiple rounds of AFP, i.e. proving that it was selected to
decrypt a given ECW ciphertext. This scheme guarantees that the adversary cannot predict
which parties can decrypt future ECW ciphertexts while keeping the setup constant size.

Generic Efficient PVSS: We construct a generic PVSS protocol with efficient proofs of en-
crypted shares validity from any IND-CPA additively homomorphic encryption scheme with
an efficient proof of decryption correctness without any generic zero knowledge proofs, which
we call HEPVSS. This general result sheds new light on the construction on efficient PVSS
schemes.

New PVSS with Minimal Overhead: Moreover, we introduce a new PVSS construction named
DHPVSS with constant-size proof of sharing correctness which, as far as we know, is the first
PVSS to achieve this. More precisely, the PVSS communicates only the n encrypted shares
(which are one group element each) and two field elements for the proof. This may be of inde-
pendent interest for other applications, such as randomness beacons.

Efficient PVSS for Anonymous Committees based on ECW: We instantiate our PVSS con-
structions based on our ECW and AFP schemes along with a protocol for resharing a secret
towards a future random anonymous committee. This allows for parties to keep a secret alive,
which is a core component of YOSO MPC.

1.3 Our Techniques

In this section we highlight the main technical components of our contributions. We remark that
our main goal is providing simple constructions that yield efficient instantiations of PVSS towards
anonymous committees along with efficient AfP schemes allowing parties to prove they received
shares sent to a given role.
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Encryption to the Future We introduce a simple ECW protocol where each party chooses a
key pair in the system and then a mixnet is used to anonymize them. We can then define a simple
lottery predicate that selects one of these keys. The winner of the lottery can trivially know that
they have won this lottery. By combining this with an IND-CPA encryption scheme that encrypts a
message under that key, we can obtain IND-CPA ECW. Using a homomorphic encryption scheme
we can also encrypt to multiple lottery winners and prove that the same message is received by all
of them.

Authentication from the Past

The Easy Way: An easy way of obtaining reusable ECW setup is to repeat the lottery setup and
obtain multiple anonymized keys for each party. Then, any party can use a new anonymized public
key for each AFP tag. This ensures that the AFP scheme can be executed a bounded number
times before lottery winners can be linked to specific public keys in the setup and ciphertexts starts
betraying their receivers.

The Reusable Way: In Appendix F, we show that a party can prove membership in a given com-
mittee without needing to reveal its role in this committee. This is done by signing a message with
a ring signature [25] where the secret key corresponds to a public key in the committee. These
signatures hide the identity of the party. Moreover, we require the signature to be linkable [22], so
that no two parties can claim the same secret key. Using this and an anonymous channel, we can
construct an AfP that can be used multiple times without linking a party Pi to its setup public
key. More interestingly, we also present a protocol that leverages the presence of a dealer (which
could be a party that encrypted the message to that committee) to reduce the size of these proofs
of membership to constant (for the parties making the claims). This uses Camenisch-Lysyanskaya
signatures[6], where the dealer signs the public keys of the committee, and the parties can then
“complete” one of these signatures without revealing which one. We introduce a simple linkable
version of these signatures.

PVSS We introduce two constructions for PVSS. The first, HEPVSS, is based on a generic encryp-
tion scheme which enjoys certain linearity properties with respect to encryption and decryption, and
has the advantage that the security of the PVSS can be based on IND-CPA security of the scheme.
The homomorphic properties of the scheme allow for simple proofs of sharing correctness and recon-
struction. While we are only aware of El Gamal scheme satisfying the notion of the homomorphic
properties we need, we hope that a relaxed version of this abstraction allows to capture other en-
cryption schemes with homomorphic properties such as latticed-based assumptions or Paillier in
future work. In our second scheme DHPVSS, we introduce the idea of providing the dealer with an
additional key pair for share distribution. This idea is powerful in combination with a technique
used in SCRAPE to prove that encrypted shares lie on a polynomial of the right degree. The novelty
is that, while in SCRAPE this needed an additional discrete logarithm equality (DLEQ) proof for
each share, our new scheme requires a single DLEQ proof. This reduces the sharing correctness
proof to only 2 Zp-elements while each encrypted shares is still one group element.

We also introduce PVSS resharing protocols for both constructions, where a committee, among
which a secret is PVSSed, can create shares of the same secret for the next committee, in a publicly
verifiable way.
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PVSS Towards Anonymous Committees Finally, we show that we can replace standard
encryption and authentication in our PVSS protocols by ECW and AFP and thereby obtain PVSS
toward anonymous committees.

2 Preliminaries

2.1 Sigma-protocols

At several points of this paper we will require non-interactive zero knowledge arguments of knowl-
edge, where most of our statements are instances of a general structure where we want to prove
knowledge of preimage of some element via a vector-space homomorphism f : that is, let F be a
finite field, W and X be F-vector spaces, and f :W → X be a vector space homomorphism. Let

RPre = {(w, x) ∈ W ×X : x = f(w)}.

The standard (Schnorr-like) Σ-protocol πPre for this relation is as in Figure 1. It is well known
that ΠPre is a zero knowledge proof of knowledge with soundness error 1/|F| (see Appendix D.1).

Generic Σ-protocol ΠPre(w;x, f)

Proof of knowledge of witness w for x with respect to the relation RPre = {(w, x) ∈ W ×X : x = f(w)}.
Public parameters: Finite field F, vector spacesW,X over F, vector space homomorphism f :W → X , x ∈ X .
Protocol:
1. The prover samples r←$W, sends a = f(r) to the verifier.
2. The verifier samples e←$F, sends it to the sender.
3. The prover sends z ← r + e · w to the verifier.
4. The verifier accepts if z ∈ W and f(z) = a+ e · x.

Fig. 1. Generic Σ-protocol for knowledge of homomorphism-preimage

A non-interactive zero-knowledge (NIZK) proof of knowledge in the random oracle model is
obtained by applying the Fiat-Shamir transform (Figure 2).

Cyclic Group Homomorphism Preimage, DL Knowledge and DLEQ Knowledge Proofs.
Some useful examples of homomorphism-preimage relations RPre are given by discrete logarithm
and discrete logarithm equality. Indeed, a cyclic group G of prime order p has a vector space
structure over the field Zp, and a group homomorphism f : G → G′ between groups of order p is
also a Zp-vector homomorphism.4 Let G be a generator of G. Given X ∈ G, a discrete logarithm
DL proof of knowledge DL(w;G,X) asserts knowledge of w ∈ Zp with X = w ·G (we denote this as
w = DLG(X)). In the language above this is provided by ΠNI−Pre(w; (X), fG) with fG(w) = w ·G.
This is the non-interactive version of the well known Schnorr proof.

Similarly, let G, H be elements in G. Given X,Y ∈ G the discrete logarithm equality proof
DLEQ(w;G,X,H, Y ) is a non-interactive proof of knowledge of w ∈ Zp with w = DLG(X) =
DLH(Y ), which can be obtained by using ΠNI−Pre(w; (X,Y ), f(G,H)), where fG,H(w) := (w·G,w·H).

4This extends to direct products of groups of order p, i.e. W = G1 × · · · × Gm, X = G′1 × · · · × G′n and
f = (f1, . . . , fm) :W → X where fi : Gi → X are all group homomorphisms.
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Generic non-interactive argument of knowledge ΠNI−Pre(w;x, f)

Non-interactive argument of knowledge of witness for x for the relation RPre = {(w, x) ∈ W × X : x = f(w)} in
the random oracle model.
Public parameters: Finite field F, vector spaces W,X over F, vector space homomorphism f : W → X ,
x ∈ X , random oracle H : {0, 1}∗ → F. Let pp = (F,W,X ,H).

ΠNI−Pre.Prove(w; pp, x, f):

r←$W, a← f(r), e← H(x, a), z ← r + e · w,
return π ← (e, z)

ΠNI−Pre.Verify(pp, x, f, π):

Parse π = (e, z)
return accept if and only if z ∈ W and e = H(x, f(z)− e · x).

Fig. 2. Generic non-interactive argument of knowledge of homomorphism-preimage

2.2 Zp-linear Homomorphic Encryption

The results in this paper require encryption schemes with certain homomorphic properties, that al-
low for simple proofs of plaintext knowledge. These properties are attained by El Gamal encryption
scheme (described in Appendix A).

Definition 1 (Zp-linearly homomorphic encryption scheme). Let E = (E .Gen, E .Enc, E .Dec)
be a public key encryption scheme (see Appendix A for a definition), and let p be a prime number.
We say E is Zp-linearly homomorphic (Zp-LHE) if the plaintext space (P,�P), randomness space
(R,�R), ciphertext space (C,�C) each have a Zp-vector space structure and for all public keys pk
output by E .Gen, E .Encpk : P×R→ C is a Zp-vector space homomorphism, i.e. for all m1,m2 ∈ C,
ρ1, ρ2 ∈ R,

E .Encpk(m1; ρ1) �C E .Encpk(m2; ρ2) = E .Encpk(m1 �P m2; ρ1 �R ρ2).

Remark 1. Zp-linear homomorphic encryption schemes have simple (non-interactive) proofs of plain-
text (and randomness) knowledge, given by Figure 2. More conceretely, with notation as in that
Figure, we take W = P × R, X = C and the proof ΠNI−Pre((m, ρ); c, E .Encpk) for the relation
REnc = {((m, ρ), c) ∈ W ×X : c = E .Encpk(m; ρ)}.

Proofs of Decryption Correctness We will also need proofs of decryption correctness, where
of course the prover wants to keep their secret key hidden, i.e. proofs for the relation

RE,Dec = {(sk; (pk,m, c)) : (pk, sk) is a valid key-pair for E and m = E .Decsk(c)}.

If the prover knows the randomness under which the message was encrypted, the proving al-
gorithm E .ProveDec(sk; (pk,m, c)) can simply output that randomness π ∈ R; the verification
E .VerifyDec(pk,m, c, π) accepts if Encpk(m;π) = c.

Unfortunately El Gamal encryption scheme does not allow a decryptor to retrieve the random-
ness under which a message has been encrypted. Instead, a proof of correctness of decryption for
El Gamal can be constructed from the following property of this scheme, which we call Zp-linear
decryption.
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Definition 2. Let E = (Gen,Enc,Dec) be a Zp-linearly homomorphic encryption scheme and de-
note PK and SK the sets of public and secret keys respectively. E has Zp-linear decryption if:

– PK and SK are Zp-vector spaces.
– There exists a Zp-linear homomorphism F : SK → PK such that pk = F (sk) for all (pk, sk)

outputted by Gen.
– For all c ∈ C, the function Dc(sk) := Decsk(c) is Zp-linear in sk, i.e. for all sk1, sk2 ∈ SK, it

holds that Dc(sk1 �SK sk2) = Dc(sk1) �P Dc(sk2).

In this case we have the algorithms (E .ProveDec, E .VerifyDec) that constitute a NIZK proof for
RE,Dec :

Algorithm 1 E .ProveDec(sk, (pk,m, c))
W ← SK,X ← PK ×P× C,
pp← (Zp,W,X ,H)
w ← sk, x← (pk,m), f(·)← (F (·), Dc(·))
return π ← ΠNI−Pre.Prove(w; pp, x, f)

Algorithm 2 E .VerifyDec(pk,m, c, π)

W ← SK,X ← PK ×P× C
pp← (Zp,W,X ,H)
x← (pk,m), f(·)← (F (·), Dc(·))
return ΠNI−Pre.Verify(pp, x, f)

The El Gamal decryption function as usually described is not linear but affine, but we can easily
fix this by e.g. defining sk∗ = (sk∗1, sk

∗
2) = (1, sk) ∈ Z2

p and letting Decsk∗(C1, C2) := C2 ·sk∗1−C1 ·sk∗2.
Then DC(sk∗) is clearly a Zp-linear function.

2.3 Shamir Secret Sharing on Groups of Order p

The well known degree-t Shamir scheme allows to split a secret s ∈ Zp in n shares (where 0 ≤ t <
n < p) in such a way that any set of t+ 1 shares give full information about the secret s while any
set of t give no information on s.

Here we will consider situations where the secret is an element S = sG of a group G of order
p with generator G, but the dealer does not know s (and hence cannot apply the usual Shamir
sharing using s as secret). On the other hand, it is enough that the shares allow to reconstruct S
and not s. We define Shamir secret sharing in a group of order p as shown in Figure 3.(Shamir
secret sharing scheme over Zp is retrieved by setting G = (Zp,+), G = 1). We denote by Zp[X]≤t
the set of polynomials in Zp[X] of degree at most t.

2.4 The SCRAPE Test

In SCRAPE [8], a technique for checking correctness of Shamir sharing in publicly verifiable secret
sharing was introduced. Letting aside the details on how the technique works there, we are interested
in the following fact, which in turn comes from well known results in coding theory 5.

Theorem 1 (SCRAPE dual-code test). Let 1 ≤ t < n be integers. Let p be a prime number with
p ≥ n. Let α1, . . . , αn be pairwise different points in Zp. Define the coefficients vi =

∏
j∈[n]\{i}(αi−

αj)
−1. Let

C = {(m(α1), . . . ,m(αn)) : m(X) ∈ Zp[X]≤t}.
Then for every vector (σ1, . . . , σn) in Znp ,

(σ1, . . . , σn) ∈ C ⇔
n∑
i=1

vi ·m∗(αi) · σi = 0, ∀m∗ ∈ Zp[X]≤n−t−1.

5Specifically from the fact that the dual of a Reed-Solomon code is a generalized Reed-Solomon code of a certain
form.
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Shamir secret sharing on a group G of order p

Public parameters: Let pp = (G, G, p, t, n, {αi : i ∈ [0, n]}), where G is a group of prime order p with generator
G, 0 ≤ t < n < p are integers, and α0, α1, . . . , αn ∈ Zp are pairwise distinct.

GShamir.Share(pp, S), where pp as above, and S ∈ G:

m(X)←$ {m(X) ∈ Zp[X]≤t : m(α0) = 0}
for i ∈ [n], Ai ← S +m(αi) ·G
return (A1, . . . , An)

GShamir.Rec(pp, I, (Ai)i∈I), where I ⊆ [n], |I| = t+ 1 and (Ai)i∈I ∈ Gt+1:

return S′ ←
∑
i∈I λi,IAi,

where λi,I :=
∏
j∈I,j 6=i

α0−αj

αi−αj
for i ∈ I.

Fig. 3. Shamir sharing on a group of order p

2.5 Mix Networks (Mixnets)

In this paper we use a mixnet to anonymize a set of public encryption keys, each generated (with
their corresponding secret keys) by a party in the system. Let P be the set of all parties generating
these keys. In the coming sections we will assume such a mixnet and that the output is subsequently
be written to a blockchain. The output is a set of shuffled keys pkAnon,j : j ∈ [n], for which each
party knows the index that corresponds to their public key, but nothing else about the permutation.
Denote this permutation ψ : P → [n], i.e. party IDi knows j = ψ(i) and the corresponding key-pair.
We will use the fact that a party can encrypt a message under the public key pkAnon,j . It is clear
that party IDψ−1(j) can decrypt the message, while the rest of the parties (even the sender) remain
oblivious about the identity of the receiver. Notice that this setup can be instantiated via a verifiable
mixnet (e.g. [4]).

2.6 Encryption to the Future

We use the model for Encryption to the Future (EtF) from [7], which defines this primitive with
respect to a blockchain ledger that has an built-in lottery mechanism. Before presenting the defi-
nition of EtF and related concepts, we recall the model for blockchain ledgers from [19], which is
used to state the definitions of [7] and that captures properties of natural Proof-of-Stake (PoS)
based protocols such as [11]. We present a summary of the framework in Appendix B and discuss
below the main properties we will use in the EtF definitions.

Blockchain Structure A genesis block
B0 = (Sig.pk1, aux1, stake1), . . . , (Sig.pkn, auxn, staken), aux associates each party Pi to a signature
scheme public key Sig.pki, an amount of stake stakei and auxiliary information auxi (i.e. any other
relevant information required by the blockchain protocol). As in [11], we assume that the genesis
block is generated by an initialization functionality FINIT that registers all parties’ Sig.pki, auxi
when the execution starts and assigns stakei for Pi. Within the execution model of [19], FINIT is
executed by the environment (as defined in Appendix B). A blockchain B relative to a genesis
block B0 is a sequence of blocks B1, . . . , Bn associated with a strictly increasing sequence of slots
sl1, . . . , slm such that Bi = (slj , H(Bi−1), d, aux), where slj indicates the time slot that Bi occupies,
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H(Bi−1) is a collision resistant hash of the previous block, d is data and aux is auxiliary information
required by the blockchain protocol (e.g. a proof that the block is valid for slot slj). We denote by
Bd` the chain (sequence of blocks) B where the last ` blocks have been removed and if ` ≥ |B| then
Bd` = ε. Also, if B1 is a prefix of B2 we write B1 � B2. For the sake of simplicity, we identify each
party Pi participating in the protocol by its public key Sig.pki.

Evolving Blockchains In an EtF scheme, the future is defined with respect to a future state of the
underlying blockchain. In particular, we want to make sure that the initial chain B has “correctly”
evolved into the final chain B̃. Otherwise, the adversary can easily simulate a blockchain where it
wins a future lottery and finds itself with the ability to decrypt. Fortunately, the Distinguishable
Forking property from [19] allows us to distinguish a sufficiently long chain in an honest execution
from a fork generated by the adversary by looking at the combined amount of stake proven in
such a sequence of blocks. This property is used to construct a predicate called evolved(·, ·). First,
let Γ V = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol with validity predicate V
and where the (α, β, `1, `2)-distinguishable forking property holds. And let B← GetRecords(1λ, st)
and B̃← GetRecords(1λ, s̃t).

Definition 3 (Evolved Predicate). An evolved predicate is a polynomial time function evolved
that takes as input blockchains B and B̃

evolved(B, B̃) ∈ {0, 1}.

It outputs 1 if and only if B = B̃ or the following holds (i) V (B) = V (B̃) = 1; (ii) B and B̃
are consistent i.e. Bdκ � B̃ where κ is the common prefix parameter; (iii) Let `′ = |B̃| − |B| then
it holds that `′ ≥ `1 + `2 and u-stakefrac(B̃, `′ − `1) > β.

Blockchain Lotteries The vast majority of PoS-based blockchain protocols has an inbuilt lottery
scheme for selecting parties to generate blocks. In this lottery any party can win the right to
generate a block for a certain slot with a probability proportional to its relative stake in the
system. In the model from [7], a party can decrypt an EtF ciphertext if it wins this lottery. It can
be useful to conduct multiple independent lotteries for the same slot sl, which is associated to a
set of roles P1, . . . ,Pn. Depending on the lottery mechanism, each pair (sl,Pi) may yield zero, one
or multiple winners. A party with access to the blockchain can locally determine whether it is the
lottery winner for a given role by executing a procedure using its lottery witness skL,i related to
(Sig.pki, auxi, stakei), which may also give the party a proof of winning for others to verify. The
definition below from [7] details what it means for a party to win a lottery.

Definition 4 (Lottery Predicate). A lottery predicate is a polynomial time function lottery that
takes as input a blockchain B, a slot sl, a role P and a lottery witness skL,i and outputs 1 if and
only if the party owning skL,i won the lottery for the role P in slot sl with respect to the blockchain
B.
Formally, we write lottery(B, sl,P, skL,i) ∈ {0, 1}.

It is natural to establish the set of lottery winning keys WB,sl,P for parameters (B, sl,P). This is
the set of eligible keys satisfying the lottery predicate.
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Modelling EtF. We are now ready to present the model of [7] for encryption to the future winner
of a lottery (i.e. EtF). The blocks of an underlying blockchain ledger and their relative positions in
the chain are used to specify points in time. Intuitively, this notion allows for creating ciphertexts
that can only be decrypted by a party that is selected to perform a certain role R at a future slot sl
according to a lottery scheme associated with a blockchain protocol (i.e. a party that has a lottery
secret key skL,i such that lottery(B̃, sl,P, skL,i) = 1).

Definition 5 (Encryption to the Future). A pair of PPT algorithms E = (Enc,Dec) in the the
context of a blockchain Γ V is an EtF-scheme with evolved predicate evolved and a lottery predicate
lottery. The algorithms work as follows

Encryption. ct← Enc(B, sl,P,m) takes as input an initial blockchain B, a slot sl, a role P and a
message m. It outputs a ciphertext ct - an encryption to the future.

Decryption. m/⊥ ← Dec(B̃, ct, sk) takes as input a blockchain state B̃, a ciphertext ct and a
secret key sk and outputs the original message m or ⊥.

Correctness. An EtF-scheme is said to be correct if for honest parties i and j, there exists a
negligible function µ such that∣∣∣∣∣∣∣∣∣∣∣∣

Pr



view← EXECΓ (A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
ct← Enc(B, sl,P,m)

evolved(B, B̃) = 1

lottery(B̃, sl,P, sk) = 1

: Dec(B̃, ct, sk) = m

− 1

∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ).

Security. Security is defined with a game GameIND-CPA
Γ,A,Z,E described in Algorithm 3, where a chal-

lenger C and an adversary A execute an underlying blockchain protocol with an environment Z as
described in Appendix B. In this game, A chooses a blockchain B, a role P for the slot sl and two
messages m0 and m1 and sends it all to C, who chooses a random bit b and encrypts the message
mb with the parameters it received and sends ct to A. A continues to execute the blockchain until
an evolved blockchain B̃ is obtained and outputs a bit b′. If the adversary is a lottery winner for the
challenge role P in slot sl, the game outputs a random bit. If the adversary is not a lottery winner
for the challenge role P in slot sl, the game outputs b ⊕ b′. The reason for outputting a random
guess in the game when the challenge role is corrupted is as follows. Normally the output of the
IND-CPA game is b⊕ b′ and we require it to be 1 with probability 1/2. This models that the guess
b′ is independent of b. This, of course, cannot be the case when the challenge role is corrupted. We
therefore output a random guess in these cases. After this, any bias of the output away from 1/2
still comes from b′ being dependent on b.

Definition 6 (IND-CPA Secure EtF). An EtF-scheme E = (Enc,Dec) in the context of a blockchain
protocol Γ executed by PPT machines A and Z is said to be IND-CPA secure if, for any A and Z,
there exists a negligible function µ such that for λ ∈ N:∣∣∣2 · Pr

[
GameIND-CPA

Γ,A,Z,E = 1
]
− 1
∣∣∣ ≤ µ(λ).
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Algorithm 3 GameIND-CPA
Γ,A,Z,E

viewr ← EXECΓr (A,Z, 1λ) . A executes Γ with Z until round r
(B, sl,P,m0,m1)← A(viewrA) . A outputs challenge parameters
b←$ {0, 1}
ct← Enc(B, sl,P,mb)
st← A(viewrA, ct) . A receives challenge ct
viewr̃ ← EXECΓ(viewr,r̃)(A,Z, 1λ) . Execute from viewr until round r̃

(B̃, b′)← A(viewr̃A, st)
if evolved(B, B̃) = 1 then . B̃ is a valid evolution of B

if skAL,j /∈ WB̃,sl,P then . A does not win role P
return b⊕ b′

end if
end if
return b̂←$ {0, 1}

ECW as a Special Case of EtF. In this work, we focus on a special class of EtF called ECW
where the underlying lottery is always conducted with respect to the current blockchain state. This
has the following consequences

1. B = B̃ means that evolved(B, B̃) = 1 is trivially true.
2. The winner of role P in slot sl is already defined in B.

Notice that in ECW there is no need for checking if the blockchain has ’correctly’ evolved
and all lottery parameters (e.g. stake distribution and randomness extracted from the blockchain)
are static. Hence, when constructing an ECW scheme, the lottery winner is already decided at
encryption time. While an ECW is simpler to realize than a more general EtF, it is shown in [7]
that ECW can be used to instantiate YOSO MPC and then be transformed into EtF given an
identity based encryption scheme.

Authentication from the Past (AfP) When the winner of a role S sends a message m to a
future role R then it is typically also needed that R can be sure that the message m came from a
party P which, indeed, won the role S. This concept is formalized as an AfP scheme as follows.

Definition 7 (Authentication from the Past). A pair of PPT algorithms U = (Sign,Ver) is a
scheme for authenticating messages as a winner of a lottery in the past in the context of blockchain
Γ with lottery predicate lottery such that:

Authenticate. σ ← AfP.Sign(B, sl,S, sk,m) takes as input a blockchain B, a slot sl, a role S and
a message m. It outputs a signature σ that authenticates the message m.

Verify. {0, 1} ← AfP.Ver(B̃, sl, S, σ,m) uses the blockchain B̃ to ensure that σ is a signature on m
produced by the secret key winning the lottery for slot sl and role S.

Furthermore, an AfP-scheme has the following properties:

Correctness.∣∣∣∣∣∣∣∣∣∣∣∣
Pr



view← EXECΓ (A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
σ ← AfP.Sign(B, sl,S, sk,m)

lottery(B, sl, S, sk) = 1

lottery(B̃, sl, S, sk) = 1

: AfP.Ver(B̃, sl,S, σ,m) = 1

− 1

∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)
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In other words, an AfP on a message from an honest party with a view of the blockchain B can
attest to the fact that the sender won the role S in slot sl. If another party, with blockchain B̃
agrees, then the verification algorithm will output 1.

Security. The EUF-CMA game detailed in 4 is used to define the security of an AfP scheme. In this
game, the adversary has access to a signing oracle OAfP which it can query with a slot sl, a role S
and a message mi, obtaining AfP signatures σi = AfP.Sign(B, sl,S, skj ,mi) where skj ∈ WB,sl,S

i.e. lottery(B, sl, S, skj) = 1. The oracle maintains the list of queries QAfP. Formally, an AfP-
scheme U is said to be EUF-CMA secure in the context of a blockchain protocol Γ executed by
PPT machines A and Z if there exists a negligible function µ such that for λ ∈ N:

Pr
[
GameEUF-CMA

Γ,A,Z,U = 1
]
≤ µ(λ)

Algorithm 4 GameEUF-CMA
Γ,A,Z,U

view← EXECΓ (A,Z, 1λ) . A executes Γ with Z
(B, sl, S,m′, σ′)← AOAfP(viewA)
if (m′ ∈ QAfP) ∨ (skAL,j ∈ WB,sl,S) then . AOAfP won or queried illegal m′

return 0
end if
viewr̃ ← EXECΓ(viewr,r̃)(A,Z, 1λ) . Execute from viewr until round r̃

B̃← GetRecords(viewr̃i )
if evolved(B, B̃) = 1 then

if Ver(B, sl, S, σ′,m′) = 1 then . A successfully forged an AfP
return 1

end if
end if
return 0

AfP Privacy The specific privacy property we seek is that an adversary, observing AfP tags from
honest parties, cannot use this information to enhance its chances in predicting the winners of
lotteries for roles for which an AfP tag has not been published.

Definition 8 (AfP Privacy.). An AfP scheme U with corresponding lottery predicate lottery is
private if a PPT adversary is unable to distinguish between the scenarios defined in 5 and 6 with
more than negligible probablity in the security parameter.

Scenario 0 (b = 0) In this scenario (5) the adversary is first running the blockchain Γ together
with the environment Z. At round r the adversary is allowed to interact with the oracle OAfP as
described in 7. The adversary then continues the execution until round r̃ where it ouputs a bit
b′.

Scenario 1 (b = 1) This scenario (6) is identical to scenario 0 but instead of interacting with
OAfP, the adversary interacts with a simulator S.
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Algorithm 5 b = 0

viewr ← EXECΓr (A,Z, 1λ)
AOAfP(viewrA)
viewr̃ ← EXECΓ(viewr,r̃)(A,Z, 1λ)

return b′ ← AOAfP(viewr̃A)

Algorithm 6 b = 1

viewr ← EXECΓr (A,Z, 1λ)
AS(viewrA)
viewr̃ ← EXECΓ(viewr,r̃)(A,Z, 1λ)

return b′ ← AS(viewr̃A)

We let GameID-PRIV
Γ,A,Z,U ,E denote the game where a coinflip decides whether the adversary is executed

in scenario 0 or scenario 1. We say that the adversary wins the game (i.e. GameID-PRIV
Γ,A,Z,U ,E = 1) iff

b′ = b. Finally, an AfP scheme U is called private in the context of the blockchain Γ and underlying
lottery predicate lottery if the following holds for a negligible function µ.

Pr
[
GameID-PRIV

Γ,A,Z,U ,E = 1
]
≤ 1/2 + µ(λ)

3 ECW based on Zp-Linearly Homomorphic Encryption

This section presents an ECW protocol based on a Zp-linearly homomorphic encryption scheme
described in Section 2.2 and a mixnet (Section 2.5). Together with the ECW, we introduce an AfP
scheme - a mechanism that allows a committee member to authenticate messages. The two schemes
will be the backbone of the anonymous PVSS presented in Section 6. Before presenting the actual
ECW and AfP protocols, we introduce the underlying lottery predicate that will be the cornerstone
in our two schemes.

3.1 Lottery Predicate

We assume a running blockchain as described Section B and a function param that has access to
the blockchain state. During the setup, each party samples an encryption key pair (skE,i, pkE,i)
and inputs pkE,i to the mixnet (Section 2.5). The output of the mixnet is a tuple {(j, pkAnon,j) :
j ∈ [n]} which is written on the blockchain and accessible to every party through param func-
tion. The function param takes as input the blockchain B and the slot sl and outputs a tuple
({(j, pkAnon,j)}j∈[n], η) ← param(B, sl). Here, (j, pkAnon,j) is equal to (ψ(i), pkE,i) for the permuta-
tion ψ defined by the mixnet. Finally, η is the public randomness from the blockchain corresponding
to B and sl. Not, that only the owner of skE,i knows j such that pkAnon,j = pkE,i. LetH : {0, 1}∗ → [n]
be a hash function that outputs a number that points to a specific index in the list of public keys.
The lottery predicate lottery is detailed below.

Algorithm 7 lottery(B, sl,P, skL,i)

({(j, pkAnon,j)}j∈[n], η)← param(B, sl)
(pkE,i, skE,i)← skL,i
k ← H(sl||P||η)
return 1 iff pkE,i = pkAnon,k
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It is easy to see that the lottery described above associates a single party (from the set of
eligible parties) with the role P. Furthermore, the party can locally check if it won the lottery by
checking that the output of the hash function points to its own public key in the permuted set.
Crucially, the party winning the lottery can stay covert since no other party can link the winning
lottery key to the owner of the corresponding secret key. These properties will be useful when we
want to encrypt shares towards an anonymous committee.

3.2 ECW Protocol

This section introduces a ECW protocol (Figure 4) based on the lottery predicate presented in
Section 3.1. We note that ECW is just a restricted version of EtF where the lottery is conducted
wrt. the current blockchain B and slot sl. Thus, all definitions in Section 2.6 applies to ECW
schemes too.

ECW Protocol

Public parameters: A prime p, a Zp-linearly homomorphic encryption scheme E = (E .Gen, E .Enc, E .Dec) with
notation as in Section 2.2 and a lottery as described in Section 3.1.
Set-up:
1. Every party runs E .Gen() obtaining a key pair (skE,i, pkE,i).
2. Each party inputs pkE,i to the mixnet. The output of the mixnet is a tuple {(j, pkAnon,j) : j ∈ [n]} which is

written on the blockchain and accessible to every party when using the param function.
Encryption protocol: Input (B, sl,P) and m ∈ P.
1. Run param(B, sl) and obtain ({(l, pkAnon,l)}l∈[n], η).
2. Obtain random index by k ← H(sl||P||η).
3. Choose ρ in R and set c = E .EncpkAnon,k (m, ρ).
4. Sender outputs c.

Decryption protocol: Input for party i is B, skL,i and c.
1. Checks that lottery(B, sl,P, skL,i) = 1.
2. Outputs m = E .DecskAnon,i(c).

Fig. 4. ECW Protocol

Theorem 2 (IND-CPA ECW). Let E be an IND-CPA secure Zp-linearly homomorphic encryp-
tion scheme. The construction in Figure 4 with lottery predicate as in Section 3.1 is an IND-CPA
secure ECW (as in Definition 6).

(See proof sketch in Section C)

3.3 AfP Protocol

In this section we present our AfP protocol. It is described in Figure 5 and is based on a Signature of
Knowledge (SoK) [10]. A SoK scheme is a pair of algorithms (SoK.sign,SoK.verify) and is defined in
context of a relation R. We consider statements of the form x = (B, sl,P) and witnesses w = sk. We
say that R(x = (B, sl,P), w = sk) = 1 iff lottery(B, sl,P, sk) = 1. A signature is produced by running
σ ← SoK.sign(x,w,m). And it can be verified by checking that the output of SoK.verify(x, σ,m) is 1.
Our AfP uses the SoK to sign m under the knowledge of skL,i such that lottery(B, sl,P, skL,i) = 1.
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AfP Protocol

Public parameters and Set-up as described in Figure 4 plus additional setup for the SoK scheme SoK =
(SoK.sign,SoK.verify).
Authentication protocol: Input for party i is (B, sl,P) and m ∈ P.
1. Checks that lottery(B, sl,P, skL,i) = 1.
2. Constructs an SoK on the message m of knowledge of skL,i such that lottery(B, sl,P, skL,i) = 1 resulting in

σ ← SoK.sign((B, sl,P), skL,i).
3. Sender outputs σ ← σSoK.

Verification protocol: Input is (B, sl,P, σ,m)
1. Parses σ as the SoK signature σSoK.
2. Verifies that σSoK is a valid SoK on the message m proving knowledge of skL,i. I.e. it runs b ←

SoK.verify((B, sl,P), σSoK,m).
3. Verifier outputs b.

Fig. 5. AfP Protocol

This will exactly attest that the message m was sent by the winner of the lottery for P. An
instantiation of this AfP protocol could use DL proofs (Section 2.1).

Theorem 3 (EUF-CMA AfP). Let E be an IND-CPA secure and Zp-linearly homomorphic
encryption scheme and let SoK be a simulatable and extractable SoK scheme. The construction in
Figure 5 with lottery predicate as in Section 3.1 is EUF-CMA AfP as defined in Definition 7.

(See proof sketch in Section C)

AfP Privacy The privacy property of an AfP scheme says that no adversary can distinguish
between interacting with an AfP oracle OAfP and a simulator S during a blockchain execution. In-
tuitively, this provides the guarantee that observing other AfP tags does not enhance an adversary’s
chance of guessing future lottery winners.

Theorem 4 (AfP Privacy). Assume E, lottery and SoK scheme as in 6. The construction in
Figure 5 has AfP privacy as in Definition 8.

(See proof sketch in Section C).

An AfP based on the setup presented in Figure 4 will not provide a good foundation for YOSO-MPC
or even just a proactive secret sharing scheme. The reason is, that as soon as a party IDi publishes
an AfP tag, any other party can verify that IDi won the lottery and, thus, link the identity of IDi

to the public key pkAnon,ψ(i) from the output of the mixnet. This will ruin the setup for this party
when future lotteries are conducted. More importantly, a powerful adversary is able to identify any
subsequent ECW ciphertexts towards this party and can design its corruption strategy accordingly.
What we want is a new ephemeral public key pkAnon,ψ(i) for each party and for each slot sl in the
blockchain execution where an AfP is produced. Note that a new lottery setup is necessary for each
slot sl even though different parties are producing AfP tags in different slots. The reason is that
observing any AfP tag, inadvertently, skews the probability distribution and helps the adversary
in guessing future lottery winner.
A simple way to solve the above issue is to repeat the lottery setup and obtain multiple vectors of
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the format {(j, pkAnon,j) : j ∈ [n]}. Then, any party can use a new anonymized public key for each
AfP tag. We describe this property as bounded AfP privacy. Bounded AfP privacy ensures that
the AfP scheme can be executed a bounded number times before lottery winners can be linked to
specific public keys in the setup and ECW ciphertexts starts betraying their receivers. Note that
the idea of generating multiple lottery setups in batches (preprocessing) can result in more efficient
protocols. But it has the downside that, while using the preprocessed public keys, the number of
parties in the system is static.
In Section 6 we look at how to use the ECW and AfP in an anonymous PVSS protocol where we
want encrypt towards multiple parties. In such a setting we can use linkable ring signatures (Section
F) to prove membership in a committee without directly revealing our public key in the setup.

3.4 AfP with Reusable Setup

In Appendix F, we describe an efficient NIZK that allows for a party IDi to prove knowledge of a
lottery secret key skL,i such that lottery(B, sl,Pj , skL,i) = 1 for Pj ∈ {P1, . . . ,Pn} without revealing
Pj . Using this NIZK and an anonymous channel, we can construct an AfP that can be used multiple
times without linking a party Pi to its setup public key. In order to generate an AfP on message
m on behalf of role P in slot sl, Pi with skL,i such that lottery(B, sl,P, skL,i) = 1 first generates a
NIZK π proving knowledge of skL,i such that lottery(B, sl,Pj , skL,i) = 1 for Pj ∈ {P1, . . . ,Pn}. Now
Pi generates an SoK σ on the message m of knowledge of a valid proof π for the aforementioned
statement. IDi publishes σ through an anonymous channel, avoiding its identity to be linked to
the set {P1, . . . ,Pn}. The security and privacy guarantees for this AfP follow in a straightforward
way from our previous analysis. While using this construction has a clear extra cost in relation to
our simple AfP, we show in Appendix F.2 how to efficiently perform such a reusable setup AfP on
a set of ciphertexts, which is useful for our resharing application.

4 Publicly Verifiable Secret Sharing

4.1 Model

We define a publicly verifiable secret sharing (PVSS) scheme with t privacy and t+1-reconstruction,
based on the models provided in [28,26,20,8]. The goal is for a dealer to share a secret S ∈ G to
a set of n parties P = {P1, · · · , Pn}, so that t + 1 shares will be needed to reconstruct the secret
and no information will be revealed from t shares. We require public verifiability for correctness
of sharing by the dealer, and for reconstruction of the secret by a set of t + 1 parties. Due to this
requirement, the protocol is entirely carried out using a public ledger.

We provide the syntax below. A modification we introduce with respect to the usual model is
that we include asymmetric key pairs for dealers and an additional initial round where the parties
can broadcast an ephemeral public key. This will allow for more efficient constructions as we will
see in Section 4.3.

Setup

– Setup(1λ) outputs public parameters pp.
– DKeyGen(pp), performed by the dealer, outputs a key pair (pkD, skD).
– KeyGen(pp, idi), performed by i-th share receiver, outputs a key-pair (pki, ski).
– VerifyKey(pp, id, pk), performed by a public verifier, outputs 0/1 (as a verdict on whether pk is

valid).

17



Distribution

– Dist(pp, pkD, skD, {pki : i ∈ [n]}, S) performed by the dealer, and where S ∈ G is a secret,
outputs encrypted shares Ci : i ∈ [n] and a proof PfSh of sharing correctness.

Verification

– Verify(pp, pkD, {(pki, Ci) : i ∈ [n]},PfSh) performed by the public verifier outputs 0/1 (as a
verdict on whether the sharing is valid).

Reconstruction

– DecShare(pp, pkD, pki, ski, Ci), performed by a share receiver, outputs a decrypted share Ai and
a proof PfDeci of correct decryption.

– VerifyDec(pp, pkD, Ci, Ai,PfDeci) outputs 0/1 (as a verdict on whether Ai is a valid decryption
of Ci).

– Rec(pp, {Ai : i ∈ T }) for some T ⊆ [n] of size t+ 1 outputs a secret S. We will only apply this
algorithm to inputs where T is of size t + 1 and such that all Ai have passed the verification
check.

We let PKD and PK contain all key pairs output by DKeyGen and KeyGen respectively. For non–
deterministic algorithms we sometimes explicitly reference the randomness r input. For example,
Dist(pp, pkD, skD, {pki : i ∈ [n]}, S; r). One of our constructions will not require pkD, skD and con-
sequently DKeyGen. In that case we omit these arguments from the inputs to the other algorithms.

We require a PVSS to satisfy correctness, verifiability and IND1-secrecy.

Definition 9 (Correctness). A PVSS satisfies correctness if for each secret S ∈ G and for any
set of identifiers {idi : i ∈ [n]}

Pr



pp← Setup(1λ, t, n);
(pkD, skD)← DKeyGen(pp);

∀i ∈ [n] (pki, ski)← KeyGen(pp, idi);
({Ci : i ∈ [n]},PfSh)←

Dist(pp, pkD, skD, {pki : i ∈ [n]}, S);
∀i ∈ [n] (Ai,PfDeci)←

DecShare(pp, pkD, pki, ski, Ci);
S′ ← Rec(pp, {Ai : i ∈ [n]});

:

∀i ∈ [n]VerifyKey(pp, idi, pki) = 1
∧Verify(pp, pkD,
{(pki, Ci) : i ∈ [n]},PfSh) = 1
∧∀i ∈ [n]VerifyDec(pp, pkD,
pki, Ci, Ai,PfDeci) = 1
∧S′ = S


= 1.

Verifiability The verifiability requirement ensures that an adversary must honestly follow the pro-
tocol. This means that it can be verified that parties honestly generate their ephemeral public
keys (key generation), the dealer outputs encrypted shares for a secret (distribution), and that the
parties honestly decrypt their shares in reconstruction (decryption).

Definition 10 (Verifiability of Key Generation). A PVSS satisfies verifiability of key gener-
ation if there exists a negligible function µ(λ)such that∣∣∣∣Pr

[
pp← Setup(1λ, t, n);

(pkD, id, pk)← A(pp);
:
VerifyKey(pp, id, pk) = 1
∧@sk s.t. (sk, pk) ∈ PK

]∣∣∣∣ ≤ µ(λ).

18



Definition 11 (Verifiability of Distribution). A PVSS satisfies verifiability of distribution if
there exists a negligible function µ(λ)such that∣∣∣∣∣∣∣∣∣∣∣∣

Pr


pp← Setup(1λ, t, n);

(pkD, {(pki, Ci) : i ∈ [n]},PfSh)
← A(pp);

:

Verify(pp, pkD, {(pki, Ci) : i ∈ [n]},PfSh)
= 1
∧@S, skD, r s.t.
((skD, pkD) ∈ PKD∧
Dist(pp, pkD, skD, t, {pki : i ∈ [n]}, S; r)
= ({Ci : i ∈ [n]}, ·))



∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ).

Definition 12 (Verifiability of Decryption). A PVSS satisfies verifiability of decryption if
there exists a negligible function µ(λ)such that∣∣∣∣∣∣Pr

 pp← Setup(1λ, t, n);
(pkD, pk, C,A,PfDec)← A(pp);

:
VerifyDec(pp, pkD, pk, C,A,PfDec) = 1
∧@(sk, r) s.t.((sk, pk) ∈ PK∧
DecShare(pp, pkD, pk, sk, C; r) = (A, ·))

∣∣∣∣∣∣
≤ µ(λ).

Indistinguishability of Secrets (IND-1 Secrecy) We now present the IND-1 Secrecy definition from [8].
We have modified this definition to fit the adjusted syntax because Dist can no longer be performed
by the adversary (as it takes skD as input). We now provide a DIST oracle that will return the
outputs of the Dist algorithm. To capture that the public keys of the parties should be ephemeral,
we do not allow the public keys of parties that are used in the challenge to be input to this oracle.
We therefore allow the adversary to output an extra n− k keys.

Algorithm 8 Gameind-secrecy,bA,PVSS

procedure DIST((U , S′))
if U * [n+ 1, k] or |U| 6= n then

return ⊥
end if
({C′i : i ∈ [n]},PfSh)← Dist(pp, pkD, skD, t, n, {pki : i ∈ U}, S′)
return ({C′i : i ∈ [n]},PfSh)

end procedure
procedure Gameind-secrecy,bA,PVSS (λ)

pp← Setup(1λ, t, n), (pkD, skD)← DKeyGen(pp)
∀i ∈ [n− t] (pki, ski)← KeyGen(pp, i)
({pki : i ∈ [n− t+ 1, n]}, {pki : i ∈ [n+ 1, k]})← A(pp, pkD, {pki : i ∈ [n− t]})
if ∃i ∈ [n− t+ 1, k] such that VerifyKey(pp, i, pki) = 0 then

return 0
end if
S0, S1 ←$G, ({Ci : i ∈ [n]},PfSh)← Dist(pp, pkD, skD, t, {pki : i ∈ [n]}, S0)
b′ ← ADIST(Sb, {Ci : i ∈ [n]},PfSh)
return b′

end procedure
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Definition 13 (IND-1 Secrecy). A PVSS satisfies indistinguishability of secrets if, for any PPT
adversary A, there exists a negligible function µ(λ)such that∣∣∣Pr

[
Gameind-secrecy,0A,PVSS (λ) = 1

]
− Pr

[
Gameind-secrecy,1A,PVSS (λ) = 1

]∣∣∣ ≤ µ(λ).

4.2 HEPVSS: Generic PVSS from Zp-LHE Scheme

We present in Figure 6 our construction for a PVSS scheme HEPVSS based on a Zp-LHE scheme
with proof of correct decryption. This construction does not require the dealer to hold a key pair or
parties to prove honest generation of keys and therefore we remove this from the syntax. Moreover,
because the dealer does not have a key pair, here we do not require the public keys pki to be
ephemeral.

The construction is relatively straightforward: the dealer construct the (group) Shamir sharing
of the secret, and encrypts the shares using the Zp-LHE scheme, resulting in cyphertexts Ci. The
sharing correctness proof needs to assert, not only that each Ci is individually a correct encryption,
but also that the underlying plaintext messages are evaluations of a polynomial of degree at most
t. Here we use the fact that the set of polynomials of degree at most t is a vector space, and the
map that sends a polynomial to its evaluation in some point is linear, so we can capture the above
statement in terms of knowledge of preimage of a certain linear map. For the proofs of security
(correctness, indistinguishability of secrets and verifiability) we refer to the full version.

4.3 DHPVSS: A PVSS with Constant-Size Sharing Correctness Proof

We now give an optimized construction of a PVSS with a proof of sharing correctness consisting
of just two field elements. The PVSS scheme, which we call DHPVSS, has IND1-secrecy under the
DDH assumption.

We explain the idea of the construction next: Let Ai = ai · G be (purportedly) group Shamir
shares for a secret S ∈ G. A SCRAPE check (Theorem 1) consists on the verification

∑n
i=1 vi ·

m∗(αi) · ai
?
= 0, or alternatively

n∑
i=1

vi ·m∗(αi) ·Ai
?
= O,

for O the identity element of G. Here vi are fixed coefficients dependent on the αi and m∗(X) is
sampled uniformly at random from Zp[X]≤n−t−2. If it is not true that all ai are of the form m(αi)
for some polynomial m(X) ∈ Zp[X]≤t, then the check succeeds with probability at most 1/p.

In [8], the encrypted shares were Ci = ai · pki. Because these are in different bases the check
above cannot be directly applied on the Ci, and then the strategy consisted on sending additional
elements ai ·H (for some group generator H), proving that the underlying ai’s are the same, and
carrying out the check on these ai ·H. All this introduces overhead which is linear in n.

Instead, in DHPVSS, the dealer has a key-pair (skD, pkD), with pkD = skD · G, and encrypts
Ai as Ci = Ai + skD · Ei, where Ei = ski · G is an ephemeral public key of the i-th party. Note
that skD · Ei can be seen as a shared Diffie-Hellman key between dealer and the i-th party or,
alternatively, Ci can be seen as an El-Gamal encryption of Ai under Ei with randomness skD.

The advantage is that now
∑n

i=1 vi ·m∗(αi) ·Ai
?
= O is equivalent to

n∑
i=1

vi ·m∗(αi) · Ci
?
= skD ·

(
n∑
i=1

vi ·m∗(αi) · Ei

)
,
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Algorithms for Public Verifiable Secret Sharing Scheme HEPVSS

HEPVSS.Setup(1λ, t, n):

(G, G, p, E)←$G(1λ). Choose pairwise distinct α0, α1, · · ·αn ∈ Zp
return pp = (G, G, p, t, n, {αi : i ∈ [0, n]}, E)

HEPVSS.KeyGen(pp, id):

return (sk, pk)←$ E .Gen(1λ)

HEPVSS.Dist(pp, {pki : i ∈ [n]}, S):

Parse pp as (G, G, p, n, {αi : i ∈ [0, n]}, E) := (ppSh, E)
({Ai : i ∈ [n]},m(X))← GShamir(ppSh, S)
for i ∈ [n] do

ρi ←$R, Ci ← E .Encpki(Ai, ρi)
end for
W ← G× Zp[X]≤t ×Rn, X ← {0} × Cn, ppπ ← (Zp,W,X ,H) w ← (S,m(X), ρ1, . . . , ρn),
x← (0, C1, . . . , Cn)

Let f given by
f(w) := (m(α0), E .Encpk1(S +m(α1) ·G; ρ1), . . . , E .Encpkn(S +m(αn) ·G; ρn))

PfSh ← ΠNI−Pre.Prove(w; ppπ, x, f)
return ({Ci : i ∈ [n]},PfSh)

HEPVSS.Verify(pp, {(pki, Ci) : i ∈ [n]},PfSh):
return ΠNI−Pre.Verify(ppπ, x, f,PfSh), with W,X , ppπ, x, f as in HEPVSS.Dist

HEPVSS.DecShare(pp, pk, sk, C):

A← Decsk(C), PfDec ← E .ProveDec(A,C, pk)
return (A,PfDec)

HEPVSS.VerifyDec(pp, pki, Ai, Ci,PfDeci):

return E .VerifyDec(Ai, Ci, pki,PfDeci)

HEPVSS.Rec(pp, {Ai : i ∈ T }):
return GShamir.Rec(pp, {Ai : i ∈ T })

Fig. 6. Algorithms for HEPVSS

which is one single DLEQ proof DLEQ(skD;G, pkD, U, V ) for publicly computable

U =
n∑
i=1

vi ·m∗(αi) · Ei, V =
n∑
i=1

vi ·m∗(αi) · Ci.

One detail is that, as opposed to the PVSS in [8] (where m∗(X) was locally sampled by the verifier),
the prover needs to know m∗(X) so this is sampled via a random oracle. The algorithms can be
found in Figure 7 and Figure 8.

Security We prove that DHPVSS satisfies correctness, indistinguishability of secrets and verifia-
bility in Appendix D.3.
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Algorithms for PVSS scheme DHPVSS, Setup and Distribution

DHPVSS.Setup(1λ, t, n):

(G, G, p)←$G(1λ). Choose pairwise distinct α0, α1, · · ·αn ∈ Zp
∀i ∈ [n] vi ←

∏
j∈[n]\{i}(αi − αj)

−1

return pp = (G, G, p, t, n, α0, {(αi, vi) : i ∈ [n]})

DHPVSS.DKeyGen(pp):

skD ←$Z∗p, pkD ← skD ·G
return (pkD, skD)

DHPVSS.KeyGen(pp, id):

sk←$Z∗p, E ← sk ·G, Ω ← DL(sk;G,E, id), pk← (E,Ω)
return (pk, sk)

DHPVSS.VerifyKey(pp, id, pk):

parse pk as (E,Ω)
return accept iff Ω is valid w.r.t G,E, id

DHPVSS.Dist(pp, pkD, skD, {pki : i ∈ [n]}, S):

parse pki as (Ei, Ωi), pp as (G, G, p, t, n, α0, {(αi, vi) : i ∈ [n]})
ppSh ← (G, G, p, t, n, {αi : i ∈ [0, n]})
({Ai}i∈[n],m(X))← GShamir.Share(ppSh, S)
∀i ∈ [n], Ci ← skD · Ei +Ai
m∗ ← H(pkD, {(pki, Ci) : i ∈ [n]}) , for a RO H : {0, 1}∗ → Zp[X]≤n−t−2

V ←
∑n
i=1 vi ·m

∗(αi) · Ci, U ←
∑n
i=1 vi ·m

∗(αi) · Ei
PfSh ← DLEQ(skD;G, pkD, U, V )
return ({Ci : i ∈ [n]},PfSh)

Fig. 7. Algorithms for PVSS scheme DHPVSS, Setup and Distribution

Communication Complexity Comparison. The communication complexity of DHPVSS.Dist is
(n+2) log p bits. In contrast, HEPVSS.Dist instantiated with El Gamal is of (3n+3) log p bits. Secret
distribution in SCRAPE [8] requires (3n+1) log p bits, which was reduced to (n+ t+2) log p bits in
ALBATROSS [9]. Therefore DHPVSS.Dist obtains an additive saving of t log p bits with respect to
the best previous alternative. The communication of both DHPVSS.DecShare and HEPVSS.DecShare
is 3 log p bits. The share decryption complexities in [8] and [9] are similar to ours. More details can
be found in Appendix E.

5 PVSS Resharing

In this section we introduce protocols that allow a committee Cr of size nr, among which a secret
has been PVSSed with an underlying tr-threshold Shamir scheme, to create a PVSS of the same
secret for the next committee Cr+1 of size nr+1 and with threshold tr+1. By design, the protocols
will keep the secret hidden from any adversary corrupting at most tr parties from Cr and tr+1 from
Cr+1, and will be correct as long as there are tr + 1 honest parties in Cr. In particular, this can be
used by a party P to transmit a message to a committee in the future, by keeping this secret being
reshared among successive committees and setting the last Shamir threshold to be 0.

22



Algorithms for PVSS scheme DHPVSS, Verification and Reconstruction

DHPVSS.Verify(pp, pkD, {(pki, Ci) : i ∈ [n]},PfSh):
parse pki as (Ei, Ωi), pp as (G, G, p, t, n, {(αi, vi) : i ∈ [n]})
m∗ ← H(pkD, {(pki, Ci) : i ∈ [n]})
V ←

∑n
i=1 vim

∗(αi) · Ci, U ←
∑n
i=1 vim

∗(αi) · Ei
return accept iff PfSh is valid w.r.t G, pkD, U, V

DHPVSS.DecShare(pp, pkD, pk, sk, C):

parse pk as (E,Ω)
A′ ← C − sk · pkD
PfDec ← DLEQ(sk;G,E, pkD, C −A′)
return (A′,PfDec)

DHPVSS.VerifyDec(pp, pkD, pki, Ci, Ai,PfDeci):

parse pki as (Ei, Ωi)
return accept iff PfDeci is valid w.r.t G,Ei, pkD, Ci −Ai

DHPVSS.Rec(pp, {Ai : i ∈ T }):
return GShamir.Rec(pp, {Ai : i ∈ T })

Fig. 8. Algorithms for PVSS scheme DHPVSS, Verification and Reconstruction

Suppose for now that the secret sharing scheme were for secrets over Zp. Each party in Cr would
hold σ` = mr(α`) where mr is the sharing polynomial for that round, of degree tr. A subcommittee
Lr of tr + 1 parties in Cr can then reshare the secret by PVSSing their shares among Cr+1 with
Shamir scheme of degree tr+1. The parties in Cr+1 then compute the sum of the received shares
weighted by coefficients

λ`,Lr :=
∏

j∈Lr,j 6=`

α0 − αj
α` − αj

.

Indeed, if we denote [σ`] the vector of shares sent by P` in Lr, then∑
`∈Lr

λ`,Lr [σ`] =
∑
`∈Lr

λ`,Lr [m(α`)] = [
∑
`∈Lr

λ`,Lrm(α`)] = [m(α0)].

In our situation, each party Pr,i in Cr has instead a group element as share, and needs to PVSS
it among Cr+1 using the algorithm Dist from previous section. However, the proof in Dist only
guarantees that the distributed shares are consistent with some secret. Here we require in addition
that this secret is the shared that the party has received previously.

To be more precise, in round r, each party Pr,i in committee Cr has Ar,i as share and in addition
the encryption Cr,i = E .Encpkr,i(Ar,i) of Ar,i is public. Pr,i now needs to create shares of Ar,i for
the committee Cr+1. Let Ai→j be the share that will be sent to Pr+1,j . This will be encrypted as
Ci→j = E .Encpkr+1,j

(Ai→j) and Pr,i must prove that Ci→j are encryptions of a correct sharing whose
secret is indeed the plaintext of Cr,i.

When a subset Lr of Cr of tr + 1 parties have correctly reshared, each Pr+1,j sets Ar+1,j =∑
`∈Lr

λ`,LrA`→j as their share and the corresponding public ciphertext Cr+1,j =
∑

`∈Lr
λ`,LrC`→j

can be locally computed by everyone.
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5.1 Resharing for HEPVSS

In the case of HEPVSS, the additional proof that the reshared value is the one corresponding to the
public ciphertext can be integrated easily in HEPVSS.Dist if the encryption scheme has Zp-linear
decryption.

Let pk[n] denote the set {pki : i ∈ [n]}. Similarly C[n] denote a set of ciphertexts {Ci : i ∈ [n]} and
ρ[n] denote a set of elements from the randomness space {ρi : i ∈ [n]}. Recall DC(sk) := Decsk(C).
Define the relation

RReshare ={(m(X), sk, ρ[n]); (pk, pk[n], C, C[n]) :

F (sk) = pk,m(β0) = 0,Encpki(m(βi) ·G+DC(sk); ρi) = Ci for i ∈ [n]}

We therefore define the resharing proof in Figure 9. The protocol for PVSS resharing is then
constructed as in Figure 10.

Proof system HEPVSS.Reshare for correct resharing of encrypted secret

HEPVSS.Reshare.Prove((m(X), sk, ρ[n]); (pp, pk, pk[n], C, C[n]))

parse pp = (G, G, p, t, n, {βi : i ∈ [n]})
W ← Zp[X]≤t × SK ×Rn,X ← PK × Cn,
pp′ ← (Zp,W,X ,H), w ← (m(X), sk, ρ1, . . . , ρn), x← (0, pk, C1, . . . , Cn),
Set fC given by fC(w) := (m(β0), F (sk),Encpk1(A1; ρ1), . . . ,Encpk1(An; ρn))

where Ai = m(βi) ·G+DC(sk)
return π ← ΠNI−Pre.Prove(w; pp′, x, fC)

HEPVSS.Reshare.Verify(pp, pk, pk[n], C, C[n], π)

Set W,X , pp′, x, fC , as in Reshare.Prove
return ΠNI−Pre.Verify(pp′, x, fC , π)

Fig. 9. Proof HEPVSS.Reshare of correct resharing of encrypted secret

5.2 Resharing for DHPVSS

In the case of DHPVSS, the situation is slightly more complicated due to the fact that the encryption
of shares involves a key from the dealer. Here there are different dealers, i.e. the final share of each
party in Cr+1 is a linear combination of shares sent by the parties in Lr. Thanks to the fact that
the encryption is also a linear operation with respect to the public key of the sender, we can define
a public key for committee Lr. Indeed, if we call pkD` the public key of Pr,` when acting as sender,
then pkD,Lr

:=
∑

`∈Lr
λ`,Lr · pkD` . Then we want to make sure that the output encryption for Pr+1,j

is

Cr+1,j = skr+1,j · pkD,Lr
+
∑
`∈Lr

λ`,LrA`→j .

At the beginning of the resharing, each party Pr,i in committee Cr has as share Ar,i = Cr,i −
ski · pkD,Lr−1

where ski is the secret key for decrypting shares, and needs to create shares Ai→j of
Ar,i and encrypt them using the public keys pk[nr+1] = {pkj : j ∈ [nr+1]} of the parties of the next
round and its own secret key skDi (i.e. this party will create C[nr+1] = {Ci→j : j ∈ [nr+1]} with
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Protocol for HEPVSS resharing

Participants: Disjoint committees Cr = {Pr,1, . . . , Pr,nr} and Cr+1 = {Pr+1,1, . . . , Pr+1,nr+1}.

Public information: A group G of prime order p, with generator G. A homomorphic encryption scheme E
with Zp-linear decryption, with plaintext space G. Public keys pkj,i for that encryption scheme corresponding
to parties Pj,i above (j = r, r + 1, 1 ≤ i ≤ nr), where Pj,i knows the corresponding secret key skj,i; thresholds tr,
tr+1. Evaluation points (α0, α1, . . . , αnr), (β0, β1, . . . , βnr+1).
Input: Public ciphertexts Cr,i, where it is guaranteed that Cr,i = Encpkr,i(Ar,i) such that Ar,i = fr(αi) · G for
some polynomial fr of degree ≤ tr.

Output: A public output (Cr+1,1, . . . , Cr+1,nr+1) and a proof π that, for all k = 1, . . . , nr+1,
Cr+1,k = Encpkr+1,i

(Ar+1,k) such that Ar+1,k = fr+1(βk) · G for some polynomial fr+1 of degree ≤ tr+1

and fr+1(β0) = fr(α0).

Protocol:
1. Let ppr+1 = (G, G, p, tr+1, nr+1, {βi : i ∈ [0, n]}).
2. Resharing: For i = 1, ..., nr, Pr,i does the following

(a) Compute Ar,i = Decskr,i(Cr,i).
(b) For i = 1, ..., nr, Pr,i computes

({Ai→j : j ∈ [nr+1]},m(X))← GShamir.Share(ppr+1, Ar,i)
(c) Sample ρi→j ∈ R for j ∈ [nr+1] and let ρi→[nr+1] = {ρi→j : j ∈ [nr+1]}
(d) Compute Ci→j = Encpkj (Ai→j ; ρi→j) for j ∈ [nr+1].
(e) Compute

πi ← HEPVSS.Reshare.Prove (m(X), sk, ρi→[nr+1]; pp, pkr,i,
{pkr+1,j : j ∈ [nr+1]}, Cr,i, {Ci→j : j ∈ [nr+1]})

(f) Output {Ci→j : j ∈ Cr+1}, πi
3. Reconstruction of next share encryptions: each party in P locally constructs the encryptions of the shares

for the following round as follows:
(a) Define L containing the first t+ 1 indices i for which the following accepts:

HEPVSS.Reshare.Verify( pp, pkr,i, {pkr+1,j : j ∈ [nr+1]}, Cr,i,
{Ci→j : j ∈ [nr+1]}, πi)

(b) For j ∈ [nr+1], set Cr+1,j =
∑
`∈L λ`,LC`→j

a

(c) Output {(Cr+1,j : j ∈ [nr+1]}, (πr,`)`∈L).

aHere
∑

refers to the summatory with respect to the homomorphic operation on ciphertexts �C

Fig. 10. Protocol for HEPVSS PVSS resharing

Ci→j = skDi · pkj +Ai→j) and prove their validity. In conclusion we need a proof for the following
relation

RDHPVSS,Reshare ={(m(X), ski, skDi); (pp, pki, pkDi , pkD,Lr−1
, pk[nr+1], Cr,i, C[nr+1]) :

pki = ski ·G, pkDi = skDi ·G, m(X) ∈ Zp[X]≤t, m(β0) = 0,

and ∀j ∈ [nr+1], Ci→j = skDi · pkj +Ai→j ,

where Ai→j = (Cr,i − ski · pkD,Lr−1
) +m(βj) ·G}

However, we also want to use the SCRAPE technique to reduce the size of the witness and
hence of the proof. Note that if we set

Uj = Ci→j − skDi · pkj − Cr,i + ski · pkD,Lr−1
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for all j ∈ [nr+1] and U0 = O, we want to make sure that for all j ∈ [0, nr+1], Uj = m(βj) ·G for a
polynomial of degree ≤ t (in addition to the conditions pki = ski ·G and pkDi = skDi ·G).

For j ∈ [0, n], let

v′j =
∏

k∈[0,n]\{j}

(βj − βk)−1.

Observe these are not exactly the same coefficients as in the description of DHPVSS in Section 4.3
because they include the evaluation point β0. By Theorem 1, we want to prove

∑n
j=0 v

′
i·m∗(βj)·Uj =

O, for a random polynomial m∗ of degree n − t − 1 (note here we apply Theorem 1 to a code of
length n+ 1, rather than n).

Observe
∑n

j=0 v
′
j ·m∗(βj) · Uj = U ′ − skDi · V ′ + ski ·W ′ for publicly computable

U ′ :=
n∑
j=1

v′j ·m∗(βj) · (Ci→j − Cr,i), V ′ :=
n∑
j=1

v′j ·m∗(βj) · pkj , and

W ′ :=
n∑
j=1

v′j ·m∗(βj) · pkD,Lr−1
,

and therefore Pr,i needs a proof of knowledge for

R′DHPVSS,Reshare,m∗ ={(ski, skDi); (pki, pkDi , U
′, V ′,W ′) :

pki = ski ·G, pkDi = skDi ·G, U ′ = skDi · V ′ − ski ·W ′}

where we remark that now the witness only contains two elements but on the other hand relation
depends on a polynomial m∗(X) that has been sampled uniformly at random among polynomials
of degree at most n− t− 1. This leads to the protocol for PVSS resharing in Figure 11.

6 Anonymous PVSS via ECW and AfP

In this section, we show how to construct PVSS (and re-sharing) for anonymous committees by in-
stantiating our previous PVSS constructions using our ECW and AfP schemes. We start by showing
how our previous protocols can be adapted to work with ECW and AfP instead of standard en-
cryption and authentication. We then show how the optimizations in the DDH based constructions
via the SCRAPE trick carry over to our anonymous setting if we instantiate our ECW and AfP
schemes from similar assumptions. The protocols we construct in this section work in the YOSO
model supporting up to t < n/2 corrupted parties and can be used as efficient building blocks for
the protocols of [2,16].

In the previous sections, we have constructed both a PVSS scheme (Section 4.2) and a PVSS
re-sharing scheme (Section 5.1) based on Zp-linear encryption schemes (as defined in Section 2.2).
Despite being efficient, these constructions are not fit for the YOSO model because they require the
dealer to know the public keys of the parties who will receive shares, consequently revealing their
identities. In order to solve this issue, we show that these protocols can also be instantiated with
the ECW scheme of Section 3 even though they were designed to be instantiated with a Zp-linear
encryption scheme. The core idea is that our ECW preserves all the properties of the underlying
Zp-linear encryption scheme while adding the ability to encrypt towards a role rather than towards
a party who owns a public key.
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Protocol for DHPVSS resharing

Participants: Cr = {Pr,1, . . . , Pr,nr} and Cr+1 = {Pr+1,1, . . . , Pr+1,nr+1}.

Public information: A group G of prime order p, with generatorG. “Sender” key pairs (skDi , pkDi
= skDi ·G) for

every party Pr,i ∈ Cr, a “sender committee” public key pkD,Lr−1
, and “receiver” key pairs (skr,i, pkr,i = skr,i ·G)

for Pr,i, where r = r, r + 1, and 1 ≤ i ≤ nr; thresholds tr, tr+1. Evaluation points (α0, α1, . . . , αnr),
(β0, β1, . . . , βnr+1). Random oracles H : {0, 1}∗ → Zp[X]≤n−t−1, H′ : {0, 1}∗ → Zp. Let W ← Z2

p, X ← G3, and
ppπ ← (Zp,W,X ,H′).

Input: Public ciphertexts Cr,i = skr,i · pkD,Lr−1
+ Ar,i such that Ar,i = hr(αi) · G for some polynomial hr of

degree ≤ tr.

Output: A public key pkD,Lr
for a subset Lr of Cr, of size tr +1. Public output ciphertexts (Cr+1,1, . . . , Cr+1,nr+1)

and a proof π that, for all j = 1, . . . , nr+1, Cr+1,j = skr+1,jpkD,Lr
+ Ar+1,j such that Ar+1,j = hr+1(βj) · G for

some polynomial hr+1 of degree ≤ tr+1 and hr+1(β0) = hr(α0).

Protocol:
1. Let ppSh,r+1 = (G, G, p, tr+1, nr+1, {βj : j ∈ [0, nr+1]}).
2. Resharing: For i = 1, ..., nr, Pr,i does the following:

(a) Ar,i ← Cr,i − skr,i · pkD,Lr−1
.

(b) ({Ai→j : j ∈ [nr+1]},mi(X))← GShamir.Share(ppSh,r+1, Ar,i).
(c) For j ∈ [nr+1], Ci→j ← skDi · pkr+1,j +Ai→j .
(d) m∗i (X)← H({Cr,i : i ∈ [nr]}, pkD,Lr−1

).

(e) U ′i ←
∑n
j=1 v

′
j ·m∗i (βj) · (Ci→j − Cr,i), V ′i ←

∑n
j=1 v

′
j ·m∗i (βj) · pkr+1,j ,

W ′i ← (
∑n
j=1 v

′
j ·m∗i (βj)) · pkD,Lr−1

.

(f) πr,i ← ΠNI−Pre.Prove((skr,i, skDi); ppπ, (pkr,i, pkDi
, U ′i), fi),

where fi(skr,i, skDi) := (skr,i ·G, skDi ·G, skDi · V ′i − skr,i ·W ′i ).
(g) Output {Ci→j : j ∈ [nr+1]}, πr,i.

3. Reconstruction of next share encryptions: each party in P locally constructs the encryptions of the shares
for the following round as follows:
(a) For each i ∈ Cr:

i. Compute U ′i and fi as above (from public information and Pr,i’s output {Ci→j : j ∈ [nr+1]}).
ii. Compute ΠNI−Pre.Verify(ppπ, (pkr,i, pkDi

, U ′i), fi, πr,i).
(b) Define Lr the set of t+ 1 first indices for which the above proofs accept.
(c) For j ∈ [nr+1], Cr+1,j ←

∑
`∈Lr

λ`,L · C`→j .
(d) pkD,Lr

←
∑
`∈Lr

λ`,Lr · pkD`
.

(e) Output ({Cr+1,j : j ∈ [nr+1]}, (πr,`)`∈Lr , pkD,Lr
).

Fig. 11. Protocol for DHPVSS resharing

6.1 Constructing HEPVSS with ECW

We modify HEPVSS to use our ECW scheme E = (Enc,Dec) for lottery predicate lottery(B, sl,P, skL,i)
from Section 3 instead of a Zp-linear encryption scheme. Departing from the HEPVSS algorithms
described in Figure 6, we make the following modifications:

– Communication: All messages are posted to the underlying blockchain ledger used by the
ECW scheme E .

– HEPVSS.Setup(1λ): Besides the original setup parameters, we assume that n distinct role iden-
tifiers P1, . . . ,Pn are available and that an underlying blockchain protocol Γ is executed.

– HEPVSS.KeyGen(pp, id): Instead of publishing pki, each party Pi provides pki as input to the
mixnet assumed as setup for lottery(B, sl,P, skL,i) and associated ECW scheme E . The mixnet
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output {(j, pkAnon,j)}j∈[n] is assumed to be available on the underlying blockchain and accessible
as

({(j, pkAnon,j)}j∈[n], η)← param(B, sl).

Party Pi sets skL,i ← (pkE,i, skE,i).
– HEPVSS.Dist(pp, {pki : i ∈ [n]}, S): Instead of computing Ci ← E .Encpki(Ai, ρi), the dealer com-

putes Ci ← Enc(B, sl,Pi, Ai) using randomness ρi . Notice that this is equivalent to computing
Ci ← E .EncpkAnon,j (Ai, ρi) for a j such that lottery(B, sl,Pi, skL,j) = 1. Hence, PfSh can still be
computed via the same procedure. The dealer publishes

({Ci : i ∈ [n]}, {pkAnon,j : i ∈ [n]},PfSh).

Notice that the public key pkAnon,j used to generate each Ci is publicly known due to the
structure of the lottery scheme.

– HEPVSS.Verify(pp, {(pki, Ci) : i ∈ [n]},PfSh): No modification is needed, since ({Ci : i ∈
[n]}, {pkAnon,j : i ∈ [n]},PfSh) has the same structure as in the original protocol.

– HEPVSS.DecShare(pp, pkj , skL,j , Ci): Party Pj checks that its lottery witness skL,j is such that

lottery(B, sl,Pi, skL,j) = 1 and, if yes, computes Ai ← Dec(B̃, Ci, skL,j). Proof PfDec is generated
as in the original protocol. Notice that this procedure is also equivalent to generating an AfP
PfDec ← AfP.Sign(B̃, sl,Pi, skL,j , Ai).

– HEPVSS.VerifyDec(pp, pki, Ai, Ci,PfDeci): Proof PfDec is checked as in the original protocol. No-
tice that this procedure is also equivalent to generating an AfP {0, 1} ← AfP.Ver(B̃, sl,Pi,PfDec, Ai).

– HEPVSS.Rec(pp, {Ai : i ∈ T }: No modification is needed.

Due to the properties of the ECW scheme and the underlying lottery scheme, shares are en-
crypted towards parties randomly chosen to perform each role Pi whose identity remains unknown
during the share distribution and verification phases. In case a reconstruction happens, parties
executing each role reveal themselves by proving correctness of decrypted shares, which constitutes
an AfP since it involved proving knowledge of skL,j such that lottery(B, sl,Pi, skL,j) = 1.

6.2 Constructing Resharing for HEPVSS with ECW

In the context of resharing, the parties selected to execute roles P1, . . . ,Pn in slot slr wish to publicly
verifiable reshare the secret whose shares they received towards roles P′1, . . . ,P

′
n′ in a future slot

slr+1. In practice, this means that the resharing information will be received by a new randomly
selected set of anonymous parties performing these roles in the future. Once again we explore the
fact that our ECW inherits the properties of the underlying Zp-linear encryption scheme to modify
the resharing protocol of Figure 10 to work with ECW.

We show how to modify the description of Figure 10 to obtain an ECW based resharing protocol:

– Participants: Parties executing roles P1, . . . ,Pn in slot slr and parties executing roles P′1, . . . ,P
′
n′

in slot slr+1.
– Input: Public (i.e. published in the underlying blockchain) ECW ciphertexts Ci ← Enc(B, slr,Pi, Atr,i)

such that Ar,i = fr(αi) ·G for some polynomial fr of degree ≤ tr.
– Output: ECW ciphertexts Ci ← Enc(B, slr+1,P

′
i, Ar,i) published in the underlying blockchain

such that Ar+1,k = fr+1(βk) ·G for some polynomial fr+1 of degree ≤ tr+1 and fr+1(β0) = fr(α0).
– Protocol:
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• Encryption/Decryption: When decrypting ciphertexts using key ski for i ∈ [nr], ECW de-
crypt using skL,j such that lottery(B, slr,Pi, skL,j) = 1. When encrypting a message un-
der public key pkj for j ∈ [nr+1], ECW encrypt towards role P′j in slot slr+1 using ran-
domness ρr+1,,j : Cj ← Enc(B, slr+1,Pr+1,j , A). Notice that this is equivalent to computing
Cj ← E .EncpkAnon,r+1,j

(A, ρr+1,j) for a j such that lottery(B, slr+1,Pj , skL,j) = 1.
• Proof HEPVSS.Reshare.Verify(pp, pkr,i, {pkr+1,j : j ∈ [nr+1]}, Cr,i, {Ci→j : j ∈ [nr+1]}, πi):

Notice that the structure of the ECW ciphertexts is compatible with this proof, so that it
can be generated as in the original protocol. Analogously, this proof can also be verified
as in the original protocol. Moreover, notice that it also acts as an AfP for ciphertexts
{Ci→j : j ∈ [nr+1]} on behalf of role Pi of slot slr, since it requires knowledge of a skL,j such
that lottery(B, sl,Pi, skL,j) = 1.

As in the PVSS with ECW protocol, due to the properties of the ECW scheme and the underly-
ing lottery scheme, resharing information is encrypted towards parties randomly chosen to perform
each role Pr+1,j whose identity remains unknown until they act (e.g. by reconstructing the secret).

6.3 Efficient DDH-based Instantiation via DHPVSS

The most efficient instantiations of our techniques are obtained when using a variant of the El
Gamal encryption scheme together with the SCRAPE share validity check. In order to enjoy the
efficiency improvement, we show that our ECW is also compatible with these optimizations .

– Setup and Lottery Predicate : We use the same setup, i.e. we assume the parties have access
to an ideal mixnet and input their public keys Ei so that the output of a tuple {(j, EAnon,j) : j ∈
[n]} which is written on the blockchain and accessible to every party through param function.
The lottery predicate works the same way, having parties check whether EAnon,k = Ei for
k ← H(sl||P||η) in order to determine if they have been selected for role P in slot sl. Moreover,
every party publishes on the underlying blockchain a public key pkD,i for which they know the
corresponding secret key skD,i, which they will use when encrypting.

– Encryption: As in our original ECW a party Pi encrypting m towards role P in slot sl starts
by running param(B, sl) to obtain ({(l, EAnon,l)}l∈[n], η) and determine EAnon,k such that k ←
H(sl||P||η). Pi publishes ciphertext Ci,k ← m+ skD,i ·Ek revealing indices i, k. Notice that this
ciphertext has exactly the same structure as the ciphertexts used in DHPVSS.

– Decryption: To decrypt a ciphertext Ci,k for role P in slot sl, Pj checks that its skL,j is such
that lottery(B, sl,P, skL,j) = 1. If yes, it obtains the sender’s public key pkD,i from the blockchain
and computes m ← Ci,k − skj · pkD,i. Notice that a proof of correct decryption can be done
exactly as in DHPVSS and that such a proof constitutes an AfP of m on behalf of role P in slot
sl, since it requires proving knowledge of skL,j s.t. lottery(B, sl,P, skL,j) = 1.

Using this slight modification of our ECW, we can instantiate DHPVSS (Figures 7 and 8) and its
resharing protocol (Figure 10). The ciphertexts output by ECW have the same structure as those
used in DHPVSS, so the efficient proofs of encrypted (re)share validity can be performed exactly
in the same way.

Privacy and Resharing: Notice, however, that since the dealer’s identity must be known when
decrypting ciphertexts, using these optimized techniques for resharing will be problematic, since it
requires linking a party Pi to its key skD,i and revealing its identity. In order to solve this issue,
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we can resort to a similar setup used for the regular keys Ei, i.e. we can allow parties access to an
ideal mixnet that is used to create a shuffled set of keys {(j, skD,Anon,j) : j ∈ [n]}. Now a sender can
include the index to its key skD,Anon,j in the ciphertext in order to allow for decryption. As it is
the case with our simple AfP technique, this would require setting up multiple such vectors, which
can potentially be solved by techniques similar to those we describe in Appendix F. We leave a
concrete description of such a construction for future works.
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A Basic Notions on Public Key Encryption

In this section we introduce well-known concepts on public key encryption.

A.1 Definitions

Definition 14. A public key encryption scheme E consists of three polynomial time algorithms
(E .Gen, E .Enc, E .Dec) as follows:

– E .Gen(λ) is a probabilistic algorithm that outputs a pair (sk, pk) consisting of a secret key and
a public key.

– E .Encpk(M) is a probabilistic algorithm that takes as input a public key pk and a plaintext
message M in a plaintext message space P and outputs a ciphertexts C in a ciphertext space C.
In addition, by abuse of notation, we define the function E .Encpk(M ; ρ) that specifies the result
of E .Encpk(M) when randomness ρ (in a randomness space R) is used.

– E .Decsk(C) is a deterministic function that takes secret key sk, and a ciphertext C ∈ C and
outputs a plaintext message M ′ ∈ P.

and which satisfy that for every (pk, sk) output by E .Gen, and for every M ∈ P,

Pr[E .Decsk(E .Encpk(M))] = 1

The most well known notion of security for a public key encryption scheme is IND-CPA security,
which requires that the encryptions of two messages under any public key pk are computationally
indistinguishable without the knowledge of the corresponding sk. Here we consider the notion of
`-multi-key IND-CPA security. This requires that the encryptions of two vectors of messages of the
same length, where each coordinate is encrypted under a public key pki, are indistinguishable. The
notions are equivalent as long as ` is polynomial in the security parameter.

Definition 15. A public key encryption scheme E satisfies `-multi-key IND-CPA security if for
any PPT adversary B, there exists a negliglible function µ(λ) such that∣∣∣Pr

[
Game`-IND-CPA,0

B,E (λ) = 1
]
− Pr

[
Game`-IND-CPA,1

B,E (λ) = 1
]∣∣∣ ≤ µ(λ)

Algorithm 9 Game`-IND-CPA,b
B,E (λ)

∀i ∈ [`] (pki, ski)← E .KeyGen(pp, i)

(m
(0)
1 , . . . ,m

(0)
` ), (m

(1)
1 , . . . ,m

(1)
` ) ∈ P` ← B(pp, {pki : i ∈ [`]})

∀i ∈ [`], ci ← Encpki(m
(b)
i )

b′ ← B({ci : i ∈ [`]})
return b′

The case ` = 1 is the usual IND-CPA definition and for ` = poly(λ) a standard hybrid argument
shows that a scheme is `-multi-key IND-CPA if and only if it is IND-CPA.
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A.2 El Gamal Public Key Encryption Scheme

In this paper we the well known El Gamal scheme, where the plaintext space is P = G, a cyclic
group of order p generated by G, the randomness space is R = Zp and the ciphertext space is
C = G2. The scheme E is given by

– E .Gen(λ): Selects sk ∈ Zp uniformly at random, sets pk = sk ·G, outputs (sk, pk).
– E .Encpk(M) where M ∈ G, selects ρ ∈ Zp uniformly at random, outputs C = (ρ ·G,M + ρ · pk)

(as explained before we denote C = E .Encpk(M ; ρ)).
– E .Decsk(C), where C = (C1, C2) ∈ G2, outputs Decsk(C) = C2 − sk · C1.

The El Gamal encryption scheme is well known to be IND-CPA secure under the DDH assumption.

B Execution Model for Proof-of-Stake (PoS) Blockchains

In this section, we give an overview of the framework from [19] for arguing about PoS blockchain
protocol security as presented in [7].

Blockchain Protocol Execution Let the blockchain protocol

Γ V = (UpdateStateV ,GetRecords,Broadcast)

be guarded by a validity predicate V . The algorithms can be described as follows:

– UpdateState(1λ)→ bst where bst is the local state of the blockchain along with metadata.
– GetRecords(1λ, bst)→ B outputs the longest sequence B of valid blocks (wrt. V ).
– Broadcast(1λ,m) Broadcast the messagem over the network to all parties executing the blockchain

protocol.

An execution of a blockchain protocol Γ V proceeds by participants running the algorithm
UpdateStateV to get the latest blockchain state, GetRecords to extract the ledger data structure
from a state and Broadcast to distribute messages which are added to the blockchain if accepted by
V . An execution is orchestrated by an environment Z which classifies parties as either honest or
corrupt. All honest parties executes Γ V (1λ) with empty local state bst and all corrupted parties are
controlled by the adversary A who also controls network including delivery of messages between all
parties.

– In each round all honest parties receive a message m from Z and potentially receive incoming
network messages delivered by A. The honest parties may do computation, broadcast messages
and/or update their local states.

– A is responsible for delivering all messages sent by honest parties to all other parties. A cannot
modify messages from honest parties but may delay and reorder messages on the network.

– At any point Z can communicate with adversary A or use GetRecords to retrieve a view of the
local state of any party participating in the protocol.

The result is a random variable EXECΓ
V

(A,Z, 1λ) denoting the joint view of all parties (i.e. all
inputs, random coins and messages received) in the above execution. Note that the joint view of all

parties fully determines the execution. We define the view of the adversary as viewA(EXECΓ
V

(A,Z, 1λ))
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and the view of the party Pi as viewPi(EXEC
ΓV (A,Z, 1λ)). If it is clear from the context which

execution the argument is referring to, then we just write viewi. We assume that it is possible
to take a snapshot i.e. a view of the protocol after the first r rounds have been executed. We
denote that by viewr ← EXECΓ

V

r (A,Z, 1λ). Furthermore, we can resume the execution departing
from this view and continue until round r̃ resulting in the full view including round r̃ denoted by
viewr̃ ← EXECΓ

V

(viewr,r̃)(A,Z, 1λ).

We let the function stakei = stake(B, i) take as input a local blockchain B and a party Pi and
output a number representing the stake of party Pi wrt. to blockchain B. Let the sum of stake
controlled by the adversary be stakeA(B), the total stake held by all parties staketotal(B) and the
adversaries relative stake is stake-ratioA(B). We also consider the PoS-fraction u-stakefrac(B, `) as
the amount of unique stake whose proof is provided in the last ` mined blocks. More precisely, let
M be the index i corresponding to miners Pi of the last ` blocks in B then

u-stakefrac(B, `) =

∑
i∈M stake(B, i)

staketotal

A note on corruption For simplicity in the above execution we restrict the environment to only
allow static corruption while the execution described in [24] supports adaptive corruption with
erasures.

A note on admissible environments [24] specifies a set of restrictions on A and Z such that only
compliant executions are considered and argues that certain security properties holds with over-
whelming probability for these executions. An example of such a restriction is that A should deliver
network messages to honest parties within ∆ rounds.

Blockchain Properties In coming sections we will define what it means to encrypt to a future
state of the blockchain. First, we need to ensure what it means for a blockchain execution to
have evolved from one state to another. We recall that running a protocol Γ V with appropriate
restrictions on A and Z will yield certain compliant executions EXECΓ

V
(A,Z, 1λ) where some

security properties will hold with overwhelming probability. An array of prior works, including
[14,24], have converged towards a few security properties that characterizes blockchain protocols.
These include Common Prefix or Chain Consistency, Chain Quality and Chain Growth. From
these basic properties, a number of stronger properties were derived in [19]. Among them, is the
Distinguishable Forking property which will be the main requirement when introducing the EtF
scheme.

Definition 16 (Common Prefix). Let κ ∈ N be the common prefix parameter. The chains B1,

B2 possessed by two honest parties P1 and P2 in slots sl1 < sl2 satisfy B
dκ
1 � B2.

Definition 17 (Chain Growth). Let τ ∈ (0, 1], s ∈ N and let B1, B2 be as above with the
additional restriction that sl1+s ≤ sl2. Then len(B2)− len(B1) ≥ τs where τ is the speed coefficient.

Definition 18 (Chain Quality). Let µ ∈ (0, 1] and κ ∈ N. Consider any set of consecutive blocks
of length at least κ from an honest party’s chain B1. The ratio of adversarial blocks in the set is
1− µ where µ is the quality coefficient.
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Definition 19 (Distinguishable Forking). A blockchain protocol Γ satisfies (α(·), β(·), `1(·), `2(·))-
distinguishable forking property with adversary A in environment Z, if there exists negligible func-
tions, negl(·), δ(·) such that for every λ ∈ N, ` ≥ `1(λ), ˜̀≥ `2(λ) it holds that

Pr

 α(λ) + δ(λ) < β(λ) ∧
suf-stake-contr

˜̀
(view, β(λ)) = 1 ∧

bd-stake-fork(`,
˜̀)(view, α(λ) + δ(λ)) = 1

∣∣∣∣∣∣∣ view← EXECΓ (A,Z, 1λ)


≥ 1− negl(λ).

C Proofs for ECW

In this section we list the proofs related to theorems stated in Section 3. We re-state the theorems
for convenience.

Theorem 5 (IND-CPA ECW). Let E be an IND-CPA secure Zp-linearly homomorphic encryp-
tion scheme. The construction in Figure 4 with lottery predicate as in Section 3.1 is an IND-CPA
secure ECW (as in Definition 6).

Proof (Sketch). An adversary with a noticable advantage in GameIND-CPA
Γ,A,Z,E described in Definition 6

can distinguish between ECW encryptions of two different messages without winning the lottery for
that specific sl and P. This adversary can, in turn, distinguish between corresponding encryptions
from the underlying Zp-linearly homomorphic encryption scheme E , which contradicts IND-CPA
security of E . Thus, the protocol in Figure 4 yields an IND-CPA secure ECW.
IND-CCA security for the ECW scheme can be obtained by using standard transformations ([13,27])
as argued in [7].

Theorem 6 (EUF-CMA AfP). Let E be an IND-CPA secure and Zp-linearly homomorphic
encryption scheme and let SoK be a simulatable and extractable SoK scheme. The construction in
Figure 5 with lottery predicate as in Section 3.1 is EUF-CMA AfP as defined in Definition 7.

Proof (Sketch). We argue that an adversary who forges a signature (AfP tag) on a message m is
able to construct a valid SoK on a message without knowing the witness. More precisely, assume
that the adversary can make the verifier output b = 1 on input (B, sl,P, σ,m) while not having
won the lottery for parameters (B, sl,P). The underlying SoK σSoK must be a convincing SoK on
m such that SoK.verify((B, sl,P), σSoK,m) = 1. Thus, the adversary has successfully created a SoK
signature where the verification algorithm accepts but without the adversary knowing a witness.
This breaks existential unforgeability of the SoK scheme contradicting our assumption.6

Theorem 7 (AfP Privacy). Assume E, lottery and SoK scheme as in 6. The construction in
Figure 5 has AfP privacy as in Definition 8.

6In fact, forging a signature in the EUF-CMA game of SoK reduces to either breaking the corresponding simu-
latability or the extractability of the SoK scheme (see [10])
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Proof (Sketch). We construct a simulator S for the game GameID-PRIV
Γ,A,Z,U ,E as follows. When S gets a

request for given tuple (B, sl,P,m) it forwards the request to the simulator for the SoK scheme. The
SoK simulator can forge a signature and, in particular, it can simulate an SoK onm without knowing
the lottery winning secret key. Then, S obtains the response of the SoK simulator forwards it to
the adversary. We claim that any adversary who can successfully distinguish between interacting
with the simulator S and the oracle OAfP in GameID-PRIV

Γ,A,Z,U ,E breaks the simulatability of the SoK
scheme.

D Other Security Proofs

D.1 Security of ΠPre

The Σ-protocol ΠPre is obviously complete. It has special soundness because given two accepting
transcripts (a, e, z), (a, e′, z′) with e 6= e′, one can extract w as (e − e′)−1(z − z′). It is therefore a
proof of knowledge of w with soundness error 1/|F|. Finally it is honest-verifier zero-knowledge: a
simulator can produce a transcript that is indistinguishable from a real one by choosing z uniformly
at random in X , and e uniformly at random in F, and then computing a = f(z) − e · x, which is
uniformly random in W.

D.2 Correctness and Security of HEPVSS

Lemma 1 (Correctness of HEPVSS). If E is correct then construction HEPVSS satisfies cor-
rectness.

Proof. Recall correctness means in this case that if keys (pki, ski) have been created honestly with
HEPVSS.KeyGen, a secret S ∈ G has been distributed according to HEPVSS.Dist resulting in en-
crypted shares Ci and a proof PfSh, these shares Ci have been correctly decrypted resulting in A′i
and proofs PfDeci, and a secret S′ is reconstructed from these A′i, then the verification of PfSh and
the PfDeci accept and S′ = S.

Note that by definition of GShamir, the dealer creates Ai = S+m(αi) ·G for a polynomial m(X)
of degree at most t with m(α0) = 0 and Ci = E .Enc(Ai, ρi). PfSh asserts precisely this. Clearly f as
defined in the proof is a linear map and ΠNI−Pre is correct, so PfSh will be accepted. By correctness
of E , the decrypted A′i will equal Ai. By correctness of E .ProveDec the proofs PfDeci are accepted.
By definition of the reconstruction in GShamir outputs S when applied to any subset Ai, i ∈ T
where T is of size t+ 1.

Theorem 8 (IND-1 Secrecy). If E is IND-CPA then construction HEPVSS for a PVSS satisfies
indistinguishability of secrets

Proof. LetA be an adversary that can win the IND-1 Secrecy Game for HEPVSS with non-negligible
advantage ε. Note that as a dealer secret key is not needed to perform HEPVSS.Dist, we do not need
to consider the DIST oracle. We construct an adversary B that uses to A to break (n− t)-multi-key
IND-CPA security, which is equivalent to IND-CPA security (see Appendix A).

Firstly, B passes the keys pki, i ∈ [n− t] to A and observes its constructed pki, i ∈ [n− t+ 1, n].
Then B chooses random polynomials m(0), and m(1) of degree at most t under the restriction that
m(0)(αi) = m(1)(αi) for i in [n− t+ 1, n]. 7

7Which can be done by choosing first m(0)(X) and then taking m(1)(X) = m(0)(X) + γ ·
∏n
i=n−t+1(X − αi) for

uniformly random γ.
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B sets S0 = m(0)(α0) ·G, S1 = m(1)(α0) ·G, A
(0)
i = m(αi) ·G, A

(1)
i = m(α′i) ·G for i ∈ [n] and

sends message vectors m(j) = (A
(j)
1 , A

(j)
2 , . . . , A

(j)
n−t) for j ∈ {0, 1} to the IND-CPA challenger, and

receives (C1, ..., Cn−t) in return where Ci = Encpki(A
(b)
i ).

Now B computes Ci = Enc(m(0)(αi) · G) for i ∈ [n − t + 1, n] and note that for these values
of i, m(0)(αi) = m(1)(αi) so Ci = Enc(m(1)(αi) · G) too. Finally given Ci, i ∈ [n], B constructs a
simulated proof PfSh

∗. Now B sends Ci, i = 1, . . . , n, and PfSh
∗ to A as well as the candidate secret

S0. B then outputs the same guess as A.

It is clear that A receives from B encrypted shares of S0 (if the challenger’s bit is b = 0) or
S1 (if b = 1) distributed identically as in the protocol: indeed the ciphertexts C1, . . . , Cn−t are the

encryptions of either the set {A(0)
i }i∈[n−t] or {A(1)

i }i∈[n−t] of the first n−t shares constructed by B for

the secrets, and the last t ciphertexts created by B are encryptions of A
(0)
i = A

(1)
i , i ∈ [n− t+ 1, n].

Finally PfSh
∗ is computationally indistinguishable from a real proof of correct sharing by the zero

knowledge property of the proof. Therefore the guessing advantage of B for the multi-key IND-CPA
game is the same as that of A.

Lemma 2 (Verifiability of HEPVSS). Construction HEPVSS for a publicly verifiable secret shar-
ing scheme satisfies verifiability.

Proof. Verifiability of Key Generation. Our construction clearly satisfies verifiability of key gener-
ation because public keys simply consist of one group element, and so it is easy to verify public
keys are correctly formed.

Verifiability of Distribution. Our construction satisfies verifiability of distribution because if
HEPVSS.Verify(pp, {(pki, Ci) : i ∈ [n]},PfSh) = 1 then PfSh is a valid proof of witness w =
(S,m(X), ρ1, . . . , ρn) such that m(α0) = 0, for all i ∈ [n] Ci = E .Encpki(S + m(αi) · G, ρi) and
m has degree ≤ t. Therefore, clearly HEPVSS.Dist on input pp, {pki : i ∈ [n]}, S and with random-
ness m(X), ρ1, . . . , ρn will output {Ci : i ∈ [n]}.

Verifiability of Decryption. Our construction clearly satisfies verifiability of decryption because if
HEPVSS.VerifyDec(pp, pk, A,C,PfDec) = 1 then
PfDec is a valid proof of witness sk such that A = Decsk(C) and sk is the secret key corresponding
to pk. Therefore, DecShare(pp, pk, sk, C) = (A, ·) for any randomness input to this algorithm.

D.3 Correctness and Security of DHPVSS

Lemma 3 (Correctness of DHPVSS). Our construction DHPVSS for a publicly verifiable secret
sharing scheme satisfies correctness.

Proof. Consider a set of encrypted shares {Ci : i ∈ [n]} and a proof PfSh output by DHPVSS.Dist
with respect to parameters pp = (G, G, p, {αi, vi : i ∈ [n]}) output by DHPVSS.Setup, a secret
S ∈ G, a public and secret key (pkD, skD) generated by DHPVSS.DKeyGen, and a set of public
keys {pki : i ∈ [n]} = {(Ei = ski · G,Ωi) : i ∈ [n]} generated by DHPVSS.KeyGen with respect to
{idi : i ∈ [n]}.

Clearly for all i ∈ [n], VerifyKey(pp, idi, pki) = 1, as because of the correctness of the proofs of
discrete logarithms, Ωi will be valid.
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For all i ∈ [n], DecShare(pp, pkD, pki, ski, Ci) outputs Ai = Ci − ski · pkD and PfDeci. Then, by
definition of correctness, DHPVSS is correct if

DHPVSS.Verify(pp, pkD, {(pki, Ci) : i ∈ [n]},PfSh) = 1,

for all i ∈ [n]
VerifyDec(pp, pkD, pki, Ci, Ai,PfDeci) = 1,

and finally DHPVSS.Rec outputs the secret S.
Consider the proof PfSh where

V =
n∑
i=1

vif
∗(αi) · Ci, U =

n∑
i=1

vif
∗(αi) · Ei,

where f∗ = H(pkD, {(pki, Ci) : i ∈ [n]}) and ∀i ∈ [n]

vi =
∏

j∈[n]\{i}

(αi − αj)−1.

By assumption, the proofs of discrete logarithm equality are correct. As Ci = skD · Ei + Ai where
Ai = S +m(αi) ·G for polynomial m of degree ≤ t such that m(α0) = 0, then

V =
n∑
i=1

vif
∗(αi) · Ci = skD

n∑
i=1

vif
∗(αi) · Ei +

n∑
i=1

vif
∗(αi) · (S +m(αi) ·G)

= skD · U +

n∑
i=1

vif
∗(αi)(S +m(αi) ·G).

As m is a polynomial of degree t such that m(α0) = 0 and due to Theorem 1, V = skD · U . As
pkD = skD ·G, then the proof PfSh will be valid. Therefore, algorithm DHPVSS.Verify returns 1.

We consider now PfDeci. By assumption, the proofs of discrete logarithm equality are correct.
Because Ci−Ai = ski · pkD and Ei = ski ·G, then the proof PfDeci will be valid. Therefore, ∀i ∈ [n]
algorithm DHPVSS.VerifyDec returns 1.

Finally, clearly DHPVSS.Rec will output GShamir.Rec(pp, {Ai : i ∈ T }) which in turn equals S
since Ai are all correct.

Lemma 4 (IND-1 Secrecy of DHPVSS). Our construction DHPVSS for a publicly verifiable
secret sharing scheme satisfies indistinguishability of secrets if the DDH assumption holds.

Proof. Suppose there is an adversary A such that

Pr
[
Gameind-secrecy,0A,PVSS (λ) = 1

]
− Pr

[
Gameind-secrecy,1A,PVSS (λ) = 1

]
= ε,

where ε is non-negligible, then we can construct B that distinguishes DDH tuples with non-negligible
probability. We give the detailed description of B in Algorithm 10, and then explain how B works.

We now explain why, when a DDH tuple is input to B, the view of A, when j = 1 and b̃ = 1,
is as in the real experiment when b = 1 and the view of A, when j = n− t and b̃ = 0, is as in the
real experiment when b = 0. Note that b̃ and j are the values randomly chosen by B.
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Algorithm 10 B
procedure DIST((U , S′))

if U * [n+ 1, k] or |U| 6= n then return ⊥
end if
Let {(αi, vi) : i ∈ U} be the set {(αi, vi) : i ∈ [n]}
({A′i}i∈[n],m′(X))← GShamir.Share((G, G, p, t, n, {αi : i ∈ U}), S′)
∀i ∈ U C′i ← ski · pkD +A′i
f∗ ← H(pkD, {(pki, C′i) : i ∈ U})
V ←

∑
i∈U vif

∗(αi) · C′i
U ←

∑
i∈U vif

∗(αi) · Ei
Simulate proof PfSh for G, pkD, U, V
return ({C′i : i ∈ [n]},PfSh)

end procedure

procedure B(G, p,X1, X2, X3, X4)
b̃←$ {0, 1}, j ←$ [1, n− t]
G← X1, x0, x1 ←$Zp, S0 ← x0 ·G,S1 ← x1 ·G
Choose pairwise distinct α1 ∈ Zp, · · ·αn ∈ Zp
∀i ∈ [n] vi ←

∏
j∈[n]\{i}(αi − αj)

−1

Randomly sample degree t polynomials f, f ′ ∈ Zp[X] with f(0) = x0, f ′(0) = x1, and f(αi) = f ′(αi) for
i ∈ [n− t+ 1, n]
pp← (G, G, p, {(αi, vi) : i ∈ [n]}); pkD ← X2

Ej ← X3; simulate the proof Ωj for G, Ej , j; pkj ← (Ej , Ωj)
∀i ∈ [n− t]\{j} ski ←$Zp, Ei ← ski ·G,Ωi ← DL(ski;G,Ei, i); pki ← (Ei, Ωi)
(({pki = (Ei, Ωi) : i ∈ [n− t+ 1, k]})← A(pp, pkD, {pki : i ∈ [n− t]})
∀i ∈ [n− t+ 1, k] extract ski from Ωi
∀i ∈ [1, j − 1] Ci ← ski · pkD + f(αi) ·G
∀i ∈ [j + 1, n− t] Ci ← ski · pkD + f ′(αi) ·G
∀i ∈ [n− t+ 1, n] Ci ← ski · pkD + f(αi) ·G

if b̃ = 0 then Cj ← X4 + f(αj) ·G
end if

if b̃ = 1 then Cj ← X4 + f ′(αj) ·G
end if
f∗ ← H(pkD, {(pki, Ci) : i ∈ [n]})
V ←

∑n
i=1 vif

∗(αi) · Ci, U ←
∑n
i=1 vif

∗(αi) · Ei
Simulate proof PfSh for G, pkD, U, V
b′ ← ADIST(S0, {Ci : i ∈ [n]},PfSh)

if b′ = b̃ then return 1
else return 0
end if

end procedure
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G and pkD are set to be X1, X2 respectively and so are distributed correctly. All Ei for i ∈ [n−t]
are chosen identically to the experiment,except for Ej which is X3 a random element of G and so
distributed correctly. We can simulate the proof Ωj due to the zero knowledge property of the
proof of discrete logarithms. When computing the encrypted shares, although the secret key skD
is not known to B, we can instead use ski such that ski · G = Ei for all i ∈ [n]. We have that
skD ·Ei = ski · pkD. In the case of corrupted parties, although we do not know these ski values, we
can extract them from the proofs of knowledge Ωi. In the case of the jth honest party, although
again we do not know skj , as a DDH tuple is input, then X4 = skD ·Ej where skD ·G = pkD. The
proof PfSh can be simulated without knowledge of skD, due to the zero knowledge property. The
oracle DIST can be simulated without knowledge of skD in the same way. The ski values that were
extracted from the public keys Ei can be used to generate {C ′i : i ∈ [n]}. The proof PfSh can again
be simulated.

For all corrupted parties, it does not matter whether the polynomial f or f ′ is used to generate
their encrypted share, because they have the same outputs on input αi where i ∈ [n − t + 1, n].
When j = 1, and b̃ = 1, the polynomial f ′ is used to generate all of the encrypted shares for the
honest parties. Therefore, the adversary is input S0 and a correctly distributed sharing for S1 and
so the view is identically distributed to when b = 1. When j = n− t and b̃ = 0, the polynomial f is
used to generate all of the encrypted shares for the honest parties. The adversary is input S0 and
a correctly distributed sharing for S0 and so the view to A is identically distributed to when b = 0.

Let Wj,d be respectively the event that A outputs d when j is chosen at the beginning and a
DDH tuple is input to B. Where ε is the advantage of A defined above which is non–negligible, we
have that

|Pr
[
Wn−t,1|b̃ = 0

]
− Pr

[
W1,1|b̃ = 1

]
| = ε.

Note that for j∗ = 1, . . . , n − t − 1, the view of the adversary when j = j∗ + 1 and b̃ = 1 and

the view of the adversary when j = j∗ and b̃ = 0 is identically distributed so Pr
[
Wj∗+1,1|b̃ = 1

]
=

Pr
[
Wj∗,1|b̃ = 0)

]
. Then

|Pr
[
Wn−t,1|b̃ = 0

]
− Pr

[
W1,1|b̃ = 1

]
| =∣∣∣∣∣∣

n−t∑
j=1

(
Pr
[
Wj,1|b̃ = 0

]
− Pr

[
Wj,1|b̃ = 1

])∣∣∣∣∣∣ .
When a DDH tuple is input to B, the probability B outputs 1 is∑n−t

j=1 1/2 Pr
[
Wj,1|b̃ = 1

]
+ 1/2(1− Pr

[
Wj,1|b̃ = 0

]
)

n− t

= 1/2 +

∑n−t
j=1 Pr

[
Wj,1|b̃ = 1

]
− Pr

[
Wj,1|b̃ = 0

]
)

2(n− t)
.

Now consider the probability that B outputs 1 when a random tuple was input to B. Because
X4 is now a uniform and independent variable, all inputs to B are independant of b̃. Therefore, B
outputs 1 with probability 1/2.

As |
∑n−t
j=1 Pr[Wj,1|b̃=1]−Pr[Wj,1|b̃=0])

2(n−t) | = ε
2(n−t) , which is non-negligible, then B has a non-negligible

advantage in distinguishing DDH tuples.
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Lemma 5 (Verifiability). Our construction DHPVSS for a publicly verifiable secret sharing scheme
satisfies verifiability if the hash function H is a random oracle.

Proof. Verifiability of Key Generation. Our construction clearly satisfies verifiability of key gen-
eration because if VerifyKey(pp, id, pk = (E,Ω)) = 1 then Ω is a valid proof of knowledge of the
discrete logarithm for E. Therefore, sk such that E = sk ·G can be extracted from Ω.

Verifiability of Distribution. Our construction satisfies verifiability of distribution because if

Verify(pp, pkD, {(pki = (Ei, Ωi), Ci) : i ∈ [n]},PfSh) = 1

then PfSh is a valid proof for the fact that the discrete logarithm of pkD with respect to G, is the
same as that of V with respect to U , where

V =
n∑
i=1

vim
∗(αi) · Ci, U =

n∑
i=1

vim
∗(αi) · Ei

and
m∗ = H(pkD, {(pki, Ci) : i ∈ [n]}), vi =

∏
j∈[n]\{i}

(αi − αj)−1 ∀i ∈ [n].

Therefore, skD such that pkD = skD · G and V = skD · U can be extracted from PfSh. As
V = skD · U , then

n∑
i=1

vi ·m∗(αi) · (Ci − skD · Ei) = 0.

Let Φ denote the event

(C1 − skD · E1, · · · , Cn − skD · En) 6= (f(α1) ·G, · · · , f(αn) ·G)

for every polynomial f of degree ≤ t. Say r queries were made to the random oracle by the adversary.
For event Φ to have occurred, some pkD, {(pki, Ci) : i ∈ [n]}) was submitted to the random oracle
and some polynomial m∗ of degree ≤ n−t−1 was returned such that

∑n
i=1 vim

∗(αi)·(Ci−skD ·Ei) =
0. As E1, · · ·En are included in the input to the hash function and skD is defined by the input to
the hash function, the probability of this is at most r/p, due to Theorem 1. Now assume Φ did
not happen. Then there has to be a polymonial f satisfying the conditions above. Then, letting
S = f(α0) ·G, and ({Ci : i ∈ [n]}, ·) = DHPVSS.Dist(pp, pkD, skD, {pki : i ∈ [n]}, S) where the ran-
domness r is the one that makes GShamir.Share select polynomial m(X) = f(X)− S 8. Therefore,
clearly a correctly formed skD, S and randomness for Dist exist.

Verifiability of Decryption. Our construction clearly satisfies verifiability of decryption because if
VerifyDec(pp, pkD, pk = (E,Ω), C,A′,PfDec) = 1 then PfDec is a valid proof of knowledge of discrete
logarithm equality for G,E, pkD, C−A′. Therefore, sk such that E = sk·G and C−A′ = sk·pkD can
be extracted from PfDec. Therefore A′ = C − sk · pkD, and so DecShare(pp, pkD, pk, sk, C) = (A′, ·)
for any randomness input to this algorithm.

8recall that GShamir.Share constructs the shares as Ai = S + m(αi)G for m of degree ≤ t with m(α0) = 0; the
above selection of m satisfies the conditions and yields Ai = f(αi)
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E Communication Complexity of PVSS

First note that any ΠNI−Pre communicates an element in W and one in Zp.

Communication Complexity of HEPVSS. The communication of the algorithm HEPVSS.Dist
consists of n ciphertexts in C (the encryptions if the shares) and a proof PfSh, which is a ΠNI−Pre
proof whereW = G×Zp[X]≤t×Rn. When El Gamal encryption is used as E , since R = Zp, C = G2

this amounts to a total of (n+ t+ 2) elements of Zp and 2n+ 1 in G which is roughly 9 equivalent
to a total of (3n+ t+ 3) log p bits.

On the other hand HEPVSS.DecShare communicates a decrypted message in G and the proof
PfDec where W = SK. In the case where we use El Gamal, the latter is 1 element in G10 and a
challenge in Zp. Hence the communication is roughly 3 log p bits.

Communication Complexity of DHPVSS. DHPVSS.Dist has smaller ciphertexts (1 group
element each) and a smaller proof PfSh consisting only of 2 elements in Zp. Hence the communication
is in total roughly (n+ 2) log p bits, which is 3 ∼ 3.5× less than HEPVSS.Dist (depending on t).

We remark that this is quite close to the minimum possible, at least if one uses an information-
theoretical secret sharing scheme, where the public communication is made through encryption of
the shares, as we do. Indeed, well known bounds imply that, in this case, the total joint size of the
shares must be n times the secret, therefore n log p bits in our situation.

The communication of DHPVSS.DecShare is as in HEPVSS.DecShare, hence it communicates
3 log p bits.

Comparison with SCRAPE and ALBATROSS. In SCRAPE and ALBATROSS, the en-
crypted shares of a secret S = m(α0)G are given by Ci = m(αi)pki (where again pki = skiG).
SCRAPE requires the dealer to commit to m(αi) in a common base H by publishing Mi = m(αi)H
(n additional group elements), so that the SCRAPE trick can be used on the Mi’s. Moreover the
dealer needs to post non-interactive DLEQ(m(αi), pki, Ci, H,Mi) for all i, which amounts to n+ 1
new Zp-elements. In total this means (3n+ 1) log p bits for the whole distribution. Instead ALBA-
TROSS uses a standard homomorphic preimage proof of knowledge of the m(X) underlying Ci.
That is the dealer posts ΠNI−Pre(m(X), {Ci}i=1,n, f) with f(m(X)) = m(αi)·pki. This requires t+2
Zp-elements, and so the communication complexity of the distribution phase is of (n+ t+ 2) log p
bits. Therefore, our DHPVSS scheme is the most communication efficient of all these alternatives.

Communication Complexity of Resharing. Resharing a secret among a committee of nr+1

parties requires, per party that is resharing their share, (3nr+1 + tr+1 + 3) log p bits, i.e. the same
communication as to execute HEPVSS.Dist among the same set of parties. This means that we need
a total communication of (tr + 1)(3nr+1 + tr+1 + 3) log p bits in order for Cr to reshare a secret to
Cr+1.

The same happens with DHPVSS: the communication complexity per party who is resharing is
(nr+1 + 2) log p bits, which is the same as for distributing a share in the first place. This means Cr
needs to communicate in total tr(nr+1 + 2) log p bits to reshare a secret to Cr+1.

9In practice, describing an element of an elliptic-curve group of order p requires slightly more information
10While it is true that, in order to force linearity of decryption, we have artificially set sk∗ = (1, sk), and hence

the keys are technically in G2, it is very easy to see that one only needs to send information related to the second
coordinate.

42



F Zero Knowledge Proofs of Membership to an Anonymous Committee

When encryption towards a committee R is used as part of a protocol, identities IDi such that
ψ(i) ∈ R will typically need to act upon having received an encrypted message. This will reveal
the fact that they are a receiver.

In this section we present strategies that allow IDi to prove that it belongs to the receiver set,
ψ(i) ∈ R, without revealing anything else about ψ(i).

At first, it could appear that having IDi prove knowledge of a message received by R is enough,
but note this is not the case when there are collusions between corrupted parties in R and others
outside. In general, we want to avoid that a set of t colluding parties of which only t′ < t belong to
R can claim that t′ + 1 or more of them are in R.

We present two solutions for the problem above. The first solution (Section F.1) is generic but
less efficient: each party inR signs a message using a linkable ring signature [22]. Ring signatures [25]
guarantee that the signer belongs to a given set of parties without revealing their identity within
that set. Linkability ensures that, despite this anonymity, two signatures using the same key can
be linked. This means colluding parties cannot use the same secret key to claim that both belong
to R, when only one of them does.

However, linkable rings signatures become larger as the size of the committee grows. In Sec-
tion F.2, we present an optimized solution where we leverage the fact that, in our situation, there is
already a sender broadcasting ciphertexts, and we can use this party to send auxiliary information
that allows to reduce the amount of communication by each receiver to be constant-size (while the
information sent by the sender is still linear in the size of the receiver committee). Our solution is
based on a linkable version of Camenisch-Lysyanskaya signatures.

F.1 Generic Proofs of Membership based on Linkable Ring Signatures

Ring signatures, also called sometimes Spontaneous Anonymous Group signatures, are signature
schemes in which each member of a universe of parties has a secret key, and can use that key to
sign a message on behalf of any subset of that universe to which it belongs, in such a way that the
signature does not reveal which of the parties in that subset has signed.

Ring signatures can be constructed as non-interactive zero knowledge proofs of knowledge of a
secret key corresponding to a set of public keys (which is in turn an OR statement), via a Fiat-
Shamir transformation where the message is included as an argument to the random oracle. In
fact it is this proof of knowledge what we really need in our problem, but we present the solution
in terms of ring signatures because the notion of linkability is commonly used in this context. A
linkable ring signature is one that guarantees that if two signatures (even of different messages) for
the same set of users are produced using the same secret key, this fact is detected, even though the
identity of the signer is kept anonymous.

Definition 20 (Linkable Ring Signature). A Linkable Ring Signature scheme for a set [n] is
given by the following tuple of algorithms:

– KeyGen(n, 1λ): Outputs n key pairs (pki, ski)i∈[n].

– LinkSig(ski,m,R): Takes a secret key, a message m, and a set R ⊆ [n], outputs a signature σ.

– LinkVer({pki}i∈R,m, σ,R): Takes a set R ⊆ [n], a set of associated public keys pki, i ∈ R, a
message m and a signature σ and outputs accept or reject.

43



– Link((m,σ,R), (m′, σ′,R′)): Takes two tuples consisting of a message, a signature and a subset
of [n] and outputs a bit b (meant to represent whether these two signatures have been created
with the same secret key).

In addition, these algorithm must satisfy the following properties: for all messages m,m0,m1, all
sets R,R0,R1 ⊆ [n], all (pki, ski)i∈[n] output by KeyGen(n, 1λ) and any sk, sk(0), sk(1) ∈ (ski)i∈[n]

Pr[LinkVer({pki}i∈R,m, σ,R) = accept)| σ = LinkSig(ski,m,R) ∧ i ∈ R] = 1

Pr[Link((m0, σ0,R0), (m1, σ1,R1)) = 1| σb = LinkSig(sk,mb,Rb), b ∈ {0, 1}] = 1

Pr[Link((m0, σ0,R0), (m1, σ1,R1)) = 1| σb = LinkSig(sk(b),mb,Rb), b ∈ {0, 1}

∧ sk(0) 6= sk(1)] = 0

The first equation ensures that a signature σ of a message m is always accepted by a verifier
that takes as additional input a set R and the public keys corresponding to that set, if the signature
has been created with a secret key belonging to R. The second and third equations guarantee that
two signatures of two possibly different messages (and with respect to possibly different sets) will
be linked if and only if they have been created with the same key.

Typically several security properties are required from linkable ring signatures, which we de-
scribe informally. These are based on the model in [1].

– Linkability This requirement ensures that signatures from the same secret key will always be
linked. In the security game, the adversary must output k public keys for corrupted parties,
and k + 1 valid signatures, each on a message and a ring. They win if all rings are subsets of
the set of the k corrupted public keys, and none of the signatures are linked. The requirement
is that the adversary wins with negligible probability

– Linkable Anonymity While linkable ring signatures are publicly linkable, a signature still
should not be able to be traced to the signer’s public key. In the game, the adversary is given
access to an oracle to create honest users and receive their public keys. The adversary returns
two honest users (their challenged users), as well as a set of the adversary’s own corrupted
public keys. They are then given access to an oracle, where they can submit a challenged user,
a message and a ring that must contain the public keys of both challenged users. The challenger
returns a signature signed with the secret key of one of the users and the adversary must guess
the signer correctly to win. The adversary must have negligible advantage in guessing correctly.

– Non–Frameability This requirement ensures that an adversary cannot frame an honest user
by forging a signature which links to this user’s signature. In the game we give the adversary
access to oracles to create honest users, obtain their signatures and corrupt them. The adversary
must output a valid signature that was not output by the signing oracle. They then must output
another valid signature that was output by the signing oracle for an honest user that has not
been corrupted. For the adversary to win, the two signatures must be valid and linked. This
should happen with negligible probability.

Note that linkability implies the usual existential unforgeability security property, in the sense
that, if the adversary knows no secret key skj , j ∈ R (i.e. |C ∩ R| = 0) then the adversary cannot
create a valid signature for R.

Linkable ring signatures almost automatically gives a solution to our problem. Each party
includes a public key pkLinkSig,i for a linkable signature in the public key to be shuffled. To prove
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membership toR, IDi signs a message with pkLinkSig,i and publishes the message and signature. This
signature can be verified by any public verifier. The security properties of the linkable signature
guarantee both that the proof only reveals membership to R but nothing else, and that if two
identities use the same secret key to claim membership to R, this is detected by any public verifier.

One (easily fixable) caveat is that the properties above do not prevent replay attacks, where an
adversary attempts to copy an honest party’s signature and claim it as theirs, or at least invalidate
the honest party’s signature. We fix this by including the public identity of the signer as a part of
the message signed. We describe the construction in Figure 12.

Proof of membership verification

Set-up:
A list of anonymized public keys {(j, pkAnon,j) : j ∈ [n]} where pkAnon,j contains a public key pkLinkSig,j for a
linkable signature scheme.
For the sake of notation simplicity, let pkj := pkLinkSig,j , skj := skLinkSig,j in this Figure. Moreover, given R ⊆ [n],
let PKR = {pkj : j ∈ R}.

Proof:
Input: A subset R ⊆ [n], a session identifier ssid, the key skj known to IDi.
1. Set m = H(IDi||ssid) and output σ = LinkSig(pkj ,m,R).

Verification:
Input: Public verifier has input R,PKR, ssid, and a list of pairs (IDi, σi), i ∈ I for a subset I ⊆ P.
1. Let mi = H(IDi||ssid) for i ∈ I
2. Compute the set I ′ ⊆ I of all i in I such that LinkVer(PKR,mi, σi,R) = accept.
3. For all i1, i2 ∈ I ′, i1 6= i2, if Link((mi1 , σi1 ,R), (mi2 , σi2 ,R)) = 1 then remove i1, i2 from I ′. Continue until

there are no such index pairs.
4. Output the remaining set I ′ as the set of accepted membership claims.

Fig. 12. Proof of membership to an anonymous committee

We require that if a set I of users have all generated proofs of membership to an anonymous
committee honestly, then verification will pass. This is clearly true, due to the correctness of link-
able ring signatures. We require three security requirements for our proof of membership to an
anonymous committee:

– Unforgeability This requirement ensures that proofs of membership from the same party in
an anonymous committee can be linked. In the game, the adversary has corrupted t parties in
a anonymous committee R of size R. They can see proofs of membership from honest parties
and must output t+ 1 proofs of memberships on the corrupted identities, i.e. for IDi such that
i has been corrupted. They win if these proofs of memberships pass verification.

Clearly this is true for our construction in Figure 12, due to the linkability requirement for
linkable ring signatures. We now provide a proof sketch. We show that given an adversary that
can win in the unforgeability game for proofs of membership to an anonymous committee, we
can win in the linkability game for linkable ring signatures. The adversary in our unforgeability
game provides us with t public keys corresponding to corrupted users and we generate ourselves
R − t secret/ public keypairs corresponding to honest users. We can then honestly generate
R− t proofs of membership on behalf of honest users to provide to the adversary. They return
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t+ 1 proofs of membership on behalf of corrupted users. In the linkability game we output all
R public keys of all honest and corrupted members of the anonymous committee, and all R+ 1
proofs of memberships on behalf of corrupted and honest members of the anonymous committee.
As all proofs of membership pass verification, we have output R + 1 valid ring signatures that
are all unlinked. Therefore, we have broken the linkability of linkable ring signatures.

– Anonymity Although a proof of membership of an anonymous committee reveals that the
prover is a member of R, we need to ensure that it does not reveal which member of R . In
the game, the adversary chooses two honest users in R and has corrupted all other users. They
then receive a proof of membership on behalf of one of the honest users, and must guess which
user correctly to win.

Clearly this is true for our construction in Figure 12, due to the linkable anonymity requirement
for linkable ring signatures. We now provide a proof sketch. We show that given an adversary
that can win in the anonymity game for proofs of membership to an anonymous committee,
we can win in the linkable anonymity game for linkable ring signatures. We first of all create
two honest users in the linkable anonymity game. We can set the public keys of the two honest
users, chosen by the adversary in the anonymity game for proofs of membership, to be these two
public keys. We then submit to the challenge oracle one of these honest users, along with a ring
containing all public keys in the anonymous committee and a message set to be H(ID, ssid).
We return the resulting ring signature as our proof of membership in the anonymity game, and
finally return the resulting bit b output by the adversary. If the adversary wins in the anonymity
game, we clearly win in the linkable anonymity game, which is a contradiction.

– Non–Frameability This requirement ensures that an adversary cannot frame an honest user
by forging a proof of membership which links to this user’s proof of membership, therefore
implying unfairly that they cheated. In the game, we give the adversary access to the public
keys of honest users, and oracles to obtain their proofs of membership. The adversary must
output a proof of membership that was not output by the oracle. They then must output
another proof of membership that was output by the signing oracle for an honest user. For
the adversary to win, the two signatures must not pass verification together, but should pass
verification individually.

Clearly this is true for our construction in Figure 12, due to the non–frameability requirement for
linkable ring signatures. We now provide a proof sketch. We show that given an adversary that
can win in the non–frameability game for proofs of membership to an anonymous committee, we
can win in the non–frameability game for linkable ring signatures. We will provide the adversary
in the non–frameability game for proofs of membership with the public keys of honest users,
using the corresponding oracle in the non–frameability game for linkable ring signatures. When
the adversary in the non–frameability game for proofs of membership attempts to obtain the
proofs of memberships for honest users, we will use the signing oracle in the non–frameability
game for linkable ring signatures. The adversary in the non–frameability game for proofs of
membership will output two proofs of membership that individually pass verification, but fail
together: one output from the signing oracle for an honest user and one that was not output
by the signing oracle. We can then output these two proofs of membership in the linkable
ring signature game. They will both be valid and linked signatures, so we will win in the non-
frameability game for linkable ring signatures.
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F.2 Efficient Instantiation using Camenisch-Lysyanskaya Signatures

In this section, we propose a solution where the size of a membership proof is constant (independent
from the size of R). For this we leverage the fact that the sender can send auxiliary information
together with the ciphertexts. Our strategy is based on a “linkable version” of a signature scheme
by Camenisch-Lysyanskaya.

We focus on one version of the Camenisch-Lysyanskaya signatures which has been used for
anonymous credentials and where we want to construct a signature of a group element sG ∈ G. A
crucial feature of this proof is that it can be divided in two parts: the first part uses the signing
key and does not require knowledge of s and outputs σ; meanwhile, the second part is a proof of
knowledge of s and does not require to know the secret signing key.

This means that the two parts of the proof can be carried out by two different parties. Moreover
the signature has a second important property: if the owner of the signature key has carried out
the first part of the signing for different siG, with outputs σi, then the second part of the signature
(the proof of knowledge) does not reveal which σi is being completed.

Our strategy is then the following. The sender carries out the first part of the CL signature of
each of the public keys of the parties in R, thereby creating messages σi. Now, because of what we
mentioned above, any receiver can prove the knowledge of the discrete logarithm of one of these
secret keys, without revealing which.

As before, this has the problem that, if a party IDi in R is colluding with other parties outside
the set, then they could all use the secret key known by IDi and claim to be in R. In order to
prevent that we turn the signature into a linkable one by including another generator H in the
common reference string, and having each receiver publish Ij = skAnon,jH. We extend the proof of
knowledge of skAnon,j into one that ensures skAnon,j is the same as the discrete log of Ij in base H.
Since Ij is deterministically computed from H and skAnon,j , a verifier can easily check if two parties
have claimed the same key.

Camenisch-Lysyanskaya Signatures The precise signature we will use is the one called Signa-
ture A in [6], but with the difference that while that paper assumed a type I bilinear pairing (which
would not allow for using the DDH assumption), we will replace it by a Type III bilinear pairing
as has been done in other works such as [5,15].

We recall this signature scheme: Let G1,G2 (with additive notation) and GT (with multiplicative
notation) be groups of prime order p. Let G1 be generated by G1 and G2 be generated by G2. The
signing secret key is of the form skCL = (x, y) ∈ Z2

p and the public key pkCL = (X,Y ) = (xG2, yG2)
in G2

2.
The signature scheme can be used to either sign messages m ∈ Zp or M = mG1 ∈ G1. We are

interested in the latter case. As mentioned above, this case can be separated in two algorithms,
where CL.Sig1 uses M and skCL but does not require knowledge of m, and CL.Sig2 is applied to
the output of CL.Sig1 and requires knowledge of m, but not of the secret key. These protocols are
defined in Figure 13.

A crucial point is that the verification step depends only on the output of CL.Sig2. More-
over, given (M1, σ

1
1), . . . , (Mn, σ

1
n) where Mi = miG1 and σ1i = CL.Sig1(x,y)(Mi), the signature

CL.Sig2(mi, σ
1
i ) gives no information about i

This means that, once CL.Sig1 has been carried out on the messages Mi, the second step of
the signature can be seen as a ring signature scheme of sorts: if we interpret (mi,Mi) as a secret
key/public key pair belonging to the i-th party in a given set of parties, as it will be our case, then
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Camenisch-Lysyanskaya signature

Setup: Groups (G1,+), (G2,+), (GT , ·) of order p with generators G1, G2 for G1, G2 respectively, bilinear
pairing e : G1 ×G2 → GT . A random oracle H : {0, 1}∗ → Zp.

Parties and keys: A sender has a CL keypair (skCL = (x, y) ∈ Z2
p, pkCL = (X,Y )) where X = xG2, Y = yG2.

CL.Sig1skCL(M)

parse (x, y)← skCL
a←$Zp, A← aG1 ∈ G1

B ← yA, C ← xA+ axyM

return σ1 ← (A,B,C) .
Note that if we call M = mG, then
C = xA+ axyM = (x+mxy)A.

CL.Sig2(m,σ1)

Parse σ1 as (A,B,C)
r, r′ ←$Z∗p
Ã← r′A, B̃ ← r′B, Ĉ ← rr′C
zA ← e(Ã,X), zB ← e(B̃,X), zC ← e(Ĉ, G2)
ρ← r−1

W → Z2
p, X ← GT , ppπ ← (Zp,W,X ,H)

π ← ΠNI−Pre.Prove((ρ,m); ppπ, zA, f(zB ,zC))

where f(zB ,zC)(ρ,m) = z−mB zρC . .
This proves knowledge of ρ and m
such that z−mB zρC = zA.

return σ2 ← (Ã, B̃, Ĉ, π)

Ver2(PK, σ2)

Parse σ2 ← (Ã, B̃, Ĉ, π)
Compute zA, zB , zC as in CL.Sig2 above.
return accept iff e(Ã, Y ) = e(B̃,G2) and ΠNI−Pre.Verify(ppπ, zA, f(zB ,zC)) accepts.

Fig. 13. Camenisch-Lysyanskaya signature

by executing CL.Sig2 on the output of CL.Sig1(x,y)(Mi) the i-th party is creating a signature (for an
“empty” message) that guarantees this party belongs to the set, without revealing their identitity.

Adding linkability To ensure linkability in the scenario we just described, namely that any verifier
can detect when CL.Sig2 has been applied twice on the same input, we do the following:

First, as part of the setup we fix H, a generator of group G1, as part of the set up. Then
CL.LinkSig2(m,σ1) works as follows:

Algorithm 11 CL.LinkSig2(m,σ1)

I ← mH
Compute (Ã, B̃, Ĉ, π′) as in CL.Sig2(m,σ1) except now
π′ ← ΠNI−Pre((ρ,m); ppπ, (zA, I), f ′(zB ,zC ,H)),

where f ′(zB ,zC ,H)(ρ,m) := (z−mB zρC ,mH).
and ppπ = (Zp,W,X ′,H) where X ′ = GT ×G1

return σ2 ← (Ã, B̃, Ĉ, I, π′)

Now I depends deterministically on m and public information, and therefore a verifier can
detect if the same m is used twice, as it will yield the same I.
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Final instantiation Our final instantiation, described formally in Figure 14 is as follows: The
sender will encrypt the message with the El Gamal encryption scheme under the anonymous public
keys in R and include a proof of correctness of encryption. Moreover, the sender will compute
σ1j = CL.Sig1skCL(pkAnon,j) for j ∈ R, where skCL is the secret key for the sender. Finally, we observe

that in the description of CL signatures above there is no guarantee that σ1j has been computed

correctly until Ver2 is executed, so we need the sender to additionally prove that σ1j is indeed

computed correctly from CL.Sig1(pkAnon,j). To claim membership to R, and therefore ownership of

some skAnon,j , a party can then compute σ2 = CL.Sig2(skAnon,j , σ
1
j ). As in the generic construction,

to avoid replay attacks we add the public identity of the prover in the argument of the Fiat-Shamir
random oracle for the proof of knowledge π.

The correctness of the EncAMC scheme is satisifed, due to the correctness of the Camenisch-
Lysyanskaya signatures. Clearly the prooofs πEC and πCLSC guarantee that the sender has behaved
honestly. We again require three security requirements for our proof of membership to an anonymous
committee as defined previously:

– Unforgeability
Clearly this is true for our construction in Figure 14, due to the LRSW assumption [23], which
ensures the security of Camenisch-Lysyanskaya signatures. We now provide a proof sketch. For
an adversary to have output k + 1 proofs of memberships that pass verification and that were
not honestly generated, after having corrupted t of the public keys, they must have returned
t + 1 signatures that are valid according to Ver2, containing elements I1, · · · It+1 with for all
(i, j) ∈ [t+1] Ii 6= Ij . Say ∃i ∈ [t+1] such that Ii = skH, where sk is the secret key of an honest
user. Then we can build an adversary that can break the discrete logarithm, by extracting sk
due to the proof of knowledge property. Say ∃i ∈ [k+ 1] such that Ii = skH, where sk is not the
secret key of any user (corrupt or honest). Then we can build an adversary that can break the
unforgeability of CL signatures, because the adversary has forged a signature on a new message
skG. Now it is not possible for all I1, · · · , It+1 to be distinct, as there are only t corrupted users,
and so we have a contradiction.

– Anonymity
Clearly this is true for our construction in Figure 14, due to the DDH assumption. We now
provide a proof sketch. We show that given an adversary that can win in the anonymity game
for proofs of membership to an anonymous committee, we can distinguish DDH tuples. We are
input X1, X2, X3, X4 ∈ G4

1. In setup we set G = X1, H = X2. We choose bit b←$ {0, 1} and
set the public key of the bth honest user to be X3. We then generate a proof of membership as
follows. We set I = X4, and choose Ã, B̃, C̃ as normal based on the signature σ1 = (A,B,C)
of the bth honest user. We then simulate the attached proof, which is possible to the zero
knowledge property. If the adversary guesses correctly, we output 1, and otherwise we output 0.
If a DDH tuple is input, then the inputs to the adversary in the proof of membership game are
distributed correctly and we output 1 with the same probability that the adversary is successful.
If a DDH tuple is not input, then the inputs to the adversary are independent of b, and we
output 1 with probability 1/2.

– Non–Frameability
Clearly this is true for our construction in Figure 14, due to the non–frameability requirement for
linkable ring signatures. We now provide a proof sketch. We show that given an adversary that
can win in the non–frameability game for proofs of membership to an anonymous committee,
we can break the discrete logarithm assumption. We are input X1, X2 ∈ G2

1. In setup we set
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Encryption to a committee with anonymous membership claim

Setup: Groups (G1,+), (G2,+), (GT , ·) of order p. Generators G1, H for G1, generator G2 for G2, bilinear
pairing e : G1 ×G2 → GT .

Parties and keys: A sender has a CL keypair (skCL = (x, y) ∈ Z2
p, pkCL = (X,Y )) where X = xG2, Y = yG2.

In addition, there is a set P of potential receivers. In the setup phase, every party chooses a keypair (sk, pk)
where sk ∈ Zp, pk = skG1 ∈ G1 and then inputs it to a mix-net, resulting in a public list {(j, pkAnon,j) : j ∈ [n]}.

EncAMC.Enc(M, skCL;R, (pkAnon,j)j∈R) where M ∈ G1, R ⊆ [n]

∀j ∈ R, rj ←$Zp
∀j ∈ R, cj ← E .EncpkAnon,j (M ; rj)
πEC ← E .ProveEnc(M, (rj)j∈R; (cj)j∈R),
∀j ∈ R, σ1

j ← CL.Sig1skCL(pkAnon,j) with randomness aj ∈ Zp
πCLSC ← CLSC.Prove(x, y, (aj)j∈R;X,Y, (pkAnon,j)j∈R, (σ

1
j )j∈R),

as in Figure 15 below (this proves that σ1
j are correct CLSC signatures)

return ((cj , σ
1
j )j∈R, πEC, πCLSC)

EncAMC.Ver((cj , σ
1
j )j∈R, πEC, πCLSC)

return accept iff
both E .VerifyEnc((cj)j∈R, πEC) and CLSC.Verify((σ1

j )j∈R, πCLSC) accept.

EncAMC.Claim(skAnon,j ; (σ1
j )j∈R)

return σ2 ← CL.LinkSig2(skAnon,j , σ
1
j )

EncAMC.ClaimVer({(σ2
i )i∈I}, pkCL)

Receive as input a set (σ2
i )i∈I of verification claims

For all i ∈ I, parse σ2
i = (Ãi, B̃i, Ĉi, Ii, π

′
i).

for each I ∈ GT such that there are more than one i ∈ I with Ii = I do
Let II the set of such i.
if there is exactly one i in II such that Ver2(pkCL, σ

2
i ) accepts then

Accept this claim and reject all other claims from parties in II
else

Reject all membership claims from parties in II
end if

end for
for each I such that there is one i ∈ I with Ii = I do

Accept the claim if and only if Ver2(pkCL, σ
2
i ) accepts

end for

Fig. 14. Encryption to an anonymous committee via CL signatures

G = X1, H = aG, where a←$Zp. When the adversary in the non–frameability game for proofs
of membership attempts to create an honest user, we will behave normally, except for one
honest user i∗ where we will set pk = X2. When the adversary queries the oracle for proofs
of memberships for this user i∗, we will set I = apk, which is distributed correctly, generate
Ã, B̃ and C̃ as normal for σ1 = (A,B,C) and simulate the proof, which is possible due to the
zero knowledge property. The adversary in the non–frameability game for proofs of membership
will output two proofs of membership that individually pass verification, but fail together: one
generated honestly by the oracle and one that was not output by the oracle. Assume that
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Proof of Camenisch-Lysyanskaya Signature Correctness CLSC

Proof for relation
RCLSC = {((x, y, (aj)j∈R); (X,Y, (pkj)j∈R, (σ

1
j )j∈R)) :

σ1
j = (aj ·G1, aj · y ·G1, aj · x ·G1 + aj · x · y · pkAnon,j),
X = x ·G1,
Y = y ·G1}

CLSC.Prove(x, y, (aj)j∈R;X,Y, (pkj)j∈R, (σ
1
j )j∈R) Let H : {0, 1}∗ → Zp random oracle.

for j in R do
parse σ1

j ← (σ1
j1, σ

1
j2, σ

1
j3).

bj ← ajy, cj ← ajx, dj ← ajxy. .
Introducing these new variables
“linearizes” the problem

end for
W ← Z4|R|

p , X ← G6|R|
1 , pp← (Zp,W,X ,H)

return πCLSC ← ΠNI−Pre.Prove(w; pp, x, f) where
w = (aj , bj , cj , dj)j∈R
x = (σ1

j1, σ
1
j2, σ

1
j3, O,O,O)j∈R

f(w) := (ajG1, bjG1, cjG1 + djpkj , ajYD − bjG1, ajX − cjG1, cjY − djG1)j∈R
(Note that, for each j ∈ R, the first 3 conditions in f check the target statement using the introduced variables,
while the three last ensure these variables are correctly defined)

CLSC.Verify(X,Y, (pkj)j∈R, (σ
1
j )j∈R, πCLSC)

return ΠNI−Pre.Verify(x, f, πCLSC) where x, f are defined from the σ1
j as above.

Fig. 15. Proof of Camenisch-Lysyanskaya signature correctness

the proof of membership output from the oracle, was that of the honest user i∗, which occurs
with probability 1/k, where k is the number of honest users. Then for both signatures output
I = aX2. We can then extract the discrete logarithm of I base H from the attached proof, due
to the proof of knowledge property, which will provide the discrete logarithm of X2 base X1.
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