
SNACKs: Leveraging Proofs of Sequential Work for Blockchain
Light Clients

Hamza Abusalah1 , Georg Fuchsbauer2, Peter Gaži3 , and Karen Klein4

1 IMDEA Software Institute, hamza.abusalah@imdea.org
2 TU Wien, georg.fuchsbauer@tuwien.ac.at

3 IOG, peter.gazi@iohk.io
4 ETH Zurich, karen.klein@inf.ethz.ch

Abstract. The success of blockchains has led to ever-growing ledgers that are stored by all participat-
ing full nodes. In contrast, light clients only store small amounts of blockchain-related data and rely on
the mediation of full nodes when interacting with the ledger. A broader adoption of blockchains calls
for protocols that make this interaction trustless.
We revisit the design of light-client blockchain protocols from the perspective of classical proof-system
theory, and explain the role that proofs of sequential work (PoSWs) can play in it. To this end, we
define a new primitive called succinct non-interactive argument of chain knowledge (SNACK), a non-
interactive proof system that provides clear security guarantees to a verifier (a light client) even when
interacting only with a single dishonest prover (a full node). We show how augmenting any blockchain
with any graph-labeling PoSW (GL-PoSW) enables SNACK proofs for this blockchain. We also provide
a unified and extended definition of GL-PoSWs covering all existing constructions, and describe two
new variants. We then show how SNACKs can be used to construct light-client protocols, and highlight
some deficiencies of existing designs, along with mitigations. Finally, we introduce incremental SNACKs
which could potentially provide a new approach to light mining.

Keywords: Blockchains · Light clients · Proofs of sequential work

1 Introduction

Since the appearance of the seminal Bitcoin whitepaper [Nak08] and the subsequent launch of
its implementation maintaining the Bitcoin ledger, blockchain technology has witnessed enormous
growth in adoption.

However, this remarkable success also uncovered some of the deficiencies of the original Bit-
coin protocol and its derivatives. Their objective is to maintain an append-only ledger of transac-
tions that records the full financial (or computational) history of the system, and the size of this
ledger therefore grows with speed proportional to the use of the system. For example, the Bitcoin
and Ethereum blockchains both consist of hundreds of gigabytes. This makes maintain the full
blockchain unattractive for ordinary users, and the requirement to do so would be prohibitive to a
wider adoption of these systems.

Light-client blockchain protocols. The above development results in an urgent need for solu-
tions that enable interaction with the blockchain for so-called light clients5 that do not store the
entire blockchain. This interaction is typically mediated by so-called full nodes that store the full
blockchain state. This mediation should be trustless in that the light client is provided security
guarantees without having to assume the honesty of the full node(s) it interacts with.

5 The term light node or light client is sometimes used solely to refer to nodes adopting SPV (see below); we mean
by it any node that does not store the full blockchain.

https://orcid.org/0000-0002-7524-3133
https://orcid.org/0000-0003-1572-3255

Trustless light-client protocols can power a variety of applications within the blockchain ecosys-
tem. The basic one is bootstrapping, where a light client, holding only an authentic copy of the
genesis block, tries to obtain a reliable picture of the current ledger state (or a commitment to it),
that would then enable further interaction with the ledger such as verifying transaction inclusion
or even contributing to extending the chain (called light mining [KLZ21]). Interestingly, light-client
techniques also find applications in cross-chain communication protocols [BCD+14, GKZ19, KZ19],
where the goal is to communicate the occurrence of an event on a source chain to an independent
target chain: here the (validator of the) target chain plays the role of a light client for the source
chain, seeking to verify the occurrence of that event without validating the entire source chain.

The need for light-client protocols was already predicted in the Bitcoin whitepaper, where so-
called simplified payment verification (SPV) is proposed: the light client downloads only the block
headers (which contain the proof-of-work solutions) from a full node; these suffice to trustlessly
verify the amount of work invested to produce that chain; inclusion of individual transactions can
then be verified by specifically asking for the openings of the respective Merkle-tree commitments
contained in the block headers. Alas, while practically helpful, SPV still requires storage and com-
munication linear in the length of the blockchain and hence provides no asymptotic improvement.
On the other end of the spectrum are solutions based on succinct non-interactive arguments of
knowledge (SNARKs) [GGPR13] that provide impressive asymptotic improvements, but often suffer
from unfavorable concrete efficiency, reliance on a trusted setup, or on novel hardness assumptions.

NIPoPoWs. Given the initial success of proof-of-work (PoW) blockchains, there has been sig-
nificant effort towards developing practical light-client protocols for PoW, aiming at sublinear (in
the length of the blockchain) communication, while relying only on basic and efficient crypto-
graphic building blocks, and requiring no additional trust assumptions. This has led to two main
constructions: superblock-based non-interactive proofs of proof-of-work (NIPoPoWs) [KMZ20] and
FlyClient [BKLZ20]. In greater detail, [KMZ20] provides a definition of the NIPoPoW primitive
and an instantiation based on so-called superblocks: blocks that contain a PoW that is “stronger
than needed”, as it would remain valid also against a more restrictive difficulty threshold. Their
technique is leveraged to enable light mining [KLZ21]; unfortunately, the approach only guarantees
succinctness of the provided proofs if the adversary is limited to 1/3 of the total hash rate in the
system and is only analyzed in the static-difficulty setting. On the other hand, FlyClient also in-
stantiates the NIPoPoW primitive, is proven secure for any sub-1/2 adversary, provides significantly
better efficiency, and is analyzed also in the variable-difficulty setting.

It appears natural that underlying any of these light-client protocols must be a classical two-
party proof system which allows a prover, representing a full node, to convince a verifier, the light
client, of its knowledge of a blockchain that it commits to. However, the protocols [KMZ20, BKLZ20]
are not interpreted in this way: they were designed in a model where a light client is assumed to
be connected to multiple provers, and the soundness guarantees are formulated only under the
assumption that at least one of them is honest. This might appear unsatisfying, given that an
inspection of the actual protocols would suggest that a modular interpretation with the above-
discussed two-party building block playing the central role would be possible.

Proofs of sequential work. The incompleteness of the provided picture is further underscored
by the structure of the FlyClient protocol, which is strongly reminiscent (as the authors themselves
observe) to a seemingly unrelated primitive, a proof of sequential work (PoSW) [MMV13]. A PoSW
is a proof system in which a prover, given a statement χ and a parameter n, computes a proof
that convinces the verifier that n sequential computational steps have been performed since χ was

2

received. The authors of [BKLZ20] indeed remark that their construction resembles the PoSW of
Cohen and Pietrzak [CP18], but the exact relationship, as well as potential opportunities for further
generalizations and alternative constructions, remain—to the best of our knowledge—unstudied.

Our contributions. In this paper, we set out to fill the above-described gaps in the theory
underlying light-client protocols. Our main goals are to allow basing the development of these
protocols on the classical theory of proof systems, and to explain the role that proofs of sequential
work can play in their design. Our contributions can be summarized as follows:

1. We define a new general primitive called succinct non-interactive argument of chain knowledge
(SNACK), which is a non-interactive proof system for a specific NP language, formally capturing
the above intuition.

2. To construct SNACKs from so-called graph-labeling proofs of sequential work (GL-PoSW), we
unify existing definitions, add knowledge-soundness as a new property, and give two construc-
tions rooted in previous work achieving it.

3. We show how to augment any blockchain with any knowledge-sound GL-PoSW and construct
a SNACK system for the augmented chain.

4. We show how SNACKs can be used to construct light-client blockchain protocols, and compare
them to existing solutions.

5. We present a novel void-commitment attack against a naive class of designs of bootstrapping
protocols, and show how to mitigate this attack.

6. We define incremental SNACKs, which could allow for constructions of light miners with better
resilience than existing proposals.

1. Defining SNACKs. Consider a family Γ = (Γn)n∈N of weighted directed acyclic graphs (DAGs),
that is, the vertices of each DAG are attributed non-negative weights summing to 1. Consider la-
bels associated to the vertices and let R be a relation defined on the labels of the vertices, which
formalizes some “validity” requirement. (The DAG will represent a blockchain, with edges captur-
ing validation dependencies.) Let Com be a commitment scheme. We define a chain commitment
language LΓ,R,Com that consists of pairs (φ, n) where φ is a Com-commitment to the labels of Γn
that are valid with respect to R.

We then consider an interactive proof system for LΓ,R,Com called an argument of chain knowledge
(ACK), which satisfies a relaxation of knowledge soundness called α-knowledge soundness: any
prover that convinces a verifier of a statement (φ, n) must know a path in Γn of weight at least α
and being valid w.r.t. R. We focus on succinct and non-interactive arguments, i.e., SNACKs.

2. Knowledge-sound PoSW schemes. All known PoSW constructions [MMV13, CP18, AKK+19,
DLM19] (except for the subclass of the much stronger and less efficient verifiable delay functions
[BBBF18]) are based on a random-oracle-induced labeling of a particular DAG G. We provide
a unifying definition capturing all existing such graph-labeling PoSWs, for which we consider an
arbitrary weight distribution on the vertices of G, which will define the distribution for challenge
sampling (while prior constructions always sample uniformly). Furthermore, we define a notion of
knowledge soundness for GL-PoSW, which will prove useful for constructing SNACKs from GL-
PoSWs: knowledge soundness of the SNACK will follow from that of the underlying GL-PoSW.

We propose two knowledge-sound GL-PoSW schemes: The first is based on the PoSW scheme
from [AKK+19], the second is a slight modification of the PoSW scheme from [CP18] which is
better suited to our SNACK applications (by allowing weight on all vertices as opposed to only
the leaves as in [CP18]).

3

0

PoSW graph G8

1 2 3 4 5 6 7 8

0

Blockchain H8

1 2 3 4 5 6 7 8

g0
h0

Super-graph K8

g1
h1

g2
h2

g3
h3

g4
h4

g5
h5

g6
h6

g7
h7

g8
h8

Fig. 1: Graph H8 represents the dependency relations in the blockchain, G8 is the chain graph underlying our
PoSW scheme based on [AKK+19]; K8 represents the graph structure underlying the augmented blockchain. A label
ki = (gi, hi) of K8 consists of a blockchain block hi and a PoSW-related label gi, which is typically small, e.g. 256
bits, and consists of a hash the labels of the parents of vertex i in K8. The “proof” in hi, e.g. PoW in Bitcoin, must
depend on all parent labels in K8 as well as gi.

3. Constructing SNACKs for blockchains. A blockchain can be viewed as a path with potential
extra edges representing additional validation dependencies between blocks, so that block validity
can be determined by a relation R applied to the block and its parents in this DAG. By adding
extra (short) fixed-size data to each block, we show how to bind this blockchain DAG to the DAG
of a GL-PoSW whose sequential computation can be efficiently verified (see Fig. 1).

The augmented blockchain then gives rise to a SNACK system for a validity relation R̃, which
beyond checking the original block validity via R, also verifies the consistency of the added PoSW
data. A proof in this SNACK scheme convinces the verifier that the prover knows blocks of a certain
weight in a blockchain that are (i) valid and (ii) have been mined sequentially (since they lie on a
path)—a crucial guarantee in light-client protocols, as discussed next.

4. SNACKS in the real world. Our treatment so far has been fully independent of the actual Sybil-
protection mechanism (e.g., proofs of work/stake/space) of the underlying blockchain. However,
the implications and usefulness of the sequentiality guaranteed by a SNACK highly depend on
this mechanism. For example, in a proof-of-work (PoW) blockchain, it is costly to generate blocks
and thus the guarantee of a sequentially-generated set of blocks is valuable, because an adversary
controlling only a minority of the computational power cannot generate the longest such sequence.
In contrast, in the proof-of-stake setting, sequentiality is a weak guarantee, as generating a block
requires a mere digital signature and long sequences can be readily created. Hence, our main focus
is on applying SNACKs in the PoW setting, which was the only setting considered in [KMZ20,
BKLZ20]. Nonetheless, we believe that our approach has much wider applicability, for instance, to
blockchains combining proofs of space [DFKP15, AAC+17] with verifiable delay functions [BBBF18]
such as Chia [CP19]. We leave this question to follow-up work.

4

SNACKs can be employed for bootstrapping in the presence of at least one honest prover: the
light client simply obtains proofs from all provers and picks the heaviest successful one. However,
SNACKs also allow for applications where there is only a single prover. For instance, if a verifier
V knows, for application-specific reasons, (an estimate of) the current length of a blockchain, then
V only has to check a single SNACK proof evidencing that the prover knows a path of roughly the
correct length satisfying the SNACK guarantees of validity and sequentiality. This proof is then
enough to convince the verifier that the prover holds the right blockchain (maybe up to a short
suffix).

5. The Void-Commitment Attack and preventing it. Surprisingly, however, we observe that the
above approach turns out insufficient for a typical bootstrapping scenario where the obtained chain
commitment is meant to serve as a self-sufficient, universal anchor of trust in future interactions
with other full nodes. We describe a simple attack, called the void-commitment attack, that allows
the attacker to trick the light client into accepting a chain commitment that will turn out completely
useless in future interactions with any honest full node. To the best of our knowledge, this attack
has not been observed before.

We show how to remedy the attack by instead letting the prover establish a commitment to
some stable common prefix of all honestly held chains, one that is then universally understood by
all honest full nodes, which appears significantly more desirable in practice. Towards formalizing
this, we introduce a security definition of secure common-prefix bootstrapping and prove that our
final protocol achieves this notion. Our proof is based on an adversary-limiting assumption in the
spirit of (c, L)-adversaries assumed in [BKLZ20]. However, we observe that their original (somewhat
informal) assumption is insufficient for formal reasoning in any convincingly general model, and
we hence present its formalization that addresses several of the original deficiencies (e.g., assuming
that all competing chains—“forks”—must be of the same length).

6. Incremental SNACKs. A powerful extension of PoSWs, called incremental PoSWs [DLM19],
allows to extend an existing PoSW by additional sequential computation into a new PoSW covering
the full computation. We add this property to our formalism of GL-PoSWs and SNACKs. We
observe that using an incremental GL-PoSW to construct a SNACK system on top of a blockchain
whose underlying chain graph is simple (i.e., corresponds to a path) leads to an incremental SNACK.
To date, the only existing construction of an incremental GL-PoSW [DLM19] is defined for a uniform
challenge distribution, while our applications of SNACKs require different distributions. We leave
it as an exciting open problem to construct incremental GL-PoSW for arbitrary weight functions.

This approach could allow for constructing light miners in the sense of [KLZ21] without having
to assume a sub-1/3-adversary, hence providing a clear improvement over [KLZ21]. Pursuing this
idea is outside of our current scope and we leave it to future work.

Further notes on related work. The superblock-based approach to light clients [KMZ20, KLZ21]
draws inspiration from the interactive protocol of [KLS16], and has led to an exciting line of follow-
up work [KKZ19, KPZ20, DKKZ20].

FlyClient [BKLZ20] is closely related to our generic SNACK construction when instantiated
with the PoSW from [CP18]; we conjecture that FlyClient satisfies the guarantees of a SNACK,
and discuss the relationship further in Sect. 6. It employs an elegant technique (variable-difficulty
Merkle mountain ranges) to cope with the variable-difficulty setting. This is a strong indication that
our generic design can also be tweaked to handle variable difficulty. We leave this as an interesting
open problem, remarking that the possibility of using general weight functions could prove useful

5

here. However, FlyClient does not support incremental proofs (and hence cannot be used for light
mining).

While our concrete constructions do not outperform FlyClient efficiency-wise, we put some of
the intuitions of FlyClient on more solid formal footing, generalize their construction, and propose
extensions (such as incrementality). In particular, we formalize the concept and the security of light-
client protocols, which we believe is lacking in FlyClient, as well as the concept of a commitment to
the chain serving as anchor of trust for verifiers. While FlyClient leaves some room for interpretation
(particularly relevant for the void commitment attack), we clearly specify our protocol and give a
rigorous security analysis.

Regarding SNARK-based constructions, the light-client protocol Plumo [VGS+21] is designed
for the BFT-based consensus of the Celo blockchain. While it achieves impressive concrete suc-
cinctness among SNARK-based proposals, it is still best suited for incremental proofs and requires
heavier cryptographic tools, most importantly, a trusted setup. Mina (formerly Coda) [BMRS20]
employs SNARKs for a significantly more ambitious goal of providing a constant-size blockchain.

2 Notation and Basic Definitions

General. We let N denote the set {1, 2, . . .} and set N0 := N ∪ {0}. For integers i, j such that
i ≤ j, we let [i : j] := {i, i+ 1, . . . , j}, [n] := [1 : n], and [n]0 := [0 : n]. We let ε denote the empty
string; for strings a and b we denote their concatenation by a‖b. For a distribution D, we denote

by d
$← D sampling d according to D (for a set D, the uniform distribution is implied).

DAGs and chain graphs. For a directed acyclic graph (DAG) G = (V,E) on n+ 1 vertices, we
always number its vertices V = [n]0 in topological order and often write Gn to make this explicit. For
v ∈ [n]0, we denote the parent vertices of v in G by parentsG(v), and their number (i.e., the indegree
of v) by degG(v); thus, parentsG(v) = (v1, . . . , vdegG(v)). We also let deg(G) := maxv∈V {degG(v)}.
We drop the subscript G when G is clear from the context. For convenience, we assume that the
tuple parents(v) is given in reverse topological order.

Let (Gn = ([n]0, En))n≥0 be a family of DAGs. We make the assumption that for each n ≥ 0,
Gn is obtained from Gn+1 by removing the vertex n + 1 and its adjacent edges. We also assume
that deg(Gn) ∈ polylog(n).

Definition 1 (Chain graph). Let Gn = ([n]0, En) be a DAG. We call Gn a chain graph if
En ⊇ {(i−1, i) : i ∈ [n]}. A chain graph Gn = ([n]0, En) is called simple if En = {(i−1, i) : i ∈ [n]},
i.e., it forms a path.

Graph labeling and weighted DAGs. The following notion of weighted DAGs will be convenient
when we define proof of sequential work (PoSW) schemes with arbitrary, not just uniform, sampling
distributions.

Definition 2 (Weighted DAGs). We call Γn = (Gn, Ωn) a weighted DAG if Gn = ([n]0, En)
is a DAG and Ωn : [n]0 → [0, 1] is a function such that Ωn([n]0) = 1, where for S ⊆ [n]0 we let
Ωn(S) =

∑
s∈S Ωn(s).

In this work, we leverage the fact that the validity of (the headers of) a blockchain can be
checked “locally”, e.g., in Bitcoin, assuming fixed difficulty, (the header of) the i-th block hi is
valid if it contains the hash of the previous block hi−1 and a valid proof of work. We represent

6

these dependencies by a chain graph which contains an edge i→ j if block hi is required to check
the validity of hj (in fixed-difficulty Bitcoin the graph is thus a simple chain graph).

Validity is captured by a relation Rψ, where ψ is the genesis block of the blockchain, and hi is
valid if Rψ(i, hi, (hι1 , . . . , hιq)) = 1, where hι1 , . . . , hιq are hi’s parent blocks. We emphasize that we
consider “SPV” or “header” validity, which is the standard desideratum for blockchains adopted
by light clients, and in particular does not verify the validity of contained transactions.

Definition 3 (Labeled DAGs and blockchain validity). Let Gn = ([n]0, En) be a DAG.
A (graph) labeling of Gn is a mapping L : [n]0 → {0, 1}∗. (This naturally extends to labelings
of subgraphs of Gn.) A (block-)chain is a labeled chain graph.6 For a polynomial-time (PT)
relation Rψ, a blockchain (Gn, L) with genesis block L(0) = ψ is Rψ-valid if for all i ∈ [n]:
Rψ
(
i, L(i), (L(j))j∈parentsG(i)

)
= 1.

We define the notion of oracle-based graph labelings, which will later be used by graph-labeling
proof of sequential work (GL-PoSW) schemes, where the prover computes the labels of a given
graph, sends a commitment to them to the verifier and is then challenged to open some of them.
An oracle-based labeling of a graph G defines the labels of the sources of G as the oracle evaluation
on the empty string; the label of any other vertex is defined as the evaluation on the labels of the
parents of the vertex. In our applications to blockchains the vertices are the blocks and their labels
represent blockchain data. We therefore consider an “augmented” definition allowing to include
arbitrary data in the labels.

Definition 4 (Oracle-based graph labeling). Let Gn = ([n]0, En) be a DAG and τ = (τi)i∈[n]0
be a tuple of oracles, with each τi : {0, 1}∗ → {0, 1}λ. For any X = (x0, . . . , xn) ∈ ({0, 1}∗)n+1 the
X-augmented τ -labeling Lτ : [n]0 → {0, 1}∗ of Gn is recursively defined as

Lτ (i) :=

{
τi(ε)‖xi if parents(i) = ∅,
τi
(
Lτ (parents(i))

)
‖xi otherwise,

(1)

where Lτ (parents(i)) := Lτ (i1)‖ · · · ‖Lτ (ik) for (i1, . . . , ik) := parents(i). If X = (ε, . . . , ε), we call
Lτ the τ -labeling of Gn.

Vector commitment (VC) schemes. A VC scheme Com lets one commitment to message vectors
m and give short openings for (subsets of) components of m. It has four algorithms: The parameters
cp are computed via setup; a vector is committed to via (φ, aux)← commit(cp, (m1, . . . ,mn)), which
returns a commitment φ and auxiliary information aux. To give an opening ρ of φ to mi at position
i, run open(cp, φ, aux,mi, i). The opening is verified by running ver(cp, φ,mi, i, ρ), which returns a
bit. (We generalize this to opening a set I of indices via ver(cp, φ, (mi)i∈I , I, ρ).) The scheme must
be position-binding, meaning no adversary can compute a commitment φ and two openings ρ, ρ′ for
mi 6= m′i that both verify at position i. (See Appendix A for a formal definition.)

3 Defining SNACKs

In this section we introduce our main primitive of a succinct non-interactive argument of chain
knowledge (SNACK). Intuitively, it is an argument system for an NP language LΓ,R,Com that is

6 We use the words chain and blockchain as synonyms throughout the paper.

7

parameterized by a family of weighted DAGs Γ = (Γn)n≥0 with Γn = (Gn = ([n]0, En), Ωn), a
polynomial-time relation R ⊆ N0 × ({0, 1}∗)2, and a vector commitment scheme Com.

An element (φ, n) ∈ LΓ,R,Com consists of a Com commitment φ to a labeling of Gn that is valid
as defined by R, which checks every label w.r.t. the labels of its parents (Def. 3). Looking ahead,
R will serve two purposes: in GL-PoSW schemes, R checks the validity of an oracle-based graph
labeling, and in our SNACK systems for augmented blockchains, whose vertex labels include a
GL-PoSW label, R additionally verifies blockchain validity.

A SNACK proof for a statement (φ, n) proves knowledge of an R-valid labeling of Γn as well
as an opening of φ to this labeling. This is formalized by requiring that from a prover computing
a valid proof such a labeling and an opening can be extracted. To enable more efficient schemes,
we only require extraction of labels that lie on a path P that has a certain weight, as measured
by Ωn. We call SNACK system α-knowledge-sound,7 if it guarantees that from a valid proof for
(φ, n) a labeled path of weight at least α ∈ (0, 1] can be extracted, Setting α = 1 recovers standard
knowledge soundness.

Analogously to SNARKs, we require succinctness of SNACKs, that is, proofs are of size poly-
logarithmic in n and efficient to generate and verify.

Valid paths in a weighted DAG. To make the above formal, we need to adapt the definition
of a valid labeling of a graph G to paths P in G. In a path, a vertex might have a parent in G
that is not part of P , still the relation R expects a label for it. We therefore define a valid path
as containing, for every v ∈ P , a “witness” pv, which is the set of purported parent labels, which
must be accepted by R. We require pv to be in accord with the labeling of P , that is, if a parent u
of v lies on P then pv must contain the label of u.

Definition 5 (Valid paths). Let Gn = ([n]0, En) be a DAG, and R ⊆ N0 × ({0, 1}∗)2 a relation.
Furthermore, let P be a path in Gn, LP a labeling of P , and (pv)v∈P ∈ ({0, 1}∗)|P | a |P |-tuple of
bitstrings with pv = (pv[1], . . . , pv[deg(v)]). We say that (P,LP , (pv)v∈P) is an R-valid path in Gn
if for all v ∈ P with (v1, . . . , vdeg(v)) := parents(v), we have

R
(
v, LP (v), pv

)
= 1 and ∀i ∈ [deg(v)] if vi ∈ P then pv[i] = LP (vi) . (2)

For a weighted DAG Γn = (Gn = ([n]0, En), Ωn), we say that (P,LP , (pv)v∈P) is (α,R)-valid in Γn
if in addition Ωn(P) ≥ α.

For blockchains we typically require 0 ∈ P , so Rψ verifies the genesis block.

Chain commitment languages. We formally define the language LΓ,R,Com for a SNACK proof
system, where a statement η = (φ, n) consists of a Com commitment φ to an R-valid labeling of the
graph Gn. The labeling together with an opening of φ constitutes a witness w for η. We parameter-
ize the language (akin to languages parameterized by a group [GS08]), where parameters prm are
generated (formally by an algorithm G) during a setup phase. This allows us to capture SNACKs
with instantiations of Com for which (position-)binding only holds under honestly generated pa-
rameters cp; it also allows us to include the salt χ defining a random oracle τ for τ -labelings in
PoSW schemes, and to include the genesis block ψ of a blockchain, both of which are assumed to

7 This is akin to f -extractability [BCKL08] of proof systems, which relaxes knowledge soundness by only requiring
extraction of a partial witness (or a function thereof).

8

have been generated independently of the adversary. (Below these are subsumed into parameters σ
on which the relation R can depend.)

Formally, LΓ,R,Com is defined via a parameter-dependent ternary polynomial-time (PT) rela-
tion R over tuples (prm, η, w) as the statements η for which there exists a witness such that
R(prm, η, w) = 1. For standard NP relations, prm = ε.

Definition 6 (Chain commitment language). Let Γ = (Γn)n≥0 be a family of weighted DAGs
and Com a vector commitment scheme. We define

R(α)
Γ,R,Com :=

{(
prm=(σ, cp), η=(φ, n),
w=(P,LP , (pv)v∈P , ρ)

) :
(P,LP , (pv)v∈P) is (α,R)-valid
∧ Com.ver(cp, φ, LP , P, ρ) = 1

}
(3)

where R ⊆ N0 × ({0, 1}∗)2 is a PT relation that depends on σ. We let RΓ,R,Com := R(1)
Γ,R,Com and

LΓ,R,Com denote the language defined by RΓ,R,Com.

We now define the SNACK system which is the central primitive we are interested in. The
generality of the SNACK definition stems from leaving the specification of both the underlying
relation R and Com open.

Definition 7 (SNACK). A tuple of PPT algorithms (P,V) is a succinct non-interactive argument
of chain knowledge (SNACK) for the language LΓ,R,Com with parameter generator G from Def. 6 if
the following properties hold:

Completeness: For all λ ∈ N, prm← G(1λ), η, w ∈ {0, 1}∗ with (prm, η, w) ∈ RΓ,R,Com:

Pr
[
π ← P(prm, η, w) : V(prm, η, π) = 1

]
= 1 .

(α, ε)-Knowledge soundness: For every PPT prover P̃ there exists a PPT extractor E such that

Pr

prm← G(1λ); r
$← {0, 1}poly(λ)(

η, π
)

:= P̃(prm; r)
w′ ← E(prm, r)

:
V(prm, η, π) = 1 ∧

R(α)
Γ,R,Com

(
prm, η, w′

)
= 0

 ≤ ε(λ) , (4)

with R(α)
Γ,R,Com from (3). We say that (P,V) has universal (α, ε)-knowledge soundness if there

exists a single extractor EP̃ with oracle access to P̃ that satisfies (4) for all PPT provers P̃.

Succinctness: For all prm ← G(1λ), (prm, η, w) ∈ RΓ,R,Com and π ← P(n, tη, w), we have
|π| ≤ poly(λ, log n), P runs in time poly(λ, n), and V runs in time poly(λ, log n).

We remark that the SNACKs we construct in Sect. 5 have universal extractors in the random
oracle model. Note that we could have first defined the notion of anargument of chain knowledge
(ACK) as an interactive proof system in Def. 7without requiring succinctness. A SNACK would
then be any succinct non-interactive ACK, as required by the main applications of interest.

4 Graph-Labeling Proofs of Sequential Work

Intuitively, proofs of sequential work (PoSW) are proof systems in which a prover, upon receiving
a statement χ and a parameter n, convinces a verifier that n sequential computational steps have
passed since χ was received. We define augmented graph-labeling PoSWs, a special class of PoSWs

9

that covers all recent and efficient constructions [MMV13, CP18, AKK+19, DLM19]. Our definition
does however not cover the number-theoretic constructions of verifiable delay functions [BBBF18,
Pie19, Wes19], which are PoSWs in which statements have unique proofs. This is not required
for our applications; moreover, known constructions are far less efficient than graph-labeling (GL)
PoSWs.

4.1 Defining Graph-Labeling PoSW

All random-oracle-aided PoSW constructions [MMV13, CP18, AKK+19, DLM19] follow the same
blueprintwhich we now describe. These PoSWs are defined and constructed interactively and
then turned non-interactive using the Fiat-Shamir transformation [FS87].8 A graph-labeling PoSW
scheme is parameterized by a family of weighted DAGs Γ = (Γn)n∈N. Let Γn = (Gn = ([n]0, En), Ωn)
be a DAG from this family with weight distribution Ωn : [n]0 → [0, 1] with Ω([n]0) = 1. The prover
P, upon receiving a statement χ from the verifier V, uses χ to instantiate a sequence of oracles
τ = (τi)i∈[n]0 . In all constructions except [AKK+19], τi is defined by salting a random oracle O as
τi(·) := O(χ, i, ·); the construction from [AKK+19] uses χ to sample random permutations. Next,
P computes a τ -labeling L (Def. 4) of the vertices [n]0 of Γn and produces a commitment φL to
L using a vector commitment scheme. Finally, P and V run an interactive protocol in which V
essentially checks that the responses of P to a challenge set S ⊂ [n]0 sampled according to Ωn are
in accord with φ. See Fig. 2 for the syntax to formally define PoSW in Def. 9.

Our definition of graph-labeling PoSW generalizes existing definitions in several ways, which
are particularly useful for constructing SNACKs from PoSWs: First, while previous work only
considered challenges sampled uniformly at random, we allow for arbitrary sampling distributions
Ωn. Second, we extend the security guarantees of PoSW by requiring knowledge soundness, which
will be necessary when constructing SNACKs from PoSW. Existing PoSW schemes implicitly satisfy
a form of knowledge soundness, and we make this explicit. Finally, we allow the prover to embed
arbitrary additional data, as augmentation, into the computation. While this doesn’t seem useful for
classical applications of PoSWin the literature, it will be a crucial property for our later application
of PoSW as a building block for to SNACKs.

In defining graph-labeling PoSW, we require proofs to be short and verification to be fast9,
as for SNARK systems. Unlike general-purpose SNARKs however, we require practically efficient
provers and no setup assumptions.

Towards generalizing PoSW to arbitrary weight functions, we define the weight of a sequence of
parallel oracle queries to τ = (τi)i∈[n]0 . A parallel query is a set of simultaneous queries to oracles
τi, i.e. a tuple ((x1, i1), . . . , (xm, im)) which is answered by (τi1(x1), . . . , τim(xm)). The weight of a
sequence of parallel queries is the sum of the respective “heaviest” nodes in each parallel query.

Definition 8 (Sequential weight). Let Q = (Q1, . . . , Q`) be a sequence of parallel queries to
an oracle τ = (τi)i∈[n]0. We define the sequential weight of Q with respect to a weight function
Ωn : [n]0 → [0, 1] as

Ωseq(Q) :=
∑`

i=1 max
{
Ωn(j) : Qi contains a query to τj

}
.

8 The PoSW of [DLM19] is defined and constructed non-interactively by employing an on-the-fly sampling technique..
9 E.g., a hash-chain construction, in which the prover computes and sends the verifier π := Hn(χ) (the n times

sequentially repeated evaluation of a hash function H), does not satisfy our definition below as the verifier needs
to recompute π to verify it.

10

Note that if Ωn is uniform, i.e., ∀i ∈ [n]0 : Ωn(i) = 1
n+1 , then Ωseq(Q) = `

n+1 .

We write (outA, outB) ← 〈A(inA) ↔ B(inB)〉 to denote an execution of interactive algorithms
A, taking input inA and outputting outA, and B, taking input inB and outputting outB. We write
A(inA; r) to make A’s randomness explicit. We now define augmented graph-labeling PoSW.

Definition 9 (Augmented GL-PoSW). Let Γ = (Γn = (Gn, Ωn))n∈N be a family of weighted
DAGs such that for all n, Gn has a unique sink n. A pair of PPT algorithms (P := (P0,P1),V :=
(V0,V1,V2)), with access to an oracle τ = (τi)i∈N0 is an augmented (oracle-based) graph-labeling
proof of sequential work (GL-PoSW) if it instantiates the template described in Fig. 2 by specifying
a vector commitment scheme Com = (setup, commit, open, ver) and the subroutines PoSW.label,
PoSW.open and PoSW.ver; and it satisfies the following properties:

Completeness: For all n, λ ∈ N it holds that

Pr
[
(outP, outV)← 〈P(1n)↔ V(1λ, n)〉 : outV = 1

]
= 1 .

(α, ε)-Soundness: For all λ ∈ N and every PPT adversary (P̃′, P̃ = (P̃0, P̃1)) s.t. P̃ makes a
sequence Q of parallel queries to τ = (τj(·))j∈[n]0 of sequential weight Ωseq(Q) < α, it holds that

Pr

[
(n, st)← P̃′(1λ)

(outP̃, outV)← 〈P̃(st)↔ V(1λ, n)〉
: outV = 1

]
≤ ε(λ) .

Succinctness: The size of the transcript |〈P(1n) ↔ V(1λ, n)〉| as a function of λ and n is upper-
bounded by poly(λ, log n). The running time of P is poly(λ, n) and that of V is poly(λ, log n).

We say that (P,V) is (α, ε)-knowledge-sound we additionally have:

(α, ε)-Knowledge soundness: There exists a PPT extractor E such that for every PPT adversary
(P̃′, P̃ = (P̃0, P̃1)) we have

Pr

r
$← {0, 1}poly(λ) ; (n, st) := P̃′(1λ; r)

(outP̃, outV)←
〈
P̃(st; r)↔ V(1λ, n)

〉
w′ ← EP̃(1λ, r)

:
outV = 1 ∧
R(α)
Γ,R,Com

(
prm, (outP̃0

, n), w′
)

= 0

 ≤ ε(λ) ,

where prm is as sampled by V0, outP̃0
is the output φL of P̃0 and relation R(α)

Γ,R,Com is as in (3)
with R := Rχ defined as

R
(
i, L(i), pi

)
= 1 iff L(i) = τi(pi)‖xi for some xi ∈ {0, 1}∗ . (5)

In Appendix C.1, we prove Theorem 1 below, which establishes that every knowledge-sound
GL-PoSW is indeed a sound PoSW.

Theorem 1. Every (α, ε)-knowledge-sound graph-labeling PoSW is (α, ε′)-sound (cf. Def. 9) with
ε′ := ε+ (q2 + 1)/2λ, where q is an upper bound on the number of the adversary’s oracle queries.

The following lemma now directly follows from the respective definitions.

11

Verifier V = (V0,V1,V2):

Stage V0: On input (1λ, n):

1. χ
$← {0, 1}λ

2. cp← Com.setup(1λ)

3. send prm := (χ, cp) to P0

Stage V1: On input φL:

1. ∀i ∈ [t] do ιi
$← Ωn

2. send ι = (ιi)
t
i=1 to P1

Stage V2: On input (γi = (oi, ρi))
t
i=1:

1. ∀i ∈ [t] do

(a) b
(1)
i := PoSW.ver(χ, ιi, oi)

(b) b
(2)
i := Com.ver(cp, φL, L(ιi), ιi, ρi)

2. output
∧t
i=1(b

(1)
i ∧ b

(2)
i)

Prover P = (P0,P1) :

Stage P0: On input 1n and prm := (χ, cp):

1. L := PoSW.label(χ, 1n)

Use χ to sample oracles τ := (τi(·))i∈[n]0 and com-

pute a (possibly augmented) τ -labeling L of Gn sat-

isfying Def. 4.

2. (φL, aux)← Com.commit(cp, L)

3. send φL to V1

Stage P1: On input ι = (ιi)
t
i=1:

1. ∀i ∈ [t] do

(a) oi ← PoSW.open(χ, cp, φL, aux, L, ιi)

We assume that oi contains L(ιi)

(b) ρi ← Com.open(cp, φL, aux, L(ιi), ιi)

(c) γi := (oi, ρi)

2. send (γ1, . . . , γt) to V2

Fig. 2: The template of a GL-PoSW, parametrized by a family of weighted DAGs (Γn)n∈N, a vector commitment
scheme Com and the number of challenges t. Note that explicitly requiring P1 to compute ρi does not exclude the
possibility of P1 opening the commitment also at other indices as part of PoSW.open.

Lemma 1. Let (P,V) be an (interactive) (α, ε)-knowledge-sound graph-labeling PoSW based on
a family of weighted DAGs Γ and a commitment scheme Com. Then applying the Fiat-Shamir
transformation [FS87] to (P,V) results in a SNACK system for the language LΓ,R,Com, when R is
defined as in (5).

All the constructions of graph-labeling PoSWs we consider here use the following very simple
commitment scheme for the graph labeling L: The prover commits to the labels of a graph which
were derived through a graph-labeling computation10 (cf. Def. 4). While the verifier could simply
recompute the labels to check consistency of a label L(i), for certain graph structures the following
scheme will allow for much more efficient verification. Intuitively, the idea is to check consistency
of the labels of a randomly sampled subgraph.

To formalize consistency of labels in this context, we need the following definition of consistent
strings, which is stronger than prior definitions in the literature [MMV13, CP18, AKK+19]. We
associate to each vertex i a value yi := pi‖xi, where pi represents the (augmented) labels of the
parents of i and xi some potential augmentation of i. In order to reason about the label of the last
node as well, we introduce a dummy child for it, that is, we add vertex n+1 and an edge (n, n+1).

Definition 10 (Consistent strings). Let τ = (τi)i∈[n]0 be a tuple of oracles, with τi : {0, 1}∗ →
{0, 1}λ. For a DAG Gn = ([n]0, En), let G+

n = ([n + 1]0, E
+
n) with E+

n = En ∪ {(n, n+ 1)}.
10 Note that the construction from [MMV13] can also be cast as an instantiation of our construction by defining Gn

as the union graph of the underlying depth-robust graph and the Merkle tree used to commit to the labels of the
base graph.

12

Furthermore, ∀i ∈ [n+ 1]0 let deg(i) be the number of parents of i in G+
n and

yi := pi‖xi ∈ {0, 1}∗ where pi := pi[1]‖ . . . ‖pi[deg(i)].

We say yi is consistent with yi′ w.r.t. Gn, and denote it by yi ≺ yi′ if (i, i′) ∈ E+
n and if i is the

j-th parent of i′ in G+
n (in reverse topological order), then the j-th block in the decomposition of yi′

is equal to τi(pi)‖xi, i.e.,

pi′ [j] = τi(pi)‖xi.

We formalize vector commitment schemes in Def. 15 in Appendix A. Below we give a specific
vector commitment scheme called SPC, which will also be used in our constructions of graph-labeling
PoSW.

Construction 1 (Shortest Path Commitment). Let G = (Gn = ([n]0, En))n∈N be a DAG
family such that for all n, Gn has a unique sink n, and let τ := (τi)i∈N0 be a tuple of oracles
with τi : {0, 1}∗ → {0, 1}λ. We construct a τ -based vector commitment SPC = (setup, commit, open,
ver) for universe U = {0, 1}∗ and message space M = (Mn)n∈N where Mn ⊆ Un consists of the
labels of nodes [n− 1]0 of all valid X-augmented τ -labelings of Gn using L := Lτ as per Def. 4.

– cp← setup(1λ): On input 1λ, output empty public parameters cp := ε.

– (φL, aux)← commit(cp, L): On input L ∈Mn, output the commitment φL := τn(L(parents(n)))
(i.e. the first part of the label L(n)) and auxiliary information aux := L.

– ρ ← open(cp, φL, aux, L(i), i): Let path(i) ⊆ Gn be the first shortest path from i to n in Gn
with respect to the lexicographical ordering.11 For all nodes j in path(i) output the labels of all
parents of j, i.e., ρ :=

(
L(parents(j)), xj

)
j∈path(i).

– ver(cp, φL, L(i), i, ρ) ∈ {0, 1}: For path(i) = (i0, . . . , il = n) parse ρ = (ρi0 , . . . , ρil) and ρij as
(pij , xij), and check for all j ∈ [l] whether ρij−1 ≺ ρij according to Def. 10; output 1 iff all these
checks pass and τn(pil) = φL.

4.2 Constructing Graph-Labeling PoSWs

In this section we describe two graph-labeling PoSW schemes. Constr. 2 is a new variant of the
skiplist-based PoSW construction [AKK+19], where for efficiency reasons we replace random per-
mutations by a hash function modeled as a random oracle. Constr. 3 in Appendix D is a slight
adaptation of [CP18]. Both constructions are knowledge-sound and work with arbitrary weight
distributions.

For simplicity of exposition, we consider these PoSW constructions with empty augmentation.
Their augmented counterparts appear in the SNACK construction in Sect. 5, where the blockchain
data is the augmentation data.

A graph-labeling PoSW based on skiplists. To define the PoSW construction we specify
the unspecified parts in the blueprint in Fig. 2, namely a weighted DAG family (Gn, Ωn)n∈N and
algorithms PoSW.label,PoSW.open,PoSW.ver,Com.

11 Note that such a path exists since Gn has a unique sink.

13

Fig. 3: Illustration of Constr. 2. The label of the last node (green) serves as the commitment. On input a challenge
(red node), P opens all the nodes (blue) that are required to verify the shortest path (red edges) from source to sink
which passes through the challenge node. To verify, V evaulates the opening (red and orange edges).

Construction 2. Let Gn = ([n]0, En) be a DAG with edge set

En =
{

(i, j) ∈ [n]20 : ∃ k ≥ 0 s.t. (j − i) = 2k ∧ 2k|i
}

(cf. Fig. 3). Let Ωn : [n]0 → [0, 1] be an arbitrary weight function, and let H : {0, 1}∗ → {0, 1}λ be
a hash function which we model as a random oracle.

– L := PoSW.label(χ): Sample oracles τi(·) := H(χ, i, ·) and output an augmented τ -based labeling
L := Lτ of Gn as per Def. 4.

– Com is defined by SPC (Constr. 1). Hence (φL, aux) ← SPC.commit(cp, L) where cp := ε is
empty.

– oi ← PoSW.open(χ, cp, φL, aux, L, ιi): For each challenge ιi, send the labels of all parents of the
(unique) shortest path from 0 to ιi in Gn: Let path′(ιi) denote the shortest path in G which
starts at 0, ends at n and goes through ιi. For each node in path′(ιi) output the labels of all its
parents, i.e. oi :=

(
L(parents(j))

)
j∈path′(ιi)

.

– b
(1)
i ← PoSW.ver(χ, ιi, oi): Check the consistency of path′(ιi): For path′(ιi) = (i0 = 0, . . . , il = n)

parse oi = (νi0 , . . . , νil) and check for all i, j ∈ [l] with (i, j) ∈ En whether νi ≺ νj according to
Def. 10; output 1 iff all checks pass.

We remark that we could optimize PoSW.open and PoSW.ver in Constr. 2 by removing the
redundant output/checks that are already done by Com.open and Com.ver, but for readability’s
sake, we keep the current exposition.

In Appendix C.2 we prove that Constr. 2 is a knowledge-sound GL-PoSW as per Def. 9 for
arbitrary weight function Ωn. The proof closely resembles that of [AKK+19] by replacing the
random permutations by random oracles and additionally taking into account non-uniform weights.

Theorem 2. Let α ∈ (0, 1]. The scheme from Constr. 2 with parameter t and arbitrary weight
function Ωn is an (α, ε)-knowledge-sound augmented GL-PoSW with ε := αt + 3 · q2/2λ, where q is
an upper bound on the number of the adversary’s oracle queries.

5 Constructing SNACKs from GL-PoSWs

We now show how to augment any blockchain with the computation of any (knowledge-sound)
GL-PoSW scheme. This will then allow us to build a SNACK system for an augmented chain
commitment language LΓ,Rσ ,Com, where Rσ is a PT relation that checks the validity of blocks in
the (augmented) blockchain, whose genesis block is σ, as well as the consistency of the infused
PoSW-related data. An accepting proof for a statement (φ, n) convinces a verifier that the prover
knows a certain number of blocks (committed to by φ), in an augmented blockchain of length n
with genesis block σ, and furthermore these blocks are (1) valid and (2) mined sequentially.

14

Augmented blockchains. We augment an existing blockchain by intertwining the computation
of the PoSW and the mining of the blockchain. More concretely, let Γn = (Gn = ([n]0, EG), Ωn) be
the underlying weighted DAG of a graph-labeling PoSW scheme (PoSW.P,PoSW.V) adhering to
Fig. 2 with Ωn : [n]0 → [0, 1] s.t. Ωn([n]0) = 1. We furthermore assume that Gn is a chain graph
as per Def. 1. Recall that the PoSW computation mainly involves computing labels of vertices by
using an oracle τ := (τi(·))i∈[n]0 .

Now consider a blockchain with underlying chain graph Hn = ([n]0, EH) and associated validity
relation Rψ. Recall (Def. 3) that a blockchain with genesis block h0 := ψ and a PT relation Rψ is
valid if and only if for every vertex i ∈ [n], its label hi, and its parents’ labels hi1 , . . . , hip , it holds

Rψ(i, hi, (hi1 , . . . , hip)) = 1 . (6)

For example, in fixed-difficulty Bitcoin, the i-th block hi has a single parent hi−1 and Rψ checks
whether hi contains a valid proof of work w.r.t. hi and hi−1.

We combine the respective chain graphs Gn and Hn underlying the PoSW scheme and the
blockchain to an augmented chain graph Kn (see Fig. 1):

Kn := ([n]0, EK) with EK := EG ∪ EH . (7)

We obtain an augmented blockchain by labeling the chain graph Kn using algorithms Init and Mine,
as formalized in Fig. 4. In particular, from an initial genesis block ψ, we define in Init, an augmented
genesis block σ := LK(0) which contains, in addition to ψ, PoSW-related data such as χ and cp. For
a vertex i ∈ [n], algorithm Mine computes LK(i) by alternating in computing PoSW labels `i and
blockchain-specific labels hi. The computation of `i is defined as for the underlying PoSW scheme,
except that the extra incoming edges inherited from the graph Hn are considered in the computation
of `i. Additionally, the label `i is extended to gi := (`i, φi) by a commitment φi to all labels
((gj , hj))j∈[i−1]0 ||`i. The label hi is computed the way miners in the original blockchain protocol
generate blocks. Finally, the augmented label of the ith vertex is defined as LK(i) := ki = (gi, hi).

In Line 4, Mine computes a proof πi for the block, which is inherited from the underlying
blockchain, for which a block hi := (i, di, πi) was valid if Rψ

(
i, hi, LH(parentsH(i))

)
= 1. For

example, in Bitcoin, πi is a PoW, computed based on (i, di) as well as the LH -label (i.e., the
corresponding block) of the single H-parent vertex in Bitcoin’s chain graph Hn. In the augmented
blockchain, we augment the validity relation Rψ and define R̃ψ which still considers the same graph
structure H but takes augmented labels as input; hence (6) becomes:

R̃ψ
(
i, LK(i), LK(parentsH(i))

)
= 1 . (8)

For example, for the augmented Bitcoin, the PoW πi is now computed based on (i, di, gi) as well
as the single parent block LK(parentsH(i)).

This overriding allows us to include PoSW labels gi into the relation and make blockchain-
specific labels hi, or in particular the proofs πi they contain, depend on the PoSW labels gi’s in a
way that allows us to translate the PoSW sequentiality guarantees on gi’s to hi’s, or in particular
πi’s. We elaborate more on the sequentiality guarantees towards the end of this section.

As the ith augmented block contains both blockchain-specific data hi and PoSW-specific data
gi, we define an augmented validity relation that checks the validity of (a) the blockchain-specific
data using R̃ψ and (b) the PoSW data as defined in (5), more concretely we define

Rσ(i, LK(i), LK(parentsK(i))) = 1⇔ (9)

R̃ψ(i, LK(i), LK(parentsH(i))) = 1 ∧ ∃xi s.t. LK(i) = τi(LK(parentsK(i)))‖xi .

15

Algorithm Init: On input 1λ and ψ:12

1. χ
$← {0, 1}λ

2. `0 := τ0(ε)

3. cp← Com.setup(1λ)

4. (φ0, aux0)← Com.commit(cp, `0)

5. g0 := (`0, φ0)

6. h0 := (0, d0 := ψ‖χ‖cp, π0 := ε)

7. return (σ := LK(0) := k0 := (g0, h0), aux0)

Algorithm Mine: On input
(
(kj := (gj , hj))j∈[i−1]0 , di

)
:

1. `i := τi(LK(parentsK(i)))

2. (φi, auxi)← Com.commit(cp, (kj)j∈[i−1]0‖`i)
3. gi := (`i, φi)

4. Compute πi s.t. R̃ψ
(
i, (gi, hi := (i, di, πi)),

LK(parentsH(i))
)

= 1

5. return (LK(i) := ki := (gi, hi), auxi)

Fig. 4: The mining algorithm Mine for augmented blockchains.

In order to verify that LK(0) indeed contains the blockchain genesis block ψ on which Rσ depends,
we include 0 in the sequence of challenges ι.

Arguments of knowledge for augmented blockchains. We construct a SNACK system Π =
(SNACK.P,SNACK.V) for the language LΓ,Rσ ,Com as in Def. 6 with Rσ being as in (9). In our
construction, the parameter generator G would simply output prm := σ that defines Rσ.

As a first step in constructing a SNACK for LΓ,Rσ ,Com, we construct a succinct interactive
argument system of chain knowledge (ACK) (P,V) for the language LΓ,Rσ ,Com, which is formally
depicted in Fig. 6. The idea is to use the challenge/response phase of the underlying PoSW scheme,
still with respect to the family (Gn, Ωn)n∈N, but with respect to the labeling LK . Recall that in
a PoSW scheme (PoSW.P,PoSW.V), the verifier PoSW.V runs Com.ver and PoSW.ver, where the
latter operates w.r.t. the graph structure of G. However, in our augmentation, we added edges from
H to this graph (resulting in K), which is why we extend PoSW.ver to PoSW.verK to take this into
account. Analogously, we define PoSW.openK . Both algorithms are given in Fig. 5 and are used as
subroutines in Fig. 6. Similarly, if Com.ver is defined w.r.t. some graph structure (e.g. shortest path
in case of SPC or Merkle commitment), then this graph structure stays unchanged, but we require
augmented labels and potentially also additional labels of H-parents (of the path).

To illustrate the necessity of these K-extended algorithms, i.e., PoSW.verK and PoSW.openK ,
consider the toy example of Fig. 1 and consider that ACK.V in Fig. 6 queried ACK.P on some
ιi = 5, then the response of ACK.P must contain LK(parentsH(5)) = (k4, k1) in order to verify
R̃ψ(5, k5, (k4, k1)). However, PoSW.open, which operates w.r.t. EG, considers parentsG(5) = 4 and
therefore would not consider 1 to be a parent of 5, and hence k1 would not be output by PoSW.open.
To solve this problem, we augment PoSW.open to PoSW.openK , which provides all necessary infor-
mation that is needed to verify R̃ψ – for this example it provides k1 in addition to what PoSW.open
provides. PoSW.verK is modified accordingly.13

Remark 1 (On cp, φi and auxi). All known GL-PoSW (see Sect. 4), including those of Con-
str. 2 and 3, use the SPC commitment from Constr. 1 with cp = ε. Moreover, if (PoSW.P,PoSW.V)
is instantiated with Constr. 2 or 3, then cp = ε, φi = `i and auxi = ε. This means that the only

12 ψ is the initial genesis block, and LK(0) is the augmented genesis block.
13 One could argue that an alternative and natural solution to this problem is to let PoSW.open right away work

w.r.t. EK , rather than EG. This intuition is false, as the PoSW guarantees depend crucially on the underlying
graph structure and changing the graph structure of G based on H might not maintain the PoSW guarantees.

16

Algorithm PoSW.verK :

On input (χ, ιi, oi):

1. Run bi := PoSW.ver(χ, ιi, oi) mod-

ified as follows: whenever it queries

τj(LK(parentsG(j))) for some j, issue

query τj(LK(parentsK(j))) instead.

(Missing labels are provided in o
(2)
i .)

2. return bi

Algorithm PoSW.openK :

On input (χ, cp, φn, auxn, LK , ιi):

1. o
(1)
i ←PoSW.open(χ, cp, φn, auxn, LK , ιi)

(PoSW.open acts based on edges EG.)

2. J :=
{
j ∈ [n]0 : LK(parentsG(j)) appear in o

(1)
i

}
3. o

(2)
i := {(j, LK(parentsH(j)))}j∈J

4. return oi :=
(
o
(1)
i , o

(2)
i

)
Fig. 5: PoSW.openK and PoSW.verK defined based on PoSW.open and PoSW.ver.

additional data stored in each block of the blockchain due to our augmentation is a label `i (no extra
φi) and such a label could be a 256-bit string for a reasonable security level.

Remark 2 (Making (ACK.P,ACK.V) non-interactive). (ACK.P,ACK.V) from Fig. 6 can be
made non-interactive in the random oracle model by using the Fiat-Shamir transformation [FS87].

In the following theorem we show that the Fiat-Shamir transform of this argument system is a
SNACK system. As the underlying PoSW schemes support arbitrary weight functions Ωn, so does
our SNACK system.

Theorem 3. Let (SNACK.P,SNACK.V) be the non-interactive version of (ACK.P,ACK.V) from
Fig. 6, then in the random oracle model, (SNACK.P, SNACK.V) is an (α, ε)-knowledge-sound SNACK
for LΓ,Rσ ,Com, as in Def. 6 and Rσ as in (9), if (PoSW.P,PoSW.V) is an (α, ε)-knowledge-sound
τ -based graph-labeling PoSW as in Def. 9 with Com being its underlying commitment scheme,
(Gn = ([n]0, EG), Ωn)n∈N its weighted graph family, and τ modeled as a random oracle.

To prove the theorem, we use Π := (ACK.P,ACK.V) and Alg. Mine (Fig. 4) to build an
augmented PoSW whose knowledge-soundness implies that of the SNACK. We obtain a (non-

Verifier ACK.V = (V1,V2)

Stage V1: On input η:

1. ∀i ∈ [t] do ιi
$← Ωn

2. ι0 := 0

3. send ι := (ιi)
t
i=0 to P

Stage V2: On input γ =
(
oi, ρi

)t
i=0

:

1. ∀i ∈ [t]0 do:

(a) b
(1)
i := PoSW.verK(χ, ιi, oi)

(b) b
(2)
i := Rσ(ιi, LK(ιi), pi)

(c) b
(3)
i := Com.ver(cp, φ, LK(ιi), ιi, ρi)

2. output
∧t
i=0 b

(1)
i ∧ b

(2)
i ∧ b

(3)
i

Prover ACK.P:

On input (η, (LK(j))j∈[n]0 , auxn) and ι:

1. parse η as η = (cp, φ, n)

2. ∀i ∈ [t]0 do:

(a) oi ← PoSW.openK(χ, cp, φ, auxn, (LK(j))j∈[n]0 , ιi)

We assume oi contains LK(ιi) and pi :=

LK(parentsK(ιi))

(b) ρi ← Com.open(cp, φ, auxn, LK(ιi), ιi)

(c) γi := (oi, ρi)

3. send γ := (γi)
t
i=0 to V2

Fig. 6: The interactive proof system ACK which underlies our SNACK construction.

17

interactive) (SNACK.P,SNACK.V) by applying the Fiat-Shamir transform [FS87] to Π. We defer
the proof to Appendix C.3.

Sequentiality of πi’s. By (α, ε)-knowledge soundness of (SNACK.P, SNACK.V) from Theorem 3,
with probability at least 1 − ε, we can extract from any prover P̃ that convinces SNACK.V of the
validity of (φ, n), an (α,R)-valid path (P,LP , (pv)v∈P) in Γn and an opening ρ of LP w.r.t. φ. For
concreteness, let LP = (kij = (gij , hij))j∈[m]. By sequentiality of the underlying (PoSW.P,PoSW.V),
it follows that (gij)j∈[m] was computed sequentially. However, for the corresponding proofs (πij)j∈[m]

in (hij)j∈[m], it was not explicitly required by Mine (see Fig. 4) that πij is computed after its
corresponding, and sequentially computed, gij . Therefore, in principle, all of these (πij)j∈[m] could

have been computed in parallel by P̃ before P̃ started the sequential computation of (gij)j∈[m].
This shows that while a SNACK system guarantees sequentiality on the augmented graph Kn via
the sequentiality on Gn, this sequentiality does not necessarily translate to sequentiality on Hn,
and guaranteeing sequentiality on Hn is what most applications of a SNACK system rely on (see
Sect. 6).

This issue is however easy to resolve in any blockchain: To ensure that the proofs (πij)j∈[m] in
(hij)j∈[m] were computed sequentially, it suffices for the blockchain mining protocol Mine to ensure
the following:

Assumption: For all j ∈ [n] it holds that πj must have been computed after gj .

Then the sequentiality of (πij)j∈[m] directly follows from the sequentiality of (gij)j∈[m]: now that
πij is computed after gij , one could think of this as an edge from gij to πij , and as gij is computed
after kij−1 = (gij−1 , hij−1), a path that goes through (gi1 , . . . , gim) translates to a path that goes
through (gi1 , πi1 , . . . , gim , πim), hence ensuring sequentiality of the proofs.

The above assumption is trivially satisfied by any blockchain which has immutability as one of
its defining properties: a block in the chain cannot be modified without modifying all subsequent
blocks. For example, in Bitcoin, where hj = (j, dj , πj), as assumed in Mine, contains a valid PoW πj
with respect to dj where dj is implicitly assumed to contain the hash of the previous block. Simply
including gj in dj ensures that πj is computed after gj .

See Appendix E for instantiations and optimizations of the SNACK protocol.

6 Applications to Blockchain Light Clients

We now describe how SNACKs can be applied in the design of light-client blockchain protocols.
Informally speaking, the goal of such protocols is to allow a light client, who only knows the genesis
block, to bootstrap by obtaining a commitment to a chain that is, except for some unreliable suffix,
matching the chains being held by honest full nodes. Others can then prove statements about the
honest chain w.r.t. this commitment, and the light client does not need to trust the provers. The
commitment thus serves as an anchor of trust.

We start by defining some vocabulary that allows us to make this intuition precise. We consider
a long-term execution of a blockchain ledger protocol Π by a set of parties called full nodes. At a
particular time t, we call a party honest if it is uncorrupted by the adversary (and hence follows
Π), it is online and fully synchronized with the state of the protocol Π.14 A chain is called honest

14 Such honest parties are called alert in [PS17, BGK+18]; we will not maintain this distinction and will always
assume honest parties to be alert.

18

at time t if it is held by some honest party executing the full protocol, i.e., a full node. We call an
honest chain maximal if it has maximal length among all honest chains. Note that several different
maximal chains might exist for any t, but they share the same length which we call the honest
length at time t. We call an honest party synchronized at time t if it is holding a maximal chain.

General assumptions. The κ-common-prefix property [GKL15, PSs17] mandates that any two

chains C1, C2 that are honest at times t1 ≤ t2 satisfy C
dκ
1 � C2, where (·)dκ denotes removing

the last κ blocks of a chain and � is the prefix relation. (This property has become a standard
requirement for Nakamoto-style blockchain protocols: together with chain growth and chain quality,
it implies consistency and liveness of the produced ledger [GKL15, PSs17].) It has been shown to
be achieved, except with an error negligible in κ, by Nakamoto-style protocols across various Sybil-
protection mechanisms: proof of work [GKL15, PSs17, BMTZ17], proof of stake [KRDO17, DPS19,
DGKR18, BGK+18], and proof of space [CP19]. We will assume that the considered blockchain
protocol Π satisfies κ-common prefix for some κ so that the probability of this assumption being
violated is acceptably small. We refrain from mentioning this error explicitly in our statements to
maintain readability.

We assume that the execution of the protocol Π results in a family of chain graphs {Kn =
([n]0, En)}n≥0, meaning that at any point in the execution of Π, any blockchain with n blocks
produced by Π has its chain-graph structure determined by Kn (cf. Def. 1). (Thus the chain-graph
structure is independent of the data contained in the blocks.) Recall that for every n ≥ 0, Kn is
assumed to be obtained from Kn+1 by removing vertex n+ 1 and adjacent edges.

Forking adversaries. In our analysis we need to assume some limitation on an adversary’s ability
to create an alternative chain that “forks away” from any currently honest chain at some significant
depth and achieve (at least) the honest length, even if it contains some fraction of invalid blocks.
This type of assumption was first described in [BKLZ20], who explicitly allow the adversary to
include (a limited fraction of) invalid blocks in its fork. Below we discuss how we formalize the
spirit of their assumption for our setting in Def. 11, while overcoming some shortcomings of the
original formulation.

First, in their context of a PoW chain, an invalid block may contain an incorrect proof of
work, but every block must still contain a correct hash of its predecessor. (If this was not required,
the assumption would be false, as the adversary could simply glue parts of the honest blockchain
together.) We capture validity of blocks by an abstract relation R, without assuming anything
about “invalid” blocks. As we consider blockchains whose underlying graph structure is an arbitrary
(rather than simple) chain graph, we employ the notion of R-valid paths as per Def. 5 to formally
define forks. Our assumption requires that an adversary that creates a (valid) path that forks away
from the honest blockchain sufficiently deep (as specified by a parameter `) can only include in its
path a c-fraction of blocks after the forking point. Note that in a typical PoW blockchain, any such
adversary could also create the blocks not lying on its path by ignoring the PoW but including a
correct hash; this would then also violate the assumption in [BKLZ20]. From this perspective, our
assumption is weaker than that of [BKLZ20], as the adversary has to achieve a c-fraction of valid
blocks along a path, but it is stronger in that the adversary need not produce blocks (with valid
hashes) outside of its path.

Furthermore, the original assumption [BKLZ20] does not consider adversaries that create a
fork (potentially containing invalid blocks) whose length exceeds the honest length nh. As we show,
such adversaries can be used to break light-client protocols in the sense of the precise security

19

definition (Def. 12) we give. Our assumption will thus also contain a limit on the adversary’s power
of extending chains. Intuitively, this does not make the assumption stronger, since if the last block
of the adversary’s fork is at position n∗ > nh, then the adversary’s task is harder, as it needs
to include more blocks in its path so a c-fraction of its (now longer) fork is valid. A definitional
subtlety arises when n∗ ≥ nh + `−κ, meaning that a fork of length ` could start beyond the stable
prefix of the honest chains, which ends at sh := nh − κ. If the adversary’s chain agrees with the
honest prefix, then “forking from the honest chains” is not well-defined, as honest chains can differ
after sh. In this case we consider the forking point f to be the adversary’s last block before sh.
(This is captured by Case (2) in Def. 11 below.)

One might wonder if forking from an honest chain at some point f ′ > sh could give the adversary
an advantage, as the c-fraction is now measured between f < f ′ and n∗. However, a similar situation
could also arise before sh, in which case it is subject to Case (1) in Def. 11 (which corresponds to
the original assumption [BKLZ20]): there might be an (honest) orphaned fork of length κ′ ≤ κ
(these are not excluded by κ-common-prefix) forking at nh− ` and the adversary can try to extend
it. To achieve a c-fraction in [nh− `+ 1 : nh], the adversary thus needs to mine c`−κ′ blocks while
the honest miners only mine `−κ′ blocks. Arguably, a Case (2) fork is harder to compute: consider
an adversary that extends an instable honest chain after sh + κ′. Then to achieve a c-fraction of
blocks in [sh+1, nh+`−κ] (the optimal choices of forking point f in Def. 11 and n∗), the adversary
has to mine c`− κ′ while the honest miners only mine κ− κ′ blocks (thus in less time than in the
Case (1) example before).

Definition 11 ((c, `)-forks and (c, `, εF)-adversaries). Let Π be a blockchain protocol with va-
lidity relation R and chain graph (Kn)n≥0, satisfying κ-common prefix. Let c ∈ (0, 1], ` ∈ N with
` > κ. Fix some time t in the execution of Π and let nh be the honest length at time t and
Lh : [sh]0 → {0, 1}∗ be the labeling of the honest stable prefix, with sh := nh − κ.

– An `-fork is an R-valid (Def. 5) path
(
P = (i0 = 0, . . . , iq = n∗), L, (pv)v∈P

)
in Kn∗, such that

n∗ ≥ nh and either

(1) for some j ∈ [q]: ij ≤ sh and n∗ ≥ ij + `− 1, and we have:
L(ij−1) = Lh(ij−1) and L(ij) 6= Lh(ij).

(2) or n∗ ≥ sh + ` and for all ij ≤ sh: L(ij) = Lh(ij).

– A (c, `)-fork is an `-fork (P,LP , (pv)v∈P) for which P contains at least a c-fraction of the blocks
after the forking point f , i.e., ∣∣P ∩ [f + 1 : n∗]

∣∣ ≥ c · (n∗ − f) ,

where f := ij−1 in Case (1) and f := max{ij : ij ≤ sh} in Case (2).

– A (c, `, εF)-adversary against Π is an adversary whose probability of producing a (c, `)-fork at
any point throughout the execution of Π is at most εF .

Observe that for c = 1, the adversary’s goal collapses to an `-common-prefix violation. For PoW,
one can thereforerely on existing bounds such as [GRR21]. For general c, the connection between
the assumption of (c, `, εF)-adversaries (or the original assumption in [BKLZ20]) and more basic
blockchain assumptions remains open.

20

Our results. The high-level idea of our protocols is that any blockchain commitment suggested
by a prover for adoption by a light client needs to be accompanied by a SNACK proof parametrized
in such a way that no (c, `, εF)-adversary would be able to produce this SNACK for a chain that
does not share the necessary common prefix with honest chains, as this would require the prover
(by SNACK knowledge soundness) to construct a valid path that is beyond the capabilities of any
such restricted adversary.

As a warm-up, in Sect. 6.1 we present a naive SNACK-based protocol for light-client bootstrap-
ping in the multi-prover setting. The light client obtains (concise) information from several full
nodes, and, informally speaking, if at least one of them is (honest and) synchronized then the light
client will end up holding a commitment to a chain of honest length. (If all provers are malicious,
the client might adopt a commitment to a chain arbitrarily violating the common-prefix property
or the maximal-length requirement.) This is analogous to the guarantees provided by the FlyClient
protocol [BKLZ20].

We also present a simple variant of our first protocol for settings where the light client can be
assumed to know an approximation of the current honest length (e.g. derived from the time passed
since the client’s previous bootstrapping). This protocol provides meaningful guarantees even when
run with a single (potentially malicious) prover.

We don’t formally analyze these two protocols, as their security guarantees described informally
above turn out to be insufficient for the most common practical setting. To illustrate this, in
Sect. 6.2 we describe an attack against the bootstrapping approach taken by both our proposals
as well as a naive use of previous work, the void-commitment attack. It consists of an adversary
producing a private chain almost identical to some maximal honest chain, and luring the light
client into accepting a commitment to his chain. The obtained commitment is then useless in
future interactions if the adversary keeps the opening secret.

Motivated by this attack, in Sect. 6.3 we first give a meaningful definition of secure bootstrapping
(Def. 12): a light client is guaranteed to obtain a commitment to a stable common prefix of all honest
chains, which can then serve as an anchor of trust. Anyone holding an honest chain can then prove
properties about its stable prefix to the light client. We then propose our final SNACK-based
protocol (Fig. 9) and prove that it satisfies our definition of secure bootstrapping. We do so via a
technical result (Theorem 4) that allows us to reason about the limitations of (c, `, εF)-adversaries
in creating forks with (α,R)-valid paths and hence also producing valid SNACKs.

SNACK-compatible blockchains and commitments. As our protocols rely on a SNACK sys-
tem, we assume the blockchain in question admits such a system. GL-PoSW-augmented blockchains
as presented in Sect. 5 are one example. We let Kn for n ∈ N denote the DAG (technically a chain
graph as in Def. 1) of such a blockchain of length n and let R be the relation that defines validity of
its blocks. (In the construction in Sect. 5 this corresponds to Rσ from Equation (9).) We let Com
be the commitment scheme for which the light client should obtain a commitment to the chain.
Together, these define the language LΓ,R,Com for the SNACK system, where Γ := (Kn, Ωn)n≥0 and
Ωn which we will define. In addition, we assume the following:

Assumption: Every block (header) of the blockchain contains a Com-commitment to all the pre-
vious blocks.

When considering the SPC commitment (Constr. 1) in GL-PoSW-augmented blockchains, this as-
sumption trivially holds: the commitment contained in a block is simply the τ -evaluation (the

21

On input tuples (φi, ni, πi)i∈[N] the light client does the following:

1. For all tuples, ordered by decreasing values of ni:

(a) let αi and Ωi be as discussed in the text

(b) check if πi is a valid proof for the statement (φi, ni) for an (αi, ε)-knowledge-sound SNACK

system for LΓ,R,Com with weight function Ωi

(c) if πi verifies then stop and return (φ, n) := (φi, ni)

2. Return ⊥.

Fig. 7: Protocol 1: A Naive Light-Client Bootstrapping Protocol (informal).

“hash”) of the parent labels (blocks). The assumption is also true for “FlyClient-compatible”
blockchains, whose block headers need to contain Merkle mountain range commitments [BKLZ20].

Further note that in our (and previous [BKLZ20]) approaches to light-client protocols the
commitment provided by a prover cannot be independent of the blockchain: otherwise, a malicious
prover could modify (and thereby invalidate) a single block in (the stable prefix of) an honest
chain, commit to the altered chain and later prove properties of the modified block to any verifier
holding the commitment. As this modified blockchain does not constitute a (c, `)-fork (neither w.r.t.
Def 11 nor the original assumption [BKLZ20]), the light-client protocol cannot protect against it.
(In particular, the adversary can still compute a SNACK by proving knowledge of a (heavy) path
that does not go through the node.)

6.1 Naive Bootstrapping Protocols

In Protocol 1, the “naive” protocol, the light client receives from each of N full nodes a commitment
φi to a purported blockchain of length ni and a SNACK proof πi for the statement (φi, ni). It outputs
(one of) the commitment(s) for the maximal value n that is accompanied by a valid SNACK proof
(see Fig. 7).

The SNACK proofs are parametrized (via αi and Ωi) based on the proclaimed value of ni so
that they prove knowledge of a path which, assuming (c, `, εF)-adversaries (Def. 11), must share
the necessary common prefix with the honest blockchain. This can be quantified precisely, and we
provide respective parameters for our final protocol in Theorem 4. The intuition behind the design
of Protocol 1 is not flawed, and in fact, the same reasoning (expressed more concretely and implicitly
using a specific SNACK) lies behind FlyClient. We omit the detailed treatment for Protocol 1 as
its main purpose is to motivate the subsequent attack.

Protocol 1 does have some use cases, for example if the prover convincing the light client is
the entity that later proves statements about the honest chain. Another application is obtaining
an estimate of the honest length in the multi-prover setting (by simply outputting the length ni of
the accepted tuple).

Assuming the light client knows the current honest length nh, a simple variant of Protocol 1,
presented in Fig. 8, can then be run with a single prover. It guarantees that either the client
again obtains a commitment to an honest-length chain or she learns that the prover is malicious
or lagging behind and hence should not be trusted. In fact, also imprecise estimates of nh (such as
those obtained from Protocol 1) can be leveraged in a similar way.

22

On input the honest length nh and a tuple (φ, n, π), if n < nh, return ⊥. Else:

1. let αn and Ωn be as discussed in the text;

2. if π is valid for (φ, n) for an (αn, ε)-knowledge-sound SNACK system for LΓ,R,Com with weight

function Ωn then return φ;

3. else return ⊥.

Fig. 8: Protocol 2: Single-Prover Bootstrapping with Length (informal).

6.2 The Void-Commitment Attack

The following attack applies to Protocols 1 and 2, as well as a naive use of the FlyClient protocol.
We stress that the attack does not contradict security claims in previous work (or the informal
argument given in Sect. 6.1), but rather highlights that despite these claims, protocols following
the structure described in Sect. 6.1 fall short of solving a class of important practical use cases.

The attack works as follows: an adversary A first obtains from an honest full node some maximal
honest chain; let h be (the header of) its terminating block. A then mines a new block h′ on top of
h, which it will however keep secret. It then participates as prover in one of the mentioned protocols
following its specification, but using its chain terminating with h′. If A’s commitment is adopted
by the light client then the latter will hold a commitment to a chain to which only A knows an
opening, which will be of no use for “bootstrapping” applications that would involve interactions
with other full nodes.

Note that even if the protocol is run with honest full nodes only, the light client may still end up
with a similarly unusable commitment if the prover’s chain will eventually lose the “longest-chain
race” and not become part of the prefix of future honest chains.

This observation extends to the FlyClient protocol if used naively: if the light client only keeps
the last block and the contained commitment as its output from the bootstrapping (rather than
the full `-suffix), further interactions with other full nodes would suffer from the above attack.

6.3 A Light-Client Protocol for Common-Prefix Commitment

We now show that, using SNACKs, the original intuitive goal can still be achieved: (a) obtain a
commitment guaranteed to be to (a relevant part of) an honest-length chain; (b) anyone, not only
the commitment provider, can use it to prove statements about the ledger state. While it would
be desirable to guarantee a commitment to the stable prefix [sh]0 with sh = nh − κ of the honest
chain, this cannot be achieved when only making the assumption of (c, `, εF)-adversaries: the latter
only precludes forks of length `, so a (c, `, εF)-adversary could create a differing block at position
sh + 1. But then it could also insert a “malicious” commitment there (cf. our discussion before
Sect. 6.1). In order to fix the commitment to the honest chain, we therefore place it at latest at
position nh − `+ 1.

Definition 12 (Secure common-prefix bootstrapping). For κ, ` ∈ N, let Π be a blockchain
protocol satisfying κ-common prefix for κ < ` for which each block contains a commitment to
its predecessors. Fix some time t and let nh be the honest length at time t and (h0, . . . , hsh) be the
(headers of the) stable prefix of the honest chain. A light client securely `-common-prefix bootstraps
(`-CP bootstraps) at time t if for some m ∈ [nh − ` : sh − 1] it ends up holding the commitment φ
to (h0, . . . , hm) contained in hm+1.

23

Let Π be blockchain protocol with validity relation R, chain graph (Kn)n≥0 and parameters prm. On

input N tuples of the form(
φ, n, π, (ki)

n
i=n−`+1, (ιj , kιj , ριj)qj=1

)
for some q ≤ ` · deg(Kn),

for all tuples, ordered by decreasing values of n, check the following:

(a) Let m := n− `; check whether φ is contained in km+1

(b) SNACK.V
(
prm, (φ,m), π

) ?
= 1, where SNACK is (αm, ε)-knowledge-sound for L(Km,Ωm)m≥0,R,Com

with αm and Ωm as in Theorem 4

(c) For all i ∈ [m+ 1 : n] : R(i, ki, (kj)j∈parents(i))
?
= 1

(d) For all j ∈ [1 : q] : Com.ver(cp, φ, kιj , ιj , ριj)
?
= 1

(e) If all checks verify, return (φ, n)

Return ⊥

Fig. 9: Light-Client Protocol 3: Multi-Prover Bootstrapping Common Commitment

In Protocol 3 , given in Fig. 9, instead of committing to the entire chain, the full nodes commit
to the (stable) prefix of the honest chain of length n− `, and use a SNACK to prove knowledge
of a heavy chain contained in the commitment. Now to ensure that the commitment is actually
to the stable prefix, we require the provers to show that they know an extension by ` blocks of
what was committed. For simplicity, the provers simply send (the headers of) these blocks and give
commitment openings to the blocks that are necessary to check their validity. (We refrain from
optimizing this further by only checking samples from the last ` blocks.)

We next define appropriate values αm, Ωm for the SNACK scheme used in our light-client
Protocol 3, which will guarantee secure `-CP bootstrapping.

Theorem 4. Let Π be a blockchain protocol with underlying graph (Kn)n≥0 satisfying κ-common
prefix. Let c ∈ (0, 1] and ` ∈ N with ` > κ. For m ∈ N define αm and Ωm : [m]0 → [0, 1] as

αm := 1−
(

logc
(
`−1
m+`

))−1
Ωm(i) := S · 1

m+`−i for 0 ≤ i ≤ m where S :=
(∑m

j=0
1

m+`−j
)−1

. (10)

Then, except with probability at most εF , no (c, `, εF)-adversary can create an `-fork (P,LP , (pv)v∈P)
in Kn∗ where P starts at 0 and ends at n∗, such that, with m∗ := n∗ − `:

– P contains the last ` blocks, i.e., [m∗ + 1 : n∗] ⊆ P , and

– P has weight at least αm∗ w.r.t. Ωm∗, i.e., Ωm∗(P ∩ [m∗]0) ≥ αm∗.

First, we give a proof overview. Let Kn be the blockchain graph and m := n − `. Initially, we
keep αm indeterminate and define a weight function Ωm on Km, which is inspired by the sampling
distribution of the FlyClient protocol [BKLZ20]. We then give the adversary’s optimal strategy,
which, given the constraints on its resources, maximizes the weight of its chain. Finally, we set αm
large enough, so that the optimal (and thus every) chain produced by a (c, `, εF)-adversary has
weight less than αm.

24

A (c, `, εF)-adversary, whose goal is to produce an `-fork at time t that contains all the last
` blocks, is limited to choosing a point f (see Def. 11), after which it forks from some existing
chain, and some length n∗ ≥ nh, where nh denotes the honest length at time t, and deciding which
blocks after f to include in its path. (We do not make any assumptions on the blockchain graph
and assume any sequence of blocks is a path.) By assumption, after the forking point there can be
at most c(n∗ − f) valid blocks.

We will use an increasing weight distribution Ωm, that is, later blocks in Km weigh more. So
to maximize the weight of its path, the adversary must put all its blocks just preceding the last `
blocks. Specifically, we adopt the hyperbolically increasing function from [BKLZ20], which assigns
to the i-th block weight proportional to 1

m+`−i . For any forking point f , the weight of the (1− c)-
fraction of the blocks after f (which the adversary must skip) is the same, so all forking points are
“equally bad”.

Proof (of Theorem 4). Consider some fixed point in time t when the honest length nh is at least
`. Since the weight function Ωm is monotonically increasing, an optimal strategy for a (c, `, εF)-
adversary is to choose a forking point f and some length n∗ ≥ nh such that f ≤ n∗− `, and put no
blocks in the interval skp :=

[
f + 1 : f + d(1− c)(n∗ − f)e

]
. Since its goal is an R-valid path with

[m∗+ 1 : n∗] ∈ P , it must choose f and n∗ such that f + d(1− c)(n∗− f)e ≤ m∗. For an arbitrarily
fixed f , the weight of the blocks in this interval is thus

Ωm∗(skp) = S ·
f+d(1−c)(n∗−f)e∑

i=f+1

1

n∗ − i
. (11)

In order to lower-bound the above, we use the following bounds, derived by using the upper and
lower (Riemann) sums of a strictly increasing function:∫ b

a

1

n∗ − x
dx <

b∑
i=a+1

1

n∗ − i
<

∫ b+1

a+1

1

n∗ − x
dx . (12)

Since
∫

1
n∗−xdx = − ln(n∗ − x), we get

∫ b
a

1
n∗−xdx = ln

(
n∗−a
n∗−b

)
.

We thus have
∑f+d(1−c)(n∗−f)e

i=f+1
1

n∗−i > ln
(n∗−f
n∗−f−(1−c)(n∗−f)

)
= − ln(c). (Note that this is inde-

pendent of the forking point f and the length n∗, which was the reason for choosing this function
in [BKLZ20].) Using the upper bound from (12), we moreover have

∑m∗

i=0
1

n∗−i < ln
(

n∗−0
n∗−(m∗+1)

)
=

ln
(
n∗

`−1
)
. Using these two bounds to lower-bound the right-hand side of (11), we get

Ωm∗(skp) > − ln(c) ·
(

ln
(
n∗

`−1
))−1

=
(

logc
(
`−1
n∗

))−1
=: Ω̄ .

The weight of the adversary’s path is at most 1−Ωm∗(skp) and thus strictly less than 1−Ω̄. Setting

αm∗ := 1− Ω̄ gives αm∗ = 1−
(

logc
(
`−1
m∗+`

))−1
.

We have thus shown that, except with probability εF , no (c, `, εF)-adversary can produce an
`-fork (P = (0, . . . , n∗), LP , (pv)v∈P) such that P contains all the last ` blocks and has weight αm∗

w.r.t. Ωm∗ , which implies the theorem. ut

Theorem 4 now allows us to prove that Protocol 3 provides a light client for `-CP bootstrapping
secure against (c, `, εF)-adversaries.

25

Corollary 1 (Security of Protocol 3). Let κ, ` ∈ N with ` > κ and let Π be a blockchain protocol
with validity relation R and graph family (Kn)n≥0 that satisfies κ-common prefix. Assume the honest
length nh > ` and consider a light client running Protocol 3 (Fig. 9) with N full nodes, at least
one of which is (honest and) synchronized and all others are controlled by a (c, `, εF)-adversary.
Let (φ∗, n∗) be the output of the light client. For m ≥ 0, let αm and Ωm be as in Theorem 4. If

– Com is εC-position-binding and

– SNACK is (αn∗−`, ε)-knowledge-sound for language LΓ,R,Com where Γ := (Γm = (Km, Ωm))m≥0,

then the client securely `-CP-bootstraps except with probability ε+ εC + εF .

We give a proof sketch and defer the formal proof to Appendix C.4. Assume a (c, `, εF)-adversary
that prevents the light client from bootstrapping and let (φ, n) be its output. We have n ≥ nh, the
maximum honest length, since otherwise an honest miner would have convinced the light client.

By (αm, ε)-knowledge soundness, for m := n− `, of the SNACK sent by the adversary, we can
extract an R-valid path in Km of weight at least αm. We extend it by the sent blocks km+1, . . . , kn
to a path P in Kn, which satisfies the two requirements at the end of Theorem 4. Moreover, P is
R-valid, since position-binding of Com guarantees that the sent parent labels kι1 , . . . , kιq conform
to those of the extracted path.

Let sh := nh−κ denote the length of the honest stable prefix. Finally, P is an `-fork, since either
n ≥ sh + ` and it agrees with the stable prefix of the honest chain (fork of Type (2) in Def. 11), or
it forks off earlier, at latest at m+ 1 (since φ contained in block m+ 1 must be different from the
commitment contained in the honest prefix for the client not to bootstrap), meaning it is a fork of
Type (1). By Theorem 4, no (c, `, εF)-adversary can create such a fork, which proves Corollary 1.

In Appendix F, we show that when using the SNACK based on (our variant of) the PoSW by
Cohen and Pietrzak [CP18] (given in Appendix D), Protocol 3 achieves virtually the same efficiency
as FlyClient [BKLZ20].

7 Incremental PoSWs and SNACK Systems

A very powerful extension of non-interactive PoSW introduced in [DLM19] are incremental PoSWs,
which additionally allow to extend a given proof π, witnessing n sequential computational steps, to
a new proof for n+n′ steps by investing additional n′ sequential steps. Note that all non-interactive
PoSW schemes, including the non-interactive counterparts of Constr. 2 and 3, are technically two-
message protocols, in which the verifier V0, on input 1λ, picks parameters prm, upon which the
prover runs and outputs a proof for a value n that is verified by V1.

Definition 13 (Incremental GL-PoSW). A tuple of PPT algorithms (P,V := (V0,V1), INC)
is an incremental graph-labeling PoSW if (P,V) is a non-interactive graph-labeling PoSW and the
following holds:

– Incrementality: For every λ, n1, n ∈ N0 with n1 ≤ n, and every prm ← V0(1
λ), we have

V1(prm, n, π) = 1 for every honestly generated proof π, where we say π is honestly generated
for parameters prm and n if either of the following holds:

• π ← P(prm, 1n), or

• π ← INC(prm, 1n−n1 , n1, π1) and π1 is honestly generated for parameters prm and n1.

26

Döttling et al. [DLM19] show how to make the PoSW scheme of [CP18] (which is implicitly defined
for uniform weight distributions Ωn) incremental, and their techniques extend naturally to the
augmented PoSW based on [CP18] which we gave in Constr. 3 (Appendix D). It remains open to
adapt their techniques to arbitrary weight functions Ωn. We now define incremental SNACKs.

Definition 14 (Incremental SNACK systems). A tuple of PPT algorithms (P,V, INC) is an
incremental SNACK for LΓ,R,Com from Def. 6 (with witness relation R := RΓ,R,Com) if (P,V) is a
SNACK system for LΓ,R,Com and the following holds:

– Incrementality: For every λ, n1, n ∈ N0 with n1 ≤ n, it holds that V(prm, (φ, n), π) = 1 for
every honestly generated proof π, where we say π is honestly generated for prm and (φ, n) if
either of the following holds:
• π ← P(prm, (φ, n), w) for some w with (prm, (φ, n), w) ∈ R
• π ← INC(prm, π1, (φ, n), w2) for some π1 that is honestly generated for prm and (φ1, n1) via

some w1 and w2 such that (prm, (φ, n), w1‖w2) ∈ R.

We remark that it follows from the definition that the running time of INC is independent of w1.
Inspection of our SNACK construction (P,V) from a GL-PoSW in Sect. 5 suggests that if the un-

derlying GL-PoSW is incremental, then this naturally yields an algorithm INC so that (P,V, INC) is
an incremental SNACK. This approach still works for augmented labels, however adding additional
edges representing blockchain validity dependencies might break the incrementality property.

We can thus define incremental SNACKs for blockchains based on simple chain graphs. An
easy fix to support a more general class of blockchains could be to add to the proofs π commitment
openings of all nodes to which any future blockchain blocks will refer, which however leads to an
unfavorable increase in proof size. We leave it for future work to analyze and construct incremental
SNACK systems in a more formal way.

Acknowledgements. The first two authors are funded by the Vienna Science and Technology
Fund (WWTF)[10.47379/VRG18002]. The first author has also received funding in part from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innova-
tion program under project PICOCRYPT (grant agreement No. 101001283), the Spanish Govern-
ment under projects SCUM (ref. RTI2018-102043-B-I00), the Madrid Regional Government under
project BLOQUES (ref. S2018/TCS-4339), and a research grant from Nomadic Labs and the Tezos
Foundation. The last author is supported in part by ERC CoG grant 724307 and conducted part
of this work at ISTA, funded by the ERC under the European Union’s Horizon 2020 research and
innovation programme (682815 - TOCNeT).

References

AAC+17. Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, and Leonid Reyzin. Be-
yond hellman’s time-memory trade-offs with applications to proofs of space. In Tsuyoshi Takagi and
Thomas Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 357–379. Springer,
Heidelberg, December 2017.

AKK+19. Hamza Abusalah, Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Michael Walter. Reversible
proofs of sequential work. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II,
volume 11477 of LNCS, pages 277–291. Springer, Heidelberg, May 2019.

BBBF18. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 757–788. Springer,
Heidelberg, August 2018.

27

BCD+14. Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew Miller, Andrew
Poelstra, Jorge Timón, and Pieter Wuille. Enabling Blockchain Innovations with Pegged Sidechains.
https://blockstream.com/sidechains.pdf, 2014. [Online; accessed 16-August-2019].

BCKL08. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and noninteractive
anonymous credentials. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 356–374. Springer,
Heidelberg, March 2008.

BGK+18. Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availability. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 913–930. ACM Press,
October 2018.

BKLZ20. Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. FlyClient: Super-light clients for cryp-
tocurrencies. In 2020 IEEE Symposium on Security and Privacy, pages 928–946. IEEE Computer Society
Press, May 2020.

BMRS20. Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentralized cryptocurrency
at scale. Cryptology ePrint Archive, Report 2020/352, 2020. https://eprint.iacr.org/2020/352.

BMTZ17. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction ledger:
A composable treatment. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume
10401 of LNCS, pages 324–356. Springer, Heidelberg, August 2017.

CP18. Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 451–467. Springer,
Heidelberg, April / May 2018.

CP19. Bram Cohen and Krzysztof Pietrzak. The Chia Network blockchain, July, 2019. https://www.chia.net/
assets/ChiaGreenPaper.pdf.

DFKP15. Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. Proofs of space. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 585–605. Springer, Heidelberg, August 2015.

DGKR18. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98. Springer, Heidelberg, April / May
2018.

DKKZ20. Stelios Daveas, Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. A gas-efficient superlight bitcoin
client in solidity. Cryptology ePrint Archive, Report 2020/927, 2020. https://eprint.iacr.org/2020/

927.
DLM19. Nico Döttling, Russell W. F. Lai, and Giulio Malavolta. Incremental proofs of sequential work. In Yuval

Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 292–323.
Springer, Heidelberg, May 2019.

DPS19. Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and applications
to provably secure proof of stake. In Ian Goldberg and Tyler Moore, editors, FC 2019, volume 11598 of
LNCS, pages 23–41. Springer, Heidelberg, February 2019.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

GKL15. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057
of LNCS, pages 281–310. Springer, Heidelberg, April 2015.

GKZ19. Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains. In 2019 IEEE Symposium
on Security and Privacy, pages 139–156. IEEE Computer Society Press, May 2019.

GRR21. Peter Gaži, Ling Ren, and Alexander Russell. Practical settlement bounds for proof-of-work blockchains.
Cryptology ePrint Archive, Report 2021/805, 2021. https://eprint.iacr.org/2021/805.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P. Smart,
editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008.

KKZ19. Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. Compact storage of superblocks for NIPoPoW
applications. In Panos M. Pardalos, Ilias S. Kotsireas, Yike Guo, and William J. Knottenbelt, editors,
MARBLE 2019, pages 77–91. Springer, 2019.

28

https://blockstream.com/sidechains.pdf
https://eprint.iacr.org/2020/352
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://eprint.iacr.org/2020/927
https://eprint.iacr.org/2020/927
https://eprint.iacr.org/2021/805

KLS16. Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs of proofs of work with
sublinear complexity. In Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael
Brenner, and Kurt Rohloff, editors, FC 2016 Workshops, volume 9604 of LNCS, pages 61–78. Springer,
Heidelberg, February 2016.

KLZ21. Aggelos Kiayias, Nikos Leonardos, and Dionysis Zindros. Mining in logarithmic space. In Giovanni Vigna
and Elaine Shi, editors, ACM CCS 2021, pages 3487–3501. ACM Press, November 2021.

KMZ20. Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of proof-of-work. In Joseph
Bonneau and Nadia Heninger, editors, FC 2020, volume 12059 of LNCS, pages 505–522. Springer, Heidel-
berg, February 2020.

KPZ20. Aggelos Kiayias, Andrianna Polydouri, and Dionysis Zindros. The velvet path to superlight blockchain
clients. Cryptology ePrint Archive, Report 2020/1122, 2020. https://eprint.iacr.org/2020/1122.

KRDO17. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 357–388. Springer, Heidelberg, August 2017.

KZ19. Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. In Andrea Bracciali, Jeremy Clark,
Federico Pintore, Peter B. Rønne, and Massimiliano Sala, editors, FC 2019 Workshops, volume 11599 of
LNCS, pages 21–34. Springer, Heidelberg, February 2019.

MMV13. Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable proofs of sequential work. In
Robert D. Kleinberg, editor, ITCS 2013, pages 373–388. ACM, January 2013.

Nak08. Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf,
2008. [Online; accessed 19-June-2018].

Pie19. Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS 2019, volume 124,
pages 60:1–60:15. LIPIcs, January 2019.

PS17. Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 380–409. Springer, Heidelberg, December 2017.

PSs17. Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous networks.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of
LNCS, pages 643–673. Springer, Heidelberg, April / May 2017.

VGS+21. Psi Vesely, Kobi Gurkan, Michael Straka, Ariel Gabizon, Philipp Jovanovic, Georgios Konstantopoulos,
Asa Oines, Marek Olszewski, and Eran Tromer. Plumo: An ultralight blockchain client. Cryptology ePrint
Archive, Report 2021/1361, 2021. https://eprint.iacr.org/2021/1361.

Wes19. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 379–407. Springer, Heidelberg, May 2019.

29

https://eprint.iacr.org/2020/1122
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2021/1361

A Vector Commitments

Definition 15 (Vector commitments). A vector commitment scheme Com for universe U and
message space M = (Mn)n∈N with Mn ⊆ Un is a tuple of PPT algorithms (setup, commit, open,
ver) where

– cp← setup(1λ): On input a security parameter 1λ, setup outputs public parameters cp.
– (φ, aux) ← commit(cp, (m1, . . . ,mn)): On input a tuple (m1, . . . ,mn) ∈ Mn, commit outputs a

commitment φ and an auxiliary information aux.
– ρ ← open(cp, φ, aux,m, i): On input a commitment φ, an auxiliary input aux, and a message

component m at position i, open outputs an opening ρ.
– ver(cp, φ,m, i, ρ) ∈ {0, 1}: On input a commitment φ, a message m at position i, and an opening
ρ, ver either accepts or rejects (by outputting 1 or 0 respectively).

We require Com to satisfy correctness and position-binding security:

– Com is correct if for every PPT adversary A it holds that

Pr


cp← setup(1λ)
(m1, . . . ,mn)← A(cp)
(φ, aux)← commit(cp, (m1, . . . ,mn))
ρ← open(cp, φ, aux,mi, i)

:
(m1, . . . ,mn) ∈Mn ∧
ver(cp, φ,mi, i, ρ) = 0

 = 0 .

– Com is position-binding if for every PPT adversary A the following is negligible in λ:

Pr

cp← setup(1λ)
(φ,m,m′, i, ρ, ρ′)← A(cp)

:
ver(cp, φ,m, i, ρ) = 1

∧ ver(cp, φ,m′, i, ρ′) = 1
∧ m 6= m′

 .

For notational convenience, we generalize opening and verification to tuples of values at tuples
of indices, that is we let ρ ← open(cp, φ, aux, S, I) denote the opening of tuple S of values at a
corresponding tuple of indices I. The verification algorithm is generalized analogously.

B Random Oracles, Consistent Queries, and τ -Sequences

The following lemma summarizes some properties of random oracles which will be useful in our
setting.

Lemma 2. Let τ = (τi)i∈[n]0 be a tuple of random oracles, with each τi : {0, 1}∗ → {0, 1}λ. Let P̃τ

be an adversary with oracle access to τ = (τi)i∈[n]0 which makes at most q queries to τ . Then the
following properties hold:

1. Collision: The probability of finding a collision can be bounded by

Pr
[
(pi, pi′)← P̃τ : τi(pi) = τi′(pi′)

]
≤ q2

2λ+1
.

2. Lucky guess: Let Gn be a DAG. The probability that P̃τ finds a pair of strings yi, yi′ ∈ {0, 1}∗
associated with indices i, i′ ∈ [n]0 such that yi := pi‖xi is consistent with yi′ (cf. Def. 10) but pi
was never queried to τi can be bounded by

Pr
[
(yi := pi‖xi, yi′)← P̃τ ; pi not queried to τi : yi ≺ yi′

]
≤ 1

2λ
.

30

3. Consistent queries: Let Gn be a DAG. The probability that P̃τ finds a pair of strings yi, yi′ ∈
{0, 1}∗ associated with indices i, i′ ∈ [n]0 such that yi := pi‖xi is consistent with yi′ := pi′‖xi′
but pi was not queried before pi′ was queried can be bounded by

Pr
[
(yi := pi‖xi, yi′ := pi′‖xi′)← P̃τ ; pi not queried before pi′ : yi ≺ yi′

]
≤ q2

2λ
.

Proof. For property 1, note that for any two queries the probability that their outputs collide is 1
2λ

since the output of the random oracles τi is uniform. The claim now follows by union bound over
all
(
q
2

)
= q(q−1)

2 unordered pairs of queries.
For the second property, note that since pi is not queried the output of the random oracle τi is
uniformly random. Hence, the probability that it coincides with a specific block of size λ in yi′ is
1
2λ

, which proves property 2.
Let pi, pi′ be queried in rounds r, r′ with r′ ≤ r, i.e., pi′ is queried before the output of pi is known.
Then, similar to above, the probability that yi is consistent with yi′ is at most 1

2λ
. Since there are

at most q2 possible ordered pairs of queries, property 3 follows by union bound. ut

C Omitted Proofs

C.1 Proof of Theorem 1

To prove Theorem 1, we first define τ -sequences, and then prove their sequentiality and relate them
to knowledge soundness.

Definition 16 (Augmented τ-sequence). Let Gn = ([n]0, En) be a DAG and τ = (τi)i∈[n]0 a

tuple of random oracles, with τi : {0, 1}∗ → {0, 1}λ. We call a sequence of strings s = (yi1 , . . . , yil+1
)

with yij ∈ {0, 1}∗ for j ∈ [l] and yil+1
∈ {0, 1}λ such that yij is associated with index ij ∈ [n + 1]

and yij ≺ yij+1 w.r.t. Gn for all j ∈ [l] (cf. Def. 10) a τ -sequence of length l. For a weight function

Ωn : [n]0 → [0, 1], the weight of a τ -sequence s = (yi1 , . . . , yil+1
) is defined as Ωn(s) :=

∑l
j=1Ω(ij)

The notion of a τ -sequence is closely related to the language LΓ,R,Com when the commitment
scheme and relation R are chosen appropriately.

Lemma 3 (Knowledge-soundness witnesses are τ-sequences). Let Γn = (Gn = ([n]0, En), Ωn)
be a weighted DAG, and let τ = (τi)i∈[n]0 be a family of random oracles. Let the relation R be defined
as

R(v, LP (v), pv) = 1 iff LP (v) = τv(pv)‖xv (13)

for some xv ∈ {0, 1}∗. Then any α-knowledge-soundness witness for some statement η := (φ, n)
w.r.t. the language LΓ,R,Com from Def. 6 implies a τ -sequence s = (yi1 , . . . , yil+1

) with final block
yil+1

= τn(yil), last index il+1 = n+ 1, penultimate index il = n, and weight ≥ α.
If the commitment scheme Com is defined as SPC (Constr. 1), then also the converse is true,

i.e., any τ -sequence s = (yi1 , . . . , yil+1
) with final block yil+1

= φ‖xil+1
for some xil+1

∈ {0, 1}∗,
last index il+1 = n+ 1, penultimate index il = n, and weight ≥ α directly implies an α-knowledge-
soundness witness for η := (φ, n) w.r.t. the language LΓ,R,Com from Def. 6.

Proof. Recall that an α-knowledge-soundness witness for η := (φ, n) consists of a path P ⊆ Gn,
a labeling LP on the vertices of P , values (pv)v∈P , and an opening ρ such that 1.) Ωn(P) ≥ α,
and 2.) for all v ∈ P with (v1, . . . , vk) := parents(v) it holds R(v, LP (v), pv) = 1 and for all

31

i ∈ [k] such that vi ∈ P it holds pv[i] = LP (vi), and 3.) Com.ver(cp, φ, LP , P, ρ) = 1. Given such a
witness, we immediately obtain a τ -sequence as follows: Set (i1, . . . , il, il+1) := P‖(n + 1) and for
j ∈ [l], LP (ij) = τij (pij)‖xij ∈ {0, 1}λ × {0, 1}∗ set the strings yij := pij‖xij , and yil+1

= τn(yil).
Then yij ≺ yij+1 for all j ∈ [l] since P is a path in Gn. Since P has weight α, also the sequence
s = (yi1 , . . . , yil+1

) has weight α.
Now assume the commitment scheme Com is defined as in Constr. 1. Given a τ -sequence, we

extract a tuple (P,LP , (p
′
v)v∈P , ρ) as follows: First, set P := (i1, . . . , il). Since yij ≺ yij+1 for all

j ∈ [l], in particular (ij , ij+1) ∈ En for all j ∈ [l−1], hence P := (i1, . . . , il) is a path in Gn of weight

Ωn(P) =
∑l

j=1Ω(ij) = α. Furthermore, for yij = pij‖xij define labels by LP (ij) := τij (pij)‖xij
for j ∈ [l] and p′ij := pij . Clearly, this assignment satisfies the condition on relation R from (13).

Finally, set ρ := (yi1 , . . . , yil). Since il = n, il+1 = n+ 1, and yil+1
= φ‖xil+1

by assumption on the
τ -sequence, for every v ∈ P it holds that Com.ver(cp, φ, LP (v), v, ρ) = 1. Hence (P,LP , (p

′
v)v∈P , ρ)

is a valid α-knowledge-soundness witness for η := (φ, n). ut

The following lemma states that τ -sequences must be computed sequentially. Without loss of
generality we assume that any adversary Aτ whose aim is to output a τ -sequence does not make
any redundant queries, i.e., any query to τ occurs only once.

Lemma 4 (Sequentiality of τ). Let Γn = (Gn, Ωn) be a weighted DAG and τ = (τi)i∈[n]0 be a

family of random oracles with τi : {0, 1}∗ → {0, 1}λ. Let Aτ be an adversary that makes (parallel)
queries to τ of sequential weight < α and makes q oracle queries in total. Then the probability that
Aτ outputs a τ -sequence of weight α can be bounded by

Pr [s← Aτ : s is a τ -sequence ∧ Ωn(s) = α] ≤ 1

2λ
+
q2

2λ
=
q2 + 1

2λ
.

Proof. Since the sequential weight of A’s queries is less than α, whenever Ωn(s) = α the sequence
s must either contain a string yij := pij‖xij such that pij was not queried, or a pair of nodes
yij := pij‖xij , yij′ := pij′‖xij′ such that j < j′ and pij , pij′ were queried in rounds r, r′ with r′ ≤ r.
Thus, the claim follows from basic properties of random oracles; for completeness we formalize
them as Properties 2 and 3 in Lemma 2 in Appendix B. ut

This allows us to prove that knowledge-soundness implies soundness of any graph-labeling
PoSW.

Proof (of Theorem 1). Consider an (α, ε)-knowledge-sound graph-labeling PoSW. Let P̃ be an
arbitrary PPT prover that makes q queries of sequential weight < α. Assume toward contradiction
that when P̃ interacts with V, the latter returns 1 with probability > ε′. By (α, ε)-knowledge
soundness, there exists an extractor E, which from P̃ extracts a witness for η := (φ, n) of weight at
least α with probability at least ε′ − ε (where φ is the output of P̃0). By Lemma 3, any witness for
η := (φ, n) implies a τ -sequence of weight α with final block yn+1 = φ. From the PPT algorithm E
we can thus obtain such a sequence with probability > ε′ − ε. By Lemma 4, this can happen with
probability at most (q2 + 1)/2λ, as E only makes P̃’s queries to τ , and thus their sequential weight
is < α. Since (q2 + 1)/2λ = ε′ − ε, this is a contradiction. ut

C.2 Proof of Theorem 2

We first provide a high-level intuition for the proof of Theorem 2. First, note that by the binding
property of the commitment scheme, the set of challenges the prover can consistently answer is

32

essentially fixed after it output the commitment φL. Now recall that any accepting answer to a
challenge ιi consists of a labeling of the shortest path from 0 to n which goes through node ιi and
all ancestors of this path. In the proof we show that by collision resistance of the hash function
and the structure of the underlying graph all these labelings of accepting paths can be combined
to derive a labeling of a long path (and its ancestors) which contains all the challenges the prover
can consistently answer to. Assuming the prover can answer a single challenge with probability α,
this allows us to extract a consistent labeling of a path (and its ancestors) of weight α. The claim
then follows from a lemma where we prove that computing such a labeling requires queries to the
random oracle of sequential weight at least α.

More formally, towards proving Theorem 2 we first establish the following lemma, which states
that any τ -sequence with final block yn+1 = φL must have been computed before the commitment
φL.

Lemma 5. Let Γn = (Gn, Ωn) be a weighted DAG. Let P̃τ0 , P̃
τ
1 be a pair of algorithms with oracle

access to τ = (τi)i∈[n]0, such that

– P̃0, on input 1λ,makes q0 queries to τ and outputs state0 and a string φ ∈ {0, 1}λ.
– P̃1, on input (state0, φ), makes q1 queries to τ and outputs a τ -sequence s = (yi1 , . . . , yil+1

) with
yil+1

= (φ, ε).

Let Q be the set of queries (including responses) made by P̃0 and S the set of τ -sequences with final
block φ which are extractable from Q. Then

Pr

[
(state0, φ)← P̃τ0(1λ);

τ -sequence s = (yi1 , . . . , yil+1
= φ)← P̃τ1(state0, φ)

: s /∈ S
]
≤ q2

2λ
,

where q = q0 + q1.

Proof. Assume P̃τ1 outputs a sequence s /∈ S. Since s /∈ S, there must exist yij := pij‖xij , for

1 ≤ j ≤ l in s such that (pij , τij (pij)) /∈ Q, i.e., pij was not queried by P̃0. Let yij be the last such
string in the sequence s. Then one of the following must be true: 1) pij was never queried at all and

P̃1 made a lucky guess, 2) P̃1 found a pair of consistent queries (yij := pij‖xij , yij+1 := pij+1‖xij+1)
such that pij was queried not before pij+1 and yij ≺ yij+1 , 3) j = l, τ(pij) = φ and pij was only

queried by P̃1.
Using Property 2 in Lemma 2, we can bound the probability that case 1 happens by 1

2λ
. For case

2, similar to the proof of Property 3 in Lemma 2 we get a bound q0·q1
2λ

, where we used the fact that

pij+1 was queried by P̃0 and pij was queried by P̃1. Finally, since φ ∈ {0, 1}λ is given as fixed input

to P̃1 and pij was queried by P̃1, the probability that case 3 happens is at most q1
2λ

. The claim now
follows by union bound since 1 + q0 · q1 + q1 ≤ q2 for q = q0 + q1 ≥ 2. ut

Proof (of Theorem 2). Completeness and succinctness of the protocol are easy to verify. Let n ∈ N
be arbitrary. To prove soundness, let P̃ be an adversary with oracle access to τ which makes queries
of sequential weight at most α ∈ [0, 1] before sending φL to V and makes q queries in total. First,
note that for any challenge ιi ∈ [n]0 its opening γi = (oi, ρi) gives a τ -sequence of length at most
l ≤ 2 log(n): Let path(ιi) := path′(ιi) ∪ path(ιi) = (i0 = 0, . . . , il = n) be the shortest path in Gn
from 0 to n that passes through ιi. Then γi contains labels of all parents in Gn of nodes ij , j ∈ [l].
Setting yij := (yij ,0, yij ,1) with yij ,0 := L(parents(ij)) and yij ,1 = xij (i.e. the augmentation) for

33

j ∈ [l], and yil+1
:= φL with il+1 = n+ 1 gives a τ -sequence of length l. Thus, by Lemma 5, the set

of challenges which P̃ can consistently answer is essentially fixed after it output φL. Furthermore,
rewinding P̃ to the point when it output φL allows to recover answers to all queries and we will
show below that – unless P̃ found a collision for τ (the probability of this event is bounded in
Property 1 in Lemma 2) – these answers can be combined to obtain a τ -sequence that contains
all challenge nodes which P̃ can consistently open. By Lemmata 4 and 5, and the upper bound α
on the sequential weight of P̃’s queries, it then follows that with all-but-negligible probability this
sequence is of weight at most α, i.e., the set of challenges P̃ can open has weight at most α. Hence,
the probability that P̃ can answer a single challenge drawn according to distribution Ωn is at most
α, and since the t challenges are drawn independently, the success probability of P̃ can be bounded
by αt. This proves (α, ε)-soundness of Constr. 2, where the soundness error ε is obtained by a union
bound over the two bad events considered in Lemmata 4 and 5, as well as Property 1 in Lemma 2:

ε ≤ αt +
q2 + 1

2λ
+
q2

2λ
+

q2

2λ+1
≤ αt +

3 · q2

2λ
.

It remains to prove that the τ -sequences extracted from verifying answers can be glued together to
obtain a τ -sequence containing the openings of all challenge nodes. Recall that for each challenge
ιi the prover has to output labels L(j) for every non-source node j on the path path(ιi) along with
the corresponding openings yj,0 := L(parents(j)). Let I ⊂ [n]0 be the set of challenges that P̃ can
consistently open. Then by the structure of the graph Gn, the subgraph induced on the set of nodes
in the set of all verifying paths

⋃
ιi∈I path(ιi) contains a path from 0 to n which includes all the

properly answered challenges ιi ∈ I; we denote this path by P. Thus, if the openings which P̃ outputs
in response to the challenges it can consistently answer were unique, then from P̃’s responses one
could extract a τ -sequence whose weight is at least Ω(I). Furthermore, the verification algorithm
guarantees that L(0) = (τ0(ε), x0) and L(n) = (φL, xn) are fixed for all accepted answers γιi ; hence,
the extracted sequence must contain y0 = (ε, x0) and yn+1 = φL. In the following we will argue
that – unless P̃ found a collision for τ – the openings yj,0 for the nodes j ∈

⋃
ιi∈I path(ιi) are indeed

unique.
Uniqueness of the openings follows from the position-binding property of the commitment scheme
Com = SPC, where the negligible soundness gap is bounded by Property 1 in Lemma 2: We argue
uniqueness in reverse topological order along the path P = (j0, . . . , jl) with j0 = 0 and jl = n:
Since L(n) = (φL, xn) is fixed and verification guarantees that τn(yn,0) = φL for any accepting
opening yn,0 of n, the opening yn,0 must be unique, unless P̃ found a collision for τ . Now all
labels of nodes which are connected to node n by an edge in Gn are essentially fixed to coincide
with the corresponding block in yn,0; in particular L(jl−1) is fixed. Unless P̃ found a collision, this
implies that the opening yjl−1,0 of jl−1 is fixed. Proceeding analogously proves that either P̃ found
a collision or all openings of nodes along the path P are unique. This proves that Constr. 2 is
an (α, ε)-sound graph-labeling PoSW. We will now argue that it is also knowledge sound: The

above argument in particular gives an extractor EP̃ which with all but negligible probability 3q2/2λ

extracts a τ -sequence of weight α from any prover P̃ which succeeds on a single challenge with
probability α. Recall that by Lemma 3 a τ -sequence of weight α with final block yn+1 = φL
and penultimate block associated with index il = n immediately gives an α-knowledge-soundness
witness for η := (φ, n) with respect to the language LΓ,R,Com with relation R from Equation (13).
To prove (α, ε)-knowledge soundness, let P̃ be any PPT prover and let α′ be the probability that P̃
succeeds on a single challenge. We consider two cases: First, assume α′ ≤ α. Then the probability

34

Verifier PoSW.V = (V0,V1,V2):

Stage V0: On input (1λ, n, ψ):

1. (σ, aux0)← Init(1λ, ψ)

2. send σ to P0

Stage V1: On input φn:

1. ι← ACK.V1(cp, φn, n)

2. send ι to P1

Stage V2: On input γ:

output ACK.V2(γ)

Prover PoSW.P = (P0,P1):

Stage P0: On input
(
1n, (di)i∈[n]

)
and σ:

1. LK(0) := σ

2. ∀i ∈ [n] do

(LK(i), auxi)← Mine
(
(LK(0), . . . , LK(i− 1)), di

)
3. parse LK(n) as (`n‖φn, hn)

4. send φn to V1

Stage P1: On input ι:

1. γ ← ACK.P
(
(cp, φn, n), (LK(j))j∈[n]0 , auxn, ι

)
2. send γ := (γi)

t
i=1 to V2

Fig. 10: The augmented PoSW scheme constructed from mining algorithms and an ACK system ACK.V =
(ACK.V1,ACK.V2),ACK.P.

that P̃ succeeds is at most (α′)t + 3q2/2λ ≤ αt + 3q2/2λ = ε, which implies (α, ε)-knowledge

soundness for this case. For the case α′ > α, we make use of the extractor EP̃ that with all but
negligible probability 3q2/2λ extracts an α′-knowledge soundness witness for η := (φ, n). Since for
α < α′ an α′-knowledge soundness witness for η := (φ, n) in particular is an α-knowledge soundness
witness for η := (φ, n), this extractor fails only with probability 3q2/2λ to output an α-knowledge
soundness witness for η := (φ, n), which implies (α, ε)-knowledge soundness also for this case. ut

C.3 Proof of Theorem 3

Proof. The proof strategy is simple: we use (ACK.P,ACK.V) and Alg. Mine from Fig. 4 to build an
augmented PoSW (PoSW.P,PoSW.V) (see Fig. 10) whose (α, ε)-knowledge-soundness implies that
of the SNACK. The non-interactive (SNACK.P,SNACK.V) is simply the Fiat-Shamir transforma-
tion [FS87] applied to (ACK.P,ACK.V).

Concretely, we define an X-augmented PoSW (PoSW.P,PoSW.V) for the weighted graph family
(Kn, Ωn)n∈N as in Fig. 10 where Kn is defined in (7). This PoSW follows the template of Fig. 2
with Com being its underlying commitment scheme and LK (as defined by Init and Mine) being its
X-augmented τ -based labeling (see Def. 4). This labeling LK differs however from the labeling LG
of (PoSW.P,PoSW.V) in that the parents(·) function used in the τ -labeling is now w.r.t. graph Kn

rather than Gn = ([n]0, EG). Graph Kn = ([n]0, EK) has the same vertex set [n]0 of Gn but only
differs in that its edge set is expanded as EK := EG ∪ EH where EH is the edge set of Hn.

However when τ is modeled as a random oracle, it is easy to see that if (PoSW.P,PoSW.V) is a τ -
based (α, ε)-knowledge-sound PoSW for a weighted graph family (Gn, Ωn)n∈N, then (PoSW.P,PoSW.V)
is an X-augmented τ -based (α, ε)-knowledge-sound PoSW for a weighted graph family (Kn, Ωn)n∈N
and X = (x0, . . . , xn), where xi := gi‖hi and gi, hi are as in Mine (and Init). To argue this we need
to argue that appending xi to the random oracle τ does not affect soundness of the PoSW. This
however follows because (1) τ is a random oracle and the extra xi’s simply define xi-salted random
oracles, and crucially (2) the new edge structure EH does not give a malicious prover PoSW.P̃ any
more power than its counterpart PoSW.P̃: this is ensured by ACK.V by making sure that for each
challenge ιi ∈ [n]0, the responses of any prover are verified w.r.t.

35

– the edge structure imposed by EG, which suffices for preserving the underlying soundness of
(PoSW.P,PoSW.V), and

– the edge structure EH of Hn, which in turn suffices to verify the validity of the augmented
blockchain (using R̃ψ).

Furthermore, by Def. 9, (PoSW.P,PoSW.V) is (α, ε)-knowledge sound with respect to witness

relation R(α)
Γ,Rχ,Com

as in Def. 6 and Rχ as in (5). However, due to the checks executed by PoSW.V,

the soundness of (PoSW.P,PoSW.V) is now defined w.r.t. witness relation R(α)
Γ,Rσ ,Com

as in Def. 6

with Rσ defined in (9). By inspecting these witness relations, it is clear that R(α)
Γ,Rσ ,Com

extends

R(α)
Γ,Rχ,Com

in the sense of requiring the extra check of R̃ψ imposed by Rσ. This extra check clearly

does not affect soundness, but may affect completeness.15 To make sure that completeness is also
preserved, we need to make sure that an honest augmented prover PoSW.P gets extra information
that allows it to pass the R̃ψ check, and in fact the labels (ki)i∈[n]0 provided as input to PoSW.P
by the output of (the honest) Mine ensure this.

This establishes that (PoSW.P,PoSW.V) is an (α, ε)-knowledge-sound X-augmented τ -based
(with labeling LK) PoSW for the weighted graph family (Kn, Ωn)n∈N. By absorbing the computa-
tion of PoSW.V0 into ACK.V1 and PoSW.P0 into ACK.P, the pair (ACK.P,ACK.V) is syntactically
a PoSW.16 Now by Lemma 1 it holds that (SNACK.P,SNACK.V), the Fiat-Shamir transform of
(ACK.P,ACK.V), is an (α, ε)-knowledge-sound SNACK for the language LΓ,Rσ ,Com as in Def. 6 and
Rσ as in (9). ut

C.4 Proof of Corollary 1

Proof. Consider an adversary that makes the light client accept(
φ∗, n∗, π∗, (k∗i)

n∗
i=m∗+1, (ιj , k

∗
ιj , ρ

∗
ιi)
q∗

j=1

)
with m∗ := n∗ − `, and the light client does not `-CP bootstrap.

By (b), π∗ is valid for (φ∗,m∗), so by (αm∗ , ε)-knowledge soundness we can extract, except with
probability ε, an R-valid path P ′ = (P ′, (k′i)i∈P ′ , (p

′
i)i∈P ′) with P ′ ⊆ [m∗]0 and Ωm∗(P

′) ≥ αm∗ as
well as a subset opening ρ′ of φ∗ to (k′i)i∈P ′ . Except with probability εC , we have

for all i ∈ P ′ ∩ {ι1, . . . , ιq∗} : k′i = k∗i . (14)

Otherwise, if k′i 6= k∗i for some i, this breaks position-binding of Com, as ρ′ opens φ∗ to k′i at position
i, and ρ∗i opens φ∗ to k∗i at position i by (d).

Thus P := (P, (ki)i∈P , (pi)i∈P) is R-valid (Def. 5), where

P := P ′‖[m∗ + 1 : n∗] (ki)i∈P := (k′i)i∈P ′‖(k∗i)i∈[m∗+1:n∗]

(pi)i∈P := (p′i)i∈P ′‖((k∗j)j∈parents(i))i∈[m∗+1:n∗].

15 If a protocol is sound when the verifier executes a check C1, then it is clearly sound if the verifier executes an
additional check C2. However, the protocol is not guaranteed to remain complete – because the verifier would
reject a proof π that verifies with respect to C1 but fails with respect to C2.

16 To justify this syntactic manipulation, note that PoSW.V0 outputs σ which contains χ and cp which are generated
identically to any graph-labeling PoSW scheme. Similarly we assume that the (honest) input to ACK.P was com-
puted by an (honest) PoSW.P0, which is the computation of the honest mining Mine, which is in turn an honest
PoSW computation.

36

Indeed, for all i ∈ P :R(i, k′i, p
′
i) = 1 byR-validity of P ′, and for i ∈ [m∗+1 : n∗]:R(i, k∗i , (k

∗
j)j∈parents(i)) =

1 by (c). Moreover, R-validity requires consistency of path labels appearing in some pi, that is,
for all i, letting (i1, . . . ideg(i)) := parents(i) and all j: if ij ∈ P then pi[j] = kij . For i ∈ P ′,
this follows from R-validity of P ′; for i ∈ [m∗ + 1 : n∗] and ij ∈ P ′, this follows from (14); for
i, ij ∈ [m∗ + 1 : n∗] : pi[j] = k∗ij by definition.

We have thus shown that P is an R-valid path with [m∗ + 1 : n∗] ⊆ P and Ωm∗(P ∩ [m∗]0) =
Ωm∗ [P

′] ≥ αm∗ . If in addition we have

P is an `-fork (Def. 11), (15)

then Theorem 4 guarantees that the adversary can only create P with probability at most εF , which
concludes the proof.

Let (k
(h)
0 , . . . , k

(h)
sh) be the stable prefix of the honest chain. We show (15) by considering two

cases:

1. n∗ < sh+` (and thus m∗+1 < sh+1): Let φ(h) be the commitment contained in k
(h)
m∗+1. We must

have φ∗ 6= φ(h), as otherwise the light client would have bootstrapped; thus k∗m∗+1 6= k
(h)
m∗+1.

We moreover have n∗ ≥ nh; otherwise an assumed honest full node would have convinced the
verifier. P is thus an `-fork of Type (1) with ij = m∗ + 1 (note that n∗ ≥ ij + `− 1).

2. n∗ ≥ sh + `:
(a) If for some i ∈ P ′ ∩ [sh]0 : k′i 6= k

(h)
i then P ′ is again an `-fork of Type (1).

(b) If for all i ∈ P ′ ∩ [sh]0 : k′i = k
(h)
i then P ′ is an `-fork of Type (2). ut

D A Graph-Labeling PoSW Based on CP Graphs

Our second construction is based on [CP18]. We define the PoSW construction by instantiating
the unspecified parts in the blueprint given in Fig. 2, namely we define a weighted DAG family
(Gn, Ωn)n∈N and specify algorithms PoSW.label,PoSW.open,PoSW.ver,Com.

Construction 3. We define Gn based on a slight modification of the CP DAG from [CP18]. We
first define a DAG GCP’

m = (V CP’
m , ECP’

m) depicted in Fig. 11: For m ∈ N, define V CP’
m = {0, 1}≤m

and ECP’
m = E′ ∪ E′′, where E′ are the upward edges of the binary tree of depth m with root ε, the

empty string, i.e.,
E′ =

{
(x‖b, x) : b ∈ {0, 1}, x ∈ {0, 1}i, 0 ≤ i < m

}
,

and E′′ contains for all nodes v in the tree an edge (u, v) iff u is a left sibling of a node on the path
from v to the root ε in the binary tree (V CP’

m , E′), i.e.,

E′′ =
{

(u, v) : v ∈ {0, 1}i, 0 < i ≤ m, v = x‖1‖x′, u = x‖0
}
.

For completeness we note that the CP DAG [CP18] is defined identically to GCP’
m except that v

in the definition of E′′ is restricted to leaf nodes.
Now we define Gn = ([n]0, En) to be the subgraph of GCP′

m = (V CP’
m , ECP’

m) with m = dlog(n)e
induced on the first n + 1 nodes in topological order, and Ωn : [n]0 → [0, 1] an arbitrary weight
function. We define PoSW.label(χ) based on a hash function H : {0, 1}∗ → {0, 1}λ by sampling
oracles τ = (τi(·))i∈[n0] as τi(·) := H(χ, i, ·). Finally, Com = (setup, commit, open, ver) is defined
by SPC (Construction 1). The subroutine PoSW.open and PoSW.ver do not contain any additional
information/checks.

37

Fig. 11: Illustration of Constr. 3. The label of the last node (green) serves as the commitment. On input a challenge
(red node), P opens all the siblings (blue) along the shortest path (red) from the challenge node to the final node.
To verify, V evaulates the opening (red and orange edges).

The difference between Constr. 3 and the PoSW from [CP18] is that we introduce additional
edges, due to allowing v in E′′ to be any node and not merely a leaf node as in [CP18]. These addi-
tional edges allow for more general weight distributions: In the original CP construction, challenges
are sampled uniformly at random from the leaves only. To prove knowledge soundness, [CP18]
(similar to the proof for Constr. 2 above) relied on the fact that for any subset I of challenges
there exists a path in Gn which contains I but only consists of vertices in

⋃
ιi∈I path(ιi). To satisfy

this guarantee, in [CP18] the edge set E′′ was defined to introduce edges incident on leaf nodes
v ∈ {0, 1}n only. For our applications, however, we will obtain slightly more efficient schemes if
we allow for arbitrary weight functions, potentially assigning non-zero weight to inner nodes. Our
extended definition of E′′ gives a similar guarantee on the existence of a path connecting any subset
of challenge nodes (as above), while not increasing the proof size.

Theorem 5. Let α ∈ (0, 1]. The scheme from Constr. 3 with parameter t and arbitrary weight
function Ωn is an (α, ε)-knowledge sound graph-labeling PoSW with ε := αt + 3 · q2/2λ, where q is
an upper bound on the number of the adversary’s oracle queries.

A proof for this theorem follows exactly the same lines as the proof of Theorem 2, taking
into account the special properties of the underlying graph which were proven in [CP18] and can
easily be extended to our modified construction. In the soundness proof in [CP18] (similar to our
proof above) a τ -sequence is extracted which contains all challenge nodes which the prover can
consistently open. While their notion of a τ -sequence is weaker than ours and does not respect
the topology of the graph, adapting the proof to our stronger notion is straightforward and even
allows for slightly better security loss ε. Also, generalizing their proof to handle arbitrary weight
functions follows exactly the same lines as in the proof of Theorem 2. Here, as mentioned above,
the additional edges of our graph compared to the original construction from [CP18] are necessary
to allow for challenges among all nodes of the graph, not just leaf nodes.

E Instantiations and Optimizations

In this section we discuss the concrete instantiations of our SNACK system and possible optimiza-
tions.

To be able to highlight the main differences of the resulting SNACK system when instan-
tiated with different PoSW schemes, we consider a blockchain whose underlying chain graph

38

Hn = (VH , EH) is simple, i.e., VH = [n]0 and EH = {(i− 1, i) : i ∈ [n]}. The Bitcoin blockchain
(in the fixed-difficulty setting) is an example of such a case. The two candidate α-knowledge-sound
graph-labeling PoSW schemes which we use to instantiate our SNACK system are:

– the hashed skiplist scheme HSL from Constr. 2;

– the augmented scheme of [CP18] aCP from Constr. 3.

Both HSL and aCP have similar security guarantees, i.e., they are both (α, ε)-knowledge-sound for
the same ε = αt + (3 · q2)/2λ – see Theorems 2 and 5. For a negligible soundness error, the value αt

needs to be negligible in λ; for example for any constant α ∈ [0, 1) we set the number of challenges
t = ω(λ).

Hence for the same security guarantees, the difference in the size of proofs in HSL and aCP is
due to the difference in size of the opening of a single challenge. For a single challenge, the size of
the opening γi is approximately:

– |γi| ≈ |ki|+ |ki| · log(n)2 for HSL and

– |γi| ≈ |ki|+ |ki| · 3 · log(n) for aCP,

where the log(n)2 factor in HSL comes from the fact that a path that passes through a challenge
vertex from the source to the sink is of length at most 2 · dlog(n)e and the vertices on the path
have up to log(n) parents. As for aCP an opening for a challenge is a Merkle tree opening plus
the labels on the path from the challenge to the sink (necessary when using aCP in the SNACK
construction in Sect. 5) and the < log(n) parents of the challenge vertex, and hence of length at
most 3 · dlog(n)e.

It is hence clear that using aCP is preferable in terms of proof size. The advantage of using HSL,
on the other hand, is its conceptual simplicity of the resulting construction.

Optimizing the proof size. The label ki := (`i‖φi, hi), as computed by Mine in Fig. 4, has size
that is dominated by hi, which in turn is dominated by the data di of the block in the underlying
blockchain. As the size of the challenge opening |γi| of a challenge i crucially depends on |ki|, it is
natural to ask whether in some applications we can compress hi.

Let H : {0, 1}∗ → {0, 1}λ be a hash function, we define the function c : [n]0 × {0, 1}∗ → {0, 1}∗
as:

c(j, ki) =

{
(`i‖φi,H(hi)) if i /∈ parentsH(j)

ki otherwise
(16)

Now Mine is modified in the natural way to take this compression into account: let parentsK(i) =
(i1, . . . , im) be given in reverse topological order, then Mine now computes `i as

`i = τi(c(i, ki1), . . . , c(i, kim)) . (17)

This optimization affects the size of the PoSW opening, as now instead of giving full labels one
gives compressed variants thereof. For a simple chain graph like the one underlying Bitcoin, this
simple optimization brings the proof size of the SNACK to be almost as small as the proof size of
the underlying PoSW:

– |γi| ≈ |ki|+ 2λ log(n)2 for HSL and

– |γi| ≈ |ki|+ 6λ log(n) for aCP.

39

For blockchains whose underlying chain graphs have a more complex structure, the proof size
would be dominated by the hi labels. However, even then one could also attempt applying the
compression function c(·) above whenever the verification of the blochchain validity relation Rψ is
not affected.

F Efficiency Comparison to FlyClient

FlyClient. The number of challenges required by the FlyClient [BKLZ20] protocol is

t′ = λ/ log1/2
(
1− (logc(`/n))−1

)
+ ` (18)

and is derived as follows: The authors consider an idealized “continuous” blockchain represented
by the real interval [0, 1]. The last ` blocks, corresponding to the interval [1 − δ, 1] with δ := `/n
are always checked, and the challenging of blocks in [0, 1− δ] is done according to the PDF g(x) :=
1/((x− 1) ln(δ).

If the adversary uses the ideal strategy by deciding on a fork point f and then putting its
invalid blocks in [f, f + (1− c)(1− f)], the probability of catching the adversary with one challenge

is
∫ 1+fc−c
f g(x)dx = logδ(c). The probability of an adversary breaking the soundness of the protocol

that uses t′′ challenges for the interval [0, 1−δ] is thus (1− logδ(c))
t′′ . Choosing t′′ so that the latter

is less than 2−λ yields t′′ = λ/
(

log1/2(1 − log`/n(c))
)
, to which are added the ` challenges for the

last ` blocks, which yields t′.

Protocol 3. We compare the efficiency of our main application, Protocol 3 from Fig. 9 in Sect. 6.3,
when instantiated with a SNACK construction from either Sect. 5 or Appendix D and using the
value α from Theorem 4.

The probability that the adversary proves a false statement for the SNACK is inherited from the
underlying PoSW. Thus, by Theorems 2 and 5, respectively, the adversary’s success probability is αt

(plus some negligible term), where t is the number of challenges (which determines the proof size).
For security parameter λ, in order to upper-bound the soundness error by 2−λ, we set αt = 2−λ.
Solving for t with α from Theorem 4 yields

t =
λ

log1/2
(
1−

(
logc

(
`−1
m+`

))−1) . (19)

In Protocol 3, the prover must, in addition to the SNACK proof, provide the last ` blocks of its
chain, which are checked explicitly. Adding ` to the number of blocks sampled by the SNACK in (19)
corresponds almost exactly to the number of challenges in the FlyClient protocol [BKLZ20], given
in (18). (The differences by 1 are due to the continuous idealization in the analysis of FlyClient.)
When instantiating our SNACK construction with the PoSW based on CP graphs [CP18] (Constr. 3
in Appendix D), our construction most closely resembles FlyClient, except for the paths of our
commitment openings being shorter, since we embed the blockchain along all the vertices of the
graph, whereas FlyClient only uses leaf nodes.

40

	SNACKs: Leveraging Proofs of Sequential Work for Blockchain Light Clients

