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Abstract. Over the recent years, the cryptanalysis community leveraged the potential
of research on Deep Learning to enhance attacks. In particular, several studies
have recently highlighted the benefits of Deep Learning based Side-Channel Attacks
(DLSCA) to target real-world cryptographic implementations. While this new research
area on applied cryptography provides impressive result to recover a secret key even
when countermeasures are implemented (e.g. desynchronization, masking schemes),
the lack of theoretical results make the construction of appropriate and powerful
models a notoriously hard problem. This can be problematic during an evaluation
process where a security bound is required. In this work, we propose the first
solution that bridges DL and SCA in order to ease the use of DL techniques in
an evaluation process. Based on theoretical results, we develop the first Machine
Learning generative model, called Conditional Variational AutoEncoder based on
Stochastic Attacks (cVAE-SA), designed from the well-known Stochastic Attacks, that
have been introduced by Schindler et al. in 2005. This model reduces the black-box
property of DL and eases the architecture design for every real-world crypto-system
as we define theoretical complexity bounds which only depend on the dimension of
the (reduced) trace and the targeting variable over Fn

2 . We validate our theoretical
proposition through simulations and public datasets on a wide range of use cases,
including multi-task learning, curse of dimensionality and masking scheme.
Keywords: Side-Channel Attacks · Deep Learning ·Generative Models · Discriminative
Models · Stochastic Attacks · Variational AutoEncoder

1 Introduction
Context. Side-Channel Analysis (SCA) is a class of cryptographic attack in which an
evaluator tries to exploit the vulnerabilities of a real-word crypto-system for key recovery
by analyzing its physical characteristics via side-channel traces like power consumption
or electromagnetic emissions. During the execution of an algorithm into a crypto-system,
side-channel traces record the intermediate variable being processed. A sensitive value
denotes an intermediate variable that depends on small pieces of the secret key, namely
subkeys. Side-channel observables related to sensitive variables are referred to as traces
and can be exploited in order to recover secret subkeys. One of the most powerful types
of SCA, referred to as profiled SCA, is defined as a two-stage process. The underlying
problem solved by this type of SCA relies on the classification task based on estimation
of conditional (class-oriented) probability distributions related to each secret subkey. The
first profiled SCA so-called template attacks was introduced by [CRR03] considering that
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a real leakage model coincides exactly with the deterministic part of the leakage and
Gaussian noise assumption. Then, Schindler et al. proposed the so-called stochastic attacks
that refine the approximation of real leakage model [SLP05] characterizing the leakage
as a pseudo-boolean function over a monomial basis. Both approaches constitute the
classical profiled SCA in the current state-of-the-art and are based on the construction of
a generative model.

Two separated worlds. Widely developed in the Machine Learning field, a generative
model has the particularity of generating new data from estimated Probability Density
Functions (PDFs) (which are close to the real unknown one) by a sampling approach.
Contrary to the classical profiled SCA, the state-of-the-art of Deep Learning based Side-
Channel Analysis (DLSCA) only considers the discriminative models for key recovery. This
solution differs from the generative model as it learns a direct map from traces to classes
while the classical profiled SCA model the PDF of individual classes. Following [Vap98],
the discriminative approach “should solve the classification problem directly and never
solve a more general problem as an intermediate step.”. Hence, generative models solve a
more general problem than just guessing which subkey leaks the most. However, while the
classical profiled SCA (i.e. generative approach) can be easily justified from a theoretical
point of view, the discriminative DLSCA models, provided by the state-of-the-art, are very
difficult to design and interpret. While such problematic might not be of interest from an
adversary’s point of view, the lack of interpretability and explainability is a real challenge
for the security/evaluation laboratories. Indeed, to provide a relevant security assessment,
the evaluator has to justify all the choices she/he has made to assess the robustness of
a target of evaluation. Those choices lead the evaluator to define if the targeted device
reaches a given security level. Therefore, finding a Machine Learning model that can be
easily designed to provide a security bound is crucial. In [MCHS22], Masure et al. reduce
the gap between the discriminative Logistic Regression models and the (pooled) Gaussian
templates. However, there is a lack of intuitions about the decision-making process,
even against unprotected implementations. In particular, one may wonder how a (non-
)linear neural network should be designed in order to correctly estimate a suited decision
boundary from a given set of traces. Indeed, even if a wide-range of architectures have
been studied in DLSCA context (e.g. fully-connected neural networks [PCP20, PHJ+18],
ResNets [JZHY20], transformer neural network [HSAM22], Support Vector Machine (SVM)
[PHJ+18], Random Forest [PHJ+18]), there are no practical rules to construct them due to
a lack of understanding between DL and SCA paradigms. Consequently, the discriminative
models force the evaluator to consider the DLSCA approach as black-box tools which is
problematic from an evaluation perspective. Thus, bridging the gap between DL and SCA
is essential to define the limitations of the DLSCA and provide clear improvements in this
field. From this new starting point, an evaluator can bring additional DL features that
reduce the limitations provided by the classical profiled SCA approaches while preserving
the interpretability and the explainability provided by the generative models.

Contributions. This paper falls into the class of works on machine-learning based
cryptanalysis targeting real-world crypto-systems. In particular, we bridge DL and SCA
paradigms by proposing the very first generative architecture which is based on theoretical
results provided by stochastic attacks [SLP05]. This new model clarifies the links between
DL and classical SCA issues (i.e. dimensionality reduction, needs of synchronization,
higher-order attacks, multi-task learning). It represents a seminal contribution for further
investigations and developments, in particular to get a general security bound of a targeted
device. The contributions of our work can be summarized as follows:

• We establish the first link between DLSCA models and classical profiled SCA. By
bridging both techniques, each field can benefit from the advantages of the other.
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Explainability of classical SCA can be transferred to DLSCA that was considered
more or less as a black-box toola.

• We propose the Conditional Variational AutoEncoder based Stochastic Attacks
(cVAE-SA) as a new neural network architecture that lies between stochastic attacks
and DLSCA. Our models benefit from the theoretical aspects of stochastic attacks,
as well as their ability to estimate and reconstruct the targeted leakage models.
This analogy is helpful to ease the construction of the neural network as well as its
interpretation.

• We propose a full contextualization of the cVAE optimization process in the SCA
field.

• Thanks to its analogy with the stochastic attacks, we define some theoretical bounds
related to the neural network complexity. It suggests that shallow neural networks
can be sufficient to exploit the sensitive information induced in a trace. This result
is in accordance with the Universal Approximation Theorem [Pin99].

• We develop a new key recovery strategy based on similarity measure that allows an
evaluator to specifically choose which samples the model should target to retrieve the
sensitive information. This results in a more flexible solution than classical profiled
side-channel attacks.

• We validate all our theoretical results through a wide range of use cases includ-
ing the following challenges in SCA context namely multi-task learning, curse of
dimensionality, targeting masking scheme.

• Through a detailed experimental comparison of our cVAE-SA proposition with
classical profiled attacks (i.e. template and stochastic attacks) as well as multiple
DLSCA models, we highlight the benefits and the drawbacks of cVAE-SA. This
results in a perspective about a new typology of models specific to the SCA context.

This proposition opens-up further research directions where improvements from both fields
could be further combined for enhancing the attack efficiency as well as the explainability
of the results. All these experiments can be reproduced through a GitHub repositoryb.

Paper Organization. This work is organized as follows: Sec.2 contrasts the related works
in DLSCA, which is based on discriminative approach, with the generative approach
we introduce in this paper. This section is then concluded by a general overview of
the main results of this work. In Sec.3, a new neural network architecture based on
stochastic attacks is proposed and, a detailed description of the optimization process as
well as the key recovery phase is provided. Then, Sec.4 investigates the benefits of the
cVAE-SA from an interpretability and explicability perspective while validating all the
theoretical observations. Sec.5 illustrates the benefits and the limitations of the cVAE-SA
in comparison with traditional approaches through experimental results. Finally, Sec.6
discusses about the benefits and the limitations of the contribution while introduces some
new perspectives to consider as future works.

aSome works reduce this gap from an optimization perspective [MDP19, ZZN+20, ZBD+20, ISUH21,
IUH22].

bhttps://github.com/gabzai/Conditional-Variational-Autoencoder-based-Stochastic-Attacks
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2 Preliminaries
2.1 Notation & terminology
Basics on probability theory. Let calligraphic letters X denote sets such that, if X
is finite, its cardinality, denoted |X |, defines its number of elements. The corresponding
capital letters X (resp. bold capital letters) denote random variables (resp. random vectors
T). The lowercase x (resp. t) denote the realization of X (resp. T). The ith entry of a
vector T is defined as T[i].

The probability of observing an event X is denoted by Pr[X] such that a conditional
probability of observing an event X knowing an event Y is denoted Pr[X|Y ]. In the rest
of this paper, a conditional probability, which approximates the true unknown Pr[X|Y ],
will be denoted as a δ-parametric conditional probability Pr[X|Y, δ]. The moments of a
random variable X are quantities providing information about the shape and location of its
Probability Mass Function (discrete case) or its Probability Density Function (continuous
case). E[X] is used to denote the expected value of a random variable X and EX∼D
defines under which probability distribution it is computed. In addition, the second central
moment, also known as the variance, of a random variable X is defined as V[X]. The
symbol VX [f(X)] (resp. EX [f(X)]) denotes the variance (resp. expected value) of a
function f related to the random variable X, over the distribution of X. The standard
deviation of a random variable X, denoted σX , is defined as the square root of its variance.

A side-channel measurement will be constructed as a random vector T ∈ RD where
D defines the dimension of the related trace. The targeted sensitive variable, denoted
Y = f(X, k∗), depends on a cryptographic primitive f : X × K → Fn2 , a public variable
X ∈ X (e.g. plaintext or ciphertext) and a part of the secret key k∗ ∈ K (e.g. byte)
that the evaluator tries to retrieve. We define X ∼ ND(µ,Σ) to denote a D-dimensional
random vector X that follows a multivariate Gaussian distribution of parameters µ ∈ RD
and Σ ∈ MD,D(R). In the rest of this paper, ΣX = Cov(X,X) (resp. µX) denotes the
covariance matrix (resp. mean) of a random variable X. Given pX and qX two probability
distributions on X , the Kullback-Leibler (KL) divergence measures how pX differs from
qX such that:

DKL (pX ||qX) =
∑
x∈X

pX [x] log
(
pX [x]
qX [x]

)
.

Usually, pX denotes the measured probability distribution while qX defines the theoretical
model. The KL-divergence is always non-negative and equals zero if and only if pX = qX .

SCA terminology. SCA usually apply a divide-and-conquer strategy which consists in
separately recovering different parts of theN -bit (global) secret key k∗ =‖

N
n
i=1 k

∗
i considering

n-bit subkeys k∗i ∈ K. For the rest of this paper, we will consider only attacking a subkey
(i.e. n = 8), hence using k∗ instead of k∗i and referencing subkey as key in the rest of
the paper. Given a variable Y and an independent noise Z, a trace T is a D-dimensional
random vector {T[0], . . . ,T[D − 1]} where T[i] represents the leakage of time sample i
(for 0 ≤ i < D) satisfying the Gaussian Indepedent Noise Assumptionc:

T = ψ(Y ) + Z, (1)

where ψ : Fn2 → R is a pseudo-boolean function [Car10] mapping a n-bit intermediate
value Y which is generated from a cryptographic primitive f : X × K → Fn2 . The latter
corresponds to the deterministic part of the trace. Let Z ∼ ND(µ,Σ) correspond to the
noise which is characterized by a multivariate Gaussian distribution parameterized by an
unknown pair (µ,Σ).

cThis means that the Gaussian noise Z is independent of the variable Y .
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Explainability & Interpretability. In this work, the interpretation refers to the ability
of the evaluator to clearly identify each operation induced by the generative/discriminative
model’s layers during the decision-making process. For example, following the classical
profiled SCA scenarios (i.e. stochastic attacks, template attacks), the evaluator may
wonder which leakage model is extracted for each point of interest, how does the noisy
part of a trace is characterized, how does the dimensionality reduction is processed or even,
how does the statistical model should be designed. This paper tackles those problems in a
DLSCA perspective in order to ease the use of those techniques in side-channel context.

2.2 Related works & limitations of discriminative models
Related works. Typically, to perform a DLSCA attack the evaluator considers a discrim-
inative approach which models the conditional posterior probabilities Pr [Y |T] in order to
discriminate and pick the most likely hypothetical candidate Y (i.e. sensitive information)
given a trace T. A discriminative model estimates a φ-parametric probability conditional
distribution Pr[Y |T, φ] that is as similar as possible to the true unknown joint probability
distribution Pr [Y |T]. This approach is beneficial for directly solving a classification problem
without modeling unnecessary information and thus, mitigating the impact of some counter-
measures such as the desynchronization effect [CDP17a, ZBHV19, Mag19, HSAM22].This
reason leads the side-channel community to investigate the DL approaches to improve
the profiled SCA [CDP17a, KPH+19, ZBHV19, BPS+20] relying on discriminative ap-
proach. While [WPP22] combines a DL dimensionality reduction method with template
attacks as an alternative to the Principal Component Analysis [APSQ06], the Linear
Discriminant Analysis [BGH+15] or the Kernel Discriminant Analysis [CDP17b], all the
end-to-end DLSCA models proposed in the state-of-the-art are based on the discrimina-
tive approach (e.g. fully-connected neural networks [MZ13, MHM14, Wei20], ResNets
[ZS19, JZHY20, GJS20, MS21], RNNs [LLY+20], transformer neural network [HSAM22],
attention mechanisms [LZC+21]). However, due to the lack of theoretical results, the
discriminative models can be seen as black-box tools, and the design of models can be a
real challenge even against unprotected cryptographic implementations. To reduce this
issue, some solutions which automatically tune model hyperparameters have been investi-
gated [MPP16, BPS+20, WPP20, PRA20, RWPP21, YAGF21] but the related process is
time-consuming, and the range of the hyperparameters’ values is randomly bounded such
that a poor design of the model can be highly impacted by underfitting/overfitting issues.
This paper reduces this issue by providing the first DL model based on SCA theoretical
result in order to make the construction phase easier.

Generative approach. An alternative solution consists in considering a probabilistic
generative approach which captures the interactions between all the variables considered by
the resulting learning algorithm. To comply with this technical specification, this strategy
builds a model that estimates the probability distribution of the traces. To fit with SCA
contextd, the conditional probability distribution, Pr[T|Y ], has to be estimated such that,
afterwards, the Bayes’ theorem can be computed in order to retrieve the conditional
posterior probabilities Pr[Y |T] and pick the most likely label Y . More concretely, a
generative model can be viewed as an estimation of a Θ-parametric conditional distribution
Pr[T|Y,Θ] that is as similar as possible to the true unknown conditional distribution
Pr[T|Y ]. The classical profiled SCAs, such as the stochastic attacks [SLP05], follow this
approach by building a model, i.e. leakage model, that estimates the class-conditional
probability distributions (i.e. Pr[T|Y ]) for each possible value of a sensitive intermediate

dIn profiled SCA, the profiling phase suggests the estimation of the PDFs Pr[T|Y ] = ε · Pr[Y |T] where
ε denotes a constant independent of the secret key. Thus, in SCA, we can hope that discriminative and
generative models perform almost similarly. This observation is supported by the experimental results
provided in Tab.4.
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variable. One benefit of this method is the ability to explain and interpret the result
provided by the model. The following section summarizes the stochastic attacks [SLP05]
introduced by Schindler et al. as well as our contribution that we detail in Sec.3.

2.3 General description of this work
A short description of stochastic attacks [SLP05]. Given a trace T such that its
ith time sample can be defined as T[i] = ψi(f(X, k∗)) + Z[i], the goal of the stochastic
attack is to find an approximation of the leakage model, denoted ψ̂i, as close as possible to
the true unknown ψi. As ψi is assumed to be a pseudo-boolean function, ψi can be viewed
as a linear combination of monomial basis’ vectors u ∈ Fn2 [Car10]. Hence, there exists a
set of real coefficients (αu)u∈Fn2 such that, for a sensitive intermediate value Y ∈ Fn2 , the
leakage model (see Eq.1) is redefined as:

ψ̂i,α(Y ) =
∑

u=(u[0],...,u[n−1])∈Fn2

αu[i] · Y u, (2)

where Y u denotes the monomial basis and characterizes the conjunction of all bits of Y
such that Y u =

∏n−1
j=0 Y [j]u[j] where Y [j] ∈ F2 defines the jth bit of Y and the power

notation is simply Y [j]0 = 1 and Y [j]1 = Y [j]. In other words, ψi can be approximated as
a multivariate polynomial in the bit-coordinate Y [j] with coefficients in R. The degree d
(s.t. d ≤ n) of such monomial is defined as the maximal number of bits’ interaction induced
in ψ̂i,α(Y ). In particular, this degree d can be viewed as logical operators (e.g. AND or
XOR). The related subspace is denoted by Fd+1. For the profiling phase, the stochastic
attack mechanism consists firstly in choosing the degree d of the pseudo-boolean function
ψ̂α, and then in estimating the leakage model related to the targeted device. Given a
set of Np labeled traces Ip = {(t0, y0), . . . , (tNp−1, yNp−1)}, the evaluator estimates the
leakage model (ψ̂i,α(Y ))Y ∈Fn2 by finding the best set of coefficients (αu[i])u∈Fn2 through the
application of the ordinary least squares (OLS) method. The set of coefficients (αu[i])u∈Fn2
which minimizes the OLS are called the OLS estimator for ψ. More details on how to
practically implement stochastic attacks can be found in [CK15]. While the basis choice is
essential for efficient profiling phase [MOW17], i.e. having a good approximation of the
leakage model, the application of gradient descent method for minimizing the OLS method
is an interesting alternative to the classical approach (see [SLP05, Eq.13]) and will be
explored in next sections. This leads to get a better intuition into how a DL model should
be designed in order to extract the sensitive information and results in a more flexible
solution during the exploitation phase.

A new generative strategy in DLSCA. In SCA context, we want to explicitly
compute an approximation of the true unknown conditional probability distribution
Pr[T|Y ] in order to retrieve the secret key that is manipulated by the targeted real-world
crypto-system. In 2014, Kingma and Welling introduced the Variational AutoEncoder
(VAE) [KW14] as a solution to this issue outside of the SCA context. Ever since the seminal
work has been widely applied in various fields (e.g. face generation [KW14, KWKT15],
handwritten digits [KW14], objects [KWKT15]), we propose to contextualize conditional
variational autoencoder into side-channel analysis in order to give a new perspective for
generative models. In this paper, we develop a new usage of variational autoencoders for
DLSCA and we present our main contribution: the Conditional Variational AutoEncoder
based on Stochastic Attacks (cVAE-SA). This work can be decomposed into three parts
(see Fig.1):

1. First, a description of the cVAE-SA structure is proposed. In particular, a theoretical
link is highlighted with the stochastic attacks in order to model a Θ-parametric
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Figure 1: Overview of this work.

conditional distribution Pr[T|Y,Θ] through the design of two distinct parts referred
to the encoder and decoder. In outline, the encoder approximates the parameters µ
and Σ which characterize the noise Z included in a trace (see Eq.1).Then, the decoder
is defined to generate a synthetic trace from a variable which follows ND(µ,Σ), and
an approximation of the deterministic part ψ(Y ) defined in Eq.1. The description of
these entities is detailed in Sec.3.2. This part is helpful from an evaluation perspective
to reduce the explainability/interpretability issues mentioned in Sec.1. In particular,
it clarifies the operations induced in each layer of the cVAE-SA model.

2. Once the cVAE-SA is designed, it is automatically configured over a set of training
traces in order to estimate the Θ-parametric conditional distribution Pr[T|Y,Θ] that
should be as similar as possible to the true unknown conditional distribution Pr[T|Y ].
To obtain such model, a combination of a reconstruction and a KL-divergence losses
is conducted in order to find the trainable parameters that fit the most with the true
unknown solution. While the reconstruction loss is used to measure the similarity
error (in term of Euclidean distance) between a synthetic and a real trace, the
KL-divergence loss penalizes the cVAE-SA if the parameters µ and Σ do not fit with
the expected noise distribution. The combination of those losses is widely known as
the ELBO loss [KW14]. The justification about the use of these losses is provided in
Sec.3.3.

3. Finally, based on this configured and trained model, the evaluator can compute the
maximum likelihood over a set of attack traces in order to retrieve the most likely
subkey candidate over Fn2 such that n = 8. A detailed modus operandi is provided in
Sec.3.4. In addition, multiple visualization techniques can be considered in order to
better understand the extracted leakage model as well as the latent representation.
Those visualization tools are introduced in Sec.4 in order to validate the stated
theoretical results. Further investigations have also been conducted in App.A and
App.B to verify the theoretical statements.
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3 Conditional Variational AutoEncoder based on Stochas-
tic Attacks

Through this section, we explain the link between generative DL models and classical
profiled SCA by building a new type of VAE. Sec.3.1 introduces the problem we want to solve
and proposes a first link with SCA. Sec.3.2 explains our architecture and the theoretical
link with the work provided by Schindler et al. [SLP05], known as the stochastic attacks.
Then, Sec.3.3 describes the training process of cVAE-SA and the relation with similarity
measures. Finally, Sec.3.4 describes the attack phase and the theoretical architecture
complexity bounds.

3.1 Generative latent variable models
After a general introduction of the Conditional VAE (cVAE) [SLY15], we contextualize this
solution into SCA in order to give a new perspective for DL generative models. Supported
by theoretical aspects of stochastic attacks, this new approach can be considered as an
alternative to classical discriminative models often used in DLSCA.

Problem statement. The cVAE aims at modeling a Θ-parametric conditional distri-
bution Pr[T|Y,Θ] from two random variables T ∈ RD and Y ∈ Fn2 . Suppose that a trace
T ∈ RD is acquired by assuming that all the time samples are sequentially generated such
that its assigned label only depends on a small set of time samples (i.e. PoIs). As the
cVAE is a latent variable model, which suggests that the variability in the traces given a
label Y can be captured by a small finite set of time samples, its applicability in the SCA
context fits well. By designing such models for performing SCA, we thus want to capture
the interactions between the time samples via the characterization of a latent space V. In
particular, a Θ-parametric latent variable model FΘ, providing a Θ-parametric conditional
distribution Pr[T|Y,Θ], is representative of the true unknown conditional distribution
Pr[T|Y ], for every trace T and every given sensitive variable Y , if there is a representation
of compressed data V ∈ V, also known as latent space representation, such that the
marginal distribution is given by:

Pr [T|Y,Θ] =
∫

v∈V
Pr [T|Y,v,Θ] Pr [v|Y ] dv, (3)

where v is the realization of a random variable V in a D′-dimensional space V, with
a probability Pr[V = v] defined over V, and Pr[V = v|Y ] denotes the probability of
observing v over the latent space V knowing Y .

Intractability. However, Eq.3 is unfortunately intractable as it should be computed
for every latent representation induced by the latent space V. Thus, the following part
of the section proposes solutions to circumvent this issue. Hopefully, Pr[T|Y,Θ] may
still be efficiently approximated thanks to the Monte-Carlo method. Hence, for a large
number of samples {v0, . . . ,vNv}, a trace T ∈ RD and a label Y ∈ Fn2 , we can compute
an estimation of Pr[T|Y ]. As a consequence, for a given label Y and a latent variable
V ∈ RD

′

, we can build a neural network that computes Pr[T|Y,V,Θ]. This model, denoted
F

(dec)
Θ : RD

′

× Fn2 → RD, is named the decoder.
Given a latent variable V and a sensitive variable Y ∈ Fn2 , the decoder generates

a new trace T̃ as close as possible to the real observed trace T. However, to perfectly
construct a new set of D-dimensional traces from F

(dec)
Θ , we have to compute latent

space samples that are representative of the observed trace. To this end, we estimate
the latent space V by approximating the following probability distribution Pr[V|T, Y ].
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This probability is defined as Pr[V|T, Y ] = Pr[T|V,Y ]·Pr[V]
Pr[T|Y ] and it is also intractable due

to Eq.3. Consequently, a solution is to find a parametric model that approximates the
true unknown posterior Pr[V|T, Y ]. In statistics, the variational inference techniques can
approximate such complex distributions. Given a trace T ∈ RD and a label Y ∈ Fn2 , a
Θ-parametric model can be constructed to estimate the latent space V such that the KL-
divergence between the approximation and the targeted probability distribution Pr[V|T, Y ]
is minimized. The Θ-parametric model, denoted F (enc)

Θ : RD ×Fn2 → RD
′

×MD′ ,D′ (R), is
called the encoder. In the rest of this paper, we denote as FΘ,φ the resulted cVAE-SA such
that, for a given trace T, a given label Y and a function g : RD

′

×MD′ ,D′ (R) → RD
′

,
FΘ,φ(T, Y ) = F

(dec)
φ ◦ (g(F (enc)

Θ (T, Y )), Y ). Furthermore, as the aim of this paper is to
bridge the DL and the classical profiled SCA, no particular focus will be proposed on
dimensionality reduction techniques. Thus, the following part assumes that D′ = D.

3.2 Latent space estimation and instances’ generation
Through the description of the stochastic attack (see Sec.2.3), the evaluator can construct
a conditional variational autoencoder adapted for the SCA context.

Encoder. As mentioned in Sec.3.1, the encoder models a neural network F (enc)
Θ : RD ×

Fn2 → RD ×MD,D(R) which returns an element in the latent space V of dimension D.
This element should describe the behavior of the targeted crypto-system. In this regard,
we design the encoder F (enc)

Θ such that it characterizes the leakage model ψ(Y ) and the
random part Z of a trace T in order to fit with the stochastic attack process. To build a
suited encoder, the related neural network should follow the structure defined in Sec.2.3 in
order to extract the maximum amount of relevant information from T. First, the evaluator
has to estimate the deterministic part of a trace T (i.e. leakage model ψ) that is defined
by Eq.2. This modeling can be estimated by a fully-connected layer of D neurons such
that each of them is linked with all elements of the monomial basis (Y u)u∈Fn2 . Let Y ∈ Fn2
and (Y u)u∈Fn2 (resp. ψ̂i,Θ(Y )) be the input (resp. output) of the ith neuron such that:

ψ̂i,Θ(Y ) = %

 ∑
u=(u[0],...,u[n−1])∈Fn2

Θu[i] · Y u
 ,

where %(.) is a function (linear or non-linear) and Θ ∈M1+
∑d

i=0 (ni),D(R) denotes the set
of trainable parameters for a given degree d that characterizes the space Fd+1. While the
goal of our work is to reduce the gap between deep learning and classical profiled SCA, we
define %(.) as the identity functione in order to satisfy ψ̂Θ[i] = ψ̂α[i] and consider that the
deterministic part of a trace at time sample i can be approximated by a single neuron (see
Fig.2a). In the rest of this paper, this layer will be denoted as ψ̂Θ (see Fig.2b).

Once the noise-free part ψ̂Θ is estimated, the next step is to deeply characterize the
noise part Z using traces and the neurons of ψ̂Θ layer. In the cVAE-SA, we choose to
deliberately force the subtraction of the traces at time sample i and the ith neuron of ψ̂Θ
layer in order to fit with Eq.1. Then, the encoder F (enc)

Θ is trained to return a Θ-parametric
mean vector µV,Θ ∈ RD, and a Θ-parametric covariance matrix ΣV,Θ ∈ MD,D(R) that
describes the multivariate Gaussian noise for a given trace T. Those approximations
respectively estimate µV and ΣV that characterize the latent space V. Thus, from these

eAs this paper bridges DL with SCA, no further investigation has been conducted to assess the impact
of non-linear functions due to the lack of interpretability it brings. In addition, as the combination of
linear functions is a linear function, adding layers is not adapted to our context.
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Figure 2: cVAE-SA structure.

parameters, the evaluator can computef Pr[V|T, Y,Θ]. That is, F (enc)
Θ extracts all the

information induced in a trace such that the latent variable V ∈ V is characterized by its
noise part Z.

Decoder. Once the encoder is constructed, the evaluator can capture the parameters
µV,Θ and ΣV,Θ which are needed to design the related Gaussian noise distribution
ND(µV,Θ,ΣV,Θ). From a new sample V ∼ ND(µV,Θ,ΣV,Θ), the evaluator designs a
decoder F (dec)

φ : RD × Fn2 → RD (see on the right part of Fig.2b) such that given a trace
T and the subspace Fd+1, containing all the pseudo-boolean functions of degree lower or
equal to d, he wants to maximize the conditional probability distribution Pr[T|Y,V, φ],
i.e. building a new trace T̃ ∈ RD as similar as possible to the related real trace T and
defined as follows:

T̃[i] =
∑

u=(u[0],...,u[n−1])∈Fn2

φu[i] · Y u

︸ ︷︷ ︸
ψ̂i,φ

+V[i]. (4)

Note that a latent variable V ∈ RD is initially sampled from the prior distribution Pr[V]
such that the dimension of V should correspond with the dimension of the latent space
estimated by the encoder. However, performing the training process in such configuration
can be arduous. Indeed, during the training process, the backpropagation cannot be
performed because the evaluator has to compute the gradient of the loss function with
respect to samples (i.e. latent variable V ∈ V), which is inherently non-differentiable. To
circumvent this issue, the reparametrization trick [KW14] proposes to rewrite V such that
the derivative can be computed with respect to the parametric distributions (i.e. µV,Θ
and ΣV,Θ) that are differentiable. Instead of generating samples from ND(µV,Θ,ΣV,Θ),
sampling is performed from ε ∼ ND(0, ID), followed by the computation of V = µV,Θ +
Σ

1
2
V,Θ × ε. This process is defined by the function g : RD

′

×MD′ ,D′ (R)→ RD
′

in Sec.3.1.

fWhile the latent space characterizes the noise distribution defined in Eq.1, we can easily assume that
Pr[V|Y ] = Pr[V] because V is independent of the label Y . Therefore, Eq.3 can be simplified and Pr[V]
follows a multivariate Gaussian distribution of parameters (µ,Σ).
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Once V is constructed, the evaluator has to approximate the deterministic part of
the leakage model, namely ψ̂φ. As already mentioned for the encoder, its estimation can
be made with a fully-connected layer such that the input of size D is characterized by
(Y u)u∈Fn2 for a given Y ∈ Fn2 . Because the evaluator wants to characterize all the input
time samples, the number of nodes in the ψ̂φ layer depends on the dimensionality of the
latent space, i.e. dimension of V (see Fig.2b). Based on ψ̂φ and V, the evaluator can then
build a new trace T̃ following Eq.4.

A discussion and some visualization methods are proposed in App.A in order to ease
the understanding of the encoder and the decoder. Then, to adequately find the trainable
parameters Θ and φ, the evaluator has to consider some learning metrics that aims at
approximating Pr[T|Y ].

3.3 Similarity maximization
This section describes the optimization process from a side-channel perspective and
introduces some simplifications that can be conducted thanks to the side-channel literature.

Introduction of the optimization problem. As defined in Sec.3.2, our generative model
has to optimize a set of parameters φ and Θ in order to maximize the marginal log-likelihood
log(Pr[T|Y, φ]).

Theorem 1. For any choice of encoder F (enc)
Θ and trainable parameters Θ, the conditional

marginal log likelihood log(Pr[T|Y, φ]) can be defined as:

log (Pr [T|Y, φ]) = Ev∼F (enc)
Θ

[log (Pr [T,v|Y, φ])− log (Pr [v|T, Y,Θ])]

+DKL (Pr [V|T, Y,Θ] ||Pr [V|T, Y, φ]) .
(5)

Proof. From Eq.3 and the work provided by Kingma and Welling [KW19, Sec.2.2], we can
extend their result to the conditional marginal log likelihood log (Pr[T|Y, φ]) as follows:

log (Pr [T|Y, φ]) = Ev∼F (enc)
Θ

[log (Pr [T|Y,v, φ])]

= Ev∼F (enc)
Θ

[
log
(

Pr [T,v|Y, φ]
Pr [v|T, Y, φ]

)]
= Ev∼F (enc)

Θ

[
log
(

Pr [T,v|Y, φ]
Pr [v|T, Y,Θ] ·

Pr [v|T, Y,Θ]
Pr [v|T, Y, φ]

)]
= Ev∼F (enc)

Θ

[
log
(

Pr [T,v|Y, φ]
Pr [v|T, Y,Θ]

)]
+ Ev∼F (enc)

Θ

[
log
(

Pr [v|T, Y,Θ]
Pr [v|T, Y, φ]

)]
= Ev∼F (enc)

Θ
[log (Pr [T,v|Y, φ])− log (Pr [v|T, Y,Θ])]

+DKL (Pr [V|T, Y,Θ] ||Pr [V|T, Y, φ]) .

Unfortunately, due to the intractability of Pr[V|T, Y, φ] (see Sec.3.1), Eq.5 cannot
be solved in practice. Hence, we have to define a function such that log(Pr[T|Y, φ]) can
be approximated through an optimization algorithm. In [KW14], Kingma and Welling
propose a variational lower bound on the marginal likelihood which was generalized by
Sohn et al. on conditional marginal likelihood [SLY15].

11



Theorem 2. [SLY15] For any choice of encoder F (enc)
Θ and trainable parameters Θ, the

variational lower bound of log(Pr[T|Y, φ]) is defined as:

log (Pr [T|Y, φ]) ≥ −DKL (Pr [V|T, Y,Θ] ||Pr [V])
+ Ev∼F (enc)

Θ
[log (Pr [T|Y,v, φ])] . (6)

Proof. [SLY15]

log (Pr [T|Y, φ]) = Ev∼F (enc)
Θ

[log (Pr [T,v|Y, φ])− log (Pr [v|T, Y,Θ])]

+DKL (Pr [V|T, Y,Θ] ||Pr [V|T, Y, φ])
≥ Ev∼F (enc)

Θ
[log (Pr [T,v|Y, φ])− log (Pr [v|T, Y,Θ])]

= Ev∼F (enc)
Θ

[log (Pr [v|Y, φ])− log (Pr [v|T, Y,Θ])] + Ev∼F (enc)
Θ

[log (Pr [T|Y,v, φ])]

= −DKL (Pr [V|T, Y,Θ] ||Pr [V|Y, φ]) + Ev∼F (enc)
Θ

[log (Pr [T|Y,v, φ])] .

As mentioned in Sec.3.2, the prior distribution Pr [V|Y, φ] can be reduced to Pr [V]
because V is independent from the label Y and φ.

The equality between Eq.5 and Eq.6 holds if and only if the encoder F (enc)
Θ , which

approximates the parameters µV,Θ and ΣV,Θ that are needed to compute Pr[V|T, Y,Θ],
is able to perfectly predict Pr[V|T, Y, φ]. In such configuration, the latent space exactly
captures the random part induced in a trace T. Based on Eq.6, we define the empirical
risk that we minimize to train the cVAE-SA.

Definition 1 (Empirical risk combined with Evidence Lower BOund (ELBO) Loss).
[KW14] Given a latent space V, a set of Np labeled traces
Ip = {(t0, y0), . . . , (tNp−1, yNp−1)}, we define the empirical risk optimizing FΘ,φ, that
approximates the generative distribution Pr[T|Y ], as follows:

R̂ (LELBO, FΘ,φ) = 1
Np

Np−1∑
i=0
DKL (Pr [V|ti, yi,Θ] ||Pr [V])︸ ︷︷ ︸

KL-Divergence Loss

− Ev∼F (enc)
Θ

log (Pr[ti|yi,v, φ])︸ ︷︷ ︸
Reconstruction Loss

,

such that (Pr[V|ti, yi,Θ])0≤i<Np is computed from µV,Θ and ΣV,Θ provided by the encoder
(F (enc)

Θ (ti))0≤i<Np and (Pr[ti|yi,v, φ])0≤i<Np is obtained from F
(dec)
φ (v).

Sampling v from the learned posterior Pr[V|T, Y,Θ] knowing the trace T, the related
label Y and the multivariate Gaussian distribution ND(µV,Θ,ΣV,Θ), can be seen as
encoding T into v, while F (dec)

φ seeks to reconstruct T from v. Classically used for training
a variational autoencoder [KW14, KWKT15, GDG+15, SSB17], the loss function defined in
Def.1 can be decomposed into two terms: the reconstruction and the KL-divergence terms.
From a general perspective, to minimize the reconstruction loss, the embedding means µV,Θ,
for various Y , are pushed far away from each other and embedding standard deviations
ΣV,Θ are pulled toward zero. On the other hand, to get smaller DKL(Pr[V|T, Y,Θ]||Pr[V]),
the embedding means are pulled toward zero and the embedding standard deviations
are increased. While the KL-divergence term is opposed to the reconstruction loss, it
can be seen as a regularization term. Indeed, putting a lot of information about T in V
makes reconstruction trivial, but the penalization induced by the regularization term is
non-negligible. Therefore, the regularization term acts as an information bottleneck, so a
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balance between both terms must be found in order to only keep the informative and generic
features. If necessary, the KL-divergence loss can be monitored by a hyperparameter β.
In the state-of-the-art, these models are called β-Variational AutoEncoders [HMP+17].
However, as this paper bridges the stochastic attacks with the cVAE model, the impact of
the β-parameter on the resulted learning algorithm is considered as out of the scope of
this paper.
Remark 1. The readers might notice that the minimization optimization process is con-
ducted on the empirical risk combined with the ELBO loss. Therefore, the reconstruction
and the KL-divergence losses are simultaneously computed to train the encoder and the
decoder of the cVAE-SA.

Reconstruction loss. This term, denoted by Ev∼F (enc)
Θ

log(Pr[T|Y,v, φ]), is linked with

the decoder F (dec)
φ introduced in Sec.3.2. It defines the probability of constructing T ∈

RD given the label Y ∈ Fn2 and a sample v ∈ RD of the latent space V. Hence, the
reconstruction loss tends to maximize the log likelihood in order to construct traces that
are correlated with the true unknown leakage model ψ and the noise Z related to T.
Thus, it encourages the decoder to learn how a trace can be reconstructed from a given
noise representation defined by a latent variable V ∼ ND(µV,Θ,ΣV,Θ) (see Eq.4). The
reconstruction loss optimizes the parameters φ to retrieve the correct coefficients associated
with each vector of the monomial basis (Y u)u∈Fn2 .Typically, if we only consider the case
where no interaction between the time samples of T occurs, then, the covariance matrix
ΣV,Θ can be simplified to a diagonal matrix such that its vector representation can be
described as σ2

V,Θ = [ΣV,Θ[0, 0],ΣV,Θ[1, 1], . . . ,ΣV,Θ[D,D]]. In such configuration, we
do not expect to capture the time samples’ interaction related to the constructed trace
T̃ ∈ RD. Thus, the reconstruction loss can be computed as follows:

Ev∼F (enc)
Θ

− log (Pr [T|Y,v, φ]) = Ev∼F (enc)
Θ

[
D−1∑
i=0

1
2 log

(
2πσ2

T̃[i]
)

+ (T[i]− µT̃[i])2

2σ2
T̃[i]

]
, (7)

where µT̃[i] (resp. σ2
T̃[i]) indicates the ith element of the mean (resp. variance) vector of

generated traces T̃ given a set of latent representations and a deterministic part ψ̂φ which
depends on Y = f(X, k∗) (see Eq.4). However, assuming that ΣV,Θ can be simplified to
a diagonal matrix affects the ability of the generated trace T̃ to capture the interaction
between the time samples of T. While this choice can be problematic from a performance
perspectiveg, the computation gain is non-negligible as the matrix inversion does not have
to be computed in order to process the reconstruction loss.

Then, we assume that the output distribution of the conditional variational autoencoder
is an isotropic Gaussianh (i.e. for all v ∼ ND(µV,Θ,diag(ΣV,Θ)), we can define ΣT̃ = σ2·ID
where σ2 is a scalar). While the Mean Squared Error (MSE) loss function can be written
as Ev∼F (enc)

Θ
||T− µT̃||2, Eq.7 can be simplified as follows:

Ev∼F (enc)
Θ

− log (Pr [T|Y,v, φ]) = 1
2 log

(
2πσ2)+

Ev∼F (enc)
Θ
||T− µT̃||2

2σ2 . (8)

Note that this solution is minimized if the scalar σ2 = Ev∼F (enc)
Θ
||T − µT̃||2 =

MSE(T,µT̃) [Yu20].
This loss is approximated via Monte-Carlo sampling, however, due to computation

constraints, we consider only one sample v for computing Eq.8 during the training process.
gTo nuance this issue, Bruneau et al. [BGH+15, Fig.3] illustrate that the information induced by the

covariance matrix is mainly brought by its diagonal.
hThis choice can be justified in this paper as all the manipulated traces are standardized (i.e. zero

mean, unit variance).
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Consequently, for an estimated trace T̃, we minimize its L2-norm from the related true
trace T in order to find the best parameters φ. In other words, through this solution, we
attempt to find an estimated trace T̃ as similar as the real one T. Thus, the decoder
F

(dec)
φ is only affected by the reconstruction loss and seeks to suitably reconstruct T̃ based

on a latent representation V and a deterministic part ψ̂φ.

KL-divergence loss. However, to reduce the overfitting issue, a regularization term is
added. In addition to the optimization of φ, the cVAE concurrently optimizes Θ to minimize
the KL-divergence of the approximation Pr[V|T, Y,Θ] from Pr[V]. As a remainder, the
better Pr[V|T, Y,Θ] approximates the true posterior distribution Pr[V|T, Y, φ], in terms
of the KL divergence, the smaller the gap between R̂(LELBO, FΘ,φ) and the marginal
log-likelihood log(Pr[T|Y, φ]). Both Pr[V|T, Y,Θ] and Pr[V] are assumed to be Gaussian,
specifically, Pr[V|T, Y,Θ] follows ND(µV,Θ,ΣV,Θ) and Pr[V] follows ND(0, ID). The
latter distribution is assumed as the traces are standardized, i.e. zero mean and unit
variance, and such that no interactions are captured between the time samples. As Pr[V]
characterizes the random part of T̃ (see Eq.4), it has to follow the same distribution as the
random part of the real trace T which is N (0, 1) for each non-informative time sample.
Through this configuration, the KL-divergence can be computed as follows:

DKL(Pr [V|T, Y,Θ]||Pr [V]) = Ev∼F (enc)
Θ

[log(Pr [v|T, Y,Θ])− log(Pr [v])]

= Ev∼F (enc)
Θ

[
1
2 log

(
|ID|
|ΣV,Θ|

)
− 1

2(v− µV,Θ)TΣ−1
V,Θ(v− µV,Θ)

+1
2(v− 0)T I−1

D (v− 0)
]

= −1
2 log (|ΣV,Θ|)−

1
2Ev∼F (enc)

Θ

[
(v− µV,Θ)TΣ−1

V,Θ(v− µV,Θ)
]

+ 1
2Ev∼F (enc)

Θ

[
vT I−1

D v
]

= −1
2 log (|ΣV,Θ|)−

1
2 tr(Σ

−1
V,ΘΣV,Θ) + 1

2
(
µTV,ΘI

−1
D µV,Θ + tr(I−1

D ΣV,Θ)
)

= 1
2
(
− log (|ΣV,Θ|)− tr(ID) + µTV,Θ · µV,Θ + tr(ΣV,Θ)

)
. (9)

As ΣV,Θ can be rewritten as a vector σ2
V,Θ such that each element of (σ2

V,Θ[i])0≤i<D

defines the ith diagonal of ΣV,Θ, then, Eq.9 can be expressed as follows:

DKL (Pr [V|T, Y,Θ] ||Pr [V]) = −1
2

(
log

D−1∏
i=0

σ2
V,Θ[i] +

D−1∑
i=0

1−
D−1∑
i=0

µ2
V,Θ[i]−

D−1∑
i=0

σ2
V,Θ[i]

)

= −1
2

D−1∑
i=0

(
1 + log

(
σ2

V,Θ[i]
)
− µ2

V,Θ[i]− σ2
V,Θ[i]

)
.

As a remainder, for correctly dealing with the stochastic attack scenario, the deter-
ministic part (i.e. ψ(f(X, k∗)) as well as the random part (i.e. Z) should be correctly
characterized by the cVAE-SA model. While the deterministic part is approximated by
the ψ̂ layer, the random part is modeled by the latent space V (see Sec.3.2). Therefore, a
well-trained cVAE-SA should provide a latent space that is representative of the random
part Z. Through the use of the KL-divergence loss, we force a latent variable V to follow
ND(0, ID). To clearly explain the impact of the KL-divergence loss on the trainable
parameters Θ, let us denote T a D-dimensional trace that has been standardized at each
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sample. Let {l0, . . . , ls−1} define a set of indices where the sensitive information leaks (i.e.
PoIs) such that,

T[i] =
{
ψ(Y )[i] + Z[i] ∼ N (0, 1) if i ∈ {l0, . . . , ls−1},

Z[i] ∼ N (0, 1) otherwise.

In this setting, we assume that the interactions between trace samples are negligible.
If the ith time sample of T has no deterministic part (i.e. i /∈ {l0, . . . , ls−1}), the related
element of the latent variable V[i] = Z[i]− ψ̂Θ(Y )[i], which follows N (0, 1), induces that
ψ̂Θ[i], and thus the trainable parameters Θ, are negligible. Consequently, if ψ(Y ) = 0, the
related sample of the latent variable follows the same distribution as Z[i]. In such scenario,
the KL-divergence loss is negligible as Pr [V|T, Y,Θ] = Pr [V]. Thus, considering these
non-informative time samples do not affect the regularization term and are unsuitable
for the decision process. This result encourages the evaluator to only consider the time
samples with a non-negligible deterministic part (i.e. the points of interest).

On the other hand, if i ∈ {l0, . . . , ls−1}, then V[i] = ψ(Y )[i] + Z[i]− ψ̂Θ(Y )[i] follows
N (0, 1). Thus, it suggests that Z[i] ∼ N (E[ψ̂Θ(Y )[i]−ψ(Y )[i]],V[ψ(Y )[i]] +V[ψ̂Θ(Y )[i]] +
V[V[i]] − 2 · Cov[ψ[i], ψ̂Θ[i]] − 2 · Cov[ψ[i],V[i]] + 2 · Cov[ψ̂Θ[i],V[i]]). However, due to
the KL-divergence loss function involved during the training process, we force the latent
variable V to follow ND(0, ID). As defined in Sec.3.2, this latent variable characterizes
an estimation of the noise Z induced in the trace T. Thus, during the training process
of the cVAE-SA, we penalize the model to tend E[ψ̂Θ(Y )[i] − ψ(Y )[i]] towards 0 and
V[ψ(Y )[i]]+V[ψ̂Θ(Y )[i]]+V[V[i]]−2·Cov[ψ[i], ψ̂Θ[i]]−2·Cov[ψ[i],V[i]]+2·Cov[ψ̂Θ[i],V[i]]
towards 1 such that this solution is reached if and only if ψ̂Θ = ψ. Consequently, when the
KL-divergence loss is computed, the cVAE-SA optimizes the trainable parameters Θ of the
encoder F (enc)

Θ such that the regularization term equals 0 if and only if Θ is optimal. In
addition, to fully assess the suitability of the training process, the evaluator can visualize
the trainable parameters Θ such that, if the correct leakage model appears, therefore, the
cVAE-SA model is well trained. A discussion related to this visualization technique is
provided in Sec.4.2.

This justification suggests that the latent space should be only composed by PoIs.
When the input traces are standardized (i.e. zero mean, unit variance), considering the
KL-divergence loss is helpful to reduce the impact of irrelevant time samples. However,
when the Gaussian noise increases, the dependence between T[i] and ψ[i] decreases. In
this configuration, differentiating the sensitive information from the noise can be difficult
as Z[i] approximately follows N (0, 1) regardless of the information included in the time
sample i. This observation confirms the benefits of the noise to reduce the efficiency of
DLSCA approach. This observation will be confirmed in Sec.4 and in App.B.

From a practical perspective, even if the ELBO loss function is composed of two
sub-losses, namely reconstruction and KL-divergence losses, a single optimization process is
performed in order to minimize the ELBO loss. Once the generative model FΘ,φ is trained,
the evaluator has to make a decision following the approximation of Pr[T|Y ] in order to
fit with the stochastic attack approach. The following section describes this strategy.

3.4 Decision rule & network complexity
Typically, in the Machine Learning community, the inference phase of cVAE consists in
generating a new set of data based on an input and a conditional known label. In SCA
context, our goal is different and tends to find the conditional unknown label Y that fits
best for a given trace T. The following part describes a new solution to retrieve the secret
key k∗ from the model previously defined.
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Key recovery phase. During the training phase, we defined a function FΘ,φ that
approximates log(Pr[T|Y, φ]) through an optimization algorithm (i.e. gradient descent-
based algorithms) such that the generated trace T̃, defined by the output of the decoder
F

(dec)
φ , is close to the real one T captured for a given label. Once the encoder and

the decoder are successfully trained simultaneously to optimize FΘ,φ, the evaluator can
dissociate them in order to extract the unknown secret key from a targeted device. As
mentioned in Sec.3.1, the encoder is defined by F (enc)

Θ : RD ×Fn2 → RD ×MD,D(R), while
the decoder is denoted by F (dec)

Θ : RD × Fn2 → RD. The key recovery phase will use these
functions independently in order to retrieve the targeted secret key. To fully understand
this strategy, a modus operandi is suggested for a given key hypothesis k ∈ K:

1. First, the evaluator generates a new set of traces from the targeted devicei with
a fixed unknown secret key k∗. Let Ia be the set of Na attack traces such that
Ia = {t0, . . . , tNa−1}.

2. For each trace t in Ia,

(a) The evaluator computes the label Y = f(X, k) related to t by mixing the known
plaintexts X ∈ X and the key hypothesis k.

(b) Then, he estimates the parameters µV,Θ ∈ RD and ΣV,Θ ∈ MD,D(R) of the
multivariate Gaussian distribution ND(µV,Θ,ΣV,Θ) through the computation
of F (enc)

Θ (t, Y ).
(c) Given µV,Θ and ΣV,Θ, the evaluator generates a set of Nv latent samples
{v0, . . . ,vNv−1} such that (vi ∼ ND(µV,Θ,ΣV,Θ))i∈{0,...,Nv−1}.

(d) Thanks to the decoder F (dec)
Θ : RD × Fn2 → RD, the evaluator constructs a set

of Nv synthetic traces t̃ ∈ RD such that
(
t̃i = F

(dec)
Θ (vi, Y )

)
i∈{0,...,Nv−1}

.

(e) Finally, based on the Nv synthetic traces, he can estimate Pr[T|Y, φ] through
the computation of an approximation of the marginal log-likelihood:

log (Pr [ti|yi, φ]) ≈ −DKL (Pr [V|ti, yi,Θ] ||Pr [V])

− 1
2 log

2π ·
D−1∑
j=0

(
ti[j]−

1
Nv

Nv−1∑
h=0

t̃h[j]
)2− 1

2 ,
(10)

where t̃h = ψ̂φ(yi)+vh is the hth generated trace constructed from Pr[ti|yi,vh, φ]
(see Eq.8).

When the inferred posterior Pr[V|T, Y,Θ] deviates from the true unknown posterior
Pr[V|T, Y, φ], the number of samples Nv increases in order to obtain an accurate ap-
proximation of Pr[T|Y, φ]. If the profiling phase has been performed successfully, then
(ti − 1

Nv

∑Nv−1
j=0 t̃j)2 should be minimized when k = k∗. Hence, the most likely candidate

is defined through the maximum likelihood rule:

k̂ = arg max
k∈K

(
Na−1∑
i=0

log (Pr [ti|f(xi, k), φ])
)
.

Following Eq.4, T̃ ∼ ND(µT̃,ΣT̃) such that, µT̃ = ψ̂φ and ΣT̃ = ΣV,Θ. As a
consequence, through this key recovery phase, the evaluator aims at identifying the

iAs this paper is dedicated to the profiled attack scenario, the readers must consider the targeted
device as identical to the open device used during the training process.
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hypothetical leakage model ψ̂φ(f(X, k)) which fits the most with T . Consequently, this
process exploits the first order moment to recover information about the secret key. This
observation is confirmed in App.A.

To enhance the key extraction phase, the evaluator can precisely define the PoIs’ indexes
via a leakage assessment once the profiling phase is performed. Indeed, if Θ and φ are
correctly learned, the evaluator can visualize them in order to properly select the PoIs (see
Sec.4.2). Thus, during the attack phase, instead of parsing all the samples j, the evaluator
can only compute Eq.10 on the samples that are considered relevant for the cVAE-SA.

Theoretical network complexity bounds. Based on the previous sections, we can
efficiently find an architecture for a given implementation. Consequently, some theoretical
network complexity bounds can be expressed following the evaluator’s knowledge. Indeed,
our generative neural network (i.e. cVAE-SA) can be easily built for a given Y ∈ Fn2 , a
degree d of bits’ interaction and a D-dimensional trace T ∈ RD.

First, for estimating (ψ̂Θ[i])0≤i<D (resp. (ψ̂φ[i])0≤i<D), the encoder (resp. decoder)
needs to optimize Θ (resp. φ) in order to retrieve the correct leakage model. Hence, for a
given Y ∈ Fn2 , the number of weights that have to be optimized are ((1 +

∑d
i=0
(
n
i

)
) ·D)

in both cases (s.t. d ≤ n). Then, for estimating (V[i])0≤i<D (resp. (T̃[i])0≤i<D), we have
to link the ith sample of the trace T (resp. the latent variable V) with the related ψ̂Θ[i]
(resp. ψ̂φ[i]). Here, we decide to follow the classical stochastic attacks in order to easily
extract the related noise. Hence, no weights are needed for this operation. Finally, to
approximate µV,Θ (resp. ΣV,Θ), we need (D · (D + 1)) (resp. D2 · (D + 1)) neurons. For
the simplified diagonal case, ΣV,Θ can be reduced to σ2

V,Θ, thus, only D · (D + 1) neurons
are needed in this configuration. To sum up the complexity metrics, the evaluator needs
to construct a generative model with (D · ((D + 1)2 + 2 · (1 +

∑d
i=0
(
n
i

)
))) weights (resp.

(2D · ((D + 1) + 1 +
∑d
i=0
(
n
i

)
)) weights if ΣV,Θ is reduced to σ2

V,Θ). Following those
metrics, it can be noticed that the trace dimension D influences the most of the network
complexity.

However, a solution can be considered to improve the network complexity without
altering the cVAE-SA performance. Indeed, following Sec.3.3, if the evaluator detects s
PoIs, he can construct a vector {l0, . . . , ls−1} of s indices such that li denotes the index
related to the ith point of interest. Based on this knowledge, he can build a cVAE-SA with
lower complexity such that most of the relevant information, dedicated to the s PoIs, can
be extracted from a trace. Instead of considering all the samples of the D-dimensional
trace (s.t. D � s), he can construct a neural network with (s ·((s+1)2 +2 ·(1+

∑d
i=0
(
n
i

)
)))

weights (resp. (2s · ((s+ 1) + 1 +
∑d
i=0
(
n
i

)
)) weights if ΣV,Θ is reduced to σ2

V,Θ). As a
consequence, we drastically reduce the network complexity without altering the ability of
the generative model to retrieve the secret key as suggested in Sec.3.3. For example, the
network complexity of Fig.2b is about 1, 040 weights if all bits’ interactions are considered
(i.e. d = 8, s = 2 and n = 8). When black-box models (e.g. discriminative models) are
considered, finding such complexity bounds is known as an arduous task as no correlations
are provided with classical profiled SCA.

One of the main benefits of the proposed variational autoencoder is its explainability
and its interpretability regarding the side-channel context. In addition, our theoretical
results suggest that its width does not have to be large no matter the dimension of the
traces. This result is faithful with the Universal Approximation Theorem [Pin99]. Through
the following section, we validate these properties and broaden the attacks’ spectrum on
protected implementations considering the boolean making scheme.
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4 Empirical investigations on cVAE-SA
4.1 Settings
Hyperparameter selection. While classical DLSCA models need to tune a lot of
hyperparameters (e.g. type of neural network, number of layers, number of nodes per layer,
activation function, optimizer algorithms, learning rate, number of epochs, batch size), the
configuration of the proposed cVAE-SA only deals with the optimizer algorithm, the batch
size, the learning rate and the number of epochs. In this section, optimization is done
using the Adam optimizer on batch size {8, 16, 32, 64, 128} and the learning rate is set to
{10−1, 10−2, 10−3, 10−4}. We construct each model with a maximum number of epochs of
40 and select the hyperparameters that provide the best ranking value. Finally, in this
section, Ntrank denotes the number of attack traces that are needed to reach a constant
rank of 1. These traces are randomly shuffled and picked up from a set of attack traces
Ia which is characterized by simulations that are described in the following. For a good
estimation of Ntrank, an average over 10 simulations, denoted N̄trank, is computed.

Simulations. To verify the benefits of the cVAE-SA, we simulate D-dimensional traces
from a 8-bit sensitive variable Y . In this section, the simulated traces are built following
two scenarios:

• Scenario 1 – We assume the leakage model induces the maximum amount of
interactions between bits (i.e. F9), such that all bits influencing the leakage model
have the same weights. Hence, the ith time sample of the simulated trace T is defined
as follows:

T[i] =



1 · Y [1] + 1 · Y [3] + 1 · Y [6]
+ 1 · ⊕1

b=0Y [b] + 1 · ⊕2
b=0Y [b] + 1 · ⊕3

b=0Y [b]
+ 1 · ⊕4

b=0Y [b] + 1 · ⊕5
b=0Y [b] + 1 · ⊕6

b=0Y [b]
+ 1 · ⊕7

b=0Y [b] + Z[i]

if i ∈ {l0, . . . , ls−1},

Z[i] otherwise,
(11)

where {l0, . . . , ls−1} defines a set of indices related to each PoI, ⊕nb=0Y [b] = Y [0]⊕
. . .⊕ Y [n], Y [b] = Sbox[X ⊕ k∗][b] denotes the bth bit of the output of the Sbox, and
Z[i] is a Gaussian noise following N (0, σ2) such that σ2 = 1. The SNR result is
provided in App.B.

• Scenario 2 – We assume that the leakage model induces interactions of degree 2
between bits (i.e. F3) but differs by the location of the PoIs. The ith time sample of
the trace T is defined as follows:

T[i] =


1 · (X ⊕ k∗)[5] + 1 · (X ⊕ k∗)[3]
⊕ (X ⊕ k∗)[7] + Z[i]

if i ∈ {l′0, . . . , l
′

s′−1},

1 · Sbox [X ⊕ k∗] [3] + 1 · Sbox [X ⊕ k∗] [6] + Z[i] if i ∈ {l0, . . . , ls−1},
Z[i] otherwise,

(12)
where Sbox [X ⊕ k∗] [b] denotes the bth bit of the output of the Sbox considering a
plaintext X and the secret key k∗, Z[i] is a Gaussian noise following N (0, σ2) such
that σ2 = 1. The SNR result is provided in App.B.

A set of 10, 000 traces (9, 000 for the profiling phase and 1, 000 for the validation phase)
is simulated for each scenario. The choice of these scenarios have been motivated to assess
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the ability of the cVAE-SA to capture the interactions between bits as well as simultanously
targeting multiple sensitive variables. Further experiments with other scenarios has been
investigated in App.A and App.B considering additional Gaussian noise parameters.

Limitations of the monomial basis. In [SLP05], Schindler et al. suggest a non-
orthonormal monomial basis to approximate the leakage model ψ. This proposition limits
the evaluator’s interpretation when combination of bits are induced in the leakage model.
To ease its interpretation, Guilley et al. propose a decomposition of the monomial basis
to isolate the leakage from the combination of bits [GHMR17]. Through the application
of the well-known Gram-Schmidt orthonormalization on the monomial basis, Guilley et
al. introduce a new orthonormal monomial basis that uncorrelates each basis vector
and preserve the degree of bits’ interaction. Hence, constructing the cVAE-SA on this
orthonormal monomial basis is beneficial to evaluate the ability of the neural network
to retrieve the leakage model and maintain its interpretability. This approach will be
considered in the rest of the paper. Using the orthonormal monomial basis has a major
benefit. As shown by Kasper et al. [KSS10], when the basis is able to describe the
switching activity of the circuit, the estimated basis coefficients highlight specific exploitable
security flaws in the studied implementation. Hence, visualizing the basis coefficients that
characterize the cVAE-SA model FΘ,φ, namely Θ and φ, is useful to get deeper information
on the exploitable security flaws. The next section proposes to visualize the trainable
parameters Θ and φ in order to assess the suitability of the cVAE-SA to extract the
expected leakage model ψ.

4.2 Leakage model estimation & multi-task learning
Single-sensitive variable attacks. As mentioned in Sec.3.2, the encoder (resp. de-
coder) is trained to retrieve the trainable parameters Θ (resp. φ) in order to maximize
their correlation with the targeted leakage model. Once the cVAE-SA is correctly trained,
the evaluator can visualize these trainable parameters (i.e. Θ and φ) in order to find
the security flaws induced in the studied implementation. In the considered scenario
(see Fig.3a), the weight visualization can be used to assess the ability of the encoder
(resp. decoder) to retrieve the leakage function defined in Eq.11. Indeed, these figures
illustrate the coefficients associated to each vector of the orthonormal monomial basis.
The first coefficients of each figure define the lowest bits’ interaction induced in the leakage
model. For example, the first element, included in the interaction of degree 5 area, is
characterized by ⊕4

b=0Y [b]. While the related weight is non-negligible, the cVAE-SA
identifies that the interaction ⊕4

b=0Y [b] influences the leakage model. This observation
can be confirmed with Eq.11. Proceeding this analysis for the entire set of non-negligible
weights can be helpful to evaluate the ability of the cVAE-SA to retrieve the leakage
model. Indeed, if we compare the real simulated leakage model defined in Eq.11 with the
non-negligible weights depicted in Fig.3a, we can see that all the peaks are associated
with the correct basis vector. In addition, each coefficient associated with the sensitive
interactions seems to get approximately the same impact which corresponds to the real
leakage function defined in Eq.11. Consequently, if the cVAE-SA is correctly trained, it
sounds helpful to retrieve complex leakage models as well as the related security flaws.
Moreover, through the visualization provided in Fig.3a, the evaluator can also identify
the time samples where the sensitive information leaks. Indeed, this figure highlights that
only T[1] is useful to extract the leakage model. Hence, once the cVAE-SA is correctly
trained, the evaluator can easily retrieve the PoIs. Then, during the attack phase, the
evaluator can decide to focus its attack by computing Eq.10 only on T[1] instead of
the entire trace dimension as mentioned in Sec.3.4. Contrary to classical profiled SCA
approach, the cVAE-SA provides a more flexible solution during the exploitation phase
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(b) Multi-task learning attacks (see Eq.12).

Figure 3: Weight visualization assessing the suitability of our generative model to retrieve
the leakage model.

by reducing the impact of irrelevant samples. Another solution to assess the suitabil-
ity of the training process consists in visualizing the leakage trace distributions (see App.A).

One advantage of the stochastic model is to approximate the data that depends on
the secret key. Through this process, the evaluator directly obtains a score related to the
key manipulated by the crypto-system. Hence, the evaluator can adapt the orthonormal
monomial basis to target simultaneously multiple cryptographic primitives (e.g. input and
output of the Sbox). Therefore, the cVAE-SA can be adapted to perform multi-tasking
attacks. Additional experiments are proposed in App.B in order to assess the impact of
the Gaussian noise on this visualization techniques.

Multi-task learning attacks. This approach has been in [Mag20] for enhancing the
discriminative approach. While this learning strategy is beneficial to improve the perfor-
mance of the key recovery phase, the design of such discriminative models remains an
open question. Through this paragraph, we illustrate the flexibility of the cVAE-SA to
deal with such solution. To exploit all the bits’ interaction for each sensitive variable, we
set d = 8 such that Fig.3b illustrates the impact of each vector of the basis F9 once the
cVAE-SA is well trained. When the time sample T[1] is considered, we can see:

• An interaction of degree 1 and 2 that corresponds to the bit 5.

• An interaction between the bits 3 and 7 of the input of the Sbox.

Then, through Fig.3b, we can see that T[2] extracts a leakage model with two interactions
of degree 1 associated with the 3rd and the 6th bit of the output of the Sbox. This result
is consistent with Eq.12. Hence, through this simulation, we can validate the ability
of the cVAE-SA to correctly retrieve the leakage model of multiple sensitive variables
simultaneously. This approach is highly beneficial in SCA context as it gathers more
information about the targeted secret key and results in a better performance. However,
as mentioned in Sec.3.4, the degree d of the orthonormal monomial basis Fd+1 directly
affects the complexity of the cVAE-SA. Hence, considering the attacks of multi-sensitive
variable increases by 2D · (1 +

∑d
i=0
(
n
i

)
) the number of trainable parameters (i.e. weights)

for each new targeted sensitive variablej. Thus, depending on his computational capacity,
jThis number can be reduced to 2s′ · (1 +

∑d

i=0

(
n
i

)
) if the evaluator only targets the PoIs, denoted

{l′0, . . . , l
′

s
′−1
}.
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Table 1: Impact of the trace dimension on the cVAE-SA performance (with s = 1, Nv = 10,
batch-size = 10).

PRI% D Learning rate N̄trank Network complexity Training time
33% 3 10−2 98 1, 566 7s
10% 10 10−2 101 5, 360 8s
2% 50 10−2 108 30, 800 35s
1% 100 10−2 94 71, 600 47s
0.2% 500 10−3 115 758, 000 401s
0.1% 1000 10−3 135 2, 516, 000 933s

the evaluator has to define the most suitable structure to employ for defeating the targeted
crypto-system.

However, in SCA context, the evaluator mainly deals with a non-negligible number
of uninformative samples. The following section assesses the ability of the cVAE-SA to
mitigate this constraint.

4.3 Curse of dimensionality
When the evaluator performs a side-channel attack, he wants to precisely find the relevant
key-dependent time samples even if a large part of the trace contains uninformative time
samples. Usually, the number of PoIs s is far lower than the trace dimension D (i.e.
s� D). Thus, to assess the benefits of the cVAE-SA, we have to understand the ability
of this new model to retrieve the PoIs when a lot of samples are irrelevant. In order
to evaluate it under this restriction, we consider Scenario 1 (see Sec.4.1) such that we
construct 6 sub-scenarios where D ∈ {3, 10, 50, 100, 500, 1000} and s = 1 such that the
related Signal-to-Noise Ratio (SNR) equals to 0.549. Hence, for each case study, only a
single PoI is configured while the dimension of the simulated traces increases. In Tab.1,
we denote PRI = s

D , the fraction of relevant information in each sub-scenario and evaluate
the impact of this variable on other parameters, namely the batch-size and the learning
rate. Finally, Nv denotes the number of samples V used to perform Eq.10.

As suggested in Sec.3.4, the attack process is performed only on the time samples
defined as relevantk by the cVAE-SA. Hence, the weight visualization applied on φ and Θ is
very helpful to define which samples can be considered as PoIs. Through Tab.1, we can see
that increasing D does not impact significantly the resulted performance of the cVAE-SA
(i.e. N̄trank). Indeed, if the evaluator adequately finds the correct hyperparameters,
namely batch-size and learning rate, he can expect to get similar results for high values
of D. However, as detailed in Sec.3.4, increasing the input dimension highly impacts the
complexity of the cVAE-SA. Finding a way to focus the interest of the model only on the
relevant time samples can drastically reduce the network complexity without altering its
resulted performance. Such investigations could be part of a future work to highlight even
more the benefits of DL in SCA context.

Once the evaluator validates the ability of the generative model to deal with a low
percentage of relevant information, he can question the benefits of the cVAE-SA to defeat
boolean masking implementations. The next section deeply investigates this protection
against this new model.

4.4 Generalization on boolean masking implementation
Typically, the discriminative models are built to automatically extract the relevant infor-
mation from a trace without providing a clear interpretability of its decision-making. In

kHere, the relevance of a time sample is characterized by its coefficients φ and Θ such that the most
relevant time samples have the highest coefficient values.
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Table 2: Impact of boolean masking implementations on the conditional variational
autoencoder performance (with batch-size = 64, Nv = 10).

Order Learning rate N̄trank Combining function Network complexity
0 10−2 9 Optimal product 2, 630
1 10−2 32 Optimal product 14, 150
2 10−3 100 Optimal product 95, 750
3 10−3 247 Absolute difference 1, 103, 750

opposition, the cVAE-SA characterizes the leakage model without altering its representation
in order to get a global characterization of Pr[T|Y ]. Consequently, our generative approach
does not automatically recombine the PoIs but preserves the network’s explainability that
is mandatory for an evaluator. Thus, given a masked implementation, some preprocessing
phases are needed. In particular, a masking scheme of order o consists in splitting the
targeted sensitive variable into (o+1) shares Y0, . . . , Yo which satisfy Y = Y0 + . . .+Yo over
some additive finite group or field. To this end, o shares are randomly drawn (known as
masks) while the remaining one (known as masked variable) is computed in order to satisfy
the latter relation. Consequently, to perform a successful high-order attack, the evaluator
has to find the (o+ 1) shares in order to retrieve the sensitive information Y . Typically,
classical approaches considered in profiled SCA use some recombination techniquesl as
preprocessing [CJRR99, Mes00, PRB09]. This approach involves the combination of (o+1)
shares in order to “demask” the masked values and perform the attacks on the unmasked
value. To apply this proposition, various recombination techniques are introduced, namely
product combining [CJRR99], absolute difference combining [Mes00] and optimal product
combining [PRB09]. If the evaluator wants to apply one of these techniques, he has to
recombine the samples related to each of the (o+ 1) shares and then, target the unmasked
sensitive value Y .

To evaluate the suitability of cVAE-SA in such scenarios, we decide to simulate a 5-
dimensional trace with different levels of masking order o ∈ {0, 1, 2, 3}. For each case study,
we apply the absolute difference, the product and the optimal product combining functions
and list the best result we obtained in Tab.2. Through this table, we demonstrate the
ability of the proposed cVAE-SA to defeat a high-order boolean masking implementation.
Surprisingly, the number of shares does not highly impact the hyperparameters’ valuem,
namely the learning rate and the batch-size, unlike the network complexity. Indeed, for a
given set of D-dimensional traces, the combining methods multiplied by D the number
of time samples for each mask reduction. Hence, for performing an o order attack, the
evaluator has to deal with traces of Do+1 samples. As the dimension of the traces impacts
the network complexity (see Sec.3.4), the evaluator has to exponentially increase his
computational ability with the attack order.

Once all these simulations validate the theoretical observations provided in Sec.3,
we compare the benefits of considering the new cVAE-SA with the classical profiled
side-channel attacks on real unprotected and protected implementations.

5 Experimental results
The experiments are implemented in Python using the Keras library and are run on a
workstation equipped with 128GB RAM and a NVIDIA GTX1080Ti with 11GB memory.
In the following section, the discriminative models are based on the CNN architectures
provided by [ZBHV19] and then, a global benchmark is provided with other typology of

lAn alternative consists in applying a Bayes classification approach [OM06] in order to retrieve the
targeted value.

mThe readers must be aware that this observation cannot be generalized on all implementations and
would benefit from further investigations.
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discriminative models (see Tab.4). For the generative models, the configurable hyperpa-
rameters, namely the batch-size and the learning rate, are respectively set to {8, 16, 32, 64}
and {10−1, 10−2, 10−3}. We construct each model with the following number of epochs
{10, 20, 30, 40, 50, 75, 100} and select the value that provides the best rank. As mentioned
in Sec.4, we denote N̄trank the average value of Ntrank over 10 shuffled experiments. In the
following, we always capture the maximum amount of interactions (i.e. F9). This choice
was made because an evaluator does not have a priori knowledge on the bits’ interactionsn.
Finally, as suggested through the analysis of the KL-divergence loss (see Sec.3.3), the
latent space dimension should be monitored depending on the number of PoIs. As the
goal of our paper is to provide a fair comparison with the state-of-the-art result, the same
number of PoIs as in [KPH+19, BPS+20] will be considered.

5.1 Presentation of the datasets
We used three different datasets for our experiments. All the datasets correspond to
implementations of Advanced Encryption Standard (AES). The datasets offer a wide range
of use cases: high-SNR unprotected implementation on a smart card, low-SNR unprotected
implementation on a FPGA, low-SNR protected implementation with first-order masking.

• DPA contest-v4o is an AES software implementation with a first-order masking.
Knowing the mask value, we can consider this implementation as unprotected and
recover the secret key directly. In this experiment, we attack the first round Sbox
operation. We identify each trace with the sensitive variable Sbox[X[0]⊕ k∗]⊕M
where M denotes the known mask and X[0] the first byte of the plaintext.

• AES_HDp is an unprotected AES-128 implemented on FPGA. The attack tar-
gets the register writing in the last round such that the label of the ith trace is
Sbox−1[C[j]⊕ k∗]⊕ C[j′] where C[j] and C[j′] are two ciphertext bytes such that
j = 12 and j′ = 8.

• ASCAD-v1q is introduced in [BPS+20]. The target platform is an 8-bit AVR
microcontroller (ATmega8515) where a AES-128 protected with a boolean masking
scheme is implemented. The targeted sensitive variable is the first round Sbox
operation such that Y = Sbox[X[3]⊕ k∗]. Currently, there are two versions of the
ASCAD dataset. The distinction between these versions relies on the randomness
of the secret key for the profiling traces. In particular, the ASCAD-v1-F version
has a fixed secret key for the 50, 000 profiling traces and the 10, 000 attack traces.
Each trace of this dataset is composed of 700 samples. On the other hand, the
ASCAD-v1-R version has random keys for the 200, 000 profiling traces and a fixed
key for the 100, 000 attack traces. In the ASCAD-v1-R version, each trace is
composed of 1, 400 samples.

Remark 2. While this work bridges DL with SCA, no investigation has been conducted
on the desynchronization effect. Indeed, as the Machine Learning community has already
demonstrated the benefits of the use of shift-invariant layers (e.g. convolutional layers) to
mitigate the desynchronization effect [ITLW20], further theoretical investigations should
be provided to clearly explain how those layers should be configured regarding the works

nIn order to find the best trade-off between bits’ interactions and the statistical model, one solution
consists in evaluating the model quality of a linear regression model. In [MOW17], McCann et al. suggest
the use of the F-statistic in order to test the improvement of considering additional interaction terms.

ohttp://www.dpacontest.org/v4/42_traces.php
phttps://github.com/AESHD/AES_HD_Dataset
qhttps://github.com/ANSSI-FR/ASCAD
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(a) DPA contest-v4 dataset. (b) AES_HD dataset.

Figure 4: Weight visualization of 50 time samples assessing the suitability of our generative
model to retrieve the leakage model.

on dimensionality reduction in SCA (e.g. [BGH+15]). This investigation is out of the
scope of this paper and should be part of a future work.

5.2 A comparison with state-of-the-art SCA
In this section, we evaluate the benefits of the cVAE-SA against the classical side-channel
attacks (i.e. template attacks, stochastic attacks) by respecting the same experimental
conditions as the state-of-the-art results. For the DPA contest-v4 and AES_HD datasets,
Kim et al. [KPH+19] propose to select 50 features with the highest SNR in order to reduce
the needs of computation when classical side-channel attacks are considered. Following
Sec.3.4, the related cVAE-SA architecture is composed by 30, 800 parameters for both
datasets (i.e. d = 8, s = 50 and n = 8). For both ASCAD-v1 datasets, we select the 8
most relevant samples related to the mask r3 and the masked values with r3 (see [BPS+20]
for deeper details on the implementation) and then, apply the three combining functions
introduced in Sec.4.4. After the application of the recombination technique, the generated
cVAE-SA is composed by 41, 216 parameters (see Sec.3.4 such that d = 8, s = 64 and
n = 8).

DPA contest-v4. Once the cVAE-SA is trained, the evaluator can observe the coef-
ficients related to each time sample as illustrated in Fig.4a. Through this visualization
tool, the evaluator is able to identify the leakage model extracted by the cVAE-SA. In
particular, it is can be observed that the leakage model is only influenced by the bits
of Y . Therefore, the bits’ interaction do not have any impact of the leakages extracted
from the DPA contest-v4 dataset. Once this analysis is conducted, the evaluator can
select those with the highest trainable parameters (i.e. Θ and φ) and perform his attack
on this subset. This post-selection is beneficial to reduce even more the impact of noisy
samples (i.e. time samples where the related weights are close to 0) during the key-recovery
phase. This new feature can be proposed and explained thanks to the interpretability
of the cVAE-SA architecture (see Sec.3). For this dataset, we compute Eq.10 on the 50
time samples previously extracted. When a high-SNR unprotected implementation is
considered, we observe that our generative model has the same performance as classical
profiled side-channel attacks (see Tab.3). Hence, for this implementation, similar results
can be obtained whatever the attack performed. Consequently, in this configuration,
considering the cVAE-SA is equivalent to classical profiled side-channel attacks.
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Table 3: Comparison of N̄trank value depending on datasets. The best performance for
each dataset is denoted in blue.

Stochastic Attacks Template Attacks cVAE-SA
[This work]

DPA-contest v4 4 4 [KPH+19] 4
AES_HD 4, 500 25, 000 [KPH+19] 300
ASCAD-v1-F 290 351 194
ASCAD-v1-R 1, 330 2, 850 250

AES_HD. Following the state-of-the-art results [KPH+19], a template attack needs
approximately 25, 000 attack traces to retrieve the secret key. In this setting, performing
the stochastic attack on the same dataset highly improves the related performance. Indeed,
when this approach is considered, the evaluator can recover the secret key with 4, 500
attack traces which is 5.5 times better. Finally, when the cVAE-SA is applied, an even
better attack can be performed. As mentioned in Sec.3.4, the attack phase is based on
sample similarity measures. Hence, the evaluator can only compute Eq.10 on the relevant
samples detected during the profiling phase. Thus, we drastically reduce the impact of the
uninformative samples during the attack phase. In this configuration, we only consider the
samples where the related φ coefficients are greater than 0.5. Through Fig.4b, it can be
mentioned that the key-recovery phase is only impacted by the leakages related to some
bits of Y . Accordingly, while the training process was performed on traces with 50 samples,
the computation of Eq.10 was made on the 14 time samples complying with the configured
restriction. This processing tremendously increases the performance of the resulted attack.
Indeed, the cVAE-SA model divides by 83 (resp. 15) the number of attack traces that are
needed to perform a template attack (resp. stochastic attack).

ASCAD-v1. As mentioned in Sec.4.4, we perform high-order attacks with the help of
combining functions as preprocessing (i.e. product combining, optimal product combining,
absolute difference combining) for both ASCAD-v1 datasets. Then, we profile the genera-
tive models on the unmasked value in order to extract the relevant information. In Tab.3,
the optimal product combination provides the best performance on the ASCAD-v1-F and
ASCAD-v1-R datasets. Through the experiment on ASCAD-v1-F dataset, we observe
that the cVAE-SA performs better than template or stochastic attacks. While 351 (resp.
290) attack traces are needed to reach a constant rank of 1 when the template attack
(resp. stochastic attack) is considered, our generative model retrieves the secret key within
194 attack traces. The same observation can be highlighted for ASCAD-v1-R dataset
where the cVAE-SA model retrieves the secret key within 250 attack traces. As previously
mentioned for the AES_HD dataset, those results can be explained by the ability of the
cVAE-SA to target a specific range of relevant combined time samples during the attack
phase. For both ASCAD-v1 datasets, only the time samples with Θ and φ coefficients
greater than 1 are kept for the key recovery phase. On the contrary, the classical profiled
SCA have to consider the 64 time samples (i.e. 8 time samples related to the masks and
the masked value) used to perform the related attacks. Hence, resulted noisy time samples
can highly influence the performance of the resulted attacks. A detailed discussion on
ASCAD-v1-R dataset with explainability/interpretability results is provided in App.C.

In conclusion, when a classical profiled SCA is trained on D-dimensional traces, the
evaluator has to perform the exploitation phase on the same trace dimension. Unfortunately,
the evaluator does not know a priori which time samples are considered as relevant once the
profiling phase is applied. Hence, performing the exploitation phase on the D-dimensional
traces could be impacted by the uninformative time samples. On the other hand, once
the profiling phase is performed on the D-dimensional traces, the cVAE-SA is beneficial
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to select a subset of s time samples, such that s � D, in order to compute Eq.10 only
on the informative time samples. Hence, this new proposition is more flexible than
classical profiled SCA and results in a better attack perspective as we are less impacted
by uninformative time samples. However, the evaluator can question the benefits of the
generative approach with respect to discriminative models. The following section highlights
the benefits and the limitations of both approaches in DLSCA.

5.3 A comparison with state-of-the-art DLSCA
When the discriminative approaches are considered, a major drawback can be highlighted
regarding the architecture configuration. Indeed, the resulted models have a plethora of
hyperparameters to tune. The more effort we spend on the hyperparameter tuning of the
network architecture, the more efficient the resulted attack is expected. In addition, due
to their black-box property, the discriminative models are difficult to interpret. However,
the main benefit of this approach is about automatically combining the points of interest
to limit the masking effect. While the discriminative model considers all the samples of
the trace, we focus the interest of the generative model only on the most relevant samples.
As highlighted in Sec.4.3, increasing the number of irrelevant samples highly impacts the
network complexity and the training time without altering the related performance.
Remark 3. All the cVAE-SA architectures use in this section are similar to those introduced
in Sec.5.2.

DPA contest-v4. First, on Fig.5a, we can visualize the rank evolution of the generative
on the DPA contest-v4 dataset. While a discriminative model can retrieve the secret key
with 3 attack traces (see Tab.4), the cVAE-SA reaches similar performance depending on
the number Nv of latent samples. As mentioned in Sec.3.4, the value of Nv depends on
the ability of the cVAE-SA to correctly approximate Pr[T|Y, φ]. The higher the Nv, the
more confident the resulted attack. This observation can be confirmed in Fig.5a. Indeed,
if Nv = 1, two attack traces are needed to retrieve the secret key. However, a poor rank
stabilization is observed. To rectify this point, increasing the Nv value preserves a constant
rank convergence towards 1.

AES_HD. The same observation can be made when the AES_HD dataset is considered.
Indeed, when the Nv value increases, a rank stabilization is observed when the number of
attack traces grows. In addition, Fig.5b highlights a better model when the generative
approach is considered in comparison with the discriminative state-of-the-art result (see
Tab.4). Indeed, for Nv = {100; 1, 000}, the resulted model converges towards a constant
rank of 1 with 300 attack traces. Even if the discriminative approach directly estimates
Pr[Y |T], the state-of-the-art result indicates a lower performance when most of classical
DLSCA models are considered. As illustrated by Ng and Jordan [NJ02], this result suggests
that a better discriminative model can be found on this dataset. Indeed, an optimal
discriminative model should be, at least, as efficient as a generative approach. However,
finding the best discriminative model can be difficult due to the broad hyperparameter
selection. This result highlights the benefits of the cVAE-SA in comparison with the
classical DLSCA models from an evaluation perspective as it provides a suited security
bound related to the targeted device.

ASCAD-v1. One benefit of the discriminative approach is to automatically recombine
the points of interest. In opposition, the generative approach does not take advantage of
this property (see Sec.4.4). Through Tab.4, we can visualize the benefits of automatically
combining the points of interest. Indeed, the discriminative approach reaches better
performance for both datasets (i.e. ASCAD-v1-F and ASCAD-v1-R). While the cVAE-SA
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(a) DPA-contest v4 (b) AES_HD

(c) ASCAD-v1-F (d) ASCAD-v1-R

Figure 5: Mean rank evolution for cVAE-SA models depending on the number of latent
representation Nv.
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Table 4: DLSCA benchmark of N̄trank value depending on datasets. The best performance
for each dataset is denoted in blue.

Discriminative model Generative model

CNN FCNN ResNet TransNet SVM Random cVAE-SA
(or MLP) Forest [This work]

DPA contest-v4 3 4 3 - 3 5 4
[ZBHV19] [PCP20, PHJ+18] [JZHY20] [PHJ+18] [PHJ+18]

AES_HD 831 350 2, 100 - 6, 653 2, 877 300
[ZXF+19] [MDP19] [JZHY20] [PHJ+18] [PHJ+18]

ASCAD-v1-F 87 104 552 300 - - 194
[PWP22] [PWP22] [JZHY20] [HSAM22]

ASCAD-v1-R 78 129 - - - - 250
[WPP21] [PWP22]

retrieves the secret key within 194 traces (resp. 250 traces) with Nv = {100; 1, 000} when
ASCAD-v1-F (resp. ASCAD-v1-R) is considered, the best discriminative model recovers
this sensitive variable within 87 traces (resp. 78 traces). This result could be explained by
the ability of the discriminative models to find a custom combining function that maximizes
the posterior probabilities Pr[Y |T]. Hence, this custom unknown function can be more
adapted for the targeted dataset. On the other hand, the cVAE-SA model is trained on
combined traces that are constructed from classical approaches (i.e. optimal product
combining). Consequently, when masking implementations are considered, a discriminative
approach is beneficial to reduce the preprocessing phase and, it can provide better result
than the cVAE-SA. However, applying the discriminative approach can be limited from an
interpretation point of view. In addition, the discriminative approach required plethora of
additional settings (i.e. architecture, activation function, weight initialization, etc.) that
do not have to be considered when the cVAE-SA is constructed. Hence, the configuration
of discriminative models can be an issue from a practical perspective.

The results provided in this section highlight the benefits and the limitations of cVAE-
SA against classical DLSCA models. Particularly, Tab.4 refers the main models introduced
in the DLSCA literature. Through this benchmark, it can be mentioned that the cVAE-SA
is the only model which considers the generative approach such that it performs similarly,
or even better, than classical DLSCA models. As suggested by Ng and Jordan [NJ02], the
asymptotic error of the discriminative model is lower or equal to the one related to the
generative approach. Therefore, discriminative models should be at least as efficient as a
cVAE-SA. However, as their construction phase is not deterministic, an irrelevant model
can be designed to solve a given classification task and the resulted performance can be
less efficient than the cVAE-SA due to a poor approximation of the true unknown leakage
model. This observation can be confirmed through the results provided in Tab.4.

To conclude, for the SCA community, the cVAE-SA can be helpful to evaluate the fea-
sibility of an attack and get a security bound of a device. However, while the configuration
of such neural network is simple in comparison to DLSCA models, this new proposition
can perform worse under some conditions. Indeed, when masking coutermeasures are
implemented, an evaluator using generative models (e.g. cVAE-SA) can use sub-optimal
combining functions while a discriminative approach finds a custom unknown combining
function which can be more adapted depending on the targeted implementation. In
addition, while the cVAE-SA suggests that the true leakage distribution is Gaussian, a
discriminative approach is not restricted to such assumption. As a perspective, we suggest
considering a hybrid approach combining the discriminative and the generative models in
order to keep the explainability and the interpretability while preserving the benefits of
the automatic recombination.
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6 Discussion
Through this paper, we have demonstrated that a derivation of the conditional variational
autoencoders (cVAE) can be considered in side-channel context in order to perform physical
attacks. From an evaluation perspective, this new neural network architecture is suitable
as it respects the following requirements:

1. Theoretical similarities with classical profiled side-channel attacks – As
illustrated in Sec.3, the cVAE can be monitored to fit with the stochastic attacks
paradigm introduced by Schindler et al. [SLP05] and briefly recalled in Sec.2.3. From
the evaluator point of view, this approach is useful to ease the configuration of the
neural network and get a clear overview of the decision-making process. Indeed, as
the cVAE-SA is designed on well-known theoretical attack strategy, the evaluator
can be confident on the employed neural network structure and thus, expects to get a
resulted predictive model as efficient as classical profiled side-channel attacks, namely
template attacks [CRR03] and stochastic attacks [SLP05]. Based on the solution
provided in [Mag20], the cVAE-SA can be easily adapted to deal with the multi-task
learning process that consists in targeting simultaneously multiple sensitive variables.
From this new bridge, the evaluator can deeply understand the future improvements
that can be provided in the DLSCA field in order to fully exploit the automation
process proposed by the ML/DL community.

2. Explainability & Interpretability – One major benefit of the proposed cVAE-SA
is to preserve the interpretability and the explainability on the results provided by the
learning algorithm. As our contribution is constructed from the classical profiled side-
channel attacks, the evaluator can adapt its interpretation tools (e.g. visualization)
in order to deeply explain the results provided by the model. As suggested in Sec.4.2,
in App.A and in App.B, the evaluator can visualize the trainable parameters of the
conditional variational autoencoder in order to assess the ability of the encoder and
the decoder to retrieve a hypothetical leakage model as similar as possible to the
true unknown ψ. Once the evaluator retrieves an approximation of ψ, he highlights
the security flaws induced by the targeted implementation and thus, can alert the
developer on potential vulnerabilities and ease the development of countermeasures.
An example on the ASCAD-v1-R dataset is provided in App.C.

3. Hiding countermeasures – Even if this paper does not assess the robustness of
the cVAE-SA against desynchronization effect, an intuitive solution suggests adding
convolutional layers to the encoder [ITLW20]. However, it should be validated in
practice. While this intuition could be a suitable solution to mitigate the desynchro-
nization effect, it also helps the network to automatically select the points of interest
and prevent the effect of uninformative time samples. Indeed, as defined in Sec.3.3
and in Sec.3.4, the empirical risk as well as the decision process are only affected
by the points of interest. Hence, this dimensionality reduction technique can also
be useful to quadratically reduce the network complexity. However, to maintain
the interpretability/explainability result provided by the cVAE-SA proposal, further
investigations should clarify how those convolutional layers should be designed to fit
with the side-channel state-of-the-art result (e.g. [BGH+15]).

However, the cVAE-SA also has some limitations that are listed below:

1. Combining function – As the generative approach captures the conditional distri-
bution Pr[T|Y ], it cannot handle masking implementations as the targeted unmasked
sensitive variable Y is not directly observable through the leakage trace T. Thus,
the evaluator has to consider combining functions in order to reveal the dependence
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between T and Y . Unfortunately, this suggests the need for preprocessing phase
which is not necessarily optimal from an attack perspective. Indeed, as this com-
bining function is not automatically learned by the generative model (contrary to
the discriminative approach), the evaluator may not converge towards the optimal
statistical model defined in [HRG14].

2. Performance – While the goal of a side-channel attack is to optimize a learning
algorithm which approximates Pr[Y |T] in order to discriminate a sensitive variable Y
from a set Y, the application of generative models can be considered as suboptimal
[NJ02]. In particular, the cVAE-SA assumes that the leakage noise follows a Gaussian
law which is not the case for classical DLSCA discriminative models [MPP16, CDP17a,
CCC+19, ZBHV19, BPS+20, MS21].

However, regarding the latter issue, the experiment provided in Sec.5.3 illustrates that
similar (or even better) performance results can be obtained regardless the approach (i.e.
discriminative vs. generative) considered. Indeed, the actual publicly available datasets
seem too easy to target (i.e. the number of traces to retrieve the secret key is low) in order
to fully assess the performance gain of a discriminative approach over a generative one.
A slight performance gains of few traces or, even dozens of traces, cannot be considered
as a huge improvement and the benefits of each new DLSCA tool can be difficult to
interpret. Through this analysis, we highlight the theoretical benefits/limitations of using
the cVAE-SA and we define this solution as a concrete and generic alternative to the
classical discriminative DLSCA models. Consequently, using the generative approach can
give a first insight about the security bound of the targeted system.

7 Conclusion
This paper proposes to reduce the gap between historical SCA (i.e. generative models)
and classical DLSCA (i.e. discriminative models). In that purpose, we introduce the first
DLSCA model based on generative approach. From the stochastic attack introduced by
Schindler et al. [SLP05], we first design an explainable and interpretable architecture
that aims at retrieving the real unknown leakage model. Based on stochastic attack
modeling, this new model can be easily constructed whatever the implementation an
evaluator has to deal with. Furthermore, this analogy helps us to define theoretical bounds
on the network complexity (e.g. number of trainable parameters) as well as identifying
mutual problematic and perspectives (e.g. dimensionality reduction, multi-task learning).
Then, we theoretically explain the impact on each individual loss in SCA such that, the
reconstruction loss penalizes the model in order to estimate a trace as similar as possible
to the real one. On the other hand, we demonstrate that the KL-divergence loss is
beneficial to correctly estimate the latent space. Compared with historical profiled SCA,
the cVAE-SA is beneficial by providing the ability to carefully select the samples the
evaluator wants to focus on during the exploitation phase. Hence, by providing a more
flexible generative approach, we drastically reduce the impact of uninformative samples on
the attack performance. This observation was confirmed on real case study.

To bridge the gap between generative and discriminative approaches, we conduct
experiments on simulations and public datasets on a wide range of use cases and observe
that the generative approach does not perform worse than a discriminative one. As
suggested by Ng and Jordan [NJ02], the discriminative models should be at least as
efficient as the generative ones. However, as their construction phase is time consuming
and not deterministic, an irrelevant model can be designed by an evaluator and the resulted
performance can be less efficient than the cVAE-SA due to a poor approximation of the true
unknown expected leakage model. Therefore, considering the cVAE-SA is a good starting
point to define a security bound related to the targeted device. However, on the other
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hand, using the discriminative approach seems beneficial when masked implementations
are targeted because more appropriate unknown combining function can be automatically
retrieved by the related model. This solution cannot be considered with generative models.
Thus, depending on the time he wants to spend on the construction phase, the evaluator
has to select the best way to mount his supervised attacks.

All these results suggest a lot of future works. First, as the cVAE-SA is derived from
the Stochastic Attacks, further investigations can be conducted on this new model in order
to extend the work provided by Choudary et al. [CK15] which consists in performing
profiled attacks beyond 8 bits. Then, as the generative approach aims at approximating
a joint distribution between two random variables, we have to assess the suitability of
using the cVAE-SA as a model to perform non-profiled SCA, or even more generally,
blind SCA. In addition, while the limitations of the discriminative (resp. generative)
approach seem solved by the generative (resp. discriminative) approach, one solution
could be to consider a hybrid model that preserves the automatic sample recombination
property (i.e. discriminative approach) while keeping the explainability/interpretability
and reducing the hyperparameter selection (i.e. generative approach). Finally, while
the discriminative approach does not make any assumption on the noise distribution, its
application is more generic. A solution to enhance the cVAE-SA approach consists in
configuring other latent spaces, maybe more generic than the Gaussian one proposed in
this paper. Those suggestions can be considered as an additional step towards the use of
generative machine learning models in the side-channel context.
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A Visualization of distributions
Evaluators may want to assess the impact of the cVAE-SA model on the leakage distribution.
In this appendix, we use some visualization tools in order to illustrate the impact of the
encoder and the decoder on the leakage distribution. In particular, it helps to illustrate
the theoretical results stated in Sec.3. In that purpose, the following scenario is considered:
a set of 2-dimensional leakage traces is simulated such that the leakage model does not
induce interactions between bits. In detail, the ith time sample of the simulated trace T is
defined as follows:

T[i] =
{

1 · Y [3] + 1 · Y [6] + Z[i] if i = 1,
Z[i] otherwise, (13)

where Y [b] = Sbox[X ⊕ k∗][b] denotes the bth bit of the output of the Sbox and Z[i] is a
Gaussian noise following N (0, σ2) such that σ2 = 1. Following this scenario, three leakage
distributions can be observed depending on the value of the bits Y [3] and Y [6]:

• If Y [3] = Y [6] = 0, the leakage distribution performs similarly to Z. The related
label is denoted by 0.

• If Y [3] = 1 or Y [6] = 1, one bit of Y influenced the leakage distribution. The related
label is denoted by 1.

• If Y [3] = Y [6] = 1, both bits influenced the leakage distribution. The related label is
denoted by 2.

Based on those three leakage distributions, we want to illustrate the ability of the
cVAE-SA to capture the mutual dependency between the leakage traces and the targeted
variable Y . Before the application of the cVAE-SA (see the left plot in Fig.6), it can
be observed that depending on the informative value, an evaluator can retrieve some
information regarding the label processed. Consequently, as the cVAE-SA constructs
synthetic traces that should be similar to the input, the output leakage distribution should
be similar to the one before the application of the encoder, if the cVAE-SA is well trained.
Based on the leakage trace T, the cVAE-SA isolates the deterministic part, i.e. ψ, from
the noise Z (see Sec.3.2). In particular, if the encoder is well configured during the
training process, the ψ̂Θ layer approximates the real unknown ψ function. One solution to
empirically verify such approximation is to visualize the weights that composed the ψ̂Θ
layer (see Sec.4.2). Therefore, the latent space representation should be only characterized
by the noise part Z if the cVAE-SA is well trained. This observation is validated by the
middle plot in Fig.6. As no distinctions can be made regarding the label value, it can
be assumed that the latent space behaves similarly whatever the underlying secret value.
This empirical result confirms the theoretical ones provided in Sec.3.2 and Sec.3.3 (see
the analysis related to the KL-divergence loss). Finally, an evaluator constructs a new
set of synthetic traces based on the latent space and the ψ̂φ layer. This construction is
performed by the decoder and the resulting distributions are illustrated in the right plot
of Fig.6. Through this Figure, it can be observed that the cVAE-SA discriminates each
label following the mean of the related conditional distribution. This confirms the ability
of the model to identify the mutual dependency between the initial leakage traces and
the targeted variable Y . If the cVAE-SA is perfectly trained, the output distributions
should be similar to those introduced in input. In Fig.6, this statement can be confirmed.
First, through the visualization of the latent space, the evaluator can assess that the
noise part of T is well approximated. Indeed, as the informative and non-informative
samples look similar, it can be assumed that the latent representation of the cVAE-SA is
successfully trained. Then, through the visualization of the synthetic leakage traces, the
evaluator observes that the informative sample introduces relevant information regarding
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Figure 6: Evolution of the distributions over the cVAE-SA model when a successful attack
is performed (F9).
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Figure 7: Evolution of the distributions over the cVAE-SA model when a successful attack
is performed (F2).

the targeted variable (i.e. ψ̂φ(Y )). In particular, thanks to Eq.4, it can be assumed that
the synthetic traces follow the Gaussian distribution ND(µT̃,ΣT̃) such that, µT̃ = ψ̂φ and
ΣT̃ = ΣV,Θ. Therefore, when the evaluator conducts a key recovery phase, he exploits the
first-order moment in order to recover information about the secret key. This confirms the
statement provided in Sec.3.4. However, if F9 is configured to approximate the leakage
model when Eq.13 is considered, the model quality can be badly impacted by a poor
estimation of the high order degree of bits’ interaction [MOW17]. A cVAE-SA inducing a
better quality model should consider F2 which alleviates the leakage model complexity by
setting aside bits’ interaction. This statement is illustrated in Fig.7. No huge differences
can be highlights between Fig.6 and Fig.7. However, using such visualization tool can give
a first insight to the evaluator in order to assess the impact of a poor basis choice.

Before performing the key recovery phase introduced in Sec.3.4, an evaluator may want
to assess the suitability of the cVAE-SA training process. In Fig.8, we visualize all the
distributions related to the latent space and the synthetic traces. While the latent space
suggests a good approximation of the noise part, the distributions related to the synthetic
leakage traces illustrate that the informative sample does not perform any discrimination
regarding the targeted variable Y . This observation is consistent with Sec.3.4 which defines
the key recovery phase as successful if the first-order moment of the synthetic leakage
traces provides depends on Y . Consequently, plotting the distributions of each part of the
cVAE-SA (i.e. input data, latent space, output data) can be beneficial to have a better
understanding of the model quality as well as the impact of the leakage model against the
noise.
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Figure 8: Evolution of the distributions over the cVAE-SA model when an unsuccessful
attack is performed (F9).

B Impact of the Noise on Leakage Model Estimation
To verify the benefits of the cVAE-SA, we simulate 10, 000 D-dimensional traces from a
8-bit sensitive variable Y and assess the ability of this new architecture to extract leakage
models. As mentioned in Sec.4, the weight visualization is a suitable tool to identify the
leakage model extracted by the cVAE-SA. Therefore, an evaluator is able to retrieve the
impact of each bit independently as well as all the bits’ interaction. This tool has been
confirmed on different use-cases in Sec.5.2. In this appendix, some simulated traces are
built following three scenarios with different amounts of noise:

• Scenario 1 – We assume that each leakage trace is configured by 3 time samples
such that the leakage model induces the maximum amount of interactions between
bits (i.e. F9). In this scenario, all bits influencing the leakage model have the same
weights. Hence, the ith time sample of the simulated trace T is defined as follows:

T[i] =



1 · Y [1] + 1 · Y [3] + 1 · Y [6]
+ 1 · ⊕1

b=0Y [b] + 1 · ⊕2
b=0Y [b] + 1 · ⊕3

b=0Y [b]
+ 1 · ⊕4

b=0Y [b] + 1 · ⊕5
b=0Y [b] + 1 · ⊕6

b=0Y [b]
+ 1 · ⊕7

b=0Y [b] + Z[i]

if i = 1,

Z[i] otherwise,

where ⊕nb=0Y [b] = Y [0]⊕ . . .⊕ Y [n], Y [b] = Sbox[X ⊕ k∗][b] denotes the bth bit of
the output of the Sbox, and Z[i] is a Gaussian noise following N (0, σ2) such that
σ2 ∈ {0.1, 1, 10}.

• Scenario 2 – We assume that each leakage trace is configured by 4 time samples.
The leakage model does not induce interactions between bits but differs from the
location of the points of interest. Hence, the ith time sample of the simulated trace
T is defined as follows:

T[i] =

 1 · Y [3] + 1 · Y [6] + Z[i] if i = 1,
1 · Y [1] + 1 · Y [7] + Z[i] if i = 2,

Z[i] otherwise,

where Y [b] = Sbox[X ⊕ k∗][b] and Z[i] is a Gaussian noise following N (0, σ2) such
that σ2 ∈ {0.1, 1, 10}.

• Scenario 3 – We assume that each leakage trace is configured by 3 time samples.
The leakage model does not induce interactions between bits such that all bits
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influencing the leakage model have different weights. Hence, the ith time sample of
the simulated trace t is defined as follows:

T[i] =
{

1 · Y [3] + 0.5 · Y [6] + Z[i] if i = 1,
Z[i] otherwise,

where Y [b] = Sbox[X ⊕ k∗][b] and Z[i] is a Gaussian noise following N (0, σ2) such
that σ2 ∈ {0.1, 1, 10}.

Based on the results obtained in Fig.9, Fig.10 and Fig.11, it can be observed that the
cVAE-SA retrieves all the leakage models when moderate SNR level is considered (i.e.
SNR ≥ 10−1). Hence, the cVAE-SA can be used to evaluate the security flaws when large
bits’ interactions are observed, when the deterministic part differs between PoIs and when
a non-uniform weight distribution occurs between bits. As a consequence, large use-cases
can be considered when the cVAE-SA is applied. However, if low SNR level is defined,
the extraction of the leakage model becomes more difficult. Indeed, while an evaluator
retrieves some information on the leakage model related to Scenario 1 (e.g. the highest
peaks of degree 1 indicate that the bits Y [1], Y [3] and Y [6] influence the leakage model,
see Fig.9c), this interpretation can be more difficult when the SNR result is lower (see
Fig.10c and Fig.11c). This result is in accordance with the theoretical ones introduced in
Sec.3.3 which suggest that increasing the noise in the traces makes the deterministic part
extraction more difficult. One solution to mitigate this lack of leakage characterization
consists in acquiring a larger amount of traces [DSVC14, MCHS22] in order to find the
trainable weights Θ and φ which fit the most with the true unknown leakage model.
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(a) σ2 = 0.1 / SNR = 258.51.
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(b) σ2 = 1 / SNR = 2.578.
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(c) σ2 = 10 / SNR = 0.0577.

Figure 9: Weight visualization of the ψ̂Θ layer (encoder) and the ψ̂φ layer (decoder) for
Scenario 1.
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(a) σ2 = 0.1 / SNR = 50.58.
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(b) σ2 = 1 / SNR = 0.509.
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(c) σ2 = 10 / SNR = 0.0319.

Figure 10: Weight visualization of the ψ̂Θ layer (encoder) and the ψ̂φ layer (decoder) for
Scenario 2.
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Figure 11: Weight visualization of the ψ̂Θ layer (encoder) and the ψ̂φ layer (decoder) for
Scenario 3.
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C Explainability on ASCAD-v1
Through this section, we assess the benefits of the cVAE-SA to better explain and
interpret the decision-making of this new statistical model. As mentioned in Sec.2.1, the
interpretation refers to the ability of the evaluator to clearly identify each operation induced
in the model in order to exploit the sensitive information. This includes the construction
of a statistical model, namely cVAE-SA, where the extraction of the leakage model related
to each PoI is fully explainable in order to identify security flaws. Through this section,
a focus is proposed on the ASCAD-v1-R dataset which is introduced in Sec.5.1. This
choice has been motivated because it can be considered as the most challenging targeted
dataset (i.e. protected implementation with first-order masking). Due to the implemented
countermeasure, two scenarios can be considered. The first one suggests that the evaluator
wants to target independently the mask r3 and the masked values with r3 (see [BPS+20] for
deeper details on the implementation). This approach is beneficial to assess the robustness
of the targeted implementation and identify the security flaws without any preprocessing
phase. This scenario will be denoted as the naive approach. The second solution consists in
combining the time samples related to the mask r3 and the masked values with r3 in order
to target the unmasked values (see Sec.4.4). This latter solution is beneficial to identify
the dependence generated by the combining function between the unmasked variable and
a set of traces. This scenario will be denoted as the combining approach. To address the
explainability and interpretability issue, this section will be decomposed into three parts:
the construction of the cVAE-SA based on the theoretical results described in Sec.3.2, the
detection and the extraction of the leakage models once the cVAE-SA is trained, and,
the ability of the cVAE-SA to correctly characterize the first-order moment of the traces
related to the ASCAD-v1-R dataset.

Model construction. Introduced in Sec.3.2, the cVAE-SA structure is adapted to capture
the dependencies between a leakage trace T ∈ RD and a label Y ∈ Fn2 . Therefore, the
cVAE-SA can be used to capture how the mask r3 and the masked values with r3 influence
the physical trace T when the naive approach is considered. The evaluator can construct
two distinct cVAE-SA models (i.e. one for r3 and one for the masked values) based on the
recommendations defined in Sec.3.2. To construct the cVAE-SA architecture, the same
configuration as in Sec.5.2 is considered. Indeed, we select the 8 most relevant samples
related to the mask r3 and the masked values with r3 and then, construct each cVAE-SA
model. The only difference between those models rely on the input provided to the related
cVAE-SA model, namely the trace T and the orthonormal monomial basis used. As
mentioned in Sec.3.4, the network complexity can be defined following the number of
samples s included in the traces, the degree of interaction d between the time samples and
the dimension n of the targeted variable such that it equals (2s · ((s+ 1) + 1 +

∑d
i=0
(
n
i

)
))

if ΣV,Θ is reduced to σ2
V,Θ. Through this section, we define s = 8, d = 8 and n = 8.

Thus, the complexity of the cVAE-SA model targeting the mask r3, or the masked values,
equals 4, 256. This is confirmed in Tab.5. Another solution consists in constructing a
single cVAE-SA model by considering the concatenation of the orthonormal monomial
basis of r3 and the one related to the masked value with r3 as label Y . This configuration
can be defined as a multi-task learning strategy and has already been studied in Sec.4.2.
Therefore, this section will be only focused on the construction of two distinct cVAE-SA
models.

For the combining approach, the time samples related to the mask r3 have to be
combined with the one related to masked values in order to create dependency between
the trace T and the targeted unmasked variable. Therefore, a preprocessing step is needed
where the evaluator has to choose a combining function among the solutions introduced in
the state-of-the-art [CJRR99, Mes00, PRB09]. Once this preprocessing is conducted, the
evaluator constructs the cVAE-SA model (see Sec.3.2) such that the inputs of the encoder
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Table 5: Information on the cVAE-SA model considered in this setting (batch size = 256).
Approach cVAE-SA model Learning rate Nb epochs Network complexity Training time

Naive cVAE-SAmsk 10−1 10 4, 256 37s
cVAE-SAmsked 10−3 20 4, 256 66s

Combining cVAE-SAunmsked 10−3 100 41, 216 534s

are defined by the combined traces and the orthonormal monomial basis related to the
targeted unmasked variable. For this approach, the number of time samples to target
equals 64. Therefore, by applying the same proposition as previously, the evaluator can
easily configure the cVAE-SA with a complexity of 41, 216 trainable parameters. All the
information related to each cVAE-SA model is provided in Tab.5.

Leakage model extraction. Once all the cVAE-SA models are trained, the evaluators can
take advantage of the explainability property of this new contribution to get a better insight
on the exploited leakage models. As mentioned in Sec.4.2, the evaluator can visualize the
trainable parameters Θ (resp. φ) that composed the ψ̂Θ (resp. ψ̂φ) layer induced in the
encoder (resp. the decoder) in order to detect which part of the targeted variable leaks. In
other words, this analysis is helpful to identify the bits, and the interactions, that influence
the physical consumption of the targeted implementation. This is highly beneficial to
explain the information that is extracted by the cVAE-SA. Through Fig.12, it can be
observed that depending on the targeted variable (i.e. the mask r3, the masked values or,
the unmasked values), the leakage model as well as the coefficient values differ. Indeed,
the highest absolute value is observed when the cVAE-SA targets the mask r3 while the
lowest absolute value is denoted for the masked variable. Therefore, the approximation of
the first-order moment varies depending on the targeted variable.

When the mask r3 is considered, the visualization indices in Fig.12a is beneficial to
recover the leakage model extracted by the cVAE-SA. A first observation can be made
to denote that all the time samples have a similar leakage model. Even if the coefficient
values related to each bit of r3 differ, the same bits leak for all PoIs. Through Fig.12a, the
evaluator can retrieve which bit influences the physical trace by highlighting the ones with
a discriminative coefficient Θ and φ. For the mask r3, the following bits {0, 1, 2, 3, 4, 6, 7}
have a coefficient that differs from the non-informative interaction, i.e. when Θ and φ are
greater than 1. This analysis allows the evaluator to define an ascending leakage order
to highlight the bit which leaks the most (in absolute value). In this configuration, the
following order is observed: r3[6] < r3[7] < r3[4] < r3[2] < r3[3] < r3[0] < r3[1] such that
r3[i] denotes the (i+ 1)th bit of r3. Therefore, the bit that leaks the most is r3[1]. The
same process can be conducted for the masked variable (see Fig.12b) and the unmasked
variable (see Fig.12c). When the masked values with r3 is targeted, the leakage model
approximated by the encoder and the decoder identify the 1st bit and the 5th bit as the
only source of information that can be extracted from cVAE-SAmsked. All the PoIs share
the same leaking bits. Finally, once the optimal recombination is conducted, the leakage
model that is retrieved by the cVAE-SAunmsked network is influenced by the following
bits {0, 1, 2, 3, 4} such that the following leakage order is observed (in absolute value):
Sbox[X⊕k∗][3] < Sbox[X⊕k∗][2] < Sbox[X⊕k∗][1] < Sbox[X⊕k∗][4] < Sbox[X⊕k∗][0].

Those results are beneficial for the evaluator to explain and interpret the decision-
making process of each cVAE-SA model. If this basis characterizes the switching activity
of the circuit, this analysis highlights specific exploitable security flaws in ASCAD-v1-R.
All those observations cannot be observed when classical (discriminative) DLSCA models
are considered. Those interpretable results can only be provided because the cVAE-SA is
designed from the fully explainable stochastic attack [SLP05].
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Figure 12: Leakage model extracted depending on the targeted variable.41
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Figure 13: Distribution of the latent space depending on the targeted sensitive variable.

Model quality. Once the leakage models extracted by the cVAE-SA are fully interpreted,
the evaluator may wonder if additional information could be extracted. To conduct such
verification, the evaluator can plot the evolution of the distribution over the cVAE-SA
(see Sec.A) to assess the estimation of the first-order moment that is required to retrieve
the secret key (see Sec.3.4). Therefore, he can visualize if the input and the output
distributions of the cVAE-SA are similar. If this result is positive, the estimation of the
first-order moment induced in the cVAE-SA can be considered as effective. Otherwise, some
refinements can be provided on the hyperparameter values (e.g. learning rate, batch-size,
number of epochs, . . . ). While App.A proposes to observe the distribution related to the
leakage traces, the latent space and the synthetic leakage traces, an evaluator only requires
the distribution of the latent space and the estimation of the leakage model of the encoder
and the decoder to assess if the cVAE-SA correctly approximates the first-order moment
induced in the leakage traces. Indeed, following Sec.3.2 and Sec.3.3, we can note that the
latent space should be representative of the noise distribution such that it is forced to follow
ND(0, ID) by the KL-divergence loss. Therefore, if the encoder of the cVAE-SA model is
correctly trained, the latent representation does not depend on the deterministic part of
the leakage trace. Similar latent representations should be obtained whatever the targeted
variable. This observation is confirmed in Fig.13 where the visualization of the distribution
is proposed on two time samples in order to ease the readability of the experimental results.
Therefore, the encoder is effectively trained and the related trainable parameters, namely Θ,
correctly retrieve the targeted unknown leakage model. Then, via the visualization of the
trainable parameters φ in Fig.12, it can be mentioned that the decoder approximates the
targeted unknown leakage model because it is similar to the one extracted by the encoder.
The extraction of the leakage model is consequently effective for both samples analyzed in
Fig.13. The analysis of the model quality has also been conducted on other time samples
in order to verify the extraction each leakage model. The obtained results help us to verify
that the cVAE-SA extracts effectively the first-order moment that is needed to retrieve the
secret key. As mentioned in Sec.3.4, if the latent space distribution follows ND(0, ID), the
first-order moment is only defined by the extracted leakage model ψ̂φ. The justification
provided in this section helps the evaluator to validate the suitability of the training pro-
cess as well as justify the ability of an adversary to extract the secret information (see Sec.5).

Based on the ASCAD-v1-R dataset, we identify the benefits of using the cVAE-SA
model in order to enhance the explainability and the interpretability of the neural network
in the DLSCA field. Through this study, we demonstrate that the construction of cVAE-SA
models can be easily conducted whatever the targeted variable. This is highly beneficial
from an evaluation perspective because the time for the hyperparameters search becomes
negligible. Then, because all the operations induced in the cVAE-SA are known (see
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Sec.3.2), the evaluator can take advantage of this benefit in order to identify which leakage
model is extracted in each PoI of the traces. Based on each leakage model, he can identify
the security flaws induced in the circuit if the chosen basis characterizes the switching
activity. Finally, because the trainable parameters of the cVAE-SA model are interpretable,
the evaluator can assess the suitability of the training process by identifying if the first-order
moment of the synthetic traces is representative of the first-order moment of the true
leakage traces. All those observations cannot be conducted with classical DLSCA models
due to the black-box property of the discriminative approach.
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