
Apple vs. EMA:
Electromagnetic Side Channel Attacks on Apple CoreCrypto

Gregor Haas, Aydin Aysu
{ghaas,aaysu}@ncsu.edu

North Carolina State University
Raleigh, NC, USA

ABSTRACT
Cryptographic instruction set extensions are commonly used for

ciphers which would otherwise face unacceptable side channel risks.
A prominent example of such an extension is the ARMv8 Crypto-
graphic Extension, or ARM CE for short, which defines dedicated
instructions to securely accelerate AES. However, while these exten-
sions may be resistant to traditional "digital" side channel attacks,
they may still vulnerable to physical side channel attacks.

In this work, we demonstrate the first such attack on a standard
ARM CE AES implementation. We specifically focus on the imple-
mentation used by Apple’s CoreCrypto library which we run on the
Apple A10 Fusion SoC. To that end, we implement an optimized side
channel acquisition infrastructure involving both custom iPhone
software and accelerated analysis code. We find that an adversary
which can observe 5-30 million known-ciphertext traces can reliably
extract secret AES keys using electromagnetic (EM) radiation as a
side channel. This corresponds to an encryption operation on less
than half of a gigabyte of data, which could be acquired in less than
2 seconds on the iPhone 7 we examined. Our attack thus highlights
the need for side channel defenses for real devices and production,
industry-standard encryption software.
1 INTRODUCTION

Symmetric-key block ciphers are a pillar of modern cryptosystems
used in healthcare, finance, education, and consumer electronics ap-
plications, among others [19]. The most common symmetric cipher
is the Advanced Encryption Standard (AES) [7]. AES is based on
a series of diffusing, confusing, and nonlinear operations repeated
for several rounds. While AES is, so far, mathematically secure, its
implementation can still be vulnerable. Side channel attacks, for
example, correlate secret-key dependent operations with implemen-
tation behaviors such as execution time [3], power consumption [18]
or electromagnetic (EM) radiation [9].

Software-based implementations of AES often rely on lookup
tables to store various constants. In particular, efficient implementa-
tions rely on so-called t-tables [8], which collectively store about 4kB
of constants used in the encryption process. These t-tables have been
shown to be highly susceptible to cache-based timing side-channel
attacks—even adversaries with limited capabilities [3] are able to
extract full AES keys from such implementations given enough mea-
surements. If adversaries are given additional capabilities, such as
active cache manipulation, several attacks are possible which extract
keys more efficiently [11, 23, 27].

In response to these cache attacks, CPU designers now include in-
struction set extensions which can implement AES without auxiliary
memory accesses. Typically, these instructions execute in a proces-
sor’s floating-point pipeline due to the availability of larger registers
which can accommodate the entire cryptographic state. Both Intel
[1] and ARM [13] have specified such instruction set extensions
(AES-NI and ARM CE, respectively). Although these implementa-
tions can mitigate digital side-channels abusing cache timing, they
can be vulnerable to physical side-channel attacks such as those
that use power consumption or EM radiation. To the best of our
knowledge, a physical side-channel attack on AES-NI has recently

been shown [20], but the vulnerability of ARM CE implementations
is, as of yet, unknown.

In this paper, we present the first physical side-channel attack on
an ARM CE based AES implementation. We target the ARM CE code
from Apple’s CoreCrypto library, which is the standard provider
of cryptographic functionality on iPhones [16]. We specifically use
EM side channel measurements for our attack. To instrument our
attack, we reverse-engineered the iPhone’s printed circuit board
(PCB) and developed a test infrastructure that allows sending inputs
and observing outputs directly on the main processor. This hardware-
based research is then coupled with a recent research toolkit [12]
which exploits an iPhone boot vulnerability and allows us to execute
arbitrary code on an iPhone 7’s ARM processor. Finally, targeting
Apple’s own cryptography library [15], we acquire a high number of
side channel traces and show that inputs and outputs can be observed
using leakage assessment techniques [5, 25]. We next proceed to
show an attack on AES intermediates, and describe how correlation
for these can leak the secret key being used. Specifically, we find
that unprivileged adversaries can extract secret keys from this AES
implementation when observing encryption operations on less than
half of a gigabyte of data.
1.1 Contributions

We specifically make the following contribution in this work:
(1) Extending a recently published research toolkit [12], we create

a high-speed acquisition platform which allows us to collect
and analyze >16000 side channel traces per second.

(2) As part of the acquisition platform, we make several novel
modifications to an iPhone 7 printed circuit board (PCB).

(3) We target a common Apple SoC running at a high frequency
rate (2.34GHz) with a realistic adversarial model.

(4) For the first time, we show that a RISC-style AES instruction
set extension is vulnerable to EM-based side channel attacks.
We do so by showing known-key correlations for both in-
put/output and cipher intermediates, as well as analyzing the
attack’s performance in an unknown-key setting.

2 BACKGROUND
In this section, we present background information on the mathe-

matical underpinnings of the cryptosystem under attack, as well as
the concrete instantiation which we are targeting in this work. We
then present a brief summary of the statistical techniques which we
use in our attack. Finally, we conclude with a literature review of
relevant prior work and identify some gaps in the research, which
we aim to fill in this paper.
2.1 Advanced Encryption Standard (AES)

We consider AES128 in the ECB mode of operation. In this mode,
AES consists of 10 rounds of encryption, as well as a preliminary
key expansion phase—details of key expansion are out of scope for
this work. Each encryption round is composed of the AddRoundKey,
SubBytes, ShiftRows, and MixColumns operations. Specifically, the
first 9 rounds consists of each of these operations in order, but the
last round replaces MixColumns with another AddRoundKey. The
AES state 𝐴0−3,0−3 and key state 𝐾0−3,0−3 are both indexed as 2D



4 × 4 arrays. Each AES operation takes a 16-byte input state 𝐴 and
produces a 16-byte output state 𝐴′, sometimes aided by a lookup
table1. Updates to the output state are simultaneous for all bytes.
Indices for all states are taken modulo 4—this notation is implied,
and excluded for brevity. The AES operations are:

• AddRoundKey: 𝐾𝑟 is a round key: 𝐴′
𝑦,𝑥 = 𝐴𝑦,𝑥 ⊕ 𝐾𝑟𝑦,𝑥

• SubBytes: 𝑆 is a 256-byte lookup table: 𝐴′
𝑦,𝑥 = 𝑆

[
𝐴𝑦,𝑥

]
• ShiftRows: 𝐴′

𝑦,𝑥 = 𝐴𝑦,𝑦+𝑥
• MixColumns:𝑋 is a 4-byte lookup table:𝐴′

𝑦,𝑥 =
∑3
𝑖=0 𝑋𝑖−𝑦𝐴𝑖,𝑥

2.2 ARM-CE AES
ARM defines its cryptographic extensions (CE) as additional in-

structions which execute in the processor’s NEON floating point unit
(FPU) [13]. While various instructions are defined in the ISA exten-
sion, only two are relevant for this work: aese, which implements
AddRoundKey, SubBytes, and ShiftRows, and aesmc which imple-
ments MixColumns. In typical AES implementations using ARM CE,
these instructions are executed in a loop. Each iteration fetches the
next round key 𝐾𝑟 , executes aese and aesmc, and then branches
conditionally if more rounds must be computed. In this work, we
specifically attack Apple’s implementation (downloaded from [15])
in the file acceleratecrypto/Source/aes/arm64/encrypt.s.

2.3 Correlation Power Analysis (CPA)
CPA [5] is a statistical technique for extracting secret informa-

tion from side channel traces. CPA uses such traces defined as
𝑇 = {𝐷, 𝑠0, 𝑠1, . . . , 𝑠𝑛−1}, consisting of 𝑛 evenly spaced time-domain
samples as well as some associated data𝐷—for our attack,𝐷 contains
a plaintext 𝑃 and corresponding AES-encrypted ciphertext 𝐶 . Then,
the goal of a CPA attack is to extract evidence for secret values of
some secret-derived intermediate. To do so, we must define a leak-
age model L(𝐷,K) which (for our attack) returns the estimated EM
activity for the known associated data 𝐷 and some guess K for the
unknown secret 𝐾 . Then, after obtaining𝑚 side channel traces and
calculating the associated leakage models, we can calculate Pearson’s
correlation coefficient at each sample index 𝑖:

𝜌𝑖 =
Σ𝑚−1
𝑗=0 (L(𝐷 𝑗 ,K) − 𝜇𝑃 ) (𝑠 𝑗,𝑖 − 𝜇𝑖 )

𝜎𝑃𝜎𝑖
(1)

where 𝜇𝑖/𝑝 , 𝜎𝑖/𝑝 represent themean and standard deviation across
all of the samples at a specific index 𝑖 and of the leakage models,
respectively. Higher values of 𝜌𝑖 then indicate that we observe the
hypothesized activity from the leakage model at that specific sample
index 𝑖 , and can also provide evidence that the guessed secret value
K is correct, compared to other guesses.

2.4 Previous Attacks on ARM CPUs
Previous works have dealt with EM attacks on ARM processors

generally, as well as iPhones specifically. Most notable is [10], where
the authors are able to extract secret ECDSA keys from iPhones using
low-cost EM acquisition equipment and unmodified iOS software.
However, this is a rather coarse-grained attack on an asymmetric
cryptosystem, and the side channel information is mainly used to
infer control flow. Such an attack is not applicable to symmetric
cryptosystems such as AES.

Other work [22] has focused on analyzing the various AES imple-
mentations of the BeagleBone Black, an ARM-based development
board. In this work, the authors use an EM-based side channel at-
tack to break AES as implemented in software, a proprietary crypto
coprocessor, and a NEON-based implementation. We note that while
the authors also attack the NEON FPU, they target a bitsliced [4, 17]
implementation which does not utilize ARM-CE. Similarly, further
1𝑆 = [0x63, 0x7c, . . . , 0x16], 𝑋 = [2, 3, 1, 1]

work [2] has shown that such EM attacks can succeed even against
masked, bitsliced, software implementations of AES.

More recent work [21] has shown that Apple’s proprietary AES
coprocessor hardware is also vulnerable to EM side channel attacks.
The attack is shown on significantly older model of iPhone (e.g.,
iPhone 4) and argued to be infeasible for iPhone 6 and future gen-
erations. We also note that this coprocessor is primarily used for
user authentication and firmware decryption rather than general-
purpose cryptography. For many use cases outside of these, Apple’s
cryptographic library will prefer an ARM CE implementation.

3 THREAT MODEL
Our threat model follows the standard physical side-channel at-

tack threat model of prior work [10, 20–22]. We consider adversaries
(not necessarily privileged) who have the ability to observe electro-
magnetic radiation from a victim device, while the device is executing
a cryptographic operation utilizing an ARM CE-based AES imple-
mentation. The adversary knows both the input plaintext as well as
the output ciphertext and aims to extract the secret key. Our attack
is significantly improved if the adversary has access to accurate
timestamps collected at the beginning of each 128-bit encryption
block (Section 4.2). However, this is not a hard requirement—lack of
such knowledge only leads to increased trace acquisition times.

Unlike template [6] or machine-learning [14] based attacks, our
attack does not require building precise models by configuring all
(or a representative set of) possible sub-keys on each device. Instead,
we conduct an unprofiled attack with CPA. Our attack is therefore
more generic and assumes a weaker adversary. We still do initially
configure the device with a known key to analyze which operations
leak more information in order to design the run-time attack (Section
4.3). However, this must only be done once for a specific device
family or software, and the final attack at runtime does not require
profiles/models.

3.1 Victim Behavior
As described in our results (Section 5), our attack requires on

the order of 5-30 million traces to succeed. This corresponds to a
cryptographic operation on approximately 80-480 megabytes of data.
Thanks to our preprocessing approach, this data could be collected
in a single trace (assuming a CBC or sequential ECB, etc mode of
encryption) and then split apart into its component encryption oper-
ations.Wemeasured an average encryption time of 62.5 nanoseconds
per 128-bit block, so all necessary data could be acquired within 0.313
- 1.875 seconds. Example mobile applications which might fit this
execution model could include encrypted cloud backup solutions
(such as iCloud [16]) or decryption of system software updates. We
argue that such applications are realistic targets for the attack we
present in this work. Prior work [20, 24] requires a similarly high
number of traces, but also requires much longer data acquisition
times (approximately 2 weeks).

4 PROPOSED ATTACK
iPhones are a nontrivial platform to perform hardware security

research on. Therefore, we use the iTimed toolkit [12] to bootstrap
our research. We first compile a custom Linux kernel which runs on
our target iPhone 7. Then, within the kernel, we implement a custom
system call which allows for our victim code to execute atomically,
without interrupts. We integrate Apple’s ARM-CE AES implementa-
tion [15] into the Linux kernel’s cryptography infrastructure, which
allows us to evaluate its side channel security. The Linux kernel also
includes other highly useful functionality, such as GPIO control and
CPU frequency scaling. We note that, due to the scalability of the
iTimed toolkit [12], our attack can work similarly for all iPhones up
to the iPhone X.



Figure 1: Overall view of our full experimental infrastructure. Components near the victim iPhone are highlighted for clarity.

Figure 2: Closer view of the victim iPhone in Figure 1, follow-
ing the same highlighting scheme. Additionally highlighted
in orange is theAppleA10 SoC,whosefloating-point pipeline
is the target of this work. (Inset, bottom left) An EM heatmap
obtained by scanning the surface of the SoC, and filtering
for the 2.34GHz operating frequency. This heatmap helped
inform our probe placement near the chip’s top edge.

4.1 iPhone 7 PCB Setup
Figures 1 and 2 are pictures of our acquisition infrastructure. For

collecting measurements, we use a Teledyne Lecroy Waverunner
8104 running at 10GHz and collecting traces 32 million samples long
(discussed more in the following section). A Riscure low-sensitivity
(LS) EM probe sits above our region-of-interest on the target iPhone.
The exact position of the probe is set by scanning the chip surface,
generating an EM heatmap by filtering for the clock frequency, and
positioning the probe to the high activity region. Power is supplied by
a Keithley 2260b-30-36 DC power supply, through a custom battery
connector into the iPhone’s logic board. We connect the oscilloscope
trigger to an exposed, software-controllable GPIO pin on the logic
board—this allows us to reliably measure AES encryptions if we set
the GPIO pin high before.

Prior research toolkits [12] allow us to set the encrypting CPU’s
frequency to 2.34 GHz for each of our experiments—this is the maxi-
mum value. This makes the attack as hard and as realistic as possible.
In addition, we developed several hardware modifications to the
iPhone 7 PCB which further increase the efficiency of our acquisi-
tion infrastructure. For example, we probe the aforementioned GPIO
pins using a set of needle probes—finding the physical locations
of these software-controllable pins required an extensive reverse-
engineering process. Furthermore, the custom battery connector
was precisely extracted from a real iPhone 7 battery so that we could
externally and stably power the iPhone for long experiment runs.

4.2 EM Acquisition Methodology
Our experimental setup sends plaintexts𝑀 to the target device,

coordinates the aforementioned acquisition equipment, and then
receives the final ciphertext 𝐶 after encryption completes. At first,
we simply captured EM traces for one plaintext at a time—however,
this approach led to high acquisition times for the number of traces
our attack requires (Section 5). We thus follow approaches suggested
in previous works [25], and instead acquire EM traces which contain
side channel data for multiple plaintexts.

Our experimental setup first sends one plaintext𝑀0 to the device,
and then triggers the acquisition setup. The device then proceeds
to iteratively encrypt this plaintext, such that it first encrypts 𝑀0,
then 𝑀1 = 𝐸𝐾 (𝑀), then 𝑀2 = 𝐸𝐾 (𝑀1), up to a set number of
iterations 𝑖 . Before each encryption, the device collects a timestamp
𝑇𝑖 which is used when preprocessing the traces. For this specific set
of experiments, our acquisition equipment allowed us to set 𝑖 = 3000
resulting in traces approximately 32 million samples long. By doing
so, we increased our side channel acquisition speed by two orders
of magnitude, up to approximately 16000 plaintexts per second.
4.2.1 Trace Unpacking. Before they can be used for side channel
processing, these long traces first need to be "unpacked" into sub-
traces. Specifically, for each message𝑀𝑖 , we need to find the set of
associated EM samples in the time domain. We do so with a dual
approach. First, we define some reference sample pattern (of length
𝑛 samples) which always occurs right before the target encryption.
Then, we calculate Pearson’s correlation coefficient between each
subpattern of length 𝑛 in the side channel trace and the reference
pattern. We developed a highly optimized, GPU-accelerated Pearson
correlation implementation, so we find that this calculation is not



Figure 3: EM side channel trace at various zoom levels. Red
lines below the trace indicate regions for which we have only
the timing measurement. Green lines above the trace indi-
cate regions for which we also have a reliable pattern match.
(a) A full EM trace, containing 32000000 samples and 3000
encryptions. (b) Zooming in to an interrupt (with no timing-
confirmed encryptions) between 1.24 ms and 1.25 ms, as well
as a following region of high-noise missed subtraces. (c) In-
dividual subtraces containing 8 repeated encryptions of the
same plaintext, with some noise.

a bottleneck in practice. Then, with knowledge of likely pattern
matches and the average encryption time, we can begin extracting
subtraces with the correct associated data𝑀𝑖 .

However, we find that our EM traces sometimes exhibit sporadic
noise or idle regions as if the encryption process were interrupted—
see, for example, Figure 3 between 1.24 ms and 1.25 ms. In these cases,
we find that there are often "gaps" in between confirmed encryption
pattern matches where we expect to see one or more other subtraces,
based on average encryption time. This situation is problematic—if
we do not know how many "missed" subtraces are contained within
a gap, we can no longer derive the correct associated plaintext𝑀𝑖 for
any matched subtraces after the gap. Therefore, we cross-reference
with the collected timing measurements 𝑇𝑖 to determine how many
subtraces are missed due to noise or interrupts. This approach allows
us to reliably associate𝑀𝑖 with the corresponding EM samples, while
maintaining data integrity, greatly decreasing acquisition time, and
only marginally increasing computation time.

Figure 3 shows an average long EM trace, visualized at three dif-
ferent zoom levels. Our subtrace extraction algorithm categorizes
subtraces according to both reliable pattern matches and correspond-
ing timing measurements. In our subsequent analyses, we discard
subtraces for which we do not have a good pattern match due to
noise. However, we must still know how many such subtraces are
missed in noisy regions so we can derive the correct 𝑀𝑖 . For all
following experiments, we use the automatically extracted subtraces
associated with their correct𝑀𝑖 .

Figure 4: Known-key correlation plots for each AES oper-
ation in each round. The correlation plots for all 16 byte
positions are superimposed in each subplot. Clearly, the
Mixcolumns operation leaks most regularly aside from early,
input correlation-derived peaks.

4.3 Leakage Models
Next, we need to identify a leakage model L(𝐷,K) as discussed

in Section 2.3. To do so, we first investigate which intermediate
values might leak by running a known-key analysis. In this analysis,
we assume that the adversary knows the secret key 𝐾 and thus
the value of each byte of intermediate AES state. We emphasize
that this approach is merely used as an initial security evaluation—
in our final attack, we do not assume that the adversary has such
knowledge. Then, having identified the MixColumns operation as
potentially vulnerable, we define a CPA attack which will later allow
us to extract the key (Section 5).
4.3.1 Known-key Evaluation. For the known-key evaluation, we
define 656 leakage models2 L𝑜,𝑟𝑦,𝑥 (𝐷,𝐾). Each leakage model returns
the Hamming weight of byte 𝑦, 𝑥 in the intermediate state produced
after executing operation 𝑜 ∈ [pt, add, sub, sh, mix] in round
𝑟 ∈ [0 − 9]. Each operation in 𝑜 corresponds to an AES operation
as defined in Section 2.1, respectively—the operation pt is a special
case, denoting the input plaintext to the cryptosystem. As an exam-
ple, given that the associated data 𝐷 contains the plaintext 𝑃 and
ciphertext 𝐶 , we would have the following leakage models:

Lpt,−
𝑦,𝑥 (𝐷,𝐾) = 𝐻𝑊

(
𝑃𝑦,𝑥

)
Ladd,0
𝑦,𝑥 (𝐷,𝐾) = 𝐻𝑊

(
𝑃𝑦,𝑥 ⊕ 𝐾0

𝑦,𝑥

)
Lsub,0
𝑦,𝑥 (𝐷,𝐾) = 𝐻𝑊

(
𝑆 [𝑃𝑦,𝑥 ⊕ 𝐾0

𝑦,𝑥 ]
)

. . .

Lsh,9
𝑦,𝑥 (𝐷,𝐾) = 𝐻𝑊

(
𝐶𝑦,𝑥 ⊕ 𝐾𝑙𝑎𝑠𝑡𝑦,𝑥

)
Ladd,9
𝑦,𝑥 (𝐷,𝐾) = 𝐻𝑊

(
𝐶𝑦,𝑥

)
(2)

For each of these leakagemodels and sample indices 𝑖 , we calculate
Pearson’s correlation coefficient 𝜌𝑜,𝑟,𝑖𝑦,𝑥 and sort the corresponding
coefficients by magnitude. We then focus on the highest-magnitude
correlations for attacks on an unknown key.
4.3.2 MixColumns. Figure 4 shows the results of our known-key
analysis for each AES operation in each round. We observe high-
magnitude intermediate correlations both near the beginning and the
end of the encryption process—these correlations are tightly coupled
to input/output (IO) correlations, and thus not entirely useful for
unknown-key intermediate correlations. More notably, we also see
correlation spikes for outputs of the AddRoundKey and MixColumns

216 byte positions * (4 operations/round * 10 rounds + 1 plaintext state)



operations within the temporal region of interest. Comparatively, the
MixColumns correlation spikes have consistently high magnitudes
suggesting that Apple’s implementation of aesmc leaks sensitive
internal cryptographic data. It is this operation which we target in
our subsequent attacks.
4.3.3 Unknown-Key Correlation. Knowing now that we wish to
target the output of MixColumns operations, we must decide on a
suitable leakage model which can capture the correlation between
𝐷-derived intermediates and the trace samples𝑇 = {𝑠0, 𝑠1, . . . , 𝑠𝑛−1}.
Specifically, we need a model which returns the Hamming weight of
some byte from the output𝑀 of some internal MixColumns, specified
in terms of 𝐷 and some key guess(es) K . Two such options are
available, both of which we derive.

The first option would calculate some selected byte in the output
of MixColumns in AES round 0, based entirely on the values of the
plaintext 𝑃 . However, due to the diffusion properties of MixColumns
[7], each byte of this intermediate actually depends on the values
of 4 bytes in 𝑃 and thus 4 bytes of key guesses. This can be seen
by deriving the output of the target MixColumns (notated 𝑀0) in
terms of plaintext 𝑃 and key guessesK , utilizing intermediate states
𝑅, 𝐵,𝐴 corresponding to the outputs of the first round’s ShiftRows,
SubBytes, and AddRoundKey operations respectively:

𝑀0
𝑦,𝑥 =

3∑
𝑖=0

𝑋𝑖−𝑦𝑅0𝑖,𝑥 =

3∑
𝑖=0

𝑋𝑖−𝑦𝐵0𝑖,𝑥−𝑖

=

3∑
𝑖=0

𝑋𝑖−𝑦𝑆
[
𝐴0
𝑖,𝑥−𝑖

]
=

3∑
𝑖=0

𝑋𝑖−𝑦𝑆
[
𝑷𝒊,𝒙−𝒊 ⊕ 𝑲𝒊,𝒙−𝒊

] (3)

If we were to proceed with this hypothetical attack, we would
have to define one leakage model for each of the 232 possible com-
binations of K for each target byte 𝑀0

𝑦,𝑥 . This quickly becomes
computationally infeasible.

The second option instead calculates some selected byte in the
output of the last MixColumns operation in round 8, based on the
values of the ciphertext𝐶 . To do so, all we need to do is invert round
9 from the known 𝐶 back to the output of MixColumns in round 8:

𝐶𝑦,𝑥 = 𝐴𝑙𝑎𝑠𝑡𝑦,𝑥 = 𝑅9𝑦,𝑥 ⊕ 𝐾𝑙𝑎𝑠𝑡𝑦,𝑥 = 𝐵9𝑦,𝑥−𝑦 ⊕ 𝐾𝑙𝑎𝑠𝑡𝑦,𝑥

= 𝑆 [𝐴9
𝑦,𝑥−𝑦] ⊕ 𝐾𝑙𝑎𝑠𝑡𝑦,𝑥 = 𝑆 [𝑀8

𝑦,𝑥−𝑦 ⊕ 𝐾9
𝑦,𝑥−𝑦] ⊕ 𝐾𝑙𝑎𝑠𝑡𝑦,𝑥

→ 𝑀8
𝑦,𝑥−𝑦 = 𝑆−1 [𝑪𝒚,𝒙 ⊕ 𝑲 𝒍𝒂𝒔𝒕

𝒚,𝒙 ] ⊕ 𝑲9
𝒚,𝒙−𝒚

→ 𝑀8
𝑦,𝑥 = 𝑆−1 [𝑪𝒚,𝒙+𝒚 ⊕ 𝑲 𝒍𝒂𝒔𝒕

𝒚,𝒙+𝒚 ] ⊕ 𝑲9
𝒚,𝒙

(4)

This derivation, in contrast to the previous one, only depends on
one ciphertext byte and two key guess bytes. We thus only need
to define leakage models for 216 possible combinations of K for
each target byte 𝑀8

𝑦,𝑥 , which represents a significant speedup in
computation time. For our unknown-key attacks in Section 5, we
thus use the following leakage model:
L

(
𝐷,K𝑙𝑎𝑠𝑡

𝑦,𝑥+𝑦,K9
𝑦,𝑥

)
= 𝐻𝑊

(
𝑆−1

[
𝐶𝑦,𝑥+𝑦 ⊕ K𝑙𝑎𝑠𝑡

𝑦,𝑥+𝑦
]
⊕ K9

𝑦,𝑥

)
(5)

5 RESULTS
In order to extract an unknown-key from EM side channel traces,

we define a leakage model L(𝐷,K𝑙𝑎𝑠𝑡
𝑦,𝑥+𝑦,K9

𝑦,𝑥 ) for each byte posi-
tion (𝑦, 𝑥) and key guess combination (K𝑙𝑎𝑠𝑡

𝑦,𝑥+𝑦,K9
𝑦,𝑥 ) ∈ {0 − 255}2.

We then collect long EM traces using our accelerated acquisition
approach (Section 4.2) and preprocess them into subtraces (Section
4.2.1). Finally, using each subtrace, we calculate the Pearson correla-
tion between each defined leakage model and subtrace data index
and sort the leakagemodels based on peak absolute-value correlation.
This sorting order then becomes the basis for our attack, under the
assumption that higher correlation values indicate higher probability
that the key hypothesis is correct.

Figure 5: Raw correlation plots from the unknown-key attack
on𝐾0,0. The correlation for the correct guess is shown in blue,
the inverse guess in red, and incorrect guesses in gray. (a)Cor-
relation plotted against time. The leaky temporal region is
highlighted. (b) Correlation plotted against number of traces.
This key position begins leaking at 10 million subtraces.

5.1 Correlation Plots
Figure 5 shows an example correlation trace for 𝐾0,0, as well as

the correlation coefficient’s evolution across number of traces. In the
top subfigure, we highlight the temporal region of interest for which
we see the maximum correlation for the correct key guess—note that
this region closely lines up with the peak in round 8 of Figure 4. The
bottom subfigure shows the correlation coefficient’s evolution as the
number of subtraces increases. We can see that, for both the correct
and the inverse (Section 5.1.1) key guesses, the absolute correlation
magnitude consistently stays above the magnitudes for incorrect key
guesses. This indicates that correct key guesses are distinguishable,
and thus lead to key extraction for this byte position.
5.1.1 Inverse guesses. For some byte positions (𝐾0,2, 𝐾0,3, 𝐾2,1, 𝐾3,3
in Figure 6), we see a consistently strong false positive which has a
similar, high absolute correlation as the correct key guess. We find
that this false positive is always due to the leakage model where
K𝑙𝑎𝑠𝑡
𝑦,𝑥+𝑦 = 𝐾𝑙𝑎𝑠𝑡𝑦,𝑥+𝑦 and K9

𝑦,𝑥 = 𝐾9
𝑦,𝑥 , i.e., the last round key guess is

correct, but the second-to-last round key guess is the bitwise NOT of
the correct guess. We thus name this false positive the inverse guess.

When comparing the correlation plots for the inverse guess to
the correct guess, we see inverse correlations (Figure 5). That is, a
strong positive correlation for the correct key guess will be reflected
as a strong negative correlation for the inverse guess. We note that
within our temporal region of interest, the correct key guess always
has the positive-magnitude correlation. Therefore, the presence of
the single inverse guess does not harm our attack since it is always
possible to distinguish it from the correct guess.
5.2 Per-Position Results

Figure 6 shows the results of an unknown-key attack as described
above. For each key index, and for various amounts of accumulated
subtraces, we plot the guessing entropy [26] at each byte position.
Recall that each byte index will have 256 ∗ 256 = 216 leakage models
associated with it. After sorting by Pearson correlation, we find the
index I of the correct leakage model (where K𝑙𝑎𝑠𝑡

𝑦,𝑥+𝑦 = 𝐾𝑙𝑎𝑠𝑡𝑦,𝑥+𝑦 and
K9
𝑦,𝑥 = 𝐾9

𝑦,𝑥 ) and take log2 I as an approximation for the key byte’s
remaining security level. This models a brute-force adversary who
simply searches the sorted leakage model list in ascending order.

Our results show that, although our specific attack model initially
doubles the bits of security at each byte position, the correlation-
sorting approach quickly leads to successful key recovery for many
byte positions. This effect is perhaps most significant for 𝐾3,1, where
we successfully recover the key after correlating only 5 million



Figure 6: Guessing entropy evolution for each byte position,
as a function of number of side channel traces. Note that our
maximum guessing entropy is 16 bits of security for each po-
sition, rather than a brute force attack’s 8 bits. This is because
we must guess 16 bits of key to correlate each 8-bit position.
For most key positions, this effect is quickly overcome.

subtraces. Even for more resilient byte positions such as𝐾3,0 and𝐾3,2,
correlating 30 million subtraces leads to successful key extraction.

5.3 Overall Results
For our final guessing entropy calculation, we model an adver-

sary similar to the adversary in Figure 6. However, this adversary
additionally utilizes the inverse guess detection strategy described
in Section 5.1.1. This allows us to fully extract the entire 128-bit
secret key after correlating approximately 43 million subtraces. We
note that even if the adversary does not try to detect the inverse
guesses, the worst-case guessing entropy of the attack is only 16 bits
(or 65536 key combinations), which is trivially brute-forceable by
even slow hardware.

6 CONCLUSION
In this work, we show the first side channel attack on a RISC-style

AES instruction set extension.We find that an EM-based side channel
attack targeting the output of the ARM aesmc instruction can suc-
cessfully extract secret keys (Section 4). This attack requires between
5-30 million traces to succeed, which corresponds to an operation on
approximately 80-480 megabytes of data. We justify these arguably
high data requirements by explicitly defining a victimmodel (Section
3) which naturally allows for such data collections—when combined
with our advanced preprocessing approach (Section 4.2), such at-
tacks move from academic significance to practical significance. This
highlights the need for side channel leakage evaluations/defenses
for real-world devices and production software.

7 RESPONSIBLE DISCLOSURE
We took the necessary steps for ethical disclosure. The findings

have been reported to Apple Inc. on November 8th, 2021, which is
prior to publishing our paper in a public medium.

8 ACKNOWLEDGEMENTS
We thank anonymous reviewers for their feedback on the paper.

This research is funded in part by NSF Grants No. 1850373 and
1943245.

REFERENCES
[1] Kahraman Akdemir, Martin Dixon, Wajdi Feghali, Patrick Fay, Vinodh Gopal, Jim

Guilford, Erdinc Ozturk, Gil Wolrich, and Ronen Zohar. 2010. Breakthrough AES
performance with intel AES new instructions. White paper, June (2010), 11.

[2] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede. 2015.
DPA, bitslicing and masking at 1 GHz. In International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 599–619.

[3] Daniel J Bernstein. 2005. Cache-Timing Attacks on AES. (2005). http://palms.ee.
princeton.edu/system/files/Cache-timing+attacks+on+AES.pdf

[4] Eli Biham. 1997. A fast new DES implementation in software. In International
Workshop on Fast Software Encryption. Springer, 260–272.

[5] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation Power Analy-
sis with a Leakage Model. In International workshop on cryptographic hardware
and embedded systems. Springer, 16–29.

[6] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. 2002. Template attacks. In Inter-
national Workshop on Cryptographic Hardware and Embedded Systems. Springer,
13–28.

[7] Joan Daemen and Vincent Rijmen. 1999. AES proposal: Rijndael. (1999).
[8] Joan Daemen and Vincent Rijmen. 2002. The design of Rijndael. Vol. 2. Springer.
[9] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic

Analysis: Concrete Results. In Cryptographic Hardware and Embedded Systems —
CHES 2001, Çetin K. Koç, David Naccache, and Christof Paar (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 251–261.

[10] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom.
2016. ECDSA key extraction from mobile devices via nonintrusive physical side
channels. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 1626–1638.

[11] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+ Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 279–
299.

[12] Gregor Haas, Seetal Potluri, and Aydin Aysu. 2021. iTimed: Cache Attacks on the
Apple A10 Fusion SoC. IACR Cryptol. ePrint Arch. 2021 (2021), 464.

[13] ARM Holdings. 2021. Arm® Architecture Reference ManualArmv8, for Armv8-A
architecture profile. (2021).

[14] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede, and
Joos Vandewalle. 2011. Machine learning in side-channel analysis: a first study.
Journal of Cryptographic Engineering 1, 4 (2011), 293.

[15] Apple Inc. 2020. Apple corecrypto Library. (2020). https://developer.apple.com/
security/

[16] Apple Inc. 2020. Apple Platform Security Guide. (Spring 2020). https://manuals.
info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.
pdf

[17] Emilia Käsper and Peter Schwabe. 2009. Faster and timing-attack resistant AES-
GCM. In International Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 1–17.

[18] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In Advances in Cryptology — CRYPTO’ 99, Michael Wiener (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 388–397.

[19] David P Leech, Stacey Ferris, John T Scott, et al. 2019. The economic impacts of
the advanced encryption standard, 1996–2017. Annals of Science and Technology
Policy 3, 2 (2019), 142–257.

[20] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,
Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based Power Side-
Channel Attacks on x86. In 2021 IEEE Symposium on Security and Privacy (SP).
IEEE.

[21] Oleksiy Lisovets, David Knichel, Thorben Moos, and Amir Moradi. 2021. Let’s take
it offline: Boosting brute-force attacks on iPhone’s user authentication through
SCA. IACR Transactions on Cryptographic Hardware and Embedded Systems (2021),
496–519.

[22] Jake Longo, Elke De Mulder, Dan Page, and Michael Tunstall. 2015. SoC it to EM:
electromagnetic side-channel attacks on a complex system-on-chip. In International
Workshop on Cryptographic Hardware and Embedded Systems. Springer, 620–640.

[23] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-
measures: the case of AES. In Cryptographers’ track at the RSA conference. Springer,
1–20.

[24] Sami Saab, Pankaj Rohatgi, and Craig Hampel. 2016. Side-channel protections for
cryptographic instruction set extensions. Cryptology ePrint Archive (2016).

[25] T Schnneider and A Moradi. 2015. Leakage assessment methodology—A clear
roadmap for side-channel evaluations. Proc. Cryptographic Hardware Embedded
Syst (2015), 495–513.

[26] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. 2009. A Unified Frame-
work for the Analysis of Side-Channel Key Recovery Attacks. In Advances in
Cryptology - EUROCRYPT 2009, Antoine Joux (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 443–461.

[27] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: a high resolution, low
noise, L3 cache side-channel attack. In 23rd USENIX Security Symposium (USENIX
Security 14). 719–732.

http://palms.ee.princeton.edu/system/files/Cache-timing+attacks+on+AES.pdf
http://palms.ee.princeton.edu/system/files/Cache-timing+attacks+on+AES.pdf
https://developer.apple.com/security/
https://developer.apple.com/security/
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Advanced Encryption Standard (AES)
	2.2 ARM-CE AES
	2.3 Correlation Power Analysis (CPA)
	2.4 Previous Attacks on ARM CPUs

	3 Threat Model
	3.1 Victim Behavior

	4 Proposed Attack
	4.1 iPhone 7 PCB Setup
	4.2 EM Acquisition Methodology
	4.3 Leakage Models

	5 Results
	5.1 Correlation Plots
	5.2 Per-Position Results
	5.3 Overall Results

	6 Conclusion
	7 Responsible Disclosure
	8 Acknowledgements
	References

