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Abstract

Quantum tokenized signature schemes (Ben-David and Sattath, QCrypt 2017) allow a sender to
generate and distribute quantum unclonable states which grant their holder a one-time permission
to sign in the name of the sender. Such schemes are a strengthening of public-key quantum money
schemes, as they imply public-key quantum money where some channels of communication in the
system can be made classical.

An even stronger primitive is semi-quantum tokenized signatures, where the sender is classical and
can delegate the generation of the token to a (possibly malicious) quantum receiver. Semi-quantum
tokenized signature schemes imply a powerful version of public-key quantum money satisfying two
key features:

• The bank is classical and the scheme can execute on a completely classical communication
network. In addition, the bank is stateless and after the creation of a banknote, does not hold
any information nor trapdoors except the balance of accounts in the system. Such quantum
money scheme solves the main open problem presented by Radian and Sattath (AFT 2019).

• Furthermore, the classical-communication transactions between users in the system are direct
and do not need to go through the bank. This enables the transactions to be both classical and
private.

While fully-quantum tokenized signatures (where the sender is quantum and generates the to-
ken by itself) are known based on quantum-secure indistinguishability obfuscation and injective
one-way functions, the semi-quantum version is not known under any computational assumption.
In this work we construct a semi-quantum tokenized signature scheme based on quantum-secure
indistinguishability obfuscation and the sub-exponential hardness of the Learning with Errors prob-
lem. In the process, we show new properties of quantum coset states and a new hardness result on
indistinguishability obfuscation of classical subspace membership circuits.
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1 Introduction

Quantum money schemes are one of the basis pillars in quantum cryptography, allowing a bank to
distribute quantum unclonable states in a system of users, who can trade the states as currency. The
gold standard of quantum money requires the scheme to be public-key [AC12], including two quantum
algorithms, Bank and QV, with the following syntax: Bank samples a quantum token (pk, |qt⟩pk) ←
Bank, where |qt⟩pk is a quantum state and pk is a classical public verification key. pk can be distributed
in the user network and the quantum part |qt⟩pk can be sent to some specific user. The copy of |qt⟩pk
can then be passed around between users in the system, and be publicly verified with QV using the key
pk. The core security guarantee assures that tokens are unclonable by anyone but the bank, or even more
tightly, no user can generate two states that both pass the quantum verification QV(·, pk).

By combining intrinsic properties of quantum information with cryptographic techniques, public-
key quantum money holds great promise for the future of information technology. Such quantum
cryptographic schemes implement functionalities that are known to be impossible in a world where only
classical computation exists and also create a basis of techniques towards even more advanced primitives,
like quantum lightning [Zha19] and quantum copy-protection of programs [Aar09]. Notably, public-key
quantum money gives a solution to the problem of privacy in a currency system, where we want a system
that is both, secure (a banknote keeps its value and cannot be counterfeited) and private (transaction’s
information can be kept only to the two parties involved, in particular, the bank does not have to know).

Unfortunately, by the standard definition, to execute a quantum money scheme we need quantum
computation to generate and verify tokens, and quantum communication to transfer tokens between
devices1. Ideally, however, we would like to minimize the required model, and use quantum computation
and only classical communication - more precisely, making the communication classical while keeping
the key advantages of quantum money (e.g. privacy of transactions) is a central open problem in
quantum cryptography. Besides the intriguing theoretical question and the fact that there is a fundamental
difference between classical and quantum communication2, practical differences include (1) the fact that
a classical communication network can be based on information broadcasting (which uses information
cloning to execute), which in particular enables communication between mobile devices, and (2) that
transactions based on classical communication has the potential to provide proof of payment, as the
clonable classical transcript can serve as a proof.

Looking more closely on the classical communication problem, there are three directions of com-
munication in a token system: (1) from the bank to a user, (2) from a user to another user, and (3) from a
user to the bank. It is a known fact that the classical communication problem can be partially solved, by
getting stronger no-cloning guarantees. Specifically, there are three known levels of no-cloning security
for the quantum tokens. These levels enable increased classical communication, as we will later see.

1. No Cloning: The most basic security level of a quantum token is unclonability. No cloning says
that a quantum polynomial-time malicious receiver Rec∗ that obtains a single token (pk, |qt⟩pk)
cannot output two quantum states |qt1⟩, |qt2⟩, such that both pass the public quantum verification
QV(·, pk).

2. Classically Certifiable Destruction: The next, stronger guarantee is classically certifiable de-
struction (CCD). In this version, along with Bank, QV, there are two additional algorithms; a
quantum algorithm GenCert and a classical algorithm CV. While QV allows to publicly verify
quantum tokens as before, GenCert allows to destroy the quantum token and output crt, a classical

1Note that quantum teleportation is a known technique to transfer quantum information using classical communication
channels. However, assuming no available quantum channel, physical contact is required to distribute the entangled EPR pairs
that are used for teleporting the quantum data.

2e.g. classical information is more stable and classical communication is likely to be more efficient, as a consequence of
the better algorithmic efficiency and lower rate of classical error correcting codes, compared to their quantum counterparts.



certificate of destruction for it. This certificate can later be verified by the classical verification
algorithm CV using the public key pk.
CCD security says that no adversary Rec∗ can get a single token (pk, |qt⟩pk) and output both, a
quantum token |qt⟩′ that passes the verification of QV(·, pk) and crt a classical certificate for its
destruction that passes the classical verification of CV(·, pk). Note that this guarantee is at least
as strong as the previous no-cloning, because as part of the correctness of schemes with CCD,
for any quantum token |qt⟩′ that passes the verification QV(·, pk), a valid classical certificate of
destruction crt that passes CV(·, pk) can be generated (thus two copies of the quantum token imply
one quantum token and one classical certificate of destruction for it).

3. Tokenized Signing: The third and strongest known level of no-cloning security is tokenized
signing. In such scheme like before we have Bank, QV, GenCert, CV, except that now GenCert
gets not only the quantum token (pk, |qt⟩pk), but also a bit b ∈ {0, 1}. The bit b acts as a target for
the destruction process. Specifically, given (pk, |qt⟩pk) and b ∈ {0, 1}, the algorithm generates
crtb ← GenCert(pk, |qt⟩pk, b), a ”certificate of destruction with respect to the bit b”. The classical
verification algorithm then gets, additionally to the classical certificate crt and the public key pk,
a bit b, and verifies that indeed crt is a valid certificate for the bit b.
The tokenized signatures security guarantee says that no Rec∗ can get a single token (pk, |qt⟩pk)
and generate two classical certificates crt0, crt1 that pass the classical verification with the two
different bits, that is, crt0 passes for b = 0 and crt1 passes for b = 1. This guarantee is at
least as strong as the previous CCD. To see this, assume there is an adversary Rec∗ that outputs a
quantum token |qt⟩′ that passes quantum verification and a classical receipt crt that passes classical
verification. crt passes classical verification which means it passes it for some bit b ∈ {0, 1} -
we can find out what the bit b is by executing classical verification on crt with input target 0 and
input target 1, and then use |qt⟩′ to generate a targeted classical certificate of destruction for ¬b.
In this process we obtain crtb, crt¬b. The targeted destruction mechanism allows us to think of
(pk, |qt⟩pk) as a one-time signature token to sign in the name of the bank on a single bit, and in
particular, we can think of the certificate generation algorithm as a quantum signing algorithm
crtb ← Sign(pk, |qt⟩pk, b), hence the name signature tokens.

User-to-bank classical communication from CCD tokens. When we move from standard unclonable
tokens to CCD tokens, any user can effectively ”send” tokens to the bank, using only classical commu-
nication: by destroying the token crt ← GenCert(pk, |qt⟩pk) and sending the classical crt to the bank,
the user proves to the bank that it cannot spend the money of that token anymore in the network, and
the bank can reimburse the balance of that user. Still, CCD tokens do not solve any of the other two
directions of communication: from the bank to a user, and from one user to another user.

1.1 The Advantages of Quantum Signature Tokens

Having the strongest no-cloning guarantee, the power behind signature tokens emerges when the tokens
are used in a sequence: We can takeλ i.i.d. signature tokens (pk1, |qt⟩pk1), (pk2, |qt⟩pk2), · · · , (pkλ, |qt⟩pkλ)
as a single ”string signature token” unit that can sign on any length-λ string. Along with the sequence
of tokens, the bank decides on a token value x ∈ N ∪ {0} (in the context of quantum money, this is how
much money the bank assigns to that token), samples a unique (with high probability) identifier which
is a random serial number s ← {0, 1}λ, and a classical signature σ := σ(pk1,··· ,pkλ,x,s) for the entire
classical part of the token. The signature token is then

pk = (pk1, · · · , pkλ, x, s, σ) , |qt⟩pk =
(
|qt⟩pk1 , |qt⟩pk2 , · · · , |qt⟩pkλ

)
.

Note that σ is a signature for the entire sequence together, thus one cannot mix and match signatures
of two different strings s1, s2 produced from two different tokens, in order to get a signature for a third
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string s3. Tokens of value x = 0 can be regarded as ”dummy tokens” - we next show how they can be
used.
User-to-user classical communication from signature tokens. Like CCD tokens, string signature
tokens enable the previous classical communication from user to bank (as they are only a strengthening
of CCD tokens), but moreover, they enable an additional direction of classical communication, from one
user to another. More elaborately, one user Rec1 holding a token (pk1, |qt⟩pk1) of value x1, can transfer
the value x1 to another user Rec2 holding a token (pk2, |qt⟩pk2) of value of 0, by using |qt⟩pk1 to sign on
s2, the serial number of the token (pk2, |qt⟩pk2). After the produced signature is sent to Rec2, the token
(pk2, |qt⟩pk2) can be considered to have the value x1.

Additionally to enabling user-to-user classical communication, two derived abilities of string signa-
ture tokens are as follows:

• Online token destruction: When the bank wants a certificate of destruction for any token, it
samples a random string d← {0, 1}λ and asks the user to sign on d with the signature token.

• Token value split: To split the valuex of the token (pk1, |qt⟩pk1) between two tokens (pk2, |qt⟩pk2),
(pk3, |qt⟩pk3) into u2, u3 ∈ N ∪ {0} such that u2 + u3 = x (i.e. the value of (pk2, |qt⟩pk2) is
added u2 and the value of (pk3, |qt⟩pk3) is added u3), we can hash the serial numbers s2, s3 of the
two target tokens along with the partition u2, u3 of x to a length-λ string, H(s2, s3, u2, u3) = y
for a collision resistant hash function H : {0, 1}∗ → {0, 1}λ, and then use (pk1, |qt⟩pk1) to sign
on y. This effectively gives a classical proof for the new values of the tokens (pk2, |qt⟩pk2),
(pk3, |qt⟩pk3).

More advantages of signature tokens for quantum money. Aside from direct classical transactions,
we get additional unique characteristics to a public-key quantum money system that is based on string
signature tokens: (1) No token database: When a user wants to return a token to the bank and get its
bank account balance reimbursed (using only classical communication), the user and bank can execute
the online destruction mechanism. In contrast, in a quantum money system based on CCD tokens,
where the token return mechanism is the user simply generating a classical certificate of destruction
by itself and sending it to the bank, the bank needs to maintain a database of all previously-destroyed
tokens, so malicious users cannot illegally re-use the mechanism and send the same classical certificate
of destruction multiple times, for the same token. (2) Dynamic payment amounts: The value split
mechanism gives one the ability for granular payment amounts, where a user can dynamically choose the
amount it wants to pay (unlike in the CCD-based scheme where the value x of a token is fixed during its
creation by the bank). (3) Provable payments: When one user sends a direct payment to a second user,
by signing on the serial number of a dummy token which the second users holds, this signature on the
serial number is also a proof of payment, which we do not have in the CCD tokens setting (without going
through the bank). (4) Private classical payments: While in a scheme based on tokenized signatures,
classical user-to-user transactions are direct and thus private, the bank can still obtain information when
the user returns a banknote. The online destruction mechanism enables that when the user returns the
signature for d using a token that was worth x, if it wishes to hide the token’s information (i.e. all
information of that token except its worth) and maintain privacy, it can encrypt the classical signature
for d and send the encryption together with a zero-knowledge proof that the content of the encryption is
a signature for d, and the token that signed on it has a value of x. This mechanism is still secure for the
bank, as with high probability, it will never sample a repeating test string d.

1.2 Semi-Quantum Tokenized Signatures

We know how to construct public-key quantum money with signature tokens based on quantum-secure
indistinguishability obfuscation and injective one-way functions, from a combination of the work of
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Ben-David and Sattath [BDS16] with the work of Coladangelo, Liu, Liu, and Zhandry [CLLZ21]. While
such quantum money scheme can cover two out of three directions of communication classically (i.e.
from users to the bank and from users to other users), the direction from the bank to users still needs to
be quantum.

A strengthening of public-key quantum money is public-key semi-quantum money, where everything
is the same as before (i.e. same syntax and hierarchy of no-cloning levels of the tokens), but the bank
is a classical algorithm, which in particular makes the interaction from bank to users classical. More
precisely, the generation of a token is by an interactive protocol between the classical bank Bank and a
possibly malicious, quantum receiver Rec: (pk, |qt⟩pk) ← ⟨Bank,Rec⟩(OUTBank,OUTRec), i.e. the output
of the bank is pk (this is the public key which the bank can now distribute), and the output of the
receiver is the quantum state |qt⟩pk. Similarly to before, no-cloning guarantees (i.e. standard no-cloning,
CCD or tokenized signing) apply for the state |qt⟩pk, but crucially, these guarantees now need to hold
even given the fact the actual generator of the state is a possibly malicious receiver Rec∗. Radian and
Sattath [Rad19] introduced the notion of semi-quantum money, showed a construction of private-key
semi-quantum money, and left open the question of constructing any form of public-key semi-quantum
money.

Shmueli [Shm21] later constructs a public-key semi-quantum money scheme with CCD tokens,
based on quantum-secure indistinguishability obfuscation and the sub-exponential quantum hardness of
the Learning With Errors problem. This means that based on these computational assumptions, we know
how to construct a public-key quantum money scheme that covers two directions of communication
classically: from the bank to users (because the scheme is semi-quantum and a user can execute the
receiver in the token generation protocol) and from a user to the bank (because the tokens are CCD
tokens, and as we have seen earlier, such tokens enable returning tokens to the bank by destroying them
and sending the receipt to the bank)3. So, looking on what we saw until now,

• Public-key fully-quantum money with signature tokens is missing the classical direction from the
bank to users, and,

• Public-key semi-quantum money with CCD tokens is missing the classical direction from one user
to another.

It remains an open question to classically cover all three directions of communication at once. We don’t
know how to construct such primitive under any computational assumption.

A construction of public-key semi-quantum money with signature tokens, or in short, a semi-quantum
tokenized signature scheme, solves the above problem. Such scheme has a classical bank like the scheme
from [Shm21], but unlike the previous scheme, it has the stronger no-cloning guarantee of tokenized
signing. More formally, Radian and Sattath [Rad19] leave two open problems in their work: The first
open problem is to construct what’s called a memory-dependent public-key semi-quantum money, and the
second (and the main) open problem, which subsumes the first one, is to construct a memoryless public-
key semi-quantum money (both notions are defined in their work). The public-key semi-quantum money
with CCD tokens of Shmueli [Shm21] solves the construction of a memory-dependent scheme, while
constructing a semi-quantum tokenized signature scheme will resolve the main question of constructing
a memoryless scheme.

Our focus in this work is to construct a semi-quantum tokenized signature scheme. On the technical
side of things, such scheme will show for the first time that it is possible for a classical computer to
securely delegate the generation of quantum states that maintain the tokenized signing property.

3A nice property of a semi-quantum CCD tokens scheme is in-direct classical-communication transactions from user to
user: A user can return a token to the bank, and then the bank can classically send a newly-generated token with the same value
to the recipient user of that transaction. Observe, however, that such in-direct transactions are always known by the bank and
thus are not private, which is one of the fundamental problems that quantum money is intended to solve.
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1.3 Results

We resolve the open question and construct a semi-quantum tokenized signature scheme, based on the
existence of indistinguishability obfuscation (iO) for classical circuits secure against quantum polynomial-
time attacks, and on that the Learning With Errors [Reg09] problem has sub-exponential indistinguisha-
bility against quantum computers, that is, there exists some constant δ ∈ (0, 1) such that for every
quantum polynomial-time algorithm, Decisional LWE cannot be solved with advantage greater than
2−λ

δ , where λ ∈ N is the security parameter of LWE4.
Formally, we prove the following main Theorem.

Theorem 1.1. Assume that Decisional LWE has sub-exponential quantum indistinguishability and that
indistinguishability obfuscation for classical circuits exists with security against quantum polynomial
time distinguishers. Then, there is a semi-quantum tokenized signature scheme (as in Definition 3.3).

The remaining of the paper is as follows. In Section 2 we explain the main ideas in our construction.
The Preliminaries are given in Section 3. In Section 4 we present our construction of semi-quantum
tokenized signatures with correctness proof and proof for security against sabotage. In Section 5 we give
the security proof of the scheme against signature counterfeiting.

2 Technical Overview

In this section we explain the main technical ideas in our construction and the structure of the overview is
as follows. In Section 2.1 we review the previous works related to our goal of constructing semi-quantum
tokenized signatures, and explain why a straightforward extension of these works does not work to obtain
our goal. In Section 2.2 we describe our construction and the reasoning behind it, with no security proof.
In Section 2.3 we explain how the security of the entire scheme is reduced to proving a new hardness
property of indistinguishability obfuscation, which is captured by our main technical Lemma 5.1.

2.1 Semi-quantum CCD Tokens and Fully-quantum Signature Tokens

Starting off based on previous work, there is a single protocol [Shm21] where a classicalBank can delegate
to a quantum Rec the generation of quantum unclonable and publicly verifiable tokens - this scheme lets
the bank and receiver sample together by interaction (pk, |qt⟩pk)← ⟨Bank,Rec⟩(OUTBank,OUTRec) a token
for the receiver (the public key is the output of the bank, which the bank can then share with anyone, in
particular the receiver). More precisely, the tokens in the scheme are CCD tokens. As mentioned in the in-
troduction, the scheme also includes public quantum verification

(
b ∈ {0, 1}, |qt⟩′pk

)
← QV(pk, |qt⟩pk),

certificate generation crt← GenCert(pk, |qt⟩pk), and public classical verification CV(pk, crt) ∈ {0, 1}.
Our direction in this overview will be to upgrade the construction to be able to generate not only CCD,

but signature tokens. This means to have a signing procedure σb ← Sign(pk, |qt⟩pk, b) instead of the
certificate generation crt ← GenCert(pk, |qt⟩pk), and the classical verification will become a classical
signature verification CV(pk, σb, b) ∈ {0, 1}. Looking at another previous work [BDS16, CLLZ21]
which uses a quantum bank but manages to build the stronger signature tokens, it makes sense to try and
combine the techniques of the two works. These two works are even more so inviting to be fused, as it is the
case that in both works, the tokens are coset states - states of the form |S⟩x,z :=

∑
u∈S(−1)⟨z,u⟩|x+ u⟩

for a subspace S ⊆ {0, 1}λ and two strings x, z ∈ {0, 1}λ. Let us recall the high-order bits in the two
works, and then examine their possible joining.
Recap: Coset states as fully-quantum signature tokens. The fully-quantum tokenized signature
scheme of [BDS16, CLLZ21] is as follows: The bank samples a random λ

2 -dimensional subspace

4Note that this assumption is weaker than assuming that Decisional LWE is hard for sub-exponential-time quantum
algorithms, which is considered a standard cryptographic assumption.
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S ⊆ {0, 1}λ, random strings x, z ∈ {0, 1}λ and generates |qt⟩pk := |S⟩x,z i.e.
∑

u∈S(−1)⟨z,u⟩|x+ u⟩.
The public verification key of the state is pk =

(
OS+x,OS⊥+z

)
, for OS+x ← iO(CS+x),OS⊥+z ←

iO(CS⊥+z), where iO is a quantum-secure indistinguishability obfuscator for classical circuits and
CS+x, CS⊥+z are circuits that check membership in the corresponding cosets S+x, S⊥+ z. The entire
token (pk, |qt⟩pk) is sent to the receiver.

Public quantum verification QV of the scheme is the standard procedure to verify a coset state
[AC12]: Given input a quantum λ-qubit register QT, (1) Check that the output qubit of OS+x(QT) is
1, then (2) perform Quantum Fourier Transform (QFT) in base 2 i.e. H⊗λ on QT, then (3) Check that
the output qubit of OS⊥+z(QT) is 1. It is a known fact in the literature that a successful verification in
such procedure projects the state to be exactly |qt⟩pk = |S⟩x,z . Finally, regarding the signing algorithm
Sign(pk, |qt⟩pk, b), to sign on b = 0 just measure |qt⟩pk, and to sign on b = 1 measure in the Hadamard
basis i.e. performH⊗λ and then measure. Accordingly, a valid signature for b = 0 is any string in S+x,
which can be publicly verified using OS+x, and a valid signature for b = 1 is any string in S⊥+ z, which
can be publicly verified using OS⊥+z .

The main technical part of the works [BDS16, CLLZ21] is to show that it is computationally
impossible, given

((
OS+x,OS⊥+z

)
, |S⟩x,z

)
, to output both s ∈ (S + x) and s⊥ ∈

(
S⊥ + z

)
.

Recap: Coset states as semi-quantum CCD tokens. Moving to the semi-quantum setting, the scheme
of [Shm21] includes a 3-message coset state generation protocol, as follows:

1. The classical Bank samples a random λ
2 -dimensional subspace S ⊆ {0, 1}λ (represented by a

matrix MS ∈ {0, 1}
λ
2
×λ), and sends to the receiver (Mx

S , ctx), an encryption of the matrix MS

under hybrid quantum fully-homomorphic encryption (QFHE)5.

2. The quantum receiver Rec homomorphically evaluates the circuit Cssg, which is a quantum circuit
that gets as input the classical description of a subspaceS ⊆ {0, 1}λ e.g. by a matrix, and generates
a uniform superposition over S. Thus, the receiver obtains a quantum, homomorphically evaluated
ciphertext, (

|S⟩x′,z′ , ct(x′,z′)

)
← QHE.Eval ((Mx

S , ctx), Cssg) ,

and sends to Bank the classical part ct(x′,z′).

3. Bank decrypts (x′, z′) = QHE.Dec(ct(x′,z′)) and sends obfuscations OS+x′ ← iO(CS+x′),
OS⊥+z′ ← iO(CS⊥+z′) as the public verification key pk.

The coset state |S⟩x′,z′ which the receiver holds is the quantum part |qt⟩pk of the token. Accordingly,
public quantum verification QV is identical to that of [BDS16, CLLZ21], the certificate generation crt←
GenCert(pk, |qt⟩pk) is simply a standard basis measurement and the classical certificate verification is
just verifying CV(pk, crt) := OS+x′(crt).

In the security argument of [Shm21] it is shown that it is computationally impossible to output both,
the quantum state |qt⟩′ that passes the verification QV(pk, ·) and a certificate of destruction for it i.e.
any string s ∈ (S + x′). The work does not claim that the generated coset state maintains the tokenized
signing property, in fact, it is not even defined what it means that a token signs on 0 or 1.
Attacking the combined scheme. As we said in the beginning of the overview, we should first try
to combine the schemes. Since both schemes have the same token structure (i.e., a coset state) and
public key (i.e., obfuscations of the membership functions for the primal and dual cosets), to combine
the schemes, all we need to do is to take the token generation protocol of [Shm21] and define a signature
for b = 0 to be any s ∈ (S + x′) and a signature for b = 1 to be any s⊥ ∈ (S⊥ + z′). To argue
that the combined scheme maintains the tokenized signing property, it is required to prove that for any

5A hybrid QFHE scheme is one where every encryption of a quantum state |ψ⟩ is of the form
(
|ψ⟩x,z, ct(x,z)

)
, where

|ψ⟩x,z is a quantum OTP encryption of |ψ⟩ with keys x, z ∈ {0, 1}λ, and ct(x,z) is a classical FHE encryption of the keys.
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quantum polynomial-time receiverRec∗ that interacts with the classicalBank during the token generation
protocol, it is impossible to output (s, s⊥).

As it turns out, there is a simple way for an adversary to break the tokenized signing security of the
combined protocol. More elaborately, consider the following attacker Rec∗ that interacts with Bank in
the protocol of [Shm21] (described in the previous paragraph):

1. Rec∗ obtains (Mx
S , ctx), the first message from Bank.

2. Rec∗ samples a random r ∈ {0, 1}
λ
2 and homomorphically evaluates the following classical circuit

Cr,1: The circuit Cr,1 takes as input the matrix MS ∈ {0, 1}
λ
2
×λ and outputs s := rT ·MS , a

vector in the row span. The receiver gets the ciphertext (ctx′ , s⊕ x′).

3. Rec∗ samples a random r⊥ ∈ {0, 1}
λ
2 and homomorphically evaluates the following classical

circuit Cr⊥,2: The circuit Cr⊥,2 takes as input the matrix MS ∈ {0, 1}
λ
2
×λ, computes a basis for

S⊥ in the form of a matrix MS⊥ ∈ {0, 1}
λ
2
×λ and outputs s⊥ :=

(
r⊥

)T ·MS⊥ , a vector in the
row span. The receiver gets the ciphertext

(
ctx′′ , s⊥ ⊕ x′′

)
.

Assume that in the QFHE, the classical FHE scheme that encrypts the classical QOTP keys x, z, is a
bit encryption scheme (this assumption is in many cases w.l.o.g., because in many QFHE schemes, the
classical FHE is a bit-encryption scheme). This means in particular that the ciphertext ctx′,z′ which the
receiver sends in the second message of the protocol is the concatenation of two ciphertexts, ctx′ , ctz′ .

Going back to our attack, the malicious receiver Rec∗ can send (ctx′ , ctx′′) as the second message
in the protocol (which was originally ctx′,z′) to Bank, which decrypts to get x′, x′′, and sends the
obfuscations accordingly: OS+x′ , OS⊥+x′′ in the third message of the protocol. Finally, note that the
receiver still holds (s⊕x′) ∈ (S+x′) and thus a signature for b = 0, and also holds (s⊥⊕x′′) ∈ (S⊥+x′′)
and thus a signature for b = 1.

2.2 Signing Coset States by Splitting

With accordance to the above attack, if we wish to stay with the classical generation protocol of [Shm21],
we need to move to a different signing procedure - this will be our first new technique. Formally, we
would like to reduce the task of breaking the security of QFHE, to the task of breaking the security of
the tokenized signature scheme. Note that S is a random subspace of dimension λ

2 and thus takes a tiny

fraction of 2
λ
2

2λ
= 2−

λ
2 inside the set of all length-λ strings {0, 1}λ. This means that by the security

of the QFHE, it should be computationally hard to get (Mx
S , ctx) the classical QFHE encryption of a

basis for S, and find a non-zero vector in S. Thus, what we aim for as a very first step is a definition of
valid signatures for b = 0 and b = 1 such that given σ0, σ1, two signatures for 0 and 1, it is possible to
efficiently derive a vector s ∈ (S \ {0}).

We suggest the following signature definitions for a bit b ∈ {0, 1}: At the beginning of the protocol,
additionally to choosing S at random, the bank randomly splits S (which has λ

2 dimensions) into S0, a(
λ
2 − 1

)
-dimensional subspace of S, and the coset S0 + w, for w ∈ (S \ S0). Note that these two parts

are exactly two disjoint halves of S. If we define a signature for b to be any string in S0+ b ·w+x′, then
one can verify that the sum of any pair of signatures σ0 ∈ (S + x′) , σ1 ∈ (S + w + x′) is a non-zero
vector inside S. The above only opens the way for the solution, as we did not yet solve the two main
technical parts:

• Signing: Given the generated coset state |S⟩x′,z′ , how can the honest Rec always succeed in
signing on b? Simply measuring |S⟩x′,z′ will yield the wanted signature only with probability 1/2.

• Security: Given our mechanism for signing (which we did not describe yet), how can we prove
security for the new scheme? This part is presented in Section 2.3 of the overview.
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Projecting on half the coset with overwhelming probability. We put the security of the scheme aside
for the rest of Section 2.2 and focus on proving correctness, that is, explaining how to sign. We show
how to transform |S⟩x′,z′ into |S0 + b · w⟩x′,z′ given b ∈ {0, 1}, which will suffice, as a signature can be
obtained at that point with probability 1, by measurement. To enable the transformation, the first change in
the protocol is that in the third (and last) message of the protocol, where the bank usually sends the public
key pk :=

(
OS+x′ ,OS⊥+z′

)
, it now sends an expanded key: pk′ :=

(
OS0+x′ ,OS0+w+x′ ,OS⊥+z′

)
.

Given the state |S⟩x′,z′ and pk′ :=
(
OS0+x′ ,OS0+w+x′ ,OS⊥+z′

)
, we explain how to sign on b = 0

(the procedure for b = 1 is symmetric) by getting the state |S0⟩x
′,z′ . By measuring the output bit of

OS0+x′(|Sx′,z′⟩), if we succeed (which happens with probability 1/2) we are done, and if we fail we
have |S0 + w⟩x′,z′ . It will be enough for the procedure to make the correction and go from the faulty
state |S0 + w⟩x′,z′ back to the original state |S⟩x′,z′ - since the original state re-enables the experiment
of obtaining the correct state |S0⟩x

′,z′ with probability 1/2, we can make λ consecutive iterations of
trying to project |S⟩x′,z′ to |S0⟩x

′,z′ (and correct otherwise), and thus fail with an overall probability of
1− 2−λ.
Correction of a faulty coset state. The correction procedure from |S0 + w⟩x′,z′ to |S⟩x′,z′ is as follows:
We start with performing QFT (i.e. H⊗λ) on |S0 + w⟩x′,z′ which gives us∑

u∈S⊥
0

(−1)⟨x′+w,u⟩|z′ + u⟩ .

We can write the above state as∑
(u∈S⊥

0 )∧(⟨u,w⟩=0)

(−1)⟨x′+w,u⟩|z′ + u⟩+
∑

(u∈S⊥
0 )∧(⟨u,w⟩=1)

(−1)⟨x′+w,u⟩|z′ + u⟩

=
∑

(u∈S⊥
0 )∧(⟨u,w⟩=0)

(−1)⟨x′,u⟩|z′ + u⟩ −
∑

(u∈S⊥
0 )∧(⟨u,w⟩=1)

(−1)⟨x′,u⟩|z′ + u⟩ .

Notice that u ∈ S⊥ if and only if
(
u ∈ S⊥0

)
∧ (⟨u,w⟩ = 0), also, the set of vectors u′ such that(

u′ ∈ S⊥0
)
∧ (⟨u′, w⟩ = 1) is exactly S⊥ + v, for any v such that

(
v ∈ S⊥0

)
∧ (⟨v, w⟩ = 1). We thus

write the above sum as∑
u∈S⊥

(−1)⟨x′,u⟩|z′ + u⟩ −
∑
u∈S⊥

(−1)⟨x′,u+v⟩|z′ + u+ v⟩ .

The left sum in the above state is exactly |S⊥⟩z′,x′ , which means that if we project the above state with
measuring the output bit of OS⊥+z′(·) and get 1, we have |S⊥⟩z′,x′ and by executing QFT we go back to
|S⟩x′,z′ , as required.

In case we get 0 then we have
∑

u∈S⊥(−1)⟨x
′,u+v⟩|z′ + u+ v⟩ and we go for the last part of the

correction: We can clear the global phase,∑
u∈S⊥

(−1)⟨x′,u+v⟩|z′ + u+ v⟩ = (−1)⟨x′,v⟩
∑
u∈S⊥

(−1)⟨x′,u⟩|z′ + u+ v⟩

≡
∑
u∈S⊥

(−1)⟨x′,u⟩|z′ + u+ v⟩ ,

and execute QFT to get ∑
u∈S

(−1)⟨z′+v,u⟩|x′ + u⟩ .
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We can write the above state by splitting the sum to S0 and S0 + w,∑
u∈S0

(−1)⟨z′+v,u⟩|x′ + u⟩+
∑
u∈S0

(−1)⟨z′+v,u+w⟩|x′ + u+ w⟩ ,

and the advantage in that is, because
(
v ∈ S⊥0

)
∧ (⟨v, w⟩ = 1), the above state can be written as∑

u∈S0

(−1)⟨z′,u⟩|x′ + u⟩ −
∑
u∈S0

(−1)⟨z′,u+w⟩|x′ + u+ w⟩

= |S0⟩x
′,z′ − |S0 + w⟩x′,z′ .

Finally, although we can correct the above state to be |S⟩x′,z′ := |S0⟩x
′,z′ + |S0 + w⟩x′,z′ (by a phase

flip conditioned on the acceptance bit of the circuit OS0+w+x′), there is no need. This follows because
the above state is again a state that enables projecting it on |S0⟩x

′,z′ with success probability of 1/2,
and if we fail we get −|S0 + w⟩x′,z′ ≡ |S0 + w⟩x′,z′ , which were exactly the properties we needed from
|S⟩x′,z′ .

2.3 Proving CCD Security Versus Proving Tokenized Signing Security

To quickly touch base on where we currently stand, our new generation protocol for signature tokens
is the same as the CCD token generation from [Shm21] (which is described in Section 2.1), with two
differences:

• The last message from Bank to Rec in the new protocol is pk′ :=
(
OS0+x′ ,OS0+w+x′ ,OS⊥+z′

)
rather than pk =

(
OS+x′ ,OS⊥+z′

)
from the previous.

• Instead of the certificate generation crt ← GenCert(pk, |S⟩x′,z′) of the previous work which just
makes a measurement to the coset state (and does not really use pk), we now have a bit-signing
procedure σb ← Sign(pk′, |S⟩x′,z′ , b), described in Section 2.2.

Until now we did not cover any of the security aspects of our construction, only the correctness.
This following part of the overview, which explains the security argument in high-level, is constructed as
follows: We recall the security arguments from previous work [Shm21] that are still relevant for our new
construction, until we arrive at the key point of difference between the current work and the previous.
Next, we explain why the previous techniques do not cover this difference. Finally, we explain how
our main technical Lemma 5.1 covers this gap and enables us to prove that the new scheme produces
signature tokens.
Previous techniques and our security argument outline. In our reduction setting, given a malicious
Rec∗ that breaks the security of the semi-quantum tokenized signature scheme, we construct an adversary
AQHE against the QFHE scheme, in the following manner:

1. AQHE gets the ciphertext (Mx
S , ctx) as input (for a random S with dimension λ

2 ) and passes it
directly to Rec∗ as the first message of the bank in the protocol.

2. Rec∗ returns ct∗ as the second message in the protocol.

3. AQHE computes (O1,O2,O3) as the third message in the protocol and sends to Rec∗.

4. Rec∗ outputs two signatures σ0, σ1. These signatures are used by AQHE, which outputs the sum
σ0 + σ1 as an attempt for a non-zero vector in S. The reason why this sum is indeed a non-zero
vector in S, at least when the messages of the bank are honestly generated, was explained earlier,
in the beginning of Section 2.2.
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Note that the third message (O1,O2,O3) of AQHE needs to be computationally indistinguishable from(
OS0+x′ ,OS0+w+x′ ,OS⊥+z′

)
, the third message in the original protocol. Crucially, in the original

protocol, the secret key fhek of the QFHE is used to generate this third message. Specifically, the bank
obtains (x′, z′) by decryption. Having fhek is clearly not possible for the QFHE adversary AQHE, and
the reduction needs to overcome this difficulty.

We prove the reduction by a hybrid argument, and use three previously known tools in the process.
Subspace-hiding obfuscation: We use the well-known subspace-hiding [Zha19] property of indistin-
guishability obfuscation, which says that (as long as quantum-secure injective one-way functions exist)
the obfuscation OS+x ← iO(CS+x) is indistinguishable from an obfuscation OT+x ← iO(CT+x), for a
random superspace S ⊆ T - as long as the dimension of T is not too large6, even if S is known to the
attempting distinguisher (see the formal statement in Lemma 3.1).
Sub-exponential security of QFHE: Another aid we use is the assumption that the QFHE has sub-
exponential security7, which in turn implies that it should not be possible to get a non-zero vector in
S with probability greater than ≈ 2−λ

δ′ . Note that since we can pick δ the parameter indicating the
dimension of the subspaces T0, T1 to be any constant, we can take it as a function of δ′, in particular,
δ := δ′

2 . Such choice of parameters implies 2−λδ
>> 2−λ

δ′ .
Blind sampling of obfuscations: As part of the security argument in [Shm21] it is shown that given
any fixed pair T0, T1 of subspaces with dimension λ − λδ each, even if we do not know x′, z′, we
can successfully sample from a distribution indistinguishable from (OT0+x′ ,OT0+w+x′ ,OT1+z′) with
probability ≈ 2−λ

δ .
Together, the above seemingly paves the way to finish the proof by a hybrid argument:

• Hyb0 : In the first hybrid AQHE acts exactly like the bank and computes the third message(
OS0+x′ ,OS0+w+x′ ,OS⊥+z′

)
using the secret QFHE key fhek. As we know, two valid signatures

σ0, σ1 in this setting indeed imply that σ0 + σ1 is a non-zero vector in S.

• Hyb1 : In the next hybrid AQHE still holds fhek, but sends (OT0+x′ , OT0+w+x′ , OT1+z′) instead.
This is indistinguishable from the previous hybrid by the subspace hiding property of the iO. Recall
the sub-exponential security of the QFHE where the exponent constant is δ′ ∈ (0, 1]. We take the
dimension of the random superspaces S0 ⊆ T0, S⊥ ⊆ T1 to be both λ− λδ, for δ := δ′

2 .

• Hyb2 : In the next hybridAQHE still holds fhek, but the subspaces T0, T1 are fixed by an averaging
argument, to be the pair of subspaces that maximize the probability for a successful attack i.e.
σ0 + σ1 ∈ (S \ {0}). Note that S is a random subspace of dimension λ

2 subjected to S0 ⊆ T0,
T⊥1 ⊆ S. By the sub-exponential security of the QFHE and by the fact that this restriction on S
still leaves it enough entropy, it is still computationally impossible to find a non-zero vector in S
with probability >> 2−λ

δ′ .

• Hyb3 : In this experimentAQHE does not hold fhek, and given the fixed subspaces T0, T1 samples
from (OT0+x′ ,OT0+w+x′ ,OT1+z′) and still succeeds with probability ≈ 2−λ

δ , by blind sampling
of the obfuscated circuits.

All hybrids from Hyb0 to Hyb2 are indistinguishable, thus in Hyb2 we still have σ0 + σ1 ∈ (S \ {0}),
but the secret QFHE key fhek is still needed. Hyb3 then successfully samples from the same output
distribution of Hyb2, without holding fhek and with probability ≈ 2−λ

δ
>> 2−λ

δ′ , which finishes the

6For any constant δ ∈ (0, 1], the indistinguishability holds for dimension bounded by λ− λδ .
7The sub-exponential security says that there exists some constant δ′ ∈ (0, 1] such that it is impossible for any quantum

polynomial-time attacker to distinguish encryptions of differing plaintexts with advantage greater than 2−λδ′
.
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proof as with this same probability we get a non-zero vector in S, in contradiction to the sub-exponential
security of the QFHE.
Key point of difference - quantumness in the reduction. We inserted one small, but fatal inaccuracy
to the above hybrid argument: When we use subspace-hiding techniques to hide S, it becomes no longer
correct that getting any vector s ∈ (S \ {0}) is sufficient to break the QFHE security. More precisely,
in hybrid Hyb2 and on, the subspaces T0, T1 are fixed and moreover, T⊥1 ⊆ S. This makes getting
s ∈ (S \ {0}) not only possible, but trivial: any s ∈ (T⊥1 \ {0}) will do. In order to break the QFHE we
will need s ∈ (S \ T⊥1 ).

To understand why needing s ∈ (S \T⊥1 ) rather than only s ∈ (S \{0}) tears apart the above security
proof sketch for signature tokens, let us first understand why the above argument actually holds when we
want to prove that the tokens in the scheme maintain the weaker, CCD security guarantee. In a nutshell,
the key difference is that in the CCD security reduction we are able to use the quantumness of the output
of the adversary Rec∗.

A successful adversary Rec∗ against CCD security manages to output not only two classical strings
as signatures, σ0, σ1, but one certificate crt ∈ (S + x′) along with the quantum state |S⟩x′,z′ :=∑

u∈S(−1)⟨z
′,u⟩|x′ + u⟩. The use of such output in the reduction is by adding crt to the superposition

|S⟩x′,z′ ; this only cancels the x′-pad and gets us |S⟩0λ,z′ . Now, the quantum state |S⟩0λ,z′ does not
give us just an arbitrary non-zero vector in S, but measuring it gives us a uniform sample from S. In
particular, it is easy to get s ∈ (S \ T⊥1 ) from such measurement, because the fraction of T⊥1 in S is
negligible, which means that with overwhelming probability, the random sample lands outside T⊥1 .

Technically, the above hybrid argument fails to prove tokenized signing already in Hyb1; Even though
the hybrids Hyb0, Hyb1 are indeed indistinguishable, and even though in both of them we can know
S0, w, x

′, z′ and check whether the output of Rec∗ still maintains σ0 ∈ (S0 + x′), σ1 ∈ (S0 +w+ x′), it
can still be the case that σ0 + σ1 ∈ T⊥1 . Then, this fact that σ0 + σ1 ∈ T⊥1 is dragged for the remaining
hybrids, which invalidates the proof - the reduction does not find a vector in (S \ T⊥1 ), and thus QFHE
security is unbroken.
Avoiding the dual subspace to prove tokenized signing security. It seems that we need a property
of the indistinguishability obfuscator that is of different nature from the subspace-hiding property. We
want to claim that given an obfuscation OT1 of a random superspace T1 of S⊥, it is computationally
hard to find a vector in the dual subspace T⊥1 . Note that such hardness property will finish our proof:
We can use it after moving from the above Hyb0 to Hyb1, claiming that in Hyb1, the adversary cannot
find vectors in T⊥1 . Finally, since the adversary does find vectors in S, we know that the vector in S we
found σ0 + σ1 is in

(
S \ T⊥1

)
. This property can then be carried for the rest of the hybrid experiments,

to break the security of the QFHE in the end.
Ideally we indeed would like to prove such strong hardness property, but we do not manage to do so,

in fact, it isn’t even true that it is always hard: If the dimension of T⊥1 , the subspace of S, is big enough
(which means that the randomly sampled primal superspace T1 is not that much bigger than S⊥), just by
outputting a vector in S, we must be able to land inside T⊥1 with good probability.

What we do manage to show in our main technical Lemma 5.1 is a dual subspace anti-concentration
property, that says that while it may be possible to hit the dual subspace T⊥1 after getting an obfuscation
OT1 ← iO(CT1) (for a random high-dimensional superspace of S⊥), it is hard to concentrate there
exclusively. In other words, such adversary will always have to make a near miss into S, i.e., as long as
the adversary manages to hit T⊥1 with a noticeable probability, it has to accidentally hit the background
subspace S sometimes, also with a noticeable probability.

3 Preliminaries

We rely on standard notions of classical Turing machines and Boolean circuits:
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• A PPT algorithm is a probabilistic polynomial-time Turing machine.

• For a PPT algorithm M , we denote by M(x; r) the output of M on input x and random coins r.
For such an algorithm and any input x, we write m ∈ M(x) to denote the fact that m is in the
support of M(x; ·).

We follow standard notions from quantum computation.

• A QPT algorithm is a quantum polynomial-time Turing machine.

• An interactive algorithm M , in a two-party setting, has input divided into two registers and output
divided into two registers. For the input, one register Im is for an input message from the other
party, and a second register Ia is an auxiliary input that acts as an inner state of the party. For the
output, one register Om is for a message to be sent to the other party, and another register Oa is
again for auxiliary output that acts again as an inner state. For a quantum interactive algorithmM ,
both input and output registers are quantum.

The Adversarial Model. Throughout, efficient adversaries are modeled as quantum circuits with
non-uniform quantum advice (i.e. quantum auxiliary input). Formally, a polynomial-size adversary
A = {Aλ, ρλ}λ∈N, consists of a polynomial-size non-uniform sequence of quantum circuits {Aλ}λ∈N,
and a sequence of polynomial-size mixed quantum states {ρλ}λ∈N.

For an interactive quantum adversary in a classical protocol, it can be assumed without loss of
generality that its output message register is always measured in the computational basis at the end of
computation. This assumption is indeed without the loss of generality, because whenever a quantum state
is sent through a classical channel then qubits decohere and are effectively measured in the computational
basis.
Indistinguishability and other Standard Notations.

• For n ∈ N, define [n] := {1, 2, 3, · · · , n}.

• For an n-qubit state |ψ⟩, for classical strings x, z ∈ {0, 1}n, the state |ψ⟩x,z is the Quantum
One-Time Pad of |ψ⟩ with pads x, z and is defined to be

(
⊗i∈[n]X

xi
)
·
(
⊗i∈[n]Z

zi
)
· |ψ⟩.

• Let f : N→ [0, 1] be a function.

– f is negligible if for every constant c ∈ N there exists N ∈ N such that for all n > N ,
f(n) < n−c.

– Accordingly, f is non-negligible if there exists a constant c ∈ N such that for infinitely many
values of n ∈ N, f(n) > n−c.

– f is noticeable if there exists c ∈ N, N ∈ N such that for every n ≥ N , f(n) ≥ n−c.
– f is overwhelming if it is of the form 1− µ(n), for a negligible function µ.

• For a register of n qubits QT and a classical Boolean function f : {0, 1}n → {0, 1}, the quantum
computation f(QT) is computing the classical function f in superposition, that is, applying the
unitary transformation Uf : ∀x ∈ {0, 1}n, b ∈ {0, 1}, |x, b⟩ → |x, b⊕ f(x)⟩. The outputs of such
computation is a quantum register of n + 1 qubits: The first n qubits of the output register is the
register QT and the last, single-qubit register is denoted by OUT.

• We may consider random variables over bit strings or over quantum states. This will be clear from
the context.
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• For two random variables X and Y supported on quantum states, quantum distinguisher circuit D
with, quantum auxiliary input ρ, and µ ∈ [0, 1], we write X ≈D,ρ,µ Y if

|Pr[D(X; ρ) = 1]− Pr[D(Y ; ρ) = 1]| ≤ µ.

• Two ensembles of random variables X = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ over the same set of
indices I = ·∪λ∈NIλ are said to be computationally indistinguishable, denoted by X ≈c Y , if for
every polynomial-size quantum distinguisher D = {Dλ, ρλ}λ∈N there exists a negligible function
µ(·) such that for all λ ∈ N, i ∈ Iλ,

Xi ≈Dλ,ρλ,µ(λ) Yi .

• The trace distance between two distributions X,Y supported over quantum states, denoted
TD(X,Y ), is a generalization of statistical distance to the quantum setting and represents the
maximal distinguishing advantage between two distributions supported over quantum states, by un-
bounded quantum algorithms. We thus say that ensemblesX = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ ,
supported over quantum states, are statistically indistinguishable (and write X ≈s Y), if there
exists a negligible function µ(·) such that for all λ ∈ N, i ∈ Iλ,

TD(Xi, Yi) ≤ µ(λ) .

In what follows, we introduce the cryptographic tools used in this work.

3.1 Indistinguishability Obfuscation

We use indistinguishability obfuscators for classical circuits, that are secure against quantum polynomial-
time adversaries.

Definition 3.1. An indistinguishability obfuscation scheme iO is a PPT algorithm that gets as input a
security parameter λ ∈ N and a classical circuit C, and outputs a classical circuit. It has the following
guarantees.

• Correctness: For every classical circuitC and security parameter λ ∈ N, the programs iO(1λ, C)
and C are functionally equivalent.

• Indistinguishability: For every polynomial poly(·):

{iO(1λ, C0)}λ,C0,C1 ≈c {iO(1λ, C1)}λ,C0,C1 ,

where λ ∈ N, C0, C1 are two poly(λ)-size classical circuits with the same functionality.

In [Zha19], it is shown that indistinguishability obfuscation schemes have the property of subspace-
hiding. This is proven in Theorem 6.3 in [Zha19]. Lemma 3.1 in [Shm21] extends the parameters in
[Zha19] to get the following strengthened statement.

Lemma 3.1 (Lemma 3.1 in [Shm21]). Let S = {Sλ}λ∈N a subspace S ⊆ {0, 1}λ such that there is a
constant δ′ ∈ (0, 1] with ∀λ ∈ N : dim(Sλ) ≤ λ− λδ

′ .

• Let iO an indistinguishability obfuscation scheme, and assume that injective one-way functions
exist.

• For a subspace V , denote by CV a classical circuit that checks membership in V .
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Then, for every constants δ ∈ (0, δ′], c ∈ N, we have the following indistinguishability,{(
O

(1)
Sλ
, · · · ,O(λc)

Sλ

) ∣∣∣ (
O

(1)
Sλ
, · · · ,O(λc)

Sλ

)
← iO(CSλ

)

}
λ∈N

≈c

{(
O

(1)
T , · · · ,O(λc)

T

) ∣∣∣ T ← S⊆λ ,(O(1)
T , · · · ,O(λc)

T

)
← iO(CT )

}
λ∈N

,

where S⊆λ is the uniform distribution over all superspaces of Sλ with dimension λ− λδ.

Instantiations. Indistinguishability Obfuscation for classical circuits that has security against quan-
tum polynomial-time attacks follows from the recent line of works on lattice-inspired iO candidates
[BDGM20a, GP21, BDGM20b, DQV+21].

3.2 Leveled Hybrid Quantum Fully Homomorphic Encryption

We rely on quantum fully homomorphic encryption of a specific structure. The formal definition follows.

Definition 3.2 (Leveled Hybrid Quantum Fully-Homomorphic Encryption). A hybrid leveled quantum
fully homomorphic encryption scheme is given by six algorithms (QHE.Gen, QHE.Enc, QHE.OTP,
QHE.Dec, QHE.QOTP, QHE.Eval) with the following syntax:

• fhek ← QHE.Gen(1λ, 1ℓ) : A PPT algorithm that given a security parameter λ ∈ N and target
circuit bound ℓ ∈ N, samples a classical secret key fhek.

• m ⊕ x = QHE.OTPx(m) : A classical polynomial-time deterministic algorithm that takes as
input a classical pad x ∈ {0, 1}∗ and message m such that |m| = |x|, and outputs m⊕ x.

• ctb ← QHE.Encfhek(b) : A PPT algorithm that takes as input a classical bit b and the secret key
fhek and outputs a classical ciphertext ctb. To encrypt a multi-bit string x ∈ {0, 1}∗, the algorithm
executes on each bit independently.

• x = QHE.Decfhek(ct) : A classical polynomial-time deterministic algorithm that takes as input a
classical ciphertext ct and the secret key fhek and outputs a string x.

• |ψ⟩x,z = QHE.QOTP(x,z)(|ψ⟩) : A QPT algorithm that takes as input an n-qubit quantum
state |ψ⟩ and classical strings as quantum one-time pads x, z ∈ {0, 1}n and outputs the QOTP
transformation of the state |ψ⟩x,z :=

(
⊗i∈[n]X

xi
)
·
(
⊗i∈[n]Z

zi
)
· |ψ⟩.

•
(
|ϕ⟩x′,z′ , ct(x′,z′)

)
← QHE.Eval

(
(|ψ⟩x,z, ct(x,z)), C

)
: A QPT algorithm that takes as input

a general quantum circuit C, a quantum one-time-pad encrypted state |ψ⟩x,z and a classical
ciphertext ct(x,z) of the pads. The evaluation outputs a QOTP encryption of some quantum state
|ϕ⟩ encrypted under new keys (x′, z′) and a classical ciphertext ct(x′,z′).

The scheme satisfies the following.

• Encryption Security: For every polynomialsm(·), ℓ(·), and quantum polynomial-time algorithm
A = {Aλ, ρλ})λ∈N there exists a negligible function neglA(·) such that{

(m0 ⊕ x, ctx)
∣∣∣∣ x← {0, 1}m(λ), fhek← QHE.Gen(1λ, 1ℓ(λ)),

ctx ← QHE.Encfhek(x),

}
λ,m0,m1

≈Aλ,ρλ,neglA(λ){
(m1 ⊕ x, ctx)

∣∣∣∣ x← {0, 1}m(λ), fhek← QHE.Gen(1λ, 1ℓ(λ)),
ctx ← QHE.Encfhek(x),

}
λ,m0,m1

,

where λ ∈ N, m0,m1 ∈ {0, 1}m(λ).
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– If there exists a constant δ ∈ (0, 1] such that, for every (quantum polynomial-time) adversary
A, ∀λ ∈ N, neglA(λ) ≤ 2−λ

δ , we say that the QFHE scheme has sub-exponential advantage
security.

• Homomorphism: For every polynomial ℓ = {ℓλ}λ∈N there is a negligible function negl(·)
such that the following holds. Let fhek ∈ QHE.Gen(1λ, 1ℓ), let x, z equal-length strings, let
ct(x,z) ∈ QHE.Encfhek(x, z), let C a quantum circuit of size ≤ ℓ, let |ψ⟩ a |x|-qubit state input for
C. Then, TD(D0, D1) ≤ negl(λ), where D0, D1 are defined as follows.

– D0 : The output state |ψ′⟩ ← C(|ψ⟩).

– D1 :The state generated by first evaluating
(
|ϕ⟩x′,z′ , ct(x′,z′)

)
← QHE.Eval

(
(|ψ⟩x,z, ct(x,z)), C

)
,

and then decrypting (x̃, z̃) = QHE.Decfhek(ct(x′,z′)), |ϕ⟩ = QHE.QOTP(x̃,z̃)(|ϕ⟩x
′,z′).

Instantiations. Quantum Leveled Fully-Homomorphic encryption with the hybrid structure follows from
the work of Mahadev [Mah20], and can be based on the hardness of Learning with Errors. Brakerski
[Bra18] shows how to increase the security of QFHE using a weaker LWE assumption. Consequently,
constructing QFHE that has hybrid structure, leveled, and has sub-exponential advantage security can be
based on assuming Decisional LWE for quantum computers, with sub-exponential indistinguishability.

3.3 Semi-Quantum Tokenized Signatures

In this work we construct a semi-quantum tokenized signature scheme based on cryptographic assump-
tions. Before describing our construction in Section 4, we give a definition of a semi-quantum tokenized
signature scheme. Note that in the below definition, and also in the rest of the technical sections of the
paper, we use the general terminology of a sender (instead of a party called the bank) and a receiver. The
rest of the names of the algorithms (quantum verification, signature generation and signature verification)
stay the same.

Definition 3.3 (Semi-quantum tokenized signature). A semi-quantum tokenized signature scheme con-
sists of algorithms (Sen, Rec, QV, Sign, CV) with the following syntax.

• (pk, |qt⟩pk) ← ⟨Sen,Rec⟩(OUTSen,OUTRec) : a classical-communication protocol between a PPT
algorithm Sen and a QPT algorithm Rec. At the end of interaction the sender outputs a classical
public key pk and the receiver outputs a quantum state |qt⟩pk.

•
(
b, |qt⟩′pk

)
← QV(pk, |qt⟩pk) : A QPT algorithm that gets as input the public key and a candidate

token |qt⟩pk and outputs a token |qt⟩′pk along with a bit b ∈ {0, 1}.

• σb ← Sign(pk, |qt⟩pk, b) : A QPT algorithm that gets as input the public key pk, a candidate token
|qt⟩pk and a bit b ∈ {0, 1} and outputs a classical string σb.

• CV(pk, σb, b) ∈ {0, 1} : A classical polynomial-time deterministic algorithm that takes as input
the public key pk, a classical string σb and a bit b ∈ {0, 1}, and outputs a bit.

The scheme satisfies the following guarantees.

• Statistical Correctness: There exists a negligible function negl(·) such that for every λ ∈ N,

Pr
(pk,|qt⟩pk)←⟨Sen,Rec⟩(OUTSen,OUTRec)

[
(1, |qt⟩′pk)← QV(pk, |qt⟩pk)

]
≥ 1− negl(λ) .
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• Security: For every A = {Aλ, ρλ}λ∈N a quantum polynomial-time algorithm there exists a
negligible function negl(·), such that for QT sampled by interaction with the sender,

(pk,QT)← ⟨Sen,A⟩(OUTSen,OUTA) ,

for every λ ∈ N, for each of the below events, the probability for it to occur is ≤ negl(λ):

– Signature Counterfeiting: QT = (σ0, σ1), such that CV(pk, σ0, 0) = CV(pk, σ1, 1) = 1.

– Quantum Sabotage: QT = |qt⟩(1)pk such that (1, |qt⟩(2)pk ) ← QV(pk, |qt⟩(1)pk ) on first execu-
tion of QV, and then (0, |qt⟩(3)pk )← QV(pk, |qt⟩(2)pk ).

– Classical Sabotage: QT = |qt⟩(1)pk such that (1, |qt⟩(2)pk )← QV(pk, |qt⟩(1)pk ) on first execution
of QV, and then σb ← Sign(pk, |qt⟩(2), b), CV(pk, σb, b) = 0.

The above definition is relatively succinct compared to the number of protections it guarantees. We
go over these derived guarantees here.
Security against sabotage. Security against quantum and classical sabotage protects users in the system
i.e. token holders. Security against quantum sabotage basically says that when a user is given a quantum
token and it passed the public quantum verification QV(pk, ·) once, it will pass all further quantum
verifications with overwhelming probability. Security against classical sabotage further adds that at the
end of this process we can destroy the token to sign on any bit b ∈ {0, 1}, σb ← Sign(pk, ·, b). This
signature σb will pass the public classical verification of CV(pk, ·, b).
Security against signature counterfeiting is intended to protect the sender. The guarantee says that an
adversary cannot output more than a single signature for the single token it got.
Correctness. The formal correctness guarantee says that when the protocol is executed honestly, then
the generated token |qt⟩pk passes quantum verification with overwhelming probability. When combined
with security against classical sabotage, this means that the token which passed the a quantum verification
will successfully generate a classical signature σb for any chosen b ∈ {0, 1}, that passes the classical
verification CV(pk, ·, b). So, when the protocols are executed honestly the token both passes quantum
verification and classical signature generation and verification.
Multi-session Security. As explained in Section 1.1 of the introduction, there is a straightforward
transformation to turn single-bit, single-use quantum signature tokens (i.e. the above Definition 3.3) to
reusable tokens that can sign on length-λ strings. This transformation is enabled by assuming classical
digital signatures with security against quantum polynomial-time attackers.

4 Semi-Quantum Tokenized Signatures Construction

In this section we present our construction of a semi-quantum tokenized signatures (SQTS) scheme,
proof of correctness and proof of security against quantum and classical sabotage (all of these are in
Definition 3.3).
Ingredients and notation:

• A quantum hybrid fully homomorphic encryption scheme (QHE.Gen, QHE.Enc, QHE.OTP,
QHE.Dec, QHE.QOTP, QHE.Eval), with sub-exponential advantage security (Definition 3.2).

• An indistinguishability obfuscation scheme iO (Definition 3.1).

In Figure 1 we describe the token generation protocol and token quantum verification procedures. In
Figure 2 we describe the quantum signing algorithm and the classical signature verification procedures.
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Protocol 1

Token Generation Protocol: Sen is classical and Rec is quantum. The joint input is the security
parameter λ ∈ N.

1. Sen samples a random λ
2 -dimensional subspace S ⊆ {0, 1}λ, described by a matrix MS ∈

{0, 1}
λ
2
×λ. Samples OTP key px ← {0, 1}

λ2

2 to encrypt M(px)
S = QHE.OTPpx(MS), and

then fhek ← QHE.Gen(1λ, 1ℓ(λ)) for some polynomial ℓ(·), ctpx ← QHE.Encfhek(px). Sen
sends the encryption (M

(px)
S , ctpx) to Rec.

2. Let C the quantum circuit that for an input matrix M ∈ {0, 1}
λ
2
×λ, outputs a uni-

form superposition of its row span. The receiver Rec homomorphically evaluates C:
(|S⟩x,z, ctx,z) ← QHE.Eval

(
(M

(px)
S , ctpx), C

)
, saves the quantum part |S⟩x,z and sends

the classical part ctx,z to Sen.

3. Sen decrypts (x, z) = QHE.Decfhek(ctx,z). If x ∈ S, the interaction is terminated. Let
MS⊥ ∈ {0, 1}

λ
2
×λ a basis for S⊥ (as a matrix), let w the first row in MS and let MS0 ∈

{0, 1}(
λ
2
−1)×λ the rest of the matrix MS , without w.

Sen computes indistinguishability obfuscations OS0+x ← iO(MS0 , x), OS0+w+x ←
iO(MS0 , w + x), OS⊥+z ← iO(MS⊥ , z), all with padding poly′(λ) for some polynomial
poly′.
The output of Sen is pk :=

(
OS0+x,OS0+w+x,OS⊥+z

)
, the output of Rec is |qt⟩pk := |S⟩x,z .

Quantum Token Verification:

• QV
((
OS0+x,OS0+w+x,OS⊥+z

)
,QT

)
: Given a public key and a λ-qubit quantum register

QT, the verifier checks two things:

– Checks that the output qubit of (OS0+x ∨ OS0+w+x) (QT) is 1.
– Executes Hadamard transform H⊗λ on QT and then checks that the output qubit of

OS⊥+z(QT) is 1.

If both checks passed, the verifier executesH⊗λ again on QT and accepts the signature token.

Figure 1: Token generation protocol between the classical sender and quantum receiver, and quantum
token verification procedure of our semi-quantum tokenized signature scheme.

4.1 Correctness and Security Against Sabotage

We first prove that our scheme is correct, which includes two steps: (1) If the scheme’s algorithms are
ran honestly then the protocol ends successfully, with the output of the honest receiver having negligible
trace distance to |S⟩x,z . (2) We recall that |S⟩x,z passes the quantum verification with probability 1,
which overall means that the probability to pass the quantum verification is 1− negl(λ).

Claim 4.1. If the token generation protocol is executed honestly, the quantum token |qt⟩pk has negligible
trace distance from the state |S⟩x,z :=

∑
u∈S(−1)⟨z,u⟩|x+ u⟩ (the output of the protocol is defined to be

⊥ in case the honest sender aborted the interaction), where x, z are the values obtained by the decryption
executed by the sender in step 3 of the protocol.
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Protocol 2

Quantum Signing Algorithm:

• Sign
((
OS0+x,OS0+w+x,OS⊥+z

)
,QT, b

)
: Given a public key, a λ-qubit quantum register

QT and b ∈ {0, 1}, the signing algorithm repeats the following procedure λ times and if the
loop did not terminate in the middle, it outputs ⊥.

1. Measure the output qubit of OS0+b·w+x(QT), let m ∈ {0, 1} the measurement result.

(a) Ifm = 1, measure the register QT to get measurement σb, output σb and terminate.
(b) If m = 0, execute H⊗λ on QT, measure the output qubit of OS⊥+z(QT), and

execute H⊗λ on QT once again. Restart the loop.

Classical Signature Verification:

• CV
((
OS0+x,OS0+w+x,OS⊥+z

)
, σb, b

)
: To verify a classical signature candidate σb for the

bit b, the verifier outputs the bit OS0+b·w+x(σb).

Figure 2: The quantum signature algorithm and the classical signature verification procedure of our
semi-quantum tokenized signature scheme.

Proof. By the statistical correctness of the QFHE, at the end of step 2 of the generation protocol, the
quantum state that the honest Rec holds in its quantum-evaluated register has negligible trace distance to
|S⟩x,z , that is, this negligible distance holds with probability 1 over the first two messages of the protocol.

Now, we claim that the probability for such honest Rec to have x ∈ S is negligible. So, assume
towards contradiction it was noticeable. Because the probability for x ∈ S is noticeable, it has to be
the case that with a noticeable probability, when we execute the honest protocol, at the end of step 2 the
receiver holds a state with negligible trace distance to |S⟩x,z for x ∈ S. Now, for any x ∈ S it follows
that |S⟩x,z = |S⟩0λ,z . This means that by measuring the receiver’s state we get a non-zero vector in S
with overwhelming probability, and overall, with a noticeable probability we can get a non-zero vector
in S without even knowing the QFHE secret key.

Getting a non-zero vector in S violates the security of the QFHE, due to the fact that S is chosen at
random and it covers only a negligible fraction out of {0, 1}λ. So, the honest execution of the protocol
terminates on with a negligible probability.

Overall, with probability 1−negl(λ), we have x /∈ S, the protocol ends successfully and the receiver
holds a quantum state with negligible trace distance to |S⟩x,z .

We explain how Claim 4.1 implies the statistical correctness of our scheme.

Proposition 4.1. The scheme presented in Protocol 1 has statistical correctness (Definition 3.3).

Proof. In Claim 4.1 we saw that with probability 1− negl(λ), the honest receiver Rec holds a quantum
state with negligible trace distance to |S⟩x,z .

Finally, our public quantum verification QV is the standard QFT-based verification procedure of a
coset state, and a well-known fact in the literature that a successful verification of such procedure is
a projection of the verified state onto the subspace spanned only by the coset state [AC12, BDS16].
Because the trace distance of |qt⟩pk from |S⟩x,z is negligible, the probability for the state to be verified
is overwhelming.

Overall, with probability 1−negl(λ) over the execution of the honest protocol, the receiver’s quantum
state passes the quantum verification QV(pk, ·).
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Security against quantum sabotage. From the fact that the quantum verificationQV(pk, ·) is a projector
on the coset state, it follows that after a single successful quantum verification, |qt⟩pk is now |S⟩x,z ,
which passes the next quantum verification with probability 1.

It remains to prove the security of the scheme against classical sabotage.

Proposition 4.2. The scheme presented in Protocol 1 has security against classical sabotage (Definition
3.3).

Proof. The starting point of the algorithm is the state after passing successfully the verificationQV(pk, ·),
which, as we stated above, means the state is exactly |S⟩x,z . We now consider what happens to the input
state |S⟩x,z during the execution of the quantum signing algorithm Sign(pk, ·, b). After the first step 1 of
an iteration, if m = 1 we are done, as we have |S0 + b · w⟩x,z after the measurement, which means that
by measuring we get σb ∈ (S0 + b · w) with probability 1. If m = 0 we now have |S0 + (¬b) · w⟩x,z ,
which we would like to correct.

Regarding the second step 1b, denote bym′ ∈ {0, 1} the measured output bit of OS⊥+z(QT), that is,
in step 1b of the signing procedure we execute QFT on QT, then measure the output qubit of OS⊥+z(QT)
(we denoted by m′ the outcome of this 1-qubit measurement) and then execute QFT on QT again.

One can verify that if m′ = 1 then we have |S⊥⟩z,x before the second QFT, and thus back to |S⟩x,z
after the second QFT. On the other hand, ifm′ = 0, after the second QFT we have |S0⟩x,z−|S0 + w⟩x,z .

In any case, regardless of the valuem′, at the end of step 1b of the signing procedure, the state (which
is either |S⟩x,z or |S0⟩x,z − |S0 + w⟩x,z) maintains the property that after measurement of the output
qubit of OS0+b·w(QT) (which will come up in upcoming step 1 of the next iteration), it will be projected
to be the correct |S0 + b · w⟩x,z with probability 1/2 and with the remaining probability 1/2 it will be
projected to |S0 + (¬b) · w⟩x,z .

We deduce that at the beginning of each of the λ iterations we make, when we start with step 1,
before the step is executed, we have a state that is projected to |S0 + b · w⟩x,z with probability 1/2 and to
|S0 + (¬b) · w⟩x,z with probability 1/2. The entire process will thus fail only if we fail consecutively λ
times, where each experiment is independent from the rest and succeeds with probability 1/2. Overall,
this implies a failure probability of 1− 2−λ.

5 Security against Signature Counterfeiting

In this section we will argue that the scheme is secure against signature counterfeiting as in Definition 3.3,
that is, under the security of our ingredient primitives, there is no quantum polynomial-time adversary
that can get a single signature token (i.e. execute once the protocol with the classical sender, to get a
single quantum token for signing) and sign on two different bits 0 and 1.

Proposition 5.1 (Security against Signature Counterfeiting). LetA = {Aλ, ρλ}λ∈N a quantum polynomial-
time adversary that interacts once with the honest classical sender Sen in the token generation protocol.
Then, there exists a negligible function negl(·) such that for every λ ∈ N,

Pr [CV(pk, σ0, 0) = CV(pk, σ1, 1) = 1] ≤ negl(λ) ,

where the probability is over the random experiment,

(pk, (σ0, σ1))← ⟨Sen,A⟩(OUTSen,OUTA) .

Proof. Let A = {Aλ, ρλ}λ∈N a quantum polynomial time adversary that succeeds in signing on two
different bits with some non-negligible probability ε = {ελ}λ∈N. We will show how to use A in order
to break the sub-exponential security of the QFHE.

We next describe a sequence of hybrid experiments, consequently arriving to a hybrid experiment
that is directly useful for breaking the security of the QFHE.
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• Hyb0 : The original attack.

Defined to be exactly the experiment described above where A succeeds in signing on two different bits
0 and 1. Specifically, the output of Hyb0 is the two signatures, σ0, σ1. The experiment is defined to
be successful iff both signatures are accepted by the signature verification algorithm CV(pk, ·, 0/1). By
definition, the success probability of Hyb0 is ε.

• Hyb1 : Changing how we check signatures.

Identical to Hyb0, only that the success of the experiment is defined to be (σ0+σ1) ∈ (S \ {0λ}), rather
than before, where we checked OS+x(σ0) ∧ OS+x+w(σ1).

By the correctness of the obfuscation scheme iO, it follows from OS0+x(σ0) ∧ OS0+w+x(σ1) that
σ0 = u0+x and σ1 = u1+w+x for some u0, u1 ∈ S0. This implies exactly that σ0+σ1 = (u0+u1)+w
is inside S by the closure property of S (and by the fact that all three vectors u0, u1, w are inside S),
but it cannot be zero, because (u0 + u1) ∈ S0 due to closure of S0, and w is not inside S0 by definition,
which makes the sum (u0+u1)+w non-zero. We get σ0+σ1 ∈ (S \ {0λ}) and the success probability
of the experiment Hyb1 is thus at least the success probability of Hyb0 i.e. it is ≥ ε.

• Hyb2 : Synchronizing subspace membership circuits.

This hybrid is identical to Hyb1, with the only difference is that all of the obfuscations OS0+x, OS0+x+w,
OS⊥+z that Sen sends toA at step 3 of the token generation protocol, are changed as follows: The circuit
S0+x is changed to a circuit that subtracts (mod 2) x from the input and then applies a membership check
in S0, only that the membership check is executed by an obfuscated circuit OS0 . The circuit S0 + x+w
is changed in the analogous way where the subtraction is x + w and the same obfuscated membership
circuit OS0 for S0 is used. The circuit S⊥+ z is changed to a circuit that subtracts (mod 2) z and checks
membership in S⊥ by the obfuscated circuit OS⊥ .

By the correctness of the obfuscations iO(S⊥), iO(S0), the functionality of the programs OS0+x,
OS0+x+w, OS⊥+z did not change from Hyb1 to Hyb2. It follows that by the security of the indistinguisha-
bility obfuscation scheme (applied to the three circuits we are using to check memberships in Hyb2), the
success probability of Hyb2 is negligibly close to Hyb1, that is, ≥ ε− negl(λ).

• Hyb3 : Moving to larger superspaces using the subspace-hiding property of iO.

Let δ′ ∈ (0, 1] the sub-exponential security level of the QFHE (that is, any quantum polynomial-time
algorithm cannot break the security of the QFHE with advantage bigger than 2−λ

δ′ ), and denote δ := δ′

2 .
This hybrid is identical to Hyb2, with the following changes: When the process samples the inner
obfuscations OS0 (which is used inside both of the obfuscations OS0+x and OS0+x+w) and OS⊥ (which
is used inside the third obfuscation OS⊥+z), it instead samples a random superspace S0 ⊆ T0 ⊆ {0, 1}λ
of dimension λ − λδ, and another random superspace S⊥ ⊆ T1 ⊆ {0, 1}λ of dimension λ − λδ, and
uses OT0 instead of OS0 , and uses OT1 instead of OS⊥ . As an updated notation in Hyb3 and on, we can
now think of the obfuscations sent by the sender in step 3 of the token generation protocol, as OT0+x,
OT0+x+w, OT1+z instead of OS0+x, OS0+x+w, OS⊥+z .

By the subspace hiding property (Lemma 3.1) of indistinguishability obfuscators, the hybrids are
indistinguishable and the success probability of Hyb3 is ≥ ε− negl(λ).

• Hyb4 : Switching to checking elements outside of T⊥1 .

This hybrid is identical to the previous, with one change to the success definition of the experiment:
instead of checking whether (σ0 + σ1) ∈ (S \ {0λ}), we check whether (σ0 + σ1) ∈ (S \ T⊥1 ).
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Now, consider the statement of the anti-concentration Lemma 5.1, where for the subspace S in the
Lemma’s statement we take our dual subspace S⊥, and for the random super-space of the S in the
Lemma’s statement, we accordingly take our T1. Because ε(λ) − negl(λ) is a non-negligible function,
by Lemma 5.1, it is necessarily the case that there is a non-negligible function ε′ = {ε′λ}λ∈N such that
for all λ ∈ N, the probability for σ0 + σ1 ∈ (S \ T⊥1 ) is at least ε′(λ).

• Hyb5 : Lowering the dependency from fully knowing x, z, w to knowing only a leakage.

The difference between this process and the previous is that when we send the obfuscations OT0+x,
OT0+x+w, OT1+z at step 3 of the generation protocol, the way in which we check membership in each
of the cosets is this: Let B0 a basis for T⊥0 , let B1 a basis for T⊥1 , let B0 · x = yx, B0 · w = yw,
B1 · z = yz , all strings of length λδ. OT0+x is changed to be an obfuscation of a circuit that for input
u ∈ {0, 1}λ checks whether B0 · u = yx. OT0+x+w is changed to be an obfuscation of a circuit that for
input u ∈ {0, 1}λ checks whether B0 · u = yx + yw. OT1+z is changed to be an obfuscation of a circuit
that for input u ∈ {0, 1}λ checks whether B1 · u = yz .

The functionality of the obfuscated circuits OT0+x, OT0+x+w, OT1+z did not change, and thus by the
security of the indistinguishability obfuscation schemes, the distributions are indistinguishable and the
success probability of Hyb5 is ≥ ε′ − negl(λ).

• Hyb6 : Changing the way we sample S0, w, T0 and T⊥1 .

In the remainder of the reduction we would like to move, by a sequence of hybrids, to a final hybrid which
allows us to break the security of the QFHE. Specifically, we will consider the subspace S0 as hidden
(more precisely, any vector in S0 \ T⊥1 ). More specifically, we will get a classical QFHE encryption for
a basis for a random S0, and the information of T0, T⊥1 and w will be fixed and public. To break the
security of the QFHE, we will need to find any vector in S0 \ T⊥1 . To fix T0, T⊥1 , w, we will flip the
order of sampling all four T0, T⊥1 , w and S0. The goal of this hybrid is not to flip the order of sampling
yet, but to prepare the ground for it.

Observe the following property of the subspace T⊥1 of S: It is either the case that T⊥1 ⊆ S0, or that
S0 contains exactly half of T⊥1 . To elaborate, in the tiny-probability case where all λδ basis vectors of
T⊥1 are sampled inside S0 (for each, this happens with probability 1/2, because S0 takes half of S), we
get T⊥1 ⊆ S0. This happens with probability exactly 2−λ

δ . In the other case, it is sufficient that at least
one of the basis vectors of T⊥1 is in S \ S0. One can observe that at this case, the subspace T⊥1 can be
written as the set union of two disjoint cosets T̃⊥1 ∪

(
T̃⊥1 + w

)
, for a random subspace T̃⊥1 inside S0

of λδ − 1 dimensions. The reason for the ability to write T⊥1 that way is that we can consider the basis
vectors of T⊥1 when we sample them from inside S, then split them to vectors from either S0 or S0 +w:
For every element inside T⊥1 , consider its coordinates vector, and more specifically, the coordinates for
the elements from S0 +w. For every coordinates vector (recall that the coordinate vectors are binary, as
we are dealing with the vectors over the field {0, 1}) with an even number of 1’s on the elements from
S0+w, we get a vector inside S0 (because the summed w’s cancel out), and for every coordinates vector
with an odd number of 1’s on the elements from S0 + w we get a vector in S0 + w. Since there are
exactly half of each case, this splits our subspace T⊥1 into two disjoint cosets, as above.

This means that conditioned on that the event T⊥1 ⊆ S0 (which, as we explained above, happens
only with probability 2−λ

δ ) does not happen, here is an equivalent way to sample our subspaces and
vectors, identical to the previous hybrid: (1) Sample S0 a random

(
λ
2 − 1

)
-dimensional subspace of

{0, 1}λ, (2) Sample a randomw ∈
(
{0, 1}λ \ S0

)
and set S := S0∪ (S0 + w), (3) Sample T̃⊥1 a random(

λδ − 1
)
-dimensional subspace of S0 and set T⊥1 := T̃⊥1 ∪

(
T̃⊥1 + w

)
, and finally (4) Sample T0 a

random
(
λ− λδ

)
-dimensional subspace conditioned on S ⊆ T0 ⊆ {0, 1}λ.
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The current Hyb6 only differs from the previous Hyb5 for the case T⊥1 ⊆ S0 that happens only in
Hyb5 with probability 2−λ

δ . It follows that the success probability of Hyb6 is ≥ ε′ − negl(λ)− 2−λ
δ
=

ε′ − negl(λ).

• Hyb7 : Changing the order we sample S0, w, T0 and T⊥1 .

We are now ready to change the order of sampling our elements. In this hybrid the sampling order is as
follows: (1) Sample w a random vector in {0, 1}λ. (2) Sample T̃0 a random

(
λ− λδ − 1

)
-dimensional

subspace conditioned on w /∈ T̃0, set T0 := T̃0 ∪
(
T̃0 + w

)
. (3) Sample T̃⊥1 a random

(
λδ − 1

)
-

dimensional subspace of T̃0, set T⊥1 := T̃⊥1 ∪
(
T̃⊥1 + w

)
. (4) Sample S0 a random

(
λ
2 − 1

)
-dimensional

subspace of T̃0. Overall, we sampled w, then T̃0, then T̃⊥1 , and (importantly) lastly S0. The distributions
over these samples is identical to the previous Hyb6, and thus in particular the success probability in the
current Hyb7 is ≥ ε′ − negl(λ).

• Hyb8 : Fixing w, T̃0 and T̃⊥1 .

We can take the sampling procedure of the subspaces described in Hyb7 and perform an averaging
argument on the sampling of w, T̃0 and T̃⊥1 , to take the three samples that maximize the success
probability of Hyb7. It is straightforward to make this averaging argument at this point, because w, T̃0
and T̃⊥1 are sampled before everything else. While this process is clearly not indistinguishable from the
previous (as we fix a lot of the entropy in the experiment), because we took the samples w, T̃0 and T̃⊥1
for which the previous hybrid is successful with probability ≥ ε − negl(λ), the success of the current
Hyb8 is also ≥ ε′ − negl(λ).

• Hyb9 : Losing the QFHE secret key.

This experiment is identical to Hyb8 with one change: In the third step 3 of the token generation protocol
in Hyb8, when the sender usually decrypts the QFHE classical part to get the QOTP keys x, z, the current
processHyb9 does not decrypt to get x, z, and instead it samples uniformly random y′x, y

′
w, y

′
z ∈ {0, 1}λ

δ ,
and inserts these strings as yx, yw, yz in the obfuscations OT0+x, OT0+x+w, OT1+z , respectively.

Observe that conditioned on the probabilistic event y′x = yx, y′w = yw, y′z = yz (for which to happen,
the probability is exactly 2−3·λ

δ ), Hyb9 and Hyb8 distribute identically. It follows that the success
probability in Hyb9 is at least 2−3·λδ · (ε′ − negl(λ)) > 2−4·λ

δ .

• Hyb10 : Clearing all given knowledge on S (other than w, T̃0 and T̃⊥1 ).

This hybrid is identical to the previous, with the exception that instead of the honest Sen sending the
QFHE encryption (M(px)

S , ctpx) in step 3 of the token generation protocol, the sender sends an encryption
of (a matrix of) zeros (M(px)

0 , ctpx).
Note that in order to execute Hyb10 there is no need to know the secret key of the QFHE scheme, so it

follows that we can invoke the security of the QFHE. Specifically, we use the sub-exponential-advantage
security of the QFHE, so the success probability of Hyb10 is > 2−4·λ

δ − 2−λ
δ′
> 2−4·λ

δ−1.

Wrapping up the proof. We can use the experiment Hyb10 to perform a task which is information-
theoretically impossible. Specifically, from S = S0 ∪ (S0 +w) it follows that whenever the experiment
Hyb10 is successful,

(σ0 + σ1) ∈
(
S0 \ T⊥1

)
∨ (σ0 + σ1) ∈

(
(S0 + w) \ T⊥1

)
,
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which, according to our definition T⊥1 := T̃⊥1 ∪
(
T̃⊥1 + w

)
, T̃⊥1 ⊆ S0, is equivalent to

(σ0 + σ1) ∈
(
S0 \ T̃⊥1

)
∨ (σ0 + σ1) ∈

(
(S0 + w) \

(
T⊥1 + w

))
,

which in turn is equivalent to

(σ0 + σ1) ∈
(
S0 \ T̃⊥1

)
∨ (σ0 + σ1 + w) ∈

(
S0 \ T̃⊥1

)
.

This gives us our contradiction and finishes our proof. More elaborately, we can play the information-
theoretic game from Claim 5.1, then execute Hyb10 to get σ0+σ1 as the output of the process, and guess
(assuming we are in the case where the experiment Hyb10 is successful) whether we have (σ0 + σ1) ∈(
S0 \ T̃⊥1

)
or (σ0 + σ1 + w) ∈

(
S0 \ T̃⊥1

)
, and output σ0 + σ1 + b · w. By the success probability

of Hyb10, we can win the information-theoretic game of Claim 5.1 with probability ≥ 1
2 · 2

−4·λδ−1, in
contradiction to Claim 5.1.

Claim 5.1. For any two subspaces T̃⊥1 , T̃0 such that T̃⊥1 ⊆ T̃0, dim
(
T̃⊥1

)
= λδ − 1, dim

(
T̃0

)
=

λ − λδ − 1, assume we sample a random subspace S0 subject to T̃⊥1 ⊆ S0 ⊆ T̃0, dim(S0) =
λ
2 − 1.

Then for any (possibly unbounded algorithm) the probability to output s ∈ (S0 \ T̃⊥1 ) is bounded by
2−

λ
2
+λδ+1.

Proof. Let A any unbounded algorithm. As A got no input, we can make an averaging argument on the
output s ofA that maximizes the probability to guess s that hits the set (S0 \ T̃⊥1 ). So,A always outputs
some s∗ ∈ {0, 1}λ, independently of the sampled S0.

If s∗ /∈
(
T̃0 \ T̃⊥1

)
then s∗ /∈

(
S0 \ T̃⊥1

)
and the proof ends as the probability that A guesses

correctly is 0. Since S0 is a uniformly random (λ2 − 1)-dimensional subspace subject to T̃⊥1 ⊆ S0 ⊆ T̃0,
it follows that for any string s∗ ∈ (T̃0 \ T̃⊥1 ), the probability that s∗ ∈

(
S0 \ T̃⊥1

)
is the same, which is,

|S0 \ T̃⊥1 |
|T̃0 \ T̃⊥1 |

=
2

λ
2
−1 − 2λ

δ−1

2λ−λδ−1 − 2λδ−1 <
2

λ
2
−1

2λ−λδ−1 − 2λδ−1

<
2

λ
2
−1

2λ−λδ−1 − 2λ−λδ−2 =
2

λ
2
−1

2λ−λδ−2 = 2−
λ
2
+λδ+1 .

5.1 Hardness of Concentration in the Dual of an Obfuscated Subspace

In this Section we prove the main technical lemma of this work, which intuitively says the following.
Assume we have a subspace S ⊆ {0, 1}λ of dimension d, and assume we sample a random subspace
T ⊆ {0, 1}λ, S ⊆ T , such that the dimension of T is sufficiently far away from being the full dimension λ
(formally, there needs to be at least some positive power function λδ, δ ∈ (0, 1) such that the dimension is
bounded by λ−λδ). Then, for any quantum polynomial-time algorithmA that gets an indistinguishability
obfuscation of membership check in the random T , it cannot be the case that A, given the obfuscation,
can hit T⊥ with a noticeable probability but concentrate there, that is, make a ”near miss” only with a
negligible probability.

By a near miss, we mean this: Since S ⊆ T ⊊ {0, 1}λ, we have T⊥ ⊆ S⊥ ⊊ {0, 1}λ, which means
that the background of T⊥ is S⊥. A near miss is not just any miss v ∈ {0, 1}λ \ T⊥. A near miss is
missing T⊥ by a little, and hitting the immediate background S⊥ \ T⊥ and not just {0, 1}λ. The formal
statement of the above is given in Lemma 5.1 below.
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Lemma 5.1 (IO Dual Subspace Anti-Concentration). Let S = {Sλ}λ∈N a subspace Sλ ⊆ {0, 1}λ of
dimension d = {dλ}λ∈N. Let t = {tλ}λ∈N such that ∀λ ∈ N : tλ ≤ λ.

• Let iO a quantum-secure indistinguishability obfuscation scheme for classical circuits and assume
that post-quantum injective one-way functions exist.

• For a subspaceV , denote byCV : {0, 1}λ → {0, 1} some canonical circuit that checks membership
in the subspace V (say, by Gaussian elimination for some basis for the subspace).

• Denote by S⊆ = {S⊆λ−tλ}λ∈N the uniform distribution over subspaces of dimension λ − tλ that
contain S.

Assume there is a quantum polynomial-time algorithm A = {Aλ, ρλ}λ∈N such that there exists a
constant c ∈ N and an infinite set Q ⊆ N, such that,

∀λ ∈ Q : Pr
[
Aλ(ρλ,OT ) ∈

(
T⊥ \ {0}

) ∣∣∣ T ← S⊆λ−t,OT ← iO(CT )
]
≥ 1

λc
.

Then, if there is some constant δ ∈ (0, 1) with: ∀λ ∈ N : tλ ≥ λδ, λ− (dλ + 3 · tλ) ≥ 6 + c · log2 (λ),
then, there is no infinite subsequence K ⊆ Q such that,

∀λ ∈ K : Pr
[
Aλ(ρλ,OT ) ∈

(
S⊥ \ T⊥

) ∣∣∣ T ← S⊆λ−t,OT ← iO(CT )
]
<

1

2 · λ(c+2)·2 ,

where the above obfuscation of CT is padded with some sufficiently large polynomial poly(λ) number
of bits 1poly(λ).

Proof. Assume toward contradiction that the claim is false and there is such quantum algorithm A.
Define the following probability,

pλ := Pr
[
Aλ(ρλ,OT ) ∈

(
S⊥ \ T⊥

) ∣∣∣ T ← S⊆λ−t,OT ← iO(CT )
]
.

Then, our assumption (towards contradiction) is that there is an infinite set K ⊆ Q such that for every
λ ∈ K we have pλ < 1

2·λ(c+2)·2 .
For short notations in the proof, we denote by iO(CS) the random variable that samples an obfuscation

of the circuit CS , and by iO(T ) the random variable that first samples a superspace T ← S⊆ and then
outputs a sample obfuscation of CT . Naturally, these random variables depend on the security parameter
λ ∈ N, which is also dropped from these notations. We’ll useA to distinguish between the distributions
{OS |OS ← iO(CS)} and {OT |T ← S⊆,OT ← iO(CT )}, and due to the fact that the dimension of
T is λ − t and also t ≥ λδ for some constant δ ∈ (0, 1), such distinguisher is in contradiction to the
subspace hiding property of indistinguishability obfuscation (Lemma 3.1). We first arrange some details
and intuitions that are helpful for the proof.
Initial observations of the adversary’s behavior on obfuscations of T . First, let us observe some
basic probabilistic facts.

• By an averaging argument, there is at least a fraction of 1
2·λc out of the possible choices for T ,

such that for such choices of T , with probability at least 1
2·λc we have Aλ(ρλ,OT ) ∈

(
T⊥ \ {0}

)
.

This follows directly from the Lemma’s assumptions (and not from our assumption towards
contradiction).

• From our assumption towards contradiction that pλ < 1
2·λ(c+2)·2 , by an additional different av-

eraging argument, it follows that for at most a fraction of 1
2·λ(c+2)·2 · k of the choices of T , we

have that the probability for Aλ(ρλ,OT ) ∈
(
S⊥ \ T⊥

)
is at least 1

k . This is in particular true for
k := 2 · λ(c+2). We get that for at most a fraction of 1

2·λ(c+2) of the choices of T , we have that the
probability for Aλ(ρλ,OT ) ∈

(
S⊥ \ T⊥

)
is at least 1

2·λ(c+2) .
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• A conclusion of the combination of the two items above, implies that for at least a fraction of 1
4·λc

from the choices of T ,

– The event Aλ(ρλ,OT ) ∈
(
T⊥ \ {0}

)
happens with at least probability 1

2·λc , and
– The event Aλ(ρλ,OT ) ∈

(
S⊥ \ T⊥

)
happens with at most probability 1

2·λ(c+2) .

We’ll call the above set of choices for T (which we know happens with at least probability 1
λc·4 )

the set of good T ’s.

Our reduction. Our reduction is the following, and it is used to distinguish between two distributions,
where each of the two distributions contains ℓ := λc ·λ·(t+ 1) samples of obfuscations

(
O(1), · · · ,O(ℓ)

)
(we did not specify yet exactly obfuscations of what). Given the ℓ obfuscations, executeA (ρ, ·) on each
of them and obtain ℓ vectors {u1, · · · , uℓ}. Then, take only the vectors {v1, · · · , vm} that are inside S⊥,
and then compute the dimension of their span, D := dim (span (v1, · · · , vm)).

The first distribution out of the two will simply be
(
O

(1)
S , · · · ,O(ℓ)

S

)
, that is, ℓ i.i.d. obfuscations of

CS . We’ll call this distribution DS . Depending on the adversary’s output behavior on this distribution,
we will decide on the second distributions. Specifically, the second distribution will be one of the
following two:

• D1: Sample T once, then sample ℓ i.i.d. obfuscations of it, O(1)
T , · · · ,O(ℓ)

T .

• D2: Sample ℓ i.i.d superspaces T1, · · · , Tℓ, and for each of them, send a single obfuscations of it:
OT,1, · · · ,OT,ℓ.

Intuitively, we will see that whenever the reduction gets a sample from D1 then it should be the case that
the output dimension D is bounded by t, and whenever the reduction gets a sample from D2, then D is
at least t+ 1 with high probability. The point is, that DS ≈c D1 ≈c D2. That is, DS ≈c D1 directly by
Lemma 3.1, and DS ≈c D2 by a hybrid argument of that same Lemma 3.1.

Our decision for what indistinguishability to use is derived from this: Whether given a sample from
DS , the probability for D ≥ t+ 1 is at least 1− 1

16·λc or not.

First Case: The output of the adversary is scattered on obfuscations of CS . Formally, when the
reduction gets a sample from DS , then with probability at least 1 − 1

16·λc the output dimension is
D ≥ t + 1. We will see a distinguisher between DS and D1, by showing that when the input of the
reduction is a sample from D1, then the probability for D ≥ t+ 1 is bounded by 1− 1

8·λc .
To see this, on an input sample fromD1, by union bound, the probability forD ≥ t+1 is bounded by

the sum of probabilities for such event for when T is inside and outside of the good set. The probability
that the (single) sampled T is outside the good set is bounded by 1− 1

4·λc . The probability that T is inside
the good set is at least 1

4·λc , and note that whenever T is inside the good set, the probability forD ≥ t+1
is bounded by the probability that any of the ℓ executions of A produced a vector in

(
S⊥ \ T⊥

)
, and by

union bound, the aforementioned probability is bounded by λc+2 · 1
2·λc+2 = 1

2 . In total, the probability
for the reduction to get D ≥ t+ 1 on a sample from D1 is bounded by(

1− 1

4 · λc

)
· 1 + 1

4 · λc
· 1
2
= 1− 1

8 · λc
.

Second Case: The output of the adversary is concentrated on obfuscations of CS . Formally, when
the reduction gets a sample from DS , then with probability less than 1 − 1

16·λc the output dimension is
D ≥ t + 1. We will see a distinguisher between DS and D2, by showing that when the input of the
reduction is a sample from D2, then the probability for D ≥ t+ 1 is at least 1− 1

32·λc .
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Let us see what happens when the sample came from the distributionD2, that is, ℓ i.i.e. obfuscations
of different super-spaces Ti. Consider the ℓ vectors {u1, · · · , uℓ} obtained by executing A on each of
the input obfuscations. Recall that ℓ := λc · λ · (t+ 1) and consider a partition of the vectors into t+ 1
consecutive sequences (or buckets), each of length λc+1. For every bucket j ∈ [t + 1] it is the case
with probability 1− eΩ(λ), at least one ui in that λc+1-sized set of samples satisfies that it is a non-zero
vector inside T⊥i \ {0} the dual subspace (of its obfuscated subspace Ti). It follows that with probability(
1− eΩ(λ)

)t+1 (which equals the overwhelming probability 1 − eΩ(λ) because recall there is some
constant δ ∈ (0, 1) such that ∀λ ∈ N : tλ ≥ λδ) there exists a subset of {u1, · · · , uℓ} containing t + 1
vectors {w1, · · · , wt+1} such that for every i ∈ [t+1], the vector wi is inside T⊥jwi

\{0} such that Tjwi
is

the corresponding subspace towi, or more formally: jwi ∈ {(i− 1)λc+1+1, · · · , (i− 1)λc+1+λc+1}
is the index such that wi was the output of A

(
ρ,OTjwi

)
.

It remains to observe that for every i ∈ [t + 1], the probability that wi ∈ span (w1, · · · , wi−1) is
bounded by the probability that the intersection between Tjwi

and Si−1 := span (w1, · · · , wi−1) has
non-zero vectors, which is in turn bounded by∏

j∈[t]

|Si−1| · 2j−1

|S⊥|
=

∏
j∈[t]

2i−1 · 2j−1

2λ−d
= 2i−2−λ+d ·

∏
j∈[t]

2j

= 2i−2−λ+d ·
(
2t+1 − 2

)
< 2i−2−λ+d+t+1 = 2d+t+i−1−λ .

It follows that the probability for dim (span (w1, · · · , wt+1)) = t+ 1 is∏
i∈[t+1]

(
1− 2d+t+i−1−λ

)
≥

∏
i∈[t+1]

(
1− 2d+t+(t+1)−1−λ

)
=

(
1− 2d+2t−λ

)t+1
.

Finally, we trivially have
(
1− 2d+2t−λ)t+1 ≥ 1− 2t+1 · 2d+2t−λ = 1− 2d+3t+1−λ. By the assumptions

in our Lemma 5.1 statement we have λ − (dλ + 3 · tλ + 1) ≥ 5 + c · log2(λ), which makes the above
probability at least 1− 1

32·λc .
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