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Abstract—In this paper, we introduce "the little seal bug"
attack, an optical side-channel attack which exploits lightweight
reflective objects (e.g., an iced coffee can, a smartphone stand, a
souvenir) as optical implants for the purpose of recovering the
content of a conversation. We show how fluctuations in the air
pressure on the surface of a shiny object can be exploited by
eavesdroppers to recover speech passively and externally, using
equipment not likely to be associated with spying. These air
pressure fluctuations, which occur in response to sound, cause
the shiny object to vibrate and reflect light which modulates
the nearby sound; as a result, seemingly innocuous objects like
an empty beverage can, desk ornament, or smartphone stand,
which are often placed on desks, can provide the infrastructure
required for eavesdroppers to recover the content of a victim’s
conversation held when the victim is sitting at his/her desk.
First, we conduct a series of experiments aimed at learning
the characteristics of optical measurements obtained from shiny
objects that reflect light, by using a photodiode to analyze the
movement of a shiny weight in response to sound. Based on
our findings, we propose an optical acoustical transformation
(OAT) to recover speech from the optical measurements obtained
from light reflected from shiny objects. Finally, we compare the
performance of the little seal bug attack to related methods
presented in other studies. We show that eavesdroppers located
35 meters away from a victim can use the little seal bug attack to
recover speech at the sound level of a virtual meeting with fair
intelligibility when the victim is sitting at a desk that contains a
reflective object.

I. INTRODUCTION

"The Great Seal Bug" [1], a.k.a., "the Thing," was the
first covert listening device that utilized passive techniques
to transmit an audio signal for the purpose of speech eaves-
dropping.1 It consisted of a passive device that was concealed
inside a gift (a picture of an eagle) which was given to
the United States Ambassador to the Soviet Union from the
Soviet Union in 1945. The concealed passive device, which
is considered a predecessor of radio frequency identification
(RFID) technology, became an operative listening device when
it was activated by the Soviets who "illuminated" it using
electromagnetic energy from an external source. Since the
device was passive and considered quite innovative at the
time (eight decades ago), it took the Americans six years to
determine its real purpose as a listening device when it was
accidentally found by a British radio operator at the British
embassy.

1 https://en.wikipedia.org/wiki/The_Thing_(listening_device)

Well-known incidents2 and various studies [2–11] published
over the years have shed light on the practicality of speech
eavesdropping. The incidents and studies showed how far
motivated entities are willing to go in order to recover the
content of speech. Moreover, the incidents proved that com-
promised devices can be used for eavesdropping via non-
acoustic data obtained from: (1) an integrated sensor [2–7, 9–
11] (e.g., using a smartphone’s motion sensor data, using
a robotic vacuum cleaner’s LiDAR data) or (2) emanations
from the device [8, 10–13] (e.g., electromagnetic radiation
(EMR) emitted from a PC’s hard disk and earphones and light
emitted from speakers). In order to prevent eavesdroppers from
recovering the content of conversations from compromised
devices, organizations implement policies aimed at preventing
employees and guests from using their electronic devices on
their premises.

As a result, eavesdroppers have sought new methods for
recovering speech that do not rely on a compromised device,
and in recent years, several methods have been demonstrated
(e.g., (1) the visual microphone [14], (2) Lamphone [15], and
the laser microphone [16]). While the studies presenting these
methods improved understanding regarding the privacy risks
posed by objects located in proximity to potential victims, the
proposed methods suffer from at least one of the following dis-
advantages: (1) some methods are limited to recovering speech
at a high volume (+85 dB), which limits their effectiveness
at recovering speech from virtual meetings (the sound level
of such meetings is typically 75 dB); (2) some methods rely
on spying equipment, which limits their use in countries that
restrict the sale of this equipment; (3) some methods require
an active laser beam to be directed at objects located near the
target, a fact that increases the likelihood of detection, and (4)
some methods rely on the presence of a hanging light bulb, a
form of lighting which is not commonly used in offices today.

In this paper, we present "the little seal bug," an opti-
cal eavesdropping method aimed at recovering speech from
lightweight shiny objects that reflect light. We show how
eavesdroppers can exploit lightweight shiny objects (little
seal bugs) that reflect light and serve as optical implants, in
order to recover the content of conversations. This is done
by analyzing optical data obtained by a photodiode directed
at the objects; such objects are often placed on desks for
personal use (e.g., a smartphone stand, an iced coffee can) or
decoration (e.g., souvenirs). Such lightweight reflective objects

2 https://en.wikipedia.org/wiki/Covert_listening_device

https://en.wikipedia.org/wiki/The_Thing_(listening_device)
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can be exploited by eavesdroppers to recover speech from the
minuscule vibrations that occur when sound (air pressure) hits
the object’s surface. First, we analyze the movement of various
shiny objects and show that their vibrations can be captured
by a photodiode. Based on our findings, we suggest a sound
recovery model that recovers speech from light obtained from
reflective objects. Finally, we compare the proposed little seal
bug attack to three state-of-the-art methods (visual microphone
[14], Lamphone [15], and the hard drive of hearing [8]). We
show that the proposed attack can be used to recover the
content of a victim’s conversation held when the victim is
seated at a desk, with fair intelligibility from a distance of 35
meters.

In this paper we make the following contributions: (1)
We raise awareness regarding the fact that lightweight shiny
objects can be exploited as optical implants for the purpose
of recovering speech (hence their name "little seal bugs").
Such objects, which may be purchased by potential victims for
personal use/decoration or received as swag at conferences,
are often placed on desks. By virtue of their presence on
desks, such objects may behave as diaphragms and vibrate
in response to conversations (e.g., virtual meetings and phone
calls) that take place at the desk. Moreover, when light is
reflected from their surface, they modulate the speech of the
conversation optically, a fact that can be exploited to recover
the content of the conversation using a remote photodiode. (2)
We show that the issues associated with speech recovery from
light are more serious and widespread than initially thought
based on prior research that focused on recovering speech
directly from objects/devices that emit light (e.g., a hanging
light bulb [15] and the power LED of speakers [13]). We show
that eavesdroppers can indirectly convert light to speech from
offices that do not contain hanging light bulbs or speakers that
leak information from the power LED, by analyzing optical
measurements obtained from objects that are not electrical and
do not emit any light.

The rest of the paper is structured as follows: In Section
II, we review existing methods for eavesdropping. In Section
III, we present the threat model. In Section IV, we analyze
the response of a shiny weight to sound. We present an
optical acoustical transformation (OAT) for recovering sound
in Section V, and in Section VI, we evaluate the little seal
bug attack’s performance on the task of recovering sound. We
discuss the limitations of the attack and suggest future work
directions in Section VII.

II. RELATED WORK

In this section, we review related work in the area of
speech eavesdropping. Speech eavesdropping has been used
by clandestine agencies for many years. Before the Internet
era, the most popular approach for eavesdropping speech was
to conceal a covert listening device in a strategic location
by using a supply chain attack. By concealing a bug inside
a covert device placed in a victim’s office, the eavesdrop-
per could recover the content of the victim’s conversations.
Many covert listening devices were developed and concealed
in mementos or gifts (e.g., pictures) and legitimate devices

(e.g., typewriters) placed in embassies and other diplomatic
posts for the purpose of diplomatic espionage.2 An incident
demonstrating the enormous effort clandestine agencies are
willing to invest in developing and implanting such devices
is "the Great Seal Bug" (a.k.a., "the Thing"), which is con-
sidered a predecessor of radio frequency identification (RFID)
technology and was used by the Soviets as a listening device
three decades before it was patented in the US for commercial
use [1].

Since the beginning of the Internet of Things (IoT) era,
the trend of eavesdropping speech using supply chain attacks
has changed to eavesdropping speech using data obtained
from a sensor of an Internet-connected device by a com-
promised application. In order to protect users from speech
eavesdropping performed via a compromised application, a
permission-based mechanism was integrated into the operating
systems of smartphones and PCs which requires the user’s
authorization/permission to obtain acoustic measurements via
the integrated microphone. The integration of this mechanism
has limited the ability of a compromised application to obtain
acoustic data without the user’s consent. This mechanism has
prevented various compromised applications that are disguised
as legitimate applications (e.g., a flashlight) from obtaining the
needed permission to obtain acoustic measurements for their
real undeclared purpose of speech eavesdropping.

The permission-based mechanism requires eavesdroppers
to apply alternative methods that can bypass the mechanism
(i.e., to recover speech without a user’s consent), and in
recent years, many innovative methods that use non-acoustic
data to recover speech from compromised IoT devices have
been demonstrated [2–8]. The methods involved: (1) obtaining
motion sensor data from a smartphone [2–5], (2) reprogram-
ming a computer’s audio port from output to input [6], (3)
inverting the process of a smartphone’s vibration motor [7],
(4) analyzing magnetic data obtained from a PC hard disk head
[8], and (5) obtaining optical data from the LiDAR of a robot
vacuum cleaner [9]. These methods have demonstrated that
various vibrating objects can effectively become diaphragms
in response to sound. As a result, various transducers (i.e.,
sensors which convert the diaphragm’s vibrations to measure-
ments) that are co-located with the diaphragms in devices can
be exploited by eavesdroppers to convert the vibrations of
the device to measurements that reflect the device’s vibrations
(e.g., a motion sensor of a smartphone) [17]. These methods
pose a serious threat to privacy, because non-acoustic data
is not commonly associated with speech eavesdropping; as
a result, applications/programs that implement such methods
do not require a user’s permission to obtain this data, and
they do not raise any suspicion from the user/operating system
regarding their real use (i.e., eavesdropping). However, from
an eavesdropper’s perspective, the two primary disadvantages
of these methods are that (1) they require the eavesdropper to
compromise a device (with malware) located near the victim
(who serves as the sound source) in order to obtain data and
exfiltrate it to the eavesdropper, and (2) many privacy-aware
organizations prohibit their employers and guests from using
personal devices on the organization’s premises.

The need to compromise a device with malware has in-
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Fig. 1. The little seal bug’s threat model: The sound snd(t) from the victim’s conversation (1) creates fluctuations on the surface of a lightweight reflective
object, e.g., an empty iced coffee can and desktop ornaments (e.g., statuettes of a bird and the Eiffel tower), that is placed on a desk (2). The eavesdropper
directs a photodiode at the object via a telescope (3). The optical signal opt(t) is sampled from the photodiode via an ADC (4) and processed, using an
algorithm to recover the acoustic signal snd∗(t) (5).

creased eavesdroppers’ interest in external methods for speech
recovery that do not require obtaining measurements from a
compromised device. In external methods, the diaphragm (the
vibrating object) is not co-located with the transducer (the sen-
sor which is used to obtain the measurements of the diaphragm
which are later converted to acoustic measurements). A few
TEMPEST attacks have used novel techniques to recover
speech from non-compromised devices by exploiting the corre-
lation between the information delivered/processed by devices
and their emanations. Several studies have proposed methods
that use a remote universal software radio peripheral (USRP)
to recover the content of conversations; the proposed methods
exploited: (1) EMR emitted from earphones and speakers [12],
and (2) a side effect of VoIP compression algorithms (the
variable bitrate) which leaks information regarding the content
of the speech via the bitrate of the encrypted traffic [18–20].
In a recent study, the authors were able to recover speech by
directing a photodiode at the power LED of speakers to obtain
optical measurements and exploiting the correlation between
the power consumed by the speakers and intensity of their
power LED [13]. These studies demonstrated unique methods
that exploit the emanations of a device, to recover the content
of virtual meetings, but they cannot be used to recover the
content of physical meetings.

Over the years, several side-channel attacks aimed at recov-
ering speech from physical meetings that do not necessitate
the use of malware have been introduced [10, 11, 14–16].
Two studies presented external methods that recover sound
by exploiting the physical characteristics of Wi-Fi signals
sent by a router [10, 11] using a remote USRP. This was
done by exploiting the signal strength indication and channel
state information (CSI) of the Wi-Fi signals sent by a router
that was vibrating according to sound produced by nearby
speakers. Other studies [14–16] presented external optical
sound recovery methods that rely on data obtained using
optical sensors. The laser microphone [16, 16] is a well-known
method that recovers sound using a laser transceiver which
directs a laser beam through a window into a target room;
the laser beam is reflected off an object and returned to the
transceiver which then converts the beam to an audio signal.
The visual microphone [14] recovers sound by analyzing the
vibrations of material inside the victim’s room (e.g., a bag of
chips, water) using video obtained from a high-speed video
camera (2200 FPS) to recover speech. Lamphone [15] uses a
remote electro-optical sensor to recover sound by exploiting

the vibrations of a hanging light bulb; the vibrations cause a
remote electro-optical sensor to capture optical changes which
are associated with sound waves produced by nearby speakers.
While these methods [14–16] pose a great threat to privacy,
from an eavesdropper’s perspective, they are limited in one of
the following ways: they rely on (1) a very high sound level
(over 85 dB, on average) which is beyond the sound level
of speech and virtual meetings (e.g., [10, 11, 14]), (2) active
sensors that use a laser beam (e.g., [16]), a fact that increases
the likelihood of detection (compared to passive sensors), (3)
hanging and desktop light bulbs, which are not commonly
used in office settings today (e.g., Lamphone [15]), or (4)
specialized equipment for spying [16], a fact that may limit
their use in countries which limit the sale of such equipment
to, e.g., police departments.

III. THREAT MODEL

In this section we describe the threat model and compare it
to methods presented in other studies.

Assumptions. We assume a victim (person) that is located
in his/her house and seated at a desk exchanging/sharing infor-
mation in a phone call or virtual meeting. We assume that the
victim makes the call/attends the meeting from an office/room
that contains a little seal bug, in the form of a lightweight
shiny object, which is located up to 50 cm away from the
victim, a reasonable distance from an individual seated at a
standard desk (the depth of a standard desk is 60 cm). We
note that the little seal bug could be an object purchased by
the victim for personal use (e.g., a beverage can, a smartphone
stand) or received as a gift (e.g., a desk ornament received as
swag from a conference). We consider the eavesdropper to
be a malicious entity interested in recovering speech from
the victim’s conversation by performing the little seal bug
attack. The eavesdropper could use the recovered information
for various malicious purposes, including spying, shaming,
blackmailing, or to gather business intelligence. We assume
that the eavesdropper is located within 35 meters of the target
room. The eavesdropper could be: (1) a person located in a
room in an adjacent building (e.g., a nosey neighbor), or (2) a
person in a nearby car (e.g., a private detective). We consider
this threat to be highly likely in the COVID-19 era due to
the increased number of personal and business meetings being
held in unsecured home environments.

Components. The little seal bug consists of the following
primary components: (1) Telescope - This piece of equipment
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is used to focus the field of view on the little seal bug from
a distance. (2) Photodiode - This sensor is mounted on the
telescope and consists of a semiconductor device that converts
light into an electric current. The current is generated when
photons are absorbed in the photodiode. Photodiodes are used
in many consumer electronic devices (e.g., smoke detectors,
medical devices). (3) Sound recovery model - This model
receives an optical signal as input and outputs the recovered
acoustic signal. The eavesdropper can implement such a model
with dedicated hardware (e.g., using capacitors, resistors, etc.).
Alternatively, the eavesdropper can use an ADC to sample the
photodiode and process the data digitally using a laptop; in
this study, we use the digital approach.

The conversation held in the victim’s room creates sound
snd(t) that results in fluctuations in the air pressure on the
surface of the little seal bug (i.e., the shiny object). These
fluctuations cause the object to vibrate, resulting in a pattern
of displacement over time that the eavesdropper measures with
the photodiode, which is directed at the object via the tele-
scope. The analog output of the photodiode is sampled by the
ADC to a digital optical signal opt(t). The eavesdropper then
processes the optical signal opt(t), using an audio recovery
algorithm, to an acoustic signal snd∗(t). Fig. 1 outlines the
threat model.

In general, microphones rely on three components (a di-
aphragm, transducer, and ADC). In the little seal bug attack,
the shiny object serves as a diaphragm, which vibrates when
sound waves hit its surface. The transducer is the remote
photodiode, which is used to convert the vibrations of the
lightweight shiny object (the diaphragm) to optical measure-
ments using the emitted light of the target room which is
reflected on the surface of the shiny object. An ADC is used to
convert the electrical signal to a digital signal (as in standard
microphones).

Significance. The significance of the little seal bug attack
with respect to methods presented in other studies is that the
little seal bug: (1) is an external method that relies on a line
of sight between the photodiode and the little seal bug (unlike
other methods that require eavesdroppers to compromise a
device located in physical proximity of the victim in order
to obtain data and exfiltrate it [2, 4–8, 10, 11]), (2) recovers
intelligible audio signals, so it is not limited to classifying
isolated words that appear in a precompiled dictionary (unlike
[2, 4, 5, 10]), and (3) can be used to recover the content
of physical and virtual meetings (in contrast to TEMPEST
attacks that can only be used to recover the content of virtual
conversations [12, 13, 18–20]).

The methods most related to ours are the laser microphone,
the visual microphone [14], Lamphone [15], and the Glow-
worm attack [13], all of which are also passive optical methods
for sound recovery. Unlike those methods, the little seal bug at-
tack can recover speech: (1) from reflections of light on objects
that are not electronic (as opposed to Lamphone [15] and the
Glowworm attack [13] which recover sound from electronic
devices that emit light, respectively speakers and light bulbs),
(2) from objects which are more commonly placed on desks
(e.g., iced coffee can, a smartphone stand) than light bulbs,
(3) at a sound level of 75 dB, the average volume of a phone

call or virtual meeting (as opposed to the visual microphone
[14] and other methods [8, 10, 11, 14] that are limited to
recovering speech at higher volumes), (4) using a photodiode,
a passive sensor that does not provide any indication regarding
its use (as opposed to the laser microphone [16] which relies
on a laser transceiver) and is composed of hardware (ADC,
photodiode) that is not associated with spying (as opposed to
the laser microphone [16]).

IV. REFLECTIVE OBJECTS AS MICROPHONES

In this section, we describe the series of experiments we per-
formed which were aimed at: (1) explaining why lightweight
reflective objects can be used to recover sound, and (2) gaining
increased understanding of the characteristics of the optical
measurements obtained by a photodiode when shiny objects
vibrate in response to sound.

A. The Physical Phenomenon

In this experiment, we measure the vibrations of an object
that occur when sound waves hit its surface.

Experimental Setup: We used a wire to attach a shiny weight
(50 grams) purchased from Amazon3 to the upper edge of
a stand. We attached a gyroscope [21] to the bottom of the
weight and connected the gyroscope to a Raspberry Pi 3.
We sampled the gyroscope via the Raspberry Pi at 4000 Hz
(see Fig. 2). We created an audio file of a frequency scan
(chirp/sweep) from 200-1500 Hz and played the audio file,
via speakers which were placed near the weight, at an average
volume level of 75 dB.

Results & Conclusions: Fig. 2 presents a spectrogram ex-
tracted from the measurements obtained by the gyroscope. As
can be seen from the spectrogram, the weight vibrates based
on the sound played near the weight.

The experiment described above demonstrates that objects
(weights) vibrate in response to nearby sound. In the next
experiments, we show that the vibrations of an object can
be captured using a photodiode when light is shining on the
object.

Experimental Setup: We directed a telescope (with a lens
diameter of 25 cm) at the weight. We mounted a photodiode
(the Thorlabs PDA100A2 [22]) to the telescope. The voltage
was obtained from the photodiode using a 24-bit ADC NI-
9234 card [23] and processed in a LabVIEW script that we
wrote. We created an audio file that consists of various sine
waves (120, 170, 220, .... 1020 Hz) where each sine wave was
played for two seconds. We played the audio file, via speakers
which were placed near the weight, at an average volume level
of 75 dB from a distance of 10 cm. We obtained the optical
signal via the photodiode when the lights in the room were
on and off, using three different weights: weights of 10, 50,
100 grams.

Results & Conclusions: Fig. 3 presents the signal-to-noise
ratio (SNR) obtained from the optical measurements when the
lights in the room were on and off. The following insights were

3 https://www.amazon.com/gp/product/B08SQ2WTNY/ref=
ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1

https://www.amazon.com/gp/product/B08SQ2WTNY/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B08SQ2WTNY/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
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Fig. 2. Left: the gyroscope attached to the weight (indicated by the red arrow). The gyroscope is sampled by a Raspberry Pi 3. Right: The spectrogram
extracted from the gyroscope measurements during a frequency scan that was played by nearby speakers.

Fig. 3. The SNR obtained from the weights when the lights in the room were
off (top) and on (bottom).

Fig. 4. The FFT of the optical signal when no sound is played (the baseline).

obtained by analyzing the SNR values: (1) When the lights are
off, the weights’ vibrations cannot be identified in the optical
measurements, however when the lights are on, the vibrations
of the weights can be spotted in the optical measurements.
(2) The SNR increases with lighter weights, but the unique
behavior of the SNR is maintained across all of the weights
tested. (3) The response is not the same across the spectrum
and decreases as a function of the frequency.

Fig. 5. The SNR as a function of the light reflected from the weight.

Based on these experiments, we made the following con-
clusions: (1) When light hits a reflective object, the reflection
of the light from the object modulates the object’s vibration,
which is associated with the sound played nearby; this fact
can be exploited by an eavesdropper to recover sound from a
passive lightweight shiny object located near a victim during
a virtual or physical conversation. (2) In some cases, the
physical movement of the reflective object required the use
of an equalizer to balance an unequal response across the
spectrum. (3) The zero SNR value obtained in the dark
rules out another reasonable explanation for this phenomenon,
which is that the measurements obtained by the photodiode
were affected by EMR emitted from the speakers; clearly, the
optical measurements were not affected by any possible side
effects; if they were, the SNR in the dark would not be zero.

B. Characterizing the Optical Signal

In this experiment, we examine the characteristics of the
optical signal when no sound is played, with the aim of
profiling the optical signal in order to filter out any side effects
that are not associated with sound from the recovered audio
signal.

Experimental Setup: We obtained five seconds of optical
measurements from the photodiode when no sound was played
near the weights when the lights were turned on.

Results: The FFT graph extracted from the optical measure-
ments when no sound was played is presented in Fig. 4. As
can be seen in the FFT graph, peaks appear around 100 Hz,
200 Hz, etc. Since the optical measurements were obtained via
a photodiode directed at an object that reflected the light in
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the office, the light frequency (100 Hz) and its harmonics are
added to the optical measurements. The optical phenomenon
that occurs at 100 Hz (which was captured by the photodiode)
is the result of power net harmonics. The LED bulb in the
office uses DC voltage which is converted from AC. A diode
bridge is integrated into the electrical device, which flips the
negative half of the sinus, doubling the base frequency from
50 Hz to 100 Hz. As a result, the LED changes its intensity
100 times a second which creates a periodic phenomenon of
100 Hz, 200 Hz, 300 Hz, etc.

Conclusions: Based on this experiment, we concluded that
bandstop filtering would be required to eliminate side effects
which are not the result of the sound that we want to recover
yet greatly impact the optical signal.

Next, we examine how the SNR of the optical signal that
was obtained from a weight is affected by the intensity of the
light reflected from the weight.

Experimental Setup: In this case, we made one change to the
experimental setup used to obtain optical measurements in the
experiments described in this section: we measured the amount
of light reflected on the surface of the shiny object using a
professional lux meter (this corresponds to the amount of light
reflected back from the object to the photodiode). We played
a frequency scan via the speakers near a 50 gram weight in
four experiments, varying the intensity of the light reflected
on the object in each experiment (250, 500, 1000, 2000 lux).

Results & Conclusions: Fig. 5 presents the signal-to-noise
ratio (SNR) obtained from the optical measurements in the
four experiments. As can be seen, the intensity of the light
reflected from the weight has a strong effect on the SNR of
the optical measurements. Unsurprisingly, the SNR improves
when greater intensity light hits the surface of the weight.

The experiments described in this section demonstrate that
the vibrations of the weights correlate to nearby sound. As a
result, the optical measurements of the photodiode are affected
by the weight’s vibrations (which correlate to the sound) when
light is reflected from the weight. This fact can be exploited by
eavesdroppers to recover sound; eavesdroppers can accomplish
this by using a remote photodiode to analyze the optical
measurements obtained from a lightweight shiny object. In
the series of experiments described in this section, we chose
to use a simple shiny object (a weight) as the lightweight
reflective object; the use of such a generic object allowed us
to investigate whether a photodiode can be used to successfully
recover sound from shiny objects. In the sections that follow,
we show that while reflective objects can be exploited for the
purpose of sound recovery, their optical response to sound can
change depending on their physical structure.

V. OPTICAL ACOUSTICAL TRANSFORMATION

In this section, we leverage the findings presented in Section
IV and present an optical-acoustic transformation (OAT),
which is used to recover audio from measurements obtained
from a photodiode directed at a shiny object.

Throughout this section, we consider snd(t) as the sound
played inside the victim’s room, opt(t) as the optical signal
obtained via a photodiode directed at a shiny object, and

snd∗(t) as the audio signal recovered from opt(t) using the
OAT. The OAT consists of the following steps:

Filtering Side Effects. As discussed in Section IV and seen
in Fig. 4, the optical signal consists of side effects that are
not the result of the sound played, e.g., the harmonics of 100
Hz (200 Hz, 300 Hz, etc.). We filter these frequencies using
bandstop filters.

Normalizing. We enhance the speech signal by normalizing
the values of opt(t) to the range of [-1,1].

Noise Reduction. Noise reduction is the process of remov-
ing noise from a signal in order to optimize its quality. We
reduce the noise by applying spectral subtraction, an adaptive
technique used to denoise single-channel speech without any
prior knowledge/assumptions on the measurements’ distribu-
tion [24].

Equalizer. Equalization is the process of adjusting the
balance between frequency components within an electronic
signal. We use an equalizer to amplify the response of weak
frequencies.

The techniques used in this study to recover speech are
commonly used in the area of speech processing; we used them
for the following reasons: (1) the techniques rely on a speech
signal that is obtained from a single channel; if eavesdroppers
have the capability of sampling using additional sensors,
thereby obtaining several signals via multiple channels, other
methods can also be applied to recover an optimized signal; (2)
the techniques do not require any prior data collection to create
a model; other novel speech processing methods use neural
networks that are used to characterize/profile the noise in order
to optimize the speech quality, however such neural networks
require a large amount of data for the training phase in order
to create robust models, a requirement that may be offputting
to eavesdroppers; and (3) the techniques are adaptive and can
be applied to recover sound from various shiny objects which
may behave differently (e.g., require different equalizers) or
produce different noise levels and distributions.

VI. EVALUATION

In this section, we evaluate the performance of the little seal
bug attack in terms of its ability to recover sound from light
reflected from various objects. We compare the little seal bug
attack’s performance to three state-of-the-art sound recovery
methods by replicating their experimental setup: the visual
microphone [14], the hard drive of hearing [8], and Lamphone
[15].

A. Metrics & Experimental Setup

The reader can assess the quality of the recovered sound
visually by analyzing the extracted graphs (spectrograms),
qualitatively by listening to the recovered audio signals on-
line,4,5 and quantitatively based on metrics used by the audio
processing community to compare a recovered signal to its
original signal: (1) Intelligibility - a measure of how com-
prehensible speech is in given conditions; the intelligibility is

4 https://www.youtube.com/watch?v=DmWXcPUXpMA
5 https://www.youtube.com/watch?v=XarrgwYsfT0

https://www.youtube.com/watch?v=DmWXcPUXpMA
https://www.youtube.com/watch?v=XarrgwYsfT0
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Fig. 6. The lightweight reflective objects used to recover sound: (1) decorative bucket, (2) smartphone stand, (3) iced coffee can, (4) Venetian blinds, (5) bird
statuette, (6) Rubik’s Cube.

Fig. 7. The experimental setup - the telescope is directed at the reflective objects (see Fig. 6) which are placed on a desk.

affected by the level and quality of the speech signal and the
type and level of the background noise and reverberation [25].
To measure the intelligibility, we used the metric suggested
by [26], which results in values between [0,1]. A higher
intelligibility value indicates higher sound quality. (2) NIST
Speech SNR (NIST-SNR) - the speech-to-noise ratio, which is
defined as the logarithmic ratio between the speech power and
the noise power estimated over 20 consecutive milliseconds
[27]. A higher NIST-SNR indicates higher sound quality.

We used the following equipment, setup, and configurations
to recover sound in all of the experiments conducted and
described in this section: a telescope (with a lens diameter of
25 cm) was directed at various lightweight reflective objects.
We mounted a photodiode (Thorlabs PDA100A2 [22]), which
was configured for the highest gain level before saturation,
to the telescope. The output of the photodiode (the voltage
associated with the light intensity) was sampled with a 24-bit
ADC NI-9234 card. The sampling frequency of the ADC was
configured at 2 KHz. We used Logitech Z200 speakers, which
were placed on a dedicated stand, to produce the sound; the
sound level was measured with a professional decibel meter.
The data was processed in a LabVIEW script that we wrote.
In the rest of this section, we refer to this setup, which can
be seen in Fig. 7, as the eavesdropping equipment.

In our evaluation we recovered speech from a variety

of lightweight reflective objects. We used three decorative
ornaments that an individual might place on a desk: a Rubik’s
Cube, decorative bucket, and a hollow bird statuette. We also
included two objects typically purchased by individuals for
consumption or daily use: a smartphone stand and an iced
coffee can (which was empty in our experiments), as well as an
item often used in offices to protect the privacy of individuals:
Venetian blinds. The objects are presented in Fig. 6.

B. A Comparison of the Little Seal Bug Attack to the Visual
Microphone

The authors proposing the visual microphone [14] demon-
strated the recovery of six sentences from the TIMIT reposi-
tory [28] by playing the sentences via speakers and analyzing
the resulting vibrations of a bag of chips via a high-frequency
video camera (2200 FPS) from a distance of two meters. Here,
we compare the performance of the little seal bug attack,
when recovering the same sentences, to that of the visual
microphone.

Experimental Setup: We replicated the experimental setup
used in the visual microphone study [14] as follows: We placed
the speakers on a dedicated stand five centimeters from various
shiny objects, which is the same distance that the bag of chips
was placed from the speakers in the visual microphone study).
We played the same six sentences from the TIMIT repository
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TABLE I
COMPARISON OF THE INTELLIGIBILITY OF THE RECOVERED SPEECH USING THE LITTLE SEAL BUG ATTACK (BIRD STATUTE, ROBIK’S CUBE,

SMARTPHONE, ICED COFFEE CAN, VENETIAN BLINDS) AND VISUAL MICROPHONE [14] BASED ON SENTENCES FROM THE TIMIT REPOSITORY.

Bird
Statuette

Rubik’s
Cube

Decorative
Bucket

Smartphone
Stand

Iced Coffee
Can

Venetian
Blinds

Visual
MicrophoneSpeech Recovered

Female speaker-
fadg0, sa1

SShe had your dark suit in
greasy wash water all year" 0.52 0.73 0.79 0.64 0.64 0.51 0.72

Female speaker-
fadg0, sa2

"Don’t ask me to carry
an oily rag like that" 0.47 0.59 0.62 0.52 0.51 0.39 0.65

Male speaker-
mabw0, sa1

SShe had your dark suit in
greasy wash water all year" 0.47 0.65 0.74 0.61 0.59 0.495 0.59

Male speaker-
mabw0, sa1

"Don’t ask me to carry
an oily rag like that 0.45 0.59 0.69 0.49 0.49 0.41 0.67

Male speaker-
mccs0, sa1

SShe had your dark suit in
greasy wash water all year" 0.59 0.72 0.77 0.63 0.63 0.51 0.77

Male speaker-
mccs0, sa1

"Don’t ask me to carry
an oily rag like that" 0.51 0.63 0.71 0.54 0.53 0.41 0.72

Average 0.51 0.65 0.72 0.57 0.56 0.45 0.68
STD 0.05 0.05 0.06 0.06 0.06 0.05 0.06

TABLE II
COMPARISON OF THE NIST-SNR OF THE RECOVERED SPEECH USING THE LITTLE SEAL BUG ATTACK (BIRD STATUTE, ROBIK’S CUBE, SMARTPHONE,

ICED COFFEE CAN, VENETIAN BLINDS) AND VISUAL MICROPHONE [14] BASED ON SENTENCES FROM THE TIMIT REPOSITORY.

Bird
Statuette

Rubik’s
Cube

Decorative
Bucket

Smartphone
Stand

Iced Coffee
Can

Venetian
Blinds

Visual
MicrophoneSpeech

Female speaker-
fadg0, sa1

"She had your dark suit in
greasy wash water all year" 7 7.5 4.25 20.75 17.25 4.3 26.8

Female speaker-
fadg0, sa2

"Don’t ask me to carry
an oily rag like that" 3 4 3.75 4.75 7.25 3.5 43.3

Male speaker-
mabw0, sa1

"She had your dark suit in
greasy wash water all year" 5.5 5.25 2.25 6.75 8.5 6.5 27.3

Male speaker-
mabw0, sa1

"Don’t ask me to carry
an oily rag like that" 2 5 3.25 15 5.5 27.5 18

Male speaker-
mccs0, sa1

"She had your dark suit in
greasy wash water all year" 3.75 6.25 12.25 12 16.25 10.8 6

Male speaker-
mccs0, sa1

"Don’t ask me to carry
an oily rag like that" 1.25 3 14.25 3.75 5.25 25.5 25.8

Average 3.75 5.17 6.67 10.5 10 13.02 24.53
STD 1.98 1.46 4.73 6.06 4.90 9.83 12.27

recovered by the visual microphone via the speakers at the
same volume level used in the visual microphone study (95
dB). We placed the eavesdropping equipment 2.5 meters from
the lightweight reflective object (the same distance that the
video camera was placed in the visual microphone study). Our
experimental setup is presented in Fig. 7. We recovered speech
from the six objects presented in Fig. 6.

Results & Conclusions: We used the OAT to recover speech
from the optical measurements (see Section V). The recovered
audio signals are available online4 where they can be heard.
The spectrograms extracted from the optical measurements
for three of the sentences recovered when using various
objects to recover sound are presented in Figs. 8-10. We
evaluated the intelligibility and NIST-SNR of the recovered
signals and reported the results in Tables I and II. We also
downloaded the same six audio signals that were recovered
and published in the study presenting the visual microphone
and evaluated their performance based on the same metrics.
The following interesting observations can be made from the
results presented in the tables: The average intelligibility of

TABLE III
COMPARISON OF THE NIST-SNR RESULTS OF THE HARD DRIVE OF

HEARING [8] AND THE LITTLE SEAL BUG ATTACK FOR THE RECOVERY OF
SPEECH.

Hard Drive
of Hearing

Rubik’s
Cube

Iced Coffee
Can

Smartphone
Stand

Male (List 57) 11.2 23.5 22.8 25.8
Female (List 1) 7.8 18.5 23.5 26.3
Average 9.5 21 23.15 26.05
STD 1.7 2.5 0.35 0.25

the speech recovered depends, to a large extent, on the shiny
object used to implement the attack. In some cases, the average
intelligibility of the object is considered good (the Rubik’s
Cube and decorative bucket) according to [25]; in the case
of other objects (the smartphone stand, bird statuette, iced
coffee can, and Venetian blinds), the average intelligibility
is considered fair. A similar conclusion can also be made
by analyzing the NIST-SNR of the speech recovered, which
ranges from 3.75-13 for the six objects examined.

Based on our analysis of the results of the experiments
conducted to compare the performance of the little seal bug to
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Fig. 8. Recovery of the sentence "She had your dark suit in greasy wash water all year" by fadg0,sa1 from various objects.

Fig. 9. Recovery of the sentence "Don’t ask me to carry an oily rag like that" by fadg0,sa2 from various objects.

Fig. 10. Recovery of the sentence "She had your dark suit in greasy wash water all year" by mabw0,sa1 from various objects.

that of the visual microphone, we concluded that the answer
to the question of which of the two methods is better depends
on the metric used to evaluate the methods and the object used
to recover speech.

C. A Comparison of the Little Seal Bug Attack to the Hard
Drive of Hearing

The authors proposing the hard drive of hearing [8] demon-
strated the recovery of two recordings from the Harvard
sentences database: a female sample (list 1) and a male
sample (list 57). The specific audio samples were obtained
from the Open Speech Repository [29]. Here, we compare
the performance of the little seal bug attack, when recovering

the same sentences, from three objects: an iced coffee can, a
Rubik’s Cube, and a smartphone stand.

Experimental Setup: We followed the experimental setup
used in the hard drive of hearing [8] study as follows: We
placed speakers on a dedicated stand at a distance of 25 cm
from the three objects used in this experiment, which is the
same distance that was used in the hard drive of hearing study.
We played the two audio samples from the Open Speech
Repository recovered by the hard drive of hearing via the
speakers at the same volume level used in the hard drive of
hearing study (85 dB). In our experiment the eavesdropping
equipment was placed 2.5 meters from the objects.

Results & Conclusions: We used the OAT to recover speech
from the optical measurements. Since we were unable to ob-
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TABLE IV
COMPARISON OF THE INTELLIGIBILITY AND NIST-SNR RESULTS OF LAMPHONE [15] AND THE LITTLE SEAL BUG ATTACK FOR THE RECOVERY OF

SPEECH FROM VARIOUS DISTANCES.

Intelligibility NIST-STNR
Rubik’s

Cube
Bird

Statuette
Decorative

Bucket Lamphone Rubik’s
Cube

Bird
Statuette

Decorative
Bucket Lamphone

15m
25 cm 0.61 0.34 0.34 0.52 16.3 2 1.8 21
50 cm 0.35 0.36 0.34 0.46 2 3.8 1.8 12.3

25m
25 cm 0.55 0.32 0.3 0.49 14.5 8.8 4 21.8
50 cm 0.32 0.35 0.32 0.4 6 2 1.5 21

35m
25 cm 0.5 0.32 0.31 0.45 14.5 4 8 17.5
50 cm 0.38 0.33 0.32 0.36 12.8 4 0.3 11.5

Fig. 11. Recovery of the sentence "We Will Make America Great Again" from various distances (15, 25, 35 meters) from light reflected from a Rubik’s
Cube when the speakers were located 25 cm from the object.

tain the recovered audio samples from the hard drive of hearing
study, we compared the little seal bug attack’s performance to
the results reported in that paper. The authors of that study
evaluated their recovered signals using the NIST-SNR, so
here we compare the sentences recovered by the little seal
bug attack and the hard drive of hearing based on the NIST-
SNR. The results of our comparison are presented in Table
III. The following interesting observations can be made from
the results presented in the table: (1) The average NIST-SNR
of the speech recovered by the little seal bug attack (which
ranges from 21-26 for the examined objects) is higher (better)
than the average NIST-SNR of the recovered speech reported
in the hard drive of hearing paper (9.5). (2) Moreover, the
STD of the NIST-SNR obtained by the little seal bug is lower
(better) than the STD of the NIST-SNR reported in the hard
drive of hearing paper for two of the three objects (the iced
coffee can and smartphone stand) examined in this study.

After analyzing the results of the experiments conducted to
compare the performance of the little seal bug attack to that of
the hard drive of hearing, we concluded that the quality of the
speech recovered by the little seal bug attack is higher than
that of the hard drive of hearing.

D. A Comparison of the Little Seal Bug Attack to Lamphone

The authors proposing Lamphone [15] demonstrated the
recovery of the statement "We Will Make America Great
Again" made by former US president Donald Trump from
various distances. We compare the little seal bug attack’s
performance when recovering the same sentence from three

objects: an iced coffee can, Rubik’s Cube, and smartphone
stand.

Experimental Setup: We followed the experimental setup
used in the Lamphone [15] study as follows: We placed the
eavesdropping equipment at various distances (15, 25, 35
meters) from the three objects used in this experiment, and the
speakers were placed two distances (25 cm and 50 cm) away
from the reflective objects. Then, we played the sentence via
the speakers at the volume level of a virtual meeting (75 dB)
while obtaining the optical measurements.

Results & Conclusions: We used the OAT to recover speech
from the optical measurements. The recovered audio signals
are available online.5 The spectrograms of the speech extracted
from the Rubuik’s cube from various distances (15, 25, 35
meters) when objects were located 25 meters from the speakers
are presented in Fig. 11. The intelligibility and NIST-SNR of
the recovered signals are reported in Table IV. The following
observations can be made from the results presented in the
table: Although the intelligibility of the audio signals recov-
ered from the Rublik’s Cube decreases (from 0.61 to 0.5) with
distance when the object is placed 25 cm from the speakers,
fair intelligibility (according to [25]) is achieved from all three
distances examined.

The experiments show that the little seal bug attack can
be used by eavesdroppers to recover the content of a phone
call or virtual meeting held by a victim seated at a desk from
reflective objects (e.g., Rubik’s Cube) placed on the desk a
reasonable distance away from the victim (25 cm is half of
the depth of a standard desk).
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VII. LIMITATIONS, DISCUSSION, AND FUTURE WORK

The primary objective of this research was to raise aware-
ness regarding the fact that shiny lightweight objects can serve
as optical implants that can be exploited by eavesdroppers to
recover sound. The secondary objective of this research was
to demonstrate that the issues associated with speech recovery
from light are more serious and widespread than initially
thought based on prior research focused on recovering speech
directly from objects/devices that emit light (e.g., a light bulb
and the power LED of speakers). This research shows that
light can also be used to recover speech indirectly by using
its reflections from nearby objects.

We also note that optical sound eavesdropping has pro-
gressed significantly in the past seven years: a few studies have
presented innovative methods to recover speech using data
acquired from a high frequency video camera [14], LiDAR
[9], and a photodiode [13, 15]. Our attack continues the trend
of recovering sound by exploiting optical side effects, and we
believe that other studies will address this topic in the next
few years. Over the years, smartphone manufacturers have
continuously increased the sampling rate of the integrated
sensors of the smartphone . According to [3], the manufac-
turers of Android smartphones have doubled the sampling
rate of accelerometers from 200 Hz in 2014 to 500 Hz in
2018 (e.g., for the Huawei P20 Pro and Mate 20). Given the
extent of this improvement in the sampling rate, we raise a
concern about a new problem which may arise: the sampling
rate of smartphones may enable eavesdroppers to recover
compressible speech from the smartphone’s integrated light
sensor (which is used to balance the smartphone’s screen
lighting). Such a development will allow eavesdroppers to
obtain optical measurements via a compromised application
without any permission from the user.

In future work, we plan to investigate how the sound recov-
ery model can be improved by integrating advanced algorithms
for speech processing (e.g., [30–34]) and denoising. We also
suggest investigating the use of a transcription light-to-text
model which can be implemented by training a neural network
that receives optical signals and outputs transcription/text.
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