
Zero-Knowledge Protocols for the Subset Sum
Problem from MPC-in-the-Head with Rejection

Thibauld Feneuil1,2, Jules Maire3, Matthieu Rivain1, and Damien Vergnaud3,4

1 CryptoExperts, Paris, France
2 Sorbonne Université, CNRS, INRIA, Institut de Mathématiques de Jussieu-Paris

Rive Gauche, Ouragan, Paris, France
3 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

4 Institut Universitaire de France

Abstract. We propose zero-knowledge arguments for the modular sub-
set sum problem. Given a set of integers, this problem asks whether
a subset adds up to a given integer t modulo a given integer q. This
NP-complete problem is considered since the 1980s as an interesting al-
ternative in cryptography to hardness assumptions based on number
theory and it is in particular believed to provide post-quantum security.
Previous combinatorial approaches, notably one due to Shamir, yield ar-
guments with cubic communication complexity (in the security param-
eter). More recent methods, based on the MPC-in-the-head technique,
also produce arguments with cubic communication complexity.
We improve this approach by using a secret-sharing over small integers
(rather than modulo q) to reduce the size of the arguments and remove
the prime modulus restriction. Since this sharing may reveal information
on the secret subset, we introduce the idea of rejection to the MPC-in-
the-head paradigm. Special care has to be taken to balance completeness
and soundness and preserve zero-knowledge of our arguments. We com-
bine this idea with two techniques to prove that the secret vector (which
selects the subset) is well made of binary coordinates. Our new techniques
have the significant advantage to result in arguments of size independent
of the modulus q.
Our new protocols for the subset sum problem achieve an asymptotic im-
provement by producing arguments of quadratic size (against cubic size
for previous proposals). This improvement is also practical: for a 256-
bit modulus q, the best variant of our protocols yields 13KB arguments
while previous proposals gave 1180KB arguments, for the best general
protocol, and 122KB, for the best protocol restricted to prime modulus.
Our techniques can also be applied to vectorial variants of the subset
sum problem and in particular the inhomogeneous short integer solution
(ISIS) problem for which they provide an efficient alternative to state-of-
the-art protocols when the underlying ring is not small and NTT-friendly.
We also show the application of our protocol to build efficient zero-
knowledge arguments of plaintext and/or key knowledge in the context of
fully-homomorphic encryption. When applied to the TFHE scheme, the
obtained arguments are more than 20 times smaller than those obtained
with previous protocols. Eventually, we use our technique to construct

an efficient digital signature scheme based on a pseudo-random function
due to Boneh-Halevi-Howgrave-Graham.

1 Introduction

The (modular) subset sum problem is to find, given integers w1, . . . , wn, t and q,
a subset of the wi’s that sum to t modulo q, i.e. to find bits x1, . . . , xn ∈ {0, 1}
such that

n∑
i=1

xiwi = t mod q. (1)

It was shown to be NP-complete (in its natural decision variant) in 1972 by
Karp [Kar72] and was considered in cryptography as an interesting alternative
to hardness assumptions based on number theory. Due to its simplicity, it was
notably used in the 1980s, following [MH78], for the construction of several
public-key encryption schemes.

Most of these proposals (if not all) were swiftly broken using lattice-based
techniques (see [Odl90]), but the problem itself remains intractable for appro-
priate parameters and is even believed to be so for quantum computers. For
instance, when the so-called density d = n/ log2(q) of the subset sum instance
is close to 1 (i.e. q ' 2n), the fastest known (classical and quantum) algorithms
have complexity 2O(n) (see [BBSS20] and references therein) and one can reach
an alleged security level of λ bits with n = Θ(λ). Many cryptographic construc-
tions were proposed whose security relies on the hardness of the subset sum
problem: pseudo-random generators [IN96], bit commitments [IN96], public-key
encryption [AD97,LPS10], . . .

The concept of zero-knowledge proofs and arguments introduced in [GMR89]
has become a fundamental tool in cryptography. It enables a prover to convince
a verifier that some mathematical statement is true without revealing any addi-
tional information. Zero-knowledge proofs or arguments of knowledge, in which
a prover demonstrates that they knows a “witness” of the validity of the state-
ment, have found numerous applications in cryptography (notably for privacy-
preserving constructions or to enforce honest behaviour of parties in complex
protocols). The main goal of the present paper is to present new efficient zero-
knowledge arguments of knowledge for the subset sum problem.

1.1 Prior Work

Given integers w1, . . . , wn, t and q, an elegant zero-knowledge proof system due
to Shamir [Sha86] (see also [BGKW90,Sim91,Blo09]) allows a prover to convince
a verifier that they knows x1, . . . , xn ∈ {0, 1} such that the relation (1) holds.
The proof system is combinatorial in nature and it requires Θ(λ) rounds of com-
munication to achieve soundness error 2−λ where each round requires Θ(n2)
bits of communication. For an alleged security level of λ bits, the overall com-
munication complexity of Shamir’s proof system is thus of Θ(λ3). In [LNSW13],

2

Ling, Nguyen, Stehlé, and Wang proposed a proof of knowledge of a solution for
the infinity norm inhomogeneous small integer solution (ISIS) problem which
is a vectorial variant of the subset sum problem. It is based on Stern’s zero-
knowledge proof of knowledge for the syndrome decoding problem [Ste94] and
is also combinatorial. It thus requires a large number of rounds of communica-
tion and when specialized to the subset sum problem it also yields proofs with
Θ(λ3)-bit communication complexity for an alleged security level of λ bits.

A secure multi-party computation (MPC) protocol allows a set of mutually
distrusting parties to jointly evaluate a function f over their inputs while keep-
ing those inputs private. An elegant approach to constructing zero-knowledge
protocols has gained particular attention over the last years: the MPC-in-the-
head paradigm of Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS09] in which a
prover secretly shares their secret input, simulates the execution of an MPC pro-
tocol on these shares (in “their head”), commits to this execution and partially
reveals it to the verifier on some challenge subset of parties. The verifier can
then check that the partial execution is consistent and accepts or rejects accord-
ingly. This approach was at first stood in the realm of theoretical cryptography
(with a focus on the asymptotic performance for any problem in NP), but it was
subsequently demonstrated to be also of practical relevance [GMO16,KKW18].
In [BD10], Bendlin and Damg̊ard were the first to use the MPC-in-the-head
paradigm in lattice-based cryptography. They proposed a zero-knowledge proof
of knowledge of the plaintext contained in a given ciphertext from Regev’s
cryptosystem [Reg05] (and a variant they proposed). More recently, Baum and
Nof [BN20] proposed an efficient zero-knowledge argument of knowledge of the
short integer solution (SIS) problem (incorporating the sacrificing principle in
the MPC-in-the-head paradigm). Beullens also recently proposed such arguments
obtained from sigma protocols with helper [Beu20]. When applied to the subset
sum problem itself, all (variants of) these protocols yield proofs with Θ(λ3)-bit
communication complexity for an alleged security level of λ bits.

There exist numerous other protocols for (vectorial variants of) the sub-
set sum problem from lattice-based cryptography. Until recently, they all in-
troduce some slack in the proof, i.e. there is a difference between the language
used for completeness and the language that the soundness guarantees (see, e.g.
[BDLN16] for a generic argument of knowledge of a pre-image for homomorphic
one-way functions over integer vectors). In particular, the witness that can be
extracted from a proof is larger than the one that an honest prover uses (and
in the subset sum problem, the extractor will not output a binary vector). This
slack forces to use larger parameters for the underlying cryptosystem and in-
duces some loss in efficiency. Conversely, we shall only consider exact arguments
for the subset-sum problem in the present paper. Finally, new exact arguments
were proposed recently [BLS19,ENS20,LNS21] but they require to use a mod-
ulus q of a special form (namely a prime number as in [BN20,Beu20] but with
additional arithmetic constraints to make it “NTT-friendly”).

3

1.2 Contributions

In the MPC-in-the-head paradigm, the prover wants to convince a verifier that
they know a (secret) pre-image x of y = f(x) for some one-way function f
where the function f is represented as an arithmetic circuit. For the subset sum
problem, the function f is defined via (1) and it is thus natural to consider
the simple inner-product arithmetic circuit defined over Zq. The prover’s secret
input is the binary vector x = (x1, . . . , xn) ∈ {0, 1}n and they have to perform
some secret-sharing of x in Zq in such a way that the shares of any unauthorized
set of parties should reveal no information about the secret. This approach has
the major disadvantage that sharing a single bit requires several elements of Zq
each of size Θ(λ) bits.

We adapt this paradigm using a secret sharing scheme done directly over the
integers. This approach was already used in cryptography (e.g. for multi-party
computation modulo a shared secret modulus [CGH00]). To additively share a
secret t in a given interval [−T, T] for T ∈ N, among n ≥ 2 parties, a dealer
may pick uniformly at random t1, . . . , tn ∈ [−T2ρ, T2ρ] under the constraint that
t = t1 + · · ·+ tn (over the integers), for some parameter ρ. However, given (n−1)
shares, t2, . . . , tn for instance, the value t1 = t − (t2 + · · · tn) is not randomly
distributed in [−T2ρ, T2ρ] and this may reveal information on the secret t. It
is thus necessary to sample the shares in an interval sufficiently large in such a
way that their distributions for distinct secrets are statistically indistinguishable.
For a security level λ, this requires ρ = Ω(λ) and thus the additive sharing of
bits involves shares of size Ω(λ). To overcome this limitation and use additive
secret sharing over small integers, we will rely on rejection. The computation
being actually simulated by the prover, they can abort the protocol whenever
the sharing leaks information on the secret vector x = (x1, . . . , xn) ∈ {0, 1}n.
In some cases, the prover cannot respond to the challenge from the verifier and
must abort the protocol. A similar idea was used for lattice-based signatures by
Lyubashevsky [Lyu08,Lyu09]but using different methods.

Our technique also allows overcoming the second disadvantage of the previ-
ous tentatives to use the MPC-in-the-head paradigm for lattice-based problems.
Indeed, using our additive secret sharing over the integers, we can prove the
knowledge of some integer vector x = (x1, . . . , xn) satisfying relation (1) (for
any q) and further prove that xi ∈ {0, 1} for i ∈ {1, . . . , n}. This is achieved by
simulating a (single) non-linear operation modulo some arbitrary prime number
q′ (independent from q and much smaller than q). We also introduce another
technique to prove that the solution x = (x1, . . . , xn) indeed lies in {0, 1}n using
some masking and a cut-and-choose strategy. Both methods yield zero-knowledge
proofs with Θ(λ2)-bit communication complexity for an alleged security level of
λ bits. This improvement is not only of theoretical interest since for q ' 2256, our
protocol can produce proof of size 13KB where Shamir’s protocol [Sha86] (up-
dated with modern tips) produces proof of size 1186KB and [LNSW13] produces
proofs of size 2350KB.

Our protocols are particularly efficient for the subset sum problem where
the modulus q is large. However, we show that our method has applications in

4

other contexts in cryptography. We show that it can be used for the (binary)
ISIS problem in lattice-based cryptography and that the resulting protocols are
competitive with state-of-the-art protocols for this problem. We also present
applications of our techniques to the context of fully-homomorphic encryption
(FHE). Specifically, adaptations of our protocols provide efficient zero-knowledge
arguments of plaintext and/or key knowledge for the so-called Torus Fully Ho-
momorphic Encryption (TFHE) scheme from [CGGI20]. Eventually, we use our
technique to construct an efficient digital signature scheme based on a pseudo-
random function due to Boneh, Halevi, and Howgrave-Graham [BHH01].

2 Preliminaries

2.1 Zero-Knowledge Proofs

A zero-knowledge (ZK) protocol for some polynomial-time decidable binary re-
lation R (i.e., a relation that defines a language in NP) is defined by two proba-
bilistic polynomial time (PPT) interactive algorithms, a prover P and a verifier
V: both V and P are given a common input x and P is given in addition a wit-
ness w such that (x,w) ∈ R. Then, P and V exchange a sequence of messages
alternatively until V outputs a bit b (with b = 1 indicating that V accepts P’s
claim and b = 0 indicating that V rejects the claim). The entire sequence of
messages exchanged by P and V, along with the answer b, is called a transcript.

A zero-knowledge argument for R with soundness error ε, completeness error
α and (t, ζ)-zero-knowledge satisfies the following properties:

1. Completeness: if (x,w) ∈ R, and P knows a witness w for x, they will
succeed in convincing V (except with probability α), i.e.,

Pr[〈P(x,w),V(x)〉 = 1] ≥ 1− α.

2. Soundness: if there exists a PPT algorithm P̃ such that

ε̃ := Pr [〈P̃(x),V(x)〉 = 1] > ε,

then there exists a PPT algorithm E (called the extractor) which, given
rewindable black-box access to P̃ outputs a witness w′ for x in time in time
poly(λ, (ε̃− ε)−1) with probability at least 1/2.

3. Zero-knowledge: for every PPT algorithm Ṽ, there exists a PPT al-
gorithm S (called the simulator) which, given the input statement x and
rewindable black-box access to Ṽ, outputs a simulated transcript which is
(t, ζ)-indistinguishable from View(P(x,w), Ṽ(x)) (see Appendix B for a for-
mal definition).

Remark 1. The soundness property ensures that a PPT algorithm P̃ without
knowledge of the witness cannot convince V with probability greater than ε
assuming that the underlying problem is hard. Otherwise, the existence of E
implies that P̃ can be used to compute a valid witness w′ for x. If the zero-
knowledge property holds only for the genuine verifier V, then the protocol is
deemed honest-verifier zero-knowledge.

5

2.2 MPC-in-the-Head and Batch Product Verification

The MPC-in-the-Head (MPCitH) paradigm [IKOS09] constructs ZK proofs from
MPC protocols. Efficient instances of this paradigm have been published for the
first time these last years starting with a protocol called ZKBoo [GMO16] and
has found numerous applications (e.g. [GMO16,KKW18,BN20]).

We consider a prover P and a verifier V engaging a two-party interactive
protocol for some public circuit C over a finite field F and some value t ∈ F such
that P wants to convince V that they knows an x ∈ F satisfying C(x) = t.

In the MPCitH paradigm, the prover P usually decomposes their secret x
into N shares JxK1, ..., JxKN using some additive secret sharing over F. Then,
P simulates an N -party MPC protocol for evaluating C. At the end of the
MPC protocol, using a commitment scheme (see Appendix B), P commits to
the N views of the parties resulting from the MPC protocol simulation. V then
challenges P to open a subset of the views. P answers by opening these views
and V checks that these views are consistent with the MPC process as well as
valid openings of the commitments. In the basic setting where N − 1 out of N
parties are opened, the resulting zero-knowledge protocol achieves a soundness
error of 1/N .

Batch Product Verification. Using the MPCitH approach the linear oper-
ations over F (i.e. addition in F and multiplication by constants in F) can be
handled easily and are almost free in terms of computation and communication.
The most cumbersome part of the MPCitH method is to handle non-linear oper-
ations and in particular multiplications in F. The authors of [BN20] propose an
MPC protocol to verify the correctness of a product in F by “sacrificing” another
one. This construction enables to check that a triple of sharings (JxK, JyK, JzK)
is such that x · y = z, by using a second random triple (JaK, JbK, JcK) satisfying
a · b = c. The second triple can be used a single time (to preserve the zero-
knowledge property), hence the “sacrifice”.

Recently [KZ22] has adapted and optimized this method to build an effi-
cient MPC protocol which check simultaneously many products by sacrificing a
dot-product.Specifically, given n triples (JxjK, JyjK, JzjK) and a tuple ((JajK)j∈[n], JcK),
their protocol verifies that 〈a, y〉 = c and zj = xj · yj for all j ∈ [N], without
revealing any information on (x, y, z). The protocol runs as follows:

1. The parties get a random ε ∈ Fn from the verifier;
2. Each party i locally sets JαjKi = εj · JxjKi + JajKi for all j ∈ [n];
3. The parties open α by broadcasting their shares;
4. Each party i locally sets JvKi = 〈α, JyK〉 − JcKi − 〈ε, JzKi〉;
5. The parties open v by broadcasting their shares;
6. The parties accept iff v = 0.

If (JxjK, JyjK, JzjK)j∈[n] contains an incorrect multiplication triple (i.e. there ex-
ists a j0 such that xj0 · yj0 6= zj0) or if ((JajK)j∈[n], JcK) does not satisfy the
relation 〈a, y〉 = c, then [KZ22] shows the parties accept with a probability at

most |F|−1. We will make use of this optimization in one of our protocol.

6

Additive Sharing. In most recent MPCitH schemes, in order to decrease
the communication costs, when the prover splits their secret x into N shares
JxK1, ..., JxKN , the first N − 1 shares are generated using a pseudo-random gen-
erator and only the N -th share JxKN is computed in such a way that x =
JxK1 + · · ·+ JxKN in F. In this paper, since our sharings will not be defined over
some additive group, we will generate the N shares JxK1, ..., JxKN from N seeds
using a pseudo-random generator and we will introduce an auxiliary value ∆x
(not distributed over the same set) such that x = JxK1 + · · · + JxKN + ∆x over
the integers.

3 General Idea

We consider an instance (w, t) ∈ Znq × Zq of the subset sum problem (SSP) and
denote x one solution. We have x ∈ {0, 1}n and

∑n
j=1 xj · wj = t mod q.

We want to use the MPCitH paradigm to build a zero-knowledge protocol
that proves the knowledge of a solution for the instance (w, t). To proceed, we
need to build an MPC protocol with honest-but-curious parties taking as inputs
shares of the secret x, and possibly shares of other data, and which computation
can only succeed if x is a valid solution of the SSP instance. As a first ingredient,
we need a method to share the secret x between the different parties.

3.1 The Naive Approach

The SSP instance is defined on Zq, so a natural sharing of x would be defined as:{
JxKi

$←− (Zq)n for all i ∈ [N],

∆x← x−
∑N
i=1JxKi mod q

.

In the MPCitH paradigm, the communication cost of a sharing is the cost to
send the auxiliary values, i.e. the vector ∆x. Here, the natural sharing of x costs

n · log2(q) bits.

If we take n = 256 and q = 2256, the cost is about 216 bits = 8 KB. To achieve a
soundness error of 2−128 with N = 256, we need to repeat the protocol at least
16 times, so the communication cost of the protocol would be already more than
128 KB for the sole sharing of x (some communication being further required
for the MPCitH protocol). Asymptotically, the parameters for the subset sum
problem are chosen such that n = Θ(λ) and log2 q = Θ(λ), the communication
cost of this sharing is thus about Θ(λ2) bytes per protocol repetition. Since we
need to repeat the protocol about Θ(λ) times to achieve a 2−λ soundness error
the global communication cost is then of at least Θ(λ3) (for the sharing only).

We present hereafter an alternative strategy for the sharing of x, which
achieves better practical and asymptotic communication costs.

7

3.2 Sharing on the Integers and Opening with Abort

We propose another way to share the secret x to achieve lower communication.
We know that x is a binary vector (i.e. x ∈ {0, 1}n), so instead of the natural
sharing, we suggest to use a sharing defined on the integers, that is{

JxKi
$←− {0, . . . , A− 1}n for all i ∈ [N],

∆x← x−
∑N
i=1JxKi.

However, this sharing leaks information about the secret x. The distribution
∆xj is not the same depending on whether xj = 0 or xj = 1 as illustrated on
Figure 1. To solve this issue, the prover must abort the protocol in some cases.

Fig. 1: Probability mass function of ∆xj when xj = 0 and when xj = 1 (on the
left) and of ∆xj with abort (on the right), for N = 3 and A = 9.

To see how this leakage can be effectively exploited to (partly) recover x, let
us recall that at the end of the protocol, the verifier shall ask the prover to open
the views of all parties except one. Let us denote i∗ the index of the unopened
party. It means the verifier will have access to

{JxKi}i 6=i∗ and ∆x .

For the sake of simplicity, let us first consider the case n = 1, i.e. x ∈ {0, 1} and
JxK is the sharing of a single integer. With the opened values, the verifier can
compute

x− JxKi∗ as ∆x+
∑
i 6=i∗

JxKi .

Now let us denote Y = x−JxKi∗ the underlying random variable over the uniform
random sampling of JxKi∗ . We have

Pr(Y = −A+ 1) =

{
1
A if x = 0

0 if x = 1
and Pr(Y = 1) =

{
0 if x = 0
1
A if x = 1

8

while

Pr(Y = y) =
1

A
for every y ∈ {−A+ 2, . . . , 0} .

So by observing x−JxKi∗ = −A+1 one learns (x, JxKi∗) = (0,−A+1). Similarly,
by observing x− JxKi∗ = 1 one learns (x, JxKi∗) = (1, 0). To avoid this flaw, the
prover must abort the protocol before revealing {JxKi}i 6=i∗ and ∆x whenever one
of these two cases occurs. This notably implies that ∆x must not be revealed
before receiving the challenge i∗, but it should still be committed beforehand in
order to ensure the soundness of the protocol. Doing so, we modify the distribu-
tion of the revealed auxiliary value which does not leak any information about
x anymore as illustrated in Figure 1, and the probability to abort does not leak
information about x since it is 1/A in the both cases (x = 0 and x = 1).

Let us now come back to the general case of n ≥ 1. The prover applies the
above abortion strategy for all the coordinates of x, namely

– if there exists j ∈ [n] such that xj = 0 and JxjKi∗ = A−1, the prover aborts;
– if there exists j ∈ [n] such that xj = 1 and JxjKi∗ = 0, the prover aborts;
– otherwise the prover proceeds.

The probability to abort, which we call rejection rate, is

1−
(

1− 1

A

)n
≤ n

A
.

We note that the rejection rate can be tightly approximated by the n/A upper
bound when A is sufficiently large. In order to achieve a small (constant) rejection
rate, we should hence choose A greater than n. Asymptotically, we then have
A = Θ(n) = Θ(λ), which represents an exponential improvement compared to
q = 2Θ(λ).

Let us now analyze the computation cost of our strategy for sharing x. In the
absence of rejection, ∆xj belongs to {−N · (A− 1) + 1, . . . , 0}, therefore sending
the auxiliary value ∆x would cost n · log2(N · (A− 1)) bits. However, the prover
can save communication by sending x−JxKi∗ instead, which is strictly equivalent
in terms of revealed information by the relation x − JxKi∗ = ∆x +

∑
i 6=i∗JxKi.

Since each coordinate of x− JxKi∗ is uniformly distributed over {−A+ 2, . . . , 0},
sending it only costs

n · log2(A− 1) bits.

With x − JxKi∗ , the verifier can recover ∆x by computing ∆x = (x − JxKi∗) −∑
i 6=i∗JxKi. The cost of this sharing has the advantage of being independent

of the modulus q on which the SSP instance is defined. The value of A will
be chosen according to the desired trade-off between communication cost and
rejection rate. If n = 256 and A = 216, we have a cost of 0.5 KB for a rejection
rate of 0.0038, which is much better than the 8 KB of the naive approach.

Let us remark that adding an abort event does not impact the soundness of
the protocol. A malicious prover can abort as many times she wants claiming
that it would leak information, but an abortion does not help to convince the
verifier. The soundness theorem will state that someone who does not know the

9

secret can only answer with a probability smaller than the constant value called
soundness error, and adding an abort event cannot increase this probability.
The prover could sample a random party i′ and give to i′ a wrong share and she
may indeed decide to abort if the verifier challenge is not i′, but this does not
change the fact that the probability for the prover to convince the verifier is the
probability that the prover guesses the verifier challenge a priori.

Now that we have defined the sharing of x, we need to demonstrate two
properties of the shared SSP instance through multi-party computation. The
first one is the SSP relation which in the shared setting translates to

n∑
j=1

JxjK · wj = JtK mod q

for a sharing JtK of t. The linearity of this relation makes it easy to deal with:
the share JtKi can simply be computed as JtKi :=

∑n
j=1JxjKi · wj mod q and

committed to the verifier by each party. The verifier can then check that the
open parties have correctly computed their shares JtKi and that the relation∑N
i=1JtKi = JtK mod q well holds. The second property which must be demon-

strated through multi-party computation is that the solution x corresponding to
the sharing JxK is a binary vector. This is not a priori guaranteed to the verifier
since the shares of the coordinate of x are defined over {0, . . . , A − 1} and the
correctness of the linear relation does not imply that x is indeed binary. We
present two different solutions to this issue in the following.

3.3 Binarity Proof from Batch Product Verification

Our first solution relies on standard MPC-in-the-Head techniques to prove the
relation

x ◦ (x− 1) = 0

where ◦ denotes the coordinate-wise product, 0 and 1 are to be interpreted as
the all-0 and all-1 vectors. To this aim, we can use the MPC-in-the-Head batch
product verification suggested in [LN17,BN20] and recently improved in [KZ22]
(see Section 2.2). However, we can do better than a straight application of those
techniques.

The relation x◦(x−1) = 0 is defined in Zq and the above techniques imply to
send at least one field element per product, that is n elements from Zq. To save
communication and since the sharing JxK is defined on the integers, we can work
on a smaller field. We previously explained that the verifier receives {JxKi}i 6=i∗
and ∆x from the prover, so they can check that, for all j ∈ [n],

−A+ 2 ≤ xj − JxjKi∗ ≤ 0 .

They further trusts JxjKi∗ ∈ {0, . . . , A−1} (which is verified for the open parties).
Thus the verifier can deduce that, for all j ∈ [n],

−A+ 2 ≤ xj ≤ A− 1 . (2)

10

Let q′ be a prime such that q′ ≥ A. If the prover convinces the verifier that
xj(xj − 1) = 0 mod q′, then the latter deduces that xj ∈ {0, 1} because

q′|xj(xj − 1) ⇒ (q′|xj) or (q′|xj − 1)

⇒ (xj = 0) or (xj = 1) by (2)

The prover hence just needs to prove x ◦ (x − 1) = 0 mod q′ for some prime
q′ such that q′ ≥ A. To this purpose, we apply the batch product verification
of [KZ22] as follows (see also Section 2.2).

The prover first samples a ∈ (Zq′)n with its sharing

JaKi
$←− (Zq′)n for i ∈ [N] .

The value a is hence defined as a uniform random element of (Zq′)n and no
auxiliary value ∆a is necessary. The prover then computes c = 〈a, x〉 and its
sharing as {

JcKi
$←− Zq′ for all i ∈ [N],

∆c
$←− c−

∑N
i=1JcKi mod q′

.

The prover gives the shares of x, a and c as inputs to the parties and runs the
following MPC protocol:

1. the parties get a random challenge ε ∈ (Zq′)n from the verifier;
2. the parties locally set JαK = ε ◦ (1− JxK) + JaK;
3. the parties open JαK to get α;
4. the parties locally set JvK = 〈α, JxK〉 − JcK;
5. the parties open JvK to get v;
6. the parties accept iff v = 0.

Besides the input shares and commitments, the prover-to-verifier communi-
cation cost of the corresponding MPCitH zero-knowledge protocol only results
from the size of JαKi∗ (the broadcasted vector of the unopened party i∗), which
is of

n · log2(q′) bits.

We stress that the prover does not need to send JvKi∗ because the verifier knows
that v must be zero and will deduce JvKi∗ = −∆v −

∑
i6=i∗JvKi

As described in Section 2.2, the batch product MPC verification produces
false positives with probability 1/q′. Thus the soundness error of the obtained
zero-knowledge protocol is

1−
(

1− 1

N

)(
1− 1

q′

)
<

1

N
+

1

q′
.

On the other hand, the protocol has a rejection rate of 1 − (1 − 1
A)n and a

prover-to-verifier communication cost (in bits) of

2 · (2λ) + n · log2(A− 1)︸ ︷︷ ︸
x−JxKi∗

+n · log2(q′)︸ ︷︷ ︸
∆α

+ log2(q′)︸ ︷︷ ︸
∆c

+λ log2N + 2λ .

11

3.4 Binarity Proof from Masking and Cut-and-Choose Strategy

Our second solution to prove that JxK encodes a binary vector relies on a masking
of x and a cut-and-choose strategy. The idea is to generate a random vector r
from {0, 1}n and to apply the sharing described in Section 3.2 to r. In addition,
the prover computes (and commits) x̃ := x ⊕ r ∈ {0, 1}n where ⊕ represents
the XOR operation. Instead of giving the shares JxK of x as inputs of the MPC
protocol, the idea is now to send the shares JrK of r. Then using x̃, the parties
can locally deduce a sharing of x as

JxK = (1− x̃) ◦ JrK + x̃ ◦ (1− JrK)

which is a linear relation in JrK, and the verifier can further deduce the auxiliary
value ∆x from ∆r as

∆x = (1− x̃) ◦∆r + x̃ ◦ (1−∆r) .

By replacing JxK with JrK the parties’ input is made independent of the secret.
The interest of doing so is to enable a cut-and-choose strategy to prove that JrK
encodes a binary vector, which in turns implies that x = x̃ ⊕ r is a binary
vector. More precisely, at the beginning of the zero-knowledge protocol, the
prover produces M binary vectors r[`] and their corresponding shares Jr[`]K (in
practice these vectors and their sharings are pseudo-randomly derived from some
seeds). Then the prover commits those sharings Jr[`]K as well as the corresponding
masked vectors x̃[`] := x ⊕ r[`]. Then the verifier asks to open all the sharings
r[`] except one and checks that they correspond to binary vectors. The verifier
will hence trust that the unopened sharing encodes also a binary vector with a
soundness error of 1/M . We stress that all the values x̃[`] for which r[`] is opened
must remain hidden (otherwise x could be readily recovered). The obtained zero-
knowledge protocol has a soundness error of

max

{
1

M
,

1

N

}
,

a rejection rate of 1− (1− 1
A)n and a prover-to-verifier communication cost (in

bits) of

2 · (2λ) + λ log2M︸ ︷︷ ︸
Cost of C&C

+n · log2(A− 1)︸ ︷︷ ︸
r−JrKi∗

+ n︸︷︷︸
x̃

+λ log2N + 2λ .

3.5 Asymptotic Analysis

We analyze hereafter the asymptotic complexity of the two variants of our pro-
tocol. We show that for a security parameter λ both variants have an asymptotic
communication cost of Θ(λ2) and an asymptotic computation time of Θ(λ4).

For the binarity proof based on masking and cut-and-choose, we assume
M = N (which is optimal for the communication cost given the soundness
error). For the other parameters, let us recall that

12

– for a security parameter λ, one must take n ≈ log2 q = Θ(λ),
– the prime q′ can be chosen as the smallest prime greater than A, which

implies q′ ≈ A.

For both variants, the asymptotic communication cost for one repetition of
the protocol is then of

Θ(λ log2A+ λ log2N) .

Since each repetition has a soundness error of Θ(1/N), the protocol must be
repeated τ = Θ(λ/log2N) times to reach a global soundness error of 2−λ. The
probability that any of these τ repetitions aborts is given by

1−
(

1− 1

A

)n·τ
≈ n · τ

A

where the approximation is tight when A is sufficiently large. Thus for a small
constant rejection probability, one must take A = Θ(n · τ) = Θ(λ2/ log2N). We
have a communication cost for the τ iterations in

Θ

(
λ2

log2A

log2N
+ λ2

)
= Θ

(
λ2

log2N
log2

(λ2

log2N

)
+ λ2

)
and we hence obtain a minimal asymptotic communication cost of Θ(λ2) by
taking N = Θ(λ).

The asymptotic computation time for one repetition of the protocol is of
Θ(Nn(log2 q)(log2A)), where the term (log2 q)(log2A) arises from the complex-
ity of the multiplication between an element of Zq and a value smaller than A.
We hence get a computation time of Θ(λ3 log2 λ) per repetition which makes
Θ(λ4) for τ repetitions.

4 Protocols and Security Proofs

In this section, we formally describe our two protocols and state their security.
We further introduce a method to decrease the rejection rate.

4.1 Protocol with Batch Product Verification

Protocol description. In Section 3.3, we proposed an MPC protocol that proves
that the sharing JxK encodes a binary vector. We then add the checking of the
linear relation as described in Section 3.2 and we transform the multi-party
computation into a zero-knowledge protocol which proves the knowledge of a
solution of an SSP instance. We give the formal description of our protocol
in Protocol 1. The protocol makes use of a pseudo-random generator PRG, a
tree-based pseudo-random generator TreePRG (see definition in [KKW18]), two
collision-resistant hash functions Hashi for i ∈ {1, 2} and a commitment scheme
(Com,Verif) as defined in Appendix B. In this description, the procedure Check
returns 0 if the evaluated condition is false (i.e. the equality does not hold) and
the execution continues otherwise.

13

Prover P Verifier V
x ∈ {0, 1}n
w ∈ Znq , t = 〈w, x〉 w, t

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN)
with TreePRG(mseed)

For each party i ∈ {1, . . . , N}:
JaKi, JxKi, JcKi ← PRG(seedi) . a ∈ Znq′ , c ∈ Zq′ , JxKi ∈ {0, . . . , A− 1}n
comi = Com(seedi; ρi)

∆x = x−
∑
iJxKi

∆c = 〈a, x〉 −
∑
iJcKi

h = Hash1(∆x,∆c, com1, . . . , comN)
h−−−−−−−−−−−−−−−−−−→

ε
$←− Znq′

ε←−−−−−−−−−−−−−−−−−−
The parties locally set

- JtK = 〈w, JxK〉 . t ∈ Zq
- JαK = ε ◦ (1− JxK) + JaK . α ∈ Znq′ (computation in Zq′)

The parties open JαK to get α.
The parties locally set

JvK = 〈α, JxK〉 − JcK . v ∈ Zq′ (computation in Zq′)

h′ = Hash2(JtK, JαK, JvK)
h′−−−−−−−−−−−−−−−−−−→

i∗
$←− {1, . . . , N}

i∗←−−−−−−−−−−−−−−−−−−
If there exists j ∈ [n] such that:

- either JxjKi∗ = 0 with xj = 1
- or JxjKi∗ = A− 1 with xj = 0,

then abort.
y = x− JxKi∗

(seedi, ρi)i 6=i∗ , comi∗ ,
y, ∆c, JαKi∗

−−−−−−−−−−−−−−−−−−→
For all i 6= i∗,

JaKi, JxKi, JcKi ← PRG(seedi)
∆x = y −

∑
i 6=i∗JxKi

∆α = ε · (1−∆x)
For all i 6= i∗,

Rerun the party i as the prover
and compute the commitment comi.

∆t = 〈w,∆x〉
∆v = 〈α,∆x〉 −∆c
JtKi∗ = t−∆t−

∑
i 6=i∗JtKi

JvKi∗ = −∆v −
∑
i 6=i∗JvKi

Check h = Hash1(∆x,∆c, com1, . . . , comN)
Check h′ = Hash2(JtK, JαK, JvK)
Return 1

Protocol 1: Zero-knowledge argument for Subset Sum Problem via MPC-in-the-
head with rejection, using batch product verification to prove binarity.

Security proofs. The following theorems state the completeness, zero-knowledge
and soundness of Protocol 1. The proofs of Theorems 1, 2 and 3 are provided in
appendix.

14

Theorem 1 (Completeness). A prover P who knows a solution x to the subset
sum instance (w, t) ∈ Znq ×Zq and who follows the steps of Protocol 1 convinces
the verifier V with probability (

1− 1

A

)n
.

Theorem 2 (Zero-Knowledge). Let the PRG used in Protocol 1 be (t, εPRG)-
secure and the commitment scheme Com be (t, εCom)-hiding. There exists an effi-
cient simulator S which outputs a transcript which is (t, εPRG+εCom)-indistingui-
shable from a real transcript of Protocol 1.

Theorem 3 (Soundness). Suppose that there is an efficient prover P̃ that,
on input (w, t), convinces the honest verifier V on input H, y to accept with
probability

ε̃ := Pr[〈P̃(w, t),V(w, t)〉 = 1] > ε

for a soundness error ε equal to

1

q′
+

1

N
− 1

q′
· 1

N
.

Then, there exists an efficient probabilistic extraction algorithm E that, given
rewindable black-box access to P̃, produces either a witness x such that t = 〈w, x〉
and x ∈ {0, 1}n, or a commitment collision, by making an average number of
calls to P̃ which is upper bounded by

4

ε̃− ε
·
(

1 + ε̃ · 2 · ln(2)

ε̃− ε

)
.

Proof size. To achieve a targeted soundness error 2−λ, we can perform τ parallel
executions of the protocol such that ετ ≤ 2−λ. Such parallel repetition does
not preserve (general) zero-knowledge and the resulting scheme achieves honest
verifier zero knowledge. And instead of sending τ values for h and h′, the prover
can merge them together to send a single h and a single h′. Moreover, instead
to sending the N − 1 seeds and commitment randomness of (seedi, ρi)i 6=i∗ for
each execution, we can instead send the sibling path from (seedi∗ , ρi∗) to the
tree root, it costs at most λ · log2(N) bits (we need to reveal log2(N) nodes of
the tree) by execution. The communication cost (in bits) of the protocol with τ
repetitions is

Size = 4λ + τ · [n · (log2(A− 1) + log2(q′)) + log2(q′) + λ log2N + 2λ]

while the soundness error and rejection rate scale as(
1

q′
+

1

N
− 1

q′
· 1

N

)τ
and 1−

(
1− 1

A

)τ ·n
respectively. Let us stress that the obtained size is independent of the modulus
q (and of the size of the integers {wj}, t).

15

4.2 Protocol with Cut-and-Choose Strategy

Protocol description. As described in Section 3.4, we can also use a cut-and-
choose strategy to prove that the vector JxK is binary. It is possible since we
can remplace the input JxK of the multi-party computation by a sharing JrK
independent of the secret, where r is a mask uniformly sampled in {0, 1}n. To
achieve a targeted soundness error 2−λ, we can perform τ parallel executions
of the protocol such that ετ ≤ 2−λ. Like [KKW18], instead of performing τ
independent cut-and-choose phases each resulting in trusting one sharing JrK
among M , we can perform a global cut-and-choose phase resulting in τ trusted
sharings JrK among a larger M (see [KKW18] for more details). We give the
formal description of this zero-knowledge protocol in Protocol 2. The protocol
makes use of a pseudo-random generator PRG, a tree-based pseudo-random
generator TreePRG (see definition in [KKW18]), four collision-resistant hash
functions Hashi for i ∈ {1, 2, 3, 4} and a commitment scheme (Com,Verif) as
defined in Appendix B. In this description, the procedure Check returns 0 if the
evaluated condition is false (i.e. the equality does not hold) and the execution
continues otherwise.

Security proofs. The following theorems state the completeness, zero-knowledge
and soundness of Protocol 2. The proofs of Theorems 4, 5 and 6 are provided in
appendix.

Theorem 4 (Completeness). A prover P who knows a solution x to the subset
sum instance (w, t) ∈ Znq ×Zq and who follows the steps of Protocol 2 convinces
the verifier V with probability (

1− 1

A

)τ ·n
.

Theorem 5 (Honest-Verifier Zero-Knowledge). Let the PRG used in Pro-
tocol 2 be (t, εPRG)-secure and the commitment scheme Com be (t, εCom)-hiding.
There exists an efficient simulator S which, given random challenges J and L
outputs a transcript which is (t, τ · εPRG + τ · εCom)-indistinguishable from a real
transcript of Protocol 2.

Theorem 6 (Soundness). Suppose that there is an efficient prover P̃ that,
on input (w, t), convinces the honest verifier V on input H, y to accept with
probability

ε̃ := Pr[〈P̃(w, t),V(w, t)〉 = 1] > ε

for a soundness error ε equal to

max
M−τ≤k≤M

{ (
k

M−τ
)(

M
M−τ

)
·Nk−M+τ

}
.

Then, there exists an efficient probabilistic extraction algorithm E that, given
rewindable black-box access to P̃, produces either a witness x such that t = 〈w, x〉

16

Prover P Verifier V
x ∈ {0, 1}n
w ∈ Znq , t = 〈w, x〉 w, t

mseed[0]
$←− {0, 1}λ

(mseed[e])e∈[M] ← TreePRG(mseed[0])
For each e ∈ {1, . . . ,M}:

r[e] ← PRG(mseed[e]) . r[e] ∈ {0, 1}n

(seed
[e]
i , ρ

[e]
i)i∈[N] ← TreePRG(mseed[e])

For each i ∈ {1, . . . , N}:
Jr[e]Ki ← PRG(seed

[e]
i) . Jr[e]Ki ∈ {0, . . . , A− 1}n

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i)

∆r[e] = r[e] −
∑
iJr

[e]Ki
he = Hash1(∆r[e], com

[e]
1 , . . . , com

[e]
n)

h = Hash2(h1, . . . , hM)
h−−−−−−−−−−−−−−−−−−→

J
$←− {J ⊂ [M] ; |J | = τ}

J←−−−−−−−−−−−−−−−−−−

For each e ∈ J :

x̃[e] = x⊕ r[e] . ⊕ is the XOR operation (x̃ ∈ {0, 1}n)
The parties locally set

Jx[e]K = (1− x̃[e]) ◦ Jr[e]K
+x̃[e] ◦ (1− Jr[e]K)

and they set Jt[e]K = 〈w, Jx[e]K〉.
h′e = Hash3(x̃[e], Jt[e]K)

h′ = Hash4((h′e)e∈J)
h′, (mseed[e])e∈[M]\J−−−−−−−−−−−−−−−−−−→

L = {`e}e∈J
$←− {1, . . . , N}τ

L←−−−−−−−−−−−−−−−−−−
If there exists (e, j) ∈ J × [n] such that:

- either Jr[e]j K`e = 0 with r
[e]
j = 1

- or Jr[e]j K`e = A− 1 with r
[e]
j = 0,

then abort.

y = r[e] − Jr[e]K`e (seed
[e]
i , ρ

[e]
i)i6=`e

y, x̃[e], com
[e]
`e

e∈J−−−−−−−−−−−−−−−−−−→

For each e 6∈ J :

Compute he using mseed[e]

For each e ∈ J :
For all i 6= `e

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i)

Rerun the party i

as the prover to get Jt[e]Ki
∆r[e] = y −

∑
i 6=`eJr[e]K

he = Hash1(∆r[e], com
[e]
1 , . . . , com

[e]
n)

From ∆r[e], deduce ∆t[e].

Jt[e]K = t−∆t[e] −
∑
i 6=`eJt[e]Ki

h′e = Hash3(x̃[e], Jt[e]K)
Check h = Hash2(h1, . . . , hM)
Check h′ = Hash4((h′e)e∈J)
Return 1

Protocol 2: Zero-knowledge argument for Subset Sum Problem via MPC-in-the-
head with rejection, using cut-and-choose strategy to prove binarity.

17

and x ∈ {0, 1}n, or a commitment collision, by making an average number of
calls to P̃ which is upper bounded by

4

ε̃− ε
·
(

1 + ε̃ · 8 ·M
ε̃− ε

)
.

Proof size. Let us recall that the couples (seedi, ρi) are sampled using a tree

PRG, sending (seed
[e]
i , ρ

[e]
i)i 6=`e costs at most λ · log2(N) bits by iteration. The

communication cost (in bits) of the protocol is then

Size = 4λ+ λ · τ · log2

M

τ
+ τ · [n · log2(A− 1) + n+ λ log2N + 2λ] .

Here again, the obtained size is independent of the modulus q (and of the size
of the integers {wj}, t).

4.3 Decreasing the Rejection Rate

The two above protocols have a rejection rate around τn/A which implies that
we must take A = Θ(τn) to obtain a constant (small) rejection rate. In practice,
this results in a significant increase in the communication cost. Let us for instance
consider Protocol 1 with (τ,N,A) = (16, 280, 213). For this setting, the proof size
is about 15.6 KB for a rejection rate of 0.394. If we increased A to get a rejection
rate below 0.003, we should take A = 221 and the proof size would be 23.6 KB.

A better strategy consists in allowing the prover to abort a few of the τ
iterations. Let us assume that the verifier accepts the proof if the prover can
answer to τ − η challenges among the τ iterations. This slightly increases the
soundness error, but it can also significantly decrease the global rejection rate. If
we denote prej the probability that an iteration aborts, then the global rejection
rate of this strategy is given by

1−
η∑
i=0

(
τ

i

)
· (1− prej)τ−i · pirej . (3)

At the same time, the soundness error for Protocol 1 becomes

η∑
i=0

(
τ

i

)
· (1− ε)i · ετ−i

where ε = 1
N + 1

q′ −
1
q′ ·

1
N is the soundness error of a single iteration. Using this

strategy with τ = 20 and η = 3, the proof size is of 16.7 KB for a rejection rate
of 0.003 (instead of 23.6 KB with the naive strategy).

The same strategy also applies to Protocol 2. The rejection rate is also given
by Equation (3) while the soundness error becomes

max
M−τ≤k≤M

{(
k

M−τ
)(

M
M−τ

) · η∑
i=0

[(
k −M + τ

i

)(
1− 1

N

)i(
1

N

)k−M+τ−i
]}

.

18

In any case, the prover always answers to at most τ − η challenges of the
verifier (even if the prover aborts less than η among the τ iterations) so that the
communication cost is roughly that of τ − η iterations. Additionally, for each
unanswered challenge, the prover must further send two hash digests to enable
the verifier to recompute and check h and h′. Thus the new proof size (in bits)
for Protocol 1 is

Sizeη = 4λ+ η · 4λ
+ (τ − η) · [n · (log2(A− 1) + log2(q′)) + log2(q′) + λ log2N + 2λ] ,

while the new proof size (in bits) for Protocol 2 is

Sizeη = 4λ+ η · 4λ+ λ · τ · log2

M

τ
+ (τ − η) · [n · log2(A− 1) + n+ λ log2N + 2λ] .

We note that in practice, given a target security level and a target rejection
probability, one needs to use a slightly increased τ (or N) to compensate for the
loss in terms of soundness. While this shall slightly increase the proof size, the
above approach (with η > 0) still provides better trade-offs than the original
approach (η = 0).

5 Instantiations and Performances

5.1 Subset Sum Instances

We recall in this section known techniques to solve the modular subset sum
problem (SSP) defined by (1). It is well-known that the hardness of an SSP
instance depends greatly on its density defined as d = n/ log2 q. If the SSP
instance is too sparse (e.g. d < 1/n) or too dense (e.g. d > n/ log2 n) then
the problem can be solved in polynomial time (see e.g. [CJL+92] and references
therein). We shall therefore only consider SSP instances with density d ' 1 (i.e.
q ' 2n) which are arguably the hardest ones [IN96].

In this case, simple algorithms exist based on brute force enumeration at
O(2n) time and constant space, or time-space tradeoff [HS74] with O(2n/2)
time and space complexities. The first non-trivial algorithm was published by
Schroeppel and Shamir [SS81] with time complexity O(2n/2) and space com-
plexity O(2n/4). Later, faster algorithms were proposed with similar time and
space complexities, e.g. Õ(20.337n) by Howgrave-Graham and Joux [HJ10]and
Õ(20.283n) by Bonnetain, Bricout, Schrottenloher and Shen [BBSS20]. The lat-
ter algorithms neglect the cost to access an exponential memory but even with
this optimistic assumption, for n = 256, all known algorithms require at least a
time complexity lower-bounded by 2128 operations or memory of size at least 272

bits. There also exists a vast literature on quantum algorithms for solving the
SSP (see [BBSS20] and references therein). The best (heuristic) quantum com-
plexity from [BBSS20] has time complexity Õ(20.216n) and thus requires about
264 quantum operations and quantum memory for n = 256. In the following, we,
therefore, consider the efficiency of our protocols for n = 256.

19

5.2 Zero Knowledge Protocols

Let us consider the subset sum problem with n = 256. We propose in Table 1
several sets of parameters for our two protocols which target a security of 128
bits. We provide two kinds of instantiations to give the reader an idea of the
obtained performance while changing the number of parties. The first ones cor-
respond to instantiations with fast computation. The second ones correspond
to instantiations that achieve smaller communication costs but slower computa-
tion. For each setting, we suggest two parameter sets: one achieving a rejection
rate around 0.4 and the other one achieving a rejection rate between 0.001 and
0.004.

Protocol
Parameters

Proof size Rej. rate Soundness err.
τ η N A M

Shamir [Sha86] 219 - - - - 1186 KB - 128 bits

[LNSW13] 219 - - - - 2350 KB - 128 bits

Beullens [Beu20] 14 - 1024 - 4040 122 KB - 128 bits

Protocol 1 (batching) 26 0 32 214 - 25.7 KB 0.334 130 bits

Protocol 1 (batching) 31 3 32 214 - 27.9 KB 0.001 128 bits

Protocol 2 (C&C) 27 0 32 214 462 17.4 KB 0.344 128 bits

Protocol 2 (C&C) 33 3 32 214 470 19.6 KB 0.002 128 bits

Protocol 1 (batching) 17 0 256 213 - 16.6 KB 0.412 135 bits

Protocol 1 (batching) 21 3 256 213 - 17.7 KB 0.004 133 bits

Protocol 2 (C&C) 19 0 256 213 954 13.0 KB 0.448 128 bits

Protocol 2 (C&C) 24 3 256 214 952 15.4 KB 0.001 128 bits

Table 1: Comparison of state-of-the-art zero-knowledge protocols for proving the
knowledge of an SSP instance (with n = 256 and q ≈ 2256).

We provide in Table 1 the performance of the other zero-knowledge protocols
proving the knowledge of an SSP solution. The only other protocol designed for
the subset sum problem is Shamir’s one [Sha86]. We can also compare these
protocols with [LNSW13] which is an adaptation of Stern’s protocol to the ISIS
(inhomogeneous short integer solution) problem. The remaining articles in the
literature about proofs for the ISIS problem are restricted to the case where the
modulus q is prime. We add Beullens’ protocol [Beu20] for ISIS with prime q to
the comparison.

We provide in Appendix G the performances of the obtained signatures when
applying the Fiat-Shamir transform [FS87] to our protocols.

5.3 Comparison with Generic Techniques

In this section, we compare our scheme with efficient generic techniques to prove
the knowledge of an SSP solution. Among those techniques, we consider SNARKs

20

(e.g. [Gro16]), “compressed” proof systems such as Bulletproofs [BBB+18] and
STARKs (e.g. [BBHR18]). For the sake of accuracy, we split the notation for the
security level of the subset sum instance, denoted κ, and of the zero-knowledge
argument, denoted λ. Adapting the analysis of Section 3.5 to this setting, we get
a communication cost of Θ(λ2 + λ · κ) for our protocols.

The asymptotic size of [Gro16] arguments is roughly5 Ω(λ3) which is asymp-
totically larger than ours, but for κ = λ = 128, these arguments will be shorter
than ours (within the range of 700-800 bytes). Using Bulletproofs [BBB+18], one
can obtain an asymptotic communication cost of Ω(log(κ)(λ+κ)), and about 600
bytes for κ = λ = 128. Although SNARKs and “compressed” proof systems give
shorter arguments than ours for κ = λ = 128, they both require stronger and
non post-quantum computational assumptions. In particular, [Gro16] requires a
trusted setup and a non-falsifiable assumption, while Bulletproofs rely on the al-
gebraic group model in their non-interactive version [GOP+21]. In comparison,
the security of our arguments only relies on weak post-quantum assumptions
(PRG, collision-resistant hash functions).

Regarding STARKs [BBHR18], their security assumptions are similar to ours.
When applying STARKs to the subset sum problem, one gets arguments of size
Ω(λ2 · log2 κ), which is larger than ours.6

6 Further Applications

As illustrated on the subset sum problem, our technique of sharing over the in-
tegers with rejection is –more generally– instrumental to a context of a secret
vector s ∈ Znq with small coefficients. Since the communication cost of our pro-
tocols is independent of the size q of the ring Zq, the gain in communication is
higher when the modulus q is high. But it does not need to have a modulus as
high as in the subset sum problem to be interesting. In the three subsections,
we present the performance of our schemes with the sharing over the integers on
three other applications with moderate-size modulus:

– to prove the knowledge of a solution of an ISIS problem instance,
– to prove the knowledge of a secret key and plaintext(s) matching a (set of)

FHE ciphertext(s),
– to construct an efficient digital signature based on Boneh-Halevi-Howgrave-

Graham pseudo-random function.

Another advantage of the sharing on the integers is that we can perform any
operation on it with any modulus. We used this property in one of our protocols
to check multiplication triples in a smaller field. This property can be also useful
when we want to prove that the same secret vector verifies many relations using
distinct modulus.
5 This is due to sub-exponential attacks on the discrete logarithm in the target group

which also impacts the size of elements of the second group of the bilinear structure.
6 The λ2 factor is obtained by λ for the hash digest size times λ for the number of

evaluation points in the FRI protocol (which scales with the soundness error). The
log2 κ factor comes from the size κ of the program verifying the SSP instance.

21

6.1 Short Integer Solution Problem

Given a matrix A ∈ Zm×n and a vector u ∈ Zm, the inhomogenous short integer
solution (ISIS) problem consists in finding a vector s ∈ Zn with small coefficients
such that

As = u mod q.

The Ling-Nguyen-Stehlé-Wang protocol [LNSW13], which is an adaptation of
Stern’s protocol, has been for a long time the only zero-knowledge exact protocol
which proves the knowledge of a solution of an ISIS instance. Other protocols
existed but they were only relaxed proofs, i.e. they prove the knowledge of an s′

and c satisfying As′ = cu mod q. These protocols can be useful in some contexts,
but they are not suited to prove the exact statement.

Recently, new exact proofs [BLS19,ENS20,LNS21,BN20,Beu20] have been
published. However, all these new protocols require an assumption on the mod-
ulus q to work: some of them only require that q is a prime number when the
others require that q is an NTT-friendly prime number. In the state of the art, the
only protocol which works for any q (even when q is not a prime) is [LNSW13].

We can adapt our protocols of Section 4 to the case of the ISIS problem.
The linear constraint “As = u” is free in communication as it was the case for
“t = 〈w, x〉” for the subset sum problem (see Section 3.2). The hard part is to
prove that the secret s satisfies ‖s‖∞ ≤ β for some bound β. To proceed, we
decompose s as k := dlog2(2β + 1)e vectors (s0, . . . , sk−1) of {0, 1}n such that

s =

k−2∑
i=0

2isi + (2β − 2k−1 + 1)sk−1 − β . (4)

If all vectors si belong to {0, 1}, the above relation gives that ‖s‖∞ ≤ β. So
we just need to give the sharing {JsiK}i∈{0,...,k−1} to the MPC protocol instead
of JsK. The latter can then check that {JsiK}i∈{0,...,k−1} are binary vectors and
that AJsK corresponds to u modulo q where JsK is recovered by linearity of
Equation (4). The proof sizes of the resulting protocols are given by the formulae
as before, we just need to consider that the length of the secret is n · k (instead
of n).

We compare our protocols with the state of the art in Table 2 on the two
following ISIS problems:

1. ‖s‖∞ ≤ 1, m = 1024, n = 2048, q ≈ 232

2. Binary s, m = 512, n = 4096, q ≈ 261

For both instances, we have k · n = 4096. For our protocols, we choose the
following parameters:

– Protocol 1 (batch product verification):

A = 216, N = 128, q′ ≈ A, τ = 23, η = 3.

– Protocol 2 (cut-and-choose strategy):

A = 216, N = 256, q′ ≈ A, M = 952, τ = 24, η = 3.

22

We can remark that our protocols have the same communication cost for
both instances. It comes from the fact that their proof size is independent of the
modulus q. Even when q is prime (and larger than 232), our Protocol 2 (with the
cut-and-choose phase) has smaller communication cost than Beullens’ protocol
and this while taking less aggressive parameters towards size against speed (the
parameters used in [Beu20] are (τ,M,N) = (14, 4040, 210)). We also observe
that our protocols achieve proof sizes which are more than 10 times smaller
than those of [LNSW13], the only previous protocol supporting any modulus q.

Protocol Year Any q
Instance 1 Instance 2

Proof Size Rej. Rate Proof Size Rej. Rate

[LNSW13] 2013 3 3600 KB - 8988 KB -

[BN20] 2020 q prime - - 4077 KB -

[Beu20] 2020 q prime 233 KB - 444 KB -

Our Protocol 1 2022 3 291 KB 0.04 291 KB 0.04

Our Protocol 2 2022 3 184 KB 0.05 184 KB 0.05

[BLS19] 2019 q prime + NTT 384 KB 0.92
[ENS20] 2020 q prime + NTT 47 KB 0.95
[LNS21] 2021 q prime + NTT 33.3 KB 0.85

Aurora [BCR+19] 2019 q prime + NTT 71 KB -
Ligero [AHIV17] 2017 q prime + NTT 157 KB -

Table 2: Comparison with the existing exact protocols which prove the knowledge
of the solution of a ISIS instance.

6.2 Fully Homomorphic Encryption

Our zero-knowledge protocols also find application to fully homomorphic en-
cryption (FHE). We can indeed adapt our protocols to prove the knowledge of a
secret key matching a (set of) FHE-encrypted plaintext(s). We elaborate on this
application hereafter for the particular case of TFHE (Torus FHE) [CGGI20]
which is currently one of the FHE schemes with the best performances in prac-
tice.

For some q ∈ N, let Tq = q−1Z/Z be the discretized torus with q elements,
i.e. the submodule of the real torus with representative {i/q ; i ∈ Zq} [Joy21].
In practice, q is often chosen to be 232 or 264 in order to match the word-size
and arithmetic operations of common CPUs. For this reason, we shall consider
that q is a power of 2 in the following (although the described application can
be easily generalized to any q). TFHE relies on so called TLWE (Torus Learning
With Error) encryption. Let p | q and δ = q/p. The plaintext space is defined as
Zp while the key space is defined as {0, 1}n ⊂ Zn. Let s = (s1, . . . , sn) ∈ {0, 1}n
be a secret key. The TLWE encryption of a plaintext µ ∈ Zp under the secret
key s and with error e ∈ Z is defined as

c = (a1, . . . , an, b) ∈ Tn+1
q where

{
µ∗ = δµ+e mod q

q ∈ Tq
b =

∑n
j=1 sj · aj + µ∗

23

The ai’s are random elements of Tq which are sampled at encryption time or
which arise from the homomorphic operations between other ciphertexts. The
value e ∈ Z is the error which must satisfies |e| < δ/2 to ensure the correctness
of the decryption.

Proving the knowledge of a key s and plaintext µ for which c = (a1, . . . , an, b)
is a correct TLWE encryption of µ under s can be achieved by proving the
knowledge of a binary vector

x = (s1, . . . , sn) | (µ1, . . . , µ`p) | (e1, . . . , e`e)

where `p = log2 p and `e is such that e ∈ {−2`e−1, . . . , 2`e−1 − 1}, and which
satisfies

n∑
i=1

āisi +

`p∑
i=1

(2i−1δ)µi +

`e∑
i=1

(2i−1)ei = b̄+ 2`e−1 (mod q)

where āi ∈ Z (resp. b̄ ∈ Z) is the integer such that ai = āi/q ∈ Tq (resp.

b = b̄/q ∈ Tq) and where the error is e := −2`e−1+
∑`e
i=1(2i−1)ei. The application

of our protocols to this context is immediate. We note that the secret binary
vector is of size n′ = n + `p + `e when the underlying plaintext must remain
secret while it is of size n′ = n+ `e if the plaintext is public. In the latter case,
the value of the sum is t = b̄ + 2`e−1 − µ. We can also use our protocols to
prove the knowledge of a secret key and a set of plaintexts matching a set of
ciphertexts. For m ciphertexts, we obtain m linear relations with a binary vector
of size n′ = n+m · (`p + `e) (or n′ = n+m · `e in the public plaintext setting).

Remark 2. Proving the knowledge of a single key-plaintext pair matching a given
ciphertext might not be relevant on its own. Indeed, for the typical parameters
given above, the obtained SSP instance might not be hard (i.e. finding a solution
is not hard while finding the original key-plaintext pair is still hard). However,
such proof is still useful whenever proving additional properties involving the
underlying secret key and/or plaintext. In such contexts, finding a solution to
the SSP instance which does not match the original key-plaintext pair is useless.

According to [Joy21], typical parameters for a TLWE encryption are q = 232

or q = 264 and n = 630. Depending on the exact message space and error
space, we have n′ ∈ (n, n + log2 q]. Table 3 gives the obtained communication
cost for proving the knowledge of the key (and plaintexts) corresponding to
1, 64 and 1024 TLWE ciphertexts using our protocols (assuming q = 264 and
`e + `p = 64). For the sake of comparison, we also give the communication ob-
tained with Shamir’s protocol [Sha86]. We note that the latter and the LNSW
protocol [LNSW13] are the only previous protocols which can work with such val-
ues of q and the LNSW protocol is always heavier than Shamir’s in this context.
We observe that our protocols always gain more than a factor 10 (for Protocol
1) and 20 (for Protocol 2) for the obtained communication cost compared to
Shamir’s protocol.

24

Protocol
Parameters

Proof size Rej. rate Soundness err.
τ η N A M

1 ciphertext

Shamir [Sha86] 219 - - - - 845 KB - 128 bits

Protocol 1 (batching) 19 2 256 215 - 46.1 KB 0.007 128 bits

Protocol 2 (C&C) 24 3 256 215 952 34.0 KB 0.002 128 bits

64 ciphertexts

Shamir [Sha86] 219 - - - - 8.48 MB - 128 bits

Protocol 1 (batching) 19 2 256 218 - 356 KB 0.005 129 bits

Protocol 2 (C&C) 24 3 256 218 952 236 KB 0.001 128 bits

1024 ciphertexts

Shamir [Sha86] 219 - - - - 77.9 MB - 128 bits

Protocol 1 (batching) 19 2 256 222 - 5.90 MB 0.003 129 bits

Protocol 2 (C&C) 24 3 256 221 952 3.65 MB 0.006 128 bits

Table 3: Comparison of ZK protocols for TFHE decryption.

Besides TFHE, our proof techniques are also well suited to prove the correct-
ness of a ciphertext produced by a public-key FHE encryption using the Roth-
blum transform [Rot11]. The latter can transform any secret-key FHE scheme
into a public-key FHE scheme. The public key is built as a set of ciphertexts
c1, . . . , cn each encrypting 0. Then to encrypt a plaintext µ, one draws a ran-
dom secret vector (x1, . . . , xn) ∈ {0, 1}n and computes the encryption of µ as
µ +

∑n
i=1 ci. (Here we implicitly assume that the ciphertexts are malleable as

Enc(0) + µ = Enc(µ) but the Rothblum transform can also work more generally
without this property.) In other words, this generic public-key FHE encryption
process consists in building an SSP instance and our proof techniques directly
apply to this context.

We stress that the performances reported in Table 3 are in the context of
a relatively small q (64 bits). Although the results are already promising com-
pared to the previous schemes, we expect this comparison to be much more
in favor of our protocols in contexts where q is larger since the size of our
proofs is independent of q. In particular, it may be interesting to apply our tech-
niques to the SPDZ framework [DPSZ12] which is the state-of-the-art protocol
for dishonest-majority MPC (with computational security). In the offline phase
of SPDZ, parties have to jointly produce a zero-knowledge argument of plain-
text knowledge for the Brakerski, Gentry, and Vaikuntanathan [BGV14] or the
Brakerski/Fan-Vercauteren [Bra12,FV12] homomorphic encryption schemes. Re-
cent works [KPR18,CKR+20] were devoted to providing communication-efficient
such arguments (with slack) and since the modulus bit-lengths are within the
range [250, 700], our techniques look promising to provide short exact arguments
in these contexts.

25

6.3 Digital Signatures from Boneh-Halevi-Howgrave-Graham PRF

As another application, we present a short and efficient candidate post-quantum
signature scheme based on an elegant pseudo-random function (PRF) proposed
by Boneh, Halevi, and Howgrave-Graham in 2001 [BHH01].

Let p be a public m-bit prime number that defines the PRF message space as
Zp. A secret key for the PRF is an element x ∈ Zp picked uniformly at random.
We denote MSBδ(t) the δm most significant bits of an m-bit element t ∈ Zp.7
The value of the PRF on the message m ∈ Zp for the secret-key x ∈ Zp is
Fx(m) = MSBδ((x+m)−1 mod p).

Our signature scheme follows the blueprint of most signatures based on the
MPCitH paradigm since the proposal of Picnic [CDG+17]: the public key is
made of the outputs of Boneh et al.’s PRF on t public messages in {1, . . . , t},
i.e. the δm-bit elements y1, . . . , yt such that

yi := MSBδ((x+ i)−1 mod p) for i ∈ {1, . . . , t}

and the signature consists of a non-interactive proof of knowledge of x, z1, . . . , zt
(parametrized by the signed message using the Fiat-Shamir heuristic) such that

(x+ 1)(2(1−δ)my1 + z1) ≡ · · · ≡ (x+ t)(2(1−δ)myt + zt) ≡ 1 mod p (5)

and z1, . . . , zt ∈ {0, . . . , 2(1−δ)m − 1} (6)

where z1, . . . , zt are the (1 − δ)m least significant bits of (x + 1)−1 mod p, . . . ,
(x+t)−1 mod p. Note that the condition (6) on the size of the zi’s is fundamental
since otherwise, it is easy for an attacker to find a witness.

In our applications, the values of t and δ are chosen to prevent all known
classical attacks and target a 128-bit security level.

Let’s fix t, the number of outputs of the PRF. Then, to ensure that the
equations (5) and (6) have a unique witness, we add the constraint δ ≥ 1/t so
that the t PRF outputs define (heuristically) the secret x uniquely. To avoid
brute-force attacks from a single output of the PRF, at least 128 bits should
remain hidden for each output, thus m := log p ≥ 128

1−δ . Otherwise, an attacker
could reconstruct a possible PRF key matching with the first output and then
test it by evaluating the other outputs with this candidate.

It is possible to apply generically the MPCitH paradigm to prove (5) and
(6), but proving (6) seems inefficient (e.g. by using a binary decomposition and
proving consistency). Instead, we can use our secret sharing over the integers for
proving the knowledge of small zi’s by sharing them as a sum of “small” integers
which directly proves that the zi’s are indeed small.

7 We assume hereafter that δm ∈ Z. Otherwise, one should take the nearest integer
bδme instead.

26

Proving Equation (5). Instead of proving the t products of (5) separately, the
prover can batch them into a linear combination where coefficients γ1, ..., γt are
provided by the verifier, i.e. the prover proves the equation

t∑
i=1

γi ·
(

(x+ i)(2(1−δ)myi + zi)− 1
)

= 0 mod p,

or equivalently,

x ·

(
t∑
i=1

γizi

)
= −

t∑
i=1

γi

(
x · 2(1−δ)myi + i · 2(1−δ)myi + i · zi − 1

)
mod p. (7)

If one of the products is not equal to 1 in (5), then (7) is satisfied only with
a probability of 1

p . And to prove (7), one can use the protocol of [BN20] with

a single multiplication on Zp (for the left-hand side of (7), the right-hand side
being a linear combination of the witness). The resulting MPC protocol produces
false positives with probability 1/p+ (1− 1/p) · 1/p := 2/p− 1/p2, and thus the
obtained zero-knowledge argument has a soundness error of

ε =
1

N
+

(
1− 1

N

)(
2

p
− 1

p2

)
.

Proving Equation (6). It remains to prove that zi is in {0, . . . , B − 1} with
B = 2(1−δ)m in (6) for i ∈ {1, . . . , t}. To share zi, we use our secret sharing over
the integers of Section 3.2. Since the zi are not binary but in a larger range,
we need to adapt the rejection rules. Following exactly the same reasoning as in
Section 3.2, we get that the prover must abort if there exists an index j ∈ [t] for
which zj − JzjKi∗ ≥ 1 or zj − JzjKi∗ ≤ −A+B − 1. The resulting rejection rate
is given by

prej = 1−
(

1− B − 1

A

)t·τ
≈ t · τ · B − 1

A
.

Even without proving anything on the range of zj , the verifier knows that

∀j ∈ [t],−A+B ≤ zj ≤ A− 1

thanks to (2) (generalized). In practice, we settle this range, implying that there
is a slack between the underlying hard problem and the proven statement. A
malicious prover can use bigger values for zi, and this is equivalent to ignoring
some bits of yi. A malicious prover can ignore up to log2

A
B ≈ log2

t·τ
prej

bits for

each PRF output, and thus it reduces the security of t · log2
t·τ
prej

bits. A way to fix

this security loss without increasing the size of p (and of the key) is to reveal a
few more PRF outputs to guarantee that the key is still heuristically unique. In
theory, this decreases the security but for state-of-the-art algorithms, this stays
beyond the capacity of the best-known algorithms for small t. In fact, we need
to reveal t̃ ≥ t outputs of the PRF such that

t̃ · δ ·m− t̃ · log

(
t̃ · τ
prej

)
> m.

27

In other words, since δ ≥ 1
t , we adapt this constraint as

δ ≥ 1

t̃
+

1

m
log2

(
t̃ · τ
prej

)
.

This leads to the scheme described as Protocol 3 with the communication
cost (in bits):

4λ+ τ · (log2 p︸ ︷︷ ︸
∆x

+ t̃ · log2A︸ ︷︷ ︸
∆ai

+ log2 p︸ ︷︷ ︸
∆c

+ log2 p︸ ︷︷ ︸
∆α

+λ · log2N + 2λ),

with soundness error (if interactive)

ε =
1

N
+

(
1− 1

N

)(
2

p
− 1

p2

)
,

and with forgery security (if non-interactive)

costforge = min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
p′i(1− p′)τ−i

+Nτ2

}
,

with p′ := 2/p+ 1/p2.

We propose in Table 4 some parameters which target 128-bit security (based
on the hardness of the so-called modular inverse hidden number problem) ac-
cording to the current cryptanalysis state-of-the-art for Boneh et al.’s PRF.
We can remark that the achieved signature sizes are competitive with Rainier
scheme [DKR+21] (which can produce signatures that are around 5 KB in
size too) and outperform all the other signatures based on MPC-in-the-Head
paradigm (Picnic4 [KZ22], PorcRoast [Bd20], SDitH [FJR22], . . .).

Parameters
Size prej

p ≈ 2m t̃ δ B A N τ

≈ 2229 3 88/229 2141 2141+12 256 16 4 916 B 0.012

≈ 2186 4 58/186 2128 2128+12 256 16 4 860 B 0.016

≈ 2175 5 47/175 2128 2128+12 256 16 5 074 B 0.019

Table 4: Parameter sets and achieved performances of the signature based on
Boneh et al.’s PRF, for a 128-bit security.

Regarding the cryptanalysis, the security of Boneh et al.’s PRF has been
extensively analyzed since 20 years [BHH01,LSSW12,BVZ12,XSH+19] and relies
strongly on δ and the number of known PRF outputs. The first natural attack

28

is the brute-force search on one output of the PRF as explained previously. We
choose our parameter sets such that

(1− δ)m > 128 (8)

to prevent this attack.
[BHH01] describes a first attack which is with [BVZ12] the best known lattice-

based attack with a small number of PRF outputs and require larger δ’s than the
ones we use. In order to mount them, an adversary has to perform an exhaustive
search on the missing bits on several outputs. Let us focus on the attack of
[BHH01]. The attacker first chooses n > 1 arbitrary ouputs among the t̃ ones.
To run the attack, they needs to have at least 2n+1

3n+1 · m bits for each output,

thus they can exhaustively search the n ·
(

2n+1
3n+1 − δ

)
·m missing bits. For each

candidate, the attacker applies the attacks of [BHH01] which consists in reducing
a lattice of dimension O(n). To prevent this attack against our parameter sets,
we select m, t̃ and δ such that

∀1 < n ≤ t̃, n ·
(

2n+ 1

3n+ 1
− δ
)
·m ≥ 128. (9)

Similarly, we can build an attack based on [BVZ12] with an exhaustive search
to get the missing bits. To prevent this attack, we select m, t̃ and δ such that

∀1 < n ≤ t̃, n ·
(

2n−1

2n − 1
− δ
)
·m ≥ 128. (10)

Following this discussion, we chose our parameters as follows: by taking N = 256
and τ = 16, we first choose t̃, then we take m minimal such that there exists
δ which satisfies the constraints (8), (9) and (10) together with the constraint
ensuring the uniqueness of the secret (as described previously)

t̃ · δ ·m− t̃ · log

(
t̃ · τ
prej

)
> m.

For all parameters provided in Table 4 an exhaustive search on (at least)
128 bits has to be performed by the adversary in order to run the attacks from
[BHH01,BVZ12].

We should care about another kind of attack based on Coppersmith’s method.
Indeed, [XSH+19] presented a heuristic attack that breaks Boneh et al.’s PRF
(for a sufficiently large modulus p) if the number of outputs of the PRF is large
enough (depending on δ). However, this polynomial-time attack is not practical
and hides galactic constant factors. For instance, for δ = 2/3, this attack requires
45 outputs of the PRF and uses a lattice of dimension 209899 in Coppersmith’s
method. We have checked that for 3 outputs, the attack requires δ > 5/6, for 4
outputs δ > 7/10, and for 5 outputs δ > 5/8. We can observe that our sets of
parameters are secure against these values. More generally, for a small number
of outputs, the other Coppersmith’s style attacks are ineffective if 1 − δ ≥ 1/2.

29

Indeed, [LSSW12] need δ to be at least 2/3 and [BHH01] proposed a second
attack (not described) which needs a large number of outputs to get a δ close to
1/2.

To the best of our knowledge, the quantum security of Boneh et al.’s PRF has
not been analyzed yet. Our signature protocol is thus a post-quantum candidate
and requires further analysis of its security by quantum algorithm specialists.

Acknowledgements. The authors are supported in part by the French ANR
SANGRIA project (ANR-21-CE39-0006). The authors would like to thank Charles
Bouillaguet for suggesting investigation of zero-knowledge proofs for the subset
sum problem.

References

AD97. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In 29th ACM STOC, p. 284–293. ACM
Press, 1997.

AHIV17. S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In B. M. Thu-
raisingham, D. Evans, T. Malkin, and D. Xu, eds, ACM CCS 2017, p.
2087–2104. ACM Press, 2017.

BBB+18. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018
IEEE Symposium on Security and Privacy, p. 315–334. IEEE Computer
Society Press, 2018.

BBHR18. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transpar-
ent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046, 2018.

BBSS20. X. Bonnetain, R. Bricout, A. Schrottenloher, and Y. Shen. Improved clas-
sical and quantum algorithms for subset-sum. In S. Moriai and H. Wang,
eds, ASIACRYPT 2020, Part II, vol. 12492 of LNCS, p. 633–666. Springer,
Heidelberg, 2020.

BCR+19. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Y. Ishai
and V. Rijmen, eds, EUROCRYPT 2019, Part I, vol. 11476 of LNCS, p.
103–128. Springer, Heidelberg, 2019.

BD10. R. Bendlin and I. Damg̊ard. Threshold decryption and zero-knowledge
proofs for lattice-based cryptosystems. In D. Micciancio, ed., TCC 2010,
vol. 5978 of LNCS, p. 201–218. Springer, Heidelberg, 2010.

Bd20. W. Beullens and C. de Saint Guilhem. LegRoast: Efficient post-quantum
signatures from the Legendre PRF. In J. Ding and J.-P. Tillich, eds, Post-
Quantum Cryptography - 11th International Conference, PQCrypto 2020,
p. 130–150. Springer, Heidelberg, 2020.

BDLN16. C. Baum, I. Damg̊ard, K. G. Larsen, and M. Nielsen. How to prove knowl-
edge of small secrets. In M. Robshaw and J. Katz, eds, CRYPTO 2016,
Part III, vol. 9816 of LNCS, p. 478–498. Springer, Heidelberg, 2016.

30

Prover P Verifier V
x ∈ {0, 1}n
(z1, y1), . . . , (zt, yt) y1, . . . , yt

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN)
with TreePRG(mseed)

For each party i ∈ {1, . . . , N}:
JxKi, JaKi, JcKi ← PRG(seedi) . JxK, JaKi, JcKi ∈ Zp
JzKi ← PRG(seedi) . JzKi ∈ {0, . . . , A− 1}t
comi = Com(seedi; ρi)

∆x = x−
∑
iJxKi

∆c = a · x−
∑
iJcKi

∆z = z −
∑
iJzKi

h = Hash1(∆x,∆c,∆z, com1, . . . , comN)
h−−−−−−−−−−−−−−−−−−→

γ1, . . . , γt, ε
$←− Zp

γ,ε←−−−−−−−−−−−−−−−−−−
The parties locally set

- JαK = ε · 〈γ, JzK〉+ JaK mod p
- JrK = “right part of Equation 7′′

The parties open JαK to get α.
The parties locally set

JvK = ε · JrK− α · JxK + JcK mod p

h′ = Hash2(JαK, JvK)
h′−−−−−−−−−−−−−−−−−−→

i∗
$←− {1, . . . , N}

i∗←−−−−−−−−−−−−−−−−−−
µ = z − JzKi∗
If there exists j ∈ [t] such that:

- either µj ≥ 1
- or µj ≤ −A+B − 1,

then abort.

(seedi, ρi)i 6=i∗ , comi∗ ,
µ, ∆c, JαKi∗

−−−−−−−−−−−−−−−−−−→
For all i 6= i∗,

JxKi, JaKi, JcKi ← PRG(seedi)
JzKi ← PRG(seedi)

∆z = µ−
∑
i 6=i∗JzKi

∆α = ε · 〈γ,∆z〉
For all i 6= i∗,

Rerun the party i as the prover
and compute the commitment comi.

∆r = deduces from the right part of Eq 7
∆v = ε ·∆r − α ·∆x−∆c
JvKi∗ = −∆v −

∑
i 6=i∗JvKi

Check h = Hash1(∆x,∆c,∆z, com1, . . . , comN)
Check h′ = Hash2(JαK, JvK)
Return 1

Protocol 3: Relaxed zero-knowledge argument for Boneh et al’s PRF.

Beu20. W. Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy signature
schemes. In A. Canteaut and Y. Ishai, eds, EUROCRYPT 2020, Part III,
vol. 12107 of LNCS, p. 183–211. Springer, Heidelberg, 2020.

BGKW90. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Efficient identi-
fication schemes using two prover interactive proofs. In G. Brassard, ed.,

31

CRYPTO’89, vol. 435 of LNCS, p. 498–506. Springer, Heidelberg, 1990.

BGV14. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. ACM Trans. Comput. Theory,
6(3):13:1–13:36, 2014.

BHH01. D. Boneh, S. Halevi, and N. Howgrave-Graham. The modular inversion
hidden number problem. In C. Boyd, ed., ASIACRYPT 2001, vol. 2248 of
LNCS, p. 36–51. Springer, Heidelberg, 2001.

Blo09. J. Blocki. Direct zero-knowledge proofs. Senior Research Thesis, B.S. in
Computer Science, Carnegie Mellon University, 2009.

BLS19. J. Bootle, V. Lyubashevsky, and G. Seiler. Algebraic techniques for
short(er) exact lattice-based zero-knowledge proofs. In A. Boldyreva and
D. Micciancio, eds, CRYPTO 2019, Part I, vol. 11692 of LNCS, p. 176–202.
Springer, Heidelberg, 2019.

BN20. C. Baum and A. Nof. Concretely-efficient zero-knowledge arguments for
arithmetic circuits and their application to lattice-based cryptography. In
A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, eds, PKC 2020, Part I,
vol. 12110 of LNCS, p. 495–526. Springer, Heidelberg, 2020.

Bra12. Z. Brakerski. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In R. Safavi-Naini and R. Canetti, eds,
CRYPTO 2012, vol. 7417 of LNCS, p. 868–886. Springer, Heidelberg, 2012.

BVZ12. A. Bauer, D. Vergnaud, and J.-C. Zapalowicz. Inferring sequences pro-
duced by nonlinear pseudorandom number generators using Coppersmith’s
methods. In M. Fischlin, J. Buchmann, and M. Manulis, eds, PKC 2012,
vol. 7293 of LNCS, p. 609–626. Springer, Heidelberg, 2012.

CDG+17. M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger,
D. Slamanig, and G. Zaverucha. Post-quantum zero-knowledge and signa-
tures from symmetric-key primitives. In B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, eds, ACM CCS 2017, p. 1825–1842. ACM Press,
2017.

CGGI20. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast fully
homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–
91, 2020.

CGH00. D. Catalano, R. Gennaro, and S. Halevi. Computing inverses over a shared
secret modulus. In B. Preneel, ed., EUROCRYPT 2000, vol. 1807 of LNCS,
p. 190–206. Springer, Heidelberg, 2000.

CJL+92. M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C. Schnorr, and
J. Stern. Improved low-density subset sum algorithms. Comput. Complex.,
2:111–128, 1992.

CKR+20. H. Chen, M. Kim, I. P. Razenshteyn, D. Rotaru, Y. Song, and S. Wagh.
Maliciously secure matrix multiplication with applications to private deep
learning. In S. Moriai and H. Wang, eds, ASIACRYPT 2020, Part III, vol.
12493 of LNCS, p. 31–59. Springer, Heidelberg, 2020.

DKR+21. C. Dobraunig, D. Kales, C. Rechberger, M. Schofnegger, and G. Zaverucha.
Shorter signatures based on tailor-made minimalist symmetric-key crypto.
Cryptology ePrint Archive, Report 2021/692, 2021.

DPSZ12. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In R. Safavi-Naini and
R. Canetti, eds, CRYPTO 2012, vol. 7417 of LNCS, p. 643–662. Springer,
Heidelberg, 2012.

32

ENS20. M. F. Esgin, N. K. Nguyen, and G. Seiler. Practical exact proofs from
lattices: New techniques to exploit fully-splitting rings. In S. Moriai and
H. Wang, eds, ASIACRYPT 2020, Part II, vol. 12492 of LNCS, p. 259–288.
Springer, Heidelberg, 2020.

FJR21. T. Feneuil, A. Joux, and M. Rivain. Shared permutation for syndrome
decoding: New zero-knowledge protocol and code-based signature. Cryp-
tology ePrint Archive, Report 2021/1576, 2021.

FJR22. T. Feneuil, A. Joux, and M. Rivain. Syndrome decoding in the head:
Shorter signatures from zero-knowledge proofs. Cryptology ePrint Archive,
Report 2022/188, 2022.

FS87. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identi-
fication and signature problems. In A. M. Odlyzko, ed., CRYPTO’86, vol.
263 of LNCS, p. 186–194. Springer, Heidelberg, 1987.

FV12. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryp-
tion. Cryptology ePrint Archive, Report 2012/144, 2012.

GMO16. I. Giacomelli, J. Madsen, and C. Orlandi. Zkboo: Faster zero-knowledge
for boolean circuits. In T. Holz and S. Savage, eds, 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016,
p. 1069–1083. USENIX Association, 2016.

GMR89. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

GOP+21. C. Ganesh, C. Orlandi, M. Pancholi, A. Takahashi, and D. Tschudi. Fiat–
shamir bulletproofs are non-malleable (in the algebraic group model). Cryp-
tology ePrint Archive, Report 2021/1393, 2021.

Gro16. J. Groth. On the size of pairing-based non-interactive arguments. In M. Fis-
chlin and J.-S. Coron, eds, EUROCRYPT 2016, Part II, vol. 9666 of LNCS,
p. 305–326. Springer, Heidelberg, 2016.

HJ10. N. Howgrave-Graham and A. Joux. New generic algorithms for hard knap-
sacks. In H. Gilbert, ed., EUROCRYPT 2010, vol. 6110 of LNCS, p. 235–
256. Springer, Heidelberg, 2010.

HS74. E. Horowitz and S. Sahni. Computing partitions with applications to the
knapsack problem. J. ACM, 21(2):277–292, 1974.

IKOS09. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput., 39(3):1121–1152,
2009.

IN96. R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as
secure as subset sum. Journal of Cryptology, 9(4):199–216, 1996.

Joy21. M. Joye. Guide to fully homomorphic encryption over the [discretized]
torus. Cryptology ePrint Archive, Report 2021/1402, 2021.

Kar72. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, eds, Proceedings of a symposium on the Complexity
of Computer Computations, held March 20-22, 1972, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, USA, The IBM
Research Symposia Series, p. 85–103. Plenum Press, New York, 1972.

KKW18. J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In D. Lie, M. Mannan,
M. Backes, and X. Wang, eds, ACM CCS 2018, p. 525–537. ACM Press,
2018.

KPR18. M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ great again.
In J. B. Nielsen and V. Rijmen, eds, EUROCRYPT 2018, Part III, vol.
10822 of LNCS, p. 158–189. Springer, Heidelberg, 2018.

33

KZ20. D. Kales and G. Zaverucha. An attack on some signature schemes con-
structed from five-pass identification schemes. In S. Krenn, H. Shulman,
and S. Vaudenay, eds, CANS 20, vol. 12579 of LNCS, p. 3–22. Springer,
Heidelberg, 2020.

KZ22. D. Kales and G. Zaverucha. Efficient lifting for shorter zero-knowledge
proofs and post-quantum signatures. Cryptology ePrint Archive, Paper
2022/588, 2022.

LN17. Y. Lindell and A. Nof. A framework for constructing fast MPC over arith-
metic circuits with malicious adversaries and an honest-majority. In B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu, eds, ACM CCS 2017, p.
259–276. ACM Press, 2017.

LNS21. V. Lyubashevsky, N. K. Nguyen, and G. Seiler. Shorter lattice-based zero-
knowledge proofs via one-time commitments. In J. Garay, ed., PKC 2021,
Part I, vol. 12710 of LNCS, p. 215–241. Springer, Heidelberg, 2021.

LNSW13. S. Ling, K. Nguyen, D. Stehlé, and H. Wang. Improved zero-knowledge
proofs of knowledge for the ISIS problem, and applications. In K. Kurosawa
and G. Hanaoka, eds, PKC 2013, vol. 7778 of LNCS, p. 107–124. Springer,
Heidelberg, 2013.

LPS10. V. Lyubashevsky, A. Palacio, and G. Segev. Public-key cryptographic prim-
itives provably as secure as subset sum. In D. Micciancio, ed., TCC 2010,
vol. 5978 of LNCS, p. 382–400. Springer, Heidelberg, 2010.

LSSW12. S. Ling, I. E. Shparlinski, R. Steinfeld, and H. Wang. On the modular
inversion hidden number problem. J. Symb. Comput., 47(4):358–367, 2012.

Lyu08. V. Lyubashevsky. Lattice-based identification schemes secure under active
attacks. In R. Cramer, ed., PKC 2008, vol. 4939 of LNCS, p. 162–179.
Springer, Heidelberg, 2008.

Lyu09. V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In M. Matsui, ed., ASIACRYPT 2009, vol.
5912 of LNCS, p. 598–616. Springer, Heidelberg, 2009.

MH78. R. C. Merkle and M. E. Hellman. Hiding information and signatures in
trapdoor knapsacks. IEEE Trans. Inf. Theory, 24(5):525–530, 1978.

Odl90. A. M. Odlyzko. The rise and fall of knapsack cryptosystems. Cryptology
and computational number theory, Lect. Notes AMS Short Course, Boul-
der/CO (USA) 1989, Proc. Symp. Appl. Math. 42, 75-88 (1990)., 1990.

PS00. D. Pointcheval and J. Stern. Security arguments for digital signatures and
blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

Reg05. O. Regev. On lattices, learning with errors, random linear codes, and
cryptography. In H. N. Gabow and R. Fagin, eds, 37th ACM STOC, p.
84–93. ACM Press, 2005.

Rot11. R. Rothblum. Homomorphic encryption: From private-key to public-key.
In Y. Ishai, ed., TCC 2011, vol. 6597 of LNCS, p. 219–234. Springer, Hei-
delberg, 2011.

Sha86. A. Shamir. A zero-knowledge proof for knapsacks. presented at a workshop
on Probabilistic Algorithms, Marseille, 1986.

Sim91. G. Simmons. Identification of data, devices, documents and individuals. In
Proceedings. 25th Annual 1991 IEEE International Carnahan Conference
on Security Technology, p. 197–218, 1991.

SS81. R. Schroeppel and A. Shamir. A T=O(2n/2), S=O(2n/4) algorithm for
certain NP-complete problems. SIAM J. Comput., 10(3):456–464, 1981.

34

Ste94. J. Stern. A new identification scheme based on syndrome decoding. In
D. R. Stinson, ed., CRYPTO’93, vol. 773 of LNCS, p. 13–21. Springer,
Heidelberg, 1994.

XSH+19. J. Xu, S. Sarkar, L. Hu, H. Wang, and Y. Pan. New results on modular
inversion hidden number problem and inversive congruential generator. In
A. Boldyreva and D. Micciancio, eds, CRYPTO 2019, Part I, vol. 11692 of
LNCS, p. 297–321. Springer, Heidelberg, 2019.

35

– Supplementary Material –

A Shamir’s Proof for Subset Sum Problem

Shamir’s Protocol to prove the knowledge of the solution of a Subset Sum Prob-
lem (Protocol 4) produces proofs of mean size (in bits) of

Size = 2λ+ 2λ+
1

3
·
(

2n log2(q) + 2 · log2

(
2n

n

)
+ 2λ

)
.

The soundness error of this protocol is 2/3, meaning that a malicious prover
(which does not the secret) can convince the verifier with probability 2/3. To
achieve a targeted security of λ bits, we shall repeat the protocol

τ :=
λ

log2

(
3
2

)
times. If one merges the hash digests h of all the repetitions, the proof size (in
bits) with τ repetitions is

Sizeτ = 2λ+ τ ·
[
2λ+

1

3
·
(

2n log2(q) + 2 · log2

(
2n

n

)
+ 2λ

)]
.

B General definitions

This section introduces the notation used throughout the paper and recalls stan-
dard definitions of pseudo-random generators, collision-resistant hash function
families and commitment schemes.

All logarithms are in base 2. We denote the security parameter by λ which
is given to all algorithms in the unary form 1λ. Algorithms are randomized
unless otherwise stated, and PPT stands for “probabilistic polynomial-time”,
in the security parameter. We denote random sampling from a finite set X

according to the uniform distribution with x
$←− X. We also use the symbol

$←−
for assignments from randomized algorithms, while we denote assignment from
deterministic algorithms and calculations with the symbol ←.

A function ν : N → R is said negligible (negl) if, ν(n) = n−ω(1) for all
n ∈ N from a certain rank. Two distributions {Dλ}λ and {D̃λ}λ are (t, ε)-
indistinguishable if, for any algorithm A running in time at most t, we have

|Pr[A(x) = 1 | x $←− Dλ]− Pr[A(x) = 1 | x $←− D̃λ]| ≤ ε.

Definition 1. (Pseudo-Random Generator (PRG)). Let G be a deterministic
polynomial-time algorithm and let ` : N → N be some polynomial with `(λ) > λ

36

Prover P Verifier V
x ∈ {0, 1}n
w ∈ Znq , t = 〈w, x〉 w, t

Build ŵ by padding w Build ŵ by padding w
with n zeros. with n zeros.

Build x̂ by padding x
with n zeros or ones
such that wt(x̂) = n.

seed1
$←− {0, 1}λ

seed2, σ ← PRG(seed1) . σ is a permutation of {1, . . . , 2n}
r ← PRG(seed2) . r ∈ Z2n

q

v = σ(x̂)
u = σ(ŵ) + r mod q
z = 〈v, r〉 mod q

Sample randomness
ρ1, ρ2 and ρ3.

c1 = Com(r; ρ1)
c2 = Com(u; ρ2)
c3 = Com(z, v; ρ3)

h = Hash(c1, c2, c3)
h−−−−−−−−−−−−−−−−−−→ b

$←− {0, 1, 2}
b←−−−−−−−−−−−−−−−−−−

If b is equal to 0,
seed1,c3,ρ1,ρ2−−−−−−−−−−−−−−−−−−→ seed2, σ ← PRG(seed1)

r ← PRG(seed2)
c1 = Com(r; ρ1)
c2 = Com(σ(ŵ) + r; ρ1)

Check h
?
= Hash(c1, c2, c3)

If b is equal to 1,
seed2,v,c2,ρ1,ρ3−−−−−−−−−−−−−−−−−−→ r ← PRG(seed2)

z = 〈v, r〉 mod q
c1 = Com(r; ρ1)
c3 = Com(z, v; ρ1)
Check wt(v) = n

Check h
?
= Hash(c1, c2, c3)

If b is equal to 2,
u,v,c1,ρ2,ρ3−−−−−−−−−−−−−−−−−−→ z = 〈v, u〉 − t mod q

c2 = Com(u; ρ2)
c3 = Com(z, v; ρ1)
Check wt(v) = n

Check h
?
= Hash(c1, c2, c3)

Protocol 4: Shamir’s Protocol to prove the knowledge of the solution of a Subset
Sum Problem. When σ is a permutation of {1, . . . ,m} and y is a vector of length
m, σ(y) is defined as (yσ−1(j))j∈[m].

for all λ ∈ N, satisfying G(x) ∈ {0, 1}`(λ), ∀x ∈ {0, 1}λ. Then G is a (t, ε)-secure

37

pseudo-random generator if the two following distributions

{G(x) | x $←− {0, 1}λ} and {r | r $←− {0, 1}`(λ)}

are (t, ε)-indistinguishable.

In our protocols, we will use PRG to construct Merkle tree of depth dlog2Ne
in a standard way to expand a seed mseed (the root of the tree) into N subseeds
(seedi) (for each party). By using Merkle tree to commit to all values at once,
this reduces proofs that are O(log2N) in size and verification time.

Definition 2. (Collision-Resistant Hash Functions). A function family set H =
{Hn : {0, 1}m(n) → {0, 1}n}n∈N with m(n) < n is said to be a collision-resistant
hash function family if for any PPT algorithm A there exists a negligible function
ν such that for all n ∈ N, it holds that

Pr[x1 6= x2, h(x1) = h(x2) | h $←− H, (x1, x2)
$←− A(h)] < ν(n).

Definition 3. (Commitment Scheme). A commitment scheme is a pair of al-
gorithms (Com,Verif) where:

– Com is a PPT taking as input a message m that computes a commitment C
of m and returns C and an opening or decommitment information ρ.

– Verif is a deterministic polynomial-time algorithm taking as input a message
m, a commitment C and the decommitment information ρ, and returns a bit.

such that for all message m we have: ∀(C, ρ)
$←− Com(m),Verif(m,C, ρ) = 1.

Note that opening or decommitment information ρ is usually the randomness
used by the Com algorithm and the Verif algorithm consists simply in running
Com on PP, m and ρ. In this paper, we consider only such commitments.

A commitment scheme is said (t, ε)-computationally (hiding if, for any two

messages m1,m2, the distributions {c | c $←− Com(m1)} and {c | c $←− Com(m2)}
are (t, ε) indistinguishable. It is said perfectly hiding if it is (t, 0)-computationally
hiding for all t : N→ N.

A commitment scheme is computationally binding if there exists a negligible
function ν such that, for every PPT algorithm A, the probability that the event{

m1 6= m2 ∧
Verif(m1, C, ρ1) = Verif(m2, C, ρ2) = 1

∣∣∣ (m1,m2, ρ1, ρ2, C)
$←− A(1λ)

}
occurs is upper-bounded by ν(λ). If we remove the assumption that A is PPT,
then the scheme is perfectly binding.

C The 3-round Variant of Protocol 2

Protocol 5 gives the description of the zero-knowledge argument (3-round vari-
ant) for the subset sum solution via MPC-in-the-head paradigm with rejection,
using the cut-and-choose strategy to prove binarity.

38

Prover P Verifier V
x ∈ {0, 1}n
w ∈ Znq , t = 〈a, x〉 w, t

mseed[0]
$←− {0, 1}λ

(mseed[e])j∈[M] ← PRG(mseed[0])
For each e ∈ {1, . . . ,M}:

r[e],← PRG(mseed[e]) . r[e] ∈ {0, 1}n

(seed
[e]
i , ρ

[e]
i)i∈[N] ← PRG(mseed[e])

For each i ∈ {1, . . . , N}:
Jr[e]Ki ← PRG(seed

[e]
i) . Jr[e]Ki ∈ {0, . . . , A− 1}n

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i)

∆r[e] = r[e] −
∑
iJr

[e]Ki
hj = Hash1(∆r[e], com

[e]
1 , . . . , com

[e]
n)

x̃[e] = x⊕ r[e] . ⊕ is the XOR operation (x̃ ∈ {0, 1}n)
The parties locally set

Jx[e]K = (1− x̃[e]) ◦ Jr[e]K
+x̃[e] ◦ (1− Jr[e]K)

and they set Jt[e]K = 〈w, Jx[e]K〉.
h′e = Hash3(x̃[e], Jt[e]K)

h′ = Merkle(h′1, . . . , h
′
M)

h = Hash2(h1, . . . , hM , h
′)

h−−−−−−−−−−−−−−−−−−→ J
$←− {J ⊂ [M] ; |J | = τ}

L←−−−−−−−−−−−−−−−−−− L = {`e}e∈J
$←− {1, . . . , N}τ

If there exists (e, j) ∈ J × [n] such that:

- either Jr[e]j K`e = 0 with rj = 1

- or Jr[e]j K`e = A− 1 with rj = 0,

then abort.

authMerkle := auth((h′1, . . . , h
′
M), J)

σ = authMerkle | (mseed[e])j∈[M]\J

σ = σ |

 (seed
[e]
i , ρ

[e]
i)i 6=`e

r[e] − Jr[e]K`e
x̃[e], com`e

e∈J

σ−−−−−−−−−−−−−−−−−−→

For each e 6∈ J :

Compute he using mseed[e]

For each e ∈ J :
For all i 6= `e

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i)

Rerun the party i

as the prover to get Jt[e]Ki
∆r[e] = (r[e] − Jr[e]K`e)−

∑
i 6=`j Jr

[e]K
he = Hash1(∆r[e], com

[e]
1 , . . . , com

[e]
n)

Jt[e]K = t−∆t[e] −
∑
i 6=`j Jt

[e]Ki
h′e = Hash3(x̃[e], Jt[e]K)

Using authMerkle, check that {h′e}e∈J
are consistent and deduce the
Merkle root h′.

Check h = Hash2(h1, . . . , hM , h
′)

Return 1

Protocol 5: Zero-knowledge argument (3-round variant) for Subset Sum Problem
via MPC-in-the-head paradigm with rejection, using cut-and-choose strategy to
prove binarity. q′ is the lowest prime number greater than A.

D Splitting Lemma

In our proofs, we shall make use of the following lemma from [PS00]:

39

Lemma 1 (Splitting Lemma). Let X and Y be two finite sets, and let A ⊆
X × Y such that

Pr
[
(x, y) ∈ A | (x, y)

$←− X × Y
]
≥ ε .

For any α ∈ [0, 1), let

B =
{

(x, y) ∈ X × Y
∣∣∣ Pr

[
(x, y′) ∈ A | y′ $←− Y

]
≥ (1− α) · ε

}
.

We have:

1. Pr
[
(x, y) ∈ B | (x, y)

$←− X × Y
]
≥ α · ε

2. Pr
[
(x, y) ∈ B | (x, y)

$←− A
]
≥ α .

E Security Proofs for Protocol 1

E.1 Abort Events

In what follows, the complementary of an event E is denoted ¬E . For all the
proofs in this section, we introduce the following events: for all j ∈ [n],

– A0
j := {xj = 0, JxjKi∗ = A− 1} which is the first case of abortion,

– A1
j := {xj = 1, JxjKi∗ = 0} which is the second case of abortion,

– Aj := A0
j ∪ A1

j .

Now let us denote abort the event when Protocol 1 aborts. By construction
of the protocol, we have

Pr[abort] := Pr[

n⋃
j=1

Aj].

Let X be a random variable modeling the secret vector x. For any x ∈ {0, 1}n,
we have

Pr[abort | X = x] = Pr[

n⋃
j=1

Aj | X = x]

= 1− Pr[

n⋂
j=1

(¬A0
j ∩ ¬A1

j) | X = x]

= 1− Pr[

n⋂
j=1

¬Axj

j | X = x] (11)

= 1− Pr[

n⋂
j=1

JxjKi∗ 6= (1− xj) · (A− 1)]

= 1−
n∏
j=1

Pr[JxjKi∗ 6= (1− xj) · (A− 1)] (12)

= 1−
(

1− 1

A

)n
.

40

The equality (11) comes from the fact that ¬A1−xj

j is true when Xj = xj , and
the equality (12) comes from the independency between the coordinates of the
share JxKi∗ . We get that the probability of the event abort is independent of X
and satisfies:

Pr[abort] = 1−
(

1− 1

A

)n
. (13)

E.2 Completeness

Proof. For any sampling of the random coins of P and V, if the computation
described in the protocol is honestly performed and if there is no abort, all the
checks of V pass. The completeness probability is hence of 1 − Pr[abort], which
from (13) implies the theorem statement. �

E.3 Zero-Knowledge

Proof. Before building the desired simulator (i.e. an algorithm that outputs
transcripts that are indistinguishable from real transcripts without knowing the
secret), let us first show the independence between the secret x and some events
and values that can be observed from the transcript.

– The abortion event abort must be independent of the secret x, i.e.

Pr[abort|x] = Pr[abort],

it ensures that the fact to abort does not leak any information. This inde-
pendence is demonstrated in Appendix E.1.

– When there is no abort, the transcript includes some values computed from
the secret. While one can directly remark that the values of some elements are
independent of the secret since they are masked by the uniform values of JcKi∗
and JaKi∗ , it is less clear for y := x− JxKi∗ . So let us explicit the probability
distribution of y given that the protocol did not abort and given the shares
{JxKi}i 6=i∗ . Let X and Y be random variables respectively modeling x and
y = x− JxKi∗ . For any y ∈ {−A+ 2, . . . , 0}n and x ∈ {0, 1}n, we have

Pr[Y = y |X = x, {JxKi}i 6=i∗ ,¬abort]

= Pr[JxKi∗ = y + x |
n⋂
j=1

(¬Axj

j)]

= Pr
[
JxKi∗ = y + x

∣∣ n⋂
j=1

(JxjKi∗ 6= (1− xj) · (A− 1))
]

=

n∏
j=1

Pr
[
JxjKi∗ = yj + xj

∣∣ JxjKi∗ 6= (1− xj) · (A− 1)
]

=

(
1

A− 1

)n

41

We deduce that the coordinates of x− JxKi∗ follow the uniform distribution
in {−A+ 2, . . . , 0} and that y = x− JxKi∗ (together with the occurrence of
¬abort and the shares {JxKi}i 6=i∗) does not leak any information about the
secret x.

Let us now describe the simulator S who has oracle access to some probabilistic-
polynomial time Ṽ, and works as follows (we keep the notation from Protocol 1):

1. Sample a challenge i∗
$←− [N].

2. Sample mseed
$←− {0, 1}λ.

3. Compute parties’ seeds (seed1, ρ1), . . . , (seedN , ρN) with TreePRG(mseed).
4. For each party i ∈ [N]\{i∗},

– JaKi, JxKi, JcKi ← PRG(seedi).
– comi = Com(seedi; ρi)

5. Sample

– y
$←− {−A+ 2, . . . , 0}n.

– ∆x = y −
∑
i 6=i∗JxKi

– ∆c
$←− Zq′ .

6. Sample a random commitment comi∗ .
7. Call Ṽ with the hash digest h of ∆x,∆c (and of the commitments of the

seed and associated randomness of each party) and gets a challenge ε.

8. Sample α
$←− Znq′ .

9. Simulate the computation of all the parties i 6= i∗ to get {JtKi, JαKi, JvKi}i 6=i∗
and (∆t,∆α,∆v).

10. Adapt the messages from and the outputs of the party i∗:
– JαKi∗ = α−∆α−

∑
i 6=i∗JαKi (modq′)

– JtKi∗ = t−∆t−
∑
i6=i∗JtKi (modq)

– JvKi∗ = 0−∆v −
∑
i 6=i∗JtKi (modq′)

11. Call Ṽ with the hash digest h′ of JtK, JαK, JvK and gets a challenge ĩ∗. If
ĩ∗ 6= i∗, then S restarts the simulation from scratch.

12. Abort with probability

1−
(

1− 1

A

)n
.

13. Outputs the transcript(
h, h′, (seedi, ρi)i 6=i∗ , comi∗ , y,∆c, JαKi∗

)
.

When no abortion occurs, the output transcript is identically distributed to
the genuine transcript except for the commitment of the party i∗. Distinguishing
them means breaking the commitment hiding property or the PRG security.

The above simulator S is a probabilistic polynomial-time algorithm since the
challenge set [N] (from which i∗ is sampled) has a size that is polynomial in the
security level.

�

42

E.4 Soundness

Proof. For the sake of simplicity, we assume that the commitment scheme is
perfectly binding. (If the commitment scheme was computationally binding we
would have to deal with additional cases where the extractor would produce a
commitment collision.)

For any set of successful transcripts corresponding to the same commitment,
with at least two challenges for unopened party (i∗),

– either the revealed shares of JxK are not consistent, and then we find a hash
collision (if the committed values are not the same, then the commitments
cannot be the same since the commitment scheme is perfectly binding),

– or the openings are unique and hence the underlying witness JxK is uniquely
defined.

This witness can be recovered from any two successful transcripts T1 and T2
corresponding to the same commitment and for which i∗T1

6= i∗T2
. Let us call a

witness JxK a good witness whenever

〈w, x〉 = t and x · (x− 1) = 0

where x :=
∑
iJxKi. Such a witness enables us to build a solution for the subset

sum instance.
In what follows, we consider that the extractor only gets transcripts with

consistent shares since otherwise, the extractor would find a hash collision.
We shall further denote by Rh the randomness of P̃ which is used to generate

the initial commitment Com = h, and we denote rh a possible realization of Rh.
Let us now describe the extractor procedure:

Extractor E :

1. Repeat +∞ times:

2. Run P̃ with honest V to get transcript T1
3. If T1 is not a successful transcript, go to the next iteration
4. Do N1 times:

5. Run P̃ with honest V and same rh as T1 to get transcript T2
6. If T2 is a successful transcript, i∗T1

6= i∗T2
and (T1, T2) reveals a good witness,

7. Return (T1, T2)

In what follows, we estimate the extraction complexity, i.e. how many time
in average the extractor calls P̃. Throughout the proof, we denote succP̃ the

event that P̃ succeeds in convincing V. By hypothesis, we have Pr[succP̃] = ε̃.
Let us fix an arbitrary value α ∈ (0, 1) such that (1− α)ε̃ > ε, it exists since

ε̃ > ε. Let rh be a possible realization of Rh. We will say that rh is good if it is
such that

Pr[succP̃ | Rh = rh] ≥ (1− α) · ε̃ . (14)

43

By the Splitting Lemma 1 (see Appendix D) we have

Pr[Rh good | succP̃] ≥ α . (15)

Let assume we sample a successful transcript T1 as in the Step 2 of the
extractor E and let rh be the underlying realization of Rh. Assume rh is good.
By definition, we have

Pr[succP̃ | Rh = rh] ≥ (1− α) · ε̃ > ε >
1

N

implying that there must exist a successful transcript T2 with i∗T2
6= i∗T1

. As
explained above, this implies that there exists a unique and well-defined witness
JxK corresponding to these transcripts (and to all the transcripts with same rh).

We will show that if this witness is a bad witness (i.e. is not a good witness)
then we have Pr[succP̃ | Rh = rh] ≤ ε meaning that rh is not good. By contra-
position, we get that if rh is good, then the witness JxK is a good witness. So let
us assume that the witness JxK in T1 is a bad witness. This means that

〈w, x〉 6= t or x · (x− 1) 6= 0

where x :=
∑
iJxKi. Let us denote FP the event that a geniune execution of the

batch product checking outputs a false positive, i.e. outputs a zero vector v. We
have

Pr[FP] ≤ 1

q′

according to Section 2.2.
Let us upper bound the probability that the inner loop finds a successful

transcript:

Pr[succP̃ | Rh = rh] = Pr[succP̃ ,FP | Rh = rh] + Pr[succP̃ ,¬FP | Rh = rh]

≤ 1

q′
+ (1− 1

q′
) · Pr[succP̃ | Rh = rh,¬FP]

Having a successful transcript means that the sharings JvK and JtK in the first
response of the prover must encode respectively a zero vector and t. But the event
¬FP when we have x · (x − 1) 6= 0 implies that a geniune execution outputs a
non-zero vector v, and if x · (x− 1) = 0, it implies that JtK does not correspond
to the vector t (since the witness is bad). So to have a successful transcript, the
prover must cheat for the simulation of at least one party. If the prover cheats
for several parties, there is no way it can produce a successful transcript, while
if the prover cheats for exactly one party (among the N parties), the probability
to be successful is at most 1/N . Thus, Pr[succP̃ | Rh = rh,¬FP] ≤ 1/N and we
have

Pr[succP̃ | Rh = rh] ≤ p+ (1− p) · 1

N
= ε,

meaning that rh is not good. By contraposition, we get that if rh is good, then
JxK is a good witness.

44

Now, let us lower bound the probability that the ith iteration of the inner
loop finds a successful transcript T2 such that i∗T1

6= i∗T2
in the presence of a good

Rh. We have

Pr[succT2

P̃ ∩ (i∗T1
6= i∗T2

) | Rh good]

= Pr[succT2

P̃ | Rh good]− Pr[succT2

P̃ ∩ (i∗T1
= i∗T2

) | Rh good]

≥ (1− α)ε̃− Pr[i∗T1
= i∗T2

| Rh good]

= (1− α)ε̃− Pr[i∗T1
= i∗T2

]

= (1− α)ε̃− 1/N

≥ (1− α)ε̃− ε

Let define p0 := (1 − α) · ε̃ − ε. By running P̃ with the same rh as for the
good transcript N1 times, we hence obtain a second non-colliding transcript T2
with probability at least 1/2 when

N1 ≈
ln(2)

ln
(

1
1−p0

) ≤ ln(2)

p0
. (16)

Let C denotes the number of calls to P̃ made by the extractor before finishing.
While entering a new iteration:

– the extractor makes one call to P̃ to obtain T1,

– if T1 is not successful, which occurs with probability (1− Pr[succP̃]),
◦ the extractor continues to the next iteration and makes an average of
E[C] calls to P̃,

– if T1 is successful, which occurs with probability Pr[succP̃],
◦ if rh is good which occurs with probability α, the extractor makes at

most N1 calls to P̃ in the inner loop of E and output a pair (T1, T2) with
probability 1/2,

◦ otherwise the extractor makesN1 calls to P̃ in the inner loop of E without
stopping, with probability at most (1− α

2).

The mean number of calls to P̃ hence satisfies the following inequality:

E[C] ≤ 1 + (1− Pr[succP̃]) · E[C]︸ ︷︷ ︸
T1 unsuccessful

+ Pr[succP̃] ·
(
N1 +

(
1− α

2

)
· E[C]︸ ︷︷ ︸

T1 successful

)

which gives

E[C] ≤ 1 + (1− ε̃) · E[C] + ε̃ ·
(
N1 +

(
1− α

2

)
· E[C]

)
≤ 1 + ε̃ ·N1 + E[C] ·

(
1− ε̃ · α

2

)
≤ 2

α · ε̃
· (1 + ε̃ ·N1)

≤ 2

α · ε̃
·
(

1 + ε̃ · ln(2)

(1− α) · ε̃− ε

)

45

To obtain an α-free formula, let us take α such that (1−α) · ε̃ = 1
2 (ε̃+ ε). We

have α = 1
2

(
1− ε

ε̃

)
and the average number of calls to P̃ is upper bounded by

4

ε̃− ε
·
(

1 + ε̃ · 2 · ln(2)

ε̃− ε

)
which concludes the proof.

�

F Security Proofs for Protocol 2

F.1 Abort Events

Let us denote abort the event when Protocol 2 aborts. By exactly the same
reasoning than in Appendix E.1 (but here the protocol aborts if any of the τ
iterations aborts), we have

Pr[abort | X = x] = 1−
(

1− 1

A

)n·τ
and

Pr[abort] = 1−
(

1− 1

A

)n·τ
. (17)

F.2 Completeness

Proof. For any sampling of the random coins of P and V, if the computation
described in the protocol is honestly performed and if there is no abort, all the
checks of V pass. The completeness probability is hence of 1 − Pr[abort], which
from (17) implies the theorem statement. �

F.3 Honest-Verifier Zero-Knowledge

Proof. Before building the desired simulator (i.e. an algorithm that outputs
transcripts that are indistinguishable from real transcripts without knowing the
secret), let us first show the independence between the secret x and some events
and values that can be observed from the transcript.

– The abortion event abort must be independent of the secret x, i.e.

Pr[abort|x] = Pr[abort],

it ensures that the fact to abort does not leak any information. This inde-
pendence is demonstrated in Appendix F.1.

46

– When there is no abort, the transcript includes some values computed from
the secret. By the same reasoning than in Appendix E.3, we get that the
coordinates of r[e]−Jr[e]Ki∗ follow the uniform distribution in {−A+2, . . . , 0}
and that y[e] = r[e]− Jr[e]Ki∗ (together with the occurrence of ¬abort and the
shares {Jr[e]Ki}i6=i∗) does not leak any information about the vector r[e]. Thus
since r[e] is uniformly sampled in {0, 1}n, the value of x̃[e] is independent of
the secret x.

Let us now describe the simulator S who has oracle access to some probabilistic-
polynomial time Ṽ, and works as follows (we keep the notation from Protocol 2):

1. Sample

◦ J $←− {J ⊂ [M]; |J | = τ}
◦ L = {`e}e∈J

$←− {1, . . . , N}τ
uniformly at random (as an honest verifier).

2. Sample mseed[0]
$←− {0, 1}λ

3. (mseed[e])e∈[M] ← TreePRG(mseed[0])
4. For e ∈ [M]\J ,

– Follow honestly the protocol since it does not need to know the secret
and deduce he.

5. For e ∈ J ,

– Compute (seed
[e]
1 , ρ

[e]
1), . . . , (seed

[e]
N , ρ

[e]
N) with TreePRG(mseed[e]).

– For each party i ∈ [N]\{`e},
• Jr[e]Ki ← PRG(seed

[e]
i).

• com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i)

– Sample

• x̃[e] $←− {0, 1}n.

• y[e] $←− {−A+ 2, . . . , 0}n.
• ∆r[e] = y[e] −

∑
i 6=`eJr

[e]Ki
– Sample a random commitment com

[e]
`e

.

– Simulate the computation of all the parties i 6= `e to get {Jt[e]Ki}i 6=`e and
∆t[e].

– Adapt the outputs of the party `e:
• Jt[e]K`e = t[e] −∆t[e] −

∑
i6=`eJt

[e]Ki (mod q)
– Compute

• he = Hash1(∆r[e], com
[e]
1 , . . . , com

[e]
n)

• h′e = Hash3(x̃[e], Jt[e]K)
6. Compute
◦ h = Hash2(h1, . . . , hM)
◦ h′ = Hash4((h′e)e∈J)

7. Abort with probability

1−
(

1− 1

A

)n·τ
.

47

8. Outputs the transcript(
h, h′, (mseed[e])e∈[M]\J , ((seed

[e]
i , ρ

[e]
i)i 6=`e , com

[e]
`e
, y[e], x̃[e])e∈J

)
.

When no abortion occurs, the output transcript is identically distributed to
the genuine transcript except for commitment of the party `e in each execution
e ∈ J . Distinguishing them means breaking the commitment hiding property or
the PRG security.

F.4 Soundness

Proof. Let us first how to extract the subset sum solution x from a few tran-
scripts satisfying specific conditions. We will then show how to get such tran-
scripts from rewindable black-box access to P̃.

Transcripts used for extraction. We assume that we can extract three transcripts

Ti = (Com(i),Ch
(i)
1 ,Rsp

(i)
1 ,Ch

(i)
2 ,Rsp

(i)
2) for i ∈ {1, 2, 3} , (18)

from P̃, with Ch
(i)
1 := J (i), Ch

(i)
2 := {`(i)j }j∈J(i) , which satisfy:

1. Com(1) = Com(2) = Com(3) = h,

2. there exists j0 ∈ (J (1) ∩ J (2)) \ J (3) s.t. `
(1)
j0
6= `

(2)
j0

3. T1 and T2 are success transcripts (i.e. which pass all the tests of V),

4. seed[j0] from Rsp
(3)
1 is consistent with the (σ

[j0]
i , s

[j0]
i) from T1 and T2.

Using these three transcripts, we next show that it is possible to extract a
solution of the subset sum instance defined by w and t. We can assume that
all the revealed shares are mutually consistent between the three transcripts
because else we find a hash collision. So, we know all the shares for the iteration
j0 from T1 and T2.

Extraction of x from T1, T2 and T3. For this part, we will only consider the
variables of the form (∗)[j0], so we will omit the superscript for the sake of
clarity. In the following, we will denote VTi

the set of checked equations at the
end of the transcript with Ti for i ∈ {1, 2, 3}.

Let us define x′ := ∆x +
∑N
i=1JxKi. We simply return x′ as a candidate

solution for x. Thanks to the multi-party computation, we know

– The sharing JtK encodes t: t = ∆t+
∑N
i=1JtKi.

– We have JtK =
∑n
j=1 wj · JxjK, i.e.{

∀i ∈ [N], JtKi =
∑n
j=1 wj · JxjKi,

∆t =
∑n
j=1 wj ·∆xj .

48

– We have JxK = (1− x̃) ◦ JrK + x̃ ◦ (1− JrK):{
∀i ∈ [N], JxKi = (1− x̃) ◦ JrKi + x̃ ◦ (−JrKi),
∆x = (1− x̃) ◦∆r + x̃ ◦ (1−∆r).

So we deduce that

n∑
j=1

wj · x′j =

n∑
j=1

wj · (∆xj +

N∑
i=1

JxjKi)

=

n∑
j=1

wj ·∆xj +

N∑
i=1

n∑
j=1

wj · JxjKi

= ∆t+

N∑
i=1

JtKi = t

and

x′ = ∆x+

N∑
i=1

JxKi

= ((1− x̃) ◦∆r + x̃ ◦ (1−∆r)) +

N∑
i=1

((1− x̃) ◦ JrKi + x̃ ◦ (−JrKi))

= (1− x̃) ◦ (∆r +

N∑
i=1

JrKi) + x̃ ◦ (1−∆r −
N∑
i=1

JrKi)

= (1− x̃) ◦ r + x̃ ◦ (1− r)

where r := ∆r +
∑N
i=1.

From VT3
, we get that r is a binary vector. Since x̃ is binary by definition,

thanks to the above relation, we deduce that the vector x′ is a binary vector.

Since x′ verifies t =
∑n
j=1 wj · x′j and is a binary vector, it is a solution of

the subset sum instance (w, t).

Extraction of T1, T2 and T3 from P̃. We can use exactly the same extractor E
as defined in the appendix E of [FJR21]. It defines an extractor which produces
the wanted transcripts by making in average at most

4

ε̃− ε
·
(

1 + ε̃ · 8 ·M
ε̃− ε

)

calls to P̃, which concludes the proof.

�

49

G Signature Schemes with Subset Sum Problem

The Fiat-Shamir heuristic [FS87] is a method to convert Σ-protocols (a specific
class of ZK proofs) into non-interactive ZK proofs and hence can be used to
build signature. Using this heuristic we can transform our two protocols into
signature schemes. For each of them, we explain how to apply the Fiat-Shamir
transform and how to evaluate the obtained security.

Signature from Protocol 1. We compute the challenges {ε[e]}e∈[τ] and {i∗[e]}e∈[τ]
for τ executions as:

{ε[e]}e∈[τ] := Hash′1(m,h)

and
{i∗[e]}e∈[τ] := Hash′2(m,h, h′)

where m is the input message, Hash′1 and Hash′2 are some hash functions, and h
(resp. h′) is the hash value corresponding to the merged inputs of Hash1 (resp.
Hash2) from the τ executions.

Since the protocol has 5 rounds, we must take into account the forgery attack
described in [KZ20] to estimate the security of the resulting signature. When we
adapt the attack for Protocol 1, its cost is given by

costforge = min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1
PMF(i, τ, 1

q′)
+

1∑η
i=0 PMF(i, τ2, 1− 1

N)

}
,

with PMF(i, τ, p) :=
(
τ
i

)
pi(1− p)τ−i. When selecting the signature parameters,

we must choose τ such that costforge ≥ 2λ.

Signature from Protocol 2. The challenges J and L are computed as

J := Hash′1(m,h)

and
L := Hash′2(m,h, h′, (mseed[j])j∈[M]\J)

where m is the input message and where Hash′1 and Hash′2 are some hash func-
tions.

Since the protocol has 5 rounds, the security of the resulting signature scheme
is given by the attack of [KZ20] which has, in the context of the Protocol 2, a
forgery cost of

costforge = min
M−τ≤k≤M

{(
M

M−τ
)(

k
M−τ

) +
1∑η

i=0 PMF(i, k −M + τ, 1− 1
N)

}
.

Another approach consists in turning the 5-round protocol into a 3-round
protocol (before applying the Fiat-Shamir). We refer to [KKW18,FJR21] for the
details of such an approach. We provide a formal description of the 3-round
variant of the protocol in Appendix C. The soundness error of this variant is

50

the same as for the original protocol (see Theorem 6). When we apply the Fiat-
Shamir to this variant, the security of the obtained signature scheme is equal to
the soundness error of the protocol (since the protocol has now only 3 rounds)
and its size (in bits) is

Sizeη = 4λ+ η · 4λ+ 3λ · τ · log2

M

τ
+ (τ − η) · [n · log2(A− 1) + n+ λ log2N + 2λ] .

Performances. We selected some parameter sets to instantiate the resulting
signature schemes while targeting a security of 128 bits and a rejection rate of
0.01. We obtained the performances of Table 5.

Signature
Parameters

Proof size Rej. rate Security
τ η N A M

Protocol 1 (batching) 29 2 256 214 - 28.1 KB 0.010 129 bits

Protocol 1 (batching) 42 3 32 214 - 38.7 KB 0.004 128 bits

Protocol 2 (C&C), 5 rounds 46 3 256 214 993 30.3 KB 0.006 128 bits

Protocol 2 (C&C), 5 rounds 71 3 32 214 452 42.5 KB 0.025 128 bits

Protocol 2 (C&C), 3 rounds 28 2 64 214 514 21.1 KB 0.009 128 bits

Protocol 2 (C&C), 3 rounds 53 3 8 214 253 33.2 KB 0.009 128 bits

Table 5: Performance of the obtained signatures

51

	Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection

