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Abstract

This work considers the problem of mitigating information leakage between communication and

sensing in systems jointly performing both operations. Specifically, a discrete memoryless state-dependent

broadcast channel model is studied in which (i) the presence of feedback enables a transmitter to convey

information, while simultaneously performing channel state estimation; (ii) one of the receivers is treated

as an eavesdropper whose state should be estimated but which should remain oblivious to part of the

transmitted information. The model abstracts the challenges behind security for joint communication

and sensing if one views the channel state as a sensitive attribute, e.g., location. For independent and

identically distributed states, perfect output feedback, and when part of the transmitted message should be

kept secret, a partial characterization of the secrecy-distortion region is developed. The characterization

is exact when the broadcast channel is either physically-degraded or reversely-physically-degraded. The

partial characterization is also extended to the situation in which the entire transmitted message should
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be kept secret. The benefits of a joint approach compared to separation-based secure communication

and state-sensing methods are illustrated with a binary joint communication and sensing model.

I. INTRODUCTION

The vision for next generation mobile communication networks includes a seamless integration

of the physical and digital world. Key to its success is the network’s ability to automatically

react to changing environments thanks to tight harmonization of communication and sensing [1].

For instance, a millimeter wave (mmWave) joint communication and radar system can be used

to detect a target or to estimate crucial parameters relevant to communication and adapt the

communication scheme accordingly [2]. Joint communication and sensing (JCAS), or integrated

sensing and communication, techniques are envisioned more broadly as key enablers for a wide

range of applications, including connected vehicles and drones.

Several information-theoretic studies of JCAS have been initiated, drawing on existing re-

sults for joint communication and state estimation [3]–[6]. Motivated by the integration of

communication and radar for mmWave vehicular applications, [7] considers a model in which

messages are encoded and sent through a state-dependent channel with generalized feedback

both to reliably communicate with a receiver and to estimate the channel state by using the

feedback and transmitted codewords. The optimal trade-off between the communication rate

and channel-state estimation distortion is then characterized for memoryless JCAS channels and

independent and identically distributed (i.i.d.) channel states that are causally available at the

receiver and estimated at the transmitter by using a strictly causal channel output. Follow up

works have extended the model to multiple access channels [8] and broadcast channels [9].

The nature of JCAS mandates the use of a single modality for the communication and sensing

functions so that sensing signals carry information, which then creates situations in which leakage

of sensitive information can occur. For example, a target illuminated for sensing its range has

the ability to gather potentially sensitive information about the transmitted message [10]. As the

sensing performance and secrecy performance are both measured with respect to the signal
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received at the sensed target, there exists a trade-off between the two [2]. To capture and

characterize this trade-off, we extend the JCAS model in [7] by introducing an eavesdropper

in the network. The objective of the transmitter is then to simultaneously communicate reliably

with the legitimate receiver, estimate the channel state, and hide a part of the message from the

eavesdropper. The channel state is modeled as a two-component state capturing the characteristics

of each individual receiver, the feedback is modeled as perfect output feedback for simplicity, and

the transmitted message is divided into two parts, only one of which should be kept (strongly)

secret (this is called partial secrecy in [11]).

We develop inner and outer bounds on the secrecy-distortion region of this partial-secrecy

scenario under a strong secrecy constraint when i.i.d. channel states are causally available at the

corresponding receivers. The bounds match when the JCAS channel is physically- or reversely-

physically-degraded, and the outer bound also applies to the case of noisy generalized feedback.

We also extend these characterizations to the case in which the entire transmitted message

should be kept secret. The proposed secure JCAS models can be viewed as extensions of the

wiretap channel with feedback models [12]–[19]. Our achievability proof leverages the output

statistics of random binning (OSRB) method [20]–[22] to obtain strong secrecy. A binary JCAS

channel example with multiplicative Bernoulli states illustrates how secure JCAS methods may

outperform separation-based secure communication and state-sensing methods.

II. PROBLEM DEFINITION

We consider the secure JCAS model shown in Fig. 1, which includes a transmitter equipped

with a state estimator, a legitimate receiver, and an eavesdropper (Eve). The transmitter attempts

to reliably transmit a uniformly distributed message M = (M1,M2) ∈M =M1×M2 through

a memoryless state-dependent JCAS channel with known statistics PY1Y2Z|S1S2X and i.i.d. state

sequence (Sn
1 , S

n
2 ) ∈ Sn

1 ×Sn
2 generated according to a known joint probability distribution PS1S2 .

The transmitter calculates the channel inputs Xn as Xi = Enci(M,Zi−1) ∈ X for all i = [1 : n],

where Enci(·) is an encoding function and Zi−1 ∈ Z i−1 is the delayed channel output feedback.
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Ŝn
j = Estj(X

n, Zn)

PY1Y2Z|S1S2X PS1S2

S1,i

S2,i

M̂ = Dec(Y n
1 , S

n
1 )

Eve

S1,i

S2,i

Xi

Y1,i

Y2,i

M̂ =
(
M̂1, M̂2

)

M = (M1,M2)

Xi = Enci(M,Zi−1)

Zi−1

Fig. 1. JCAS model with partial secrecy, where only M2 should be kept secret from Eve, for j = 1, 2 and i = [1 : n]. We

mainly consider JCAS with perfect output feedback, where Zi−1 = (Y1,i−1, Y2,i−1).

The legitimate receiver that observes Y1,i ∈ Y1 and S1,i for all channel uses i = [1 : n] should

reliably decode both M1 and M2 by forming the estimate M̂ = Dec(Y n
1 , S

n
1 ), where Dec(·) is a

decoding function. The eavesdropper that observes Y2,i ∈ Y2 and S2,i should be kept ignorant of

M2. Finally, the transmitter estimates the state sequence (Sn
1 , S

n
2 ) as Ŝn

j = Estj(X
n, Zn) ∈ Sj

∧n

for j = 1, 2, where Estj(·, ·) is an estimation function. Unless specified otherwise, all sets S1,

S2, Ŝ1, Ŝ2, X , Y1, Y2, and Z are finite.

For simplicity, we consider the perfect output feedback case in which for all i = [2 : n] we

have

Zi−1 = (Y1,i−1, Y2,i−1). (1)

Although this is explicitly used in our achievability proofs, some of our converse results hold

for generalized feedback. We next define the strong secrecy-distortion region for the problem of

interest.

Definition 1. A secrecy-distortion tuple (R1, R2, D1, D2) is achievable if, for any δ > 0, there

exist n≥1, one encoder, one decoder, and two estimators Estj(X
n, Y n

1 , Y
n
2 ) = Ŝn

j for j = 1, 2
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such that

1

n
log |Mj| ≥ Rj − δ for j=1, 2 (rates) (2)

Pr
[
M 6= M̂

]
≤ δ (reliability) (3)

I(M2;Y
n
2 |Sn

2 ) ≤ δ (strong secrecy) (4)

E
[
dj(S

n
j , Ŝ

n
j )
]
≤Dj+δ for j=1, 2 (distortions) (5)

where dj(sn, ŝn) = 1
n

∑n
i=1 dj(si, ŝi) for j=1, 2 are bounded per-letter distortion metrics.

The secrecy-distortion region RPS,POF is the closure of the set of all achievable tuples with

partial secrecy and perfect output feedback. ♦

The use of per-letter distortion metrics dj(·, ·) in conjunction with i.i.d. states simplifies

the problem to a rate distortion region characterization [7]–[9]; in fact, past observations are

independent of present and future ones, lending the transmitter no state prediction ability to

adapt its transmission on the fly. Analyzing JCAS models with memory leads to conceptually

different results; see, e.g., [23].

Remark 1. The strong secrecy condition (4) is equivalent to I(M2;Y
n
2 , S

n
2 ) ≤ δ since the

transmitted message is independent of the state sequence.

III. BOUNDS FOR JCAS WITH PARTIAL-SECRECY

We next provide inner and outer bounds on the secrecy-distortion region RPS,POF; see Sec-

tion VI for a proof sketch.

Define [a]+ = max{a, 0} for a ∈ R.

Proposition 1 (Inner Bound). The region RPS,POF includes the union over all joint distributions
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PUV X of the rate tuples (R1, R2, D1, D2) such that

R1 ≤ I(U ;Y1|S1) (6)

R2 ≤ min{R′2, (I(V ;Y1|S1)−R1)} (7)

Dj ≥ E[dj(Sj, Ŝj))] for j = 1, 2 (8)

where

PUV XY1Y2S1S2 = PU |V PV |XPXPS1S2PY1Y2|S1S2X , (9)

R′2 = [I(V ;Y1|S1, U)− I(V ;Y2|S2, U)]
+ +H(Y1|Y2, S2, V ) (10)

and one can apply the per-letter estimators Estj(x, y1, y2) = ŝj for j = 1, 2 such that

Estj(x, y1, y2) = argmin
s̃∈Ŝj

∑
sj∈Sj

PSj |XY1Y2(sj|x, y1, y2) dj(sj, s̃). (11)

One can limit |U| to

min{|X |, |Y1|·|S1|, |Y2|·|S2|}+2 (12)

and |V| to

(min{|X |, |Y1|·|S1|, |Y2|·|S2|}+2) · (min{|X |, |Y1|·|S1|, |Y2|·|S2|}+1). (13)

Proposition 2 (Outer Bound). The region RPS,POF is included in the union over all joint distri-

butions PUV X of the rate tuples (R1, R2, D1, D2) satisfying (8) and

R1 ≤ I(V ;Y1|S1) (14)

R2 ≤ min
{(
H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2, V )

)
,
(
I(V ;Y1|S1)−R1

)}
(15)

where we have (9) and (11). One can limit |V| to

min{|X |, |Y1|·|S1|, |Y2|·|S2|}+1. (16)
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Remark 2. Since we consider perfect feedback as in (1), the outer bound proposed in Propo-

sition 2 is also valid for the general JCAS problem depicted in Fig. 1, in which the feedback

Zi−1 can be a noisy version of (Y1,i−1, Y2,i−1).

We next characterize the strong secrecy-distortion regions of physically-degraded and reversely-

physically-degraded JCAS channels with partial secrecy and perfect output feedback, defined

below; see also [9, Definition 2].

Definition 2. A JCAS channel PY1Y2|S1S2X is physically-degraded if we have

PY1Y2S1S2|X = PY1Y2|S1S2XPS1S2 = PS1PY1|S1XPY2S2|S1Y1 (17)

and is reversely-physically-degraded if the degradation order is changed such that

PY1Y2S1S2|X = PY1Y2|S1S2XPS1S2 = PS2PY2|S2XPY1S1|S2Y2 . (18)

♦

A physically-degraded JCAS channel corresponds to a situation in which the observations

(Y n
2 , S

n
2 ) of the eavesdropper are degraded versions of observations (Y n

1 , S
n
1 ) of the legitimate

receiver with respect to the channel input Xn.

Theorem 1. (Physically-degraded Channels): For a physically-degraded JCAS channel, RPS,POF

is the union over all joint distributions PV X of the rate tuples (R1, R2, D1, D2) satisfying (8),

(14), and (15), where we have (9) with constant U and (11). One can limit |V| to (16).

Proof of Theorem 1: Since the outer bound given in Proposition 2 does not assume any

degradedness, the outer bound terms for R1, R2, and Dj for j = 1, 2 follow from Proposition 2.

The achievability proof for Theorem 1 follows by modifying the proof of Proposition 1.

We next provide a sketch of the modifications for a physically-degraded JCAS channel. First,

Un is not used, i.e., Un is eliminated from the achievability proof. Second, to each vn(k) we

assign four random bin indices (Fv(k),Wv1(k),Wv2(k), Lv(k)) such that Fv(k) ∈ [1 : 2nR̃v ],
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Wv1(k) ∈ [1 : 2nRv1 ], Wv2(k) ∈ [1 : 2nRv2 ], and Lv(k) ∈ [1 : 2nRv ] for all k = [1 : b]

independently such that M1(k) = Wv1(k) and M2(k) = (Wv2(k), Lv(k)). As in (56), we impose

the reliability constraint

R̃v > H(V |Y1, S1) (19)

as in (58) and (59) we impose the strong secrecy constraints

Rv2 + R̃v < H(V |Y2, S2) (20)

Rv < H(Y1|Y2, S2, V ) (21)

and as in (60) we impose the mutual independence and uniformity constraint

Rv1 +Rv2 + R̃v +Rv < H(V ). (22)

We remark that we have H(V |Y2, S2) ≥ H(V |Y1, S1) for all physically-degraded JCAS

channels, i.e., we obtain

[I(V ;Y1|S1)− I(V ;Y2|S2)]
+ (a)
= H(V |Y2, S2)−H(V |Y1, S1) (23)

where (a) follows because V is independent of (S1, S2) and since

V −X − (Y1, S1)− (Y2, S2) (24)

form a Markov chain for such JCAS channels. Define

R′2,deg = [I(V ;Y1|S1)− I(V ;Y2|S2)]
+ +H(Y1|Y2, S2, V )

(a)
= H(V |Y2, S2)−H(V |Y1, S1) +H(Y1|Y2, S2, V )

(b)
= H(Y1, V |Y2, S2)−H(V |Y1, S1, Y2, S2)

= H(Y1|Y2, S2) + I(V ;S1|Y1, Y2, S2)

= H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2, V ) (25)

where (a) follows by (23) and (b) follows from the Markov chain in (24).
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Applying the Fourier-Motzkin elimination [24] to (19)-(22), for any ε > 0 one can achieve

R1 = Rv1 = I(V ;Y1, S1)− 2ε = I(V ;Y1|S1)− 2ε (26)

and for any R1 that is less than or equal to (26), one can simultaneously achieve

R2 = Rv2 +Rv = min{R′2,deg, (I(V ;Y1|S1)−R1)} − 3ε. (27)

Furthermore, the proofs for achievable distortions, sufficiency of given deterministic estimators,

inversion of the problem in the source model into the problem in the channel model, and

elimination of the public indices follow similarly as in the proof of Proposition 1, so we omit

them.

Theorem 2. (Reversely-physically-degraded Channels): For a reversely-physically-degraded JCAS

channel, RPS,POF is the union over all joint distributions PV X of the rate tuples (R1, R2, D1, D2)

satisfying (8), (14), and

R2 ≤ min
{
H(Y1|Y2, S2),

(
I(V ;Y1|S1)−R1

)}
(28)

where we have (9) with constant U and (11). One can limit |V| to

min{|X |, |Y1|·|S1|, |Y2|·|S2|}. (29)

Proof of Theorem 2: The achievability proof follows from Proposition 1 after elimination

of U from its proof, as in the proof for Theorem 1. After removal of U , by (7) we have the

inner bound

R2

(a)

≤ min
{
H(Y1|Y2, S2, V ),

(
I(V ;Y1|S1)−R1

)}
(b)
= min

{
H(Y1|Y2, S2),

(
I(V ;Y1|S1)−R1

)}
(30)

where (a) follows since V is independent of (S1, S2) and because H(V |Y1, S1) ≥ H(V |Y2, S2)

for all reversely-physically-degraded JCAS channels because of the Markov chain

V −X − (Y2, S2)− (Y1, S1) (31)
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and (b) follows also because of the Markov chain in (31).

Since the outer bound in Proposition 2 does not assume any degradedness, the outer bound

terms for R1 and Dj for j = 1, 2 follow from Proposition 2. Furthermore, by (15) we obtain

the outer bound

R2

(a)

≤ min
{(
H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2)

)
,
(
I(V ;Y1|S1)−R1

)}
= min

{
H(Y1|Y2, S2),

(
I(V ;Y1|S1)−R1

)}
(32)

where (a) follows from the Markov chain in (31).

IV. BOUNDS FOR JCAS WITH SINGLE SECURE MESSAGE

We next give inner and outer bounds for the situation, in which M =M2 should be kept secret

from the eavesdropper and M1 = ∅. For this situation, the definitions of an achievable secrecy-

distortion tuple (R,D1, D2) and corresponding strong secrecy-distortion region RPOF follow

from Definition 1 by eliminating (M1, R1) and replacing (M2, R2,RPS,POF) with (M,R,RPOF),

respectively.

Proposition 3. (Inner Bound): The region RPOF includes the union over all joint distributions

PV X of the rate tuples (R,D1, D2) satisfying (8) and

R ≤ min{R′′, I(V ;Y1|S1)} (33)

where

PV XY1Y2S1S2 = PV |XPXPS1S2PY1Y2|S1S2X , (34)

R′′ = [I(V ;Y1|S1)− I(V ;Y2|S2)]
+ +H(Y1|Y2, S2, V ) (35)

and one can apply the deterministic per-letter estimators in (11). One can limit |V| to (16).

Proof of Proposition 3: The proof follows by eliminating U in the proof of Proposition 1,

so R1 = Rv1 = 0 and by imposing (19)-(22) after replacing Rv2 with Rv, since for this case we

have M(k) = (Wv(k), Lv(k)) for all k = [1 : b].
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Proposition 4. (Outer Bound): The region RPOF is included in the union over all PX of the rate

tuples (R,D1, D2) satisfying (8) and

R ≤ min
{(
H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2, X)

)
, I(X;Y1|S1)

}
(36)

where one can apply the deterministic per-letter estimators in (11).

Proof of Proposition 4: Assume that for some δn> 0 and n ≥ 1, there exist an encoder,

a decoder, and estimators such that all constraints imposed on the JCAS problem with perfect

output feedback are satisfied for some tuple (R,D1, D2). We then obtain

nR
(a)

≤ I(M ;Y n
1 |Sn

1 ) + nεn

≤
n∑

i=1

(
H(Y1,i|S1,i)−H(Y1,i|Y i−1

1 , Sn
1 ,M,Xi) + εn

)
(b)
=

n∑
i=1

(
H(Y1,i|S1,i)−H(Y1,i|S1,i, Xi) + εn

)
=

n∑
i=1

(I(Xi;Y1,i|S1,i) + εn) (37)

where (a) follows because M and Sn
1 are independent, and from Fano’s inequality for an εn > 0

such that εn → 0 if δn → 0, which is entirely similar to (63), and (b) follows because

Y1,i − (S1,i, Xi)− (Y i−1
1 , S

n\i
1 ,M) (38)

form a Markov chain. Furthermore, we also have

nR
(a)

≤ I(M ;Y n
1 , Y

n
2 , S

n
1 , S

n
2 ) + nεn

= H(Y n
1 , S

n
1 |Y n

2 , S
n
2 ) + I(Y n

2 , S
n
2 ;M)−H(Y n

1 , S
n
1 |Y n

2 , S
n
2 ,M) + nεn

(b)

≤
n∑

i=1

H(Y1,i, S1,i|Y2,i, S2,i) + δn −
n∑

i=1

H(S1,i|Y n
1 , Y

n
2 , S

n
2 ,M, Si−1

1 , Xi) + nεn

(c)
=

n∑
i=1

(
H(Y1,i, S1,i|Y2,i, S2,i)−H(S1,i|Y1,i, Y2,i, S2,i, Xi) + εn

)
+ δn (39)

where (a) follows from Fano’s inequality, which is similar to (63), (b) follows by (4) and from

Remark 1 after replacing M2 with M for the JCAS problem with a single secure message, and
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(c) follows because

S1,i − (Y1,i, Y2,i, S2,i, Xi)− (Y
n\i
1 , Y

n\i
2 , S

n\i
2 ,M, Si−1

1 ) (40)

form a Markov chain. Thus, by applying the distortion bound in (69) and introducing a uniformly-

distributed time-sharing random variable, as being applied in the proof of Proposition 2, we prove

the outer bound for the JCAS problem with a single secure message and perfect output feedback

by letting δn → 0.

We next present the exact strong secrecy-distortion regions for the JCAS problem with a

single secure message when the JCAS channel PY1Y2|S1S2X is physically-degraded, as in (17), or

reversely-physically-degraded, as in (18).

Theorem 3. (Physically-degraded Channels): For a physically-degraded JCAS channel, RPOF is

the union over all probability distributions PX of the rate tuples (R,D1, D2) satisfying (8) and

(36), where we have (11).

Proof of Theorem 3: Since the bound given in Proposition 4 is valid for any JCAS channel,

the proof for the outer bound follows from Proposition 4. Furthermore, the achievability proof

follows by modifying the proof of Theorem 1 such that we assign V n(k) = Xn(k) for all

k = [1 : b] and then apply the same OSRB steps for Xn(k) rather than V n(k), i.e., replace V

with X in the inner bound terms given in Proposition 3. Define

R′′deg = [I(X;Y1|S1)− I(X;Y2|S2)]
+ +H(Y1|Y2, S2, X)

(a)
= I(X;Y1, S1|Y2, S2) +H(Y1|Y2, S2, X)

= H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2, X) (41)

where (a) follows because the JCAS channel is physically-degraded, and since X is independent

of (S1, S2). Thus, by (33) we have

R ≤ min{R′′deg, I(X;Y1|S1)} (42)
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which proves the achievability bound.

Theorem 4. (Reversely-physically-degraded Channels): For a reversely-physically-degraded JCAS

channel, RPOF is the union over all probability distributions PX of the rate tuples (R,D1, D2)

satisfying (8) and

R ≤ min
{
H(Y1|Y2, S2), I(X;Y1|S1)

}
(43)

where one can apply the deterministic per-letter estimators in (11).

Proof of Theorem 4: We assign V n = Xn in the achievability proof, i.e., we choose V = X

that is allowed by (34), such that by (33) we obtain the inner bound

R
(a)

≤ min
{
H(Y1|Y2, S2, X), I(X;Y1|S1)

}
(b)
= min

{
H(Y1|Y2, S2), I(X;Y1|S1)

}
(44)

where (a) follows since X is independent of (S1, S2) and because H(X|Y1, S1) ≥ H(X|Y2, S2)

for all reversely-physically-degraded JCAS channels due to the Markov chain in (31), and (b)

follows also because of the Markov chain in (31).

Since the outer bound in Proposition 4 does not assume any degradedness, the outer bound

terms for Dj for j = 1, 2 follow from Proposition 4. Furthermore, by (36) we have the outer

bound

R
(a)

≤ min
{(
H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2)

)
, I(X;Y1|S1)

}
= min

{
H(Y1|Y2, S2), I(X;Y1|S1)

}
(45)

where (a) follows from the Markov chain in (31).

V. BINARY JCAS CHANNEL WITH MULTIPLICATIVE BERNOULLI STATES EXAMPLE

We next consider a scenario with perfect output feedback and single secure message, in which

channel input and output alphabets are binary with multiplicative Bernoulli states, which serves
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as a coarse model of fading channels with high signal-to-noise ratio. Specifically, we have

Y1 = S1 ·X, Y2 = S2 ·X (46)

and

PS1S2(0, 0)=(1−q), PS1S2(1, 1)=qα, PS1S2(0, 1)=0, PS1S2(1, 0)=q(1−α) (47)

for fixed q, α ∈ [0, 1], so the JCAS channel satisfies (17) [9, Section IV-A].

Define the binary entropy function Hb(x) = −x log(x) − (1 − x) log(1 − x) and denote a

Bernoulli random variable X with probability p of success as X ∼ Bern(p).

Lemma 1. The strong secrecy-distortion region RPOF for a binary JCAS channel with multiplica-

tive Bernoulli states characterized by parameters (q, α) and with Hamming distortion metrics is

the union over all p ∈ [0, 1], where X ∼ Bern(p), of the rate tuples (R,D1, D2) satisfying

R ≤ min

{(
q(1− α)Hb(p) + p(1− qα)Hb

(q(1− α)
(1− qα)

))
, qHb(p)

}
(48)

D1 ≥ (1− p) ·min{q, (1− q)} (49)

D2 ≥ (1− p) ·min{qα, (1− qα)}. (50)

Proof of Lemma 1: The proof follows by evaluating the strong secrecy-distortion region

RPOF defined in Theorem 3. Proofs for (49) and (50) follow by choosing Estj(1, yj) = yj and

Estj(0, yj) = 1{Pr[Sj = 1] > 0.5} for j = 1, 2 that can be obtained as in (11), which are

equivalent to the proofs for [9, Eqs. (27c) and (27d)]. We next have I(X;Y1|S1) = qHb(p),

which is equivalent to the proof for [9, Eq. (27a)] with r = 1. Furthermore, we obtain

H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2, X)

(a)
= H(S1|S2) +H(Y1|S1, Y2, S2)−H(S1|S2) + I(S1;Y1, X|S2)

(b)
= PS1S2(1, 0)H(Y1|S1 = 1, S2 = 0) +H(X) +H(Y1|X,S2)−H(Y1, X|S2, S1)
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(c)
= PS1S2(1, 0)H(X) +H(X) + PX(1)PS2(0)H(Y1|X = 1, S2 = 0)

+ PX(1)PS2(1)H(Y1|X = 1, S2 = 1)−H(X)

(d)
= q(1− α)Hb(p) + p(1− qα)Hb

(q(1− α)
(1− qα)

)
(51)

where (a) follows since S1 − S2 − Y2 and S1 − (Y1, S2, X) − Y2 form Markov chains for the

considered JCAS channel, (b) follows since if S1 = 0, then Y1 = 0; if (S1, S2) = (1, 1), then

Y1 = Y2 = X; and if S2 = 0, then Y2 = 0, and because X is independent of S2, (c) follows

since Y1 = X if S1 = 1, because X is independent of (S1, S2), since Y1 = 0 if X = 0, and

because (S1, X) determine Y1, and (d) follows since S1 = 1 if S2 = 1 due to (47) and because

(S1, X) determine Y1. Therefore, we have

R ≤ min
{(
H(Y1, S1|Y2, S2)−H(S1|Y1, Y2, S2, X)

)
, I(X;Y1|S1)

}
= min

{(
q(1− α)Hb(p) + p(1− qα)Hb

(q(1− α)
(1− qα)

))
, qHb(p)

}
. (52)

The securely-transmitted message rate for JCAS scenarios under full secrecy is upper bounded

both by
(
H(Y1, S1|Y2, S2) − H(S1|Y1, Y2, S2, X)

)
and I(X;Y1|S1), the latter of which is the

upper bound for the rate when there is no secrecy constraint [9, Corollary 4]. Thus, secrecy

might incur a rate penalty for this example. Nevertheless, JCAS methods achieve significantly

better performance than separation-based secure communication and state-sensing methods. One

can illustrate this by showing that time sharing between the operation point with the maximum

secrecy rate and the point with the minimum distortions results in a region that is strictly smaller

than the one identified in Lemma 1. These analyses are analogous to the comparisons between

joint and separation-based secrecy and reliability methods for the secret key agreement problem,

as discussed in [25]–[27].
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VI. PROOFS FOR PROPOSITIONS 1 AND 2

A. Inner Bound

Proof Sketch: We use the OSRB method [21], [22] for the achievability proofs, applying

the steps in [28, Section 1.6]; see also [29].

We first define an operationally dual source coding problem to the original JCAS problem, as

defined in [21], along with a coding scheme called Protocol A, for which reliability and secrecy

analysis is conducted. We next define a randomized coding scheme, called Protocol B, for the

original JCAS problem and show that the joint probability distributions induced by Protocols A

and B are almost equal, which allows to invert the source code proposed for Protocol A to

construct a channel code for Protocol B. The achievability proof follows by derandomizing the

protocols.

Protocol A (dual source coding problem): We consider a secret key agreement model, in

which a source encoder observes Xn ∈ X n and independently and uniformly-randomly assigns

three random bin indices M ∈ M = M1 ×M2 and F ∈ F to it. In the dual source model,

M = (M1,M2) represents a secret key that should be reliably reconstructed at a source decoder

that observes (Y n
1 , S

n
1 ) ∈ Yn

1 × Sn
1 and F to satisfy (3), whereas the eavesdropper observes

(Y n
2 , S

n
2 ) ∈ Yn

2 × Sn
2 and F , which determines the conditions to satisfy the strong secrecy

constraint (4). Furthermore, the state sequence estimation at the source encoder by using perfect

output feedback should satisfy the distortion constraints (5).

While the strictly causal feedback that depends on the i.i.d. state sequence does not provide

opportunities to improve reliability, feedback offers significant opportunities to improve secrecy.

We apply a block Markov coding scheme that consists of b ≥ 2 transmission blocks, each

with n channel uses, to transmit (b − 1) independent messages M(k) = (M1(k),M2(k)). In

every block, secret keys are distilled from the feedback and used to protect messages in the

subsequent block. In the following, all n-letter random variables are i.i.d. according to (9) for

all k = [1 : b], obtained by fixing PU |V , PV |X , and PX so that there exist associated per-letter
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estimators Estj(x, y1, y2) = Ŝj for j = 1, 2 that satisfy

E[dj(Sn
j ,Est

n
j (X

n, Y n
1 , Y

n
2 ))] ≤ Dj + ε′n (53)

where ε′n > 0 such that ε′n → 0 when n→∞. The block k under consideration is indicated by

adding the argument (k) to the variables, e.g., M(k) refers to the message in block k, etc.

For all blocks k = [1 : b] we construct codes as follows. To each un(k) independently

and uniformly assign two random bin indices (Fu(k),Wu(k)) such that Fu(k) ∈ [1 : 2nR̃u ]

and Wu(k) ∈ [1 : 2nRu ] for all k = [1 : b]. Furthermore, to each vn(k) independently and

uniformly assign three random indices (Fv(k),Wv(k), Lv(k)) such that Fv(k) ∈ [1 : 2nR̃v ],

Wv(k) ∈ [1 : 2nRv ], and Lv(k) ∈ [1 : 2nRv ] for all k = [1 : b]. Finally, to each yn1 (k − 1),

independently and uniformly assign a random index Ly1(k−1) ∈ [1 : 2nRy1 ] = [1 : 2nRv ].

Conceptually, the indices F (k) = (Fu(k), Fv(k)) represent the public choice of an independent

encoder-decoder pair in block k ∈ [1 : b], while the indices W (k) = (Wu(k),Wv(k), Lv(k))

represent the messages that should be reliably reconstructed at the decoder. Only Wv(k) should

be directly kept secret from the eavesdropper. Moreover, Lv(k) represents a non-secure additional

message that should be reliably reconstructed at the decoder and can be kept secret by applying

a one-time pad as used in the chosen-secret model [30]–[32]. The role of the index Ly1(k− 1),

which is known at all legitimate parties thanks to the perfect output feedback, is to provide

the required key for the one-time pad in block k. Secure reconstruction of Lv(k) follows by

summing it in modulo-2nRv with Ly1(k−1). Thus, rather than reconstructing Lv(k) directly,

the decoder reconstructs the modulo-sum (Lv(k)+Ly1(k−1)) by estimating V n(k) since it can

then use its observation Y n
1 (k−1) from the previous transmission block to obtain Lv(k) by

applying modulo-2nRv subtraction. If Ly1(k−1) is uniformly distributed and independent of all

random variables in the source model except Y n
1 (k−1), then the modulo-sum is also uniformly

distributed and independent of Lv(k), which allows to keep Lv(k) secret from the eavesdropper.
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Furthermore, we set for all k = [2 : b] that

M1(k) = Wu(k), M2(k) = (Wv(k), Lv(k)). (54)

We next impose conditions on the bin sizes to satisfy all constraints given in Definition 1.

Using a Slepian-Wolf [33] decoder, from (Y n
1 (k), S

n
1 (k), Fu(k)) one can reliably reconstruct

Un(k) for all k = [1 : b] such that the expected value of the error probability taken over the

random bin assignments vanishes when n→∞, if we have [21, Lemma 1]

R̃u > H(U |Y1, S1). (55)

Similarly, one can reliably reconstruct V n(k) from (Y n
1 (k), S

n
1 (k), Fv(k), U

n(k)) for all k =

[1 : b] if we have

R̃v > H(V |Y1, S1, U). (56)

Thus, (3) is satisfied if (55) and (56) are satisfied and backward decoding is applied. Backward

decoding is a method proposed in [34] to decode the blocks in the backward order as k =

b, b− 1, . . . , 2, such that reliable reconstruction of Lv(k) is possible by using Y n
1 (k−1).

The public index Fu(k) and secret key Wu(k) are almost independent and uniformly distributed

for all k = [1 : b] if we have [21, Theorem 1]

Ru + R̃u < H(U) (57)

since the expected value, taken over the random bin assignments, of the variational distance

between the joint probability distributions Unif[1: 2nRu ] · Unif[1: 2nR̃u ] and PWuFu then vanishes

when n→∞. Furthermore, the public index Fv(k) and secret key Wv(k) are almost independent

of (Y n
2 (k), S

n
2 (k), U

n(k)) and uniformly distributed for all k = [1 : b] if we have

Rv + R̃v < H(V |Y2, S2, U). (58)

Similarly, the random bin index Ly1(k − 1) is almost independent of
(
Y n
2 (k − 1), Sn

2 (k − 1),

V n(k − 1), Un(k − 1)
)

and uniformly distributed for all k = [2 : b] if we have

Ry1 = Rv < H(Y1|Y2, S2, V, U)
(a)
= H(Y1|Y2, S2, V ) (59)
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where (a) follows because U − V − (Y1, Y2, S2) form a Markov chain. Thus, (4) is satisfied by

applying the one-time padding step mentioned above if (58) and (59) are satisfied. Consider next

the joint condition that (Fu(k),Wu(k), Fv(k),Wv(k), Lv(k)) are almost mutually independent and

uniformly distributed for all k = [1 : b] if we have

Ru + R̃u +Rv + R̃v +Rv < H(U, V ). (60)

Applying the Fourier-Motzkin elimination to (55)-(60), for any ε > 0 we can simultaneously

achieve

R1 = Ru = I(U ;Y1, S1)− 2ε
(a)
= I(U ;Y1|S1)− 2ε (61)

and

R2 = Rv +Rv

(b)
= min{[I(V ;Y1|S1, U)−I(V ;Y2|S2, U)]

++H(Y1|Y2, S2, V ), (I(V ;Y1|S1)−R1)}−3ε (62)

where (a) follows since U and S1 are independent and (b) follows because (U, V ) are mutually

independent of (S1, S2) and if H(V |Y2, S2, U) ≤ H(V |Y1, S1, U), then Wv cannot be securely

reconstructed, i.e., we then impose Rv = 0.

We next consider the distortion constraints (5) on channel-state estimations. Since we assume

per-letter estimators given in (53), (3) is satisfied by imposing the conditions above on the bin

sizes, and all (un(k), vn(k), xn(k), yn1 (k), y
n
2 (k), s

n
1 (k), s

n
2 (k)) tuples are in the jointly typical set

with high probability, by applying the law of total expectation to bounded distortion metrics and

from the typical average lemma [35, pp. 26], distortion constraints (5) are satisfied; see also

[36]. Furthermore, without loss of generality one can use the deterministic per-letter estimators

in (11) and the proof follows from the proof of [37, Lemma 1] by replacing (S,Z, Ŝ, d) with

(Sj, (Y1, Y2), Ŝj, dj), respectively, since Ŝj(k) − (X(k), Y1(k), Y2(k)) − Sj(k) form a Markov

chain for all j = 1, 2 and k = [1 : b].
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Protocol B (random channel coding for the original problem): We consider the original JCAS

problem and assist the problem with the public index F (k) for all k = [1 : b] such that (2)-

(5) are satisfied also for Protocol B by choosing R1 and R2 as in (61) and (62), respectively.

The proof of this result follows by proving that the joint probability distribution obtained in

Protocol A is almost preserved in Protocol B, i.e., we prove for n→∞ that 1) the limit of the

expectation, defined over the random binning operations, of the variational distance between the

joint probability distributions obtained in Protocol B and required for the reliability constraint

is 0; 2) the limit of the random probability, defined over the random binning operations, that

Kullback-Leibler divergence between the joint probability distributions obtained in Protocol B

and required for the secrecy constraint is greater than 0 is 0. Since the proof steps are standard

and mainly repeat the steps in [21], we omit them; see [29, Section IV] for an extensive proof

for a wiretap channel.

Now suppose the public indices F (k) are generated uniformly at random for all k = [1 : b]

independently. The encoder generates (Un(k), V n(k)) according to PUn(k)V n(k)|Xn(k)Fu(k)Fv(k) ob-

tained from the binning scheme above to compute the bins Wu(k) from Un(k) and (Wv(k), Lv(k))

from V n(k), respectively, for all k = [1 : b]. This procedure induces a joint probability distribution

that is almost equal to PUV XY1Y2S1S2 fixed above [28, Section 1.6]. We remark that the reliability

and secrecy metrics considered above are expectations over all possible realizations F = f . Thus,

applying the selection lemma [38, Lemma 2.2], these results prove Proposition 1 by choosing

an ε > 0 such that ε→0 when n→∞ and imposing b→∞.

B. Outer Bound

Proof Sketch: Assume that for some δn>0 and n ≥ 1, there exist an encoder, decoder, and

estimators such that (2)-(5) are satisfied for some tuple (R1, R2, D1, D2). Using Fano’s inequality

and (3), we have

H(M |Y n
1 , S

n
1 )

(a)

≤H(M |M̂)≤nεn (63)
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where (a) allows randomized decoding and εn = δn(R1+R2)+Hb(δn)/n such that εn→ 0 if

δn→0.

Let Vi , (M1,M2, Y
i−1
1 , Si−1

1 , Y i−1
2 , Si−1

2 ) such that Vi − Xi − (Y1,i, Y2,i, S1,i, S2,i) form a

Markov chain for all i ∈ [1 : n] by definition of the channel statistics.

Bound on R1: We have

nR1

(a)

≤ I(M1;Y
n
1 |Sn

1 ) + nεn

≤
n∑

i=1

(
H(Y1,i|S1,i)−H(Y1,i|M1,M2, Y

i−1
1 , Sn

1 ) + εn
)

(b)

≤
n∑

i=1

(
H(Y1,i|S1,i)−H(Y1,i|M1,M2, Y

i−1
1 , Si

1, Y
i−1
2 , Si−1

2 ) + εn
)

(c)
=

n∑
i=1

(
I(Vi;Y1,i|S1,i) + εn) (64)

where (a) follows by (63) and because M1 and Sn
1 are independent, (b) follows since

Sn
1,i+1 − (M1,M2, Y

i−1
1 , Si

1)− Y1,i (65)

form a Markov chain, and (c) follows from the definition of Vi.

Bound on (R1 +R2): Similar to (64), we obtain

n(R1 +R2)
(a)

≤ I(M1,M2;Y
n
1 |Sn

1 ) + nεn

(b)

≤
n∑

i=1

(
H(Y1,i|S1,i)−H(Y1,i|M1,M2, Y

i−1
1 , Si

1, Y
i−1
2 , Si−1

2 ) + εn
)

(c)
=

n∑
i=1

(
I(Vi;Y1,i|S1,i) + εn) (66)

where (a) follows because (M1,M2, S
n
1 ) are mutually independent and by (63), (b) follows since

(65) form a Markov chain, and (c) follows from the definition of Vi.

Bound on R2: We obtain

nR2

(a)

≤ I(M2;Y
n
1 , Y

n
2 , S

n
1 , S

n
2 ) + nεn

≤ H(Y n
1 , S

n
1 |Y n

2 , S
n
2 ) +H(Y n

2 , S
n
2 )−H(Y n

2 , S
n
2 |M2)−H(Y n

1 , S
n
1 |Y n

2 , S
n
2 ,M1,M2) + nεn
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≤ H(Y n
1 , S

n
1 |Y n

2 , S
n
2 ) + I(Y n

2 , S
n
2 ;M2)−

n∑
i=1

H(S1,i|Y n
1 , Y

n
2 , S

n
2 ,M1,M2, S

i−1
1 ) + nεn

(b)

≤ H(Y n
1 , S

n
1 |Y n

2 , S
n
2 ) + δn −

n∑
i=1

H(S1,i|Y i
1 , Y

i
2 , S

i
2,M1,M2, S

i−1
1 ) + nεn

(c)
= H(Y n

1 , S
n
1 |Y n

2 , S
n
2 ) + δn −

n∑
i=1

H(S1,i|Y1,i, Y2,i, S2,i, Vi) + nεn

≤
n∑

i=1

(
H(Y1,i, S1,i|Y2,i, S2,i)−H(S1,i|Y1,i, Y2,i, S2,i, Vi))

)
+ nεn + δn (67)

where (a) follows by (63), (b) follows by (4) and from Remark 1, and because

(Y n
1,i+1, Y

n
2,i+1, S

n
2,i+1)− (Y i

1 , Y
i
2 , S

i
2,M1,M2, S

i−1
1 )− S1,i (68)

form a Markov chain, and (c) follows from the definition of Vi.

Distortion Bounds: We have for j = 1, 2

(Dj+δn)
(a)

≥ E
[
dj(S

n
j , Ŝ

n
j )
]
=

1

n

n∑
i=1

E
[
dj(Sj,i, Ŝj,i)

]
(69)

where (a) follows by (5), which can be achieved by using the deterministic estimators in (11).

Introduce a uniformly distributed time-sharing random variable Q∼Unif[1 :n] that is indepen-

dent of other random variables, and define Y1=Y1,Q, S1=S1,Q, Y2=Y2,Q, S2=S2,Q, X=XQ,

and V =(VQ,Q), so V −X− (Y1, Y2, S1, S2) form a Markov chain. The proof of the outer bound

follows by letting δn → 0.

Cardinality Bounds: We use the support lemma [39, Lemma 15.4] to prove the cardinality

bound, which is a standard procedure, so we omit the proof.
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