
PFE: Linear Active Security, Double-Shuffle
Proofs, and Low-Complexity Communication

Hanyu Jia, Xiangxue Li ⋆⋆⋆

East China Normal University

Abstract. We consider private function evaluation (PFE) in malicious
adversary model. Current state-of-the-art in PFE from Valiant’s univer-
sal circuits (Liu, Yu, et al., CRYPTO 2021) does not avoid the logarith-
mic factor in circuit size. In constructing linear active PFE, one essential
building block is to prove the correctness of an extended permutation
(EP, Mohassel and Sadeghian at EUROCRYPT 2013) by zero-knowledge
protocols with linear complexity. The linear instantiation ZKEP by Mo-
hassel, Sadeghian, and Smart (ASIACRYPT 2014) is a three-phase pro-
tocol, and each phase (dummy placement, replication, and permutation)
is of size 2g. Its overhead thus seems really outrageous, reducing its prac-
ticability. We present in this paper a novel and efficient framework ZKDS

for proving the correct EP. We show that double shuffles suffice for EP
(exponentiations and communication overheads are about 27% and 31%
of ZKEP , respectively). Data owner(s) generates the randomness for the
first shuffle whose outputs determine outgoing wires of the circuit defined
by the function. Function owner reuses and extends the randomness in
the second shuffle whose outputs determine the incoming wires.
From ZKDS , we build an online/offline PFE framework with linear ac-
tive security. The online phase could be instantiated by any well-studied
secure function evaluation (SFE) with linear active security (e.g., Tiny-
OT at CRYPTO 2012). The offline phase depends only on the private
function f and uses ZKDS to prove the EP relationship between outgoing
wires and incoming wires in the circuit Cf derived from f .

Private Function Evaluation, Active Security, Zero-Knowledge Proof, Ex-
tended Permutation, Shuffle.

1 Introduction

Secure Multi-Party Computation (MPC) protocols can provide privacy-preserving
functionality [15, 54]. Through cryptographic methods, MPC protocols need no
trusted third parties to ensure that remote computing can operate correctly
while preserving the privacy of private data. One can find readily extensive and
significant applications of MPC protocols in the era of increasing obsession with
data insights [3, 8, 14,17,18,26,42,49].
⋆ Email: xxli@cs.ecnu.edu.cn

⋆⋆ Manuscript received April 19, 2021; revised August 16, 2021.

2 Hanyu Jia, Xiangxue Li

SFE and PFE. There are two cases of MPC protocols according to the pub-
lic/private function to be evaluated. Secure Function Evaluation (SFE) is well-
established in MPC that allows two or more parties P1, · · · , Pw to jointly com-
pute a publicly known function f on private input data xi of Pi (i = 1, · · · , w).
SFE guarantees that each party can get the result f(x1, · · · , xw) without reveal-
ing their private inputs xi. Many SFE protocols have been proposed so far, and
most of them rely on compiling the publicly known function into Boolean cir-
cuit, such as Yao’s Garbled Circuit [37,55], BGW [5], and GMW [21]. Private
Function Evaluation (PFE) has a peculiar appearance where the function is a
private input for one of the parties. In PFE, function owner compiles his private
function into a circuit Cf (boolean circuit or arithmetic circuit) and opens some
parameters of the circuit to other parties [7,29,31,33,43,45], such as the number
of gates (g), the number of input wires (u), the number of output wires (o),
or some auxiliary parameters. These parameters of Cf should not enable other
parties to learn the function in polynomial time.

Application scenarios of PFE. There are various application scenarios
for PFE, and we recall several examples here. In privacy-protected car insurance
rate calculation [26], customer data and the details of rate calculation are kept
private. In privacy-preserving intrusion detection systems [49], the server cannot
learn the data of the client and the client cannot learn the signature on the server
side. In credit check [18], it is required that neither private financial data of the
customers nor private criteria of the lenders might be revealed. Attribute-based
access control can be enhanced to protect both sensitive credentials and sensitive
policies by using PFE [17]. There are also applications in medicine [3] and in
software diagnostics [8].

General Designs of PFE. There are two main design approaches for PFE.
One is to reduce PFE protocols to typical SFE protocols [1,27,32,33,39,40,52,56]
by securely evaluating an open Universal Circuit (UC). This series of methods
focus on optimizing the number of gates in the UC. The smaller the number of
gates in the circuits, the smaller the total overhead of the protocols. Current
state-of-the-art in PFE based on Valiant’s universal circuits [40] seems to reach
a theoretical optimum 13g · log g (g is the number of the gates in the circuit), yet
still does not avoid the logarithmic factor in circuit size. Despite the amazing
versatility of universal circuits, independent techniques (free of the family of
universal circuits) need to be investigated to create actively secure PFE with
linear complexity. Mohassel and Sadeghian [43] propose a general framework
under the semi-honest adversary model (see the next paragraph), which embraces
the tasks of the hidden circuit (by oblivious extended permutation of switching
network with complexity O(g·log g)) and of securely evaluating its gates (by
the private gate evaluation). Both tasks are handled independently and then
combined naturally to form a PFE. In this line, we can also construct linear
PFE by implementing extended permutation through homomorphic encryption
in both two-party and multi-party settings [44]. For large circuits, this would be
more efficient than UC-based methods. In addition to these two approaches for
constructing general PFE, there are many purpose-specific PFE protocols, e.g.,

Title Suppressed Due to Excessive Length 3

Katz and Malka [31] propose a two-party PFE combining Yao’s garbled circuit
and a singly homomorphic encryption (HE).

Security models in MPC. Security models in MPC include semi-honest
adversary model and malicious adversary model. Semi-honest adversary (often
referred to as honest-but-curious adversary) follows the specified steps, but tries
to learn as much as possible from the messages sent by other parties. A malicious
adversary (a.k.a. active adversary) can violate the specified steps at will. Namely,
a malicious adversary has all the capabilities of semi-honest adversary and can
take any action he wants during his execution in an attempt to learn more. In the
paper, we are concerned particularly about the malicious adversary model. SFE
protocols in the malicious model are well studied [16,30,34,36,38,51], and they
can be combined with UC to readily construct PFE in the malicious adversary
model [1,40]. We mention that there exists logarithmic factor in circuit size even
in the optimal UC constructions, so do the PFE protocols derived in this way.
Mohassel, Sadeghian and Smart [46] propose a novel framework (MSS frame-
work) for PFE in the malicious adversary model. Therein the idea of switching
network is used to construct extended permutation (EP) in [43] (see Defini-
tion 1), and other primitives include actively secure SFE, one-time MACs, and
linear zero-knowledge proof (ZKEP) protocol of “correct extended permutation”
of ElGamal ciphertexts. MSS framework has the advantage of linear complex-
ity in circuit size (there are a host of exponentiations in the ZKEP , however).
Although application scenarios of MPC protocols with active security are more
realistic, their designing is more elaborate than those in the semi-honest adver-
sary model. Fortunately, we do have several general PFE constructions against
malicious adversaries (besides those based on UC).

1.1 Related Work

ZKEP with linear complexity in circuit size. ZKEP [46] was born to
prove the correctness of the extended permutation of ElGamal ciphertexts, i.e.,
m ciphertexts are extended to n ciphertexts (m ≤ n). Different with MSS frame-
work characterized by its three-phase sequential shuffling, another line of proving
EP is to design a direct construction of one module, and this is accomplished at
PKC 2021 [41] where a specific honest-verifier zero-knowledge protocol is con-
structed. We mention that they are the only two solutions available to verify the
correctness of EP. Our primary interest in the paper goes to the first line, i.e.,
MSS framework and the ZKEP protocol [46]. We thus minimize the structure
of MSS framework by defining a variant of the framework (only double shuffles
are used) and thereby present a zero-knowledge protocol for the variant that is
much more efficient than ZKEP . Next, we recall ZKEP .

The solution by Mohassel, Sadeghian, and Smart [46] is to decouple ZKEP

into three well-designed components. The original construction of EP is based
on a switching network [33, 53]. In this case, to construct a scheme with linear
overhead in circuit size, singly homomorphic encryption (instead of a switching
network) is used to compute each component and re-randomize the ciphertexts.

4 Hanyu Jia, Xiangxue Li

 !"#$!"#$
%

 !"&
% !"&

Permutation PhaseReplication PhaseDummy Placement Phase

ZK'()**+,

!"&

!"#$

…

ZK-,.

…

ZK'()**+,

…

!"&
%

!"#$
%

…

Fig. 1. ZKEP construction [46].

Both the first and the third components are shuffle operation. To hide the per-
mutation relation, P1 (prover) chooses uniformly at random ai for each of the n
ciphertexts provided by the verifiers for re-randomization (using HE property).
Linear ZK proof of shuffle [19], ZKshuffle, is used to prove the correctness of
these two components. The second component is a replication phase and it re-
quires a separate ZK protocol (ZKrep) to justify the operation of the phase. The
input ciphertexts cti of the first component include m real ciphertexts provided
by the verifiers and n - m identical dummy values encrypted with a homomor-
phic encryption scheme (where the private key is shared secretly among verifiers).
The inputs of the second component are the outputs of the first component, and
the inputs of the third component are the outputs of the second component. We
illustrate ZKEP w.r.t. the parameters in the circuit Cf , i.e., m = g + u− o and
n = 2g, usually g ≫ u and u ≈ o. Fig. 1 shows ZKEP construction.

The first component (with n inputs and n outputs) is a shuffle operation.
Its inputs contain n ElGamal ciphertexts fed by the verifiers, including m ci-
phertexts corresponding to real values and n −m ciphertexts corresponding to
the identical dummy values. Assume that some real ciphertext needs to be used
k times in the circuit (i.e., it will be copied k − 1 times). Then in the out-
puts of the component, this real ciphertext would be immediately followed by
k − 1 dummy ciphertexts. The output ciphertexts of the permutation are re-
randomized, rcti = ctπ(i)+ Encpk(ai) (ai is chosen uniformly at random), to
hide the permuting relation in the component. This indeed gets a permutation
and the component can be regarded as a shuffling of the input ciphertexts. Mo-
hassel, Sadeghian, and Smart argue that the correctness of the first component
can be verified by correct shuffle proof ZKshuffle [19], which takes 18 ∗ n expo-
nentiations and the proof is of length about 5 ∗ n ∗ ||G|| (||G|| denotes the bit
length of group element in G) bits in proving the correctness.

The next one is a replication phase of the real ciphertexts, taking the outputs
of the first component as its inputs. In the outputs of the component, each
ciphertext corresponding to dummy value would be replaced directly by the last
ciphertext (before it) corresponding to the real value. Naturally, all ciphertexts
are re-randomized. To verify the correctness of the component, the protocol
ZKrep is used. More precisely, ZKrep is equipped with three zero-knowledge
protocols, two of which are ZKeq [10] and the third one is ZKno [28]. These two

Title Suppressed Due to Excessive Length 5

ZKeq protocols are used to verify whether the i -th output of the component is
equal to its i -th input (2 ≤ i ≤ n) or its (i − 1)-th output. For the first output
result, we simply verify whether it is equal to the first input. ZKno is used to
verify that each output ciphertext is not the dummy-valued ciphertext. We write
ZKrep({rcti, rct′i}) as below:

ZK1
rep = ZKno(rct

′
1) ∧ ZKeq(rct1, rct

′
1) : i = 1 (1)

ZKi
rep =

(
ZKeq(rcti, rct

′
i) ∨ ZKeq(rct

′
i−1, rct

′
i)
)

∧ZKno(rct
′
i) : 2 ≤ i ≤ n

(2)

ZKrep = ∧i=1,··· ,n(ZKi
rep). (3)

If Eq. (3) is correct, the component is justified. From [10] and [28], we have that
the component takes about 69 ∗ n exponentiations and the proof is of length
about 16 ∗ n ∗ ||G|| bits.

The last component is also a shuffle operation, taking the outputs of the
second one as its inputs. It permutes the copied real ciphertexts to their appro-
priate positions. To hide the map, all input ciphertexts should be re-randomized.
ZKshuffle is used once more to verify the correctness of the component.

The protocol ZKshuffle used in [45] was proposed by Furukawa and Sako [19],
where the exponentiations required for shuffling n ciphertexts are about 18∗n and
the bit length of the proof is 5280 ·n+13792 (for ||G|| = 1024 and ||Zq|| = 160).
There exist some optimizations on ZKshuffle so that the resulting proofs could
be more efficient [4, 9, 19, 22–25, 47]. Zero-knowledge protocols in [19, 23, 25, 47]
are available for verifying the correctness of the shuffles, all requiring proofs of
length O(η) (η denotes the size of the shuffles, e.g., η = 2g in MSS framework).
The first sublinear shuffle protocol was proposed in [24] with a proof of length
O(η2/3) which is further reduced to O(η1/2) in [4, 22]. It is showed [9] that the
proof length would be O(log η) if we want a protocol by sorting the circuits
(based on discrete logarithm assumption). The numbers of the exponentiations
required in above-mentioned work are all linear with η.
Remark. Replacing a better ZKshuffle directly makes ZKEP less overhead. Sim-
ilarly, replacing a better ZKrep could also make ZKEP more efficient. Rather
than such trivial replacement, we attempt to optimize the proof framework of
ZKEP . It is surely feasible that above-mentioned replacements can be taken in
our proposed framework (if any).

1.2 Motivation and Contributions

This paper focuses on actively secure PFE. Our main observation is that there
exist redundant components in the technique of [46] used to construct ZKEP ,
resulting in excessive exponentiations and communication overhead. In partic-
ular, ZKEP consists of a dummy placement phase, a replication phase, and a
permutation phase, and each of the phases is of size 2g. The overhead required
by ZKEP thus seems really outrageous, reducing its practicability. If we could

6 Hanyu Jia, Xiangxue Li

remove the redundant components or reduce the size of the components, ZKEP

would be improved in terms of less exponentiations and communication over-
head, and the resulting actively secure PFE framework could thereby be more
practical. We present in this paper a novel and efficient framework ZKDS to ver-
ify the correct EP of ElGamal ciphertexts. We show that double shuffles suffice
in ZKDS : one shuffle is of size u+ g− o, another is of size 2g, and no replication
phase is required. Note that the exponentiations and communications overhead
of ZKrep in [43] account for 62% and 47% of ZKEP , respectively. Therein, u is
the number of input wires in the circuit and o the number of output wires, and
we have generally u ≈ o, g ≫ u (e.g., a circuit might contain tens of thousands
of or even millions of gates [2,57]). Besides its succinct double-shuffle structure,
ZKDS reduces nearly 69% of the communication overhead and 73% of the expo-
nentiations (including the ciphertexts and corresponding proofs), compared to
ZKEP when we use the same shuffle protocol as [46].

The protocol ZKDS. In ZKEP , the essential trick is to verify the correct-
ness of extending m ciphertexts into n ciphertexts using linear ZK protocols. It
is already well-studied to prove the correct shuffle by a linear zero-knowledge
protocol. Note that the input size of the permutation is equal to its output size
in the shuffle. ZKEP takes extra n−m dummy values to convert the EP problem
into a permutation problem. This approach increases the input size of the per-
mutation and requires a separate ZKrep protocol to justify the copy operation
and the zero dummy value, which definitely introduces a lot of extra exponen-
tiations. ZKEP is the first (and the only modularization-based) linear protocol
that validates EP. If the input size of the permutation could be reduced and
some ZK protocols could be removed, it will reduce significant computation and
communication overhead, making the actively secure PFE more practical. For
this purpose, we propose the design ZKDS .

One interesting trick behind ZKDS is that we let the prover initialize the
protocol by sending a set C := {c1, · · · , cm} to the verifier. This tells the verifier
that the i -th ciphertext (to be generated by the verifier and sent to the prover)
would be used ci times, i = 1, · · · ,m. We argue that this special set C does not
leak the private knowledge of the prover. In fact, C also appears in the second
component of ZKEP (see Sect. 3 for more details). ZKDS consists of just two
independent shuffles: one is of size m and another of size n. The prover only
needs to prove to the verifier that the two shuffles are correct, i.e., he makes
correct EPs. Succinct ZKDS of double-shuffle structure does not require the
protocol ZKrep which is indispensable to ZKEP . Both ZKDS and ZKEP call
shuffle operation twice. In the context of PFE from ZKDS and ZKEP : each of
the two shuffles in ZKEP is of size 2g; in ZKDS however, one shuffle is of size
g and another is of size 2g, which makes the double-shuffle structure of ZKDS

25% “smaller than" that in ZKEP . On the one hand, there are many ZK proofs
(ZKrep) required in ZKEP but not required in ZKDS . On the other hand, the
consumption of the ciphertexts communication in ZKDS is about a half of that
in ZKEP . One might thereby obtain a more compact PFE from ZKDS (than
from ZKEP). Sect. 3 presents detailed comparisons.

Title Suppressed Due to Excessive Length 7

General framework of linear actively secure PFE. Our linear-
complexity framework for actively secure PFE is decoupled into two phases,
online and offline, aiming at the players jointly computing f(x1, · · · , xu). At
the end of the framework, function owner cannot learn valid knowledge of the
private input data, and data owner cannot learn valid knowledge of the private
function. The offline phase is independent of the input data, but depends on
the function. Function owner translates his private function f into a topological
circuit Cf before the protocol starts. There are g + u− o outgoing wires and 2g
incoming wires in Cf . These two types of wires make an EP relationship and this
is the exact knowledge that we should protect about the circuit (see Sect. 2 for
details). The online phase could be instantiated by any well-studied SFE with
linear active security [45]. The offline phase is a bit tricky, and it appears not
easy to verify the EP relationship between outgoing wires and incoming wires
through some primitive with less than or equal to linear complexity [45, 46].
If both online and offline phases have linear complexity in circuit size, we can
then naturally get a linear PFE. ZKEP [45] seems to be a feasible solution to
the tricky problem, but much involved and not practically efficient due to its
relatively high overhead. Our ZKDS is a better candidate and the resulting
PFE from ZKDS has the advantage of smaller communication and computation
overhead. This will practically push actively secure PFE with linear complexity.
Note that the correct EP protocol would be invoked two times in this general
framework, meaning that more efficient ZK protocols for the correctness of EP
are more desirable for practical PFE. We describe more details of the framework
in Sect. 4.

2 Notations and Definitions

We use bold (lower-case or capital) letters to denote sets (e.g., ct, C, C ’, l,
etc) and standard letters (e.g., ai, cti, ci, owi, li, etc) for values or elements of
a set. For a set D, |D | denotes the size of the set, and we write D = {Di}|D|

i=1.
[a] (or [a]) indicates that a (or a) is shared by a secret sharing scheme. We use
π to denote a map from a set to another set, e.g., i is a preimage and j is the
corresponding image, then we have j = π(i). The abstract diagram (see Fig. 2)
could enable the readers to better understand the mapping relationship between
incoming wires and outgoing wires. Hereafter we suppose P1 to be the function
owner (and P1 can also keep input data x1 in multi-party PFE).

We use a singly homomorphic encryption (Gen, Enc, Dec). We view its plain-
text space as a cyclic group G of prime order p. Let k be a system parameter
and r ←R {0, 1}k denote sampling r uniformly at random from {0, 1}k. Given
n the security parameter of the homomorphic encryption, Gen outputs a pair of
public and private keys (pk, sk)← Gen(1n). We have Decsk(c1+c2) = Decsk(c1)
+ Decsk(c2), given ciphertexts c1 = Encpk(m) and c2 = Encpk(r), m and r ∈ G.
For this kind of homomorphic property, some publick key encryption schems are
available, such as ElGamal [20] and Paillier [50] etc. Therein, ElGamal encryp-
tion (based on the Diffie-Hellman assumption) can provide efficient implemen-

8 Hanyu Jia, Xiangxue Li

b a

 !

"#

"$%(#)
(!)

&'#

*'$+(#)

 ,

Fig. 2. l maps to l(1) and iw maps to ow . Two kinds of maps are used in our protocols:
π1 and π3. The former is a bijective function and the latter is surjective (not injective).

tation without decryption error and has been used in some known PFE [31] and
GC designs [29]. Our protocols use ElGamal encryption as well.

In our protocols, function owner P1 compiles his private function f into a
Boolean or Arithmetic circuit Cf with u inputs, g gates, and o outputs. We
have usually u ≈ o and g ≫ u. Let N := u + g. Cf is like a directed acyclic
graph in which the gates have topological order, namely, g gates has been num-
bered from smallest to largest by P1 according to the topology of Cf , denoted as
{G1, · · · , Gg}. If Cf is an arithmetic circuit, it is composed of additive and mul-
tiplicative gates, with the bit value 0 for additive gate and 1 for multiplicative
gate. If Cf is a Boolean circuit, each of the gates is only a two fan-in NAND gate
and its functionality does not need to be hidden. We divide all g gates in Cf into
output gates and non-output gates according to the destination of the output
wires. We suppose w.l.o.g. that the last o gates {Gg−o+1, · · · , Gg} in the gate
sequence of the circuit are output gates and the first g−o gates {G1, · · · , Gg−o}
are non-output.

In this already topologically ordered Boolean circuit, we collect all the input
wires of the circuit Cf and all the outputs of the non-output gates and define
the collection as a set of outgoing wires, denoted as ow. We have |ow | = N − o.
Similarly, we get the set iw of incoming wires from all the input wires of all gates,
and |iw | = 2g. |ow | ≤ |iw |. Both ow and iw are topologically ordered sets for
Cf and correspond to the topologically ordered g gates. We suppose w.l.o.g. that
ow = {ow1, · · · , owN−o} and iw = {iw1, · · · , iw2g}. We provide Fig. 3 for better
reader-friendliness. To fully capture the topology of the circuit, we give each of
the outgoing wires and incoming wires in the circuit a unique index. Each gate in
Cf is arbitrary fan-out and any outgoing wire owi could be used multiple times
(and at least once), i ∈ {1, · · · , |ow |}. If owi is used c′i times, we also say it has
c′i − 1 copies. As P1 knows all the knowledge of Cf , he can first generate a set
C ′ = {c′1, · · · , c′|ow |},

∑|ow |
i=1 c′i = 2g and then perform a random permutation

on C ′ to get the set C = {c1, · · · , c|ow |}. In other words, P1 chooses a random
map π such that c′i = cπ(i), i = 1, . . . , |ow|. π is P1’s private knowledge. Data
owner (say P2) compiles his secret data x into binary form, i.e., x = {0,1}u. P1

Title Suppressed Due to Excessive Length 9

sends P2 u, g, o and C . This move does not leak the knowledge of Cf , which is
hidden in the EP relationship between ow and iw in the circuit.

Definition [44] 1. We say the mapping π−1
3 : {1, · · · , |ow|}→ {1, · · · , |iw|} is an

extended permutation, since it can not only permute the elements in {1, · · · , |ow|},
but also replicate them as many times as needed (see Fig. 3).

Fig. 3. An example circuit and the corresponding mapping π−1
3 [43]. The circuit topol-

ogy hidden (CTH) indicates an extended permutation.

3 ZKDS: Double Shuffles Suffice for Correct EP

3.1 Observation

For the extended permutation relation of ow and iw in the circuit, Katz and
Malka [31], and Mohassel and Sadeghian [43] present linear-complexity solutions
in semi-honest adversary model by applying singly homomorphic encryption.
Therein, function owner P1 follows the protocol in an honest-but-curious man-
ner to make a valid extended permutation of the |ow | ciphertexts. In malicious
adversary model however, P1 may not follow the specification of the protocol
when extending the permutation of the |ow| ciphertexts, i.e., he does not per-
form the exact valid EP. Now we need some validation mechanism on P1’s local
computation (to make sure that P1 has done the exact EP). For actively secure
SFE, the cut-and-choose method is available for this kind of validation [35, 58].
For PFE however, it is not clear yet how to apply this method in checking EP’s
correctness [46]. The takeaway herein is that the EP is P1’s private knowledge
now and cannot be revealed to the verifier even in checking its correctness. As an
open problem, more attempts need to be made in applying the cut-and-choose
approach to PFE. In the literature, one (and the only modularization-based) fea-
sible validation mechanism is the linear ZKEP proposed by Mohassel, Sadeghian,
and Smart [46]. ZKEP consists of three components (see Fig. 1) that have been

10 Hanyu Jia, Xiangxue Li

well studied (with relatively high complexities of computation and communica-
tion however). We revisit ZKEP and propose a more efficient alternative ZKDS

which could facilitate actively secure PFE as well.
In ZKEP , data owner (verifier) provides |ow | ciphertexts as inputs. Given

these ciphertexts, function owner P1 (prover) extends them to |iw | ciphertexts.
In the first component (i.e., dummy placement phase) of ZKEP , P1 promotes
|iw | − |ow | ≈ g dummy-valued ciphertexts as a supplement and thus converts
the EP into a permutation problem. This approach obviously increases the size
of the input ciphertexts and requires an additional protocol (ZKrep) to ensure
that P1 has performed the correct copy work. The purpose of extending the |ow |
ciphertexts to |iw | ciphertexts is to obtain the 2g input labels of topologically
sorted g gates and maintain the relationship between the plaintexts correspond-
ing to the |iw | ciphertexts and the plaintexts corresponding to the |ow | cipher-
texts. To be more succinct, one heuristic motivation is to let P1 tell data owner
in advance how many times each of the |ow | ciphertexts would be copied, i.e.,
C ′ = {c′1, · · · , c′|ow |}. Now there is no need to verify the correctness of the copy-
ing phase, i.e., the ZKrep protocol could be removed. Unfortunately, this might
also give away the valid knowledge of Cf . For example, data owner knows how
many times the |ow |-th ciphertext has been copied, and further knows where
the output of the (g − o)-th gate in the topological order goes, i.e., we cannot
rule out the possibility of leaking the valid knowledge of Cf . This is mainly due
to the fact that the |ow | ciphertexts sent by data owner correspond one by one
to the u inputs of the circuit and the g - o outputs of the non-output gates (i.e.,
ow). However, this gap can be fixed by making the requirement that there exist
a random mapping relation between ow and |ow | ciphertexts provided by data
owner. I.e., we require that data owner provides |ow | ciphertexts according to
C= {c1, · · · , c|ow |}, and this will remedy the flaw of leaking the knowledge of
Cf that occurs in the first try. Now there is also no need to introduce almost g
additional dummy-valued ciphertexts to the first component of ZEP .

We mention that letting P1 open the set C and reveal to data owner does not
sacrifice the security of ZKDS . A simple rethinking of ZKEP may find that it also
reveals the set C . In the replication phase of ZKEP , P1 uses the ZKrep protocol
to prove the correctness of his replication work. ZKrep contains three zero-
knowledge protocols, two of which are ZKeq [10] and the last one is ZKno [28].
We have the detailed description in Sect. 1.1. In this component, data owner
can learn how many times a particular ciphertext among the g + u− o shuffled
ciphertexts has been copied. This knowledge does not reveal the topology of the
circuit, as data owner cannot learn the index of the ciphertext corresponding
to the input ciphertext of the first component. In addition, data owner cannot
know to which final location the ciphertext is mapped in the next component.

To ease the understanding, Table 1 summarizes some symbols representing
ciphertexts and plaintexts/random values. For the last 6 lines in Table 1, similar
to li in l, we have ctp

(1)
i , l(1)i , ct(2)i , l′i, ctp

(2)
i , and l

(2)
i in ctp(1), l(1), ct(2), l′,

ctp(2), and l(2) respectively, and we omit these symbols from the table. Other
symbols can be defined in the same way and would be used in Sect. 4.

Title Suppressed Due to Excessive Length 11

Table 1. Symbols.

Symbols Annotations
li random value generated by the verifier
l a set collected from random values li

ct
(1)
i

ciphertext of plaintext li

ct(1) ciphertext set corresponding to plaintext set l

ctp(1) ciphertext set obtained from permutation & re-randomization
on ct(1)

l(1) plaintext set corresponding to ciphertext set ctp(1)

ct(2) ciphertext set extended from ct(1)

l′ plaintext set corresponding to ciphertext set ct(2)

ctp(2) ciphertext set obtained from permutation & re-randomization
on ct(2)

l(2) plaintext set corresponding to ciphertext set ctp(2)

3.2 Constructing ZKDS

Above-mentioned observations would lead to a particular design that differs
from ZKEP . In ZKEP , P1 privately compiles the function f into Cf from which
the mapping relation of the extended permutation is extracted. In our design,
what P1 needs to extract include the mapping relationship between the |ow |
ciphertexts sent by the data owner and ow, and that between the |iw | ciphertexts
(after copying the |ow | ciphertexts) and iw, represented by the maps π1 and π2,
respectively. Both π1 and π2 are bijective.

Our design ZKDS only includes one permutation of size N − o and one
permutation of size 2g. There is no need to perform ZKrep or to generate the
ciphertexts with almost g dummy values. P1 should re-randomize the ciphertexts
he received in the interactive session to hide the knowledge of maps (i.e., π1 and
π2 below). We give an abstract description in Fig. 4. One can see from Fig. 4 that
ZKDS is decoupled into two phases: the component of randomness-generating
& outgoing-wires-determining (RG&OWD), and the component of randomness-
reusing & incoming-wires-determining (RR&IWD). Both components can be
proved correct by using ZKshuffle. We use π1 to denote the permutation map-
ping in ZKshuffle1 , and π2 to denote that in ZKshuffle2 . To facilitate the com-
parison with ZKEP , we also apply the scheme for proving a shuffle in [19]. We
mention that the scheme [19] hereof is only for the purpose as an instantiation
example of our building block and any efficient scheme (say, with linear compu-
tation complexity and logarithmic communication complexity [9]) of this kind is
a good candidate for our protocol. Table 2 lists the zero-knowledge protocol for
the black-boxes of Fig. 4 used in ZKDS .

Our aim is to turn the |ow | ciphertexts corresponding to the set of random
values l (1) into the |iw | ciphertexts corresponding to the set l (2) by EP. In both
components, these ciphertexts are then re-randomized to hide the knowledge of
permutation relation, and the final ciphertexts are later open to the verifier.

12 Hanyu Jia, Xiangxue Li

randomness-reusing & incoming-
wires-determining component

randomness-generating & outgoing-
wires-determining component

𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒1

𝑐𝑐𝑡𝑡1
(1)

𝑐𝑐𝑡𝑡𝑁𝑁−𝑜𝑜
(1)

…

𝑐𝑐𝑡𝑡𝑡𝑡1
(1)

𝑐𝑐𝑡𝑡𝑡𝑡𝑁𝑁−𝑜𝑜
(1)

…
 𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒2

𝑐𝑐𝑡𝑡1
(2)

𝑐𝑐𝑡𝑡2𝑔𝑔
(2)

…

𝑐𝑐𝑡𝑡𝑡𝑡1
(2)

𝑐𝑐𝑡𝑡𝑡𝑡2𝑔𝑔
(2)

…

Fig. 4. ZKDS construction consisting of two ZKshuffle protocols.

We use the set C = {c1, · · · , c|ow |},
∑|ow |

i=1 ci = 2g. We take C as one of
system inputs of P1, i.e., P1 sends C to the verifier to initialize the interaction.
Additional information about Cf that can be disclosed is g, u and o. The verifier
then generates a set l of random values (|l | = |ow |) and a public/private key pair
(pk, sk) of ElGamal encryption. The verifier encrypts each li in l with pk and
obtains the ciphertext set ct (1), ct(1)i = Encpk(li). ZKDS consists of two parts:
ZKshuffle1 with |ow | inputs and ZKshuffle2 with |iw | inputs. The verifier sends
the set of ciphertexts ct (1) and pk to P1. The set ct (1) is directly used as the
input of the first component. Next, we describe the two components in detail.

3.2.1 RG&OWD
Once the verifier gets the sets l (1) (|l (1) |=N − o) and l (2) (|l (2) |=2g) [46],

he would easily compute on each of the g gates determined by incoming wires
and outgoing wires. If l(1) is generated by the verifier himself (as in [46]), then
it seems that a replication phase is necessary. Unlike prior trick, we let l (1) be
jointly decided by the verifier and the prover. As the verifier wants P1 to extend
and permute the set l (1) into the set l (2) as well as prevents P1 from learning l (1),
we equip the prover with the capability of generating the encryption ctp

(1)
i =

Encpk(l
(1)
i) even without the exact knowledge l(1)i . Instead of generating the

set l (1) directly, the verifier generates a set of l= {li}N−o
i=1 , and encrypts them

(under pk) into a set of ciphertexts ct (1)={ct(1)i }
N−o
i=1 , where ct

(1)
i = Encpk(li).

The set l has a shuffle (and re-randomization) relation with the set l (1) (to be
determined by P1). The verifier sends the set ct (1) to P1. P1 takes the set of
ciphertexts ct (1) as the input to this component, and the size of the input is

Table 2. Zero-knowledge protocol in ZKDS . Generator g, public key h = gsk, cti =
(αi, βi) and ctpi = (α′

i, β
′
i).

ZK Protocol Relation/Language Ref.
ZKshuffle(ct , ctp) Rshuffle = {(G, g, h, ct , ctp)|∃π, s.t.

α′
i = griαπ(i) ∧ β′

i = hriβπ(i) ∧ π is perm.}
[19]

Title Suppressed Due to Excessive Length 13

|ow |. The i -th value ci in the set C says that the i -th ciphertext in the set
ct (1) would be used ci times. We have thereby that there are ci ciphertexts in
the following set ctp(2) corresponding to the same plaintext li, but due to the
shuffle, the verifier does not know which specific plaintexts in l (1) correspond
to li. The probability that the verifier correctly guesses this shuffle relationship
is negligible. We denote the permutation of this component by π1. P1 knows
the topology of the circuit and gets the set ctp(1) by permuting the set ct (1)
according to π1. To hide the knowledge of π1, P1 also does a re-randomization
Encpk(l

(1)
i) = Encpk(lπ−1

1 (i)+ai) (ai is chosen uniformly at random). All the steps
of permutation and re-randomization are performed locally by P1, who needs
to prove the correctness of his local operations to the verifier. The RG&OWD
component can be seen as a shuffle of the input ciphertexts, and we use the
ZKshuffle protocol as a black box to justify this component [46].

3.2.2 RR&IWD
In the previous component, the verifier produces the set of ciphertexts ct (1).

In the current component, the ciphertexts in ct (1) sent to P1 in the first com-
ponent are reused. In particular, P1 copies ct (1) to produce a new set ct (2) of
ciphertexts according to the values in the set C . We take as an example the i -th
ciphertext ct(1)i in the set ct (1) which corresponds to the value ci in C . Then in
the inputs of this component, the subsequent ci−1 ciphertexts after this cipher-
text are all set as the exact ct(1)i . Since the sum of the values in C is 2g, we have
exactly 2g ciphertexts after the copy step. The verifier also knows C and the set
ct (1) is generated by himself, thus one may view that the input of the 2g cipher-
texts in the second component are also provided by the verifier (but without the
cost of communication). We use l ′ to denote the plaintext set corresponding to
the ciphertext set ct (2), i.e., ct(2)i = Encpk(l′i), 1 ≤ i ≤ 2g. P1 knows how many
times each ciphertext in ct (1) has been copied separately and knows the topology
of the circuit, so he can permute them to get the ciphertext set corresponding
to l (2). We denote the permutation map of this component by π2. Naturally, all
permuted ciphertexts are re-randomized: Encpk(l

(2)
i) = Encpk(l′π−1

2 (i)
+bi), where

bis are chosen uniformly at random. We write the result of the second component
by the permutation and re-randomization as ctp(2)={ctp(2)i }

2g
i=1, where ctp

(2)
i =

Encpk(l
(2)
i). Again, the permutation and re-randomization is performed locally

by P1, who needs to prove the correctness of his local operations to the verifier.
This RR&IWD component can be seen as a shuffle of 2g input ciphertexts and
the correctness of this phase can be checked via ZKshuffle.

3.2.3 Performance Improvement
ZKDS needs only two independent shuffles in the two components of

RG&OWD and RR&IWD. In contrast, ZKEP requires three components, i.e.,
dummy placement phase, replication phase, and permutation phase, the first and
third of which are also shuffle structure. We first compare only the two shuffles
in ZKDS and ZKEP . ZKDS has “smaller" shuffle than ZKEP . In fact, the sizes

14 Hanyu Jia, Xiangxue Li

of the shuffles in ZKDS are g and 2g, respectively. However, each of the sizes is
2g in ZKEP . Therefore, ZKDS saves approximately 25% of the size over ZKEP

in the double shuffles. In addition, ZKDS does not use the replication phase
which is indispensable in ZKEP . Table 3 lists the input/output sizes for each
component of ZKEP and ZKDS . For more explicit efficiency comparison with
ZKEP , we also use the scheme of [19] here (same as that in [46]).

Table 3. Comparison of the size of each component between ZKEP and ZKDS . Usually
g ≫ u and u ≈ o.

ZK Protocol MSS ZKEP [46] Our ZKDS

ZKshuffle 2g u+g-o
ZKrep 2g ×
ZKshuffle 2g 2g

Consider the computation overhead. For the RG&OWD component in
ZKDS , the ZKshuffle1 protocol takes |ow | ∗ 18 (i.e., (N - o)∗ 18) exponen-
tiations; for the RR&IWD component, the ZKshuffle2 protocol takes |iw | ∗ 18
(i.e., 2g ∗ 18) exponentiations. Comparatively, each size of the shuffles in ZKEP

is 2g and thus a total of 2 ∗ 2g ∗ 18 exponentiations are required. In addition, the
overhead of the replication phase includes 2g re-randomizations and the ZKrep

protocol. The computation overhead of 2g re-randomizations consists of 2g en-
cryptions of random values and 2g homomorphic addition operations. The ZKrep

protocol is described in Eq. (3) and further includes the ZKno protocol [28] and
the ZKeq protocol [10]. It turns out that at least 2g ∗ 69 exponentiations are
required for Eq. (3). For total computational cost, the exponentiations required
for ZKEP and ZKDS are about 222g [41] and 60g, respectively. Thus ZKDS

saves approximately 73% of exponentiations compared to ZKEP . We mention
that there are different proposals for ZKrep with different overheads. It is surely
not a surprise that more efficient ZKshuffle will make ZKDS even better per-
formance. E.g., the protocol of [4] is reported to be 3.4× faster than that of [19].
To sum up, ZKDS shows great advantages over ZKEP in terms of computation
overhead.

Consider the communication overhead. ZKDS gains communication advan-
tages over ZKEP from three facets. The first discount is the proof communi-
cation about the ZKshuffle protocol of approximate g ciphertexts. The second
lessening is the proof communication of the ZKrep protocol. We also have the
reduction of almost 4g ciphertexts communication (only 50% of ZKEP). Note
that the proof bits are generally longer than the ciphertexts themselves. In a
nutshell, ZKDS reduces the communication bits by almost 69%, compared to
ZKEP . Take ||Zq|| = 160 and ||G|| = 1024 [4, 19] as example. We have the bits
(including the ciphertexts) of 24032 · g in ZKDS and 76672 · g in ZKEP .

Liu et al. [41] present a specific protocol for proving that ElGamal ciphertext
list is derived from an extended permutation over a given list of elements, which

Title Suppressed Due to Excessive Length 15

requires O(g) exponentiations and communication overhead of O(logg). Bünz
et al. [9] design a verifiable shuffle protocol with exponentiations and commu-
nication overheads of O(g) and O(logg), respectively. As our ZKDS framework
has only succinct double-shuffle, Bünz’s shuffle protocol will result in ZKDS

having the same performance as Liu’s protocol. We emphasize that the ZKDS

framework for proving the correctness of EP is more flexible.

3.2.4 Specification
The real inputs of the verifier in ZKDS are the ElGamal ciphertexts cor-

responding to l of length |ow |, and in addition he knows C . The prover first
applies one shuffle to the ciphertexts {ct(1)1 , · · · , ct(1)|ow |} and another shuffle to

the ciphertexts {ct(2)1 , · · · , ct(2)|iw |}, where cti = (αi, βi) (of ElGamal encryption).

The prover obtains two sets of re-randomized ciphertexts as {ctp(1)1 , · · · , ctp(1)|ow |}
and {ctp(2)1 , · · · , ctp(2)|iw |}, where ctpi = (α′

i, β
′
i). The prover needs only two cor-

rect shuffle proofs to show the correctness of his local computations. Table 4
shows the full description of ZKDS .

Theorem 1. The set C does not give away valid knowledge about the circuit Cf .

Proof. Private function f is compiled by P1 into circuit Cf whose each outgoing
wire would be used at least once so that 2g incoming wires could be obtained.
c′i denotes the times that i -th ciphertext about ow (generated by verifier and
sent to P1) would be used in shuffles and C ′ is the collection of all c′i. Rather
than sending out C ′ itself, we require random permutation on C ′ and thus
get C . Protocol interactions can still work well. The takeaway is that random
permutation is P1’s private knowledge and no valid knowledge of Cf might be
derived. This is the only role of C in ZKDS . On other hand, both RG&OWD and
RR&IWD count on permutation and re-randomization, making verifier incapable
of inferring mapping relationship between l (1) and l (2). This completes the proof.

We employ the techniques of Cramer et al. [11], to combine honest verifier
zero-knowledge (HVZK) proof systems corresponding to each component, at no
extra cost, into HVZK proof systems of the same class [45].

Theorem 2. The protocol described in Table 4 is HVZK proof of the extended
permutation.

Proof. Below is a description of the proof. We describe our ZKDS protocol as
an HVZK proof of the extended permutation if our construction can achieve
the extended permutation effect. In our framework, the verifier is given the
C . The outputs ctp(1) of the RG&OWD component represent the knowledge
about ow and the outputs ctp(2) of the RR&IWD component represent the
knowledge about iw . The verifier receives ctp(1) and ctp(2) and can decrypt
them to recover their plaintexts (l (1) and l (2)). The ow to iw conversion is the
mapping knowledge of the extended permutation, i.e., l (1) to l (2) conversion is
the extended permutation relationship. Due to the property of homomorphic

16 Hanyu Jia, Xiangxue Li

encryption, P1 does not see l (1) and l (2). Due to two different permutations and
re-randomization, the verifier does not know the mapping relationship between
the set l (1) and the set l (2). To summarize, our solution achieves the EP effect.
Once both the RG&OWD component and the RR&IWD component pass the
verification, one can believe that the prover performs a valid EP, and also a
valid circuit topology. The proofs of above two components make up the proof
of ZKDS protocol. Finally we employ the techniques of Cramer et al. [11], to
combine HVZK proof systems corresponding to each component, at no extra
cost, into HVZK proof systems of the same class. Note that we make a black-
box call to the underlying ZK proof system.

4 General PFE Framework with Linear Active Security

This section describes a general actively secure PFE framework with linear com-
plexity in circuit size [45]. ZKDS can be of significance in this context. We
suppose u parties whose joint task is to compute f(x1, · · · , xu). In many PFE
application scenarios, function owner is not the recipient of final computed result.
In malicious adversary model, whether PFE is robust or with abort is related to
underlying SFE [6,12,13,48].

4.1 High-level Description

Our framework is not based on universal circuit, and consists of an offline phase
and an online phase. The offline phase is independent of data owners’ private
data, but depends on function owner’s private function. This framework can
turn any actively secure SFE (with the following features) into an actively secure
PFE. The features of the underlying SFE include: its construction is based on
secret sharing, it is actively secure (either robust or with aborts), and it has
the abilities of implementing reactive functionalities, of opening various shares
securely, and of efficiently generating random values for sharing. Some candidate
SFE protocols include BDOZ [6], SPDZ [13], Tiny-OT [48] or VIFF [12]. We do
not specify which specific SFE protocol to use, and as long as above conditions
are met, it can be turned into an actively secure PFE through our framework.

In our PFE, P1 is the function owner who privately translates the function
f as a topological circuit Cf . Each data owner provides his private data as in-
put. The online phase in our framework is linear in circuit size and it can be
implemented by actively secure SFE that satisfies above conditions. If the offline
phase is also linear in circuit size, then we obtain a linear-complexity, actively
secure PFE. The tricky problem herein is how to extend and permute two sets
of random values of length |ow| ([l (1)] and [t (1)]) into two sets of random values
of length |iw| ([l (2)] and [t (2)]) using a less than or equal to linear method in the
offline phase. [l (1)] and [t (1)] are two sets of shared random values generated by
data owners through the underlying SFE, where those secret shares cannot be
learned by P1. Data owners then jointly encrypt the two sets of shared values
using a singly homomorphic encryption, and P1 transforms the resulting cipher-
text sets (ctp(1) and ctp ′(1)) into two sets of ciphertext (ctp(2) and ctp ′(2))

Title Suppressed Due to Excessive Length 17

Table 4. The protocol for zero-knowledge proof of ZKDS

Protocol ZKDS

Input of the Verifier (P2): Ciphertext set ct (1)= {ct(1)1 , · · · , ct(1)|ow |}.
Input of the Prover (P1): Permutation maps π1, π2 and set C (random
permutation of C ′).

P1 sends C , u, g and o to P2.
P2 sends the ciphertext set ct (1)={ct(1)1 , · · · , ct(1)|ow |} and pk to P1.
P1 evaluates the components.

– P1 finds corresponding permutation π1 for RG&OWD component and
π2 for RR&IWD component, respectively.

– P1 produces ciphertexts ct (2)={ct(2)1 , · · · , ct(2)|iw |} from ciphertexts

ct (1)= {ct(1)1 , · · · , ct(1)|ow |} according to C .

– P1 applies the RG&OWD component to {ct(1)1 , · · · , ct(1)|ow |}, and finds

ctp(1) = {ctp(1)1 , · · · , ctp(1)|ow |}.
– P1 applies the RR&IWD component to {ct(2)1 , · · · , ct(2)|iw |}, and finds

ctp(2)={ctp(2)1 , · · · , ctp(2)|iw |}.
P1 computes the ZK proofs and sends out the outputs of two com-
ponents and the proofs.

– ZKshuffle1(ct (1), ctp(1)), ZKshuffle2(ct (2), ctp(2)) are used by P1 to
produce proof of correctness for his evaluation in two components.

– P1 sends {ctp(1)1 , · · · , ctp(1)|ow |}, {ctp
(2)
1 , · · · , ctp(2)|iw |} and all proofs to P2.

P2 verifies P1’s computations.
– P2 checks the proofs sent by P1.

by applying extended permutation and re-randomization. Data owners jointly
decrypt ctp(2) and ctp ′(2) to obtain shares of the resulting plaintexts.

In our scheme, instead of generating [l (1)] and [t (1)] directly, data owners
generate two sets of shared random values [l] and [t] of length |ow| through
the underlying SFE. P1 helps data owners to evaluate [l] and [t] into [l (1)] and
[t (1)], respectively. P1 knows the topology of Cf and can apply the extended
permutation to turn [l (1)] and [t (1)] into [l (2)] and [t (2)], respectively. In order to
obtain active security of the offline phase, the following three steps are required
to be actively secure.

1. Two sets of random values [l] and [t] are shared among data owners, and they
need to be encrypted jointly by the parties through the underlying SFE to
obtain the ciphertext sets ct (1) and ct ′(1), i.e., ct(1)i = Encpk(li) and ct

′(1)
i =

Encpk(ti). The encryption scheme herein needs to be singly homomorphic

18 Hanyu Jia, Xiangxue Li

(e.g., ElGamal encryption), where the secret key is secretly shared among
the parties. The resulting ciphertexts are sent to P1.

2. P1 applies ZKDS to convert the ciphertexts ct (1) (resp., ct ′(1)) into ctp(1)

(resp., ctp ′(1)) and ctp(2) (resp., ctp ′(2)), respectively. P1 sends them to data
owners where ctp

(1)
i = Encpk(l

(1)
i), ctp(2)i = Encpk(l

(2)
i), ctp′(1)i = Encpk(t

(1)
i)

and ctp
′(2)
i = Encpk(t

(2)
i). ZKDS proves that P1’s local work is correct.

3. Data owners jointly decrypt the two sets of ciphertexts ctp(1) (resp., ctp ′(1))
and ctp(2) (resp., ctp ′(2)) by the underlying SFE and finally get the shares
of plaintexts [l (1)] (resp., [t (1)]) and [l (2)] (resp., [t (2)]).

In our construction, we use ElGamal encryption as the singly homomorphic
encryption scheme to generate public key and shared secret key through the
underlying SFE [45, Fig.11]. We assume secret key is in the form of shared bits,
i.e., [sk] =

∑
[ski]∗2i. In the first step, all parties jointly encrypt some plaintext

γ (each one has a share in [γ]) and then output an ElGamal ciphertext (αi, βi).
The two sets of shared random values are jointly encrypted as ct (1) and ct ′(1),
which are used as inputs for the two extended permutations, respectively. In the
second step, this tricky problem can be solved using ZKDS twice. At the end
of the second step, data owners have the ciphertexts ctp(1) (resp., ctp ′(1)) and
ctp(2) (resp., ctp ′(2)). In the third step, data owners jointly decrypt four sets
of ciphertexts to obtain the shares of the plaintexts. With all these three steps,
one can readily combine them into an actively secure PFE.

4.2 Offline Phase

Now, we describe the offline phase of our actively secure PFE. The function
owner compiles his private function f as a topological circuit Cf , which is like a
directed acyclic graph with g gates, u inputs and o outputs. These g gates are
only two fan-in and could be any fan-out. For gates with fan-out greater than 1,
we count each of their output wires as a different wire. This differs from the gates
in the universal circuit, where all gates are with fan-out smaller than or equal
to two. Suppose we have an arithmetic circuit and g gates in Cf are additive or
multiplicative gates. Bit 0 represents that the gate is an additive gate (Gi = 0),
and 1 a multiplicative gate (Gi = 1). P1 secretly shares the bit string of the g
gates with data owners. P1 also broadcasts the set C .

Each data owner has his private input data, say xi ∈ Fpk . All data own-
ers need to jointly prepare two pairs of random value sets ([l],[r]) and ([t],[s])
through the underlying SFE, |l | = |t | = |ow | and |r | = |s| = |iw |. The two sets
of shared random values [l] and [t] are jointly encrypted into ct (1) and ct ′(1).
Data owners send the public key pk, ct (1) and ct ′(1) to P1. Through ZKDS , the
two sets of ciphertexts are permuted and re-randomized by P1 into ctp(1) and
ctp ′(1) (|ctp(1)| =|ctp ′(1)|= |ow |), and ctp(2) and ctp ′(2) (|ctp(2)| = |ctp ′(2)| =
|iw |), respectively. We take [l] as an example, which corresponds to the cipher-
text set ct (1) sent to P1 by data owners. P1 applies the first permutation π1 and
re-randomization and gets ctp(1)i = Encpk(l

(1)
i) = Encpk(lπ1(i)+ai), with ai being

Title Suppressed Due to Excessive Length 19

a random value chosen uniformly by P1. P1 copies the ciphertexts ct (1) according
to C and obtains a set of ciphertexts ct (2) (|ct (2)|= |iw |). Then P1 applies the
second permutation π2 and re-randomization and gets ctp

(2)
i = Encpk(l

(2)
i) =

Encpk(l′π2(i)
+ bi), with bi being a random value chosen uniformly by P1. P1

proves the correctness of his local work with ZKDS . The transformation of the
set t is similar to that of l . Data owners jointly decrypt ctp(1) and ctp(2) to
obtain [l (1)] and [l (2)], and decrypt ctp ′(1) and ctp ′(2) to obtain [t (1)] and [t (2)].

Each of the above-mentioned sets with |iw | entries is fresh for the inputs to
the g gates. Each of the sets with |ow | entries is fresh for the outputs of the
g − o non-output gates and the u inputs of the circuit. Data owners have the
shares of ri and the shares of l(2)i , respectively, and then compute [pi] = [ri− l

(2)
i]

through the underlying SFE. Data owners generate a global MAC key K through
the SFE, which is shared among the parties and no one can forge the MACs.
Data owners also have the shares of the random value si and the shares of t(2)i ,
respectively, and then compute [qi] = [si− t

(2)
i]+pi ∗ [K] through the underlying

SFE. Data owners broadcast the sets p and q to P1. We give the offline phase
in Table 5. The set l (1) is used for one-time pad (OTP) encryption of the data
in the online phase. The set t (1) is used for MAC verification of the data after
OTP encryption in the online phase. These MACs will be used to check if P1

does local computations correctly during the online phase, as described below.

4.3 Online Phase

Next, we describe the online phase of our actively secure PFE. Each data owner
has private input data (say xj of Pj , 1 ≤ j ≤ u), and needs to share his data
secretly with other data owners (denoted as [xj]). For example, Pj shares his
private data xj with other data owners through Shamir’s secret sharing. We
donot emphasize here exact threshold that should be considered according to
particular application scenario.

There are |ow| outgoing wires and |iw| incoming wires (|ow| ≤ |iw|). The
outgoing wires would be extended and permuted to obtain the incoming wires.
In other words, some outgoing wire might have several copies in the incoming
wires and thus we get an extended permutation from the outgoing wires to
the incoming wires. To facilitate the representation, we consider its “reverse"
relationship from the incoming wires to the outgoing wires (as shown in Fig. 2),
which is really a surjection map (denoted as π3).

Now each data owner owns a share in [xj]. All data owners need to do prepara-
tory computations on the data in the input circuit. They do OTP encryption
for xj with l (1) generated in the offline phase, denoted as [uj] = [xj] + [l

(1)
j], and

additionally compute [vj] = [t
(1)
j] + ([xj] + [l

(1)
j]) ∗ [K], where j is the outgoing

wire’s index corresponding to that input wire of the circuit, and both u and
v are recovered via the underlying SFE. At the beginning of the online phase,
data owners send u and v to P1. For ease of explanation, we set yk = xπ3(k) for
k ∈ {1, · · · , |iw|}, i.e., if there is an outgoing wire assigned to [xj], then there
is an incoming wire assigned to [yk] s.t. j = π3(k). P1 has all the knowledge of

20 Hanyu Jia, Xiangxue Li

Table 5. Linear implementation of the Offline Phase by ZKDS .

Linear Implementation of The Offline Phase from ZKDS

This protocol invokes the underlying SFE, so we only describe the operations
related to the private function.
Input Function:
P1 shares his circuit/function.

– P1 secretly shares Gi with other players, i ∈ {1, · · · , g}.
– Players evaluate and open [Gi] · (1 - [Gi]) for i ∈ {1, · · · , g}. If any of

them is not 0, it means that P1 has not entered a valid function and
the players abort the protocol.

Players generate randomness for inputs and outputs of two shuf-
fles.

– Data owners jointly generate the secretly shared random values [l] =
{[l1], · · · , [l|ow |]} and [r] = {[r1], · · · , [r|iw |]} through the underlying
SFE. l is for the input of the RG&OWD component, and l ′ produced
from l in keeping with C is for the input of the RR&IWD component.
r is prepared for the output of the RR&IWD component.

– Data owners jointly generate the secretly shared MAC key K, shared
random values [t]= {[t1], · · · , [t|ow |]} and [s]= {[s1], · · · , [s|iw |]} by
the underlying SFE. t is for the input of the RG&OWD component,
and t ′ produced from t in keeping with C is for the input of the
RR&IWD component. s is prepared for the output of the RR&IWD
component.

P1 applies (l , t) and (l ′, t ′) to the two shuffles.
– Data owners jointly call key generation algorithm. This generates pub-

lic key for ElGamal encryption and shared secret key, i.e., [sk] =∑u
i=1[ski] ∗ 2i, where u is the total number of data owners.

– Data owners jointly call encryption algorithm. From the plaintext
shares {[l1], · · · , [l|ow |]} and {[t1], · · · , [t|ow |]}, they get ciphertexts
{ct(1)1 , · · · , ct(1)|ow |} and {ct′(1)1 , · · · , ct′(1)|ow |} which are then sent to P1.

– P1 applies π1 and re-randomization to {ct(1)1 , · · · , ct
(1)
|ow |} to ob-

tain {ctp(1)1 , · · · , ctp(1)|ow |}. Transforms {ct(1)1 , · · · , ct(1)|ow |} into {ct(2)1 ,

· · · , ct
(2)
|iw |} according to C . Applies π2 and re-randomization to

{ct(2)1 , · · · , ct(2)|iw |} and obtains {ctp(2)1 , · · · , ctp(2)|iw |}. Similarly, from

{ct′(1)1 , · · · , ct
′(1)
|ow |}, gets {ctp′(1)1 , · · · , ctp

′(1)
|ow |} and {ctp′(2)1 , · · · ,

ctp
′(2)
|iw |}.

– P1 applies ZKDS to prove that he already uses two valid EP.
– Data owners jointly call decryption algorithm. From {ctp(1)1 , · · · ,

ctp
(1)
|ow |} and {ctp(2)1 , · · · , ctp(2)|iw |}, they obtain {[l(1)1], · · · , [l(1)|ow |]} and

{[l(2)1], · · · , [l(2)|iw |]}. Similarly, from {ctp′(1)1 , · · · , ctp′(1)|ow |} and {ctp′(2)1 ,

· · · , ctp′(2)|iw |}, they get the shares {[t(1)1], · · · , [t(1)|ow |]} and {[t(2)1], · · · ,
[t
(2)
|iw |]}.

Data owners calculate and broadcast p and q .
– Data owners calculate [pk] = [rk]−[l(2)k] and [qk] = [sk]−[t(2)k]+pk∗[K]

by the underlying SFE, k ∈ {1, · · · , |iw |}.

Title Suppressed Due to Excessive Length 21

circuits and re-randomization, and he can compute u and v as

u′
k = uπ3(k) = [yk] + [l

(2)
k] and v′k = vπ3(k) = [t

(2)
k] + (yk + l

(2)
k) ∗ [K], (4)

respectively. P1 knows p and q generated in the offline phase and computes

dk = u′
k + pk = yk + rk and mk = v′k + qk = sk + (yk + rk) ∗K, (5)

respectively, and broadcasts d and m to all data owners. Data owners calculate
[nk] = [sk]+(yk+rk)∗ [K] via the underlying SFE and check whether nk is equal
to mk. If nk ̸= mk, it means that P1 has cheated during his local computation.
At this point, the other parties decide whether to abort the protocol based on the
properties of the underlying SFE, or return P1’s input to continue the protocol
without P1’s involvement. If nk = mk, then P1 is uncorrupted and data owners
compute [yk] = dk−[rk] by the underlying SFE. For g gates that are topologically
ordered, data owners can then compute

[zi] = (1− [Gi]) ∗ ([y2i−1] + [y2i]) + [Gi] ∗ [y2i−1] ∗ [y2i], i ∈ {1, · · · , g} (6)

Each data owner now has a share of [zi].The corresponding outgoing wire’s index
of [zi] is w = u + i. Data owners then continue to compute [uw] and [vw] and
repeat the above operations until all g gates are computed. The outputs of the
last o gates constitute the computation result of the function on the inputs.

Informally speaking, function owner P1 uses the difference set generated in
the offline phase to convert the encrypted output of one gate to the encrypted
input of the upcoming gate, while maintaining a one-time MAC of all values.
Once all g gates have been computed, it completes the entire computation of the
function. From online/offline phases, P1 neither learns the private inputs of data
owners nor reveals the knowledge of the circuit topology. Data owners can go
through the MACs to check whether the local operation of P1 is correct without
sacrificing the topology of the circuit. If some MAC authentication fails, then
there exist incorrectness in P1’s local computations. Above operations among
multiple parties are performed securely via the underlying SFE protocol.

4.4 Proofs

In this section, we give simulation-based security proofs of the offline and online
phases of our PFE protocol, respectively [45].

4.4.1 Proof of Offline Protocol
We construct a simulator Soffline such that a poly-time environment Z can-

not distinguish between a real protocol system and an ideal protocol system. We
assume here a static, active corrupted adversary. A simulator Soffline simulates
the ideal functionality of offline phase, which relays messages between the parties
and Z so that Z will see the same interface as in its interaction with the real

22 Hanyu Jia, Xiangxue Li

protocol. We denote the set of corrupted parties by A ⊂ {P1, · · · , Pu}. Table 6
presents the simulator Soffline we construct.

To see that the simulated process is indistinguishable from the real process,
we will show that the view of the environment in the ideal process is statistically
indistinguishable from the view in the real process. This view includes the corrupt
player’s view of the protocol execution as well as the honest player’s inputs and
outputs.

The view of adversaries A\{P1} includes the share of Gi, the share of ran-
dom values for inputs and outputs of EP, {li}|ow |

i=1 , {ri}|iw |
i=1 , {ti}|ow |

i=1 , {si}|iw |
i=1 ,

Table 6. simulator Soffline

simulator Soffline
This protocol invokes the underlying SFE, so we only need to specify the
simulator for the Input Function.
Input Function:
P1 shares his circuit/function.

If P1 ∈ A:
– The simulator Soffline evaluates [Gi] * (1 - [Gi]) for i ∈ {1, · · · , g}. If

any value of them is not 0, then P1 does not provide a valid function.
The simulator aborts.

If P1 /∈ A:
– The simulator Soffline generates a random circuit with g gates G′

i for all
i ∈ {1, · · · , g} and finds the mapping π3 corresponding to this circuit.

– The simulator Soffline generates shares of [G′
i] for all i ∈ {1, · · · , g}. and

sends the corresponding shares to other parties involved, respectively.
– The simulator Soffline evaluates [G′

i] * (1 - [G′
i]) for i ∈ {1, · · · , g}.

Players generate randomness for inputs and outputs of two shuf-
fles.

– The simulator Soffline honestly performs the protocol.
P1 applies (l , t) and (l ′, t ′) to the two shuffles.

If P1 ∈ A:
– The simulator Soffline randomly generates π1 and π2 then performs the

ideal ZKDS protocol with other players. If any of the players aborts the
protocol, Soffline aborts the protocol.

If P1 /∈ A:
– The simulator Soffline honestly evaluates ct (1) and ct ′(1).
– Once P1 inputs π1 and π2, the simulator Soffline performs the ideal
ZKDS protocol twice with other players, respectively.

– The simulator Soffline honestly performs next steps of the protocol.
Data owners calculate and broadcast p and q .

– The simulator Soffline honestly performs the protocol.

Title Suppressed Due to Excessive Length 23

{l(1)i }
|ow |
i=1 , {l(2)i }

|iw |
i=1 , {t(1)i }

|ow |
i=1 , {t(2)i }

|iw |
i=1 , {ct(1)i }

|ow |
i=1 , {ctp(1)i }

|ow |
i=1 , {ct(2)i }

|iw |
i=1 ,

{ctp(2)i }
|iw |
i=1 , {ct

′(1)
i }|ow |

i=1 , {ctp
′(1)
i }|ow |

i=1 , {ct
′(2)
i }|iw |

i=1 , {ctp
′(2)
i }|iw |

i=1 , and finally, {pi}|iw |
i=1 ,

{qi}|iw |
i=1 . The shared values all look random and therefore are indistinguish-

able between ideal and real execution. {ct(1)i }
|ow |
i=1 , {ct(2)i }

|iw |
i=1 , {ct

′(1)
i }|ow |

i=1 and
{ct

′(2)
i }|iw |

i=1 are ElGamal encryptions under shared secret key, and therefore are
indistinguishable between ideal and real execution. {ctp(1)i }

|ow |
i=1 , {ctp(2)i }

|iw |
i=1 ,

{ctp
′(1)
i }|ow |

i=1 and {ctp
′(2)
i }|iw |

i=1 are valid re-randomization of ElGamal ciphertexts
if the protocol does not abort due to ZKDS verication. {l(1)i }

|ow |
i=1 , {l(2)i }

|iw |
i=1 ,

{t(1)i }
|ow |
i=1 and {t(2)i }

|iw |
i=1 are obtained by permutation and re-randomization. The

final results {pi}|iw |
i=1 and {qi}|iw |

i=1 are computed as a result of two shared ran-
dom values, and therefore follow uniform distribution in both ideal and real
executions.

The adversary P1 has the same view as the other malicious players, except
for the uniform random value set {ai}|ow |

i=1 and {bi}|iw |
i=1 that he alone has. The

shared values all follow uniform random distribution. In the ideal functionality
we also have a uniform distribution, and as a result ideal and real executions are
indistinguishable to the environment Z.

4.4.2 Proof of Online Protocol
We construct a simulator Sonline such that a poly-time environment Z cannot

distinguish between a real protocol system and an ideal protocol system. We
assume here a static, active corrupted adversary. This simulator Sonline simulates
the ideal functionality of online phase, which relays messages between the parties
and Z so that Z will see the same interface as in its interaction with the real
protocol. We denote the set of corrupted parties by A ⊂ {P1, · · · , Pu}. Table 7
presents the simulator Sonline we construct.

To see that the simulated and real processes cannot be distinguished, we
will show that the view of the environment in the ideal process is statistically
indistinguishable from the view in the real process. This view consists of the
corrupt players’ view of the protocol execution as well as the inputs and outputs
of honest players. The view of adversary includes {ui}|ow |

i=1 , {vi}|ow |
i=1 , {di}|iw |

i=1 ,
{mi}|iw |

i=1 , {ni}|iw |
i=1 and {zi}gi=1. The shared values all look random and therefore

are indistinguishable between ideal and real execution.
We next show that {di}|iw |

i=1 and {mi}|iw |
i=1 have uniform distribution. Observe

that ui is hidden using the random values of input wires which are shared and
therefore act as one-time pad, and as P1 prepares the two inputs, it maintains
uniform distribution. Furthermore, pi also follows uniform distribution from the
secure offline protocol. The value si acts as a one-time pad which is shared
between the players and therefore, mi follows uniform distribution. In the ideal
functionality we also have uniform distribution, and as a result ideal and real are
indistinguishable to the environment Z. For malicious P1, the distributions are
the same, but we have to make sure that he has performed the input preparation
correctly. In the next phase players check P1’s computation. Player P1 cheating

24 Hanyu Jia, Xiangxue Li

Table 7. simulator Sonline

simulator Sonline
This protocol calls the underlying ideal SFE protocol and the offline protocol.
The ideal offline phase protocol yields the correct p and q. We construct Sonline
starting from the point that all parties input [xj] phase for all j ∈ {1, · · · , u}.
Input Data:

– The simulator Sonline honestly performs the protocol.
Prepare the Input of the Circuit:

– If Pj ∈ A, the simulator Sonline randomly generates [uj] and [vj]. If any
player aborts the protocol, Sonline aborts.

– If Pj /∈ A, the simulator Sonline honestly performs the protocol.
Players Check P1’s Input Preparation:

– The simulator Sonline honestly performs the protocol and aborts if the
checks fail, i.e., [nk] ̸= [mk] for all k ∈ {1, · · · , |iw |}.

Evaluate the Circuit:
The simulator Sonline honestly computes each gate step by step according

to the protocol.
– If Pj ∈ A, the Sonline randomly generates two random values to repre-

sent the share of Pj ’s input about [uw] and [vw], w = u+i, i ∈ {1, · · · , g}.
If any player aborts the protocol, Sonline aborts.

– If Pj /∈ A, Sonline honestly performs the protocol.
– The last o gates are the outputs of the circuit. By invoking the ideal

SFE protocol, each party gets the output of the circuit.

means he does not calculate di and mi correctly. To be successful, he has to
somehow adjust ni and mi to be equal. He only has an option to adjust di and
his share of si to make the equality hold. Since he does not know K, the value di·
K has a uniform distribution, and therefore the probability of P ′

1s modifying si
s.t. ni = mi is equivalent to that of guessing correct K and hence exponentially
small in length of K. It follows that with overwhelming probability that P1’s
computation is correct after the checks. The simulator aborts if any check fails.

The final result zi is a secret shared value and has a uniform distribution.
For the output wires, players open their shares, and zi is learnt by all parties.
In order to make the distribution of outputs indistinguishable, the simulator has
to modify his share of zi in the ideal execution. He is able to do so and produce
the exact same output for the ideal execution. This completes the proof.

5 Conclusions and Future Work

We propose a novel framework ZKDS for proving correct extended permuta-
tion by optimizing the structure of MSS framework. Compared with existing
heavy solution ZKEP , ZKDS is more succinct and efficient in the sense that
it removes the replication component ZKrep and that its double shuffles are

Title Suppressed Due to Excessive Length 25

“smaller". Significant gains on computation and communication complexities are
thereby obtained. ZKDS seems to be optimal from the perspective of double-
shuffle structure. We are also interested in other efficient methods (rather than
zero-knowledge proofs) in verifying extended permutations. From ZKDS , we
construct more compact PFE with linear active security for general purpose
settings, which contributes an even less proof overhead and makes the protocol
more practical.

References

1. Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and scalable univer-
sal circuits. J. Cryptol. 33(3), 1216–1271 (2020). https://doi.org/10.1007/s00145-
020-09346-z, https://doi.org/10.1007/s00145-020-09346-z

2. Araki, T., Barak, A., Furukawa, J., Lichter, T., Lindell, Y., Nof, A., Ohara, K.,
Watzman, A., Weinstein, O.: Optimized honest-majority MPC for malicious ad-
versaries - breaking the 1 billion-gate per second barrier. In: 2017 IEEE Sympo-
sium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017.
pp. 843–862. IEEE Computer Society (2017). https://doi.org/10.1109/SP.2017.15,
https://doi.org/10.1109/SP.2017.15

3. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications.
In: Backes, M., Ning, P. (eds.) Computer Security - ESORICS 2009, 14th European
Symposium on Research in Computer Security, Saint-Malo, France, September 21-
23, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5789, pp. 424–
439. Springer (2009). https://doi.org/10.1007/978-3-642-04444-1_26, https://
doi.org/10.1007/978-3-642-04444-1_26

4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a
shuffle. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology -
EUROCRYPT 2012 - 31st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings. Lecture Notes in Computer Science, vol. 7237, pp. 263–280.
Springer (2012). https://doi.org/10.1007/978-3-642-29011-4_17, https://doi.
org/10.1007/978-3-642-29011-4_17

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Si-
mon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, May 2-4, 1988, Chicago, Illinois, USA. pp. 1–10. ACM (1988).
https://doi.org/10.1145/62212.62213, https://doi.org/10.1145/62212.62213

6. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryp-
tion and multiparty computation. In: Paterson, K.G. (ed.) Advances in Cryp-
tology - EUROCRYPT 2011 - 30th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May
15-19, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6632, pp.
169–188. Springer (2011). https://doi.org/10.1007/978-3-642-20465-4_11, https:
//doi.org/10.1007/978-3-642-20465-4_11

7. Bicer, O., Bingol, M.A., Kiraz, M.S., Levi, A.: Highly efficient and re-
executable private function evaluation with linear complexity. IEEE
Transactions on Dependable and Secure Computing pp. 1–1 (2020).
https://doi.org/10.1109/TDSC.2020.3009496

26 Hanyu Jia, Xiangxue Li

8. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving re-
mote diagnostics. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) Pro-
ceedings of the 2007 ACM Conference on Computer and Communications Se-
curity, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007. pp. 498–
507. ACM (2007). https://doi.org/10.1145/1315245.1315307, https://doi.org/
10.1145/1315245.1315307

9. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: Short proofs for confidential transactions and more. In: 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA. pp. 315–334. IEEE Computer Soci-
ety (2018). https://doi.org/10.1109/SP.2018.00020, https://doi.org/10.1109/
SP.2018.00020

10. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 16-20, 1992, Pro-
ceedings. Lecture Notes in Computer Science, vol. 740, pp. 89–105. Springer
(1992). https://doi.org/10.1007/3-540-48071-4_7, https://doi.org/10.1007/
3-540-48071-4_7

11. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y. (ed.) Advances in Cryp-
tology - CRYPTO ’94, 14th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 21-25, 1994, Proceedings. Lecture Notes in Com-
puter Science, vol. 839, pp. 174–187. Springer (1994). https://doi.org/10.1007/3-
540-48658-5_19, https://doi.org/10.1007/3-540-48658-5_19

12. Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multi-
party computation: Theory and implementation. In: Jarecki, S., Tsudik, G. (eds.)
Public Key Cryptography - PKC 2009, 12th International Conference on Prac-
tice and Theory in Public Key Cryptography, Irvine, CA, USA, March 18-20,
2009. Proceedings. Lecture Notes in Computer Science, vol. 5443, pp. 160–179.
Springer (2009). https://doi.org/10.1007/978-3-642-00468-1_10, https://doi.
org/10.1007/978-3-642-00468-1_10

13. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) Ad-
vances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7417, pp. 643–662. Springer (2012). https://doi.org/10.1007/978-3-
642-32009-5_38, https://doi.org/10.1007/978-3-642-32009-5_38

14. Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for ef-
ficient mixed-protocol secure two-party computation. In: 22nd An-
nual Network and Distributed System Security Symposium, NDSS
2015, San Diego, California, USA, February 8-11, 2015. The In-
ternet Society (2015), https://www.ndss-symposium.org/ndss2015/
aby---framework-efficient-mixed-protocol-secure-two-party-computation

15. Evans, D., Kolesnikov, V., Rosulek, M.: A pragmatic introduction to secure
multi-party computation. Foundations and Trends® in Privacy and Security 2(2-
3), 70–246 (2018). https://doi.org/10.1561/3300000019, http://dx.doi.org/10.
1561/3300000019

16. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.:
Minilego: Efficient secure two-party computation from general assumptions.
In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology - EURO-

Title Suppressed Due to Excessive Length 27

CRYPT 2013, 32nd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 7881, pp. 537–556.
Springer (2013). https://doi.org/10.1007/978-3-642-38348-9_32, https://doi.
org/10.1007/978-3-642-38348-9_32

17. Frikken, K.B., Atallah, M.J., Li, J.: Attribute-based access control with hidden
policies and hidden credentials. IEEE Trans. Computers 55(10), 1259–1270 (2006).
https://doi.org/10.1109/TC.2006.158, https://doi.org/10.1109/TC.2006.158

18. Frikken, K.B., Atallah, M.J., Zhang, C.: Privacy-preserving credit checking. In:
Riedl, J., Kearns, M.J., Reiter, M.K. (eds.) Proceedings 6th ACM Conference on
Electronic Commerce (EC-2005), Vancouver, BC, Canada, June 5-8, 2005. pp. 147–
154. ACM (2005). https://doi.org/10.1145/1064009.1064025, https://doi.org/
10.1145/1064009.1064025

19. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J.
(ed.) Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 19-23, 2001, Pro-
ceedings. Lecture Notes in Computer Science, vol. 2139, pp. 368–387. Springer
(2001). https://doi.org/10.1007/3-540-44647-8_22, https://doi.org/10.1007/
3-540-44647-8_22

20. Gamal, T.E.: A public key cryptosystem and a signature scheme based on dis-
crete logarithms. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology,
Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22,
1984, Proceedings. Lecture Notes in Computer Science, vol. 196, pp. 10–18.
Springer (1984). https://doi.org/10.1007/3-540-39568-7_2, https://doi.org/
10.1007/3-540-39568-7_2

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing. p.
218–229. STOC ’87, Association for Computing Machinery, New York, NY, USA
(1987). https://doi.org/10.1145/28395.28420, https://doi.org/10.1145/28395.
28420

22. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi,
S. (ed.) Advances in Cryptology - CRYPTO 2009, 29th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009.
Proceedings. Lecture Notes in Computer Science, vol. 5677, pp. 192–208.
Springer (2009). https://doi.org/10.1007/978-3-642-03356-8_12, https://doi.
org/10.1007/978-3-642-03356-8_12

23. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. Cryptol.
23(4), 546–579 (2010). https://doi.org/10.1007/s00145-010-9067-9, https://doi.
org/10.1007/s00145-010-9067-9

24. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of
a shuffle. In: Smart, N.P. (ed.) Advances in Cryptology - EUROCRYPT
2008, 27th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceed-
ings. Lecture Notes in Computer Science, vol. 4965, pp. 379–396. Springer
(2008). https://doi.org/10.1007/978-3-540-78967-3_22, https://doi.org/10.
1007/978-3-540-78967-3_22

25. Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T., Wang,
X. (eds.) Public Key Cryptography - PKC 2007, 10th International Conference
on Practice and Theory in Public-Key Cryptography, Beijing, China, April 16-
20, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4450, pp. 377–

28 Hanyu Jia, Xiangxue Li

392. Springer (2007). https://doi.org/10.1007/978-3-540-71677-8_25, https://
doi.org/10.1007/978-3-540-71677-8_25

26. Günther, D., Kiss, Á., Scheidel, L., Schneider, T.: Poster: Framework for
semi-private function evaluation with application to secure insurance rate cal-
culation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2019, London, UK, November 11-15, 2019. pp. 2541–
2543. ACM (2019). https://doi.org/10.1145/3319535.3363251, https://doi.org/
10.1145/3319535.3363251

27. Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit construc-
tions. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryp-
tology and Information Security, Hong Kong, China, December 3-7, 2017, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 10625, pp. 443–470.
Springer (2017). https://doi.org/10.1007/978-3-319-70697-9_16, https://doi.
org/10.1007/978-3-319-70697-9_16

28. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. In: Nguyen, P.Q., Pointcheval, D. (eds.) Public Key Cryptography - PKC
2010, 13th International Conference on Practice and Theory in Public Key Cryp-
tography, Paris, France, May 26-28, 2010. Proceedings. Lecture Notes in Computer
Science, vol. 6056, pp. 312–331. Springer (2010). https://doi.org/10.1007/978-3-
642-13013-7_19, https://doi.org/10.1007/978-3-642-13013-7_19

29. Holz, M., Kiss, Á., Rathee, D., Schneider, T.: Linear-complexity private func-
tion evaluation is practical. In: Chen, L., Li, N., Liang, K., Schneider, S.A.
(eds.) Computer Security - ESORICS 2020 - 25th European Symposium on Re-
search in Computer Security, ESORICS 2020, Guildford, UK, September 14-18,
2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12309, pp.
401–420. Springer (2020). https://doi.org/10.1007/978-3-030-59013-0_20, https:
//doi.org/10.1007/978-3-030-59013-0_20

30. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled cir-
cuits: how to prove non-algebraic statements efficiently. In: Sadeghi, A., Gligor,
V.D., Yung, M. (eds.) 2013 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS’13, Berlin, Germany, November 4-8, 2013. pp. 955–
966. ACM (2013). https://doi.org/10.1145/2508859.2516662, https://doi.org/
10.1145/2508859.2516662

31. Katz, J., Malka, L.: Constant-round private function evaluation with linear
complexity. In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology - ASI-
ACRYPT 2011 - 17th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Seoul, South Korea, December 4-
8, 2011. Proceedings. Lecture Notes in Computer Science, vol. 7073, pp. 556–
571. Springer (2011). https://doi.org/10.1007/978-3-642-25385-0_30, https://
doi.org/10.1007/978-3-642-25385-0_30

32. Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M.,
Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016 - 35th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 9665, pp. 699–728. Springer (2016). https://doi.org/10.1007/978-3-
662-49890-3_27, https://doi.org/10.1007/978-3-662-49890-3_27

33. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) Financial Cryptography and

Title Suppressed Due to Excessive Length 29

Data Security, 12th International Conference, FC 2008, Cozumel, Mexico, Jan-
uary 28-31, 2008, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 5143, pp. 83–97. Springer (2008). https://doi.org/10.1007/978-3-540-85230-
8_7, https://doi.org/10.1007/978-3-540-85230-8_7

34. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2013. Proceedings, Part II. Lecture Notes in Computer Science, vol. 8043,
pp. 1–17. Springer (2013). https://doi.org/10.1007/978-3-642-40084-1_1, https:
//doi.org/10.1007/978-3-642-40084-1_1

35. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2013. Proceedings, Part II. Lecture Notes in Computer Science, vol. 8043,
pp. 1–17. Springer (2013). https://doi.org/10.1007/978-3-642-40084-1_1, https:
//doi.org/10.1007/978-3-642-40084-1_1

36. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In: Naor, M. (ed.) Advances in
Cryptology - EUROCRYPT 2007, 26th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Barcelona, Spain, May
20-24, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4515, pp.
52–78. Springer (2007). https://doi.org/10.1007/978-3-540-72540-4_4, https:
//doi.org/10.1007/978-3-540-72540-4_4

37. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party com-
putation. J. Cryptol. 22(2), 161–188 (2009). https://doi.org/10.1007/s00145-008-
9036-8, https://doi.org/10.1007/s00145-008-9036-8

38. Lindell, Y., Riva, B.: Blazing fast 2pc in the offline/online setting with se-
curity for malicious adversaries. In: Ray, I., Li, N., Kruegel, C. (eds.) Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, Denver, CO, USA, October 12-16, 2015. pp. 579–590.
ACM (2015). https://doi.org/10.1145/2810103.2813666, https://doi.org/10.
1145/2810103.2813666

39. Lipmaa, H., Mohassel, P., Sadeghian, S.: Valiant’s universal circuit: Improvements,
implementation, and applications. Cryptology ePrint Archive, Report 2016/017
(2016), https://eprint.iacr.org/2016/017

40. Liu, H., Yu, Y., Zhao, S., Zhang, J., Liu, W., Hu, Z.: Pushing the limits of
valiant’s universal circuits: Simpler, tighter and more compact. In: Malkin, T.,
Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021 - 41st Annual Inter-
national Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20,
2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12826, pp.
365–394. Springer (2021). https://doi.org/10.1007/978-3-030-84245-1_13, https:
//doi.org/10.1007/978-3-030-84245-1_13

41. Liu, Y., Wang, Q., Yiu, S.: Making private function evaluation safer, faster, and
simpler. IACR Cryptol. ePrint Arch. p. 1682 (2021), https://eprint.iacr.org/
2021/1682

42. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party com-
putation system. In: Blaze, M. (ed.) Proceedings of the 13th USENIX Se-
curity Symposium, August 9-13, 2004, San Diego, CA, USA. pp. 287–302.
USENIX (2004), http://www.usenix.org/publications/library/proceedings/
sec04/tech/malkhi.html

30 Hanyu Jia, Xiangxue Li

43. Mohassel, P., Sadeghian, S.S.: How to hide circuits in MPC an efficient framework
for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) Advances
in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Athens, Greece, May
26-30, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7881, pp. 557–
574. Springer (2013). https://doi.org/10.1007/978-3-642-38348-9_33, https://
doi.org/10.1007/978-3-642-38348-9_33

44. Mohassel, P., Sadeghian, S.S.: How to hide circuits in MPC: an efficient framework
for private function evaluation. IACR Cryptol. ePrint Arch. p. 137 (2013), http:
//eprint.iacr.org/2013/137

45. Mohassel, P., Sadeghian, S.S., Smart, N.P.: Actively secure private function evalu-
ation. IACR Cryptol. ePrint Arch. 2014, 102 (2014), http://eprint.iacr.org/
2014/102

46. Mohassel, P., Sadeghian, S.S., Smart, N.P.: Actively secure private function eval-
uation. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryp-
tology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11,
2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8874, pp.
486–505. Springer (2014). https://doi.org/10.1007/978-3-662-45608-8_26, https:
//doi.org/10.1007/978-3-662-45608-8_26

47. Neff, C.A.: A verifiable secret shuffle and its application to e-voting.
In: Reiter, M.K., Samarati, P. (eds.) CCS 2001, Proceedings of the 8th
ACM Conference on Computer and Communications Security, Philadel-
phia, Pennsylvania, USA, November 6-8, 2001. pp. 116–125. ACM (2001).
https://doi.org/10.1145/501983.502000, https://doi.org/10.1145/501983.
502000

48. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical
active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) Ad-
vances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7417, pp. 681–700. Springer (2012). https://doi.org/10.1007/978-3-
642-32009-5_40, https://doi.org/10.1007/978-3-642-32009-5_40

49. Niksefat, S., Sadeghiyan, B., Mohassel, P., Sadeghian, S.S.: ZIDS: A privacy-
preserving intrusion detection system using secure two-party computation proto-
cols. Comput. J. 57(4), 494–509 (2014). https://doi.org/10.1093/comjnl/bxt019,
https://doi.org/10.1093/comjnl/bxt019

50. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) Advances in Cryptology - EUROCRYPT ’99, Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding. Lecture Notes in Computer
Science, vol. 1592, pp. 223–238. Springer (1999). https://doi.org/10.1007/3-540-
48910-X_16, https://doi.org/10.1007/3-540-48910-X_16

51. Shelat, A., Shen, C.: Two-output secure computation with malicious adver-
saries. In: Paterson, K.G. (ed.) Advances in Cryptology - EUROCRYPT
2011 - 30th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Pro-
ceedings. Lecture Notes in Computer Science, vol. 6632, pp. 386–405. Springer
(2011). https://doi.org/10.1007/978-3-642-20465-4_22, https://doi.org/10.
1007/978-3-642-20465-4_22

Title Suppressed Due to Excessive Length 31

52. Valiant, L.G.: Universal circuits (preliminary report). In: Chandra, A.K.,
Wotschke, D., Friedman, E.P., Harrison, M.A. (eds.) Proceedings of the 8th An-
nual ACM Symposium on Theory of Computing, May 3-5, 1976, Hershey, Penn-
sylvania, USA. pp. 196–203. ACM (1976). https://doi.org/10.1145/800113.803649,
https://doi.org/10.1145/800113.803649

53. Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968).
https://doi.org/10.1145/321439.321449, https://doi.org/10.1145/321439.
321449

54. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Sympo-
sium on Foundations of Computer Science (sfcs 1982). pp. 160–164 (1982).
https://doi.org/10.1109/SFCS.1982.38

55. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Sym-
posium on Foundations of Computer Science (sfcs 1986). pp. 162–167 (1986).
https://doi.org/10.1109/SFCS.1986.25

56. Zhao, S., Yu, Y., Zhang, J., Liu, H.: Valiant’s universal circuits revisited: An overall
improvement and a lower bound. In: Galbraith, S.D., Moriai, S. (eds.) Advances
in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory
and Application of Cryptology and Information Security, Kobe, Japan, December
8-12, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11921, pp.
401–425. Springer (2019). https://doi.org/10.1007/978-3-030-34578-5_15, https:
//doi.org/10.1007/978-3-030-34578-5_15

57. Zhu, R., Cassel, D., Sabry, A., Huang, Y.: NANOPI: extreme-scale actively-secure
multi-party computation. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.)
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. pp. 862–
879. ACM (2018). https://doi.org/10.1145/3243734.3243850, https://doi.org/
10.1145/3243734.3243850

58. Zhu, R., Huang, Y., Katz, J., Shelat, A.: The cut-and-choose game
and its application to cryptographic protocols. In: 25th USENIX Se-
curity Symposium (USENIX Security 16). pp. 1085–1100. USENIX As-
sociation, Austin, TX (Aug 2016), https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/zhu

