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Abstract

We study the following question, first publicly posed by Hosoyamada and Yamakawa in 2018. Can
parties A,B with quantum computing power and classical communication rely only on a random oracle
(that can be queried in quantum super position) to agree on a key that is private from eavesdroppers?

We make the first progress on the question above and prove the following.

• When only one of the parties A is classical and the other party B is quantum powered, as long as
they ask a total of d oracle queries and agree on a key with probability 1, then there is always a
way to break the key agreement by asking O(d2) number of classical oracle queries.

• When both parties can make quantum queries to the random oracle, we introduce a natural con-
jecture, which if true would imply attacks with poly(d) classical queries to the random oracle.
Our conjecture, roughly speaking, states that the multiplication of any two degree-d real-valued
polynomials over the Boolean hypercube of influence at most δ = 1/poly(d) is nonzero. We then
prove our conjecture for exponentially small influences, which leads to an (unconditional) classical
2O(md)-query attack on any such key agreement protocol, where m is the oracle’s output length.

• Since our attacks are classical, we then ask whether it is always possible to find classical attacks
on key agreements with imperfect completeness in the quantum random oracle model. We prove
a barrier for this approach, by showing that if the folklore “Simulation Conjecture” (first formally
stated by Aaronson and Ambainis in 2009) about the possibility of simulating efficient-query quan-
tum algorithms using efficient-query classical algorithms is false, then there is in fact such a secure
key agreement in the quantum random oracle model that cannot be broken classically.
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1 Introduction

In a course project, now known as “Merkle Puzzles”, Merkle [Mer74] proposed the first ever nontrivial
key agreement protocol between two parties using an ideal hash function. This protocol can be formally
analyzed in the random oracle model (ROM) to prove that Alice and Bob can ask d queries to a random
oracle h and agree on a key, while an eavesdropper Eve, who can see the exchanged messages t, needs
Ω(d2) queries to h to find the key. Shortly after, seminal works [DH76, RSA78] showed how to achieve
a super-polynomially secure key agreement protocol by relying on number theoretic assumptions. In com-
parison, Merkle’s protocol suffers from only offering polynomial security. However, after all the years of
research and newly developed candidate constructions for public-key encryption and key agreements (see
the survey [Bar17] for such works), Merkle’s protocol enjoys a qualitative advantage: it only relies on an
idealized symmetric primitive, namely a random function without any structure. Indeed, basing public-key
encryption or key agreement on symmetric key primitives is still one of the most fundamental open questions
in cryptography.

Merkle’s protocol led to the following natural question (also attributed to Merkle by [IR89]). Is there
any d-query key agreement protocol in the ROM with larger security ω(d2), or is theO(d2) bound optimal?1

Impagliazzo and Rudich were the first to prove an upper bound on the security of key agreement protocols in
the ROM. They showed that all such protocols can be broken by an attacker who asks Õ(dr)3 queries, where
r is the round complexity of the protocol. This result, in particular, showed that there is no “black-box” way
of obtaining key agreements from one-way functions, because roughly speaking a random oracle is one-way
with high probability. Finally, Barak and Mahmoody [BM17] showed that every key agreement in the ROM
can be broken by O(d2) queries, showing that Merkle’s protocol was indeed optimal.

Key agreement in a quantum world. Merkle’s protocol and attacks of [IR89, BM17] are all classi-
cal. With the growing interest in understanding the power and limitations of quantum computation, this
brings up the following natural question. What if parties can perform quantum computation? Bennett and
Brassard [BB84] showed that when parties can communicate quantum bits, then there is an information-
theoretically secure key agreement protocol. This still leaves out the case of protocols with classical com-
munication, which is the focus of our work. Classical-communication protocols are particularly attractive
as they can be used over the current infrastructure (e.g., the Internet). In this model, all the quantum com-
putation is done locally by the parties who exchange classical messages and aim to establish a private key.
We refer to this model as the quantum-computation classical-communication (QCCC) model.

Quantum random oracle. A QCCC protocol in the quantum random oracle model (QROM) allows a
quantum-powered party to ask superposition queries to the oracle. This party could be the honest parties
or the attacker. Brassard and Salvail [BS08] and Biham, Goren and Ishai [BGI08] revisited the security
of Merkle’s protocol against quantum adversaries and showed that Merkle’s protocol can be broken by a
quantum eavesdropper (essentially, Grover’s search [Gro96]) that asks O(d) number of quantum queries to
the random oracle. This showed that Merkle’s protocol gives no super-linear security over d against quantum
attackers. Brassard and Salvail [BS08] then showed how to regain a super-linear gap by having Alice and
Bob also leverage quantum queries to the oracle. Brassard et al. [BHK+15] further improved this result and

1Note that a sufficiently large polynomial gap could still be a meaningful fine-grained security, particularly because this cap can
only mean more security when the CPU clocks get shorter. In particular, with faster computers, Alice and Bob can pick a larger d,
while running in the same time as before, while Eve now needs d times more running time than Alice and Bob.
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showed that a quantum Alice and Bob can agree on a key by d queries, while even a quantum attacker would
require ≈ d2 number of queries to break it.

All of these works seek lower bounds on the gap between the query complexity of quantum algorithms
Alice/Bob and the adversary Eve. However, no previous work has shown an upper bound on the achievable
security. In fact, our current knowledge about the limitations of security in the QROM is consistent with the
possibility that QCCC protocols can establish a key agreement over a classical channel, while it would take
exponentially many queries to the oracle (even by a quantum attacker) to find the key. This brings up the
main question of this work, which was also posed by Hosoyamada and Yamakawa [HY20].2

Is there a key agreement protocol using classical communication, in which Alice and Bob ask
d quantum queries to a random oracle, while the eavesdropper needs a super-polynomial dω(1)

number of queries to find the key?

1.1 Our Results

In this work, we present the first barriers against obtaining super-polynomially secure QCCC key agreement
protocols in the QROM model.

Classical Alice Quantum Bob (CAQB). Our first result shows that when one of the parties Alice is
classical, the quadratic gap achieved by Merkle is optimal, even against classical adversaries. This is an
interesting setting on its own, as it can model unbalanced parties. For example, suppose Google wants to
agree on a key with a typical user, who does not have any quantum computing power, over the Internet.
Then, our result shows that there is a limit to how much security such protocols can achieve.

Theorem 1.1 (Attacking CAQB protocols – informal). Suppose Π is a QCCC d-query key agreement pro-
tocol with perfect completeness in the QROM. If Alice is classical and only Bob uses quantum queries to the
random oracle, then there is a classical adversary who can find the key by asking O(d2) classical queries to
the oracle.

Note that the above result assumes that the two parties agree on a key with probability one, and this is
the case for all of our attacks in this work; extending them to allow imperfect completeness is an intriguing
question for future work.

Quantum Alice and Quantum Bob (QAQB). We then turn to study protocols in which Alice and Bob
both have quantum access to the oracle. For this more general setting, we show a conditional result based
on a conjecture about multilinear polynomials, which will also prove for some extreme cases.

Some basic notions. We first recall some basic notions about polynomials. Suppose

f =
∑
S⊆[N ]

αS
∏
i∈S

xi

is a multilinear polynomial over binary variables xi ∈ {±1}, i ∈ [N ] and real coefficients αS ∈ R,S ⊆ [N ].
The degree of f is maxαS 6=0 |S| and the `2 norm of f is ‖f‖2 = Ex←{±1}N [f(x)2]. The influence of xi
on f is defined as Infi(f) =

∑
i∈S α

2
S , and more generally for a distribution F over such multilinear

polynomials, we let Infi(F ) = Ef←F [Infi(f)] denote the expected influence.

2To the best of our knowledge, the question was first asked in 2018 [HY18].
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Conjecture 1.2 (Polynomial Compatibility). There is a function δ(d) = 1/ poly(d), such that the following
holds for all d ∈ N. Suppose F,G are distributions over multilinear polynomials of degree d with variables
x1, . . . , xN ∈ {±1} and `2-norm 1 and bounded influences Infi(F ), Infi(G) ≤ δ(d) for all i ∈ [N ]. Then,
there exist f ∈ supp(F ), g ∈ supp(G) and x ∈ {±1}N such that f(x) · g(x) 6= 0.

All assumptions are needed. In Section B we show, through constructive examples, that for Conjec-
ture 1.2 to be true one needs both F,G to have both of the low-degree and low-influence conditions. Fur-
thermore, we give an example showing that relation between δ and the degree d must satisfy δ < 1

2d ,
otherwise the conjecture is false.

We then prove the following conditional result. We state the group structure Zm2 to clarify how the
answers are read by the quantum algorithm. In particular, the oracle answers are added (in Zm2 ) to the
answer registers.

Theorem 1.3 (Attacking QAQB protocols – informal). If Alice and Bob ask a total of d quantum queries to
a random oracle h : [N ] → Zm2 and agree on a key k with probability 1, and if Conjecture 1.2 holds, then
there is an attacker who asks poly(d,m) classical queries to h and finds the key k with probability 0.9.

More generally, we show that if the Polynomial Compatibility Conjecture holds with respect to an
influence δ, then for any d-query key agreement protocol using the random oracle h : [N ]→ {0, 1}m, there
is an attacker who asks poly(dm/δ) number of queries and finds the key with high probability. Thus while
we are unable to prove Conjecture 1.2 as stated, this motivates trying to prove it for some smaller influence
δ which is independent of the size of the input space N = 2κ for security parameter κ.

Random oracles using other groups for answers. Random oracles can be defined with an arbitrary
Abelian group G (other than Zm2 ). We further extend Theorem 1.3 in two directions. We first generalize
the Polynomial Compatibility Conjecture (see Conjecture 5.5) that is parameterized by an Abelian group
G1, such that when G1 = Z2, then this becomes Conjecture 1.2. We then show (see Theorem 4.8) that
if this conjecture holds for any constant-size Abelian group G1, then for all Abelian groups G2 we can
get poly(d, log |G2|)-query (classical) attacks on perfectly complete key agreement protocols that use a
random oracle h : [N ] → G2. Note that this reduction allows the size of the group elements in G2 to grow
polynomially with the security parameter κ, while we still get a poly(κ)-query (classical) attack.

Proving the conjecture for exponentially small influence. We then prove (the modification of) Conjec-
ture 1.2 for the case that δ is exponentially small δ < O(2−d/d). As a result, we obtain anO(2dm ·d2)-query
(classical) attack on any key agreement in the QROM. Note that this is a nontrivial upper bound on the se-
curity, only when the input length n is sufficiently larger than m (e.g., when n = m2, or that the input space
is {0, 1}∗, while the outputs have fixed length m).

Learning heavy queries for quantum protocols. One of the major contributions of our work in proving
Theorem 1.3 is to generalize the “heavy-queries learner” of Barak and Mahmoody [BMG09] to the quantum
setting. In fact, doing so is crucial for us even to come up with any candidate attack in the QAQB model,
regardless of proving it to be successful. Our quantum-heavy query learner could pave the way for proving
more separations in the quantum random oracle model.
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Implications to quantum black-box separations. The poly(d)-query attacks of [IR89, BM17] were
used to obtain black-box separations for key agreement from one-way functions. The same argument ex-
tends to the case of QCCC key agreements with perfect completeness. Our Theorem 1.1 also leads to a
poly(d,m) ≤ poly(κ)-query attack, and hence can be used to obtain similar separations with respect to
“quantum black-box” constructions, for the case of perfect completeness and classical Alice. In a quan-
tum black-box construction [HY20] the reductions (to implement the primitive and prove its security) can
have quantum superposition access to the oracles they use. Our Theorem 1.3 implies a similar separation
for QCCC key agreement protocols from one-way functions, but based on the assumption that Polynomial
Compatibility Conjecture holds. See Theorem 6.3 for a formalization of the related notions and these results.

Attacking other primitives. Once we obtain polynomial-query attacks on QCCC key agreement in the
QROM model, we also immediately obtain further corollaries about the impossibility of using quantum
random oracles for realizing other primitives such as public-key encryption and oblivious transfer, or more
generally, any primitive P that implies key agreement in a black-box way, when the communication and
the inputs are classical. For example, since oblivious transfer implies key agreement [GKM+00], our The-
orems 1.1 and 1.3 also extend to rules out the possibility of OT protocols with perfect completeness in the
QCCC model using random oracles. Similarly, our separations extend to similar separations from other
primitives, such as Oblivious Transfer, that imply key agreements in a black-box way.

Connection to the Simulation Conjecture. Since our attacks on perfectly complete key agreement pro-
tocols in the QROM model are classical, it is natural to ask if such classical attacks can be extended to all
such protocols, even against protocols with imperfect completeness. We show that obtaining such attacks
would resolve a basic and long-standing open question about the power of quantum vs. classical algorithms.
That means obtaining such classical attacks unconditionally might be quite challenging. More specifically,
a folklore conjecture, which we refer to as the “Simulation Conjecture”, states that for any poly(κ)-query
quantum algorithm Qh using a random oracle h, and for any ε = 1/ poly(κ), there is another poly(κ)-
query classical algorithm Sh that can approximate the acceptance probability Pr[Qh = 1] with ±ε additive
error, for 1 − ε fraction of oracles h. Aaronson and Ambainis (see Conjecture 4 in [AA14]) formalized
this conjecture and showed that it is implied by a Fourier-analytic conjecture, now known as the Aaronson-
Ambainis conjecture, that has some resemblance to our Polynomial Compatibility Conjecture but also with
key differences (see Section 1.3 for more discussions).

In this work, we observe that the Simulation Conjecture is in fact necessary for extending classical
attacks on key agreement protocols in the QCCC model using quantum random oracles and with negligi-
ble completeness error. Doing so shows that proving an unconditional classical attack of poly(κ) query
complexity on QCCC key agreements in the QROM are not possible, unless one resolves the Simulation
Conjecture positively.

Theorem 1.4 (Quantum key agreement against classical adversaries – informal). If the Simulation Conjec-
ture is false, then there is a key agreement in the QCCC model in which quantum powered parties Alice and
Bob use a random oracle to agree on a bit b with probability 1−negl(κ), while for an infinite set of security
parameters κ, the protocol is secure against all classical poly(κ)-query eavesdropping algorithms.

See Theorem 7.6 for a formalization of the theorem above, and see the next section below for a highlight
of the ideas behind its proof.
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1.2 Technical Overview

In this section, we highlight the ideas behind Theorems 1.1, 1.3, and 1.4.
Our starting point is the work of Brakerski et al. [BKSY11] that showed a simpler attack and analysis

than that of [IR89, BM17], to break any key agreement with perfect completeness in the ROM using O(d2)
queries. To obtain our results, we start by modifying the attack of [BKSY11] to a version that is more robust
so that it can be adapted to the quantum setting. We start by describing this attack for the setting that both
Alice and Bob are classical. We then discuss, step by step, the new ideas that are introduced to extend the
attack to the case of quantum parties.

1.2.1 Case of Classical Alice and Classical Bob.

Let h : [N ]→ {0, 1}m be the random oracle. Suppose t is the (classical) transcript of the protocol, and PA

(resp. PB) is the partial function that defines the set of queries asked by Alice (resp. Bob) and their answers.
Let QA = dom(PA) (resp. QB = dom(PB)) be the set of queries asked by Alice (resp. Bob). Also, let k be
the key that Alice and Bob agree upon.

Attacking CACB protocols. The adversary Eve E is given the transcript t and wants to find out the
key k. Our simple attack follows the “heavy query learning” approach of [IR89, BM17]. Eve maintains a
partial function L that defines the answers to the queries QL that are asked by Eve has asked so far. (At
the beginning L = ∅.) During the attack, Eve asks any query x /∈ QL that is “ε-heavy for being in QA”
conditioned on what Eve knows so far: (L, t). More formally, x is called ε-heavy if Pr[x ∈ QA|L, t] ≥ ε.
Whenever Eve reaches a point that there is no heavy query left to ask, Eve simply samples a full (fake) view
V ′A for Alice in her head and outputs the key k′A that is implied by V ′A. We claim that the attack is both
efficient and successful. Namely, Eve asks an expected number of at most d/ε queries, and that it finds the
key k′A = k with probability at least 1− εd. Then, by taking ε ≈ 1/d we obtain the desired result.

Efficiency of the attack. It is easy to prove, using the linearity of expectation, that E[|L|] ≤ d/ε. This is
roughly because every query asked by Eve has at least ε-chance of being in QA, and that there are a limited
|QA| ≤ d possible queries in QA.

Success of the attack. Perhaps the more interesting aspect is the success of the attack, which is argued
based on two facts.

• Independence: For every fixed oracle h and transcript t, the random variables VA and VB that describe
the views of Alice and Bob conditioned on h and t are independent random variables (i.e., they have
a product distribution).

• Consistency: If (1) the views VA and VB are each consistent with the transcript t, and (2) their partial
functions PA, PB are also consistent partial functions, then one can conclude that there is an oracle h
that is consistent with each of the views VA, VB. The second condition is equivalent to saying that there
is a partial function L such (1) L is consistent with both PA, PB, and (2) (QA \QL)∩(QB \QL) = ∅.3

The above two facts can be used to argue the success of the attack as follows. Let us fix Bob’s (real) view
VB. Let x ∈ QB be any particular query asked by Bob that is not in QL, and hence not learned by Eve. Any

3In [IR89, BM17], this condition is referred to as having no “intersection queries” outside L.
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such query shall be ε-light (otherwise it was learned by Eve and hence in QL). Therefore, the probability
that x is in Q′A, where Q′A is the set of queries in the fake view V ′A sampled by Eve, is at most ε. By a
union bound, with probability at least 1− dε, it holds that P ′A and PB are consistent (where P ′A is the partial
function of the view of the fake Alice V ′A sampled by Eve). This means that there is a full oracle h that is
consistent with both of V ′A, VB. Then, by perfect completeness, this means the key k = kB for Bob should
match the key kE = k′A output by Eve.

1.2.2 Case of Classical Alice and Quantum Bob.

Here we describe what steps would be different when attacking protocols with a quantum Bob (but still
classical Alice). Interestingly, the attack description remains exactly the same as before. First note that,
because Alice is classical it is well-defined to talk about whether x ∈ QA or not at the end of the protocol
as once a query is asked by Alice it would belong to QA forever.4 The efficiency analysis of the attack also
remains the same as the CACB case above. Below, we describe the key differences in the analysis of the
success of the attack.

Success of the attack. At a high level, we prove quantum variants for both of the Independence and
Consistency properties.

• Independence: We show that, even if Alice and Bob are both quantum, then their “views” (i.e., the
measurement of their registers) would be independent conditioned on the fixed classical transcript t
and oracle h. More generally, we show that the joint quantum state of Alice and Bob, conditioned on
h, t is a product state.

• Consistency: Again, we first prove a result that applies to the more general case of two quantum
parties. We start by using two ideas that were popularized following the breakthrough work of
Zhandry [Zha19]. First, we use a purified quantum random oracle h that is in the uniform super-
position over all possible classical oracles (which is equivalent to using a classical random oracle).
Second, we represent the oracle’s answers in the Fourier domain, and denote the oracle ĥ.

We show that if parties ask a total of d queries to the oracle, then the joint quantum state |φ〉 that
describes both Alice’s and Bob’s registers W and the oracle ĥ (using registers H) is “d-sparse” over
its oracle part H , in the sense that ĥ can be represented with a degree d multi-linear polynomial f
with variables xi, i ∈ [2n].

Finally, we show that in the case when Alice is classical, then if Alice’s fake queries Q′A do not
intersect with the “queries” in S, where S is a (maximal) monomial

∏
i∈S xi in f of deg(f), then

there exists an oracle h such that (1) h is consistent with the real views |φ〉, and (2) h is also consistent
with Alice’s fake view V ′A.

The above generalization of the Consistency condition allows us to now basically apply the same argument
used in the CACB case by treating the variables in the maximal monomial S as Bob’s queries. In particular,
once Q′A ∩ S = ∅, then we conclude that there is an oracle h that is consistent with each of V ′A and the the
real (quantum) Alice and Bob. Then, by the Independence property, h is consistent with V ′A and real Bob at
the same time, and hence by perfect completeness the key implied by Alice’s fake view V ′A sampled by Eve
shall match that of the real Bob.

4One cannot say the same thing for quantum algorithm Bob, as it might choose to “forget” things about oracle as it proceeds.
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1.2.3 Case of Quantum Alice and Quantum Bob.

When it comes to the case of quantum Alice and Bob, we can no longer use the classical attack of the CACB
setting, as both Alice and Bob can now ask superposition queries to the oracle (e.g., all of their queries
might have non-zero amplitude for all possible oracle queries). Hence, we need to change the attack and its
analysis. In this case, without loss of generality, we focus on the simpler case that the key k is a bit.

Description of the attack. In the previous case of CAQB, we described how we choose to represent the
(now quantum) random oracle ĥ in the Fourier domain. Roughly speaking, in the Fourier domain, an oracle
answer 0̂ to a query x, means that it has uniform distribution (when measured in the computational basis),
and any other answer ŷ 6= 0̂ refers to non-uniform answers. Therefore, a “non-uniform” ŷ 6= 0̂ answer
here means that either Alice or Bob have (at least partially) “read” the answer to x at some point. More
precisely, conditioned on all Eve knows, let px be the probability that after measuring the answer to the
query x in the Fourier basis, we obtain an answer other than 0̂. Then, informally speaking, we interpret px
as the “probability that either Alice or Bob has read x from the oracle”. In that case, if px ≥ ε, then Eve will
call x quantum ε-heavy. In the new attack, Eve goes ahead and asks any (classical query) x that is quantum
ε-heavy (under the new definition) and updates L as before. When no “quantum ε-heavy query” is left, Eve
outputs the more likely key k ∈ {0, 1}.

Efficiency. We generalize the efficiency argument for the classical case to the quantum regime. Namely,
if Alice and Bob ask a total of d queries to the oracle, then the quantum ε-heavy learner Eve will stop after
asking |L| queries, where we have E[|L|] ≤ d/ε.

Success of the attack. Our goal is to show that once no quantum ε-heavy query is left, then conditioned
on Eve’s knowledge (t, L), at least one of the possible keys k ∈ {0, 1} is much more likely to be the key
chosen by Alice and bob. In that case, Eve will indeed succeed in finding the true key with high probability.
For sake of contradiction, suppose after learning L and conditioned on (t, L) both values of k ∈ {0, 1} have
probabilities ≈ 1/2. We would like to show that this situation violates perfect completeness. As explained
in the previous case of CAQB, once we view the oracle ĥ in the Fourier domain, after Alice and Bob ask d
oracle queries, the joint state of the oracle and the registers of Alice and Bob corresponds to a distribution F
over degree-d multi-linear polynomials like f . The distribution is obtained by measuring the work registers
of Alice and Bob.5 Below, we further analyze this distribution over low-degree polynomials, while for
simplicity we assume that we deal with one fixed polynomial f .

Because at the end of the attack Eve has learned all the quantum ε-heavy queries of the oracle, it can
be shown that any unlearned query x, which corresponds to a variable in the polynomial f , has influence
(as defined prior to Conjecture 1.2) at most ε. Putting things together, the polynomial f has the following
properties: (1) f has `2 norm 1, because of representing a quantum state, (2) f has degree d, and (3) the
influence of every variable in f is bounded by ε. Furthermore, if we let fb be the polynomials that represent
the “conditional states” of the oracle and Alice-Bob registers conditioned on the key being k = b, then by
the fact that the key k is still unbiased (in Eve’s view) we can conclude that f0, f1 both essentially inherit all
the properties of f (the only difference being that the influences increase to ≈ 2ε instead of ε).

Our Conjecture 1.2 states that when ε is sufficiently small, any two polynomials f0, f1 with properties
stated above would have a nonzero product. This implies that there exists an oracle h that is consistent with

5As expected, the formulation of our Polynomial Compatibility Conjecture is such that, to use the conjecture for obtaining
attacks, it does not matter in which basis the work registers of Alice and Bob are measured.
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two very different executions with two outcomes for the final key. By the Independence property, we can
now choose Alice’s view from the execution leading to the key 0 and choose Bob’s view from the execution
leading to key 1, but this violates the perfect completeness.

Obtaining exponentially small influences. To prove the weaker variant of Conjecture 1.2 where the in-
fluences are less than 2−d/d rather than the desired 1/ poly(d), the high level idea is as follows. Take any
maximum-degree term appearing in f , and consider what happens when we fix all variables except the ≤ d
ones in the term. Clearly, the resulting restriction of f is not a constant function so there is always some
assignment to the remaining d variables that makes f non-zero, regardless of how the first variables were
fixed. We show that, if g has all influences less than 2−d/d then there is some assignment to the variables
outside the term such that g is non-zero for all assignments to the remaining d variables, yielding an x such
that f(x) · g(x) 6= 0. To prove this property of g, we show that in expectation over a random assignment of
the variables outside the term, the resulting restriction of g has a constant term that dominates all the non-
constant terms. The exponential loss of 2d essentially comes from the fact that there are 2d non-constant
terms in this restriction of g.

Ideas behind Theorem 1.4. We now sketch some of the ideas behind the proof of Theorem 1.4. We start
by assuming that Q is a quantum algorithm accessing a random oracle h that asks poly(κ) queries, while
there is ε = 1/ poly(κ) such that any poly(κ)-query classical algorithm will fail to approximate Pr[Qh = 1]
within ±ε additive error for at least ε fraction of the sampled random oracles h. Note that even though a
classical algorithm cannot do so, a quantum algorithm (e.g., Alice or Bob) can indeed approximate Pr[Qh]
within an arbitrarily small additive error δ = 1/ poly(κ). As a result, quantum Alice and Bob can access the
“same” number (approximately) that is, at least sometimes, not as accessible by the classical Eve. Therefore,
roughly speaking, the quantum parties can leverage on this “source of shared unpredictable” numbers and
bootstrap it to a full fledged key agreement that is secure against classical Eve in the QROM.

In more detail, we first show that the above argument leads to a “weak” key agreement such that the
key cannot be guessed with probability 1 − δ for some δ = 1/ poly(κ). We then use a careful number
of repetitions to agree on a longer key that is much harder for the adversary to guess. The proof of this
steps relies on the fact that concurrent composition of interactive proofs (rather than arguments) decrease
the soundness error optimally. Then, one approach is to use the Goldreich-Levin technique to extract a
uniform key from the “unpredictable key”, and then bootstrap the completeness to 1 − negl(κ) using the
amplification technique of Holenstein [Hol05]. More conveniently, we use a tool from the recent work of
Haitner et al. [HMST21] that combines the last two steps.

1.3 Related Work

Black-box separations. Impagliazzo and Rudich [IR89] initiated the field of “black-box separations” by
proving the existence of an oracle relative which one-way functions exist but secure key agreement protocols
do not. The notions of black-box reductions, in various forms, were later formalized by Reingold, Trevisan,
and Vadhan [RTV04].

Quantum black-box separations. The work of Hosoyamada and Yamakawa [HY20] initiated the study
of “quantum black-box” separations by formalizing the notion of quantum black-box constructions (for
primitives with non-interactive adversaries) and showing that even quantum black-box constructions cannot
base collision resistant hash functions on one-way functions. Their work extended the previous result of
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Haitner et al. [HHRS07] about classical constructions to the quantum setting. Cao and Xue [CX21] proved
quantum black-box separation of one-way permutations from one-way functions. Their work extended
the previous result of Rudich [Rud88] and Kahn et al. [KSS00] about classical constructions and classical
security proofs, to the setting of allowing quantum reductions of security.

The QCCC model. The model of classical communication and quantum-powered parties is also used in
other lines of work. One such recent body of work aims to classically verify a quantum computation [Mah18,
CCY20, ACGH20, BKVV20, Zha21, Bar21]. More generally, an active line of work aims for designing on
post-quantum security (e.g., see the recent works [BS20, BKS21, ABG+21, ACP21]) in which we deal with
quantum powered adversaries, while the original protocol, and in particular its messages, are classical.
However, in our setting, honest parties are also quantum powered.

Limitations of random oracles. Haitner et al. [HOZ16], and Mahmoody et al. [MMP14] studied the
limitations of using random oracles for secure multiparty computation. It was shown in [HOZ16] that
inputless functionalities cannot rely on ROM to get security (unless they are trivially possible). [MMP14]
showed that non-trivial and non-complete two-party functionalities cannot be based on random oracles.

The work of Haitner et al. [HMO+21] studies the communication complexity of key agreement from
random oracles. It is interesting to see whether their techniques can be combined with ours to prove similar
lower bounds on the communication complexity of key agreement in the QROM model.

Comparison with the Aaronson-Ambainis Conjecture. As mentioned above, Aaronson Ambainis [AA14]
proved that if a Fourier-theoretic conjecture, with resemblance to our Polynomial Compatibility Conjecture
holds, then the Simulation Conjecture holds as well. The AA Conjecture states that any bounded degree d
polynomial f : {−1, 1}n → [0, 1] with variance ε has a variable with influence at least poly(ε/d). In a lan-
guage closer to our Polynomial Compatibility Conjecture, the contrapositive of the AA Conjecture says that
for any degree d polynomial f with constant variance and polynomially small influences poly(Var[f ]/d),
there must exist an x ∈ {0, 1}n such that |f(x)| > 1. One interesting similarity is that both conjectures
hold, when we assume exponentially small influences [DFKO06]. Despite that, our conjecture and the AA
conjecture do not seem to be directly comparable, and it would be interesting to prove implications in either
direction between them. For the application to key agreements, the implications of the two conjectures also
seem incomparable. Our conjecture is tailored for perfect completeness and can be applied when there is
communication. On the contrary, the AA conjecture can be applied to give an attack in the setting of imper-
fect completeness, but (as far as we can see) it is limited to the case of no communication. Furthermore, the
“intersection” of these, i.e., the case of no communication and perfect completeness, can be proved without
a conjecture [OSSS05].

2 Preliminaries and Notation

2.1 Quantum Computation

Let Σ be a finite and nonempty set of classical states. The finite dimensional Hilbert space associated with
a register X is defined to be C|Σ| for Σ being the state set of X . A quantum state of a register X is a
unit vector in C|Σ|. We use standard bra-ket notation for vectors and their adjoint. That is, we can write
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|ψ〉X ∈ C|Σ| as a vector
|ψ〉X =

∑
i∈Σ

αi|i〉X ,

where
∑

i∈Σ |αi|2 = 1, and {|i〉}i∈Σ is an orthonormal basis of C|Σ|. We define 〈ψ|X as the row vector
that is conjugate to |ψ〉X . The inner product between |φ〉X and |ψ〉X is denoted by 〈φ|ψ〉X . We sometimes
neglect the subscripts when the corresponding registers are clear form the context.

For combined registers Y = (X1, . . . , Xn), where Σi is the state set for each Xi, the state set of Y is
defined as Σ = Σ1 × · · · × Σn. The finite dimensional Hilbert space associated with Y is defined to be
C|Σ1| ⊗ · · · ⊗ C|Σn|. Since every register is labeled by a distinct name, we sometimes permute the order of
tensor product for ease of expression. A quantum state |ψ〉AB over registers A, B is called a product state
if and only if it can be written as |ψ〉AB = |φ1〉A ⊗ |φ2〉B .

The evolution of a quantum state |ψ〉 ∈ C|Σ| is governed by a unitary operator U : C|Σ| → C|Σ|.
The state becomes |ψ′〉 = U |ψ〉. The measurement operator corresponding to a finite nonempty set of
outcomes Γ is a set of operators {Mi}i∈Γ which satisfies

∑
i∈ΓMi

†Mi = I , where (·)† denotes Hermitian
conjugation and I is the identity operator. The probability of obtaining i by measuring |ψ〉 is ‖Mi|ψ〉‖22, and
the post-measurement state then collapses to Mi|ψ〉

‖Mi|ψ〉‖2 , where ‖·‖2 denotes the Euclidean norm. An operator

ΠX : C|Σ| → C|Σ| is called a projection operator (or projector) if it satisfies Π2
X = ΠX . For projection

operators acting on multiple registers of the form ΠX1X2 = ΠX1 ⊗ IX2 , we write only the non-trivial part
ΠX1 for convenience. We say an operator A commutes with another operator B if AB = BA.

A quantum circuit consists of registers, unitary gates and measurements. By the deferred measurement
principle, all intermediate measurements can be delayed at the end of the circuit by introducing ancillary
registers. Without loss of generality, we assume all the registers are measured in the computational basis
when the computation finishes. It is also known that (efficient) classical algorithms can be simulated using
quantum circuits (efficiently).

Some of the components of our analysis rely on ideas inspired by the Compressed Oracle technique of
Zhandry [Zha19]. The following preliminary follows closely to the formalization in Section 3 of [CFHL21].

The computational and the Fourier bases. Let Y be a finite Abelian group of cardinality |Y|. Let
{|y〉}y∈Y be an orthonormal basis of C|Y|, where the basis vectors are labeled by the elements of Y . We
refer to this basis as the computational basis. Let Ŷ be the dual group of Y , which consists of all group
homomorphisms Y → {ω ∈ C | |ω| = 1} and is known to be isomorphic to Y , and thus to have cardinality
|Y| as well.6 We consider Ŷ to be an additive group; the neutral element is denoted 0̂. The Fourier basis
{|ŷ〉}ŷ∈Ŷ of C|Y| is defined by the transformations below, where (·)∗ is complex conjugation.

|ŷ〉 =
1√
|Y|

∑
y∈Y

ŷ(y)∗|y〉 |y〉 =
1√
|Y|

∑
ŷ∈Ŷ

ŷ(y)|ŷ〉.

An elementary property of the Fourier basis is the following.

Fact 2.1. The operator defined by |y〉|y′〉 7→ |y+y′〉|y′〉 for all y, y′ ∈ Y is the same as the operator defined
by |ŷ〉|ŷ′〉 7→ |ŷ〉|ŷ′ − ŷ〉 for all ŷ, ŷ′ ∈ Ŷ .

6We do not rely on Ŷ and Y being isomorphic and think of them simply as disjoint sets.
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Functions and their (quantum) representations. Let H be the set of all functions h : X → Y and
Ĥ be the set of all functions ĥ : X → Ŷ . For any h ∈ H, we define its quantum representation to be
|h〉H :=

⊗
x∈X |h(x)〉Hx in the computational basis, where the register Hx is associated with C|Y| for all

x ∈ X , and the register H is compounded of all Hx. One can view |h〉H as the vector representing the
truth table of h. Similarly, for any ĥ ∈ Ĥ we define |ĥ〉H :=

⊗
x∈X |ĥ(x)〉Hx in the Fourier basis. Both

{|h〉H}h∈H and {|ĥ〉H}ĥ∈Ĥ are orthonormal bases of C|Y||X| .

Superposition oracle. In the quantum random oracle model, an oracle-aided quantum algorithm A con-
sists of the query register X , the answer register Y and ancillary register Z. For convenience, we let
W := (X,Y, Z) denote the internal registers of A. Initially, a function h : X → Y is sampled from H
uniformly at random, and A begins with the state |0〉W . The algorithm A is able to ask adaptive quantum
queries. Between the queries, A can apply unitaries and perform measurements on its registers. The query
operation O is defined as the following unitary mapping in the computational basis.

|x〉X |y〉Y |h〉H 7→ |x〉X |y + h(x)〉Y |h〉H

Since quantum operators are reversible, we assume the algorithm has access to O† as well. By default, O
acts as identity on registers other than X,Y and H .

We define the quantum state |Φ0〉H to be a uniform superposition over all h ∈ H

|Φ0〉H :=
∑
h∈H

1√
|H|
|h〉H =

⊗
x∈X
|0̂〉Hx . (1)

The sampling of h is equivalent to measuring |Φ0〉H in the computational basis. Since the unitary operators
and measurements performed by A commute with the measurement on |Φ0〉H , and the fact that registers in
H are used only as control-bits forO, we can delay the measurement on |Φ0〉H to the end of the computation.

Now, we analyze the behavior of the superposition oracle in the Fourier basis. By Fact 2.1, O becomes

|x〉X |ŷ〉Y |ĥ〉H 7→ |x〉X |ŷ〉Y
⊗
x′∈X
|ĥ(x′)− ŷ · δx,x′〉Hx′ (2)

in the Fourier basis, where δx,x′ = 1 when x = x′ and δx,x′ = 0 otherwise.

2.2 Key Agreement Using Quantum Computation and Classical Communication

A key agreement protocol in the Quantum-Computation Classical-Computation (QCCC) model is a protocol
in which two quantum algorithms, Alice and Bob, can query the oracle, apply quantum operation on their
internal registers, and send classical strings over the public channel to the other party. We also refer to this
model as the Quantum-Alice Quantum-Bob model. The sequence of the strings sent during the protocol is
called the transcript of the protocol. Let WA and WB be Alice’s and Bob’s internal registers, respectively.
Before the protocol starts, an oracle function h is chosen fromH uniformly at random, and query operation
Oh given the oracle h is defined as

Oh : |x〉|y〉 7→ |x〉|y + h(x)〉.

When we consider the case that Alice and Bob are both quantum algorithms, they start with a product state
|0〉WA

⊗|0〉WB
. When Alice is a classical algorithm and Bob is a quantum algorithm, Alice is given a random
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tape at the beginning. I.e., Alice and Bob start with a product state |rA〉WA
⊗ |0〉WB

, where rA ∈ {0, 1}∗ is
uniformly random.

Apart from the real execution, we can take not only WA,WB but also the oracle register H initialized
as |Φ0〉H into account. As we mentioned, the sampling of h can be postponed at the end. Additionally, by
the deferred measurement principle, all the intermediate measurements can be delayed as well. Now, the
joint state of WA,WB and H remains as a pure state during the protocol. Importantly, such a switching of
viewpoints could display several non-trivial properties providing better leverage while still being perfectly
indistinguishable from the previous one. Therefore, the analysis will be done in the so-called purified
view in the following sections. In other word, whenever any classical information appears, the joint state
collapses to the corresponding post-measurement state and stays pure. For any key agreement protocol, we
define its purified version as follows:

• Start with |0〉WA
|0〉WB

|Φ0〉H .

• Alice and Bob runs the protocol in superposition, that is, all the measurements (including those used
for generating the transcript) are delayed and the query operator Oh is replaced by O.

• Let |Ψ〉WAWBH denote the state at the end of the protocol, and let |Ψt〉WAWBH denote the post-
measurement state of |Ψ〉WAWBH which is consistent with the transcript t.

Definition 2.2 (Nonzero queries in Fourier basis). For any ĥ ∈ Ĥ, we define the set

Qĥ := {x : x ∈ X , ĥ(x) 6= 0̂}

and the size of ĥ by
|ĥ| := |{x : x ∈ X , ĥ(x) 6= 0̂}| = |Qĥ|.

Definition 2.3 (Oracle support). For any vector |φ〉WH =
∑

w,ĥ∈Ĥ αw,ĥ|w〉W |ĥ〉Ĥ , we define the oracle
support in the Fourier basis of |φ〉 as

ŝupp
H

(|φ〉) := {ĥ : ∃w s.t. αw,ĥ 6= 0}.

We denote the largest ĥ in ŝupp
H

(|φ〉) as

ĥHmax(|φ〉) := arg max
ĥ∈ŝupp

H
(|φ〉)
|ĥ|.

(If the choice is not unique, then choose the alphabetically first one.) When the oracle registers H are
clear, we simply denote this by ĥmax(|φ〉). Similarly, if we write the oracle part in the computational basis
|φ〉WH =

∑
w,h∈H βw,h|w〉W |h〉H , then we define the oracle support in the computational basis of |φ〉 as

suppH(|φ〉) := {h : ∃w s.t. βw,h 6= 0}.

Lemma 2.4 (Sparse representation). If A asks at most d queries to the superposition oracle, then for all
possible outcomes of A’s intermediate measurements, the joint state |ψ〉WH conditioned on the outcome
satisfies |ĥmax(|ψ〉)| ≤ d.
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Proof. We prove the lemma by induction on the number of queries asked by A, denoted by q. For the base
case q = 0, the joint state |ψ0〉WH = |0〉W |Φ0〉H satisfies the statement. Assume that the joint state |ψk〉WH

satisfies |ĥmax(|ψk〉)| ≤ k for some k.
For the induction step, since the unitaries and measurements act only on W , the size of the state never

increases. Moreover, for every x ∈ X , ŷ ∈ Ŷ and ĥ ∈ Ĥ, by the observation in Equation (2), the size of ĥ
increases at most by one after the query operation. Therefore, the size of the state increases at most by
one. By induction hypothesis the resulting state |ψk+1〉WH satisfies |ĥmax(|ψk+1〉)| ≤ k + 1.

Definition 2.5. A partial oracle L is a partial function from X to Y . The domain of L is denoted by
QL = dom(L). Equivalently, we view L as a finite set of pairs (x, yx) ∈ X × Y such that for all
(x, yx), (x′, y′x) ∈ L, x 6= x′.

Note that our partial oracles are always in the computational basis. We say a partial oracle L is consistent
with h : X → Y if and only if h(x) = yx holds for all x ∈ QL.

Definition 2.6. For any partial oracle L, we define the associated projector ΠL by

ΠL :=
⊗
x∈QL

|yx〉〈yx|Hx

⊗
x/∈QL

IHx ,

where IHx is the identity operator acting on Hx. It holds that ΠL|h〉H = |h〉H if h is consistent with L, and
ΠL|h〉H = 0 otherwise.

Lemma 2.7. Given a state |ψ〉WH and a partial oracle L, the state ΠL|ψ〉WH can be written as

ΠL|ψ〉WH =
∑

w∈W,ĥ∈Ĥ′
α′
w,ĥ
|w〉W

⊗
x/∈QL

|ĥ(x)〉Hx

⊗
x∈QL

|yx〉Hx ,

where Ĥ′ is the set of functions from X \QL to Ŷ . Furthermore, if |ĥHmax(|ψ〉)| ≤ d, then |ĥH′max(ΠL|ψ〉)| ≤
d, where H ′ is the set of registers corresponding to X \QL.

3 Attacking Classical-Alice Quantum-Bob Protocols

In this section, we consider the case where A is a classical algorithm and B is a quantum algorithm and
prove the following theorem.

Theorem 3.1 (Breaking CAQB protocols). Let (A,B) be a two-party protocol in which algorithm classical
A communicates with a quantum algorithm B and they both have access to a random oracle h : X → Y , and
at the end they agree on a key k with probability 1. Suppose Alice asks at most dA classical oracle queries,
while Bob asks at most dB quantum oracle queries. Then, there is an eavesdropper E who, after receiving
the transcript t, asks at most dA · dB/λ queries to h after receiving the classical transcript t and finds the
key k with probability 1− λ.

Note that in the above theorem, the adversary’s query complexity is dA · dB/λ rather than the simpler
(still correct) bound of d2/λ where d = dA + dB. Even though, when dA = Θ(dB), it also holds that
dA · dB = Θ(d2), when the query complexity of the parties are unbalanced, e.g., when dA =

√
κ, d = κ for

security parameter κ, our attacker’s query complexity will beO(κ1.5) rather thanO(κ2). This is particularly
a natural scenario when the quantum-powered party is more powerful and can ask many more queries.

The rest of this section will be dedicated to proving the theorem. Before constructing the attacker and
analyzing it, we introduce some useful lemmas.
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3.1 Useful Lemmas

Lemma 3.2 (Independence of quantum views in the QCCC model). Suppose two quantum algorithms A
and B interact classically in the quantum random oracle model. Let WA and WB denote their registers
respectively. Then, at any time during the protocol, conditioned on the transcript t and the fixed oracle
h ∈ H, the joint state of the registers WA and WB conditioned on t and h is a product state.

Proof. We prove the lemma by induction on the round index r. For the base case r = 0, A and B’s
joint state |0〉WA

⊗ |0〉WB
. Suppose for some k, A and B’s joint state after k rounds is a product state

conditioned on the transcript t and oracle h. For the induction step, in the (k + 1)-th round, one of them
will apply “deterministic” local unitaries and query operators Oh conditioned on t and h. Therefore, further
conditioned on the message generated in this round, the resulting joint state is still a product state.

Lemma 3.3 (Consistency). Given a state |ψ〉H , if L is a partial oracle such that Qĥmax(|ψ〉) ∩QL = ∅, then
‖ΠL|ψ〉‖22 > 0. Equivalently, there exists at least one oracle h ∈ H such that (i) h is consistent with L and
(ii) h ∈ suppH(|ψ〉).

Proof. For convenience, we write ĥmax to denote ĥmax(|ψ〉), and we represent |ψ〉H =
∑

ĥ γĥ|ĥ〉 in the
Fourier basis. The proof directly comes from the following two claims:

Claim 3.4. γĥmax
ΠL|ĥmax〉 is not a zero vector.

Proof of Claim 3.4. Since Qĥmax
∩QL = ∅ and γĥmax

6= 0 by definition, we have

γĥmax
ΠL|ĥmax〉 =

γĥmax√
|Y||QL|

⊗
x∈QL

|yx〉Hx

⊗
x/∈QL

|ĥmax(x)〉Hx ,

which is not a zero vector.

Claim 3.5. For all ĥ ∈ ŝupp
H

(|ψ〉)\{ĥmax}, it holds that ΠL|ĥmax〉 is orthogonal to ΠL|ĥ〉. As a corollary,
we have that γĥmax

ΠL|ĥmax〉 is orthogonal to
∑

ĥ6=ĥmax
γĥΠL|ĥ〉 since the latter is a linear combination of

vectors which are orthogonal to the former.

Proof of Claim 3.5. Since ĥmax is maximal andQĥmax
∩QL = ∅, for all ĥ ∈ ŝupp

H
(|ψ〉)\{ĥmax}, it holds

that
|{x : x ∈ X \QL, ĥmax(x) 6= 0̂}| ≥ |{x : x ∈ X \QL, ĥ(x) 6= 0̂}|.

For the case of |{x : x ∈ X \ QL, ĥmax(x) 6= 0̂}| > |{x : x ∈ X \ QL, ĥ(x) 6= 0̂}|, there exist an
x′ ∈ X \QL such that ĥ(x′) = 0̂ and ĥmax(x′) 6= 0̂. Therefore, we have

〈ĥ|ΠL|ĥmax〉 =
⊗
x∈QL

〈ĥ(x)|yx〉〈yx|ĥ(x)〉
⊗
x/∈QL

〈ĥ(x)|ĥmax(x)〉 = 0,

since 〈ĥ(x′)|ĥmax(x′)〉 = 0.
For the case of |{x : x ∈ X \ QL, ĥmax(x) 6= 0̂}| = |{x : x ∈ X \ QL, ĥ(x) 6= 0̂}|, suppose there

exists an ĥ such that ĥ(x) = ĥmax(x) holds for all x ∈ X \ QL. There are two possible cases. First, For
all x ∈ QL, it holds that ĥ(x) = 0̂. Because Qĥmax

∩ QL = ∅, we have ĥmax(x) = 0 for all x ∈ QL.
Consequently, we have ĥ = ĥmax which contradicts to ĥ 6= ĥmax. Second, there exists x ∈ QL such that
ĥ(x) 6= 0̂. It implies |ĥ| > |ĥmax| which contradicts to the maximal size of ĥmax. Therefore, for all ĥ of the
second case, there exists an x′ ∈ X \QL such that ĥ(x′) 6= ĥmax(x′). It implies 〈ĥ|ΠL|ĥmax〉 = 0.
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Finally, by Claim 3.4 and Claim 3.5 we can conclude that

‖ΠL|ψ〉‖22 = ‖γĥmax
ΠL|ĥmax〉‖22 +

∥∥∥ ∑
ĥ6=ĥmax

γĥΠL|ĥ〉
∥∥∥2

2
≥ ‖γĥmax

ΠL|ĥmax〉‖22 > 0.

The proof of the following lemma could be found in Appendix C.

Lemma 3.6 (Bounding the classical heavy queries). Let Q be a random variable over subsets of universe
U . Suppose z1, x1, z2, x2, . . . is a finite sequence of random variables that are correlated with Q, and we
have xi ∈ U ∪ {⊥} for all i. Suppose xi = xj for i 6= j, then xi = xj = ⊥. (Namely, no nontrivial
xi gets repeated). For a full sample z1, x1, z2, x2, . . . , call xi ε-heavy (conditioned on z1, x1, . . . , zi) if
Pr[xi ∈ Q | z1, x1, . . . , zi] ≥ ε, and for the same sequence, define S = {xi | xi is ε-heavy}. (Note that S
is also a random variable correlated with Q.) Then, E[|S|] ≤ E[|Q|]/ε.

3.2 The Attack and Its Analysis

Notation and basic notions. For a classical algorithm A (perhaps in a multi-party protocol) in an oracle
model, we use VA = (rA, t, P ) to denote Alice’s view in an execution, which consists of Alice’s randomness
rA, the transcript t, and the partial oracle P of query-answer pairs that Alice encounters during her execution.
By fA we denote the function which takes VA as input and outputs A’s key kA. We use QA = QP to refer
to the set of queries asked by A. Given transcript t and some partial knowledge about the oracle h encoded
by a partial oracle L, we call x an ε-heavy query for Alice (conditioned on (t, L)) if Pr[x ∈ QA | t, L] ≥ ε,
where the probability is over Alice’s randomness and the oracle answers outside L.

Construction 3.7 (Attacking Classical-Alice Quantum-Bob protocols). Let (A,B) be a key agreement pro-
tocol in which A (Alice) is classical and B (Bob) is quantum and they both have access to a random oracle
h. Given the transcript t, the attacking algorithm E (Eve) is parameterized by ε and works as follows.

• Let L = ∅.

• While there is any ε-heavy query for Alice conditioned on (t, L), do the following.

– Ask the lexicographically first ε-heavy query for Alice from the oracle h.

– Update L by adding (x, h(x)) to L.

• Sample Alice’s view V ′A conditioned on (t, L), and output the key k′A = fA(V ′A).

Lemma 3.8 (Efficiency). The expected number of queries asked by Eve in Construction 3.7 is at most dA/ε,
where dA is the maximum number of queries asked by Alice.

Proof. The proof is identical to the efficiency argument of the attack from [BM17]. More formally, we can
use the abstract Lemma 3.6 to derive the claim by letting Q model Alice’s set of queries, xi be the ith query
asked by E, and letting zi be the information E receives about Q after asking xi−1. In particular z1 is the
transcript, and zi is the oracle answer to the query xi−1, in case it is asked, and xj = ⊥ if no heavy query
is left after asking xi for i < j. In this case, all the queries QL asked by Eve E are ε-likely to be in QA

conditioned on the transcript and the previously revealed information encoded in L, and so at the end we
have E[|L|] ≤ |dA|/ε.
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Lemma 3.9 (Success). If Alice and Bob, respectively, ask a total of dA, dB oracle queries (where Bob’s
queries can be quantum queries) and agree on a key with probability 1, then Eve of Construction 3.7 outputs
a key kE such that Pr[kE = k] ≥ 1− εdB, where k is the key agreed by Alice and Bob.

Proof. For the proof, we need to define a “quantum extension” of Alice’s algorithm, which is denoted by
QA. QA basically runs A by making “pure” quantum queries to the oracle h, and measuring Alice’s quantum
registers WA would reveal the answers to the oracles queries of the original Alice who is emulated by QA.

Let QAB be the combined party of QA and B. Let W be all the registers of QA and B. LetW be the set
of all possible outcomes of measuring registers W in the computational basis. Below, let d = dA + dB be
the total number of oracle queries.

We first give a proof with a looser probability 1− εd of finding the key. We then describe one more idea
using which we can achieve the tighter bound of 1− εdB.

Loose analysis. Consider the purified version of the protocol execution, let |Ψt〉WH be the state con-
ditioned on the transcript t. Since there is at most d queries in total, it holds that |ĥHmax(|Ψt〉)| ≤ d by
Lemma 2.4. Suppose the attacker E asks her queries from the oracle, starting from the transcript t, and
obtains the partial oracle L where for every x asked by E we have (x, yx) ∈ L. After she learns the first
(x, yx), the state becomes the post-measurement state corresponding to measuring |Ψt〉WH on register Hx

with the outcome yx. In this sense, for any t and L we can define the state conditioned on them, denoted by
|Ψt,L〉WH . Similarly, by Lemma 2.7 it holds that |ĥH′max(|Ψt,L〉)| ≤ d. Since the oracle registers correspond-
ing to QL are now measured, we can consider the “truncated” version of |Ψt,L〉WH by discarding those
registers. Let H ′ be the set of remaining registers, that is, H ′ = {Hx}x∈X\QL

. By |Ψt,L〉WH′ we denote the
truncated |Ψt,L〉WH . In the following analysis, we further assume that QAB measure the internal registers
W = (WA,WB) at the end of the protocol and then obtain the outcome w in the computational basis. The
resulting state is denoted by |Ψt,L,w〉WH′ . By Lemma 2.7, for any w it holds that |ĥH′max(|Ψt,L,w〉)| ≤ d.
In the following proof, we will show that for every (t, L, w), E will find the correct key in (t, L, w) with
probability at least 1− εd. From now on, we fix an arbitrary (t, L, w) and define Qmax := QĥH′max(|Ψt,L,w〉).

Recall that Alice A was a classical algorithm and all the ε-heavy queries of A were already learned by
the attacker E, and hence for any x /∈ QL we have Pr[x ∈ QA | t, L] ≤ ε. In particular, this holds for
every x ∈ Qmax. Therefore, by a union bound, with probability at least 1− ε|Qmax| ≥ 1− εd, it holds that
Q′A ∩Qmax = ∅, where Q′A is the set of queries in the fake view V ′A of Alice sampled by Eve. All we have
to show is that for any Q′A such that Q′A ∩Qmax = ∅, it holds that Eve finds Bob’s key: fA(V ′A) = kB. (By
perfect completeness, it also holds that kB = kA.)

Let P ′A be the set of query-answer pairs in the view V ′A. We now apply Lemma 3.3 with L and H in
Lemma 3.3 set to be P ′A and H ′, respectively. Then, Lemma 3.3 shows that there exists an oracle |h〉 in the
computational basis that is simultaneously consistent with L, t, P ′A (and hence Alice’s fake view V ′A) and the
measurements w of real Alice and Bob. Hence, we have the following:

• The probability of obtaining h as the oracle and V ′A as Alice’s view is nonzero.

• The probability of obtaining h as the oracle andw = wA, wB as the views of Alice and Bob is nonzero.
In particular, the probably of obtaining (h,wB) is nonzero.

By Lemma 3.2, we conclude that the probability of obtaining (V ′A, h, wB) is nonzero. Then, by the perfect
completeness, the key output by V ′A and wB should be equal, and this finishes the proof of the weak bound,
showing that Eve finds the key with probability 1− εd = 1− ε(dA + dB).
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Tighter analysis. We now explain one more idea, using which we can show that the same Eve algorithm E
does in fact find the key probability 1−εdB. First note that, the key idea in the proof above was to show that
once Eve learns the ε-heavy queries of Alice, then the sampled view V ′A, with high probability, is consistent
with Bob’s registers and some oracle h. The first approach above used a quantum state |Ψt〉WH , which
modeled the conditional quantum state of both (true) Alice and Bob conditioned on t. This choice is the key
reason behind obtaining the error εd in the analysis of the attack, because the total number of queries asked
by Alice and Bob both is d, and this leads to d-sparsity of this state |ĥHmax(|Ψt〉)| ≤ d.

We now use a perhaps less intuitive state for Bob conditioned on the transcript (that does not reflect
the true conditional quantum state of Bob) but that somehow leads to a sharper analysis of the attack.
This quantum state only models Bob’s quantum computation and shaves off Alice’s computation from the
process. For the fixed transcript t, consider the following variant of Bob’s (quantum) algorithm called Bt.
Bt runs the same algorithm as Bob from scratch, however, Alice’s messages are fixed according to t and no
real Alice algorithm is executed. In other words, if we decompose t = (tA, tB) as messages generated from
Alice and Bob, then Bt already knows tA and uses them as if Alice sends them. Now let |Ψ′t〉WBH be Bt’s
state conditioned on producing the transcript t (i.e., producing tB). Now, we observe the following:

• Bt asks at most dB oracle queries, so by Lemma 2.4 |Ψ′t〉WBH has sparsity |ĥHmax(|Ψ′t〉)| ≤ dB.

• In the computational basis, |Ψ′t〉WBH has a bigger or equal support compared with that of |Ψt〉WBH .
The reason is that if an oracle h and values wB of registers WB can be obtained in the presence of A,
then can also happen when A does not exist.

• Note that the two support sets described above (and hence, the corresponding distributions) are not
equal in general, as it is possible that Alice’s message indicate that certain oracles are not possible,
while Bob’s execution is consistent with them.

Now, all we do is to use the more sparse state |Ψ′t〉WBH (that only includes Bob’s registers) in the same
(non-tight) analysis described above as follows. Suppose wB is the values of the registers of the actual Bob,
while t is the transcript. Then, wB is also a possible outcome when we measure the corresponding registers
|Ψ′t〉WBH . After also tracing out on the quantum registers of QL, we end up with a degree dB quantum state
over the queries outside QL. Using the same argument above (for the non-tight case), the samples V ′A, with
probability 1 − εdB (rather than 1 − εd) have the property that: there is an oracle h that is consistent with
t, V ′A, wB, and L. By perfect completeness, the sampled view V ′A is indeed finding the same key as that
determined by wB.

Proof of Theorem 3.1. We use the attacker of Construction 3.7 with ε = λ/dB. Then, by Lemma 3.8, the
expected number of queries of Eve E is at most dA/ε = dA · dB/λ. By Lemma 3.9, Eve finds the key with
probability 1− dBε = 1− λ.

4 Attacking Quantum-Alice Quantum-Bob Protocols

In this section, we consider the case where both A and B are quantum algorithms in the QCCC model. In this
general setting, we show a conditional result based on a conjecture, that any QCCC key agreement protocol
with perfect completeness can be broken with an expected polynomial number of queries. While we have so
far been unable to prove the conjecture, we can prove a weaker version of the conjecture with exponentially
worse parameters, which still leads to a non-trivial attack on QCCC key agreement protocols. We present
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the conjecture and the variant that we can prove in Section 4.1. In Section 4.2, we state the main result,
which gives an efficient attack when combined with the conjecture and a non-trivial attack when combined
with the weak variant we can prove. In Section 4.3, we prove the necessary lemma for our main result.

4.1 Main Conjecture and Related Notions

Let Y be an Abelian group of order |Y| and Ŷ be the dual group. LetH be the set of all functions h : X → Y
and Ĥ be the set of all functions ĥ : X → Ŷ .

Definition 4.1 ((Y, δ, d,N)-state). LetH be a register over the Hilbert space YN . A quantum state |ψ〉 over
registers W and H is a (Y, δ, d,N)-state if it satisfies the following two conditions:

• d-sparsity: |ĥHmax(|ψ〉)| ≤ d.

• δ-lightness: For every x ∈ X , if we measure theHx register of |ψ〉 in the Fourier basis, the probability
of getting 0̂ is at least 1− δ.

The first item above is equivalent to saying that for any measurement of registers H in the Fourier basis,
and W in any basis, the oracle support in the Fourier basis (as defined in Definition 2.3) is at most d. Also,
looking ahead, the second property above is equivalent to saying that |ψ〉 has no δ-heavy queries as defined
in Definition 4.9.

Definition 4.2 (Compatibility). Two quantum states |ψ〉 and |φ〉 over registers W and H are compatible
if suppH(|ψ〉) ∩ suppH(|φ〉) 6= ∅, i.e., if their oracle supports in the computational basis (as defined in
Definition 2.3) have non-empty intersection.

In general, we pose the following question. How small should δ be, as a function of |Y| and d, in order
to guarantee that any two (Y, δ, d,N)-states are compatible? Our main conjecture is as follows.

Conjecture 4.3. There exists a finite Abelian group Y and δ = 1/ poly(d) such that for any d,N ∈ N, it
holds that any two (Y, δ(d), d,N)-states |ψ〉 and |φ〉 are compatible.

While we do not have a proof of Conjecture 4.3, we can prove the following theorem when the influences
are exponentially small. The proof is deferred to Section 5.2.

Theorem 4.4. For all groups Y , d,N ∈ N, and δ < |Y|−d/d, it holds that any two (Y, δ, d,N)-states |ψ〉
and |φ〉 are compatible.

4.2 Attacking Quantum-Alice Quantum-Bob Protocols

Now we are ready to state our main result in this section, which states that if Conjecture 4.3 holds for param-
eter δ, then any QCCC key agreement protocols can be broken in roughly 1/ poly(δ) queries. Additionally,
by applying Theorem 4.4, we obtain an attack by using exponentially-many queries without resorting to any
conjecture. Out results are formulated as the following two theorems.

Theorem 4.5 (Polynomial-query attacks). Let (A,B) be a two-party QCCC protocol where Alice and Bob
asks at most d queries to a random oracle h whose range is Y . If Conjecture 4.3 is true, then, there exists
an attacker that breaks (A,B) by asking poly(d, log |Y|) many classical queries to h and finds the key with
probability at least 0.8.
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Theorem 4.6 (Exponential-query attacks). Let (A,B) be a two-party QCCC protocol with a total of d
queries to a random oracle h whose range is Y . Then, there is an attacker who asks an expected number of
|Y|dd2/λ classical queries to h and finds the key with probability at least 1− λ.

The rest of this section dedicates to proving Theorem 4.5 and Theorem 4.6. In a nutshell, the proof
consists of the following steps.

• In Lemma 4.7, we show that once any two (Y, δ = ε/λ, d,N)-states are compatible, then any QCCC
key agreement protocols can be broken in roughly 1/ poly(δ) queries. The exponential-query attack
follows from Theorem 4.4 and Lemma 4.7.

• In Lemma 4.8, we show that if there exists a group Y such that any key agreement using the oracle
with the range Y is broken by polynomial-query attacks, then any key agreement, regardless of their
range group Y ′, can be broken by polynomial-query attacks as well.

In this section, Alice and Bob always output the same key k ∈ {0, 1} with probability 1. Besides, we
say a key agreement protocol (Ah,Bh) using the random oracle h is (τ, s)-broken, if there exists an attacker
that finds the key in (Ah,Bh) with probability at least τ after asking s many queries to h in expectation. We
call the scheme (τ, s)-classically broken, if the same thing holds using only classical queries in the attack.

Lemma 4.7 ((Conditionally) breaking QCCC protocols in the QROM). Let Y be any finite Abelian group.
Let (A,B) be a key agreement protocol with at most d quantum queries to the random oracle h whose range
is Y . If it holds that any two (Y, δ = ε/λ, d,N)-states are compatible, then (A,B) is (1−λ, d/ε)-classically
broken.

The proof of Lemma 4.7 is given in Section 4.3.

Lemma 4.8 (Group equivalence). Suppose there exists a finite Abelian group Y , a constant τ > 0 and a
function s(·) such that for all d ∈ N and any single-bit key agreement protocol (Ah11 ,Bh11 ) where Alice and
Bob asks d queries to random oracles h1 whose range is Y , it holds that (Ah11 ,Bh11 ) is (τ, s(d))-broken.
Then, for any finite Abelian group Y ′, any d′ ∈ N, δ > 0 and any single-bit key agreement protocol
(A′h

′
,B′h

′
) where Alice and Bob asks d′ queries to random oracles h′ whose range is Y ′, (A′h

′
,B′h

′
) can be

(τ − δ, 4s(md′))-broken, where
m = dlog|Y|(d

′3|Y ′|/4δ2)e.
The proof of Lemma 4.8 is given in Section 8.2.

Proof of Theorem 4.5. Because Conjecture 4.3 is true, there exists a finite Abelian group Y such that for
any d,N ∈ N, any sufficiently small δ = 1/ poly(d), it holds that any two (Y, δ, d,N)-states |ψ〉 and |φ〉
are compatible. Then, Lemma 4.7 guarantees that for any key agreement protocol (A,B) where Alice and
Bob asks at most d queries to an oracle h whose range is Y , there exists an attacker that breaks (A,B) by
asking poly(d) many queries to h in expectation and finds the key with probability at least 0.9.

Next, by Lemma 4.8, for any finite Abelian group Y ′, d′ ∈ N, δ > 0 and single-bit key agreement
(A′h

′
,B′h

′
) where Alice and Bob asks d′ queries to random oracles h′ with range Y ′, (A′h

′
,B′h

′
) can be

(0.9− δ, poly(md′))-classically broken, where

m = dlog|Y|(d
′3|Y ′|/4δ2)e.

Choosing δ = 0.1, we obtain a poly(d′, |Y ′|)-query attack which finds the key with probability 0.8. More-
over, since d′, log |Y ′| are both at most poly(κ), where κ is the security parameter (as Alice and Bob both
run in time poly(κ)), this would lead to a poly(κ)-query attack.

Proof of Theorem 4.6. The proof follows from Theorem 4.4 and Lemma 4.7 with ε/λ = δ = |Y|−d/d.
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4.3 Proof of Lemma 4.7

The rest of this section will be dedicated to proving Lemma 4.7.

Definition 4.9 (Quantum ε-heavy queries). For x ∈ X , let Πx :=
∑

ŷ∈Ŷ\{0̂}|ŷ〉〈ŷ|Hx . Given a quantum
state |ψ〉WAWBH , the weight of any x ∈ X is defined as

w(x) := ‖Πx|ψ〉‖22.

We call x ∈ X a quantum ε-heavy query if w(x) ≥ ε.

Construction 4.10 (Attack). Suppose (A,B) is a quantum-Alice quantum-Bob key agreement protocol
using the random oracle h. Given the transcript t, attacking algorithm E′ is parameterized by ε and works
as follows.

1. Prepare L = ∅ and the classical description of the state

|ψ〉W ′AW ′BH′ = |0〉W ′A |0〉W ′B |Φ0〉H′ ,

where W ′A,W
′
B and H ′ are the simulated registers for Alice, Bob and oracle prepared by E′.7

2. Simulate the state evolution during the protocol. Concretely, E′ calculates the state in W ′AW
′
BH
′ after

each round in the protocol. Whenever E′ encounters the moments in which Alice (Bob) send their
message, E′ calculates the post-measurement state that is consistent with t.

3. While there is any query x /∈ L that is quantum ε-heavy conditioned on (t, L), do the following:

(a) Ask the lexicographically first quantum ε-heavy query x from the real oracle h.

(b) Update the state in W ′AW
′
BH
′ to the post-measurement state that is consistent with (x, h(x)).

(c) Update L by adding (x, h(x)) to L.

4. When there is no quantum ε-heavy query left to ask, E′ obtains distributions of Alice’s and Bob’s final
keys conditioned on (L, t), and it outputs the key k ∈ {0, 1} that has the highest probability of being
Alice’s key in this distribution.

Remark 4.11. The attacking algorithm E′ is purely classical. It does not need to actually prepare quantum
states and apply quantum operation to them. Instead, at each round, the entire protocol, including the
sampling of the oracle, can be represented as a pure quantum state. The classical algorithm E′ only needs
to query the real oracle h classically and simulate how that pure state evolves conditioned on the classical
information (t, L) that E′ has so far, and all of that is done in Eve’s head.

Lemma 4.12 (Efficiency). LetL be the final list of Eve’s algorithm in Construction 4.10. Then E[|L|] ≤ d/ε,
where the probability is over the measurement outcomes.

Proof. Once Eve starts asking queries, she would gradually obtain a sequence of query-answer pairs. It
naturally introduces a tree where each node corresponds to an intermediate state of L during the procedure.
At each node, Eve deterministically chooses the next query q based on t and L and each of its children
corresponds to different possible h(q) answered by the oracle. Similar to the proof of Lemma 3.9, in the
purified view we denote the state conditioned on t and L by |Ψt,L〉.

Formally, each node v of the tree consists of:
7Recall that |Φ0〉 is a uniform superposition over all h ∈ H, defined as Eq.(1).
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• A label (t, L).

• A quantum state |Ψv〉W ′AW ′BH′ := |Ψt,L〉W ′AW ′BH′ .

• A non-negative real number total weight W(v) defined as

W(v) :=
∑

x∈X\QL′

‖Πx|Ψt,L′〉‖22.

• A Boolean feature stop(v) ∈ {0, 1}. If there is no quantum ε-heavy query, then stop(v) = 1. In
particular, W(v) < ε implies stop(v) = 1.

The random walk on this tree can start from any node. Whenever stop(v) = 0, it moves to of one of its
children u according the distribution of measuring the register Hq of |Ψv〉 in the computational basis, where
q is Eve’s next query at v. Actually, this distribution, denoted by Γ(v), is equivalent to the distribution of
Eve’s query-answer from h conditioned on t and L. By u ← Γ(v) we denote the step from v to its child u.
Observes that the depth of the tree is finite since |L| is at most |X |.

For any v and its children u, we have the following property

E
u←Γ(v)

[W(u)] =
∑

x∈X\QL′

∑
y∈Y
‖Πx|y〉〈y|H′q |Ψv〉‖22

=
∑

x∈X\QL′

∑
y∈Y
‖|y〉〈y|H′qΠx|Ψv〉‖22 =

∑
x∈X\QL′

‖Πx|Ψv〉‖22

=
∑

x∈X\QL

‖Πx|Ψv〉‖22 − ‖Πq|Ψv〉‖22 ≤W(v)− ε,

(3)

where q is Eve’s next query at v, L is the partial oracle of v, and QL′ := QL ∪ {q}. The second equality
holds since |y〉〈y|H′q commutes with Πx for all x ∈ X \QL′ , and the inequality is due to the heaviness of q.

We claim the following inequality holds for every v

E[|S(v)|] ≤ W(v)

ε
, (4)

where by S(v) we denote the total number of steps that the random walk takes when starting form v. We
prove it by induction on the depth of the starting node. By D we denote the depth of the tree. For v in depth
D we shall have stop(v) = 1, in which case |S(v)| = 0 ≤W(v)/ε, and so the claim follows. Now suppose
the inequality holds for depth i nodes and we move to v in depth i − 1. If stop(v) = 0, again we have
|S(v)| = 0 ≤W(v)/ε which is what we need. Otherwise, by induction and the linearity of expectation,

E[|S(v)|] = 1 + E
u←Γ(v)

[E[|S(u)|]]

≤ 1 + E
u←Γ(v)

[W(u)/ε]

= 1 +
Eu←Γ(v)[W(u)]

ε

≤ 1 +
W(v)− ε

ε
=

W(v)

ε
,
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where the first inequality is due to induction hypothesis and the second inequality follows by Eq. 3. By
Lemma 2.4, the total weight of the root R (where the state is |Ψt〉 in the purified view) is at most d since

W(R) =
∑
x∈X

∥∥∥∑
ĥ∈Ĥ

αĥ|ψĥ〉W ′AW ′BΠx|ĥ〉H′
∥∥∥2

2
=
∑
ĥ∈Ĥ

|ĥ| · |αĥ|
2 ≤ d ·

∑
ĥ∈Ĥ

|αĥ|
2 = d,

where we represent the attached state as |Ψt〉W ′AW ′BH′ =
∑

ĥ αĥ|ψĥ〉W ′AW ′B |ĥ〉H′ . Therefore, starting from
the root we have E[|L|] ≤ d/ε by Eq. 4.

Lemma 4.13 (Success). Suppose that Alice and Bob ask a total of d quantum queries. If any two (|Y|, δ =
ε/λ, d,N)-states are compatible, then there is an eavesdropper E who finds the key k with probability at
least 1− λ.

Proof. Consider the purified version of the protocol. Let |Ψt〉WH be the joint state after the protocol fin-
ishes, conditioned on the transcript t. By Lemma 2.4 it holds that |ĥHmax(|Ψt〉)| ≤ d. After E′ learns the
heavy queries, the resulting state becomes |Ψt,L〉 conditioned on L. Similarly, by Lemma 2.7 it holds that
|ĥH′max(|Ψt,L〉)| ≤ d. Since the oracle registers corresponding to QL are now measured, we can consider
the “truncated” version of |Ψt,L〉WH by discarding those registers. Let H ′ = {Hx}x∈X\QL

be the set of
remaining registers. By |Ψt,L〉WH′ we denote the truncated |Ψt,L〉WH .

Now, set the register H in Definition 4.1 to be H ′. The state |Ψt,L〉 is d-sparse and ε-light by definition,
so |Ψt,L〉 is a (|Y|, ε, d)-state. Recall that at the end of the attack, E′ learns all the heavy queries, calculates
the key distribution of |Ψt,L〉 among the remaining oracles and outputs the key with the highest probability
to be outputted. We are going to show that there exist a key k = b ∈ {0, 1} such that the probability of the
key b in the key distribution of |Ψt,L〉, denoted by Pr[k = b in |Ψt,L〉], is larger than 1 − λ. We will prove
this by contradiction. Namely, in the following, suppose Pr[k = b in |Ψt,L〉] ≥ λ for both b = 0 and b = 1.

Let |Ψt,L,k=b〉 be the residual state of |Ψt,L〉 conditioned on k = b. Observe that |Ψt,L,k=b〉 is a
(C, ε/λ, d)-state for both k ∈ {0, 1}. In addition, |Ψt,L,k=b〉 is d-sparse since |Ψt,L〉 is d-sparse and condi-
tioning on k is a process acting on A and B’s registers and will not affect the sparsity of the oracle. |Ψt,L,k=b〉
is ε/λ-light because |Ψt,L〉 is ε-light and Pr[k = b in |Ψt,L〉] ≥ λ. By the premise in the lemma statement,
|Ψt,L,k=0〉 and |Ψt,L,k=1〉 are compatible, which means that there exists an oracle h, a state wA ∈WA which
outputs the key k = 0, and a state wB ∈ WB outputs the key k = 1 such that h is consistent with both wA

and wB with nonzero probability, that is, there is a nonzero chance that in a real execution of the protocol,
A outputs the key 0 and B outputs the key 1, which violates the perfect completeness of the protocol.

Proof of Theorem 4.7. We use the Eve of Construction 4.10 with parameter ε. By Lemma 4.12, the expected
number of queries of Eve is at most d/ε, and by Lemma 4.13, it finds the key with probability 1− λ.

5 Case of Exponentially Small Influences: Proving Theorem 4.4

Before proving Theorem 4.4, we describe a connection between (|Y|, δ, d,N)-states and distributions of
polynomials with bounded degree and influence, giving an alternative formulation of Conjecture 4.3.

5.1 The Polynomial Formulation

As in the rest of the paper, we let Y be an Abelian group of order |Y| and Ŷ be its dual group having 0̂ as the
identity element. Recall that we are working with quantum states over a register H whose basis states are
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all functions h : X → Y for some |X | = N . To keep the notation clean in this section, we identify X with
[N ] and view functions h : X → Y as vectors in YN (i.e., we write hi rather than h(x) for a typical value).

We recall that any f : YN → C can be written in terms of its Fourier transform

f(x) =
∑
χ∈ŶN

f̂(χ)

N∏
i=1

χi(xi)

The degree of a character χ ∈ ŶN is deg(χ) = |{i |χi 6= 0̂}|, and the degree of f is deg(f) =
max{deg(χ) | f̂(χ) 6= 0}. The influence of variable i on f is Infi(f) =

∑
χ∈ŶN

χi 6=0̂

|f̂(χ)|2. We denote

by max Inf(f) = maxi=1...N Infi(f) the maximum influence of f .

Definition 5.1 (State polynomial). For a quantum state |ψ〉 over the register H , the state polynomial of |ψ〉
is the function fψ : YN → C defined by

fψ(h) = |Y|N/2 · 〈ψ|h〉 =
∑
χ∈ŶN

〈ψ|χ〉
N∏
i=1

χi(hi).

Observation 5.2 (Sparsity vs. degree, heaviness vs. influence). For a quantum state |ψ〉 over register H ,
fψ has the following properties.

• fψ has `2-norm equal to 1. Namely, Ex←H |f2
ψ(x)| = 1.

• |ψ〉 is d-sparse if and only if deg(fψ) ≤ d.

• |ψ〉 has no δ-heavy queries if and only if max Inf(fψ) ≤ δ.

Definition 5.3 (State polynomial distribution). For a quantum state |ψ〉 over registersW,H , the state polyno-
mial distribution of |ψ〉 is the distribution Fψ over polynomials f : Y → C which is sampled by measuring
W in some fixed basis and taking the resulting state polynomial for H .

Observation 5.4. Two quantum states |ψ〉 and |φ〉 over registers W , H are compatible if and only if there
exist f ∈ supp(Fψ), g ∈ supp(Fφ) and an x ∈ YN such that f(x) · g(x) 6= 0.

The observations above motivate us to formulate our main conjecture in terms of polynomials. Notice
that, in the following formulation, we focus on the distributions of functions whose range is R instead of C.
Later on, in Theorem 5.6, we will show that it suffices to consider real functions.

Conjecture 5.5. There exists a finite Abelian group Y and a function δ(d) = 1/ poly(·) such that the
following holds for all d. Let F and G be two distributions of functions from YN to R such that the
following holds for all f ∈ supp(F ) and g ∈ supp(G).

• Unit `2 norm: f and g have `2-norm 1.

• d-degrees: deg(f) ≤ d and deg(g) ≤ d.

• δ-influences on average: For all i ∈ [N ], we have Ef←F [Infi(f)] ≤ δ and Eg←G[Infi(g)] ≤ δ,
where δ = δ(d).

Then, there is an f ∈ supp(F ), g ∈ supp(G), and x ∈ YN such that f(x) · g(x) 6= 0.

Theorem 5.6. Conjecture 5.5 is true if and only if Conjecture 4.3 is true.

The proof is given in Appendix A.
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5.2 Proving Theorem 4.4

In this subsection, we prove Theorem 4.4, using the polynomial formulation explained in the previous
subsection. In other words, we prove a weaker version of Conjecture 5.5 where we set δ < |Y|−d/d.
Interestingly, the theorem holds without any influence condition on F , and without any degree restriction
on G. I.e., we only use that there is an f ∈ supp(F ) of degree ≤ d, and that Eg←G[Infi(g)] ≤ δ for all
i ∈ [N ].

For any f ∈ supp(F ), let f(x) =
∑

χ∈ŶX f̂(χ)χ(x) and χ∗ ∈ ŶN be a character for which f̂(χ) 6= 0

and deg(χ) = deg(f). Since deg(f) ≤ d we can without loss of generality assume that χ∗i = 0̂ for
i = d+ 1, . . . , N by reordering the coordinates.

Note that for any partial assignment x>d = (xd+1, . . . , xN ), the restricted function f |x>d
is non-

constant and in particular there exists a x≤d such that f(x≤d,x>d) 6= 0.
For any function g : YN → C, decompose it as

g(x) =
∑
χ∈Ŷd

gχ(x>d)χ(x≤d)

for |Y|d functions {gχ}χ∈Ŷd on x>d. Writing 0̂ = (0̂, . . . , 0̂) ∈ Yd we then have

∑
χ 6=0̂

E
x>d

[
|gχ(x>d)|2

]
≤

d∑
i=1

∑
χi 6=0̂

E
x>d

[
|gχ(x>d)|2

]
=

d∑
i=1

Infi(g)

and Ex>d

[
|g0̂(x>d)|2

]
≥ ‖g‖22 −

∑d
i=1 Infi(g). Thus, we have

E
x>d

|g0̂(x>d)|2 − (|Y|d − 1)
∑
χ 6=0̂

|gχ(x>d)|2
 ≥ ‖g‖22 − |Y|d d∑

i=1

Infi(g)

Taking the expectation over g ← G and using the condition Eg←G[Infi(g)] ≤ δ < |Y|−d/d on the influences
of G we thus conclude

E
g←G

E
x>d

|g0̂(x>d)|2 − (|Y|d − 1)
∑
χ 6=0̂

|gχ(x>d)|2
 > 0.

In particular there exists a g ∈ supp(G) such that

E
x>d

[
|g0̂(x>d)|2

]
> E

x>d

(|Y|d − 1)
∑
χ 6=0̂

|gχ(x>d)|2
 ≥ E

x>d

∑
χ 6=0̂

|gχ(x>d)|

2 ,
where the second inequality is Cauchy-Schwarz. It follows that there is x>d such that

|g0̂(x>d)| >
∑
χ 6=0̂

|gχ(x>d)|.

As observed above, for this x>d there must exist some x≤d such that f(x≤d,x>d) 6= 0. But, that means we
obtain the following as desired.

|g(x≤d,x>d)| =

∣∣∣∣∣∣
∑
χ∈Ŷd

gχ(x>d)χ(x≤d)

∣∣∣∣∣∣ ≥ |g0̂(x>d)| −
∑
χ 6=0̂

|gχ(x>d)| > 0.
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6 Quantum Black-Box Separation for Perfect Key Agreements

In this section, we formally define the class of black-box constructions of key agreements from one-way
functions, in which the constructed key agreement is in the QCCC model. We then prove that, assuming
the Polynomial Compatibility conjecture, such black-box constructions do not exist, at least when the con-
struction has perfect completeness. The key ingredient of this proof is the polynomial-query attack against
QCCC key agreement constructions in the QROM.

We start by recalling the definitions of quantum algorithms and their oracle-aided variants from [HY20].
We then define the notion of quantum black-box QCCC key agreement. Finally we prove our (conditional)
black-box separation.

The following definitions are essentially borrowed from [HY20].

Definition 6.1 (Quantum (oracle-aided) algorithms). A quantum algorithmA is a family of quantum circuits
A = {Aκ}κ∈N that act on three sets of registers: input registers I , output registers O, and work registers W .
For each input x ∈ {0, 1}κ, the output is computed by running the algorithm Aκ on |x〉I |0〉O|0〉W and at
the end the output registers are measured in the computational basis to obtain the output. An algorithm A is
called efficient, if the size of Aκ is bounded by poly(κ). An oracle-aided algorithm A is defined similarly,
but the circuits Aκ now can use an oracle gate to an oracle h. Note that the computation of Aκ is now only
well defined after giving oracle access to a fixed oracle, which is denoted by Ah = {Ahκ}κ∈N.

For simplicity of presentation, rather of defining quantum primitives in general, we directly present
the definition of quantum black-box constructions of QCCC key agreements from one-way functions. The
definition can also be directly adapted to constructions from other primitives than OWFs, such as collision
resistant hash functions. In particular, the definition below essentially extents the notion of fully black-box
constructions of Reingold et al. [RTV04], restricted to key agreements, to the quantum setting. Since the
adversaries against key agreement are “non-interactive” (as opposed to e.g., attackers on proof systems)
hence our definition is a special case of the more general definition proposed in [HY20].

Definition 6.2 (Black-Box Constructions of QCCC Key Agreements from OWFs). A pair (G,S) of oracle-
aided quantum algorithms is a (fully) black-box construction of QCCC key agreements with perfect com-
pleteness from one-way functions if for every length preserving function Q : {0, 1}∗ → {0, 1}∗ the follow-
ing two holds.

• GQ(1κ) = P (1κ) implements a QCCC key agreement with perfect completeness.

• For every oracle A such that A(1κ) breaks P (1κ) with non-negligible probability ε(κ) = 1/poly(κ)
for infinite security parameters κ, the oracle-aided quantum algorithm SQ,A(1κ) inverts Q with non-
negligible probability ε(κ) = 1/ poly(κ) for infinite security parameters κ.

We now state and prove our black-box separation of QCCC key agreements with perfect completeness
from OWFs.

Theorem 6.3. Assuming Conjecture 5.5, there is no black-box construction of QCCC key agreements with
perfect completeness from one-way functions. Furthermore, if Alice is classical, then no such black-box
constructions exist (unconditionally).

Before proving the theorem above, we recall a basic useful tool. (A proof can be obtained from Exer-
cise 2 of Section 7.3 of [GS01].)
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Lemma 6.4. Let E1, . . . , Ei, . . . be an infinite sequence of events over an arbitrary underlying probability
space µ, such that Pr[Ei = 1] ≥ δ for all i ∈ N. Let E be the event, again definend over µ, that the set
{i | Ei = 1} has infinite size. Then, Pr[E ] ≥ δ.

Proof of Theorem 6.3. Here we give the proof assuming Conjecture 5.5, and the proof for the second part is
similar.

Suppose, for sake of contradiction, that (G,S) is a black-box construction of QCCC key agreements
(QKA for short) with perfect completeness from one-way functions.

Then, pick Q = h to be a random, length preserving function. For every κ, let Gh(1κ) = P (1κ) be the
construction of QKA for security parameter κ.

If Conjecture 5.5 holds, then by Theorem 4.5 there is a (computationally unbounded) adversary Ahκ that
breaks P (1κ) with probability 0.8, by asking poly(κ) many queries to h. Then, by an averaging argument,
for each fixed κ it holds that with probability at least 0.1 over the choice of the oracle h, we have that Ahκ
still finds the key with probability at least 0.7. In this case, we say that the oracle h satisfies the event Eκ.
Then, by Lemma 6.4, with probability at least 0.1 over the choice of h, it holds that the set {κ | Eκ = 1}
is infinite, which we refer to by the event E over the oracle h. If h ∈ E (which happens with measure
at least 0.1 over the choice of h), then by the definition of black-box constructions, Sh,A

h
, is a quantum

algorithm that inverts a h with probability ε(κ) ≥ 1/ poly(n) (on a random input of length κ) for an infinite
set of security parameters κ. However, this is not possible, because of the following. Firstly, Sh,A

h
can be

interpreted as a single quantum algorithm T that accesses h at most poly(κ) times (this can be observed by
composing the algorithms S,A). Secondly, we claim that for any fixed q(κ) = poly(κ) query algorithm
T , it holds that with measure 1 over the sampling of a random oracle h, the probability of T inverting h on
security parameter κ is negl(κ). Below, we show why this is the case.

The claim above holds because classical algorithms with query complexity q(κ) have a negligible chance
q(κ)/2κ of doing so, and quantum algorithms only have a quadratic advantage with maximum probability
ε(κ) = O(q(κ)2/2κ) [BBBV97]. Therefore, with an averaging argument, with probability 1−

√
ε(κ) over

h, it holds that T has probability at most
√
ε(κ) < 1/κ2 of inverting h over inputs of length h. Then,

because
∑

κ 1/κ2 = O(1), by the Borel–Cantelli lemma, with measure 1 over h, it holds that for all but a
finite number of κ, the advantage of T inverting h is at most

√
ε(κ) ≤ negl(n).

7 From Classical Attacks to the Simulation Conjecture

In this section, we prove that breaking key agreement protocols perhaps with imperfect completeness using
classical attacks is challenging. In particular, we show that if the Simulation Conjecture ( [AA14] stated
as Conjecture 7.1 below) is false, then it is possible to construct a secure key agreement protocols (with
imperfect completeness) in the QCCC model against eavesdroppers that ask polynomially many classical
queries. In Section 7.1, we formally state the Simulation Conjecture. In Section 7.2, we first show that if the
Simulation Conjecture is false, then there exists a rather weak key agreement. Finally, we amplify the weak
key agreement into a full-fledged key agreement.

7.1 Simulation Conjecture

Let A(·) be an oracle-aided algorithm that outputs a single bit. For every fixed oracle h, let p(Ah) :=
Pr[1← Ah(1κ)], where the probability is over the execution of A. We say an algorithm B λ-approximates
an algorithm A if

E
h

[|p(Ah)− p(Bh)|] ≤ λ.
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The following is a weaker (asymptotic) version of the folklore Simulation Conjecture, which is stated as
Conjecture 4 in [AA14].

Conjecture 7.1 (Quantum Polynomial-Query Simulation Conjecture). For any constant c, there exists a
constant d such that for all κc-query quantum algorithm Q(·)(·), there exists a deterministic κd-query clas-
sical algorithm A(·)(·), such that A(1κ) κ−c-approximates Q(1κ) for sufficiently large κ (when accessing a
random oracle).

The following conjecture further limits the simulated algorithm to run in quantum polynomial time.

Conjecture 7.2 (Quantum Polynomial-Time Simulation Conjecture). For any constant c, there exists a
constant d such that for all κc-time quantum algorithm Q(·)(·), there exists a deterministic κd-query classi-
cal algorithm A(·)(·), such that A(1κ) κ−c-approximates Q(1κ) for sufficiently large κ (when accessing a
random oracle).

Remark 7.3. We remark that the Simulation Conjecture as stated in [AA14] is more quantitative, as it re-
quires ε-approximating the quantum algorithm for 1−δ fraction of the oracles using poly(1/ε, 1/δ) number
of queries. The above formulation of the conjecture is a special case that focuses on the polynomial-query
regime, and it is stated in an asymptotic way when everything is a polynomial of the security parame-
ter. We also emphasize that this form of (ε, δ) simulation for ε, δ = 1/ poly(κ) is in fact equivalent to
(1/ poly(κ))-approximating, as defined above, using an averaging argument. The argument is that (ε, δ)
simulation is always an (ε+ δ)-approximation, and any λ-approximation is an (

√
λ,
√
λ)-simulation.

7.2 Constructing Key Agreement Protocols

Recall key agreement protocols in the QCCC model in Section 2.2. Since we would like to construct and
amplify key agreement protocols in the random oracle model and for parties who are quantum powered
while the attacker Eve is classical, we revisit that definition by treating the class of adversaries E abstractly.

Definition 7.4 (Key agreement against E adversaries). Consider a key agreement (perhaps in an idealized
model like the ROM) between Alice and Bob, and let Eve be an eavesdropper who gets the transcript and
outputs a key. Let kA, kB, and kE be the keys of Alice, Bob and Eve. Let t be the transcript. All the
probabilities below are over the randomness of Alice, Bob, Eve, and perhaps the idealized oracle. Also, the
quantities γc, γo and γi are parameterized by security parameter κ, which is given as a parameter to Alice,
Bob, and Eve.

• Completeness: We say the scheme has γc-completeness if Pr[kA = kB] ≥ γc.

• One-way (OW)-security: We say the scheme has γo-OW-security against attackers in E , if for every
E ∈ E , it holds that Pr[kE = kA] ≤ γo.

• Indistinguishable (IND)-security: We say a key agreement has γi-IND-security against attackers in E ,
if (t, kA) and (t, U`) are γi-indistinguishable to every E ∈ E , where U` is a sequence of random bits
of the length ` = |kA|.

If the length of the parties’ keys are ` bits, then we say it is a `-bit key agreement protocol.

Lemma 7.5 (Hoeffding’s inequality). Let X1, X2, . . . , Xn be independent random variables and 0 ≤ Xi ≤
1 for each i. For ε > 0, we have

Pr

[∣∣∣ n∑
i=1

Xi −
n∑
i=1

E[Xi]
∣∣∣ ≥ ε · n] ≤ 2e−2nε2 .
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Theorem 7.6. If Conjecture 7.2 is false, then there exists a single-bit key agreement protocol with respect to
an infinite set U ⊆ N such that the following hold. For all κ ∈ U , the protocol has (1− 2−κ)-completeness
and 2−κ-IND-security against poly(κ)-classical-query eavesdroppers in the QCCC model.

As we mentioned, Theorem 7.6 immediately implies the existence of key agreements against poly(κ)-
classical-query eavesdroppers. The remaining of the section dedicates to proving Theorem 7.6. Conceptu-
ally, the proof consists of three steps.

• First, in Lemma 7.8, we show that if Conjecture 7.1 is false, then there exists a key agreement against
poly(κ)-classical-query eavesdroppers with (1− 1/ poly(κ))-OW-security.

• In Lemma 7.11, we amplify the OW-security of the key agreement via repetitions.

• Lastly, given that the completeness and soundness satisfy certain condition, Lemma 7.12 yields a key
agreement with (1− 2−κ)-completeness and 2−κ-IND-security.

Protocol 7.7. This is a key agreement protocol between Alice and Bob, with respect to an algorithm Q and
a set U . The common input to the parties is the security parameter κ ∈ U .

1. Set ` = dc log(κ)e+ 2.

2. Alice and Bob both repeat Q for O(2`p(κ)2) times, and obtain the approximations p(Ah) and p(Bh)
of p(Qh), where p(Ah) and p(Bh) are the empirical probabilities of the algorithm Q outputting 1.

3. Alice chooses a random shift r ∈ [0, 1] uniformly at random and sends r to Bob.

4. Alice outputs her (`+ 1)-bit key kA := b2`p(Ah) + re, where bxe denotes rounding half up x to the
nearest integer. Similarly, Bob outputs his key kB := b2`p(Bh) + re.

The following lemma shows Protocol 7.7 satisfies certain complete and security if the Simulation Con-
jecture is false.

Lemma 7.8. If Conjecture 7.2 is false, then there exists a polynomial q(·) such that for every polynomial
p(·), there exists a O(log(κ))-bit key agreement protocol with respect to an infinite set U ⊆ N such that the
following hold. For all κ ∈ U , the protocol has (1− 1/p(κ))-completeness and (1− 1/q(κ))-OW-security
against poly(κ)-classical-query eavesdroppers in the QCCC model. Furthermore, if Conjecture 7.1 then
we get a similar result, except the parties in the key agreement protocol are only polynomial query (rather
than polynomial time).

Proof. Suppose Conjecture 7.2 is false. Then, there exists a constant c, an infinite sequence U = {κ1 <
κ2 . . .}, and an (perhaps non-uniform) quantum κc-time quantum algorithm Q such that the following hold:

1. Given security parameter κi ∈ U , Q asks κci many queries to the random oracle h : {0, 1}∗ → {0, 1}.

2. Given security parameter κi ∈ U . If an m-classical-query algorithm can κ−ci -approximates Q, it must
be m = (κi)

ωi(1).

In other words, if we choose the security parameter κ from U , then κ−c-approximating Q requires super-
polynomially many classical queries.

We claim that Protocol 7.7 parameterized by p satisfies our desired properties.
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Completeness. Let EA, EB, in order, be the event that |p(Ah) − p(Qh)| ≥ 2−`−2/p(κ) and |p(Bh) −
p(Qh)| ≥ 2−`−2/p(κ).

By Lemma 7.5, for every h, it holds that Pr[EA] ≤ 2−κ−1 and Pr[EB] ≤ 2−κ−1. Thus, we have

Pr

[
|2`p(Ah)− 2`p(Bh)| ≤ 1

2p(κ)

]
≥ 1− Pr[EA]− Pr[EB] ≥ 1− 2−κ.

Next, we analyze the error due to the random shift r. For any a, b ∈ R, |a− b| ≤ ∆ ≤ 0.5, it holds that

Pr
r←[0,1]

[ba+ re = bb+ re] = Pr
r←[0,1]

[bre = bb− a+ re] ≥ 1−∆.

Therefore, the probability that Alice and Bob outputs the same keys is given by

Pr[kA = kB] ≥ Pr[¬EA ∧ ¬EB] · Pr[kA = kB | ¬EA ∧ ¬EB]

≥ (1− 2−κ) · (1− 1

2p(κ)
) > 1− 1

p(κ)

for sufficiently large κ, since r is sampled independently.

OW-security. If Conjecture 7.2 is false, for every poly(κ)-classical-query eavesdropper E, we have

E
h

[|p(Eh)− p(Qh)|] > κ−c.

We prove the above by contradiction. Suppose there exists a poly(κ)-classical-query eavesdropper E who
violates the (1− 1/q(κ))-OW-security, i.e., Pr[Hit] ≥ 1 − 1/q(κ), where Hit denotes the event kA = kE.
Then we claim that there exists a poly(κ)-classical-query eavesdropper E′ that κ−c-approximates Q. Here,
E′ simply runs E once and outputs the approximation defined as

p(E′h) :=
kE − r

2`
.

Notice that the error due to rounding is at most 0.5, so we have

|kA − (2`p(Ah) + r)| ≤ 0.5.

Therefore, conditioned on Hit and ¬EA, for every h the error of the approximation is upperbounded by

|p(E′h)− p(Qh)| ≤ |p(E′h)− p(Ah)|+ |p(Ah)− p(Qh)|

≤ 1

2`
· |kE − r − 2`p(Ah)|+ |p(Ah)− p(Qh)|

≤ 0.5

2`
+

1

2`+2p(κ)
≤ 1

4κc

for sufficiently large κ.
Then by elementary properties of expectation and the fact that the difference between probabilities is

bounded by 1, the following holds for sufficiently large κ by choosing q(κ) = 2κc,

E
h

[
|p(E′h)− p(Qh)|

]
≤E

h

[
|p(E′h)− p(Qh)| | Hit ∧ ¬EA

]
+ Pr[¬Hit] + Pr[EA]

≤ 1

4κc
+

1

q(κ)
+ 2−κ ≤ κ−c.

But that means E′ would κ−c-approximate Q, which is a contradiction.
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We now want to follow the intuitive path of amplifying the quality of the key agreement by repeating
the scheme many times and using the concatenation of the keys as the final key. We need to do this carefully
for two reasons: (1) the completeness might get hurt as well; we will handle this issue by using a underlying
scheme with sufficiently original completeness error; (2) the security amplification proof is fully information
theoretic, as we only care about the query complexity of the attack. To handle the second issue, we rely on
the fact that concurrent compositions of interactive proof systems decrease the soundness error optimally.

Definition 7.9 (Interactive protocols and their composition). Let (P, V ) be an interactive protocol composed
of a prover P and a verifier V . We say (P, V ) is (1 − δ)-sound for the input x, if for every prover P̂ , the
probability of P̂ being accepted by V is at most δ. Let (P1, V1),. . . ,(Pk, Vk) be k interactive protocols. By
(Pcon, Vcon) we mean the concurrent composition of (P1, V1), . . . , (Pk, Vk) defined as follows.

• Let x be the common input.

• The verifier Vcon runs V1, . . . , Vk and the prover Pcon runs P1, . . . , Pk in a way that Vi will be inter-
acting with Pi in the i’th “sessions”. There is no round synchronization enforced across sessions.

• At the end Vcon rejects if any of Vi’s reject.

The following lemma is Lemma 2.6 in [GIMS10], and it can be proved with the same proof of parallel
repetition of interactive proofs [BM88].

Lemma 7.10 (Soundness error of concurrent composition). Let (P1, V1), . . . , (Pk, Vk) be k interactive pro-
tocols, and let (Pcon, Vcon) be their concurrent compositions. If (Pi, Vi) is (1 − δi)-sound over the input x
for all i ∈ [k], then (Pcon, Vcon) will be (1−Πiδi)-sound.

Lemma 7.11. Let KA be a `-bit key agreement with (1− 1/p(κ))-completeness and (1− 1/q(κ))-soundness
against poly(κ)-classical-query eavesdroppers in the QCCC model. Then there exists a `κq(κ)-bit key
agreement KA′ with (1−κq(κ)/p(κ))-completeness andO(2−κ)-OW-security against poly(κ)-classical-query
eavesdroppers in the QCCC model by running KA for κq(κ) times as subroutines.

Proof. Consider the following protocol KA′:

1. Alice and Bob both repeats the protocol KA for r := κq(κ) times independently (where the random
oracles in each execution are mutually independent) and obtains (kA,1, . . . , kA,r) and (kB,1, . . . , kB,r)
respectively.

2. Alice and Bob outputs theirs key

k′A := (kB,1, . . . , kB,r) and k′B := (kB,1, . . . , kB,r).

Completeness. By union bound, we have

Pr[kA = kB] ≥ 1− r

p(κ)
≥ 1− κq(κ)

p(κ)
.
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OW-security. First, we treat each execution the KA as an interactive protocol (P, V ), in which Alice and
Bob are the verifier V and Eve is the prover P . Let the security parameter κ be the common input. After
Alice and Bob generate the key, they send the transcript to Eve in the first round. In the following rounds,
Eve sends the query x to the verifier, and then the verifier response with h(x). In the end, the verifier accepts
if Eve outputs the correct key. By the OW-security of KA, it holds that (P, V ) is 1/q(κ)-sound.

Then by treating KA′ as the concurrent composition of (P1, V1),. . . ,(Pr, Vr) and Lemma 7.10, it holds
that KA′ is (1 − e−κ)-sound since (1 − 1/q(κ))r ≤ e−κ, where we use 1 − x ≤ e−x. In other words, the
probability of Eve outputting the correct key is at most e−κ. Thus, we conclude the proof.

Recall that in Protocol 7.7, the completeness is the same for every oracle. By an averaging argument over
the oracle, there exists 1− O(2−κ/2) fraction of the oracles where the protocol has O(2−κ/2)-OW-security
and (1− κq(κ)/p(κ))-completeness. In other words, there are only negligible amount of ”bad” oracles where
the protocol cannot be further amplified. Therefore, we fix oracle’s randomness and analyze the protocol.

Finally, suppose the gap between completeness and OW-security is large enough, the following lemma
yields a single-bit key agreement with (1− 2κ)-completeness and (1/2 + 2−κ)-OW-security.

Lemma 7.12 (Theorem 4.5 in [HMST21]). There exists an oracle-aided two-party protocol Φ(·) such that
the following holds for every α ∈ (0, 1]. Let KA be a `-bit key agreement with α-completeness and
α2/215-OW-security. Then ΦKA(κ, `, α) is a single-bit key agreement with (1− 2−κ)-completeness and
(1/2 + 2−κ)-OW-security. The running time of ΦKA(κ, `, α) is poly(κ, `, 1/α).

Furthermore, the security proof is black-box: there exists an poly-query algorithm E(·) such that for
every `-bit key agreement KA with completeness α, and every algorithm Ẽ that violates the (1/2+2−κ)-OW-
security of ΦKA, algorithm EKA,Ẽ(κ, `, α) violates the α2/215-OW-security of KA, and asks poly(κ, `, 1/α)
queries to KA and E.

Proof of Theorem 7.6. Notice that the (1/2 + ε)-OW-security of a single-bit key agreement implies ε-IND-
security. By choosing p(κ) = 2κ2q(κ) in Lemma 7.8, the theorem directly follows from Lemma 7.8,
Lemma 7.11, and Lemma 7.12.

8 Equivalence of Using Different Groups: Proof of Lemma 4.8

This section dedicates to proving Lemma 4.8. Before giving the proof, we introduce some useful lemmas.

8.1 Useful Lemmas

Let (G1,+1) and (G2,+2) be two additive Abelian groups with the same cardinality. Let h1 : [N ] → G1

and h2 : [N ]→ G2 be two random oracles. Lemma below says one can simulate h2 given h1 and h†1.

Lemma 8.1. Given the structure of G1 and G2, and the access to h1 and h†1, there exists a quantum channel
Ξ sudh that

Ξ(|x〉〈x| ⊗ |y〉〈y|) = |x〉〈x| ⊗ |y +2 h2(x)〉〈y +2 h2(x)|,

for all x ∈ [N ], y ∈ G2.

Proof. Because G1 and G2 have the same cardinality, we can find a permutation π : G1 → G2. It does
not matter which π is chosen. All we need is a mapping from G1 to G2. Let U+2 be a unitary defined as
U+2 : |y, z〉 7→ |y +2 π(z), z〉 for all y ∈ G2 and z ∈ G1. Let 0 be the identity of G1. Given the input state
|x〉X |y〉Y where x ∈ [N ], y ∈ G2, we define the quantum channel C as follows.
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1. Append an ancilla register Z, which is initialized as |0〉.

2. Apply the operator h1 to register XZ, and we have |x〉X |y〉Y |h1(x)〉Z .

3. Apply U+2 to Y Z and state becomes |x〉X |y +2 π(h1(x))〉Y |h1(x)〉Z .

4. Apply h†1 to register XZ, and state becomes |x〉X |y +2 π(h1(x))〉Y |0〉Z .

5. Discard register Z.

Because h1 and h2 are random functions from [N ] to the ranges with the same size, the distributions
|x〉|y +2 h2(x)〉 and |x〉|y +2 π(h1(x))〉 are the same if we choose h1 and h2 uniformly at random. Thus,
simulation is perfect.

With Lemma 8.1, when it comes to studying random oracles with different Abelian groups, it is sufficient
to consider the group Zp with the ordinary integer addition modulus p, where p ∈ N.

Recall that in Section 4.2, we say a key agreement protocol Πh using the random oracle h is (τ, s)-
broken there exists an attacker that breaks Πh by asking s many queries to h in expectation after receiving
the classical transcript and finds the key with probability at least τ .

Lemma 8.2. For any finite Abelian group Y , suppose there exists that a constant τ > 0 and a function
s(·) such that for all N, d ∈ N and any single-bit key agreement protocol Πh1

1 where Alice and Bob asks d
queries to random oracles h1 : [N ]→ Y , it holds that Πh1

1 is (τ, s(d))-broken. Then, for all N ′,m, d′ ∈ N
and any single-bit key agreement protocol Πh2

2 where Alice and Bob ask d′ queries to random oracles
h2 : [N ′]→ Ym, Πh2

2 can be (τ, s(md′))-broken.

Proof. In this proof, we are going to construct an adversary that breaks Πh2
2 . Let h be a random oracle

from [mN ′] to Y . Notice that for all element y ∈ Ym, we can represent it as y = (y1, . . . , ym), where
y1, . . . , ym ∈ Y . Thus, for all x ∈ [N ′], we can simulate an oracle query to h2 on x by using h as follows.

h2(x) = (h(xm+ 1), h(xm+ 2), . . . , h(xm+m)). (5)

Therefore, we show that any query to h2 can be perfectly simulated by m queries to h. Now, consider a
single-bit key agreement protocol Πh which is almost the same as Πh2

2 , except that whenever Alice and Bob
intend to query h2 as they do in Πh2

2 , they query h as Eq.(5) instead. Because Alice and Bob ask d′ queries
to h2 when they execute Πh2

2 , Alice and Bob ask md′ queries to h when they execute Πh.
Because the range of h is Y , Πh is (τ, s(md′))-broken. In other words, there exists an adversary E that

queries h at most s(md′) times such that

Pr
h

[
kE = k | k ← Πh, kE ← Eh

]
≥ τ.

Next, we will show that any query to h can be perfectly simulated by a single query to h2. For all
x ∈ [mN ′], let tx = x mod N ′ and qx = bx/N ′c. Recall that for all element y ∈ Ym, we can represent
it as y = (y1, . . . , ym), where y1, . . . , ym ∈ Y . Let y[i] denote the i-th coordinate of y. Thus, for all
x ∈ [mN ′], we can simulate an oracle query to h on x by using h2 as follows.

h(x) = h2(qx)[tx]. (6)

Finally, we construct an adversary E′ for Πh2
2 . Let E′ be defined as follows.
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• E′ runs E once as a subroutine.

• When E queries the oracle h on x, E′ replies h2(qx)[tx].

• E′ outputs whatever E outputs.

Since both oracle simulations are perfect, it holds that

Pr
h2

[
kE′ = k | k ← Πh2

2 , kE′ ← E′
h2,E
]

= Pr
h

[
kE = k | k ← Πh, kE ← Eh

]
≥ τ.

Lemma 8.3 (Oracle indistinguishability, Theorem 1.1 in [Zha12]). Let D0, D1 be two distributions over Y .
Let DX0 , DX1 be, in order, the distributions over functions h from X to Y such that for all x ∈ X , h(x) is
sampled independently from D0, D1. If the statistical distance between D0 and D1 is at most ε, then any
d-query quantum algorithm can distinguish DX0 and DX1 with probability at most

√
d3ε.

8.2 Proof of Lemma 4.8

Recall that Lemma 8.1 guarantees that two oracles with the same range size can simulate each other where
the number of queries increases by the factor of 2. Thus, it suffices to show that for any C, d′ ∈ N, δ > 0
and any single-bit key agreement protocol ΠhC

C where Alice and Bob asks d′ queries to random oracles hC
whose range is ZC , ΠhC

C can be (τ − δ, 2s(dlog|Y|(d
′3C/4δ2)ed′))-broken. The remaining proof is going to

construct an adversary that breaks ΠhC
C .

By Lemma 8.2, for all m, any key agreement where Alice and Bob asks d′ queries to the random oracle
whose range is Ym is (τ, s(md′))-broken. By Lemma 8.1, any key agreement where Alice and Bob asks d′

queries to a random oracle h3 whose range is Z|Ym| is (τ, 2s(md′))-broken.
Now, we choose m = dlog|Y|(d

′3C/4δ2)e, and we have |Y|m ≥ d′3C/4δ2. Consider a key agreement
protocol Πh3

3 where Alice and Bob simply run ΠC and they simulate the oracle query hC(x) as h3(x)
mod C. Because the range of h3 is Z|Ym|, Πh3

3 is (τ, 2s(md′))-broken. In other words, there exists an
adversary E that queries h at most 2s(md′) times such that

Pr
h

[
kE = k | k ← Πh, kE ← Eh

]
≥ τ.

Next, q = b|Y|m/Cc = bd′3/4δ2c and r = |Y|m mod C. Consider another oracle h4 : [N ] → ZCq
for some N ∈ N. We define Πh4

4 to be a key agreement where Alice and Bob simply run ΠC and they
simulate the oracle query hC(x) as h4(x) mod C. Let D0 be the distribution of x mod C where x is
chosen uniformly from Z|Y|m , and D1 be the distribution of x mod C where x is chosen uniformly from
ZCq. By direct calculation, the statistical distance between D0 and D1 is

ε =
1

2

C∑
i=1

|D0(i)−D1(i)|.
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Notice that D1 is exactly the uniform distribution over [C], so D1(i) = 1/C for all i. Then, for all i =
1, . . . , r,D0(i) = (q+1)/|Y|m which is slightly larger than 1/C. On the other hand, for all i = r+1, . . . , C,
D0(i) = q/|Y|m which is slightly smaller than 1/C. Therefore, we have

ε =
1

2

r∑
i=1

(
q + 1

|Y|m
− 1

C

)
+

1

2

C∑
i=r+1

(
1

C
− q

|Y|m

)
=
r(C − r)
|Y|mC

.

Because r(C − r) ≤ C2/4, we obtain ε ≤ C
4|Y|m . By Lemma 8.3, any d′-query quantum algorithm can only

distinguish h3 and h4 with probability at most
√
d′3ε ≤ δ. Therefore, the overall success probability of E

for attacking Π4 can be lowerbounded by

Pr
h4

[
kE = k | k ← Πh4

4 , kE ← Eh4
]
≥ Pr

h3

[
kE = k | k ← Πh3

3 , kE ← Eh3
]
− δ ≥ τ − δ.

Finally, we construct an adversary E′ for ΠhC
C as follows.

• For all x ∈ [N ], E′ chooses tx ∈ [q] uniformly at random.

• E′ runs E as a subroutine.

• When E queries the oracle h4 on x, E′ replies tx · C + hC(x).

Notice that if we choose hC uniformly at random, tx · C + hC(x) is the uniform distribution over ZCq.
Thus, tx · C + hC(x) perfectly simulates h4(x). It leads to

Pr
hC

[
kE′ = k | k ← ΠhC

C , kE′ ← E′hC ,E
]

= Pr
h4

[
kE = k | k ← Πh4

4 , kE ← Eh4
]
.

Combining the results above, we have

Pr
hC

[
kE′ = k | k ← ΠhC

C , kE′ ← E′hC ,E
]
≥ τ − δ.

Because the number of queries by E and E′ are the same, we conclude that ΠhC
C is (τ − δ, 2s(md′))-broken

form = dlog|Y|(d
′3C/4δ2)e, which is sufficient to show the result as we argued at the beginning of the proof.
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A Reduction from Complex to Real: Proof of Theorem 5.6

By Observation 5.2 and Observation 5.4, we have Conjecture 4.3 implies Conjecture 5.5.
We are going to show that Conjecture 5.5 implies Conjecture 4.3, which means that without loss of

generality we can work with real numbers rather than complex numbers.
LetG1 andG2 be two distributions of functions from YN to R. Because of Conjecture 5.5, there exists a

finite Abelian group Y such that for all N, d ∈ N and for sufficiently small δ ≤ 1/ poly(d, log |Y|), as long
as G1 and G2 satisfy unit `2-norm 1, d-degrees, and 2δ-influences on average, there exists g1 ∈ supp(G1),
g2 ∈ supp(G2), and x ∈ YN such that g1(x) · g2(x) 6= 0.

Let F1 and F2 be two distributions of functions from YN to C. For the sake of reaching a contradiction,
suppose F1 and F2 satisfy unit `2-norm 1, d-degrees, and δ-influences on average, while we have f1(x) ·
f2(x) = 0 for all f1 ∈ supp(F1), f2 ∈ supp(F2), and x ∈ YN . It implies there exists two (Y, δ, d,N)-
states that are not compatible. The remaining proof is going to construct two distributions G1 and G2 of
functions from YN to R that satisfy unit `2-norm 1, d-degrees, and 2δ-influences on average, while we have
g1(x) · g2(x) = 0 for all g1 ∈ supp(G1), g2 ∈ supp(G2), and x ∈ YN . It leads to a contradiction.

Recall that for any function f : YN → C, it can be written in terms of its Fourier transform

f(x) =

 ∑
χ∈ŶN

α(χ)

N∏
i=1

χi(xi)

+

 ∑
χ∈ŶN

β(χ)

N∏
i=1

χi(xi)

 i,

where α(χ) and β(χ) are real numbers for all χ. For convenience, let Rf (x) denote the real part of f ; that
is, Rf (x) =

∑
χ∈ŶN α(χ)

∏N
i=1 χi(xi). Similarly, let If (x) =

∑
χ∈ŶN β(χ)

∏N
i=1 χi(xi).

Next, suppose f has unit length. We have
∑

χ∈ŶN α(χ)2 +
∑

χ∈ŶN β(χ)2 = 1. Thus,

max

 ∑
χ∈ŶN

α(χ)2,
∑
χ∈ŶN

β(χ)2

 ≥ 1

2
.

Notice that for all i, Infi[f ] = Infi[Rf ] + Infi[If ]. Thus, Infi[Rf ] and Infi[If ] are upperbounded by
Infi[f ]. However, Rf and If may not have unit length, so we need to renormalize them. Let R̃f =
Rf/(

∑
χ∈ŶN α(χ)2) and Ĩf = If/(

∑
χ∈ŶN β(χ)2) be renormalized Rf and renormalized If . Therefore,

we have either Infi[R̃f ] ≤ 2 Infi[f ] or Infi[Ĩf ] ≤ 2 Infi[f ].
Because we have f1 · f2 = 0 for all f1 ∈ supp(F1), f2 ∈ supp(F2), for each x ∈ YN , either f1(x) = 0

or f2(x) = 0 (or both) holds. Because f(x) = 0 if and only if Rf (x) = If (x) = 0 for all x, we have
Rf1(x) ·Rf2(x) = 0, Rf1(x) · If2(x) = 0, If1(x) ·Rf2(x) = 0 and If1(x) · If2(x) = 0 for all x. Let g1 be
the function with the smaller maximal influence among R̃f1 and Ĩf1 . Similarly, let g2 be the function with
the smaller maximal influence among R̃f2 and Ĩf2 . By the argument above, we have Infi[g1] ≤ 2 Infi[f1]
and Infi[g2] ≤ 2 Infi[f2] for all i. Besides, we also have deg(g1) ≤ deg(f1) and deg(g2) ≤ deg(f2).
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Finally, let Pr(G1 = g1) = Pr(F1 = f1) for all f1 ∈ supp(F1) and Pr(G2 = g2) = Pr(F2 =
f2) for all f2 ∈ supp(F2). Because Infi[g1] ≤ 2 Infi[f1] and Infi[g2] ≤ 2 Infi[f2] for all i, we have
Eg1←G1 [Infi(g1)] ≤ 2δ and Eg2←G2 [Infi(g2)] ≤ 2δ for all i.

B Example Functions

In this section, we provide examples of functions that show the necessity of the properties of the polynomials
(or quantum states) as stated in Conjectures 4.3 and 5.5.

To avoid having to normalize our example functions, in this section we denote by RelInfi(f) := Infi(f)
E[|f |2]

the influence of variable i on function f relative to its `2 norm.
Throughout this section, we use ANDn : {−1, 1}n → {0, 1} to denote the function which is 1 all its

inputs are −1 and otherwise 0. We sometimes drop the subscript n when the number of inputs is clear
from context. Note that E[ANDn(x)2] = 2−n and that Infi(ANDn) = 2−n/2 for all i ∈ [n] (and thus
RelInfi(ANDn) = 1/2).

Definition B.1. For a set of n×m variables ~x = {xij}i∈[n],j∈[m], we define the functions

NegRow(~x) =
n∑
i=1

ANDm(xi,∗) PosCol(~x) =
m∑
j=1

ANDn(−x∗,j),

where xi,∗ denotes the i’th row of variables and x∗,j denotes the j’th column of variables when we think of
them as arranged in an n×m matrix.

Claim B.2. The functions NegRow and PosCol satisfy the following properties

1. RelInfij(NegRow) < 1
2n for all i, j.

2. RelInfij(PosCol) < 1
2m for all i, j.

3. NegRow(~x) is non-zero if and only if there exists a row of ~x which is all −1. As a consequence,
NegRow(~x) = 0 on exactly a (1− 2−m)n fraction of all ~x

4. PosCol(~x) is non-zero if and only if there exists a column of ~x which is all +1. As a consequence,
NegRow(~x) = 0 on exactly a (1− 2−n)m fraction of all ~x

To see the claimed bounds on the relative influences, note that Infij(NegRow) = 2−m/2 for all i, j, and
that

E[NegRow(~x)2] = n2−m + n(n− 1)2−2m > n2−m,

hence RelInfij(NegRow) < 1
2n .

Example 1: best possible relation between degrees and influences. This first example shows that the
best relation between degree and influence that can be hoped for is max RelInf ≤ 1

2d .

Claim B.3. For any d there exist non-zero degree d polynomials f and g, having all relative influences
bounded by 1

2d , and satisfying f(x) · g(x) = 0 for all x.

Proof. Let n = m = d and take the polynomials NegRow and PosCol.

41



Example 2: both functions need low degree. The next example shows that both functions need to have
bounded degree, otherwise the conjecture is false.

Claim B.4. For any d ≥ 1 there exists non-zero functions f and g such that:

1. f has degree d

2. max RelInf(f) and max RelInf(g) are both O(2−d)

3. f · g = 0

Proof. Let n = 2d, m = d, and f = NegRow. Let g(~x) be the function which is 1 whenever NegRow(~x)
is 0. The only property that is not immediate is the maximum relative influence of g. To bound this, note
that Infij(g) = (1− 2−m)n−1 · 2−m+1 for all i and j, and that E[g2] = (1− 2−m)n. We thus have

max RelInf(g) =
(1− 2−m)n−12−m+1

(1− 2−m)n
= 2−m+1 1

1− 2−m
≤ 4 · 2−m = 4 · 2−d

Example 3: both functions need low influences. This last example shows that both functions need to
have small influence, otherwise the conjecture is false.

Claim B.5. For any d ≥ 1 there exists functions f and g of `2 norm 1 such that

1. f and g have degree d.

2. max RelInf(f) is 2−Ω(d).

3. f · g = 0.

Proof. Let g = ANDd(x) and f = 1− ANDd(x).

C Omitted Proofs

Here, we prove Lemma 3.6.

Proof of Lemma 3.6. The proof is based on the proof of Claim 3.21 from [BM17], while using the following
lemma from [IR89].

Lemma C.1 (Lemma 6.4 in [IR89]). Let E be an event over a random variable Q and suppose `1, `2, . . .
be a finite sequence of correlated random variables. Let D be the event that there exists some i ≥ 1 such
that Pr[E|`1, . . . , `i] ≥ ε. Then it holds that Pr[E] ≥ Pr[D] · ε.

For q ∈ U , define the following indicator (Boolean) random variables Iq = 1 if q ∈ S and Fq = 1 if
x ∈ Q. By linearity of expectation we have E[|S|] =

∑
q Pr[Iq] and E[|Q|] =

∑
q Pr[Fq]. So, all we need

to show is to prove that
Pr[Iq] · ε ≤ Pr[Fq]

which we prove using Lemma C.1 as follows. Let the underlying random variable be q. Define the event
E to be Fq for the particular fixed q. Also, it is easy to see that Iq ⊆ D. Therefore Pr[Iq] ≤ Pr[D] ≤
Pr[E]/ε = Pr[Fq]/ε.
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