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Abstract. With the rapid growth of the blockchain market, privacy and
security issues for digital assets are becoming more important. In the
most widely used public blockchains such as Bitcoin and Ethereum, all
activities on user accounts are publicly disclosed, which violates privacy
regulations such as EU GDPR. Encryption of accounts and transactions
may protect privacy, but it also raises issues of validity and transparency:
encrypted information alone cannot verify the validity of a transaction
and makes it difficult to meet anti-money laundering regulations, i.e.
auditability.
In this paper, we propose Azeroth, an auditable zero-knowledge trans-
fer framework. Azeroth connects a zero-knowledge proof to an encrypted
transaction, enabling it to check its validation while protecting its pri-
vacy. Our proposal also allows authorized auditors to audit transactions,
and is designed as a smart contract for flexible deployment on existing
blockchains. We implement the Azeroth whole framework, execute it on
various platforms including an Ethereum testnet blockchain, and mea-
sure the time to show the practicality of our proposal. The end-to-end
latency of a privacy-preserving transfer takes about 4.4s. In particular,
the client’s transaction generation time with a proof only takes about
0.9s. The security of Azeroth is proven under the cryptographic assump-
tions.

1 Introduction

With the widespread adoption of blockchains, various decentralized applications
(DApps) and digital assets used in DApps are becoming popular. Unlike tradi-
tional banking systems, however, the blockchain creates privacy concerns about
digital assets since all transaction information is shared across the network for
strong data integrity. Various studies have been attempted to protect transac-
tion privacy by utilizing cryptographic techniques such as mixers [2,20,21], ring
signatures [26], homomorphic encryption [6], zero-knowledge proofs [4,6,17,25],
etc.

In the blockchain community, the zero-knowledge proof (ZKP) system is a
widely used solution to resolve the conflict between privacy and verifiability. The
ZKP is a proof system that can prove the validity of the statement without re-
vealing the witness value; users can prove arbitrary statements of encrypted data,
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enabling public validation while protecting data privacy. For instance, the well-
known anonymous blockchain ledger Zerocash [4], which operates on the UTXO
model, secures transactions, while leveraging zero-knowledge proofs [15] to en-
sure transactions in a valid set of UTXOs. Zether [6] based on the account model
encrypts accounts with homomorphic encryption and provides zero-knowledge
proofs [8] to ensure valid modification of encrypted accounts. Zether builds up
partial privacy for unlinkability between sender and receiver addresses, similar
to Monero [26].

As asset transactions on the blockchain increase, the demand for adequate
auditing capabilities is also increasing. Moreover, if transaction privacy is pro-
tected without proper regulation, financial transactions can be abused by crim-
inals and terrorists. Without the management of illegal money flows, it would
be also difficult to establish a monetary system required to maintain a sound fi-
nancial system and enforce policies accordingly. Recently, Bittrex4 delisted dark
coins such as Monero [26], Dash [12], and Zerocash [4]. In fact, many global
cryptocurrency exchanges are also strengthening their distance from the dark
coins as recommended by Financial Action Task Force (FATF) [13]. Thus, we
need to find a middle ground of contradiction between privacy preservation and
fraudulent practices. This paper focuses on a privacy-preserving transfer that
provides auditability for auditors while protecting transaction information from
non-auditors.

Auditable private transfer can be designed by using encryption and the ZKP.
A sender encrypts a transaction so that only its receiver and the auditor can de-
crypt it. At the same time, the sender should prove that the ciphertext satisfies
all the requirements for the validity of the transaction. In particular, we uti-
lize zk-SNARK (Zero-Knowledge Succinct Non-Interactive Argument of Knowl-
edge) [15, 16, 24] to prove arbitrary functionalities for messages, including en-
cryption. Although the encryption check incurs non-negligible overhead for the
prover, it is essential for the validity and auditability of the transaction. Indeed,
without a proof for encryption as in Zerocash [4], even if a ciphertext passes all
other transaction checks, there always exists a possibility that an incorrectly gen-
erated ciphertext, either accidentally or intentionally, will be accepted, resulting
in the loss of the validity and auditability of the transaction.

There are two main privacy considerations in a transfer transaction: confiden-
tiality (concealing a balance and a transfer amount) and anonymity (concealing
a sender and a recipient). Confidentiality can be provided by utilizing encryp-
tion, while anonymity can be provided by utilizing an accumulator. Specifically,
we employ dual accounts that constitute an encrypted account in addition to a
plain account, similar to Blockmaze [17]. A user may execute deposit/withdrawal
transactions between its own plain/encrypted accounts. At the same time, the
user may send some encrypted value from its accounts to the accumulator (im-
plemented as an Merkle tree). The owner of the encrypted value may receive it
from the accumulator to the user’s accounts.

4 https://global.bittrex.com/
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In this paper, we propose Azeroth, an auditable zero-knowledge transaction
framework based on zk-SNARK. The Azeroth framework provides privacy, ver-
ifiability, and auditability for personal digital assets while maintaining the effi-
ciency of transactions. Azeroth preserves the original functionality of the account-
based blockchain as well as providing the additional zero-knowledge feature to
meet the standard privacy requirements. Azeroth is devised using encryption for
two-recipients (i.e., the recipient and the auditor) so that the auditor can audit
all transactions. Still, the auditor’s capability is limited to auditing and cannot
manipulate any transactions. Azeroth enhances the privacy of the transaction
by performing multiple functions such as deposit, withdrawal, and transfer in
one transaction. For the real-world use, we adopt a SNARK-friendly hash algo-
rithm to instantiate encryption to have an efficient proving time, and execute
experiments on various platforms.

The contributions of this paper are summarized as follows.
• Framework: We design a privacy-preserving transfer framework Azeroth on

an account-based blockchain model, while including encryption verifiability,
and auditability. Moreover, since Azeroth constructed as a smart contract
does not require any modifications to the base-ledger, it advocates flexible
deployment, which means that any blockchain models supporting smart-
contract can utilize our framework.

• Security: We revise and extend the security properties of private transac-
tions: ledger indistinguishability, transaction non-malleability, balance, and
auditability, and prove that Azeroth satisfies all required properties under
the security of underlying cryptographic primitives.

• Implementation: We implement and test Azeroth on the existing account-
based blockchain models, such as Ethereum [7]. According to our experi-
ment, it takes 4.38s to generate a transaction in a client and process it in
a smart contract completely on the Ethereum testnet. While Azeroth ad-
ditionally supports encryption verifiability and auditability, it shows better
performance results than the other existing schemes through implementa-
tion optimization. To show the practicality of our scheme, we experiment
the zk-SNARK performance on various devices including Android/iOS mo-
bile phones. For the details, refer to section 6.

Organizations. The paper is comprised of the following contents: First, we
provide the related works concerning our proposed scheme in section 2. In sec-
tion 3, we describe preliminaries on our proposed system. In section 4, we give
an explanation of data structures utilized in Azeroth. Afterward, we elucidate
the overview and construction in section 5. Section 6 shows the implementation
and the experimental results. Finally, we make a conclusion in section 7.

2 Related Work

The blockchain has been proposed for integrity rather than privacy. To provide
privacy in blockchain, various schemes have been proposed along several lines of
work.
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A mixing service(or tumbler) such as CoinJoin [20], Möbius [21], and Tornado
Cash [2] offers a service for mixing identifiable cryptocurrency transfer with
others, so as to obscure the trail back to the transfer’s original source. Thus, the
mixer supports personal privacy protection for transactions on the blockchain.
However, since the mixers take heed of anonymity, it exists the possibility of a
malevolent problem.

Zerocash [4] provides a well-known privacy-preserving transfer on UTXO-
model blockchains. In Zerocash, a sender makes new commitments that hide
the information of the transaction (i.e., value, receiver) which is open only to
the receiver. The sender then proves the correctness of the commitments using
the zero-knowledge proof. As an extension to a smart contract, Zeth [25] sorts
the privacy problem out by implementing Zerocash into a smart contract. Zeth
creates the anonymous coin within the smart contract in the form of underlying
the UTXO model. Thus, operations and mechanisms in Zeth are almost the
same as Zerocash. ZEXE [5], extending Zerocash with scripting capabilities,
supports function privacy that nobody knows which computation is executed
in off-line. Hawk [19] is a privacy-preserving framework for building arbitrary
smart contracts. However, there exists a manager, entrusted with the private
data, that generates a zk-SNARK proof to show that the process is executed
correctly.

Blockmaze [17] proposes a dual balance model for account-model blockchains,
consisting of a public balance and private balance. For hiding the internal con-
fidential information, they employ zk-SNARK when constructing the privacy-
preserving transactions. Thus, it performs within the transformation between
the public balance and the private balance to disconnect the linkage of users.
Blockmaze is implemented by revising the blockchain core algorithm, restricting
its deployment to other existing blockchains.

Zether [6] accomplishes the privacy protection in the account-based model
using ZKPs (Bulletproofs [8]) and the ElGamal encryption scheme. While Zether
is stateful, it does not hide the identities of parties involved in the transaction.
Moreover, since the sender should generate a zero-knowledge proof for the large
user set for anonymity, it has limitation to support a high level of anonymity.
Diamond [11] proposes “many out of many proofs” to enhance proving time for a
subset of a fixed list of commitments. Nevertheless, the anonymity corresponding
to all system users is not supported.

Among the privacy-preserving payment systems, some approaches allow au-
ditability. Solidus [9] is a privacy-preserving protocol for asset transfer in which
banks play a role as an arbitrator of mediation. Solidus utilizes ORAM to support
update accounts without revealing the values, but it cannot provide a dedicated
audit function. Specifically, it can only offer auditing by revealing whole keys to
an auditor, and opening transactions.

zkLedger [22] and FabZK [18] enable anonymous payments via the use of
homomorphic commitments and NIZK while supporting auditability. However,
since these systems are designed based on organizational units, there is the prob-
lem of performance degradation as the number of organizations increases. Thus,
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they are practical only when there are a small number of organizations due to
the performance issue.

PGC [10] aims for a middle ground between privacy and auditability and
then proposes auditable decentralized confidential payment using an additively
homomorphic public-key encryption. However, the anonymity set size should
be small in the approach. The work [3] proposes a privacy-preserving auditable
token management system using NIZK. However, the work is designed for enter-
prise networks on a permissioned blockchain. Moreover, whenever transferring a
token, a user should contact the privileged party called by Certifier that checks
if the transaction is valid.

3 Preliminaries

In this section, we describe notations for standard cryptographic primitives. Let
λ be the security parameter.

zk-SNARK: As described in [15,16], given a relation R, a zk-SNARK is com-
posed of a set of algorithms Πsnark = (Setup, Prove, VerProof) that works as
follows.

• Setup(λ,R) → crs := (ek, vk), td: The algorithm takes a security parameter
λ and a relation R as input and returns a common reference string crs
containing an evaluating key ek and a verification key vk, and a simulation
trapdoor td.

• Prove(ek, x, w)→ π: The algorithm takes an evaluating key ek, a statement
x, and a witness w such that (x, w) ∈ R as inputs, and returns a proof π.

• VerProof(vk, x, π) → true/false: The algorithm takes a verification key vk, a
statement x, and a proof π as inputs, and returns true if the proof is correct,
or false otherwise.

Its properties are completeness, knowledge soundness, zero-knowledge, and
succinctness as described below.
Completeness. The honest verifier always accepts the proof for any pair (x, w)
satisfying the relation R. Strictly, for ∀λ ∈ N, ∀Rλ, and ∀(x, w) ∈ Rλ, it holds
as follow.

Pr
[

(ek, vk, td)← Setup(R);
π ← Prove(ek, x, w)

∣∣∣∣ true← VerProof(vk, x, π)
]

= 1

Knowledge soundness. Knowledge soundness says that if the honest prover
outputs a proof π, the prover must know a witness and such knowledge can
be extracted with a knowledge extractor E in polynomial time. To be more
specific, if there exists a knowledge extractor E for any PPT adversary A such
that Pr

[
GameKS

RG,A,E = true
]

= negl(λ), a argument system Πsnark has knowledge
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soundness.

GameKS
RG,A,E → res

(R, auxR)← RG(1λ); (crs := (ek, vk), td)← Setup(R);
(x, π)← A(R, auxR, crs); w ← E(transcriptA);
Return res← (VerProof(vk, x, π) ∧ (x, π) /∈ R)

Zero knowledge. Simply, a zero-knowledge means that a proof π for (x, w) ∈
R on Πsnark only has information about the truth of the statement x. Formally, if
there exists a simulator such that the following conditions hold for any adversary
A, we say that Πsnark is zero-knowledge.

Pr
[

(R, auxR)← RG(1λ); (crs := (ek, vk), td)← Π.Setup(R)
: π ← Prove(ek, x, w); true← A(crs, auxR, π)

]
≈

Pr
[

(R, auxR)← RG(1λ); (crs := (ek, vk), td)← Setup(R)
: πsim ← SimProve(ek, td, x); true← A(crs, auxR, πsim)

]
Succinctness. An arguments system Π is succinctness if it has a small proof
size and fast verification time.

Symmetric-key encryption: A symmetric-key encryption scheme SE is a set
of algorithms SE = (Gen, Enc, Dec) which operates as follows.

• Gen(1λ)→ k: The Gen algorithm takes a security parameter 1λ and returns
a key k.

• Enck(msg) → sct: The Enc algorithm takes a key k and a plaintext msg as
inputs and returns a ciphertext sct.

• Deck(sct) → msg: The Dec algorithm takes a key k and a ciphertext sct as
inputs. It returns a plaintext msg.

The encryption scheme SE satisfies ciphertext indistinguishability under cho-
sen plaintext attack IND-CPA security and key indistinguishability under chosen
plaintext attack IK-CPA security.

Public-key encryption: A public-key encryption scheme PE = (Gen, Enc, Dec)
which operates as follows.

• Gen(1λ) → (sk, pk): The Gen algorithm takes a security parameter 1λ and
returns a key pair (sk, pk).

• Encpk(msg) → pct: The Enc algorithm takes a public key pk and a message
msg as inputs and returns a ciphertext pct.

• Decsk(pct)→ msg: The Dec algorithm takes a private key sk and a ciphertext
pct as inputs. It returns a plaintext msg.

The encryption scheme PE satisfies ciphertext indistinguishability under cho-
sen plaintext attack IND-CPA security and key indistinguishability under chosen
plaintext attack IK-CPA security.
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Remark. To prove that encryption is performed correctly within a zk-SNARK
circuit, we need the random values used in encryption as a witness. We denote
the values as aux. Depending on the context in our protocol, we denote the
encryption such that it also output aux as a zk-SNARK witness as follows:

(pct, aux)← PE.Encpk(msg)

4 Data Structures

This section describes the data structures used in our proposed scheme Azeroth,
referring to the notion.

Ledger. All users are allowed to access the ledger denoted as L, which contains
the information of all blocks. Additionally, L is sequentially expanded out by
appending new transactions to the previous one (i.e., for any T′ < T, LT always
incorporates LT′).

Account. There are two types of accounts in Azeroth: an externally owned
account denoted as EOA, and an encrypted account denoted as ENA. The former
is the same one as in other account-based blockchains (e.g., Ethereum) and
the latter is an account that includes a ciphertext indicating an amount in the
account. Azeroth smart contract manages the registration, updates, and other
interfaces of ENA, and users cannot see the value in hidden account without its
secret key.

Auditor key. An auditor generates a pair of private/public keys (ask, apk) for
public-key system; apk is utilized when a user generates an encrypted transac-
tion, and ask is for auditing the ciphertext.

User key. Each user generates a pair of private/public keys. We denote the
former as usk := (kENA, skown, skenc), and the latter as upk := (addr, pkown, pkenc).

• kENA: It indicates a secret key for encrypted account of ENA in a symmetric-
key encryption system.

• (skown, pkown): pkown is computed by hashing skown, and the key pair proves
the ownership of an account user. Note that skown is additionally utilized to
generate a nullifier, which prevents double-spending.

• (skenc, pkenc): These keys are for the public-key encryption system; an user
needs skenc to decrypt ciphertexts taken from transactions while pkenc is to
encrypt transactions.

• addr: This represents an user address and computed by hashing pkown and
pkenc.

Commitment and Note. To build a privacy-preserving transaction, a com-
mitment is utilized to hide the confidential information (i.e., amount, address).
Our commitment is noted as follows.

cm = COM(v, addr; o)
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To commit, it takes v, addr as inputs and runs with an randomized opening o. v
is the digital asset value to be transferred and addr is the address of a recipient.
Once cm is published on a blockchain, the recipient given the opening key and
the value from the encrypted transaction uses them to make another transfer.
We denote the data required to spend a commitment as a note:

note = (cm, o, v)

Note that each user stores own notes to his wallet for convenience.

Membership based on Merkle Tree. We use a Merkle hash tree to prove
the membership of commitments in Azeroth and denote the Merkle tree and
its root as MT and rt, respectively. The tree holds all commitments in L, and
it appends commitments to nodes and updates rt when new commitments are
given. Additionally, an authentication co-path from a commitment cm to rt is
denoted as Pathcm. For any given time T, MTT includes a list of all commitments
and rt of these commitments. We define three algorithms related with MT.

• true/false ← MembershipMT(rt, cm, Pathcm): This algorithm verifies if cm is
included in MT rooted by rt; if rt is the same as a computed hash value from
the commitment cm along the authentication path Pathcm, it returns true.
• Pathcm ← ComputePathMT(cm): This algorithm returns the authentication

co-path from a commitment cm appearing in MT.
• rtnew ← TreeUpdateMT(cm): This algorithms appends a new commitment cm,

performs hash computation for each tree layer, and returns a new tree root
rtnew.

Value Type. A transaction includes several input/output asset values which are
publicly visible or privately secured. In our description, pub and priv represent
a publicly visible value and an encrypted (or committed) value respectively. in
indicates the value to be deposited to one’s account and out represents the value
to be withdrawn from one’s account. We summarize the types of digital asset
values as follows.

• vENA: The digital asset value available in the encrypted account ENA.
• vpub

in and vpub
out : The digital asset value to be publicly transferred from the

sender’s EOA and the value to the receiver’s public account EOA, respectively.
• vpriv

in and vpriv
out : The digital asset value received anonymously from an existing

commitment and the value sent anonymously to a new commitment in MT,
respectively.

5 Azeroth

5.1 Overview

We construct Azeroth by integrating deposit/withdrawal transactions and pub-
lic/private transfer transactions into a single transaction zkTransfer. Since the
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Fig. 1. Overview of zkTransfer

transaction executes multi-functions in the same structure, it improves the func-
tion anonymity. One may try to guess which function is executed by observing the
input/output values in zkTransfer. zkTransfer, however, reveals the input/output
values only in EOA; the values withdrawn/deposited from/to ENA and the val-
ues transferred from/to MT are hidden. A membership proof of MT hides the
recipient address. As a result, the information that an observer can extract from
the transaction is that someone’s EOA value either increases or decreases; he
cannot know whether the amount difference is deposited/withdrawn to/from its
own ENA, or is transferred from/to a new commitment in MT. It is even more
complicated because those values can be mixed in a range where the sum of the
input values is equal to the sum of the output values.

zkTransfer implements a private transfer with only two transactions; a sender
executes zkTransfer transferred to MT and a receiver executes zkTransfer trans-
ferred from MT. In zkTransfer, all values in ENA and MT are processed in the
form of ciphertexts and whether remittance is between own accounts or between
non-own accounts is hidden, so the linking information between the sender and
receiver is protected.

Figure 1 illustrates the zkTransfer. The left box “IN” represents input values
and the right box “OUT” denotes output values. In zkTransfer, vpub

in and vpub
out

are publicly visible values. vENA is obtained by decrypting its encrypted account
value sct. The updated vENA

new is encrypted and stored as sct∗ in ENA. The amount
vpriv

in included in a commitment can be used as input if a user has its opening key;
the opening key is delivered in a ciphertext pct so that only the destined user can
correctly decrypt it. To prevent double spending, for each spent commitment a
nullifier is generated by hashing the commitment and the private key skown and
appended; it is still unlinkable between the commitment and the nullifier without
the private key skown. Finally, for the transaction validity, zkTransfer proves that
all of the above procedures are correctly performed by generating a zk-SNARK
proof.
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Auditability is achieved by utilizing public-key encryption with two recipi-
ents; all pct ciphertexts can be decrypted by an auditor as well as a receiver so
that the auditor can monitor all the transactions. We note that ENA exploits
symmetric-key encryption only for the performance gain although it can also
utilize the public-key encryption. Notice that without decrypting ENA, the au-
ditor can still learn the value change in ENA by computing the remaining values
from vpub

in , vpub
out , vpriv

in , and vpriv
out .

5.2 Algorithms

Azeroth consists of three components: Client; Smart Contract; and Relation. A
TxZKT including a proof is generated from Client. Smart Contract denotes a smart
contract running on a blockchain. Relation represents a zk-SNARK circuit for a
zkTransfer proof. See fig. 8 in Appendix for more details.

[Azeroth Client]

• SetupClient: A trusted party runs this algorithm only once to set up the whole
system. It also returns public parameter pp.
• KeyGenAuditClient: This algorithm generates an auditor key pair (ask, apk). It

also outputs the key pair and a transaction TxKGA.
• KeyGenUserClient: This algorithm generates a user key pair (usk, upk). It also

returns a transaction TxKGU to register the user’s public key.
• zkTransferClient: A user executes this algorithm for transfer. The internal pro-

cedures are described as follows:
i) Spend note = (cm, o, v): It proves the knowledge of the committed value v

using the opening key o and the membership of a commitment cm in MT and
derives a nf from PRF to nullify the used commitment.

ii) Generate cmnew: It gets a new commitment and its opening by executing
COM(vpriv

out , addrrecv; onew). Then it encrypts (onew, vpriv
out , addrrecv) as the message

of PE.Enc then outputs pct.
iii) Update ENA: It computes and updates the ENA balance on vpriv

in (from note),
vpriv

out , vpub
in , and vpub

out or ∆vENA = vpriv
in + vpub

in - vpriv
out - vpub

out .
To prove that above operations are correctly done, it generates a zk-SNARK
proof then outputs TxZKT.
• RetreiveNoteClient: This algorithm is a sub-algorithm computing a note used

in zkTransferClient. It allows a user to find cm transferred to the user along
with its opening key and its committed value. Then, a user decrypts the
ciphertext using skenc each transaction pct ∈ L to (o, v, addr∗) and stores
(cm, o, v) as note in the user’s wallet if addr∗ matches its address addr.
• Audit: An auditor with a valid ask runs this algorithm to audit a transaction

by decrypting the ciphertext pct in the transaction.

[Azeroth Smart Contract]

• SetupSC: This simply deploys a smart contract and stores the verification
key vk from zk-SNARK where vk is used to verify a zk-SNARK proof in the
smart contract.
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• RegisterAuditorSC: An auditor calls this function to register his public key
apk.

• RegisterUserSC: An user calls this function to register a new encrypted ac-
count for address addr. If the address already exists in Listaddr, the trans-
action is reverted. Otherwise, it registers a new ENA and initializes it with
zero amount.

• zkTransferSC: To transfer, this checks the validity of the transaction before-
hand. A transaction is valid iff: a merkle root rtold exists; a nullifier nf ap-
pears not yet; addrsend is registered; cmnew is fresh; and a proof π is valid.
Once the validity check passes, it appends cmnew to MT and update tree
by TreeUpdateMT(cm). Then rtnew and nf are added to each list Listrt, Listnf
respectively. A sender’s encrypted account is updated to input sctnew, and
finally handle the public values; gain vpub

in from EOAsend, and send vpub
out to

EOArecv.

[Azeroth Relation]
The statement and witness of Relation RZKT are as follows:

x⃗ = (apk, rt, nf, upksend, cmnew, sctold, sctnew, vpub
in , vpub

out , pctnew)

w⃗ = (usksend, cmold, oold, vpriv
in , upkrecv, onew, vpriv

out , auxnew, Path)

where a sender public key upksend is (addrsend, pksend
own , pksend

enc ) and a receiver’s
public key upkrecv is (addrrecv, pkrecv

own, pkrecv
enc ).

We say that a witness w⃗ is valid for a statement x⃗, if and only if the following
holds:

• If vpriv
in > 0, then cmold must exist in MT with given rt and Path.

• pksend
own = CRH(sksend

own ).
• The user address addrsend and addrrecv are well-formed.
• cmold and cmnew are valid.
• nf is derived from cmold and sksend

own .
• pctnew is an valid encryption with auxnew.
• sctnew is an valid encryption of updated ENA balance.
• All values (e.g., vpriv

in , vpub
in , ...) are not negative.

Given the building blocks of a public-key encryption PE, a symmetric-key
encryption SE, and a zk-SNARK Πsnark, we construct Azeroth as in Figure 8.

6 Experiment

In our experiment, the term cfgHash,Depth denotes a configuration of Merkle hash
tree depth and hash type in Azeroth. For instance, cfgMiMC7,32 means that we run
Azeroth with MiMC7 [1] and its Merkle tree depth is 32. Table 1(a) illustrates
our system environments. For the overall performance evaluation, we execute all
experiments on the machine Server described in Table 1(a) as a default machine.
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Table 1. Benchmark of Azeroth

Machine OS CPU RAM
Server Ubuntu 20.04 Intel(R) Xeon Gold 6264R@3.10GHz 256GB

System1 macOS 11.2 M1@3.2GHz 8GB
System2 macOS 11.6 Intel(R) i7-8850H CPU @ 2.60GHz 32GB
System3 android 11 Exynos9820 8GB
System4 iOS 15.1 A12 Bionic 4GB

(a) System specification

Azeroth
Setup RegisterAuditor RegisterUser zkTransfer Audit

Time (s) 4.04 0.02 0.017 4.38 0.03
Gas 5,790,800 63,179 45,543 1,555,957 N/A

(b) Execution time and gas consumption of Azeroth with cfgMiMC7,32

Server System1 System2 System3 System4
Πsnark.Setup (s) 2.311 4.19 4.13 8.529 5.529
Πsnark.Prove (s) 0.901 2.581 2.77 4.557 3.15
Πsnark.Verify (s) 0.017 0.041 0.079 0.062 0.054

(c) Execution time of zk-SNARK in zkTransfer

And the default blockchain is the Ethereum local testnet5. We utilize Gro16 [15]
as our zk-SNARK.

Overall performance. We show that the performance and the gas consump-
tion in Azeroth with cfgMiMC7,32 as shown in Table 1 (b).6 The execution time
4.04s of Setup is composed of the zk-SNARK key generation time 2.2s and the
deployment time 1.84s of the Azeroth’s smart contract to the blockchain. Setup
consumes a considerable amount of gas due to the initialization of Merkle Tree.
In zkTransfer, the executed time is 4.38s including both the Client part and the
Smart Contract part. The gas is mainly consumed to verify the SNARK proof
and update the Merkle hash tree. Varying the hash function, the further analysis
of zkTransfer is described in the following experiments.

zk-SNARK performance. We evaluate the performance of zk-SNARK used to
execute zkTransfer on various systems Server, System1, · · · , System4 as described
in Table 1 (a). Table 1 (c) shows the setup time, the proving time, and the verifi-
cation time respectively on each system with cfgMiMC7,32. Although System3 has
the lowest performance, still its proving time of 4.56s is practically acceptable.

Hash type and tree depth. We evaluate Azeroth performance depending on
hash tree depths and hash types as shown in Figure 2 and Figure 3.
5 Ganache - Truffle Suite: https://trufflesuite.com/ganache
6 The result includes the execution time until the task of receiving the receipt of the

transaction.
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Fig. 2. Performance with 32 hash tree depth. (a)-(c): The execution time of zk-
SNARK’s algorithms where the y axis is time(s). (d): The native execution time of
each hash algorithm written in C++ where the y axis is time(s). (e): The gas con-
sumption where the y axis denotes the gas consumption.
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Fig. 3. Key size, constraints in circuits and gas consumption by varying hash tree
depth and hash type

Figure 2 shows the zk-SNARK execution time for MiMC7 [1], Poseidon [14]7,
and SHA256 [23] where the tree depth is fixed to 32. The SNARK key generation
times are 2.311s, 2.182s, and 53.393s respectively. The proving times for MiMC7
and Poseidon are 0.901s and 0.582s respectively, while it takes 20.69 seconds
with SHA256; SHA256 is about 20x and 40x slower than MiMC7 and Poseidon
7 We utilize a well-optimized Poseidon smart contract from circomlib(https://

github.com/iden3/circomlib/tree/feature/extend-poseidon).
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in zk-SNARK. The verification time is almost independent of the hash type.
However, when each hash function is executed natively, SHA256 shows the best
performance as shown in Figure 2 (d), which is similar to the gas consumption
trend shown in Figure 2 (e).

Figure 3 shows the key size. The proving key (ek) size is proportional to
the tree depth, whereas the verification key size remains 1KB.8 Poseidon has
the smallest sizes of ek and constraints. Specifically, in depth 32, the ek sizes in
Poseidon, MiMC7, and SHA256 are 3,341KB, 4,339KB, and 255,000KB respec-
tively. The circuit size of SHA256 is enormous due to numerous bit operations,
and Poseidon has 30% smaller size than MiMC7’s. Figure 3 (c) shows that MiMC7
and Poseidon hashes consume relatively more gas than SHA256 since not only
is SHA256 natively supported in Ethereum [7], but also it shows better native
performance as shown in Figure 2 (e).

Comparison with the other existing schemes.

Table 2. Comparison between our proposed scheme and existing work

Azeroth
Setup zkTransfer

time pp time txsize
2.846s 4.32MB 0.983s 1,186B

Zeth
10.646s 94.24MB 10.47s 1,380B

time pp time txsize
Setup Mix

(a) Comparison between Azeroth and Zeth with cfgMiMC7,32

Azeroth
Setup zkTransfer

time pp time txsize
26.765s 113MB 10.0166s 1,186B

BlockMaze
125.063s 323MB 6.689s 817B 6.948s 815B 9.224s 899B 18.609s 815B

time pp time txsize time txsize time txsize time txsize
Setup Mint Redeem Send Deposit

(b) Comparison between Azeroth and BlockMaze with cfgSHA256,8

AzerothcfgMiMC7,32 Zether [6] PGC [10]
gas cost 1,555,957 7,188,000 8,282,000

transaction size (bytes) 1,186 1,472 1,310
(c) Gas cost and transaction size between Azeroth, Zether and PGC

We compare the proposed scheme Azeroth with the other privacy-preserving
transfer schemes such as Zeth [25], Blockmaze [17], Zether [6], and PGC [10]
in Table 2. Our proposal shows better performance than the existing schemes,

8 We omit the graph of vk, since it is constant.
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even if Azeroth provides an additional function of auditability. Zeth and Block-
maze are implemented with cfgMiMC7,32 and cfgSHA256,8 respectively and the same
configuration is applied to the proposed scheme for a fair comparison. The ex-
periment is conducted on Server. Note that the proof generation time in the table
excludes the circuit loading time for a fair comparison, and the loading time is
significantly long in Blockmaze. On the other hand, PGC [10] and Zether [6] use
standard ElGamal encryption and NIZK to provide confidentiality instead of uti-
lizing Merkle Tree. The performance results in these works exclude anonymity,
which means that the anonymity set size is 2. Note that the performance de-
grades as the anonymity set size increases in PGC and Zether, since the number
of Elliptic curve operations in the smart contract increases proportionally to the
anonymity set size.

In comparison with Zeth9, we utilize ganache-cli10 as our test network. Due
to the circuit optimization of Azeroth, the resulting circuit size is 4x smaller
and the size of pp is 22x smaller than Zeth. In zkTransfer, Azeroth reduces the
execution time by 90% compared with Zeth’s Mix function.

BlockMaze11 has four transaction type: Mint, Redeem, Send, Deposit,
Azeroth only provides a single transaction zkTransfer which serves the equivalent
functionality of Blockmaze’s. Note that it takes 20s to load the proving key in
Blockmaze while it is only 1s in Azeroth. Hence Azeroth provides much better
performance than Blockmaze in practice.

Zether [6] and PGC [10] are stateful12 schemes using ElGamal encryption
and NIZK. Due to the large difference in structure, the comparison experiment
compares the gas cost and transaction size generated per transfer. Zether and
PGC require 4.6 times and 5.3 times more gas than Azeroth respectively due to
the Elliptic curve operations in the smart contract. In terms of transaction size,
Azeroth generates a smaller transaction than Zether and PGC although Azeroth
provides higher anonymity than them.

7 Conclusion

In this paper, we propose an auditable privacy-preserving digital asset transfer-
ring system called Azeroth which hides the receiver, and the amount value to be
transferred while the transferring correctness is guaranteed by a zero-knowledge
proof. In addition, the proposed Azeroth supports an auditing functionality in
which an authorized auditor can trace transactions to comply an anti-money
laundry law. Its security is proven formally and it is implemented in various
platforms including an Ethereum testnet blockchain. The experimental results
show that the proposed Azeroth is efficient enough to be practically deployed.

9 https://github.com/clearmatics/zeth
10 https://github.com/trufflesuite/ganache
11 https://github.com/Agzs/BlockMaze
12 The meaning is that the account is renewed immediately through one transaction.
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A Security of Azeroth

Following the similar model defined in [4], we define the security properties of
Azeroth including ledger indistinguishability, transaction non-malleability, and
balance; and a new property auditability.

In the elucidation of the security for each property and its experiment, we
assume that there exists a (stateful) Azeroth oracle OAzeroth answering queries
from an adversary A utilizing a challenger C which is the role of the performer
about the experiment sanity checks. We first recount how OAzeroth works as
below.

Given a list of public parameters pp, the oracle OAzeroth, and auditor public
key apk is initialized and retains its state of which it has the elements internally
: [I] L, a ledger; [II] Acct, a set of account key pairs; [III] NOTE, a set of notes.
In the beginning, all of the elements are empty. Additionally, we denote ∗ as
renewal. We now present how OAzeroth handles each type of query Q as follows.

• Q(KeyGenUser)
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i) Compute a key pair (usk = (kENA, skown, skenc), upk = (addr, pkown, pkenc),
TxKGU) := KeyGenUser(pp).

ii) Add the key pair (usk, upk) to Acct.
iii) Register the ENA address addr to L, and initialize ENA[addr] to 0.
iv) Add the KeyGenUser transaction TxKGU to L.
v) Output the public key upk.

• Q(RetreiveNote, upk)

i) Find usk in Acct. If no such key usk, then OAzeroth aborts.
ii) Parse usk as (kENA, skown, skenc).
iii) Compute a set of note := RetreiveNote(L, usk, upk).
iv) Add each note to NOTE.
v) Output the set of note.

• Q(zkTransfer, note, upksend, upkrecv, vpriv
out , vpub

in , vpub
out , EOArecv)

i) Compute rt over all commitment in L.
ii) Find usksend in Acct. If no such key usksend, then OAzeroth aborts.
iii) Get an auditor public key apk from L.
iv) Compute (TxZKT, note) := zkTransfer(note, apk, usksend, upksend, upkrecv, vpriv

out ,
vpub

in , vpub
out , EOArecv).

v) Add a new note to NOTE.
vi) Add the zkTransfer transaction TxZKT to L.
vii) Parse usk as (kENA, skown, skenc).
viii) If any of the above operation fail, OAzeroth aborts. Otherwise output ⊥.

Remark. OAzeroth additionally provides adversaries with a way to directly add
zkTransfer transaction to L. In other words, an adversary can use a zkTransfer
query to cause TxZKT in L, or if he as generated a key himself and knows all the
information about the key, he can add TxZKT to L without asking a zkTransfer
query. We name its query as Insert.

Public consistency. We now define public consistency. Two queries (Q,Q′)
must be the same type and publicly consistent in A’s viewpoint.

• If (Q,Q′) are both of type KeyGenUser, then they are always publicly con-
sistent. In special case of KeyGenUser, the same key can be generated.

• If (Q,Q′) are both of type RetreiveNote, then they are always publicly con-
sistent.

• If (Q,Q′) are both of type zkTransfer, then Q,Q′ must be well-formed re-
spectively and jointly consistent with respect to public information and A’s
view as follows.
a) note in Q and Q′ must be same and appear in the ledger oracles’ NOTE

table.
b) The notes in two queries are unspent, which means their serial num-

ber must not appear in a valid TxZKT transaction on the corresponding
oracle’s ledger.
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c) The sender addresses addrsend in Q and Q′ must match the addresses of
their note.

d) The balance equation must hold.

vENA
new = vENA

old + vpriv
in − vpriv

out + vpub
in − vpub

out > 0

e) The public values vpub
in and vpub

out in Q and Q′ must be equal.
f) The receiver’s external addresses EOArecv in Q and Q′ must be equal.
g) The transaction strings in Q and Q′ must be equal.
h) If the recipient’s public key upkrecv in Q is not in Acct, then vpriv

out in Q
and Q′ must be equal(and vice versa for Q′). The fact that upkrecv is not
in Acct is owned by A, so the value vpriv

out must be set the same.
i) If any of note in (Q,Q′) was generated from an Insert query, both note

in (Q,Q′) must have been generated from an Insert.

A.1 Ledger Indistinguishability

Informally, we say that the ledger is indistinguishable if it does not disclose new
information, even when an adversary A can see the public information and even
adaptively engender honest parties to execute Azeroth functions. Namely, even
if there are two ledgers L0 and L1, designed by the adversary using queries to
the oracle, A cannot tell the difference between the two ledgers. We design an
experiment L-IND as shown in fig. 4.

Azeroth.GL-IND
A (λ) :

pp← Setup(λ)
(L0, L1)← pp

b
$← {0, 1}

Q $← AOAzeroth
0 ,OAzeroth

1

ans← QueryLb
(Q)

b′ ← AOAzeroth
0 ,OAzeroth

1 (L0, L1, ans)
return b = b′

Fig. 4. The ledger indistinguishability experiment (L-IND)

We describe ledger indistinguishability using an experiment L-IND including a
PPT adversary A struggling to find a crack of a given Azeroth scheme. Intuitively,
AdvL-IND

A , the advantage of A in the L-IND experiment, is at most negl(λ).
We now give a formal definition of an experiment L-IND that consists of an
interaction between an adversary A and a challenger C.
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i) C computes a public parameter pp, provides it to an adversary A, and ini-
tializes two distinct oracles OAzeroth

0 ,OAzeroth
1 .

ii) C chooses a random bit b ∈ {0, 1}.
iii) A sends public consistent queries (Q,Q′) to C as many times she wants, and

C answers the queries as following:
a) Set (Lb, L1−b) as a ledger tuple. These ledgers are corresponding to

OAzeroth
b ,OAzeroth

1−b respectively.
b) Give a ledger tuple to A in each stage, and send Q to OAzeroth

b and Q′ to
OAzeroth

1−b .
c) Obtain two oracle answers (ab, a1−b) and return it to A.
d) Repeat the process b), c) until A outputs a bit b′.

iv) If b = b′ then the experiment L-IND returns 1; otherwise, 0.

Definition 1. Let ΠAzeroth = (Setup, KeyGenAudit, KeyGenUser, RetreiveNote
zkTransfer) be a Azeroth scheme. We say that, for every A and adequate security
parameter λ, ΠAzeroth is L-IND secure if the following equation holds:

Pr
[
Azeroth.GL-IND

A (λ) = 1
]
≤ 1

2 + negl(λ)

A.2 Transaction Non-malleability

Azeroth.GTR-NM
A (λ) :

pp← Setup(λ)

L← AOAzeroth
(pp, ask)

Tx′ ← AOAzeroth
(L)

b← VerifyTx(Tx′, L′) ∧ Tx /∈ L′

return b ∧ (∃Tx ∈ L : Tx ̸= Tx′ ∧ Tx.nf = Tx′.nf)

Fig. 5. The transaction non-malleability experiment (TR-NM)

Intuitively, a transaction is non-malleable if no transaction could be constructed
with incorrect personal data (i.e., secret key). We define an experiment TR-NM
with PPT adversary A trying to break a given Azeroth scheme. Note that A
could be an auditor trying to attack our scheme with his private key ask. We
describe the TR-NM experiment in detail as follows.

i) C computes a public parameter pp, provides it to an adversary A, and ini-
tializes the oracle OAzeroth.

ii) A makes a query (zkTransfer) to OAzeroth and receives its answer along with
the ledger L.
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iii) Repeat the above procedure (Step ii) until A sends a transaction Tx′, satisfied
with the following conditions.
a) There exists a Tx which satisfies:
b) A nullifier in Tx′ is the same as the Tx’s.
c) VerifyTx(Tx′, L′) = 1, where L′ denotes the snapshot of previous ledger

state which does not contain Tx yet.
iv) If the transaction Tx′ satisfying all conditions exists, then the experiment

TR-NM returns 1; otherwise, 0.

Definition 2. Let ΠAzeroth = (Setup, KeyGenAudit, KeyGenUser, RetreiveNote,
zkTransfer) be a Azeroth scheme. We say that, for every A and adequate security
parameter λ, ΠAzeroth is TR-NM secure if the following equation holds:

Pr
[
Azeroth.GTR-NM

A (λ) = 1
]
≤ negl(λ)

A.3 Balance

Azeroth.GBAL
A (λ) :

pp← Setup(λ)

L← AOAzeroth
(pp)

(Listnote, ENA)← AOAzeroth
(L)

(vENA, vpub
out , vpriv

out , vpub
in , vpriv

in )
← Compute(L, Listnote, ENA)

if vENA + vpub
out + vpriv

out > vpub
in + vpriv

in then return 1
else return 0

Fig. 6. The balance experiment (BAL). Listnote denotes a table of note, ENA denotes the
new encrypted account balance, Compute is a function to compute variables related
to A’s account balance

We say that Azeroth has balance property if and only if attacker should not
spend more than she has or receives. Let AdvBAL

Azeroth,A(λ) be the advantage of A
winning the game BAL as described in fig. 6.

We define an experiment BAL with PPT adversary A trying to break a given
Azeroth scheme. Now we characterize an experiment BAL as follows.

i) C computes a public parameter pp, provides it to an adversary A, and ini-
tializes the oracle OAzeroth.

ii) A makes a query (zkTransfer) to OAzeroth and receives its answer along with
the ledger L.
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iii) Repeat the above procedure (Step ii) until A sends Listnote and ENA.
iv) C computes each value mentioned above using Compute(L, Listnote, ENA), and

checks if the following equation holds:

vENA + vpub
out + vpriv

out > vpub
in + vpriv

in

v) If the values satisfy the equation, then the experiment BAL returns 1; oth-
erwise, 0.

Definition 3. Let ΠAzeroth = (Setup, KeyGenAudit, KeyGenUser, RetreiveNote,
zkTransfer) be a Azeroth scheme. We say that, for every A and adequate security
parameter λ, ΠAzeroth is BAL secure if the following equation holds:

Pr
[
Azeroth.GBAL

A (λ) = 1
]
≤ negl(λ)

A.4 Auditability

If the auditor can always monitor the confidential data of any user, we infor-
mally say that the scheme has auditability. More precisely, we define that Azeroth
is auditable if there is no transaction in which the decrypted plaintext is dif-
ferent from the commitment openings. Let AdvAUD

Azeroth,A(λ) be the advantage
of A winning the game AUD as described in fig. 7. For a negligible function
negl(λ), the Azeroth is auditable if for any PPT adversary A, we have that
|AdvAUD

Azeroth,A(λ)| ≤ negl(λ).

Azeroth.GAUD
A (λ) :

pp← Setup(λ)

L← AOAzeroth
(pp)

(Tx, aux)← AOAzeroth
(L)

Parse Tx = (cm, pct, · · · )
b← VerifyTx(Tx, L)∧

VerifyCommit(cm, aux) ∧ aux ̸= Auditask(pct)
return b

Fig. 7. The auditability experiment (AUD). aux is defined as an auxiliary value not
included in Tx. (s.t., o)

Let aux be the auxiliary input consisting of the committed value, its open-
ing, and addrrecv, utilized when verifying the commitment. If the commitment is
correct then the function VerifyCommit returns 1, otherwise returns 0. We now
define precisely the experiment AUD as follows:
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i) Compute a public parameter pp, provides it to an adversary A, and intializes
the oracle OAzeroth.

ii) A requests a zkTransfer query to OAzeroth and receives a response.
iii) Repeat the above procedure (Step ii) until A sends a tuple (TxZKT, aux),

satisfied with the following conditions:
a) TxZKT is valid.
b) aux and the commitment cmnew in TxZKT is valid.
c) The decryption of pctnew is not equal to (onew, vpriv

out , addrrecv).
iv) If the tuple (TxZKT, aux) satisfies with all conditions above, then the exper-

iment AUD returns 1; otherwise, 0.

Definition 4. Let ΠAzeroth = (Setup, KeyGenAudit, KeyGenUser, RetreiveNote,
zkTransfer) be a Azeroth scheme. We say that, for every A and adequate security
parameter λ, ΠAzeroth is AUD secure if the following equation holds:

Pr
[
Azeroth.GAUD

A (λ) = 1
]
≤ negl(λ)

B Proofs of Security

We now formally prove the Azeroth satisfies ledger indistinguishability, transac-
tion non-malleability, balance, and auditability.

B.1 Ledger indistinguishability

By using a hybrid game, we prove ledger indistinguishability. Thus, we say that
it is indistinguishable if the difference between a real game GameReal and a sim-
ulation game GameSim is negligible. All Games are executed by interaction of an
adversary A with a challenger C, as in the L-IND experiment. However, GameSim
has a distinctness from the others since it runs regardless of a bit b where it means
a chosen bit from the L-IND experiment. Thus, for GameSim, the advantage of A
is 0. Moreover, the zk-SNARK keys are generated as (ek, vk, td)← Πsnark.Sim(R)
to obtain the zero-knowledge trapdoor td. We now show that AdvL-IND

ΠAzeroth,A is at
most negligibly different than AdvGameSim . First of all, we define the notations
as follows.

Table 3. Notations

Symbol Meaning
GameReal The original L-IND experiment
Gamei A hybrid game altered from GameReal

GameSim The fake L-IND experiment
qKGU The total number of KeyGenUser queries by A
qZKT The total number of zkTransfer queries by A

AdvGame The advantage of A in Game
AdvPRF The advantage of A in distinguishing PRF from random
AdvSE The advantage of A in SE’s IND-CPA

AdvCOM The advantage of A against the hiding property of COM
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We describe how the challenger C responses to the answer of each query to
provide it with the adversary A in the simulation game GameSim. The challenger
C responds to each A’s query as below:

– Query(KeyGenUser): C actions under the Q(KeyGenUser) query, except that
it does the following modifications: C generates a key pair (upk, usk) from
KeyGenUser(pp), supersedes pkown, pkenc to a random string of the appropri-
ate length, and then computes the user address addr← CRH(pkown, pkenc). C
also puts these elements in a table and returns upk to A. C does the above
procedure for Q′.

– Query(zkTransfer, note, upksend, upkrecv, vpriv
out , vpub

in , vpub
out , EOArecv): C actions

under the Q(zkTransfer) query, except that it does the following modifica-
tions: by default, we assume that upksend exists in the table. If upksend does
not exist in the table, we abort the queries. C comes up with random strings
and replaces nf and cmnew to these values, respectively. If upkrecv is a public
key generated by a previous query to KeyGenUser, then C sets sctnew and
pctnew to an arbitrary string. Otherwise, C computes these elements as in
the zkTransfer algorithm. Also, C stores the changed elements to the table.
We now define each of games to prove the ledger indistinguishability of

Azeroth. Once again, AdvGameSim
A is 0 since A is computed independently of the

bit b where b is chosen by C in the experiments.
• Game1. We now define the Game1 which is equal to GameReal except that C

simulates the zk-SNARK proof. For zkTransfer, the zk-SNARK key is generated
as (ek, vk, tdZKT) ← Πsnark.Sim(RZKT) instead of Πsnark.Setup(RZKT) to procure
the trapdoor tdZKT. After obtaining the tdZKT, C computes the proof πsim without
a proper witness. The view of the simulated proof πsim is identical to that of the
proof computed in GameReal. In addition, when A asks for the KeyGenUser query,
we replace the elements of public key upk as a random string. The simulated
(usk, upk) distribution is also identical to that of the key pairs computed in
GameReal. In a nutshell, AdvGame1 = 0.
• Game2. We define the Game2 which is equal to Game1 except that C uses

a random string r of a suitable length to replace the ciphertext pctnew. If the
address addr of upksend does not exist in the table, then C aborts. By Lemma 1,
|AdvGame2 −AdvGame1 | ≤ 2 · qZKT ·AdvPE.
• Game3. We define the Game3, which is the same as Game2 with one mod-

ification where C changes the ciphertext sctnew from correct to an acceptable
random string r. Specifically, if the address addr of upksend exists in the table, C
replaces sctnew as r. Otherwise, C aborts. By Lemma 2, |AdvGame3−AdvGame2 | ≤
qZKT ·AdvSE.
• Game4. We define the Game4 which is the same as Game3 except that C

uses a random string to change the nullifier nf created by PRF. By Lemma 3,
|AdvGame4 −AdvGame3 | ≤ qZKT ·AdvPRF.
• GameSim. GameSim is identical to Game4, except that C replaces commit-

ments (e.g., cmold, cmnew) computed by COM to an arbitrary string. By Lemma 4,
|AdvGameSim −AdvGame4 | ≤ qZKT ·AdvCOM.
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By summing over all the above A’s advantages in the games, A’s advantage
in the L-IND experiment can be computed as follows:

AdvL-IND
Π,A (λ) ≤ qZKT · (2 ·AdvPE + AdvSE + AdvPRF + AdvCOM)

Since AdvL-IND
Π,A (λ) = 2 ·Pr[AzerothL-IND

Π,A (λ) = 1]−1 and A’s advantage in the
L-IND experiment is negligible for λ, we can make a conclusion that it provides
ledger indistinguishability.

Lemma 1. Let AdvΠPE be A’s advantage in ΠPE’s IND-CPA and IK-CPA ex-
periments. If A’s zkTransfer query occurs qZKT, then |AdvGame2 −AdvGame1 | ≤
2 · qZKT ·AdvPE.

Proof. We utilize a hybrid game GameH as an intermediate between Game1
and Game2. First of all, to prove that AdvGameH is negligibly different from
AdvGame1 , we define a security model of our encryption scheme PE. It performs
with the interaction between the adversary A and the IND-CPA challenger. A
queries the encryption for a random message, and then C returns the ciphertext of
it. After querying, A sends two messages M0, M1 to the challenger C. C chooses
one of the two received messages and returns the ciphertext to the adversary
A. If the adversary A correctly answers which message is encrypted, A wins.
We denote this experiment as Ereal. We define another experiment Esim which
simulates the real one with only the following modification: When encrypting
a message, replace SE.Enc’s output with a random string. A cannot distinguish
the Esim from Ereal but a negligible probability, due to the security of SE. The
probability of A distinguishes the ciphertexts in Esim is 1/2; a ciphertext pct
from Esim is uniformly distributed in A’s view. Overall, the advantage of A in
distinguishing the ciphertexts is negligible, which means that PE is IND-CPA.
Finally, the advantage of AdvGameH is equal to AdvPE, hence |AdvGameH −
AdvGame1 | ≤ qZKT ·AdvPE.

Like the above, Game2 is the same as GameH except that it encrypts plain-
text by setting the key to a new public key instead of the public key obtained by
querying KeyGenUser. After querying KeyGenUser, A queries the IK-CPA chal-
lenger to gain pk0, whereas pk1 is obtained from the KeyGenUser query. The
IK-CPA challenger encrypts the same plaintext as pct∗ using pkb where b is the bit
selected by the IK-CPA challenger per zkTransfer query. The challenger sets pct
in TxZKT to pct∗ and appends it to L. A outputs a bit b by guessing b with respect
to the IK-CPA experiment. If b = 0 then A’s view is equal to Game2, whereas if
b = 1 then A’s view is GameH . If the maximum advantage for IK-CPA experiment
is AdvPE, then we can say that |AdvGame2−AdvGameH | ≤ qZKT ·AdvPE. As a re-
sult, the sum of A’s two advantages is |AdvGame2−AdvGame1 | ≤ 2 ·qZKT ·AdvPE.

Lemma 2. Let AdvΠSE be A’s advantage in ΠSE’s IND-CPA experiment. If A’s
zkTransfer query occurs qZKT times, then |AdvGame3−AdvGame2 | ≤ qZKT ·AdvSE.

Proof. To prove that AdvGame3 is negligibly different from AdvGame2 , we define
a security model of our encryption scheme SE. It performs with the interaction
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between the adversary A and the IND-CPA challenger. A queries the encryption
for a random message, and then C returns the ciphertext of it. After querying,
A sends two messages M0, M1 to the challenger C. C chooses one of the two
received messages and returns the ciphertext to the adversary A. If the adversary
A correctly answers which message is encrypted, A wins. However, since SE is
based on PRF, A cannot distinguish the ciphertexts with all but negligible. the
advantage of AdvGame2 is equal to AdvSE. Hence, |AdvGame3 − AdvGame2 | ≤
qZKT ·AdvSE.

Lemma 3. Let AdvPRF be A’s advantage in distinguishing PRF from a true
random function. If A makes qZKT queries, then |AdvGame4−AdvGame3 | ≤ qZKT ·
AdvPRF.

Proof. We now describe that the difference between Game4 and Game3 is negli-
gibly different. In zkTransfer algorithm, nf is computed by PRFsksend

own
(cmold). Thus,

the advantage of Game4 is only related to PRF’s advantage. In other words, the
advantage AdvPRF is negligible and |AdvGame4 −AdvGame3 | ≤ qZKT ·AdvPRF.

Lemma 4. Let AdvCOM be A’s advantage against the hiding property of COM.
If A makes qZKT queries, then |AdvGameSim −AdvGame4 | ≤ qZKT ·AdvCOM

Proof. On zkTransfer query, the challenger C substitutes the commitment cmnew
as a random string r of an acceptable length. The advantage of adversary A is
at most like that of COM. Thus, since the commitment cmnew exists only in the
zkTransfer query, C performs one replication of each zkTransfer query. Hence, we
conclude that |AdvGameSim −AdvGame4 | ≤ qZKT ·AdvCOM.

B.2 Transaction Non-malleability

Suppose that A outputs a transaction Tx′ as follows:

Tx′ = (π, nf, · · · )

Recall that A wins TR-NM experiment only if Tx′ contains a nullifier which
has already been revealed and a valid proof. We show that such transaction
cannot be constructed with all but negligible probability, under the properties
of zk-SNARK. For formal proof, let ϵ := AdvTR−NM

Azeroth,A(λ), and utilize zk-SNARK
witness extractor denoted as E for A. We can build an algorithm B finding
collision for PRF with advantage negligibly close to ϵ, and it suffices the proof.
Algorithm B should work as follows:

i) Run A (simulating its interaction with the challenger C and obtain Tx′).
ii) Run E to extract a witness w⃗ for a zk-SNARK proof π for Tx′.
iii) Get apk, sctold from L and parse Tx′ to construct a statement x⃗ for π.
iv) Check whether w⃗ is a valid witness for x⃗ or not. If fails, it aborts then outputs

0.
v) Parse w⃗ then get skown, cmold.
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vi) Find a transaction Tx ∈ L that contains nf.
vii) If Tx is found, let (sk′

own, cm′
old) be the corresponding witness to Tx attained

from E . If skown ̸= sk′
own, then output ((skown, cmold), (sk′

own, cm′
old)). Other-

wise, output 0.

Seeing that the proof π for a transaction Tx is valid, with all but negligible
probability, the extracted witness w⃗ is valid. Moreover, Pr[skown = sk′

own] = 1
2l

where l is the bit length of skown. Thus, its probability is negl. Putting proba-
bilities together, we conclude that B finds a collision for PRF with probability
ϵ− negl(λ).

B.3 Balance

In this section, we show that AdvBAL is at most negligible. For each zkTransfer
transaction on the ledger L, the challenger C computes a witness w⃗ for the
zk-SNARK instance x⃗ corresponding to the transaction TxZKT in the BAL ex-
periment. It does not affect A’s view. For such a way, C obtains an augmented
ledger (L, W⃗ ) in which w⃗i means a witness for the zk-SNARK instance x⃗i of i-th
zkTransfer transaction in L. Note that we can parse an augmented ledger as a
list of matched pairs (TxZKT, w⃗i) where TxZKT is a zkTransfer transaction and w⃗i

is its corresponding witness.
Balanced ledger. We say that an augmented ledger L is balanced if the

following conditions hold.

– Condition 1: In each (TxZKT, w⃗), the opening of unique commitment cmnew
exists, and the commitment cmnew is also a result of previous TxZKT.

– Condition 2: The two different openings in (TxZKT, w⃗) and (TxZKT
∗, w⃗∗)

are not openings of a single commitment.
– Condition 3: Each (TxZKT, w⃗) contains openings of cmold and cmnew, and

values, satisfying that vENA
old + vpriv

in − vpriv
out + vpub

in − vpub
out = vENA∗ where we

denote an updating of the value as ∗.
– Condition 4: The values used to compute cmold are the same as the value

for cm∗
new, if cmold = cm∗

new where cmold is the commitment employed in
(TxZKT, w⃗), and cm∗

new is the output of a previous transaction before TxZKT.
– Condition 5: If (TxZKT, w⃗) was inserted by A, and cmnew contained in TxZKT

is the result of an earlier zkTransfer transaction Tx′, then the recipient’s
account address addrrecv does not exist in Acct.

We say that (L, w⃗) is balanced, if the following equation holds :

vENA + vpub
out + vpriv

out = vpub
in + vpriv

in

For each of the above conditions, we use a contraction to prove that the
probability of each case is at most negligible. Note that, for better legibility, we
denote the A’s win probability of each case as Pr[A(Ci) = 1], which means A
wins but violates Condition i.
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An infringing on condition 1. Each (TxZKT, w⃗) ∈ (L, W⃗ ), not inserted by A,
always satisfies condition 1; The probability Pr[A(C1) = 1] is that A inserts
TxZKT to build a pair (TxZKT, w⃗) where cmold in w⃗ is not the output of all previ-
ous transactions before receiving the value by zkTransfer. However, each TxZKT
utilizes the witness w⃗, containing the commitment cmold taken as input for mak-
ing a nullifier nf, to generate the proof by proving the validity of TxZKT. Namely,
there is a violation of condition 1 if its commitment corresponding to nf does not
exist in L. The meaning of the violation is equal to break the binding property
of COM; Hence Pr[A(C1) = 1] is negligible.

An infringing on condition 2. Each (TxZKT, w⃗) ∈ (L, W⃗ ), not inserted by A,
always satisfies condition 2; The probability Pr[A(C2) = 1] is that there are
two transaction (TxZKT, TxZKT

′) in which their commitment is the same but has
different two nullifiers nf and nf′. However, it contradicts the binding property
of COM; Thus, Pr[A(C2) = 1] is negligible.

An infringing on condition 3. In each (TxZKT, w⃗) ∈ (L, W⃗ ), there exists a
zk-SNARK proof, which can guarantee each of values vENA, vpriv

in , vpriv
out , vpub

in , vpub
out ,

and vENA∗, satisfying the following equation: vENA
old + vpriv

in − vpriv
out + vpub

in − vpub
out =

vENA∗. Pr[A(C3) = 1] is a probability that its equation does not hold. How-
ever, this is a violation of the proof knowledge property of the zk-SNARK; It is
negligible.

An infringing on condition 4. Each (TxZKT, w⃗) ∈ (L, W⃗ ) encompasses the
values taken as the commitment (e.g., vpriv

out , addrrecv, and onew). Pr[A(C4) = 1] is
a probability that the commitments are equal, and all values related to commit-
ment inputs in two transactions (TxZKT, TxZKT

∗) are equivalent except for the
amount (i.e., vpriv

out ̸= vpriv
out

∗
) where TxZKT

∗ a pre-existing zkTransfer transaction.
However, since it is contradictory to the binding property of COM, it happens
negligibly.

An infringing on condition 5. Each (TxZKT, w⃗) ∈ (L, W⃗ ) publishes the recip-
ient’s address of a commitment cmnew. If the zkTransfer transaction inserted by
A issues addrrecv, the output of a previous zkTransfer transaction TxZKT

′ whose
recipient’s account address is in Acct, it is the violation of the condition 5; Thus,
Pr[A(C5) = 1]. However, this contradicts the collision resistance of CRH.

To sum up, we prove the Definition 3 holds since it is at most negligible that
the opposite happens, as mentioned above.

B.4 Auditability

In the AUD experiment, A wins if the tuple (TxZKT, aux) holds the following
conditions where aux consists of (onew, vpriv

out , addrrecv):

i) TxZKT passes the transaction verification.

VerifyTx(TxZKT, L) = true
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ii) aux and the commitment cmnew in TxZKT are verified.

VerCommit(cmnew, aux) = true

iii) The decrypted message of pctnew and the values (onew, vpriv
out , addrrecv) in aux

are not the same.

(onew, vpriv
out , addrrecv) ̸= Auditask(pctnew)

If A wins in the experiment, when the auditor decrypts pctnew, it implies that
the auditor obtains an arbitrary string, not a correct plaintext. However, A’s win-
ning probability is negligible since it breaks the binding property of COM. Also,
assume that there exists an extractor χ which can extract the witness. When ob-
taining the witness using χ, it is obvious that aux is equal to (onew, vpriv

out , addrrecv).
Thus, A’s winning should also break the knowledge soundness property of the
zk-SNARK. Consequently, since the properties of COM and zk-SNARK, the au-
ditor with an authorized key (i.e., ask) can always observe the correct plaintext
and surveil illegal acts in transactions.
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Azeroth Client

◦ SetupClient(1λ, RZKT) :
(ek, vk) ← Πsnark.Setup(RZKT)

G
$
← G

return pp = (ek, vk, G)

◦ KeyGenAuditClient(pp):

(ask, apk)
$
← PE.Gen(pp)

TxKGA = (apk)
return (apk, ask), TxKGA

◦ KeyGenUserClient(pp):

(skenc, pkenc)
$
← PE.Gen(pp)

kENA
$
← SE.Gen(pp)

skown
$
← F; pkown ← CRH(skown)

addr ← CRH(pkown||pkenc)
usk = (kENA, skown, skenc)
upk = (addr, pkown, pkenc)
TxKGU = (addr)
return (sk, pk), TxKGU

◦ RetreiveNoteClient(L, usk, upk):
(kENA, skown, skenc) ⇐ usk
(addr, pkown, pkenc) ⇐ upk
for TxZKT ∈ L do

(cm, pct, . . . ) ⇐ TxZKT
(o, v, addr∗) ← PE.Decskenc (pct)
if addr = addr∗ then

return note = (cm, o, v)
end if

end for

◦ zkTransferClient (note, apk, usksend, upksend, upkrecv, vpriv
out , vpub

in , vpub
out ,

EOArecv):
(ksend

ENA, sksend
own , sksend

enc ) ⇐ usksend

(addrsend, pksend
own , pksend

enc ) ⇐ upksend

(addrrecv, pkrecv
own , pksend

enc ) ⇐ upkrecv
if note ̸= ⊥ then

(cmold, oold, vpriv
in ) ⇐ note

else

vpriv
in ← 0; oold

$
← F;

cmold ← COM(vpriv
in , addrsend; oold)

end if
sctold ← ENA[addrsend]
vENA

old ← SE.Decksend
ENA

(sctold) ; nf ← PRFsksend
own

(cmold)
rt ← Listrt.Top
Path ← ComputePathMT(cmold) if vpriv

in > 0
cmnew ← COM(vpriv

out , addrrecv; onew)
pctnew, auxnew ← PE.Encpkrecv

enc ,apk(onew||vpriv
out ||addrrecv)

vENA
new ← vENA

old + vpriv
in − vpriv

out + vpub
in − vpub

out
sctnew ← SE.Encksend

ENA
(vENA

new )

x⃗ =

{
apk, rt, nf, upksend

, cmnew,

sctold, sctnew, vpub
in , vpub

out , pctnew

}
w⃗ =

{
usksend

, cmold, oold, vpriv
in , upkrecv

,

onew, vpriv
out , auxnew, Path

}
π ← Πsnark.Prove(ek, x⃗, w⃗)
TxZKT = (π, rt, nf, addrsend, cmnew, sctnew, vpub

in , vpub
out , pctnew,

EOArecv)
Return TxZKT

◦ Audit(ask,pct):
msg ← PE.Decask(pct)
Return msg

Azeroth Smart Contract

◦ SetupSC(vk) :
vkSC ← vk
InitMT

◦ RegisterAuditorSC(apk) :
APK ← apk

◦ RegisterUserSC(addr) :
assert addr ̸∈ Listaddr
ENA[addr] ← 0

◦ zkTransferSC (π, rtold, nf, addrsend, cmnew , sctnew , pctnew, vpub
in , vpub

out ,
EOArecv):

assert rtold ∈ Listrt
assert nf ̸∈ Listnf
assert addrsend ∈ Listaddr
assert cmnew ̸∈ Listcm

x⃗ =

{
APK, rtold, nf, upksend

, cmnew,

ENA[addrsend], sctnew, vpub
in , vpub

out , pctnew

}
assert Πsnark.VerProof(vkSC, π, x⃗) = true
ENA[addrsend] ← sctnew
rtnew ← TreeUpdateMT(cmnew)
Listrt .append(rtnew)
Listnf .append(nf)
if vpub

in > 0 then TransferFrom(EOAsend, this, vpub
in )

end if
if vpub

out > 0 then TransferFrom(this, EOArecv, vpub
out )

end if

Azeroth Relation

◦ Relation R(x⃗; w⃗) :

x⃗ =

{
apk, rt, nf, upksend

, cmnew,

sctold, sctnew, vpub
in , vpub

out , pctnew

}
w⃗ =

{
usksend

, cmold, oold, vpriv
in , upkrecv

,

onew, vpriv
out , auxnew, Path

}
(ksend

ENA, sksend
own , sksend

enc ) ⇐ usksend

(addrsend, pksend
own , pksend

enc ) ⇐ upksend

(addrrecv, pkrecv
own , pksend

enc ) ⇐ upkrecv

if vpriv
in > 0 then
assert true = MembershipMT(rt, cmold, Path)

end if
assert pksend

own = CRH(sksend
own )

assert addrsend = CRH(pkown||pkenc)
assert cmold = COM(vpriv

in , addrsend; oold)
assert nf = PRFsksend

own
(cmold)

assert pctnew, auxnew =
PE.Encpkrecv

enc ,apk (onew||vpriv
out ||addrrecv)

assert addrrecv = CRH(pkrecv
own||pkrecv

enc )
assert cmnew = COM(vpriv

out , addrrecv; onew)
if sctold = 0 then vENA

old ← 0
else vENA

old ← SE.Decksend
ENA

(sctold)
end if
assert vENA

new ← SE.Decksend
ENA

(sctnew)

assert vENA
new = vENA

old + vpriv
in − vpriv

out + vpub
in − vpub

out

assert vpriv
out ≥ 0; vpriv

in ≥ 0; vpub
in ≥ 0; vpub

out ≥ 0
assert vENA

new ≥ 0; vENA
old ≥ 0

Fig. 8. Azeroth scheme ΠAzeroth


