
An Analysis of the Algebraic Group Model

Jonathan Katz∗ Cong Zhang† Hong-Sheng Zhou‡

October 1, 2022

Abstract

The algebraic group model (AGM), formalized by Fuchsbauer, Kiltz, and Loss, has
recently received significant attention. One of the appealing properties of the AGM
is that it is viewed as being (strictly) weaker than the generic group model (GGM),
in the sense that hardness results for algebraic algorithms imply hardness results for
generic algorithms, and generic reductions in the AGM (namely, between the algebraic
formulations of two problems) imply generic reductions in the GGM. We highlight that
as the GGM and AGM are currently formalized, this is not true: hardness in the AGM
may not imply hardness in the GGM, and a generic reduction in the AGM may not
imply a similar reduction in the GGM.

1 Introduction

Computational assumptions in groups. Since the work of Diffie and Hellman [DH76],
there have been many elegant cryptographic schemes and protocols whose security can be
based on the conjectured hardness of certain computational problems in (cyclic) groups. To
prove security in this setting, we begin by formulating an appropriate hardness assumption
relative to a group G. It is important to stress that such assumptions are always relative to
some specific encoding of the elements of G, even though this is not always made explicit.
For example, let G denote the cyclic group of order p, for some large prime p such that
q = 2p+ 1 is also prime. One way to encode elements of G is to represent them as integers
in the order-p subgroup of Z∗

q, with the group operation corresponding to multiplication
modulo q. Another way to encode elements of G is to represent them as integers in Zp

with the group operation corresponding to addition modulo p. Even though these are both
encodings of the same group (or, put differently, these two encodings are isomorphic), it is

∗University of Maryland, jkatz@cs.umd.edu.
†Zhejiang University and ZJU-Hangzhou Global Scientific and Technological Innovation Center,

congresearch@gmail.com. Work supported in part by Zhejiang University Education Foundation Qizhen
Scholar Foundation. Portions of this work were done while at the University of Maryland.

‡Virginia Commonwealth University, hszhou@vcu.edu. Work supported in part by NSF grant CNS-
1801470, a Google Faculty Research Award, and a research gift from Ergo Platform.

1



reasonable to conjecture that the discrete-logarithm problem is hard in the first case even
though it is trivial to solve in the second case. Encodings matter.

Beyond understanding the hardness of specific problems in groups, it is also interesting
to understand relations between different problems. Here, too, the specific encoding may
affect the relations that can be shown.

Unfortunately, the current state-of-the-art in complexity theory does not allow us to prove
any unconditional hardness results relative to any concrete group encoding; namely, we do
not know how to prove lower bounds on the probability with which arbitrary algorithms can
solve some problem relative to any specific encoding of group elements. (On the other hand,
we can in some cases show unconditional relations between certain problems, e.g., that—for
any encoding—hardness of the decisional Diffie-Hellman assumption implies hardness of the
discrete-logarithm problem.) This has motivated researchers to investigate the possibility
of proving hardness results for specific (restricted) classes of algorithms. Two examples we
study in this work are the class of generic algorithms, and the class of algebraic algorithms.
We discuss these in more detail below.

Generic algorithms and the generic group model. Roughly speaking, generic algo-
rithms operate independently of any particular group encoding. That is, they ignore the
specific encoding of group elements but instead treat group elements “generically.” Study-
ing this class of algorithms is well motivated, since several well-known algorithms such as
the baby-step/giant-step algorithm [PH78] and Pollard’s rho algorithm [Pol78] are generic
in this sense. A generic algorithm has the advantage that it works for any encoding of group
elements; it cares only about the mathematical structure of the underlying group, but not its
encoding. Researchers have proposed different variants of the so-called generic group model
(GGM) [Nec94,Sho97,Mau05,MPZ20] in an effort to formally define the notion of a generic
algorithm. We describe these in Section 2.1.

It is possible to prove unconditional hardness results in the generic group model. While
the implications of such results for hardness relative to any specific encoding are unclear, at a
minimum a proof of hardness in the GGM serves as a “sanity check” that some assumption is
reasonable. Indeed, the GGM is now a canonical tool to establish (some level of) confidence
for new hardness assumptions or even security of cryptographic schemes. Moreover, for
some specific group encodings (e.g., appropriately defined elliptic-curve groups) and certain
problems, the best known algorithms are indeed generic.

Algebraic algorithms and the algebraic group model. Other work [BV98,PV05] has
proposed a class of so-called algebraic algorithms. Roughly speaking, algebraic algorithms
are allowed to exploit the concrete encoding of group elements, but they are restricted to only
being able to derive (new) group elements via group operations involving elements they have
been provided with as input. Fuchsbauer, Kiltz, and Loss [FKL18] recently formalized this
idea as the algebraic group model (AGM), and showed a number of results in that model. A
number of papers have since extended those results [MTT19,KLX20,BFL20,ABK+21,GT21],
and have used the AGM to prove security of cryptographic constructions [MBKM19,RS20,
KLX22,FPS20,ABB+20,RZ21].

The utility of studying the AGM is not immediately clear, and we are not aware of any

2



natural group-theoretic algorithms that are algebraic but not generic.1 We are also not aware
of any unconditional hardness results for problems of cryptographic interest in the AGM.
(Though lower bounds for some problems are possible in an extension of the AGM [KLX20].)
Nevertheless, Fuchsbauer, Kiltz, and Loss argue that the AGM can be useful for studying
reductions between problems. As an example, for many group encodings the best-known
algorithm for solving the computational Diffie-Hellman problem is to first solve the discrete-
logarithm problem. In the AGM, one can prove that this is inherent, in the sense that
hardness of the latter implies hardness of the former. Such a result is not known to hold in
general.

To justify the usefulness of studying reductions in the AGM, Fuchsbauer et al. [FKL18,
Lemma 2.2] claim that a generic reduction between two problems in the AGM implies a
generic reduction between those problems in the GGM. That is, if there is a generic reduction
R showing that the hardness of (algebraic) security game H implies hardness of (algebraic)
security game G, and if H can be proven unconditionally hard for generic algorithms, then
G is also hard in the GGM. Their proof of this claim uses the following natural steps:

Step 1: Assume toward a contradiction that G is not hard in the GGM, so there is a generic
algorithm AG

gen that succeeds in game G with high probability.

Step 2: Since any generic algorithm is also algebraic, the reduction R can be applied to
AG
gen to obtain an algebraic algorithm AH

alg := RAG
gen that succeeds with high probability

in H.

Step 3: Since R is generic, AH
alg is in fact a generic algorithm. But this contradicts the fact

that H is unconditionally hard for generic algorithms.

While the above is appealing, some steps are not entirely clear. In particular, it is not
obvious that the intuitive conversion of a generic algorithm to an algebraic algorithm (cf.
step 2) is applicable in all contexts. And even if it is possible to transform the generic algo-
rithm AG

gen to an “equivalent” algebraic algorithm AG
alg, it is then not clear that the resulting

algebraic algorithm RAG
alg can be meaningfully transformed back into a generic algorithm (cf.

step 3).

1.1 Our Results

Seeking to better understand the algebraic group model and its relationship to the generic
group model, we provide self-contained descriptions of both and then explore their rela-
tionship. We first observe that the formal definition of algebraic algorithms proposed by
Fuchsbauer et al. may not match the intended intuition. Specifically, Fuchsbauer et al. de-
fine an algorithm to be algebraic if it provides a representation of any group elements it
outputs. (See more details in Section 3.) This is supposed to ensure that “the only way

1Fuchsbauer et al. claim that index-calculus algorithms are algebraic, but without any further explanation.
It is not clear to us what they mean by this.

3



for an algebraic algorithm to output a new group element is to derive it via group multipli-
cation from known group elements” [FKL18]. However, we show in Section 3 an algorithm
that obtains a new group element using non-group operations but can still output a valid
representation of that element.

More importantly, we show that a generic algorithm need not be algebraic, and that it
might be hard to convert a generic algorithm to an algebraic one with the same behavior. In
particular, we show a counterexample to the claim of Fuchsbauer et al. as described above
by showing a security game called the “binary encoding game (beg)” and describing a
generic reduction from the discrete-logarithm problem to this game. (Note that the discrete-
logarithm problem is unconditionally hard in the GGM, and is conjectured to be hard for
certain encodings.) But we show that beg is easy in the GGM. Thus:

Theorem 1.1 (Informal). A generic reduction in the AGM does not imply a generic reduc-
tion in the GGM.

Concurrent work. In concurrent and independent work, Zhandry [Zha22] studies the GGM
and the AGM and gives a new definition of the AGM. We consider the AGM as originally
defined by Fuchsbauer et al. [FKL18]. Zhandry does not address the relationship between
generic reductions in the AGM vs. the GGM, and does not show any analogue of our theorem
stated above.

Discussion. Our counterexample to [FKL18, Lemma 2.2] is admittedly contrived, and
an important next step is to understand whether there is some subclass of security games
for which a version of their lemma might still apply. Any such subclass should of course
be broad enough to include security games of cryptographic relevance. More generally, we
believe that a more-formal treatment of the GGM and AGM, and the relationship between
them, is warranted.

2 Preliminaries

In this section, we provide the required background and preliminaries.

Algorithms. We denote by s ← S uniform sampling of variable s from the finite set S.
Algorithms are written using uppercase letters (e.g., A, B). To indicate that a probabilistic
algorithm A runs on some inputs (x1, . . . , xn) and returns y, we write y ← A(x1, . . . , xn). If
A has oracle access to an algorithm B during its execution, we write y ← AB(x1, . . . , xn).

Group encodings. Throughout this work, we restrict attention to the cyclic group G
of prime order p. For concreteness, we often identify G with the additive group Zp. As
highlighted in the Introduction, however, we explicitly focus on encodings of this group and
its impact on algorithms for various problems.

Fix some ℓ ≥ ⌈log p⌉. An encoding σ : Zp → {0, 1}ℓ is simply an injective map from Zp

to {0, 1}ℓ. We let id be the “trivial” encoding in which each element of Zp is encoded as
a binary integer in the range {0, . . . , p − 1} using ⌈log p⌉ bits and then padded to the left

4



with 0s to a string of length ℓ, and the group operation is addition modulo p. We often use
boldface capital letters (e.g., X,Y) for encodings of group elements.

As notational shorthand, we will often use standard multiplicative notation for group
operations on (encodings of) group elements. Thus, σ(x)σ(y) refers to computing the group
operation on the group elements σ(x), σ(y); note that σ(x)σ(y) = σ(x+y mod p). Similarly,
for r an integer, σ(x)r refers to computing the r-fold group operation on σ(x); of course,
σ(x)r = σ(xr mod p).

dlogA
σ

01 z ← Zp

02 z′ ← A(σ(1), σ(z))
03 Return 1 iff z′ = z

Figure 1: The discrete-logarithm game dlog.

Security games. We use a variant of code-based security games [BR06]. A game Gσ,
parameterized by an encoding σ, has a main procedure and (possibly zero) oracle procedures
that describe how oracle queries are answered. Figure 1 shows an example of the discrete-
logarithm game. We let GA

σ be a random variable denoting the boolean output of game Gσ

played by algorithm A. Algorithm A is said to succeed when GA
σ = 1, and the success

probability of A in Gσ is SuccAGσ

def
= Pr[GA

σ = 1]. TimeAGσ
denotes the running time of GA

σ .

Security reductions. Let Gσ,Hσ be security games. We write Hσ
(∆t,∆ϵ)
=====⇒ Gσ if there is

an algorithm R (a reduction) such that for all algorithms A, algorithm B := RA satisfies

SuccBHσ
≥ 1

∆ ϵ
· SuccAGσ

, TimeBHσ
≤ ∆t ·TimeAGσ

.

Note that the reduction may depend on the encoding, and a reduction with some parameters
may exist for certain encodings and not others. (For examples of reductions that depend on
the encoding, see [Gal12, Section 21.4].)

2.1 Generic Algorithms

In general, an algorithm A in a game Gσ may depend on σ. A generic algorithm, however,
should be “oblivious” to the encoding used. At least two ways of formalizing this have been
considered, one due to Shoup [Sho97] and another due to Maurer [Mau05].

Shoup’s approach can be summarized as requiring a generic algorithm A to work for all
encodings. Since A cannot depend on the encoding, however, it must be provided with some
way to perform group operations. We can provide such capabilities (both to A and possibly
the game itself) by giving access to two oracles that we collectively call encoding oracles :

5



• a labeling oracle that takes as input x ∈ Zp and returns σ(x), and

• a group-operation oracle that takes as input strings s1, s2 and does the following: if
s1 = σ(x) and s2 = σ(y), return σ(x+ y mod p); otherwise, return ⊥.

Calls to these oracles take unit time by definition. We denote by Ĝσ the modification
of a game Gσ to include the above oracles. We define2 SuccAG = minσ{SuccAĜσ

} and

TimeAG = maxσ{TimeA
Ĝσ
}.

Maurer’s approach to defining the generic group model is similar in spirit, but technically
different. Here, roughly speaking, a generic algorithm does not have access to any encodings
of group elements at all; instead, the algorithm is able to access group elements only via
abstract “handles.” One way to formalize this is by initializing a counter ctr to 1, and a table
T to empty, at the beginning of an algorithm’s execution. The algorithm now has access to
three encoding oracles that take the following form:

• the labeling oracle takes as input x ∈ Zp. It stores (ctr, x) in T and increments ctr. (It
does not return anything.)

• the group-operation oracle takes as input positive integers i, j < ctr. It finds (i, x)
and (j, y) in T , stores (ctr, x+ y mod p) in T , and increments ctr. (It does not return
anything.)

• an equality oracle takes as input positive integers i, j < ctr. It finds (i, x) and (j, y)
in T and returns 1 if x = y and 0 otherwise.

Note that ctr can also be incremented, and T populated, by actions that occur as part of the
game itself rather than due to actions of the algorithm. For example, the discrete-logarithm
game of Figure 1 would be modified to store (1, x) in T and increment ctr as part of step 1;
it would also provide no input to A in step 2. Moreover, if A is supposed to output a group
element in some game, then it should instead output a positive integer i < ctr; this will
correspond to an output of σ(x), where (i, x) is the record stored in T . If we let G̃ denote
the appropriate modification of a game G, then we again define SuccAG = minσ{SuccAG̃σ

}
and TimeAG = maxσ{TimeA

G̃σ
}.

We refer to Shoup-generic and Maurer-generic algorithms depending on the model under
consideration. With respect to either model, we say a game G is (t, ϵ)-hard in the generic
group model if for every generic algorithm A it holds that TimeAG ≤ t⇒ SuccAG ≤ ϵ.

A generic algorithm A (in either model) with success probability ϵ = SuccAG may fail
to run in a “standard” game Gσ where the encoding oracles are not present. However, for
any σ it is possible to modify a generic algorithm A (of either type) in a black-box way (by
simulating the encoding oracles) to obtain an algorithm Aσ where SuccAσ

Gσ
= ϵ and the time

complexity of Aσ relative to A reflects only the time required to perform group operations
for the encoding σ.

2While one might expect SuccA
Ĝσ

and TimeA
Ĝσ

to be independent of σ (and that is the case for “natural”

generic algorithms), that may not be the case in general.

6



SA
σ

01 b1 · · · bℓ := σ(1)
02 b← A
03 Return 1 iff b = b1

Figure 2: Game S.

For completeness, we remark that there can be games where the optimal success probabil-
ities for generic algorithms differ depending on which generic group model is used. Consider,
for example, game S in Figure 2. With respect to Shoup’s notion of generic algorithms, there
exists a trivial algorithm A that has success probability 1 for any encoding. (A simply asks
its encoding oracle for σ(1) and outputs the first bit.) On the other hand, with respect to
Maurer’s notion of generic algorithms it is not possible to have an algorithm that achieves
success probability better than 1/2 for all encodings.

Generic reductions. For games G, H, we write H
(∆t,∆ϵ)
=====⇒

S-GGM

G if there is a generic

reduction R (where generic is defined relative to Shoup’s model) such that for all generic
algorithms A, algorithm B := RA (which is generic) satisfies

SuccBH ≥
1

∆ ϵ
· SuccAG, TimeBH ≤ ∆t ·TimeAG.

We define H
(∆ϵ,∆t)
=====⇒

M-GGM

G analogously with respect to Maurer’s model.

3 Algebraic Algorithms

Algebraic algorithms are another example of a class of algorithms that has been considered
in the context of group-theoretic problems. The main idea, which seems to have originated
in work of Paillier and Vergnaud [PV05], is to try to capture the notion of an algorithm
that, on the one hand, only performs group operations on group elements (as in the generic
group model) but, on the other hand, can depend on a specific encoding σ rather than being
“encoding-agnostic.” As one might expect, formalizing this intuition is not straightforward.
The main difficulty is that, with an encoding σ fixed, it is no longer clear how to differen-
tiate between arbitrary computations on group elements done by an algorithm and group
operations on group elements (that may depend on σ).

Fuchsbauer et al. [FKL18] suggest one way to resolve the above dilemma. Roughly
speaking, they do not attempt to place any restrictions on intermediate computations done
by an algorithm, but instead require that any group elements output by an algorithm must3

be accompanied by a representation relative to the ordered set S of group elements (the base

3Formally, if an algorithm violates these requirements in some game, then by definition it does not succeed.

7



set) provided to that algorithm as input. (A representation of a group element σ(y) relative
to an ordered set of group elements S = (σ(x1), . . . , σ(xk)) is a vector r⃗ = (r1, . . . , rk) ∈ Zk

p

such that σ(y) =
∏

i σ(xi)
ri . Note this implies y =

∑
i rixi mod p.) To ensure nontriviality,

we assume the set S always includes σ(1) (i.e., σ(1) is always provided to the algorithm as
input). To be clear: (1) group elements received by the algorithm as a result of an oracle
call are added to the base set (in particular, the base set can expand during the course of
executing the algorithm; a valid representation must always be relative to the current set),
and (2) an algebraic algorithm must also provide a representation for any group elements
it provides as input to some oracle call. This is intended to capture the intuitive idea that
the only way for an algebraic algorithm to generate a new group element is to derive it via
group operations from known group elements.

We note a number of unsatisfactory aspects of this definition:

1. The definition does not constrain algorithms that do not output group elements. In
particular, for the discrete-logarithm game the class of algebraic algorithms is the class
of all algorithms. Thus, the AGM is useless for analyzing games where the algorithm’s
output is not a group element.

A(1)
01 r1, r2 ← Zp

02 s← r1 · r2 mod p
03 Output (s, s)

Figure 3: Algorithm A with respect to the identity encoding id.

2. The formalization considers some algorithms to be algebraic even though they may
not match one’s intuition regarding what operations an algebraic algorithm should be
allowed to perform. For example, consider algorithm A in Figure 3 with respect to the
identity encoding σ = id. This algorithm samples two group elements r1, r2 and then
multiplies them modulo p. The group operation here, however, is addition modulo p.
Nevertheless, A is able to output a representation of the resulting group element s
with respect to its base set {1}. More generally, whenever the encoding is such that
the discrete-logarithm problem can be solved efficiently relative to that encoding, any
algorithm can be made algebraic by simply computing a representation of any group
elements it outputs.

3. Perhaps more problematic is that, once a particular encoding σ is fixed, it is not
immediately well-defined what it means for an algorithm to “be provided with a group
element as input” or to “output a group element.” To get a sense of the problem,
consider a game involving an oracle that, on input i, returns the ith bit of σ(x). At
no point in time does an algorithm in that game ever receive a group element from
an oracle; nevertheless, it is clearly trivial to construct an algorithm that outputs the

8



group element σ(x). Fuchsbauer et al. attempt to address this issue by requiring that
“other elements” (i.e., non-group elements) “must not depend on any group elements,”
but it is not clear how such a requirement can be formalized.

It seems intuitive, and one would like to claim, that algebraic algorithms are at least as
strong as generic algorithms, in the sense that for any game G, any generic algorithm A
with ϵ = SuccAG, and any encoding σ, it is possible to construct an algebraic algorithm Aσ

achieving the same success probability by simply simulating the encoding oracles for A and
keeping track of the representations of any group elements generated during the execution
of A. As already noted by Fuchsbauer et al., however, thus is not necessarily true (at least for
Shoup’s version of the GGM). Specifically, in Shoup’s GGM it may be possible to obliviously
sample group elements (i.e., without knowledge of their discrete logarithm), something that
is ruled out by definition in the AGM.

We show in Section 4, in the context of reductions, that it is also not the case that all
generic algorithms can be made algebraic.

Although Fuchsbauer et al. conjecture that any Maurer-generic algorithm can be made
algebraic, we are not aware of a proof of that conjecture.

Generic reductions for algebraic adversaries. Fuchsbauer et al. [FKL18] consider
generic reductions for algebraic adversaries; we map their definition to our syntax. For

games G, H, write H
(∆t,∆ϵ)
=====⇒

alg
G if there is a generic reduction R such that for all algebraic

algorithms A and encodings σ, algorithm B := RA satisfies

SuccBHσ
≥ 1

∆ ϵ
· SuccAGσ

, TimeBHσ
≤ ∆t ·TimeAGσ

. (1)

The reduction is deliberately restricted to be generic (rather than algebraic) so that, as
explained by Fuchsbauer et al., if A is algebraic then B will be algebraic, and if A is generic
then B will be generic. We remark that the above notion seems to be useful only for Shoup-
generic reductions; it is not clear how a Maurer-generic reduction would be able to provide
A with encodings of group elements that A expects.

We observe several technical issues with the above definition:

• It is not true that when R is generic and A is algebraic, the composed algorithm B = RA

is algebraic. Indeed, a simple counterexample is a generic algorithm R that obliviously
samples a group element and outputs it.

• Even if (1) holds for all algebraic algorithms A, it is not clear whether it holds for
all generic algorithms A. Again, this is because a generic algorithm is not necessarily
algebraic (nor is it necessarily possible to construct an algebraic algorithm with the
same behavior).

4 A Counterexample

In this section, we give an example showing that a generic reduction in the AGM does not
imply a reduction in the GGM. Concretely, we show two games G and H such that: (1) there

9



is a Shoup-generic reduction from H to G; (2) H is hard for Shoup-generic algorithms; but
(3) G is easy for Shoup-generic algorithms. Formally,

Theorem 4.1. There are security games G and H such that

• H
(2,1)
===⇒

alg
G;

• H is (t, O(t2/p))-hard with respect to Shoup-generic algorithms;

• There is a Shoup-generic algorithm A running in time O(ℓ) with SuccAG = 1.

begA
σ

01 z ← Zp

02 parse Z = σ(z) as the bitstring z1 · · · zℓ
03 (X,U1, . . . ,Uℓ) := (σ(1), σ(z1), . . . , σ(zℓ))
04 Z′ ← A(X,U1, . . . ,Uℓ)
05 Return 1 iff (Z′ = Z)

Figure 4: The binary encoding game.

Proof. Take H as the discrete-logarithm game from Figure 1. Security game G is one we
introduce called the binary encoding game (beg); see Figure 4. Hardness of H for Shoup-
generic algorithms was shown in [Sho97]. It is easy to see that there is a Shoup-generic
algorithm A with SuccAbeg = 1: for each i, the algorithm sets z′i := 1 iff Ui = X and then

outputs Z′ := z′1 · · · z′ℓ. Thus, it only remains to prove that dlog
(2,1)
===⇒

alg
beg.

Fix an encoding σ. Generic reduction R is given (X,Z) := (σ(1), σ(z)) as input along
with oracle access to an algebraic algorithm A; it proceeds as follows:

1. Parse Z as the bitstring z1 · · · zℓ. Set z0 := 1.

2. Request I = σ(0) from the labeling oracle.

3. For i = 1, . . . , ℓ do: if zi = 0 then set Ui := I; else set Ui := X.

4. Run A(X,U1, . . . ,Uℓ) to obtain output Z′ along with a representation (x0, x1,
. . . , xℓ) such that Z′ = Xx0 ·Ux1

1 · · ·U
xℓ
ℓ .

5. Output
∑ℓ

i=0 zi · xi mod p.

We now analyze the behavior of R. Let A be an algebraic adversary with ϵ = SuccAbegσ
.

Observe that when A is run as a subroutine by R in game dlogσ, the input provided to A is
distributed identically as in begσ. Moreover, whenever A succeeds it holds that (1) Z′ = Z

and (2) z =
∑

zi · xi mod p. It follows that SuccR
A

dlogσ
= ϵ. This completes the proof.

10



In light of our counterexample, we highlight where the proof of the result by Fuchsbauer
et al. [FKL18, Lemma 2.2] fails. Note that the generic algorithm A with SuccAbeg = 1 that
we construct as part of the proof cannot be converted to an algebraic algorithm. (More
formally: the “trivial” attempt to convert A to an algebraic algorithm by monitoring its
encoding oracles does not work, nor do we see another way to convert A to an algebraic
algorithm. Moreover, as long as the discrete-logarithm problem is hard for some particular
encoding σ, there is no efficient way to convert A into an algebraic algorithm with similar
behavior relative to that encoding.)

5 Concluding Thoughts

Our work raises several issues related to the AGM. For starters, it is unclear whether the
AGM is a meaningful class of algorithms to study; on the one hand because we are not
aware of any (natural) algebraic algorithms that are not generic, and on the other hand
because it is not clear whether the class of algebraic algorithms contains the class of generic
algorithms. This may be related to the issue of whether the current formalization of the
AGM adequately captures one’s intuition about what “algebraic” algorithms can do, as well
as whether it is possible to formally define what it means for certain objects not to “depend
on” encodings of group elements. One argument in favor of the AGM is that it provides a
meaningful way to analyze reductions; our work shows, however, that the main justification
for studying reductions in the AGM does not hold in certain settings.

Our work raises several interesting directions for future work, including the question
of developing other formalism for the algebraic group model, as well as formally resolving
the question as to whether the class of algebraic algorithms strictly includes the class of
Maurer-generic algorithms.

Acknowledgments

We thank Steven Galbraith for interesting discussions about the AGM and helpful comments
on an earlier draft of this work.

References

[ABB+20] Michel Abdalla, Manuel Barbosa, Tatiana Bradley, Stanislaw Jarecki, Jonathan
Katz, and Jiayu Xu. Universally composable relaxed password authenticated key
exchange. In Daniele Micciancio and Thomas Ristenpart, editors, Crypto 2020,
Part I, volume 12170 of LNCS, pages 278–307. Springer, Heidelberg, August
2020.

[ABK+21] Michel Abdalla, Manuel Barbosa, Jonathan Katz, Julian Loss, and Jiayu Xu.
Algebraic adversaries in the universal composability framework. In Mehdi Ti-

11



bouchi and Huaxiong Wang, editors, Asiacrypt 2021, Part III, volume 13092 of
LNCS, pages 311–341. Springer, Heidelberg, December 2021.

[BFL20] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of com-
putational assumptions in the algebraic group model. In Daniele Micciancio
and Thomas Ristenpart, editors, Crypto 2020, Part II, volume 12171 of LNCS,
pages 121–151. Springer, Heidelberg, August 2020.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor,
Eurocrypt 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidelberg,
May / June 2006.

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equiva-
lent to factoring. In Kaisa Nyberg, editor, Eurocrypt ’98, volume 1403 of LNCS,
pages 59–71. Springer, Heidelberg, May / June 1998.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Inf. Theory, 22(6):644–654, 1976.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
Crypto 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer, Heidelberg,
August 2018.

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind Schnorr sig-
natures and signed ElGamal encryption in the algebraic group model. In Anne
Canteaut and Yuval Ishai, editors, Eurocrypt 2020, Part II, volume 12106 of
LNCS, pages 63–95. Springer, Heidelberg, May 2020.

[Gal12] Steven D Galbraith. Mathematics of public key cryptography. Cambridge Uni-
versity Press, 2012.

[GT21] Ashrujit Ghoshal and Stefano Tessaro. Tight state-restoration soundness in the
algebraic group model. In Tal Malkin and Chris Peikert, editors, Crypto 2021,
Part III, volume 12827 of LNCS, pages 64–93, Virtual Event, August 2021.
Springer, Heidelberg.

[KLX20] Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puz-
zles and timed commitments. In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020, Part III, volume 12552 of LNCS, pages 390–413. Springer, Heidel-
berg, November 2020.

[KLX22] Julia Kastner, Julian Loss, and Jiayu Xu. On pairing-free blind signature
schemes in the algebraic group model. In Goichiro Hanaoka, Junji Shikata, and
Yohei Watanabe, editors, PKC 2022, Part II, volume 13178 of Lecture Notes in
Computer Science, pages 468–497. Springer, 2022.

12



[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited pa-
per). In Nigel P. Smart, editor, 10th IMA International Conference on Cryp-
tography and Coding, volume 3796 of LNCS, pages 1–12. Springer, Heidelberg,
December 2005.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable structured
reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press, Novem-
ber 2019.

[MPZ20] Ueli Maurer, Christopher Portmann, and Jiamin Zhu. Unifying generic group
models. Cryptology ePrint Archive, Report 2020/996, 2020. https://eprint.iacr.
org/2020/996.

[MTT19] Taiga Mizuide, Atsushi Takayasu, and Tsuyoshi Takagi. Tight reductions for
Diffie-Hellman variants in the algebraic group model. In Mitsuru Matsui, editor,
CT-RSA 2019, volume 11405 of LNCS, pages 169–188. Springer, Heidelberg,
March 2019.

[Nec94] Vassiliy Ilyich Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Mathematical Notes, 55(2):165–172, 1994.

[PH78] Stephen Pohlig and Martin Hellman. An improved algorithm for computing log-
arithms over GF(p) and its cryptographic significance (Corresp.). IEEE Trans-
actions on Information Theory, 24(1):106–110, 1978.

[Pol78] John M Pollard. Monte Carlo methods for index computation (mod p). Math-
ematics of Computation, 32(143):918–924, 1978.

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be
equivalent to discrete log. In Bimal K. Roy, editor, Asiacrypt 2005, volume 3788
of LNCS, pages 1–20. Springer, Heidelberg, December 2005.

[RS20] Lior Rotem and Gil Segev. Algebraic distinguishers: From discrete logarithms
to decisional uber assumptions. In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020, Part III, volume 12552 of LNCS, pages 366–389. Springer, Heidel-
berg, November 2020.

[RZ21] Carla Ràfols and Arantxa Zapico. An algebraic framework for universal and
updatable SNARKs. In Tal Malkin and Chris Peikert, editors, Crypto 2021,
Part I, volume 12825 of LNCS, pages 774–804, Virtual Event, August 2021.
Springer, Heidelberg.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, Eurocrypt ’97, volume 1233 of LNCS, pages 256–266.
Springer, Heidelberg, May 1997.

13

https://eprint.iacr.org/2020/996
https://eprint.iacr.org/2020/996


[Zha22] Mark Zhandry. To label, or not to label (in generic groups). 2022. To appear
at Crypto 2022. Full version available at https://eprint.iacr.org/2022/226.

14

https://eprint.iacr.org/2022/226

	Introduction
	Our Results

	Preliminaries
	Generic Algorithms

	Algebraic Algorithms
	A Counterexample
	Concluding Thoughts

